[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineBlockPlacement.cpp
blob27c109242340f0bcd30f4fac8327807ed4c91086
1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
23 // function in-order.
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/MachineSizeOpts.h"
46 #include "llvm/CodeGen/TailDuplicator.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetLowering.h"
49 #include "llvm/CodeGen/TargetPassConfig.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/IR/DebugLoc.h"
52 #include "llvm/IR/Function.h"
53 #include "llvm/InitializePasses.h"
54 #include "llvm/Pass.h"
55 #include "llvm/Support/Allocator.h"
56 #include "llvm/Support/BlockFrequency.h"
57 #include "llvm/Support/BranchProbability.h"
58 #include "llvm/Support/CodeGen.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/raw_ostream.h"
63 #include "llvm/Target/TargetMachine.h"
64 #include <algorithm>
65 #include <cassert>
66 #include <cstdint>
67 #include <iterator>
68 #include <memory>
69 #include <string>
70 #include <tuple>
71 #include <utility>
72 #include <vector>
74 using namespace llvm;
76 #define DEBUG_TYPE "block-placement"
78 STATISTIC(NumCondBranches, "Number of conditional branches");
79 STATISTIC(NumUncondBranches, "Number of unconditional branches");
80 STATISTIC(CondBranchTakenFreq,
81 "Potential frequency of taking conditional branches");
82 STATISTIC(UncondBranchTakenFreq,
83 "Potential frequency of taking unconditional branches");
85 static cl::opt<unsigned> AlignAllBlock(
86 "align-all-blocks",
87 cl::desc("Force the alignment of all blocks in the function in log2 format "
88 "(e.g 4 means align on 16B boundaries)."),
89 cl::init(0), cl::Hidden);
91 static cl::opt<unsigned> AlignAllNonFallThruBlocks(
92 "align-all-nofallthru-blocks",
93 cl::desc("Force the alignment of all blocks that have no fall-through "
94 "predecessors (i.e. don't add nops that are executed). In log2 "
95 "format (e.g 4 means align on 16B boundaries)."),
96 cl::init(0), cl::Hidden);
98 // FIXME: Find a good default for this flag and remove the flag.
99 static cl::opt<unsigned> ExitBlockBias(
100 "block-placement-exit-block-bias",
101 cl::desc("Block frequency percentage a loop exit block needs "
102 "over the original exit to be considered the new exit."),
103 cl::init(0), cl::Hidden);
105 // Definition:
106 // - Outlining: placement of a basic block outside the chain or hot path.
108 static cl::opt<unsigned> LoopToColdBlockRatio(
109 "loop-to-cold-block-ratio",
110 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
111 "(frequency of block) is greater than this ratio"),
112 cl::init(5), cl::Hidden);
114 static cl::opt<bool> ForceLoopColdBlock(
115 "force-loop-cold-block",
116 cl::desc("Force outlining cold blocks from loops."),
117 cl::init(false), cl::Hidden);
119 static cl::opt<bool>
120 PreciseRotationCost("precise-rotation-cost",
121 cl::desc("Model the cost of loop rotation more "
122 "precisely by using profile data."),
123 cl::init(false), cl::Hidden);
125 static cl::opt<bool>
126 ForcePreciseRotationCost("force-precise-rotation-cost",
127 cl::desc("Force the use of precise cost "
128 "loop rotation strategy."),
129 cl::init(false), cl::Hidden);
131 static cl::opt<unsigned> MisfetchCost(
132 "misfetch-cost",
133 cl::desc("Cost that models the probabilistic risk of an instruction "
134 "misfetch due to a jump comparing to falling through, whose cost "
135 "is zero."),
136 cl::init(1), cl::Hidden);
138 static cl::opt<unsigned> JumpInstCost("jump-inst-cost",
139 cl::desc("Cost of jump instructions."),
140 cl::init(1), cl::Hidden);
141 static cl::opt<bool>
142 TailDupPlacement("tail-dup-placement",
143 cl::desc("Perform tail duplication during placement. "
144 "Creates more fallthrough opportunites in "
145 "outline branches."),
146 cl::init(true), cl::Hidden);
148 static cl::opt<bool>
149 BranchFoldPlacement("branch-fold-placement",
150 cl::desc("Perform branch folding during placement. "
151 "Reduces code size."),
152 cl::init(true), cl::Hidden);
154 // Heuristic for tail duplication.
155 static cl::opt<unsigned> TailDupPlacementThreshold(
156 "tail-dup-placement-threshold",
157 cl::desc("Instruction cutoff for tail duplication during layout. "
158 "Tail merging during layout is forced to have a threshold "
159 "that won't conflict."), cl::init(2),
160 cl::Hidden);
162 // Heuristic for aggressive tail duplication.
163 static cl::opt<unsigned> TailDupPlacementAggressiveThreshold(
164 "tail-dup-placement-aggressive-threshold",
165 cl::desc("Instruction cutoff for aggressive tail duplication during "
166 "layout. Used at -O3. Tail merging during layout is forced to "
167 "have a threshold that won't conflict."), cl::init(4),
168 cl::Hidden);
170 // Heuristic for tail duplication.
171 static cl::opt<unsigned> TailDupPlacementPenalty(
172 "tail-dup-placement-penalty",
173 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
174 "Copying can increase fallthrough, but it also increases icache "
175 "pressure. This parameter controls the penalty to account for that. "
176 "Percent as integer."),
177 cl::init(2),
178 cl::Hidden);
180 // Heuristic for tail duplication if profile count is used in cost model.
181 static cl::opt<unsigned> TailDupProfilePercentThreshold(
182 "tail-dup-profile-percent-threshold",
183 cl::desc("If profile count information is used in tail duplication cost "
184 "model, the gained fall through number from tail duplication "
185 "should be at least this percent of hot count."),
186 cl::init(50), cl::Hidden);
188 // Heuristic for triangle chains.
189 static cl::opt<unsigned> TriangleChainCount(
190 "triangle-chain-count",
191 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
192 "triangle tail duplication heuristic to kick in. 0 to disable."),
193 cl::init(2),
194 cl::Hidden);
196 namespace llvm {
197 extern cl::opt<unsigned> StaticLikelyProb;
198 extern cl::opt<unsigned> ProfileLikelyProb;
200 // Internal option used to control BFI display only after MBP pass.
201 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
202 // -view-block-layout-with-bfi=
203 extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI;
205 // Command line option to specify the name of the function for CFG dump
206 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
207 extern cl::opt<std::string> ViewBlockFreqFuncName;
208 } // namespace llvm
210 namespace {
212 class BlockChain;
214 /// Type for our function-wide basic block -> block chain mapping.
215 using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>;
217 /// A chain of blocks which will be laid out contiguously.
219 /// This is the datastructure representing a chain of consecutive blocks that
220 /// are profitable to layout together in order to maximize fallthrough
221 /// probabilities and code locality. We also can use a block chain to represent
222 /// a sequence of basic blocks which have some external (correctness)
223 /// requirement for sequential layout.
225 /// Chains can be built around a single basic block and can be merged to grow
226 /// them. They participate in a block-to-chain mapping, which is updated
227 /// automatically as chains are merged together.
228 class BlockChain {
229 /// The sequence of blocks belonging to this chain.
231 /// This is the sequence of blocks for a particular chain. These will be laid
232 /// out in-order within the function.
233 SmallVector<MachineBasicBlock *, 4> Blocks;
235 /// A handle to the function-wide basic block to block chain mapping.
237 /// This is retained in each block chain to simplify the computation of child
238 /// block chains for SCC-formation and iteration. We store the edges to child
239 /// basic blocks, and map them back to their associated chains using this
240 /// structure.
241 BlockToChainMapType &BlockToChain;
243 public:
244 /// Construct a new BlockChain.
246 /// This builds a new block chain representing a single basic block in the
247 /// function. It also registers itself as the chain that block participates
248 /// in with the BlockToChain mapping.
249 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
250 : Blocks(1, BB), BlockToChain(BlockToChain) {
251 assert(BB && "Cannot create a chain with a null basic block");
252 BlockToChain[BB] = this;
255 /// Iterator over blocks within the chain.
256 using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator;
257 using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator;
259 /// Beginning of blocks within the chain.
260 iterator begin() { return Blocks.begin(); }
261 const_iterator begin() const { return Blocks.begin(); }
263 /// End of blocks within the chain.
264 iterator end() { return Blocks.end(); }
265 const_iterator end() const { return Blocks.end(); }
267 bool remove(MachineBasicBlock* BB) {
268 for(iterator i = begin(); i != end(); ++i) {
269 if (*i == BB) {
270 Blocks.erase(i);
271 return true;
274 return false;
277 /// Merge a block chain into this one.
279 /// This routine merges a block chain into this one. It takes care of forming
280 /// a contiguous sequence of basic blocks, updating the edge list, and
281 /// updating the block -> chain mapping. It does not free or tear down the
282 /// old chain, but the old chain's block list is no longer valid.
283 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
284 assert(BB && "Can't merge a null block.");
285 assert(!Blocks.empty() && "Can't merge into an empty chain.");
287 // Fast path in case we don't have a chain already.
288 if (!Chain) {
289 assert(!BlockToChain[BB] &&
290 "Passed chain is null, but BB has entry in BlockToChain.");
291 Blocks.push_back(BB);
292 BlockToChain[BB] = this;
293 return;
296 assert(BB == *Chain->begin() && "Passed BB is not head of Chain.");
297 assert(Chain->begin() != Chain->end());
299 // Update the incoming blocks to point to this chain, and add them to the
300 // chain structure.
301 for (MachineBasicBlock *ChainBB : *Chain) {
302 Blocks.push_back(ChainBB);
303 assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain.");
304 BlockToChain[ChainBB] = this;
308 #ifndef NDEBUG
309 /// Dump the blocks in this chain.
310 LLVM_DUMP_METHOD void dump() {
311 for (MachineBasicBlock *MBB : *this)
312 MBB->dump();
314 #endif // NDEBUG
316 /// Count of predecessors of any block within the chain which have not
317 /// yet been scheduled. In general, we will delay scheduling this chain
318 /// until those predecessors are scheduled (or we find a sufficiently good
319 /// reason to override this heuristic.) Note that when forming loop chains,
320 /// blocks outside the loop are ignored and treated as if they were already
321 /// scheduled.
323 /// Note: This field is reinitialized multiple times - once for each loop,
324 /// and then once for the function as a whole.
325 unsigned UnscheduledPredecessors = 0;
328 class MachineBlockPlacement : public MachineFunctionPass {
329 /// A type for a block filter set.
330 using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>;
332 /// Pair struct containing basic block and taildup profitability
333 struct BlockAndTailDupResult {
334 MachineBasicBlock *BB;
335 bool ShouldTailDup;
338 /// Triple struct containing edge weight and the edge.
339 struct WeightedEdge {
340 BlockFrequency Weight;
341 MachineBasicBlock *Src;
342 MachineBasicBlock *Dest;
345 /// work lists of blocks that are ready to be laid out
346 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
347 SmallVector<MachineBasicBlock *, 16> EHPadWorkList;
349 /// Edges that have already been computed as optimal.
350 DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges;
352 /// Machine Function
353 MachineFunction *F;
355 /// A handle to the branch probability pass.
356 const MachineBranchProbabilityInfo *MBPI;
358 /// A handle to the function-wide block frequency pass.
359 std::unique_ptr<MBFIWrapper> MBFI;
361 /// A handle to the loop info.
362 MachineLoopInfo *MLI;
364 /// Preferred loop exit.
365 /// Member variable for convenience. It may be removed by duplication deep
366 /// in the call stack.
367 MachineBasicBlock *PreferredLoopExit;
369 /// A handle to the target's instruction info.
370 const TargetInstrInfo *TII;
372 /// A handle to the target's lowering info.
373 const TargetLoweringBase *TLI;
375 /// A handle to the post dominator tree.
376 MachinePostDominatorTree *MPDT;
378 ProfileSummaryInfo *PSI;
380 /// Duplicator used to duplicate tails during placement.
382 /// Placement decisions can open up new tail duplication opportunities, but
383 /// since tail duplication affects placement decisions of later blocks, it
384 /// must be done inline.
385 TailDuplicator TailDup;
387 /// Partial tail duplication threshold.
388 BlockFrequency DupThreshold;
390 /// True: use block profile count to compute tail duplication cost.
391 /// False: use block frequency to compute tail duplication cost.
392 bool UseProfileCount;
394 /// Allocator and owner of BlockChain structures.
396 /// We build BlockChains lazily while processing the loop structure of
397 /// a function. To reduce malloc traffic, we allocate them using this
398 /// slab-like allocator, and destroy them after the pass completes. An
399 /// important guarantee is that this allocator produces stable pointers to
400 /// the chains.
401 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
403 /// Function wide BasicBlock to BlockChain mapping.
405 /// This mapping allows efficiently moving from any given basic block to the
406 /// BlockChain it participates in, if any. We use it to, among other things,
407 /// allow implicitly defining edges between chains as the existing edges
408 /// between basic blocks.
409 DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain;
411 #ifndef NDEBUG
412 /// The set of basic blocks that have terminators that cannot be fully
413 /// analyzed. These basic blocks cannot be re-ordered safely by
414 /// MachineBlockPlacement, and we must preserve physical layout of these
415 /// blocks and their successors through the pass.
416 SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits;
417 #endif
419 /// Get block profile count or frequency according to UseProfileCount.
420 /// The return value is used to model tail duplication cost.
421 BlockFrequency getBlockCountOrFrequency(const MachineBasicBlock *BB) {
422 if (UseProfileCount) {
423 auto Count = MBFI->getBlockProfileCount(BB);
424 if (Count)
425 return *Count;
426 else
427 return 0;
428 } else
429 return MBFI->getBlockFreq(BB);
432 /// Scale the DupThreshold according to basic block size.
433 BlockFrequency scaleThreshold(MachineBasicBlock *BB);
434 void initDupThreshold();
436 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
437 /// if the count goes to 0, add them to the appropriate work list.
438 void markChainSuccessors(
439 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
440 const BlockFilterSet *BlockFilter = nullptr);
442 /// Decrease the UnscheduledPredecessors count for a single block, and
443 /// if the count goes to 0, add them to the appropriate work list.
444 void markBlockSuccessors(
445 const BlockChain &Chain, const MachineBasicBlock *BB,
446 const MachineBasicBlock *LoopHeaderBB,
447 const BlockFilterSet *BlockFilter = nullptr);
449 BranchProbability
450 collectViableSuccessors(
451 const MachineBasicBlock *BB, const BlockChain &Chain,
452 const BlockFilterSet *BlockFilter,
453 SmallVector<MachineBasicBlock *, 4> &Successors);
454 bool isBestSuccessor(MachineBasicBlock *BB, MachineBasicBlock *Pred,
455 BlockFilterSet *BlockFilter);
456 void findDuplicateCandidates(SmallVectorImpl<MachineBasicBlock *> &Candidates,
457 MachineBasicBlock *BB,
458 BlockFilterSet *BlockFilter);
459 bool repeatedlyTailDuplicateBlock(
460 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
461 const MachineBasicBlock *LoopHeaderBB,
462 BlockChain &Chain, BlockFilterSet *BlockFilter,
463 MachineFunction::iterator &PrevUnplacedBlockIt);
464 bool maybeTailDuplicateBlock(
465 MachineBasicBlock *BB, MachineBasicBlock *LPred,
466 BlockChain &Chain, BlockFilterSet *BlockFilter,
467 MachineFunction::iterator &PrevUnplacedBlockIt,
468 bool &DuplicatedToLPred);
469 bool hasBetterLayoutPredecessor(
470 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
471 const BlockChain &SuccChain, BranchProbability SuccProb,
472 BranchProbability RealSuccProb, const BlockChain &Chain,
473 const BlockFilterSet *BlockFilter);
474 BlockAndTailDupResult selectBestSuccessor(
475 const MachineBasicBlock *BB, const BlockChain &Chain,
476 const BlockFilterSet *BlockFilter);
477 MachineBasicBlock *selectBestCandidateBlock(
478 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList);
479 MachineBasicBlock *getFirstUnplacedBlock(
480 const BlockChain &PlacedChain,
481 MachineFunction::iterator &PrevUnplacedBlockIt,
482 const BlockFilterSet *BlockFilter);
484 /// Add a basic block to the work list if it is appropriate.
486 /// If the optional parameter BlockFilter is provided, only MBB
487 /// present in the set will be added to the worklist. If nullptr
488 /// is provided, no filtering occurs.
489 void fillWorkLists(const MachineBasicBlock *MBB,
490 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
491 const BlockFilterSet *BlockFilter);
493 void buildChain(const MachineBasicBlock *BB, BlockChain &Chain,
494 BlockFilterSet *BlockFilter = nullptr);
495 bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock,
496 const MachineBasicBlock *OldTop);
497 bool hasViableTopFallthrough(const MachineBasicBlock *Top,
498 const BlockFilterSet &LoopBlockSet);
499 BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top,
500 const BlockFilterSet &LoopBlockSet);
501 BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop,
502 const MachineBasicBlock *OldTop,
503 const MachineBasicBlock *ExitBB,
504 const BlockFilterSet &LoopBlockSet);
505 MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop,
506 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
507 MachineBasicBlock *findBestLoopTop(
508 const MachineLoop &L, const BlockFilterSet &LoopBlockSet);
509 MachineBasicBlock *findBestLoopExit(
510 const MachineLoop &L, const BlockFilterSet &LoopBlockSet,
511 BlockFrequency &ExitFreq);
512 BlockFilterSet collectLoopBlockSet(const MachineLoop &L);
513 void buildLoopChains(const MachineLoop &L);
514 void rotateLoop(
515 BlockChain &LoopChain, const MachineBasicBlock *ExitingBB,
516 BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet);
517 void rotateLoopWithProfile(
518 BlockChain &LoopChain, const MachineLoop &L,
519 const BlockFilterSet &LoopBlockSet);
520 void buildCFGChains();
521 void optimizeBranches();
522 void alignBlocks();
523 /// Returns true if a block should be tail-duplicated to increase fallthrough
524 /// opportunities.
525 bool shouldTailDuplicate(MachineBasicBlock *BB);
526 /// Check the edge frequencies to see if tail duplication will increase
527 /// fallthroughs.
528 bool isProfitableToTailDup(
529 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
530 BranchProbability QProb,
531 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
533 /// Check for a trellis layout.
534 bool isTrellis(const MachineBasicBlock *BB,
535 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
536 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
538 /// Get the best successor given a trellis layout.
539 BlockAndTailDupResult getBestTrellisSuccessor(
540 const MachineBasicBlock *BB,
541 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
542 BranchProbability AdjustedSumProb, const BlockChain &Chain,
543 const BlockFilterSet *BlockFilter);
545 /// Get the best pair of non-conflicting edges.
546 static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges(
547 const MachineBasicBlock *BB,
548 MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges);
550 /// Returns true if a block can tail duplicate into all unplaced
551 /// predecessors. Filters based on loop.
552 bool canTailDuplicateUnplacedPreds(
553 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
554 const BlockChain &Chain, const BlockFilterSet *BlockFilter);
556 /// Find chains of triangles to tail-duplicate where a global analysis works,
557 /// but a local analysis would not find them.
558 void precomputeTriangleChains();
560 public:
561 static char ID; // Pass identification, replacement for typeid
563 MachineBlockPlacement() : MachineFunctionPass(ID) {
564 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
567 bool runOnMachineFunction(MachineFunction &F) override;
569 bool allowTailDupPlacement() const {
570 assert(F);
571 return TailDupPlacement && !F->getTarget().requiresStructuredCFG();
574 void getAnalysisUsage(AnalysisUsage &AU) const override {
575 AU.addRequired<MachineBranchProbabilityInfo>();
576 AU.addRequired<MachineBlockFrequencyInfo>();
577 if (TailDupPlacement)
578 AU.addRequired<MachinePostDominatorTree>();
579 AU.addRequired<MachineLoopInfo>();
580 AU.addRequired<ProfileSummaryInfoWrapperPass>();
581 AU.addRequired<TargetPassConfig>();
582 MachineFunctionPass::getAnalysisUsage(AU);
586 } // end anonymous namespace
588 char MachineBlockPlacement::ID = 0;
590 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
592 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE,
593 "Branch Probability Basic Block Placement", false, false)
594 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
595 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
596 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
597 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
598 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
599 INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE,
600 "Branch Probability Basic Block Placement", false, false)
602 #ifndef NDEBUG
603 /// Helper to print the name of a MBB.
605 /// Only used by debug logging.
606 static std::string getBlockName(const MachineBasicBlock *BB) {
607 std::string Result;
608 raw_string_ostream OS(Result);
609 OS << printMBBReference(*BB);
610 OS << " ('" << BB->getName() << "')";
611 OS.flush();
612 return Result;
614 #endif
616 /// Mark a chain's successors as having one fewer preds.
618 /// When a chain is being merged into the "placed" chain, this routine will
619 /// quickly walk the successors of each block in the chain and mark them as
620 /// having one fewer active predecessor. It also adds any successors of this
621 /// chain which reach the zero-predecessor state to the appropriate worklist.
622 void MachineBlockPlacement::markChainSuccessors(
623 const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB,
624 const BlockFilterSet *BlockFilter) {
625 // Walk all the blocks in this chain, marking their successors as having
626 // a predecessor placed.
627 for (MachineBasicBlock *MBB : Chain) {
628 markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter);
632 /// Mark a single block's successors as having one fewer preds.
634 /// Under normal circumstances, this is only called by markChainSuccessors,
635 /// but if a block that was to be placed is completely tail-duplicated away,
636 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
637 /// for just that block.
638 void MachineBlockPlacement::markBlockSuccessors(
639 const BlockChain &Chain, const MachineBasicBlock *MBB,
640 const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) {
641 // Add any successors for which this is the only un-placed in-loop
642 // predecessor to the worklist as a viable candidate for CFG-neutral
643 // placement. No subsequent placement of this block will violate the CFG
644 // shape, so we get to use heuristics to choose a favorable placement.
645 for (MachineBasicBlock *Succ : MBB->successors()) {
646 if (BlockFilter && !BlockFilter->count(Succ))
647 continue;
648 BlockChain &SuccChain = *BlockToChain[Succ];
649 // Disregard edges within a fixed chain, or edges to the loop header.
650 if (&Chain == &SuccChain || Succ == LoopHeaderBB)
651 continue;
653 // This is a cross-chain edge that is within the loop, so decrement the
654 // loop predecessor count of the destination chain.
655 if (SuccChain.UnscheduledPredecessors == 0 ||
656 --SuccChain.UnscheduledPredecessors > 0)
657 continue;
659 auto *NewBB = *SuccChain.begin();
660 if (NewBB->isEHPad())
661 EHPadWorkList.push_back(NewBB);
662 else
663 BlockWorkList.push_back(NewBB);
667 /// This helper function collects the set of successors of block
668 /// \p BB that are allowed to be its layout successors, and return
669 /// the total branch probability of edges from \p BB to those
670 /// blocks.
671 BranchProbability MachineBlockPlacement::collectViableSuccessors(
672 const MachineBasicBlock *BB, const BlockChain &Chain,
673 const BlockFilterSet *BlockFilter,
674 SmallVector<MachineBasicBlock *, 4> &Successors) {
675 // Adjust edge probabilities by excluding edges pointing to blocks that is
676 // either not in BlockFilter or is already in the current chain. Consider the
677 // following CFG:
679 // --->A
680 // | / \
681 // | B C
682 // | \ / \
683 // ----D E
685 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
686 // A->C is chosen as a fall-through, D won't be selected as a successor of C
687 // due to CFG constraint (the probability of C->D is not greater than
688 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
689 // when calculating the probability of C->D, D will be selected and we
690 // will get A C D B as the layout of this loop.
691 auto AdjustedSumProb = BranchProbability::getOne();
692 for (MachineBasicBlock *Succ : BB->successors()) {
693 bool SkipSucc = false;
694 if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) {
695 SkipSucc = true;
696 } else {
697 BlockChain *SuccChain = BlockToChain[Succ];
698 if (SuccChain == &Chain) {
699 SkipSucc = true;
700 } else if (Succ != *SuccChain->begin()) {
701 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ)
702 << " -> Mid chain!\n");
703 continue;
706 if (SkipSucc)
707 AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ);
708 else
709 Successors.push_back(Succ);
712 return AdjustedSumProb;
715 /// The helper function returns the branch probability that is adjusted
716 /// or normalized over the new total \p AdjustedSumProb.
717 static BranchProbability
718 getAdjustedProbability(BranchProbability OrigProb,
719 BranchProbability AdjustedSumProb) {
720 BranchProbability SuccProb;
721 uint32_t SuccProbN = OrigProb.getNumerator();
722 uint32_t SuccProbD = AdjustedSumProb.getNumerator();
723 if (SuccProbN >= SuccProbD)
724 SuccProb = BranchProbability::getOne();
725 else
726 SuccProb = BranchProbability(SuccProbN, SuccProbD);
728 return SuccProb;
731 /// Check if \p BB has exactly the successors in \p Successors.
732 static bool
733 hasSameSuccessors(MachineBasicBlock &BB,
734 SmallPtrSetImpl<const MachineBasicBlock *> &Successors) {
735 if (BB.succ_size() != Successors.size())
736 return false;
737 // We don't want to count self-loops
738 if (Successors.count(&BB))
739 return false;
740 for (MachineBasicBlock *Succ : BB.successors())
741 if (!Successors.count(Succ))
742 return false;
743 return true;
746 /// Check if a block should be tail duplicated to increase fallthrough
747 /// opportunities.
748 /// \p BB Block to check.
749 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) {
750 // Blocks with single successors don't create additional fallthrough
751 // opportunities. Don't duplicate them. TODO: When conditional exits are
752 // analyzable, allow them to be duplicated.
753 bool IsSimple = TailDup.isSimpleBB(BB);
755 if (BB->succ_size() == 1)
756 return false;
757 return TailDup.shouldTailDuplicate(IsSimple, *BB);
760 /// Compare 2 BlockFrequency's with a small penalty for \p A.
761 /// In order to be conservative, we apply a X% penalty to account for
762 /// increased icache pressure and static heuristics. For small frequencies
763 /// we use only the numerators to improve accuracy. For simplicity, we assume the
764 /// penalty is less than 100%
765 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
766 static bool greaterWithBias(BlockFrequency A, BlockFrequency B,
767 uint64_t EntryFreq) {
768 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
769 BlockFrequency Gain = A - B;
770 return (Gain / ThresholdProb).getFrequency() >= EntryFreq;
773 /// Check the edge frequencies to see if tail duplication will increase
774 /// fallthroughs. It only makes sense to call this function when
775 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
776 /// always locally profitable if we would have picked \p Succ without
777 /// considering duplication.
778 bool MachineBlockPlacement::isProfitableToTailDup(
779 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
780 BranchProbability QProb,
781 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
782 // We need to do a probability calculation to make sure this is profitable.
783 // First: does succ have a successor that post-dominates? This affects the
784 // calculation. The 2 relevant cases are:
785 // BB BB
786 // | \Qout | \Qout
787 // P| C |P C
788 // = C' = C'
789 // | /Qin | /Qin
790 // | / | /
791 // Succ Succ
792 // / \ | \ V
793 // U/ =V |U \
794 // / \ = D
795 // D E | /
796 // | /
797 // |/
798 // PDom
799 // '=' : Branch taken for that CFG edge
800 // In the second case, Placing Succ while duplicating it into C prevents the
801 // fallthrough of Succ into either D or PDom, because they now have C as an
802 // unplaced predecessor
804 // Start by figuring out which case we fall into
805 MachineBasicBlock *PDom = nullptr;
806 SmallVector<MachineBasicBlock *, 4> SuccSuccs;
807 // Only scan the relevant successors
808 auto AdjustedSuccSumProb =
809 collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs);
810 BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ);
811 auto BBFreq = MBFI->getBlockFreq(BB);
812 auto SuccFreq = MBFI->getBlockFreq(Succ);
813 BlockFrequency P = BBFreq * PProb;
814 BlockFrequency Qout = BBFreq * QProb;
815 uint64_t EntryFreq = MBFI->getEntryFreq();
816 // If there are no more successors, it is profitable to copy, as it strictly
817 // increases fallthrough.
818 if (SuccSuccs.size() == 0)
819 return greaterWithBias(P, Qout, EntryFreq);
821 auto BestSuccSucc = BranchProbability::getZero();
822 // Find the PDom or the best Succ if no PDom exists.
823 for (MachineBasicBlock *SuccSucc : SuccSuccs) {
824 auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc);
825 if (Prob > BestSuccSucc)
826 BestSuccSucc = Prob;
827 if (PDom == nullptr)
828 if (MPDT->dominates(SuccSucc, Succ)) {
829 PDom = SuccSucc;
830 break;
833 // For the comparisons, we need to know Succ's best incoming edge that isn't
834 // from BB.
835 auto SuccBestPred = BlockFrequency(0);
836 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
837 if (SuccPred == Succ || SuccPred == BB
838 || BlockToChain[SuccPred] == &Chain
839 || (BlockFilter && !BlockFilter->count(SuccPred)))
840 continue;
841 auto Freq = MBFI->getBlockFreq(SuccPred)
842 * MBPI->getEdgeProbability(SuccPred, Succ);
843 if (Freq > SuccBestPred)
844 SuccBestPred = Freq;
846 // Qin is Succ's best unplaced incoming edge that isn't BB
847 BlockFrequency Qin = SuccBestPred;
848 // If it doesn't have a post-dominating successor, here is the calculation:
849 // BB BB
850 // | \Qout | \
851 // P| C | =
852 // = C' | C
853 // | /Qin | |
854 // | / | C' (+Succ)
855 // Succ Succ /|
856 // / \ | \/ |
857 // U/ =V | == |
858 // / \ | / \|
859 // D E D E
860 // '=' : Branch taken for that CFG edge
861 // Cost in the first case is: P + V
862 // For this calculation, we always assume P > Qout. If Qout > P
863 // The result of this function will be ignored at the caller.
864 // Let F = SuccFreq - Qin
865 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
867 if (PDom == nullptr || !Succ->isSuccessor(PDom)) {
868 BranchProbability UProb = BestSuccSucc;
869 BranchProbability VProb = AdjustedSuccSumProb - UProb;
870 BlockFrequency F = SuccFreq - Qin;
871 BlockFrequency V = SuccFreq * VProb;
872 BlockFrequency QinU = std::min(Qin, F) * UProb;
873 BlockFrequency BaseCost = P + V;
874 BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb;
875 return greaterWithBias(BaseCost, DupCost, EntryFreq);
877 BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom);
878 BranchProbability VProb = AdjustedSuccSumProb - UProb;
879 BlockFrequency U = SuccFreq * UProb;
880 BlockFrequency V = SuccFreq * VProb;
881 BlockFrequency F = SuccFreq - Qin;
882 // If there is a post-dominating successor, here is the calculation:
883 // BB BB BB BB
884 // | \Qout | \ | \Qout | \
885 // |P C | = |P C | =
886 // = C' |P C = C' |P C
887 // | /Qin | | | /Qin | |
888 // | / | C' (+Succ) | / | C' (+Succ)
889 // Succ Succ /| Succ Succ /|
890 // | \ V | \/ | | \ V | \/ |
891 // |U \ |U /\ =? |U = |U /\ |
892 // = D = = =?| | D | = =|
893 // | / |/ D | / |/ D
894 // | / | / | = | /
895 // |/ | / |/ | =
896 // Dom Dom Dom Dom
897 // '=' : Branch taken for that CFG edge
898 // The cost for taken branches in the first case is P + U
899 // Let F = SuccFreq - Qin
900 // The cost in the second case (assuming independence), given the layout:
901 // BB, Succ, (C+Succ), D, Dom or the layout:
902 // BB, Succ, D, Dom, (C+Succ)
903 // is Qout + max(F, Qin) * U + min(F, Qin)
904 // compare P + U vs Qout + P * U + Qin.
906 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
908 // For the 3rd case, the cost is P + 2 * V
909 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
910 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
911 if (UProb > AdjustedSuccSumProb / 2 &&
912 !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb,
913 Chain, BlockFilter))
914 // Cases 3 & 4
915 return greaterWithBias(
916 (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb),
917 EntryFreq);
918 // Cases 1 & 2
919 return greaterWithBias((P + U),
920 (Qout + std::min(Qin, F) * AdjustedSuccSumProb +
921 std::max(Qin, F) * UProb),
922 EntryFreq);
925 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
926 /// successors form the lower part of a trellis. A successor set S forms the
927 /// lower part of a trellis if all of the predecessors of S are either in S or
928 /// have all of S as successors. We ignore trellises where BB doesn't have 2
929 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
930 /// are very uncommon and complex to compute optimally. Allowing edges within S
931 /// is not strictly a trellis, but the same algorithm works, so we allow it.
932 bool MachineBlockPlacement::isTrellis(
933 const MachineBasicBlock *BB,
934 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
935 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
936 // Technically BB could form a trellis with branching factor higher than 2.
937 // But that's extremely uncommon.
938 if (BB->succ_size() != 2 || ViableSuccs.size() != 2)
939 return false;
941 SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(),
942 BB->succ_end());
943 // To avoid reviewing the same predecessors twice.
944 SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds;
946 for (MachineBasicBlock *Succ : ViableSuccs) {
947 int PredCount = 0;
948 for (auto SuccPred : Succ->predecessors()) {
949 // Allow triangle successors, but don't count them.
950 if (Successors.count(SuccPred)) {
951 // Make sure that it is actually a triangle.
952 for (MachineBasicBlock *CheckSucc : SuccPred->successors())
953 if (!Successors.count(CheckSucc))
954 return false;
955 continue;
957 const BlockChain *PredChain = BlockToChain[SuccPred];
958 if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) ||
959 PredChain == &Chain || PredChain == BlockToChain[Succ])
960 continue;
961 ++PredCount;
962 // Perform the successor check only once.
963 if (!SeenPreds.insert(SuccPred).second)
964 continue;
965 if (!hasSameSuccessors(*SuccPred, Successors))
966 return false;
968 // If one of the successors has only BB as a predecessor, it is not a
969 // trellis.
970 if (PredCount < 1)
971 return false;
973 return true;
976 /// Pick the highest total weight pair of edges that can both be laid out.
977 /// The edges in \p Edges[0] are assumed to have a different destination than
978 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
979 /// the individual highest weight edges to the 2 different destinations, or in
980 /// case of a conflict, one of them should be replaced with a 2nd best edge.
981 std::pair<MachineBlockPlacement::WeightedEdge,
982 MachineBlockPlacement::WeightedEdge>
983 MachineBlockPlacement::getBestNonConflictingEdges(
984 const MachineBasicBlock *BB,
985 MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>>
986 Edges) {
987 // Sort the edges, and then for each successor, find the best incoming
988 // predecessor. If the best incoming predecessors aren't the same,
989 // then that is clearly the best layout. If there is a conflict, one of the
990 // successors will have to fallthrough from the second best predecessor. We
991 // compare which combination is better overall.
993 // Sort for highest frequency.
994 auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; };
996 llvm::stable_sort(Edges[0], Cmp);
997 llvm::stable_sort(Edges[1], Cmp);
998 auto BestA = Edges[0].begin();
999 auto BestB = Edges[1].begin();
1000 // Arrange for the correct answer to be in BestA and BestB
1001 // If the 2 best edges don't conflict, the answer is already there.
1002 if (BestA->Src == BestB->Src) {
1003 // Compare the total fallthrough of (Best + Second Best) for both pairs
1004 auto SecondBestA = std::next(BestA);
1005 auto SecondBestB = std::next(BestB);
1006 BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight;
1007 BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight;
1008 if (BestAScore < BestBScore)
1009 BestA = SecondBestA;
1010 else
1011 BestB = SecondBestB;
1013 // Arrange for the BB edge to be in BestA if it exists.
1014 if (BestB->Src == BB)
1015 std::swap(BestA, BestB);
1016 return std::make_pair(*BestA, *BestB);
1019 /// Get the best successor from \p BB based on \p BB being part of a trellis.
1020 /// We only handle trellises with 2 successors, so the algorithm is
1021 /// straightforward: Find the best pair of edges that don't conflict. We find
1022 /// the best incoming edge for each successor in the trellis. If those conflict,
1023 /// we consider which of them should be replaced with the second best.
1024 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
1025 /// comes from \p BB, it will be in \p BestEdges[0]
1026 MachineBlockPlacement::BlockAndTailDupResult
1027 MachineBlockPlacement::getBestTrellisSuccessor(
1028 const MachineBasicBlock *BB,
1029 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs,
1030 BranchProbability AdjustedSumProb, const BlockChain &Chain,
1031 const BlockFilterSet *BlockFilter) {
1033 BlockAndTailDupResult Result = {nullptr, false};
1034 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1035 BB->succ_end());
1037 // We assume size 2 because it's common. For general n, we would have to do
1038 // the Hungarian algorithm, but it's not worth the complexity because more
1039 // than 2 successors is fairly uncommon, and a trellis even more so.
1040 if (Successors.size() != 2 || ViableSuccs.size() != 2)
1041 return Result;
1043 // Collect the edge frequencies of all edges that form the trellis.
1044 SmallVector<WeightedEdge, 8> Edges[2];
1045 int SuccIndex = 0;
1046 for (auto Succ : ViableSuccs) {
1047 for (MachineBasicBlock *SuccPred : Succ->predecessors()) {
1048 // Skip any placed predecessors that are not BB
1049 if (SuccPred != BB)
1050 if ((BlockFilter && !BlockFilter->count(SuccPred)) ||
1051 BlockToChain[SuccPred] == &Chain ||
1052 BlockToChain[SuccPred] == BlockToChain[Succ])
1053 continue;
1054 BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) *
1055 MBPI->getEdgeProbability(SuccPred, Succ);
1056 Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ});
1058 ++SuccIndex;
1061 // Pick the best combination of 2 edges from all the edges in the trellis.
1062 WeightedEdge BestA, BestB;
1063 std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges);
1065 if (BestA.Src != BB) {
1066 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1067 // we shouldn't choose any successor. We've already looked and there's a
1068 // better fallthrough edge for all the successors.
1069 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1070 return Result;
1073 // Did we pick the triangle edge? If tail-duplication is profitable, do
1074 // that instead. Otherwise merge the triangle edge now while we know it is
1075 // optimal.
1076 if (BestA.Dest == BestB.Src) {
1077 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1078 // would be better.
1079 MachineBasicBlock *Succ1 = BestA.Dest;
1080 MachineBasicBlock *Succ2 = BestB.Dest;
1081 // Check to see if tail-duplication would be profitable.
1082 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) &&
1083 canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) &&
1084 isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1),
1085 Chain, BlockFilter)) {
1086 LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability(
1087 MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb);
1088 dbgs() << " Selected: " << getBlockName(Succ2)
1089 << ", probability: " << Succ2Prob
1090 << " (Tail Duplicate)\n");
1091 Result.BB = Succ2;
1092 Result.ShouldTailDup = true;
1093 return Result;
1096 // We have already computed the optimal edge for the other side of the
1097 // trellis.
1098 ComputedEdges[BestB.Src] = { BestB.Dest, false };
1100 auto TrellisSucc = BestA.Dest;
1101 LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability(
1102 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb);
1103 dbgs() << " Selected: " << getBlockName(TrellisSucc)
1104 << ", probability: " << SuccProb << " (Trellis)\n");
1105 Result.BB = TrellisSucc;
1106 return Result;
1109 /// When the option allowTailDupPlacement() is on, this method checks if the
1110 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1111 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1112 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1113 const MachineBasicBlock *BB, MachineBasicBlock *Succ,
1114 const BlockChain &Chain, const BlockFilterSet *BlockFilter) {
1115 if (!shouldTailDuplicate(Succ))
1116 return false;
1118 // The result of canTailDuplicate.
1119 bool Duplicate = true;
1120 // Number of possible duplication.
1121 unsigned int NumDup = 0;
1123 // For CFG checking.
1124 SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(),
1125 BB->succ_end());
1126 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1127 // Make sure all unplaced and unfiltered predecessors can be
1128 // tail-duplicated into.
1129 // Skip any blocks that are already placed or not in this loop.
1130 if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred))
1131 || BlockToChain[Pred] == &Chain)
1132 continue;
1133 if (!TailDup.canTailDuplicate(Succ, Pred)) {
1134 if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors))
1135 // This will result in a trellis after tail duplication, so we don't
1136 // need to copy Succ into this predecessor. In the presence
1137 // of a trellis tail duplication can continue to be profitable.
1138 // For example:
1139 // A A
1140 // |\ |\
1141 // | \ | \
1142 // | C | C+BB
1143 // | / | |
1144 // |/ | |
1145 // BB => BB |
1146 // |\ |\/|
1147 // | \ |/\|
1148 // | D | D
1149 // | / | /
1150 // |/ |/
1151 // Succ Succ
1153 // After BB was duplicated into C, the layout looks like the one on the
1154 // right. BB and C now have the same successors. When considering
1155 // whether Succ can be duplicated into all its unplaced predecessors, we
1156 // ignore C.
1157 // We can do this because C already has a profitable fallthrough, namely
1158 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1159 // duplication and for this test.
1161 // This allows trellises to be laid out in 2 separate chains
1162 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1163 // because it allows the creation of 2 fallthrough paths with links
1164 // between them, and we correctly identify the best layout for these
1165 // CFGs. We want to extend trellises that the user created in addition
1166 // to trellises created by tail-duplication, so we just look for the
1167 // CFG.
1168 continue;
1169 Duplicate = false;
1170 continue;
1172 NumDup++;
1175 // No possible duplication in current filter set.
1176 if (NumDup == 0)
1177 return false;
1179 // If profile information is available, findDuplicateCandidates can do more
1180 // precise benefit analysis.
1181 if (F->getFunction().hasProfileData())
1182 return true;
1184 // This is mainly for function exit BB.
1185 // The integrated tail duplication is really designed for increasing
1186 // fallthrough from predecessors from Succ to its successors. We may need
1187 // other machanism to handle different cases.
1188 if (Succ->succ_size() == 0)
1189 return true;
1191 // Plus the already placed predecessor.
1192 NumDup++;
1194 // If the duplication candidate has more unplaced predecessors than
1195 // successors, the extra duplication can't bring more fallthrough.
1197 // Pred1 Pred2 Pred3
1198 // \ | /
1199 // \ | /
1200 // \ | /
1201 // Dup
1202 // / \
1203 // / \
1204 // Succ1 Succ2
1206 // In this example Dup has 2 successors and 3 predecessors, duplication of Dup
1207 // can increase the fallthrough from Pred1 to Succ1 and from Pred2 to Succ2,
1208 // but the duplication into Pred3 can't increase fallthrough.
1210 // A small number of extra duplication may not hurt too much. We need a better
1211 // heuristic to handle it.
1212 if ((NumDup > Succ->succ_size()) || !Duplicate)
1213 return false;
1215 return true;
1218 /// Find chains of triangles where we believe it would be profitable to
1219 /// tail-duplicate them all, but a local analysis would not find them.
1220 /// There are 3 ways this can be profitable:
1221 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1222 /// longer chains)
1223 /// 2) The chains are statically correlated. Branch probabilities have a very
1224 /// U-shaped distribution.
1225 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1226 /// If the branches in a chain are likely to be from the same side of the
1227 /// distribution as their predecessor, but are independent at runtime, this
1228 /// transformation is profitable. (Because the cost of being wrong is a small
1229 /// fixed cost, unlike the standard triangle layout where the cost of being
1230 /// wrong scales with the # of triangles.)
1231 /// 3) The chains are dynamically correlated. If the probability that a previous
1232 /// branch was taken positively influences whether the next branch will be
1233 /// taken
1234 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1235 void MachineBlockPlacement::precomputeTriangleChains() {
1236 struct TriangleChain {
1237 std::vector<MachineBasicBlock *> Edges;
1239 TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst)
1240 : Edges({src, dst}) {}
1242 void append(MachineBasicBlock *dst) {
1243 assert(getKey()->isSuccessor(dst) &&
1244 "Attempting to append a block that is not a successor.");
1245 Edges.push_back(dst);
1248 unsigned count() const { return Edges.size() - 1; }
1250 MachineBasicBlock *getKey() const {
1251 return Edges.back();
1255 if (TriangleChainCount == 0)
1256 return;
1258 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1259 // Map from last block to the chain that contains it. This allows us to extend
1260 // chains as we find new triangles.
1261 DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap;
1262 for (MachineBasicBlock &BB : *F) {
1263 // If BB doesn't have 2 successors, it doesn't start a triangle.
1264 if (BB.succ_size() != 2)
1265 continue;
1266 MachineBasicBlock *PDom = nullptr;
1267 for (MachineBasicBlock *Succ : BB.successors()) {
1268 if (!MPDT->dominates(Succ, &BB))
1269 continue;
1270 PDom = Succ;
1271 break;
1273 // If BB doesn't have a post-dominating successor, it doesn't form a
1274 // triangle.
1275 if (PDom == nullptr)
1276 continue;
1277 // If PDom has a hint that it is low probability, skip this triangle.
1278 if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100))
1279 continue;
1280 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1281 // we're looking for.
1282 if (!shouldTailDuplicate(PDom))
1283 continue;
1284 bool CanTailDuplicate = true;
1285 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1286 // isn't the kind of triangle we're looking for.
1287 for (MachineBasicBlock* Pred : PDom->predecessors()) {
1288 if (Pred == &BB)
1289 continue;
1290 if (!TailDup.canTailDuplicate(PDom, Pred)) {
1291 CanTailDuplicate = false;
1292 break;
1295 // If we can't tail-duplicate PDom to its predecessors, then skip this
1296 // triangle.
1297 if (!CanTailDuplicate)
1298 continue;
1300 // Now we have an interesting triangle. Insert it if it's not part of an
1301 // existing chain.
1302 // Note: This cannot be replaced with a call insert() or emplace() because
1303 // the find key is BB, but the insert/emplace key is PDom.
1304 auto Found = TriangleChainMap.find(&BB);
1305 // If it is, remove the chain from the map, grow it, and put it back in the
1306 // map with the end as the new key.
1307 if (Found != TriangleChainMap.end()) {
1308 TriangleChain Chain = std::move(Found->second);
1309 TriangleChainMap.erase(Found);
1310 Chain.append(PDom);
1311 TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain)));
1312 } else {
1313 auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom);
1314 assert(InsertResult.second && "Block seen twice.");
1315 (void)InsertResult;
1319 // Iterating over a DenseMap is safe here, because the only thing in the body
1320 // of the loop is inserting into another DenseMap (ComputedEdges).
1321 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1322 for (auto &ChainPair : TriangleChainMap) {
1323 TriangleChain &Chain = ChainPair.second;
1324 // Benchmarking has shown that due to branch correlation duplicating 2 or
1325 // more triangles is profitable, despite the calculations assuming
1326 // independence.
1327 if (Chain.count() < TriangleChainCount)
1328 continue;
1329 MachineBasicBlock *dst = Chain.Edges.back();
1330 Chain.Edges.pop_back();
1331 for (MachineBasicBlock *src : reverse(Chain.Edges)) {
1332 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->"
1333 << getBlockName(dst)
1334 << " as pre-computed based on triangles.\n");
1336 auto InsertResult = ComputedEdges.insert({src, {dst, true}});
1337 assert(InsertResult.second && "Block seen twice.");
1338 (void)InsertResult;
1340 dst = src;
1345 // When profile is not present, return the StaticLikelyProb.
1346 // When profile is available, we need to handle the triangle-shape CFG.
1347 static BranchProbability getLayoutSuccessorProbThreshold(
1348 const MachineBasicBlock *BB) {
1349 if (!BB->getParent()->getFunction().hasProfileData())
1350 return BranchProbability(StaticLikelyProb, 100);
1351 if (BB->succ_size() == 2) {
1352 const MachineBasicBlock *Succ1 = *BB->succ_begin();
1353 const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1);
1354 if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) {
1355 /* See case 1 below for the cost analysis. For BB->Succ to
1356 * be taken with smaller cost, the following needs to hold:
1357 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1358 * So the threshold T in the calculation below
1359 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1360 * So T / (1 - T) = 2, Yielding T = 2/3
1361 * Also adding user specified branch bias, we have
1362 * T = (2/3)*(ProfileLikelyProb/50)
1363 * = (2*ProfileLikelyProb)/150)
1365 return BranchProbability(2 * ProfileLikelyProb, 150);
1368 return BranchProbability(ProfileLikelyProb, 100);
1371 /// Checks to see if the layout candidate block \p Succ has a better layout
1372 /// predecessor than \c BB. If yes, returns true.
1373 /// \p SuccProb: The probability adjusted for only remaining blocks.
1374 /// Only used for logging
1375 /// \p RealSuccProb: The un-adjusted probability.
1376 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1377 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1378 /// considered
1379 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1380 const MachineBasicBlock *BB, const MachineBasicBlock *Succ,
1381 const BlockChain &SuccChain, BranchProbability SuccProb,
1382 BranchProbability RealSuccProb, const BlockChain &Chain,
1383 const BlockFilterSet *BlockFilter) {
1385 // There isn't a better layout when there are no unscheduled predecessors.
1386 if (SuccChain.UnscheduledPredecessors == 0)
1387 return false;
1389 // There are two basic scenarios here:
1390 // -------------------------------------
1391 // Case 1: triangular shape CFG (if-then):
1392 // BB
1393 // | \
1394 // | \
1395 // | Pred
1396 // | /
1397 // Succ
1398 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1399 // set Succ as the layout successor of BB. Picking Succ as BB's
1400 // successor breaks the CFG constraints (FIXME: define these constraints).
1401 // With this layout, Pred BB
1402 // is forced to be outlined, so the overall cost will be cost of the
1403 // branch taken from BB to Pred, plus the cost of back taken branch
1404 // from Pred to Succ, as well as the additional cost associated
1405 // with the needed unconditional jump instruction from Pred To Succ.
1407 // The cost of the topological order layout is the taken branch cost
1408 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1409 // must hold:
1410 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1411 // < freq(BB->Succ) * taken_branch_cost.
1412 // Ignoring unconditional jump cost, we get
1413 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1414 // prob(BB->Succ) > 2 * prob(BB->Pred)
1416 // When real profile data is available, we can precisely compute the
1417 // probability threshold that is needed for edge BB->Succ to be considered.
1418 // Without profile data, the heuristic requires the branch bias to be
1419 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1420 // -----------------------------------------------------------------
1421 // Case 2: diamond like CFG (if-then-else):
1422 // S
1423 // / \
1424 // | \
1425 // BB Pred
1426 // \ /
1427 // Succ
1428 // ..
1430 // The current block is BB and edge BB->Succ is now being evaluated.
1431 // Note that edge S->BB was previously already selected because
1432 // prob(S->BB) > prob(S->Pred).
1433 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1434 // choose Pred, we will have a topological ordering as shown on the left
1435 // in the picture below. If we choose Succ, we have the solution as shown
1436 // on the right:
1438 // topo-order:
1440 // S----- ---S
1441 // | | | |
1442 // ---BB | | BB
1443 // | | | |
1444 // | Pred-- | Succ--
1445 // | | | |
1446 // ---Succ ---Pred--
1448 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1449 // = freq(S->Pred) + freq(S->BB)
1451 // If we have profile data (i.e, branch probabilities can be trusted), the
1452 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1453 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1454 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1455 // means the cost of topological order is greater.
1456 // When profile data is not available, however, we need to be more
1457 // conservative. If the branch prediction is wrong, breaking the topo-order
1458 // will actually yield a layout with large cost. For this reason, we need
1459 // strong biased branch at block S with Prob(S->BB) in order to select
1460 // BB->Succ. This is equivalent to looking the CFG backward with backward
1461 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1462 // profile data).
1463 // --------------------------------------------------------------------------
1464 // Case 3: forked diamond
1465 // S
1466 // / \
1467 // / \
1468 // BB Pred
1469 // | \ / |
1470 // | \ / |
1471 // | X |
1472 // | / \ |
1473 // | / \ |
1474 // S1 S2
1476 // The current block is BB and edge BB->S1 is now being evaluated.
1477 // As above S->BB was already selected because
1478 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1480 // topo-order:
1482 // S-------| ---S
1483 // | | | |
1484 // ---BB | | BB
1485 // | | | |
1486 // | Pred----| | S1----
1487 // | | | |
1488 // --(S1 or S2) ---Pred--
1489 // |
1490 // S2
1492 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1493 // + min(freq(Pred->S1), freq(Pred->S2))
1494 // Non-topo-order cost:
1495 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1496 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1497 // is 0. Then the non topo layout is better when
1498 // freq(S->Pred) < freq(BB->S1).
1499 // This is exactly what is checked below.
1500 // Note there are other shapes that apply (Pred may not be a single block,
1501 // but they all fit this general pattern.)
1502 BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB);
1504 // Make sure that a hot successor doesn't have a globally more
1505 // important predecessor.
1506 BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb;
1507 bool BadCFGConflict = false;
1509 for (MachineBasicBlock *Pred : Succ->predecessors()) {
1510 BlockChain *PredChain = BlockToChain[Pred];
1511 if (Pred == Succ || PredChain == &SuccChain ||
1512 (BlockFilter && !BlockFilter->count(Pred)) ||
1513 PredChain == &Chain || Pred != *std::prev(PredChain->end()) ||
1514 // This check is redundant except for look ahead. This function is
1515 // called for lookahead by isProfitableToTailDup when BB hasn't been
1516 // placed yet.
1517 (Pred == BB))
1518 continue;
1519 // Do backward checking.
1520 // For all cases above, we need a backward checking to filter out edges that
1521 // are not 'strongly' biased.
1522 // BB Pred
1523 // \ /
1524 // Succ
1525 // We select edge BB->Succ if
1526 // freq(BB->Succ) > freq(Succ) * HotProb
1527 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1528 // HotProb
1529 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1530 // Case 1 is covered too, because the first equation reduces to:
1531 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1532 BlockFrequency PredEdgeFreq =
1533 MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ);
1534 if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) {
1535 BadCFGConflict = true;
1536 break;
1540 if (BadCFGConflict) {
1541 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ) << " -> "
1542 << SuccProb << " (prob) (non-cold CFG conflict)\n");
1543 return true;
1546 return false;
1549 /// Select the best successor for a block.
1551 /// This looks across all successors of a particular block and attempts to
1552 /// select the "best" one to be the layout successor. It only considers direct
1553 /// successors which also pass the block filter. It will attempt to avoid
1554 /// breaking CFG structure, but cave and break such structures in the case of
1555 /// very hot successor edges.
1557 /// \returns The best successor block found, or null if none are viable, along
1558 /// with a boolean indicating if tail duplication is necessary.
1559 MachineBlockPlacement::BlockAndTailDupResult
1560 MachineBlockPlacement::selectBestSuccessor(
1561 const MachineBasicBlock *BB, const BlockChain &Chain,
1562 const BlockFilterSet *BlockFilter) {
1563 const BranchProbability HotProb(StaticLikelyProb, 100);
1565 BlockAndTailDupResult BestSucc = { nullptr, false };
1566 auto BestProb = BranchProbability::getZero();
1568 SmallVector<MachineBasicBlock *, 4> Successors;
1569 auto AdjustedSumProb =
1570 collectViableSuccessors(BB, Chain, BlockFilter, Successors);
1572 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB)
1573 << "\n");
1575 // if we already precomputed the best successor for BB, return that if still
1576 // applicable.
1577 auto FoundEdge = ComputedEdges.find(BB);
1578 if (FoundEdge != ComputedEdges.end()) {
1579 MachineBasicBlock *Succ = FoundEdge->second.BB;
1580 ComputedEdges.erase(FoundEdge);
1581 BlockChain *SuccChain = BlockToChain[Succ];
1582 if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) &&
1583 SuccChain != &Chain && Succ == *SuccChain->begin())
1584 return FoundEdge->second;
1587 // if BB is part of a trellis, Use the trellis to determine the optimal
1588 // fallthrough edges
1589 if (isTrellis(BB, Successors, Chain, BlockFilter))
1590 return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain,
1591 BlockFilter);
1593 // For blocks with CFG violations, we may be able to lay them out anyway with
1594 // tail-duplication. We keep this vector so we can perform the probability
1595 // calculations the minimum number of times.
1596 SmallVector<std::pair<BranchProbability, MachineBasicBlock *>, 4>
1597 DupCandidates;
1598 for (MachineBasicBlock *Succ : Successors) {
1599 auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ);
1600 BranchProbability SuccProb =
1601 getAdjustedProbability(RealSuccProb, AdjustedSumProb);
1603 BlockChain &SuccChain = *BlockToChain[Succ];
1604 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1605 // predecessor that yields lower global cost.
1606 if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb,
1607 Chain, BlockFilter)) {
1608 // If tail duplication would make Succ profitable, place it.
1609 if (allowTailDupPlacement() && shouldTailDuplicate(Succ))
1610 DupCandidates.emplace_back(SuccProb, Succ);
1611 continue;
1614 LLVM_DEBUG(
1615 dbgs() << " Candidate: " << getBlockName(Succ)
1616 << ", probability: " << SuccProb
1617 << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "")
1618 << "\n");
1620 if (BestSucc.BB && BestProb >= SuccProb) {
1621 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1622 continue;
1625 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1626 BestSucc.BB = Succ;
1627 BestProb = SuccProb;
1629 // Handle the tail duplication candidates in order of decreasing probability.
1630 // Stop at the first one that is profitable. Also stop if they are less
1631 // profitable than BestSucc. Position is important because we preserve it and
1632 // prefer first best match. Here we aren't comparing in order, so we capture
1633 // the position instead.
1634 llvm::stable_sort(DupCandidates,
1635 [](std::tuple<BranchProbability, MachineBasicBlock *> L,
1636 std::tuple<BranchProbability, MachineBasicBlock *> R) {
1637 return std::get<0>(L) > std::get<0>(R);
1639 for (auto &Tup : DupCandidates) {
1640 BranchProbability DupProb;
1641 MachineBasicBlock *Succ;
1642 std::tie(DupProb, Succ) = Tup;
1643 if (DupProb < BestProb)
1644 break;
1645 if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter)
1646 && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) {
1647 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ)
1648 << ", probability: " << DupProb
1649 << " (Tail Duplicate)\n");
1650 BestSucc.BB = Succ;
1651 BestSucc.ShouldTailDup = true;
1652 break;
1656 if (BestSucc.BB)
1657 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc.BB) << "\n");
1659 return BestSucc;
1662 /// Select the best block from a worklist.
1664 /// This looks through the provided worklist as a list of candidate basic
1665 /// blocks and select the most profitable one to place. The definition of
1666 /// profitable only really makes sense in the context of a loop. This returns
1667 /// the most frequently visited block in the worklist, which in the case of
1668 /// a loop, is the one most desirable to be physically close to the rest of the
1669 /// loop body in order to improve i-cache behavior.
1671 /// \returns The best block found, or null if none are viable.
1672 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
1673 const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) {
1674 // Once we need to walk the worklist looking for a candidate, cleanup the
1675 // worklist of already placed entries.
1676 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1677 // some code complexity) into the loop below.
1678 llvm::erase_if(WorkList, [&](MachineBasicBlock *BB) {
1679 return BlockToChain.lookup(BB) == &Chain;
1682 if (WorkList.empty())
1683 return nullptr;
1685 bool IsEHPad = WorkList[0]->isEHPad();
1687 MachineBasicBlock *BestBlock = nullptr;
1688 BlockFrequency BestFreq;
1689 for (MachineBasicBlock *MBB : WorkList) {
1690 assert(MBB->isEHPad() == IsEHPad &&
1691 "EHPad mismatch between block and work list.");
1693 BlockChain &SuccChain = *BlockToChain[MBB];
1694 if (&SuccChain == &Chain)
1695 continue;
1697 assert(SuccChain.UnscheduledPredecessors == 0 &&
1698 "Found CFG-violating block");
1700 BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB);
1701 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB) << " -> ";
1702 MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n");
1704 // For ehpad, we layout the least probable first as to avoid jumping back
1705 // from least probable landingpads to more probable ones.
1707 // FIXME: Using probability is probably (!) not the best way to achieve
1708 // this. We should probably have a more principled approach to layout
1709 // cleanup code.
1711 // The goal is to get:
1713 // +--------------------------+
1714 // | V
1715 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1717 // Rather than:
1719 // +-------------------------------------+
1720 // V |
1721 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1722 if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq)))
1723 continue;
1725 BestBlock = MBB;
1726 BestFreq = CandidateFreq;
1729 return BestBlock;
1732 /// Retrieve the first unplaced basic block.
1734 /// This routine is called when we are unable to use the CFG to walk through
1735 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1736 /// We walk through the function's blocks in order, starting from the
1737 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1738 /// re-scanning the entire sequence on repeated calls to this routine.
1739 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
1740 const BlockChain &PlacedChain,
1741 MachineFunction::iterator &PrevUnplacedBlockIt,
1742 const BlockFilterSet *BlockFilter) {
1743 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E;
1744 ++I) {
1745 if (BlockFilter && !BlockFilter->count(&*I))
1746 continue;
1747 if (BlockToChain[&*I] != &PlacedChain) {
1748 PrevUnplacedBlockIt = I;
1749 // Now select the head of the chain to which the unplaced block belongs
1750 // as the block to place. This will force the entire chain to be placed,
1751 // and satisfies the requirements of merging chains.
1752 return *BlockToChain[&*I]->begin();
1755 return nullptr;
1758 void MachineBlockPlacement::fillWorkLists(
1759 const MachineBasicBlock *MBB,
1760 SmallPtrSetImpl<BlockChain *> &UpdatedPreds,
1761 const BlockFilterSet *BlockFilter = nullptr) {
1762 BlockChain &Chain = *BlockToChain[MBB];
1763 if (!UpdatedPreds.insert(&Chain).second)
1764 return;
1766 assert(
1767 Chain.UnscheduledPredecessors == 0 &&
1768 "Attempting to place block with unscheduled predecessors in worklist.");
1769 for (MachineBasicBlock *ChainBB : Chain) {
1770 assert(BlockToChain[ChainBB] == &Chain &&
1771 "Block in chain doesn't match BlockToChain map.");
1772 for (MachineBasicBlock *Pred : ChainBB->predecessors()) {
1773 if (BlockFilter && !BlockFilter->count(Pred))
1774 continue;
1775 if (BlockToChain[Pred] == &Chain)
1776 continue;
1777 ++Chain.UnscheduledPredecessors;
1781 if (Chain.UnscheduledPredecessors != 0)
1782 return;
1784 MachineBasicBlock *BB = *Chain.begin();
1785 if (BB->isEHPad())
1786 EHPadWorkList.push_back(BB);
1787 else
1788 BlockWorkList.push_back(BB);
1791 void MachineBlockPlacement::buildChain(
1792 const MachineBasicBlock *HeadBB, BlockChain &Chain,
1793 BlockFilterSet *BlockFilter) {
1794 assert(HeadBB && "BB must not be null.\n");
1795 assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n");
1796 MachineFunction::iterator PrevUnplacedBlockIt = F->begin();
1798 const MachineBasicBlock *LoopHeaderBB = HeadBB;
1799 markChainSuccessors(Chain, LoopHeaderBB, BlockFilter);
1800 MachineBasicBlock *BB = *std::prev(Chain.end());
1801 while (true) {
1802 assert(BB && "null block found at end of chain in loop.");
1803 assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop.");
1804 assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain.");
1807 // Look for the best viable successor if there is one to place immediately
1808 // after this block.
1809 auto Result = selectBestSuccessor(BB, Chain, BlockFilter);
1810 MachineBasicBlock* BestSucc = Result.BB;
1811 bool ShouldTailDup = Result.ShouldTailDup;
1812 if (allowTailDupPlacement())
1813 ShouldTailDup |= (BestSucc && canTailDuplicateUnplacedPreds(BB, BestSucc,
1814 Chain,
1815 BlockFilter));
1817 // If an immediate successor isn't available, look for the best viable
1818 // block among those we've identified as not violating the loop's CFG at
1819 // this point. This won't be a fallthrough, but it will increase locality.
1820 if (!BestSucc)
1821 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList);
1822 if (!BestSucc)
1823 BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList);
1825 if (!BestSucc) {
1826 BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter);
1827 if (!BestSucc)
1828 break;
1830 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1831 "layout successor until the CFG reduces\n");
1834 // Placement may have changed tail duplication opportunities.
1835 // Check for that now.
1836 if (allowTailDupPlacement() && BestSucc && ShouldTailDup) {
1837 repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain,
1838 BlockFilter, PrevUnplacedBlockIt);
1839 // If the chosen successor was duplicated into BB, don't bother laying
1840 // it out, just go round the loop again with BB as the chain end.
1841 if (!BB->isSuccessor(BestSucc))
1842 continue;
1845 // Place this block, updating the datastructures to reflect its placement.
1846 BlockChain &SuccChain = *BlockToChain[BestSucc];
1847 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1848 // we selected a successor that didn't fit naturally into the CFG.
1849 SuccChain.UnscheduledPredecessors = 0;
1850 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to "
1851 << getBlockName(BestSucc) << "\n");
1852 markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter);
1853 Chain.merge(BestSucc, &SuccChain);
1854 BB = *std::prev(Chain.end());
1857 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1858 << getBlockName(*Chain.begin()) << "\n");
1861 // If bottom of block BB has only one successor OldTop, in most cases it is
1862 // profitable to move it before OldTop, except the following case:
1864 // -->OldTop<-
1865 // | . |
1866 // | . |
1867 // | . |
1868 // ---Pred |
1869 // | |
1870 // BB-----
1872 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1873 // layout the other successor below it, so it can't reduce taken branch.
1874 // In this case we keep its original layout.
1875 bool
1876 MachineBlockPlacement::canMoveBottomBlockToTop(
1877 const MachineBasicBlock *BottomBlock,
1878 const MachineBasicBlock *OldTop) {
1879 if (BottomBlock->pred_size() != 1)
1880 return true;
1881 MachineBasicBlock *Pred = *BottomBlock->pred_begin();
1882 if (Pred->succ_size() != 2)
1883 return true;
1885 MachineBasicBlock *OtherBB = *Pred->succ_begin();
1886 if (OtherBB == BottomBlock)
1887 OtherBB = *Pred->succ_rbegin();
1888 if (OtherBB == OldTop)
1889 return false;
1891 return true;
1894 // Find out the possible fall through frequence to the top of a loop.
1895 BlockFrequency
1896 MachineBlockPlacement::TopFallThroughFreq(
1897 const MachineBasicBlock *Top,
1898 const BlockFilterSet &LoopBlockSet) {
1899 BlockFrequency MaxFreq = 0;
1900 for (MachineBasicBlock *Pred : Top->predecessors()) {
1901 BlockChain *PredChain = BlockToChain[Pred];
1902 if (!LoopBlockSet.count(Pred) &&
1903 (!PredChain || Pred == *std::prev(PredChain->end()))) {
1904 // Found a Pred block can be placed before Top.
1905 // Check if Top is the best successor of Pred.
1906 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
1907 bool TopOK = true;
1908 for (MachineBasicBlock *Succ : Pred->successors()) {
1909 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
1910 BlockChain *SuccChain = BlockToChain[Succ];
1911 // Check if Succ can be placed after Pred.
1912 // Succ should not be in any chain, or it is the head of some chain.
1913 if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) &&
1914 (!SuccChain || Succ == *SuccChain->begin())) {
1915 TopOK = false;
1916 break;
1919 if (TopOK) {
1920 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1921 MBPI->getEdgeProbability(Pred, Top);
1922 if (EdgeFreq > MaxFreq)
1923 MaxFreq = EdgeFreq;
1927 return MaxFreq;
1930 // Compute the fall through gains when move NewTop before OldTop.
1932 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1933 // marked as "+" are increased fallthrough, this function computes
1935 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1937 // |
1938 // | -
1939 // V
1940 // --->OldTop
1941 // | .
1942 // | .
1943 // +| . +
1944 // | Pred --->
1945 // | |-
1946 // | V
1947 // --- NewTop <---
1948 // |-
1949 // V
1951 BlockFrequency
1952 MachineBlockPlacement::FallThroughGains(
1953 const MachineBasicBlock *NewTop,
1954 const MachineBasicBlock *OldTop,
1955 const MachineBasicBlock *ExitBB,
1956 const BlockFilterSet &LoopBlockSet) {
1957 BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet);
1958 BlockFrequency FallThrough2Exit = 0;
1959 if (ExitBB)
1960 FallThrough2Exit = MBFI->getBlockFreq(NewTop) *
1961 MBPI->getEdgeProbability(NewTop, ExitBB);
1962 BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) *
1963 MBPI->getEdgeProbability(NewTop, OldTop);
1965 // Find the best Pred of NewTop.
1966 MachineBasicBlock *BestPred = nullptr;
1967 BlockFrequency FallThroughFromPred = 0;
1968 for (MachineBasicBlock *Pred : NewTop->predecessors()) {
1969 if (!LoopBlockSet.count(Pred))
1970 continue;
1971 BlockChain *PredChain = BlockToChain[Pred];
1972 if (!PredChain || Pred == *std::prev(PredChain->end())) {
1973 BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) *
1974 MBPI->getEdgeProbability(Pred, NewTop);
1975 if (EdgeFreq > FallThroughFromPred) {
1976 FallThroughFromPred = EdgeFreq;
1977 BestPred = Pred;
1982 // If NewTop is not placed after Pred, another successor can be placed
1983 // after Pred.
1984 BlockFrequency NewFreq = 0;
1985 if (BestPred) {
1986 for (MachineBasicBlock *Succ : BestPred->successors()) {
1987 if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ))
1988 continue;
1989 if (ComputedEdges.find(Succ) != ComputedEdges.end())
1990 continue;
1991 BlockChain *SuccChain = BlockToChain[Succ];
1992 if ((SuccChain && (Succ != *SuccChain->begin())) ||
1993 (SuccChain == BlockToChain[BestPred]))
1994 continue;
1995 BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) *
1996 MBPI->getEdgeProbability(BestPred, Succ);
1997 if (EdgeFreq > NewFreq)
1998 NewFreq = EdgeFreq;
2000 BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) *
2001 MBPI->getEdgeProbability(BestPred, NewTop);
2002 if (NewFreq > OrigEdgeFreq) {
2003 // If NewTop is not the best successor of Pred, then Pred doesn't
2004 // fallthrough to NewTop. So there is no FallThroughFromPred and
2005 // NewFreq.
2006 NewFreq = 0;
2007 FallThroughFromPred = 0;
2011 BlockFrequency Result = 0;
2012 BlockFrequency Gains = BackEdgeFreq + NewFreq;
2013 BlockFrequency Lost = FallThrough2Top + FallThrough2Exit +
2014 FallThroughFromPred;
2015 if (Gains > Lost)
2016 Result = Gains - Lost;
2017 return Result;
2020 /// Helper function of findBestLoopTop. Find the best loop top block
2021 /// from predecessors of old top.
2023 /// Look for a block which is strictly better than the old top for laying
2024 /// out before the old top of the loop. This looks for only two patterns:
2026 /// 1. a block has only one successor, the old loop top
2028 /// Because such a block will always result in an unconditional jump,
2029 /// rotating it in front of the old top is always profitable.
2031 /// 2. a block has two successors, one is old top, another is exit
2032 /// and it has more than one predecessors
2034 /// If it is below one of its predecessors P, only P can fall through to
2035 /// it, all other predecessors need a jump to it, and another conditional
2036 /// jump to loop header. If it is moved before loop header, all its
2037 /// predecessors jump to it, then fall through to loop header. So all its
2038 /// predecessors except P can reduce one taken branch.
2039 /// At the same time, move it before old top increases the taken branch
2040 /// to loop exit block, so the reduced taken branch will be compared with
2041 /// the increased taken branch to the loop exit block.
2042 MachineBasicBlock *
2043 MachineBlockPlacement::findBestLoopTopHelper(
2044 MachineBasicBlock *OldTop,
2045 const MachineLoop &L,
2046 const BlockFilterSet &LoopBlockSet) {
2047 // Check that the header hasn't been fused with a preheader block due to
2048 // crazy branches. If it has, we need to start with the header at the top to
2049 // prevent pulling the preheader into the loop body.
2050 BlockChain &HeaderChain = *BlockToChain[OldTop];
2051 if (!LoopBlockSet.count(*HeaderChain.begin()))
2052 return OldTop;
2053 if (OldTop != *HeaderChain.begin())
2054 return OldTop;
2056 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop)
2057 << "\n");
2059 BlockFrequency BestGains = 0;
2060 MachineBasicBlock *BestPred = nullptr;
2061 for (MachineBasicBlock *Pred : OldTop->predecessors()) {
2062 if (!LoopBlockSet.count(Pred))
2063 continue;
2064 if (Pred == L.getHeader())
2065 continue;
2066 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred) << ", has "
2067 << Pred->succ_size() << " successors, ";
2068 MBFI->printBlockFreq(dbgs(), Pred) << " freq\n");
2069 if (Pred->succ_size() > 2)
2070 continue;
2072 MachineBasicBlock *OtherBB = nullptr;
2073 if (Pred->succ_size() == 2) {
2074 OtherBB = *Pred->succ_begin();
2075 if (OtherBB == OldTop)
2076 OtherBB = *Pred->succ_rbegin();
2079 if (!canMoveBottomBlockToTop(Pred, OldTop))
2080 continue;
2082 BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB,
2083 LoopBlockSet);
2084 if ((Gains > 0) && (Gains > BestGains ||
2085 ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) {
2086 BestPred = Pred;
2087 BestGains = Gains;
2091 // If no direct predecessor is fine, just use the loop header.
2092 if (!BestPred) {
2093 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2094 return OldTop;
2097 // Walk backwards through any straight line of predecessors.
2098 while (BestPred->pred_size() == 1 &&
2099 (*BestPred->pred_begin())->succ_size() == 1 &&
2100 *BestPred->pred_begin() != L.getHeader())
2101 BestPred = *BestPred->pred_begin();
2103 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
2104 return BestPred;
2107 /// Find the best loop top block for layout.
2109 /// This function iteratively calls findBestLoopTopHelper, until no new better
2110 /// BB can be found.
2111 MachineBasicBlock *
2112 MachineBlockPlacement::findBestLoopTop(const MachineLoop &L,
2113 const BlockFilterSet &LoopBlockSet) {
2114 // Placing the latch block before the header may introduce an extra branch
2115 // that skips this block the first time the loop is executed, which we want
2116 // to avoid when optimising for size.
2117 // FIXME: in theory there is a case that does not introduce a new branch,
2118 // i.e. when the layout predecessor does not fallthrough to the loop header.
2119 // In practice this never happens though: there always seems to be a preheader
2120 // that can fallthrough and that is also placed before the header.
2121 bool OptForSize = F->getFunction().hasOptSize() ||
2122 llvm::shouldOptimizeForSize(L.getHeader(), PSI, MBFI.get());
2123 if (OptForSize)
2124 return L.getHeader();
2126 MachineBasicBlock *OldTop = nullptr;
2127 MachineBasicBlock *NewTop = L.getHeader();
2128 while (NewTop != OldTop) {
2129 OldTop = NewTop;
2130 NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet);
2131 if (NewTop != OldTop)
2132 ComputedEdges[NewTop] = { OldTop, false };
2134 return NewTop;
2137 /// Find the best loop exiting block for layout.
2139 /// This routine implements the logic to analyze the loop looking for the best
2140 /// block to layout at the top of the loop. Typically this is done to maximize
2141 /// fallthrough opportunities.
2142 MachineBasicBlock *
2143 MachineBlockPlacement::findBestLoopExit(const MachineLoop &L,
2144 const BlockFilterSet &LoopBlockSet,
2145 BlockFrequency &ExitFreq) {
2146 // We don't want to layout the loop linearly in all cases. If the loop header
2147 // is just a normal basic block in the loop, we want to look for what block
2148 // within the loop is the best one to layout at the top. However, if the loop
2149 // header has be pre-merged into a chain due to predecessors not having
2150 // analyzable branches, *and* the predecessor it is merged with is *not* part
2151 // of the loop, rotating the header into the middle of the loop will create
2152 // a non-contiguous range of blocks which is Very Bad. So start with the
2153 // header and only rotate if safe.
2154 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
2155 if (!LoopBlockSet.count(*HeaderChain.begin()))
2156 return nullptr;
2158 BlockFrequency BestExitEdgeFreq;
2159 unsigned BestExitLoopDepth = 0;
2160 MachineBasicBlock *ExitingBB = nullptr;
2161 // If there are exits to outer loops, loop rotation can severely limit
2162 // fallthrough opportunities unless it selects such an exit. Keep a set of
2163 // blocks where rotating to exit with that block will reach an outer loop.
2164 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
2166 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2167 << getBlockName(L.getHeader()) << "\n");
2168 for (MachineBasicBlock *MBB : L.getBlocks()) {
2169 BlockChain &Chain = *BlockToChain[MBB];
2170 // Ensure that this block is at the end of a chain; otherwise it could be
2171 // mid-way through an inner loop or a successor of an unanalyzable branch.
2172 if (MBB != *std::prev(Chain.end()))
2173 continue;
2175 // Now walk the successors. We need to establish whether this has a viable
2176 // exiting successor and whether it has a viable non-exiting successor.
2177 // We store the old exiting state and restore it if a viable looping
2178 // successor isn't found.
2179 MachineBasicBlock *OldExitingBB = ExitingBB;
2180 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
2181 bool HasLoopingSucc = false;
2182 for (MachineBasicBlock *Succ : MBB->successors()) {
2183 if (Succ->isEHPad())
2184 continue;
2185 if (Succ == MBB)
2186 continue;
2187 BlockChain &SuccChain = *BlockToChain[Succ];
2188 // Don't split chains, either this chain or the successor's chain.
2189 if (&Chain == &SuccChain) {
2190 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2191 << getBlockName(Succ) << " (chain conflict)\n");
2192 continue;
2195 auto SuccProb = MBPI->getEdgeProbability(MBB, Succ);
2196 if (LoopBlockSet.count(Succ)) {
2197 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> "
2198 << getBlockName(Succ) << " (" << SuccProb << ")\n");
2199 HasLoopingSucc = true;
2200 continue;
2203 unsigned SuccLoopDepth = 0;
2204 if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) {
2205 SuccLoopDepth = ExitLoop->getLoopDepth();
2206 if (ExitLoop->contains(&L))
2207 BlocksExitingToOuterLoop.insert(MBB);
2210 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb;
2211 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> "
2212 << getBlockName(Succ) << " [L:" << SuccLoopDepth
2213 << "] (";
2214 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n");
2215 // Note that we bias this toward an existing layout successor to retain
2216 // incoming order in the absence of better information. The exit must have
2217 // a frequency higher than the current exit before we consider breaking
2218 // the layout.
2219 BranchProbability Bias(100 - ExitBlockBias, 100);
2220 if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth ||
2221 ExitEdgeFreq > BestExitEdgeFreq ||
2222 (MBB->isLayoutSuccessor(Succ) &&
2223 !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) {
2224 BestExitEdgeFreq = ExitEdgeFreq;
2225 ExitingBB = MBB;
2229 if (!HasLoopingSucc) {
2230 // Restore the old exiting state, no viable looping successor was found.
2231 ExitingBB = OldExitingBB;
2232 BestExitEdgeFreq = OldBestExitEdgeFreq;
2235 // Without a candidate exiting block or with only a single block in the
2236 // loop, just use the loop header to layout the loop.
2237 if (!ExitingBB) {
2238 LLVM_DEBUG(
2239 dbgs() << " No other candidate exit blocks, using loop header\n");
2240 return nullptr;
2242 if (L.getNumBlocks() == 1) {
2243 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2244 return nullptr;
2247 // Also, if we have exit blocks which lead to outer loops but didn't select
2248 // one of them as the exiting block we are rotating toward, disable loop
2249 // rotation altogether.
2250 if (!BlocksExitingToOuterLoop.empty() &&
2251 !BlocksExitingToOuterLoop.count(ExitingBB))
2252 return nullptr;
2254 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB)
2255 << "\n");
2256 ExitFreq = BestExitEdgeFreq;
2257 return ExitingBB;
2260 /// Check if there is a fallthrough to loop header Top.
2262 /// 1. Look for a Pred that can be layout before Top.
2263 /// 2. Check if Top is the most possible successor of Pred.
2264 bool
2265 MachineBlockPlacement::hasViableTopFallthrough(
2266 const MachineBasicBlock *Top,
2267 const BlockFilterSet &LoopBlockSet) {
2268 for (MachineBasicBlock *Pred : Top->predecessors()) {
2269 BlockChain *PredChain = BlockToChain[Pred];
2270 if (!LoopBlockSet.count(Pred) &&
2271 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2272 // Found a Pred block can be placed before Top.
2273 // Check if Top is the best successor of Pred.
2274 auto TopProb = MBPI->getEdgeProbability(Pred, Top);
2275 bool TopOK = true;
2276 for (MachineBasicBlock *Succ : Pred->successors()) {
2277 auto SuccProb = MBPI->getEdgeProbability(Pred, Succ);
2278 BlockChain *SuccChain = BlockToChain[Succ];
2279 // Check if Succ can be placed after Pred.
2280 // Succ should not be in any chain, or it is the head of some chain.
2281 if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) {
2282 TopOK = false;
2283 break;
2286 if (TopOK)
2287 return true;
2290 return false;
2293 /// Attempt to rotate an exiting block to the bottom of the loop.
2295 /// Once we have built a chain, try to rotate it to line up the hot exit block
2296 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2297 /// branches. For example, if the loop has fallthrough into its header and out
2298 /// of its bottom already, don't rotate it.
2299 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
2300 const MachineBasicBlock *ExitingBB,
2301 BlockFrequency ExitFreq,
2302 const BlockFilterSet &LoopBlockSet) {
2303 if (!ExitingBB)
2304 return;
2306 MachineBasicBlock *Top = *LoopChain.begin();
2307 MachineBasicBlock *Bottom = *std::prev(LoopChain.end());
2309 // If ExitingBB is already the last one in a chain then nothing to do.
2310 if (Bottom == ExitingBB)
2311 return;
2313 // The entry block should always be the first BB in a function.
2314 if (Top->isEntryBlock())
2315 return;
2317 bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet);
2319 // If the header has viable fallthrough, check whether the current loop
2320 // bottom is a viable exiting block. If so, bail out as rotating will
2321 // introduce an unnecessary branch.
2322 if (ViableTopFallthrough) {
2323 for (MachineBasicBlock *Succ : Bottom->successors()) {
2324 BlockChain *SuccChain = BlockToChain[Succ];
2325 if (!LoopBlockSet.count(Succ) &&
2326 (!SuccChain || Succ == *SuccChain->begin()))
2327 return;
2330 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2331 // frequency is larger than top fallthrough.
2332 BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet);
2333 if (FallThrough2Top >= ExitFreq)
2334 return;
2337 BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB);
2338 if (ExitIt == LoopChain.end())
2339 return;
2341 // Rotating a loop exit to the bottom when there is a fallthrough to top
2342 // trades the entry fallthrough for an exit fallthrough.
2343 // If there is no bottom->top edge, but the chosen exit block does have
2344 // a fallthrough, we break that fallthrough for nothing in return.
2346 // Let's consider an example. We have a built chain of basic blocks
2347 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2348 // By doing a rotation we get
2349 // Bk+1, ..., Bn, B1, ..., Bk
2350 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2351 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2352 // It might be compensated by fallthrough Bn -> B1.
2353 // So we have a condition to avoid creation of extra branch by loop rotation.
2354 // All below must be true to avoid loop rotation:
2355 // If there is a fallthrough to top (B1)
2356 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2357 // There is no fallthrough from bottom (Bn) to top (B1).
2358 // Please note that there is no exit fallthrough from Bn because we checked it
2359 // above.
2360 if (ViableTopFallthrough) {
2361 assert(std::next(ExitIt) != LoopChain.end() &&
2362 "Exit should not be last BB");
2363 MachineBasicBlock *NextBlockInChain = *std::next(ExitIt);
2364 if (ExitingBB->isSuccessor(NextBlockInChain))
2365 if (!Bottom->isSuccessor(Top))
2366 return;
2369 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB)
2370 << " at bottom\n");
2371 std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end());
2374 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2376 /// With profile data, we can determine the cost in terms of missed fall through
2377 /// opportunities when rotating a loop chain and select the best rotation.
2378 /// Basically, there are three kinds of cost to consider for each rotation:
2379 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2380 /// the loop to the loop header.
2381 /// 2. The possibly missed fall through edges (if they exist) from the loop
2382 /// exits to BB out of the loop.
2383 /// 3. The missed fall through edge (if it exists) from the last BB to the
2384 /// first BB in the loop chain.
2385 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2386 /// We select the best rotation with the smallest cost.
2387 void MachineBlockPlacement::rotateLoopWithProfile(
2388 BlockChain &LoopChain, const MachineLoop &L,
2389 const BlockFilterSet &LoopBlockSet) {
2390 auto RotationPos = LoopChain.end();
2391 MachineBasicBlock *ChainHeaderBB = *LoopChain.begin();
2393 // The entry block should always be the first BB in a function.
2394 if (ChainHeaderBB->isEntryBlock())
2395 return;
2397 BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency();
2399 // A utility lambda that scales up a block frequency by dividing it by a
2400 // branch probability which is the reciprocal of the scale.
2401 auto ScaleBlockFrequency = [](BlockFrequency Freq,
2402 unsigned Scale) -> BlockFrequency {
2403 if (Scale == 0)
2404 return 0;
2405 // Use operator / between BlockFrequency and BranchProbability to implement
2406 // saturating multiplication.
2407 return Freq / BranchProbability(1, Scale);
2410 // Compute the cost of the missed fall-through edge to the loop header if the
2411 // chain head is not the loop header. As we only consider natural loops with
2412 // single header, this computation can be done only once.
2413 BlockFrequency HeaderFallThroughCost(0);
2414 for (auto *Pred : ChainHeaderBB->predecessors()) {
2415 BlockChain *PredChain = BlockToChain[Pred];
2416 if (!LoopBlockSet.count(Pred) &&
2417 (!PredChain || Pred == *std::prev(PredChain->end()))) {
2418 auto EdgeFreq = MBFI->getBlockFreq(Pred) *
2419 MBPI->getEdgeProbability(Pred, ChainHeaderBB);
2420 auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost);
2421 // If the predecessor has only an unconditional jump to the header, we
2422 // need to consider the cost of this jump.
2423 if (Pred->succ_size() == 1)
2424 FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost);
2425 HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost);
2429 // Here we collect all exit blocks in the loop, and for each exit we find out
2430 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2431 // as the sum of frequencies of exit edges we collect here, excluding the exit
2432 // edge from the tail of the loop chain.
2433 SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq;
2434 for (auto BB : LoopChain) {
2435 auto LargestExitEdgeProb = BranchProbability::getZero();
2436 for (auto *Succ : BB->successors()) {
2437 BlockChain *SuccChain = BlockToChain[Succ];
2438 if (!LoopBlockSet.count(Succ) &&
2439 (!SuccChain || Succ == *SuccChain->begin())) {
2440 auto SuccProb = MBPI->getEdgeProbability(BB, Succ);
2441 LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb);
2444 if (LargestExitEdgeProb > BranchProbability::getZero()) {
2445 auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb;
2446 ExitsWithFreq.emplace_back(BB, ExitFreq);
2450 // In this loop we iterate every block in the loop chain and calculate the
2451 // cost assuming the block is the head of the loop chain. When the loop ends,
2452 // we should have found the best candidate as the loop chain's head.
2453 for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()),
2454 EndIter = LoopChain.end();
2455 Iter != EndIter; Iter++, TailIter++) {
2456 // TailIter is used to track the tail of the loop chain if the block we are
2457 // checking (pointed by Iter) is the head of the chain.
2458 if (TailIter == LoopChain.end())
2459 TailIter = LoopChain.begin();
2461 auto TailBB = *TailIter;
2463 // Calculate the cost by putting this BB to the top.
2464 BlockFrequency Cost = 0;
2466 // If the current BB is the loop header, we need to take into account the
2467 // cost of the missed fall through edge from outside of the loop to the
2468 // header.
2469 if (Iter != LoopChain.begin())
2470 Cost += HeaderFallThroughCost;
2472 // Collect the loop exit cost by summing up frequencies of all exit edges
2473 // except the one from the chain tail.
2474 for (auto &ExitWithFreq : ExitsWithFreq)
2475 if (TailBB != ExitWithFreq.first)
2476 Cost += ExitWithFreq.second;
2478 // The cost of breaking the once fall-through edge from the tail to the top
2479 // of the loop chain. Here we need to consider three cases:
2480 // 1. If the tail node has only one successor, then we will get an
2481 // additional jmp instruction. So the cost here is (MisfetchCost +
2482 // JumpInstCost) * tail node frequency.
2483 // 2. If the tail node has two successors, then we may still get an
2484 // additional jmp instruction if the layout successor after the loop
2485 // chain is not its CFG successor. Note that the more frequently executed
2486 // jmp instruction will be put ahead of the other one. Assume the
2487 // frequency of those two branches are x and y, where x is the frequency
2488 // of the edge to the chain head, then the cost will be
2489 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2490 // 3. If the tail node has more than two successors (this rarely happens),
2491 // we won't consider any additional cost.
2492 if (TailBB->isSuccessor(*Iter)) {
2493 auto TailBBFreq = MBFI->getBlockFreq(TailBB);
2494 if (TailBB->succ_size() == 1)
2495 Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(),
2496 MisfetchCost + JumpInstCost);
2497 else if (TailBB->succ_size() == 2) {
2498 auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter);
2499 auto TailToHeadFreq = TailBBFreq * TailToHeadProb;
2500 auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2)
2501 ? TailBBFreq * TailToHeadProb.getCompl()
2502 : TailToHeadFreq;
2503 Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) +
2504 ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost);
2508 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2509 << getBlockName(*Iter)
2510 << " to the top: " << Cost.getFrequency() << "\n");
2512 if (Cost < SmallestRotationCost) {
2513 SmallestRotationCost = Cost;
2514 RotationPos = Iter;
2518 if (RotationPos != LoopChain.end()) {
2519 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos)
2520 << " to the top\n");
2521 std::rotate(LoopChain.begin(), RotationPos, LoopChain.end());
2525 /// Collect blocks in the given loop that are to be placed.
2527 /// When profile data is available, exclude cold blocks from the returned set;
2528 /// otherwise, collect all blocks in the loop.
2529 MachineBlockPlacement::BlockFilterSet
2530 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) {
2531 BlockFilterSet LoopBlockSet;
2533 // Filter cold blocks off from LoopBlockSet when profile data is available.
2534 // Collect the sum of frequencies of incoming edges to the loop header from
2535 // outside. If we treat the loop as a super block, this is the frequency of
2536 // the loop. Then for each block in the loop, we calculate the ratio between
2537 // its frequency and the frequency of the loop block. When it is too small,
2538 // don't add it to the loop chain. If there are outer loops, then this block
2539 // will be merged into the first outer loop chain for which this block is not
2540 // cold anymore. This needs precise profile data and we only do this when
2541 // profile data is available.
2542 if (F->getFunction().hasProfileData() || ForceLoopColdBlock) {
2543 BlockFrequency LoopFreq(0);
2544 for (auto LoopPred : L.getHeader()->predecessors())
2545 if (!L.contains(LoopPred))
2546 LoopFreq += MBFI->getBlockFreq(LoopPred) *
2547 MBPI->getEdgeProbability(LoopPred, L.getHeader());
2549 for (MachineBasicBlock *LoopBB : L.getBlocks()) {
2550 if (LoopBlockSet.count(LoopBB))
2551 continue;
2552 auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency();
2553 if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio)
2554 continue;
2555 BlockChain *Chain = BlockToChain[LoopBB];
2556 for (MachineBasicBlock *ChainBB : *Chain)
2557 LoopBlockSet.insert(ChainBB);
2559 } else
2560 LoopBlockSet.insert(L.block_begin(), L.block_end());
2562 return LoopBlockSet;
2565 /// Forms basic block chains from the natural loop structures.
2567 /// These chains are designed to preserve the existing *structure* of the code
2568 /// as much as possible. We can then stitch the chains together in a way which
2569 /// both preserves the topological structure and minimizes taken conditional
2570 /// branches.
2571 void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) {
2572 // First recurse through any nested loops, building chains for those inner
2573 // loops.
2574 for (const MachineLoop *InnerLoop : L)
2575 buildLoopChains(*InnerLoop);
2577 assert(BlockWorkList.empty() &&
2578 "BlockWorkList not empty when starting to build loop chains.");
2579 assert(EHPadWorkList.empty() &&
2580 "EHPadWorkList not empty when starting to build loop chains.");
2581 BlockFilterSet LoopBlockSet = collectLoopBlockSet(L);
2583 // Check if we have profile data for this function. If yes, we will rotate
2584 // this loop by modeling costs more precisely which requires the profile data
2585 // for better layout.
2586 bool RotateLoopWithProfile =
2587 ForcePreciseRotationCost ||
2588 (PreciseRotationCost && F->getFunction().hasProfileData());
2590 // First check to see if there is an obviously preferable top block for the
2591 // loop. This will default to the header, but may end up as one of the
2592 // predecessors to the header if there is one which will result in strictly
2593 // fewer branches in the loop body.
2594 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
2596 // If we selected just the header for the loop top, look for a potentially
2597 // profitable exit block in the event that rotating the loop can eliminate
2598 // branches by placing an exit edge at the bottom.
2600 // Loops are processed innermost to uttermost, make sure we clear
2601 // PreferredLoopExit before processing a new loop.
2602 PreferredLoopExit = nullptr;
2603 BlockFrequency ExitFreq;
2604 if (!RotateLoopWithProfile && LoopTop == L.getHeader())
2605 PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq);
2607 BlockChain &LoopChain = *BlockToChain[LoopTop];
2609 // FIXME: This is a really lame way of walking the chains in the loop: we
2610 // walk the blocks, and use a set to prevent visiting a particular chain
2611 // twice.
2612 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2613 assert(LoopChain.UnscheduledPredecessors == 0 &&
2614 "LoopChain should not have unscheduled predecessors.");
2615 UpdatedPreds.insert(&LoopChain);
2617 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2618 fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet);
2620 buildChain(LoopTop, LoopChain, &LoopBlockSet);
2622 if (RotateLoopWithProfile)
2623 rotateLoopWithProfile(LoopChain, L, LoopBlockSet);
2624 else
2625 rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet);
2627 LLVM_DEBUG({
2628 // Crash at the end so we get all of the debugging output first.
2629 bool BadLoop = false;
2630 if (LoopChain.UnscheduledPredecessors) {
2631 BadLoop = true;
2632 dbgs() << "Loop chain contains a block without its preds placed!\n"
2633 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2634 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
2636 for (MachineBasicBlock *ChainBB : LoopChain) {
2637 dbgs() << " ... " << getBlockName(ChainBB) << "\n";
2638 if (!LoopBlockSet.remove(ChainBB)) {
2639 // We don't mark the loop as bad here because there are real situations
2640 // where this can occur. For example, with an unanalyzable fallthrough
2641 // from a loop block to a non-loop block or vice versa.
2642 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2643 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2644 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2645 << " Bad block: " << getBlockName(ChainBB) << "\n";
2649 if (!LoopBlockSet.empty()) {
2650 BadLoop = true;
2651 for (const MachineBasicBlock *LoopBB : LoopBlockSet)
2652 dbgs() << "Loop contains blocks never placed into a chain!\n"
2653 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
2654 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
2655 << " Bad block: " << getBlockName(LoopBB) << "\n";
2657 assert(!BadLoop && "Detected problems with the placement of this loop.");
2660 BlockWorkList.clear();
2661 EHPadWorkList.clear();
2664 void MachineBlockPlacement::buildCFGChains() {
2665 // Ensure that every BB in the function has an associated chain to simplify
2666 // the assumptions of the remaining algorithm.
2667 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2668 for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE;
2669 ++FI) {
2670 MachineBasicBlock *BB = &*FI;
2671 BlockChain *Chain =
2672 new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
2673 // Also, merge any blocks which we cannot reason about and must preserve
2674 // the exact fallthrough behavior for.
2675 while (true) {
2676 Cond.clear();
2677 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2678 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
2679 break;
2681 MachineFunction::iterator NextFI = std::next(FI);
2682 MachineBasicBlock *NextBB = &*NextFI;
2683 // Ensure that the layout successor is a viable block, as we know that
2684 // fallthrough is a possibility.
2685 assert(NextFI != FE && "Can't fallthrough past the last block.");
2686 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2687 << getBlockName(BB) << " -> " << getBlockName(NextBB)
2688 << "\n");
2689 Chain->merge(NextBB, nullptr);
2690 #ifndef NDEBUG
2691 BlocksWithUnanalyzableExits.insert(&*BB);
2692 #endif
2693 FI = NextFI;
2694 BB = NextBB;
2698 // Build any loop-based chains.
2699 PreferredLoopExit = nullptr;
2700 for (MachineLoop *L : *MLI)
2701 buildLoopChains(*L);
2703 assert(BlockWorkList.empty() &&
2704 "BlockWorkList should be empty before building final chain.");
2705 assert(EHPadWorkList.empty() &&
2706 "EHPadWorkList should be empty before building final chain.");
2708 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
2709 for (MachineBasicBlock &MBB : *F)
2710 fillWorkLists(&MBB, UpdatedPreds);
2712 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2713 buildChain(&F->front(), FunctionChain);
2715 #ifndef NDEBUG
2716 using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>;
2717 #endif
2718 LLVM_DEBUG({
2719 // Crash at the end so we get all of the debugging output first.
2720 bool BadFunc = false;
2721 FunctionBlockSetType FunctionBlockSet;
2722 for (MachineBasicBlock &MBB : *F)
2723 FunctionBlockSet.insert(&MBB);
2725 for (MachineBasicBlock *ChainBB : FunctionChain)
2726 if (!FunctionBlockSet.erase(ChainBB)) {
2727 BadFunc = true;
2728 dbgs() << "Function chain contains a block not in the function!\n"
2729 << " Bad block: " << getBlockName(ChainBB) << "\n";
2732 if (!FunctionBlockSet.empty()) {
2733 BadFunc = true;
2734 for (MachineBasicBlock *RemainingBB : FunctionBlockSet)
2735 dbgs() << "Function contains blocks never placed into a chain!\n"
2736 << " Bad block: " << getBlockName(RemainingBB) << "\n";
2738 assert(!BadFunc && "Detected problems with the block placement.");
2741 // Remember original layout ordering, so we can update terminators after
2742 // reordering to point to the original layout successor.
2743 SmallVector<MachineBasicBlock *, 4> OriginalLayoutSuccessors(
2744 F->getNumBlockIDs());
2746 MachineBasicBlock *LastMBB = nullptr;
2747 for (auto &MBB : *F) {
2748 if (LastMBB != nullptr)
2749 OriginalLayoutSuccessors[LastMBB->getNumber()] = &MBB;
2750 LastMBB = &MBB;
2752 OriginalLayoutSuccessors[F->back().getNumber()] = nullptr;
2755 // Splice the blocks into place.
2756 MachineFunction::iterator InsertPos = F->begin();
2757 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n");
2758 for (MachineBasicBlock *ChainBB : FunctionChain) {
2759 LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain "
2760 : " ... ")
2761 << getBlockName(ChainBB) << "\n");
2762 if (InsertPos != MachineFunction::iterator(ChainBB))
2763 F->splice(InsertPos, ChainBB);
2764 else
2765 ++InsertPos;
2767 // Update the terminator of the previous block.
2768 if (ChainBB == *FunctionChain.begin())
2769 continue;
2770 MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB));
2772 // FIXME: It would be awesome of updateTerminator would just return rather
2773 // than assert when the branch cannot be analyzed in order to remove this
2774 // boiler plate.
2775 Cond.clear();
2776 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2778 #ifndef NDEBUG
2779 if (!BlocksWithUnanalyzableExits.count(PrevBB)) {
2780 // Given the exact block placement we chose, we may actually not _need_ to
2781 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2782 // do that at this point is a bug.
2783 assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) ||
2784 !PrevBB->canFallThrough()) &&
2785 "Unexpected block with un-analyzable fallthrough!");
2786 Cond.clear();
2787 TBB = FBB = nullptr;
2789 #endif
2791 // The "PrevBB" is not yet updated to reflect current code layout, so,
2792 // o. it may fall-through to a block without explicit "goto" instruction
2793 // before layout, and no longer fall-through it after layout; or
2794 // o. just opposite.
2796 // analyzeBranch() may return erroneous value for FBB when these two
2797 // situations take place. For the first scenario FBB is mistakenly set NULL;
2798 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2799 // mistakenly pointing to "*BI".
2800 // Thus, if the future change needs to use FBB before the layout is set, it
2801 // has to correct FBB first by using the code similar to the following:
2803 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2804 // PrevBB->updateTerminator();
2805 // Cond.clear();
2806 // TBB = FBB = nullptr;
2807 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2808 // // FIXME: This should never take place.
2809 // TBB = FBB = nullptr;
2810 // }
2811 // }
2812 if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2813 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2817 // Fixup the last block.
2818 Cond.clear();
2819 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2820 if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) {
2821 MachineBasicBlock *PrevBB = &F->back();
2822 PrevBB->updateTerminator(OriginalLayoutSuccessors[PrevBB->getNumber()]);
2825 BlockWorkList.clear();
2826 EHPadWorkList.clear();
2829 void MachineBlockPlacement::optimizeBranches() {
2830 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2831 SmallVector<MachineOperand, 4> Cond; // For analyzeBranch.
2833 // Now that all the basic blocks in the chain have the proper layout,
2834 // make a final call to analyzeBranch with AllowModify set.
2835 // Indeed, the target may be able to optimize the branches in a way we
2836 // cannot because all branches may not be analyzable.
2837 // E.g., the target may be able to remove an unconditional branch to
2838 // a fallthrough when it occurs after predicated terminators.
2839 for (MachineBasicBlock *ChainBB : FunctionChain) {
2840 Cond.clear();
2841 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
2842 if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) {
2843 // If PrevBB has a two-way branch, try to re-order the branches
2844 // such that we branch to the successor with higher probability first.
2845 if (TBB && !Cond.empty() && FBB &&
2846 MBPI->getEdgeProbability(ChainBB, FBB) >
2847 MBPI->getEdgeProbability(ChainBB, TBB) &&
2848 !TII->reverseBranchCondition(Cond)) {
2849 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2850 << getBlockName(ChainBB) << "\n");
2851 LLVM_DEBUG(dbgs() << " Edge probability: "
2852 << MBPI->getEdgeProbability(ChainBB, FBB) << " vs "
2853 << MBPI->getEdgeProbability(ChainBB, TBB) << "\n");
2854 DebugLoc dl; // FIXME: this is nowhere
2855 TII->removeBranch(*ChainBB);
2856 TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl);
2862 void MachineBlockPlacement::alignBlocks() {
2863 // Walk through the backedges of the function now that we have fully laid out
2864 // the basic blocks and align the destination of each backedge. We don't rely
2865 // exclusively on the loop info here so that we can align backedges in
2866 // unnatural CFGs and backedges that were introduced purely because of the
2867 // loop rotations done during this layout pass.
2868 if (F->getFunction().hasMinSize() ||
2869 (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize()))
2870 return;
2871 BlockChain &FunctionChain = *BlockToChain[&F->front()];
2872 if (FunctionChain.begin() == FunctionChain.end())
2873 return; // Empty chain.
2875 const BranchProbability ColdProb(1, 5); // 20%
2876 BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front());
2877 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
2878 for (MachineBasicBlock *ChainBB : FunctionChain) {
2879 if (ChainBB == *FunctionChain.begin())
2880 continue;
2882 // Don't align non-looping basic blocks. These are unlikely to execute
2883 // enough times to matter in practice. Note that we'll still handle
2884 // unnatural CFGs inside of a natural outer loop (the common case) and
2885 // rotated loops.
2886 MachineLoop *L = MLI->getLoopFor(ChainBB);
2887 if (!L)
2888 continue;
2890 const Align Align = TLI->getPrefLoopAlignment(L);
2891 if (Align == 1)
2892 continue; // Don't care about loop alignment.
2894 // If the block is cold relative to the function entry don't waste space
2895 // aligning it.
2896 BlockFrequency Freq = MBFI->getBlockFreq(ChainBB);
2897 if (Freq < WeightedEntryFreq)
2898 continue;
2900 // If the block is cold relative to its loop header, don't align it
2901 // regardless of what edges into the block exist.
2902 MachineBasicBlock *LoopHeader = L->getHeader();
2903 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
2904 if (Freq < (LoopHeaderFreq * ColdProb))
2905 continue;
2907 // If the global profiles indicates so, don't align it.
2908 if (llvm::shouldOptimizeForSize(ChainBB, PSI, MBFI.get()) &&
2909 !TLI->alignLoopsWithOptSize())
2910 continue;
2912 // Check for the existence of a non-layout predecessor which would benefit
2913 // from aligning this block.
2914 MachineBasicBlock *LayoutPred =
2915 &*std::prev(MachineFunction::iterator(ChainBB));
2917 // Force alignment if all the predecessors are jumps. We already checked
2918 // that the block isn't cold above.
2919 if (!LayoutPred->isSuccessor(ChainBB)) {
2920 ChainBB->setAlignment(Align);
2921 continue;
2924 // Align this block if the layout predecessor's edge into this block is
2925 // cold relative to the block. When this is true, other predecessors make up
2926 // all of the hot entries into the block and thus alignment is likely to be
2927 // important.
2928 BranchProbability LayoutProb =
2929 MBPI->getEdgeProbability(LayoutPred, ChainBB);
2930 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
2931 if (LayoutEdgeFreq <= (Freq * ColdProb))
2932 ChainBB->setAlignment(Align);
2936 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2937 /// it was duplicated into its chain predecessor and removed.
2938 /// \p BB - Basic block that may be duplicated.
2940 /// \p LPred - Chosen layout predecessor of \p BB.
2941 /// Updated to be the chain end if LPred is removed.
2942 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2943 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2944 /// Used to identify which blocks to update predecessor
2945 /// counts.
2946 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2947 /// chosen in the given order due to unnatural CFG
2948 /// only needed if \p BB is removed and
2949 /// \p PrevUnplacedBlockIt pointed to \p BB.
2950 /// @return true if \p BB was removed.
2951 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2952 MachineBasicBlock *BB, MachineBasicBlock *&LPred,
2953 const MachineBasicBlock *LoopHeaderBB,
2954 BlockChain &Chain, BlockFilterSet *BlockFilter,
2955 MachineFunction::iterator &PrevUnplacedBlockIt) {
2956 bool Removed, DuplicatedToLPred;
2957 bool DuplicatedToOriginalLPred;
2958 Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter,
2959 PrevUnplacedBlockIt,
2960 DuplicatedToLPred);
2961 if (!Removed)
2962 return false;
2963 DuplicatedToOriginalLPred = DuplicatedToLPred;
2964 // Iteratively try to duplicate again. It can happen that a block that is
2965 // duplicated into is still small enough to be duplicated again.
2966 // No need to call markBlockSuccessors in this case, as the blocks being
2967 // duplicated from here on are already scheduled.
2968 while (DuplicatedToLPred && Removed) {
2969 MachineBasicBlock *DupBB, *DupPred;
2970 // The removal callback causes Chain.end() to be updated when a block is
2971 // removed. On the first pass through the loop, the chain end should be the
2972 // same as it was on function entry. On subsequent passes, because we are
2973 // duplicating the block at the end of the chain, if it is removed the
2974 // chain will have shrunk by one block.
2975 BlockChain::iterator ChainEnd = Chain.end();
2976 DupBB = *(--ChainEnd);
2977 // Now try to duplicate again.
2978 if (ChainEnd == Chain.begin())
2979 break;
2980 DupPred = *std::prev(ChainEnd);
2981 Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter,
2982 PrevUnplacedBlockIt,
2983 DuplicatedToLPred);
2985 // If BB was duplicated into LPred, it is now scheduled. But because it was
2986 // removed, markChainSuccessors won't be called for its chain. Instead we
2987 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2988 // at the end because repeating the tail duplication can increase the number
2989 // of unscheduled predecessors.
2990 LPred = *std::prev(Chain.end());
2991 if (DuplicatedToOriginalLPred)
2992 markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter);
2993 return true;
2996 /// Tail duplicate \p BB into (some) predecessors if profitable.
2997 /// \p BB - Basic block that may be duplicated
2998 /// \p LPred - Chosen layout predecessor of \p BB
2999 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
3000 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
3001 /// Used to identify which blocks to update predecessor
3002 /// counts.
3003 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
3004 /// chosen in the given order due to unnatural CFG
3005 /// only needed if \p BB is removed and
3006 /// \p PrevUnplacedBlockIt pointed to \p BB.
3007 /// \p DuplicatedToLPred - True if the block was duplicated into LPred.
3008 /// \return - True if the block was duplicated into all preds and removed.
3009 bool MachineBlockPlacement::maybeTailDuplicateBlock(
3010 MachineBasicBlock *BB, MachineBasicBlock *LPred,
3011 BlockChain &Chain, BlockFilterSet *BlockFilter,
3012 MachineFunction::iterator &PrevUnplacedBlockIt,
3013 bool &DuplicatedToLPred) {
3014 DuplicatedToLPred = false;
3015 if (!shouldTailDuplicate(BB))
3016 return false;
3018 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber()
3019 << "\n");
3021 // This has to be a callback because none of it can be done after
3022 // BB is deleted.
3023 bool Removed = false;
3024 auto RemovalCallback =
3025 [&](MachineBasicBlock *RemBB) {
3026 // Signal to outer function
3027 Removed = true;
3029 // Conservative default.
3030 bool InWorkList = true;
3031 // Remove from the Chain and Chain Map
3032 if (BlockToChain.count(RemBB)) {
3033 BlockChain *Chain = BlockToChain[RemBB];
3034 InWorkList = Chain->UnscheduledPredecessors == 0;
3035 Chain->remove(RemBB);
3036 BlockToChain.erase(RemBB);
3039 // Handle the unplaced block iterator
3040 if (&(*PrevUnplacedBlockIt) == RemBB) {
3041 PrevUnplacedBlockIt++;
3044 // Handle the Work Lists
3045 if (InWorkList) {
3046 SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList;
3047 if (RemBB->isEHPad())
3048 RemoveList = EHPadWorkList;
3049 llvm::erase_value(RemoveList, RemBB);
3052 // Handle the filter set
3053 if (BlockFilter) {
3054 BlockFilter->remove(RemBB);
3057 // Remove the block from loop info.
3058 MLI->removeBlock(RemBB);
3059 if (RemBB == PreferredLoopExit)
3060 PreferredLoopExit = nullptr;
3062 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
3063 << getBlockName(RemBB) << "\n");
3065 auto RemovalCallbackRef =
3066 function_ref<void(MachineBasicBlock*)>(RemovalCallback);
3068 SmallVector<MachineBasicBlock *, 8> DuplicatedPreds;
3069 bool IsSimple = TailDup.isSimpleBB(BB);
3070 SmallVector<MachineBasicBlock *, 8> CandidatePreds;
3071 SmallVectorImpl<MachineBasicBlock *> *CandidatePtr = nullptr;
3072 if (F->getFunction().hasProfileData()) {
3073 // We can do partial duplication with precise profile information.
3074 findDuplicateCandidates(CandidatePreds, BB, BlockFilter);
3075 if (CandidatePreds.size() == 0)
3076 return false;
3077 if (CandidatePreds.size() < BB->pred_size())
3078 CandidatePtr = &CandidatePreds;
3080 TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, &DuplicatedPreds,
3081 &RemovalCallbackRef, CandidatePtr);
3083 // Update UnscheduledPredecessors to reflect tail-duplication.
3084 DuplicatedToLPred = false;
3085 for (MachineBasicBlock *Pred : DuplicatedPreds) {
3086 // We're only looking for unscheduled predecessors that match the filter.
3087 BlockChain* PredChain = BlockToChain[Pred];
3088 if (Pred == LPred)
3089 DuplicatedToLPred = true;
3090 if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred))
3091 || PredChain == &Chain)
3092 continue;
3093 for (MachineBasicBlock *NewSucc : Pred->successors()) {
3094 if (BlockFilter && !BlockFilter->count(NewSucc))
3095 continue;
3096 BlockChain *NewChain = BlockToChain[NewSucc];
3097 if (NewChain != &Chain && NewChain != PredChain)
3098 NewChain->UnscheduledPredecessors++;
3101 return Removed;
3104 // Count the number of actual machine instructions.
3105 static uint64_t countMBBInstruction(MachineBasicBlock *MBB) {
3106 uint64_t InstrCount = 0;
3107 for (MachineInstr &MI : *MBB) {
3108 if (!MI.isPHI() && !MI.isMetaInstruction())
3109 InstrCount += 1;
3111 return InstrCount;
3114 // The size cost of duplication is the instruction size of the duplicated block.
3115 // So we should scale the threshold accordingly. But the instruction size is not
3116 // available on all targets, so we use the number of instructions instead.
3117 BlockFrequency MachineBlockPlacement::scaleThreshold(MachineBasicBlock *BB) {
3118 return DupThreshold.getFrequency() * countMBBInstruction(BB);
3121 // Returns true if BB is Pred's best successor.
3122 bool MachineBlockPlacement::isBestSuccessor(MachineBasicBlock *BB,
3123 MachineBasicBlock *Pred,
3124 BlockFilterSet *BlockFilter) {
3125 if (BB == Pred)
3126 return false;
3127 if (BlockFilter && !BlockFilter->count(Pred))
3128 return false;
3129 BlockChain *PredChain = BlockToChain[Pred];
3130 if (PredChain && (Pred != *std::prev(PredChain->end())))
3131 return false;
3133 // Find the successor with largest probability excluding BB.
3134 BranchProbability BestProb = BranchProbability::getZero();
3135 for (MachineBasicBlock *Succ : Pred->successors())
3136 if (Succ != BB) {
3137 if (BlockFilter && !BlockFilter->count(Succ))
3138 continue;
3139 BlockChain *SuccChain = BlockToChain[Succ];
3140 if (SuccChain && (Succ != *SuccChain->begin()))
3141 continue;
3142 BranchProbability SuccProb = MBPI->getEdgeProbability(Pred, Succ);
3143 if (SuccProb > BestProb)
3144 BestProb = SuccProb;
3147 BranchProbability BBProb = MBPI->getEdgeProbability(Pred, BB);
3148 if (BBProb <= BestProb)
3149 return false;
3151 // Compute the number of reduced taken branches if Pred falls through to BB
3152 // instead of another successor. Then compare it with threshold.
3153 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3154 BlockFrequency Gain = PredFreq * (BBProb - BestProb);
3155 return Gain > scaleThreshold(BB);
3158 // Find out the predecessors of BB and BB can be beneficially duplicated into
3159 // them.
3160 void MachineBlockPlacement::findDuplicateCandidates(
3161 SmallVectorImpl<MachineBasicBlock *> &Candidates,
3162 MachineBasicBlock *BB,
3163 BlockFilterSet *BlockFilter) {
3164 MachineBasicBlock *Fallthrough = nullptr;
3165 BranchProbability DefaultBranchProb = BranchProbability::getZero();
3166 BlockFrequency BBDupThreshold(scaleThreshold(BB));
3167 SmallVector<MachineBasicBlock *, 8> Preds(BB->predecessors());
3168 SmallVector<MachineBasicBlock *, 8> Succs(BB->successors());
3170 // Sort for highest frequency.
3171 auto CmpSucc = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3172 return MBPI->getEdgeProbability(BB, A) > MBPI->getEdgeProbability(BB, B);
3174 auto CmpPred = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
3175 return MBFI->getBlockFreq(A) > MBFI->getBlockFreq(B);
3177 llvm::stable_sort(Succs, CmpSucc);
3178 llvm::stable_sort(Preds, CmpPred);
3180 auto SuccIt = Succs.begin();
3181 if (SuccIt != Succs.end()) {
3182 DefaultBranchProb = MBPI->getEdgeProbability(BB, *SuccIt).getCompl();
3185 // For each predecessors of BB, compute the benefit of duplicating BB,
3186 // if it is larger than the threshold, add it into Candidates.
3188 // If we have following control flow.
3190 // PB1 PB2 PB3 PB4
3191 // \ | / /\
3192 // \ | / / \
3193 // \ |/ / \
3194 // BB----/ OB
3195 // /\
3196 // / \
3197 // SB1 SB2
3199 // And it can be partially duplicated as
3201 // PB2+BB
3202 // | PB1 PB3 PB4
3203 // | | / /\
3204 // | | / / \
3205 // | |/ / \
3206 // | BB----/ OB
3207 // |\ /|
3208 // | X |
3209 // |/ \|
3210 // SB2 SB1
3212 // The benefit of duplicating into a predecessor is defined as
3213 // Orig_taken_branch - Duplicated_taken_branch
3215 // The Orig_taken_branch is computed with the assumption that predecessor
3216 // jumps to BB and the most possible successor is laid out after BB.
3218 // The Duplicated_taken_branch is computed with the assumption that BB is
3219 // duplicated into PB, and one successor is layout after it (SB1 for PB1 and
3220 // SB2 for PB2 in our case). If there is no available successor, the combined
3221 // block jumps to all BB's successor, like PB3 in this example.
3223 // If a predecessor has multiple successors, so BB can't be duplicated into
3224 // it. But it can beneficially fall through to BB, and duplicate BB into other
3225 // predecessors.
3226 for (MachineBasicBlock *Pred : Preds) {
3227 BlockFrequency PredFreq = getBlockCountOrFrequency(Pred);
3229 if (!TailDup.canTailDuplicate(BB, Pred)) {
3230 // BB can't be duplicated into Pred, but it is possible to be layout
3231 // below Pred.
3232 if (!Fallthrough && isBestSuccessor(BB, Pred, BlockFilter)) {
3233 Fallthrough = Pred;
3234 if (SuccIt != Succs.end())
3235 SuccIt++;
3237 continue;
3240 BlockFrequency OrigCost = PredFreq + PredFreq * DefaultBranchProb;
3241 BlockFrequency DupCost;
3242 if (SuccIt == Succs.end()) {
3243 // Jump to all successors;
3244 if (Succs.size() > 0)
3245 DupCost += PredFreq;
3246 } else {
3247 // Fallthrough to *SuccIt, jump to all other successors;
3248 DupCost += PredFreq;
3249 DupCost -= PredFreq * MBPI->getEdgeProbability(BB, *SuccIt);
3252 assert(OrigCost >= DupCost);
3253 OrigCost -= DupCost;
3254 if (OrigCost > BBDupThreshold) {
3255 Candidates.push_back(Pred);
3256 if (SuccIt != Succs.end())
3257 SuccIt++;
3261 // No predecessors can optimally fallthrough to BB.
3262 // So we can change one duplication into fallthrough.
3263 if (!Fallthrough) {
3264 if ((Candidates.size() < Preds.size()) && (Candidates.size() > 0)) {
3265 Candidates[0] = Candidates.back();
3266 Candidates.pop_back();
3271 void MachineBlockPlacement::initDupThreshold() {
3272 DupThreshold = 0;
3273 if (!F->getFunction().hasProfileData())
3274 return;
3276 // We prefer to use prifile count.
3277 uint64_t HotThreshold = PSI->getOrCompHotCountThreshold();
3278 if (HotThreshold != UINT64_MAX) {
3279 UseProfileCount = true;
3280 DupThreshold = HotThreshold * TailDupProfilePercentThreshold / 100;
3281 return;
3284 // Profile count is not available, we can use block frequency instead.
3285 BlockFrequency MaxFreq = 0;
3286 for (MachineBasicBlock &MBB : *F) {
3287 BlockFrequency Freq = MBFI->getBlockFreq(&MBB);
3288 if (Freq > MaxFreq)
3289 MaxFreq = Freq;
3292 BranchProbability ThresholdProb(TailDupPlacementPenalty, 100);
3293 DupThreshold = MaxFreq * ThresholdProb;
3294 UseProfileCount = false;
3297 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) {
3298 if (skipFunction(MF.getFunction()))
3299 return false;
3301 // Check for single-block functions and skip them.
3302 if (std::next(MF.begin()) == MF.end())
3303 return false;
3305 F = &MF;
3306 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3307 MBFI = std::make_unique<MBFIWrapper>(
3308 getAnalysis<MachineBlockFrequencyInfo>());
3309 MLI = &getAnalysis<MachineLoopInfo>();
3310 TII = MF.getSubtarget().getInstrInfo();
3311 TLI = MF.getSubtarget().getTargetLowering();
3312 MPDT = nullptr;
3313 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
3315 initDupThreshold();
3317 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3318 // there are no MachineLoops.
3319 PreferredLoopExit = nullptr;
3321 assert(BlockToChain.empty() &&
3322 "BlockToChain map should be empty before starting placement.");
3323 assert(ComputedEdges.empty() &&
3324 "Computed Edge map should be empty before starting placement.");
3326 unsigned TailDupSize = TailDupPlacementThreshold;
3327 // If only the aggressive threshold is explicitly set, use it.
3328 if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 &&
3329 TailDupPlacementThreshold.getNumOccurrences() == 0)
3330 TailDupSize = TailDupPlacementAggressiveThreshold;
3332 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
3333 // For aggressive optimization, we can adjust some thresholds to be less
3334 // conservative.
3335 if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) {
3336 // At O3 we should be more willing to copy blocks for tail duplication. This
3337 // increases size pressure, so we only do it at O3
3338 // Do this unless only the regular threshold is explicitly set.
3339 if (TailDupPlacementThreshold.getNumOccurrences() == 0 ||
3340 TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0)
3341 TailDupSize = TailDupPlacementAggressiveThreshold;
3344 // If there's no threshold provided through options, query the target
3345 // information for a threshold instead.
3346 if (TailDupPlacementThreshold.getNumOccurrences() == 0 &&
3347 (PassConfig->getOptLevel() < CodeGenOpt::Aggressive ||
3348 TailDupPlacementAggressiveThreshold.getNumOccurrences() == 0))
3349 TailDupSize = TII->getTailDuplicateSize(PassConfig->getOptLevel());
3351 if (allowTailDupPlacement()) {
3352 MPDT = &getAnalysis<MachinePostDominatorTree>();
3353 bool OptForSize = MF.getFunction().hasOptSize() ||
3354 llvm::shouldOptimizeForSize(&MF, PSI, &MBFI->getMBFI());
3355 if (OptForSize)
3356 TailDupSize = 1;
3357 bool PreRegAlloc = false;
3358 TailDup.initMF(MF, PreRegAlloc, MBPI, MBFI.get(), PSI,
3359 /* LayoutMode */ true, TailDupSize);
3360 precomputeTriangleChains();
3363 buildCFGChains();
3365 // Changing the layout can create new tail merging opportunities.
3366 // TailMerge can create jump into if branches that make CFG irreducible for
3367 // HW that requires structured CFG.
3368 bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() &&
3369 PassConfig->getEnableTailMerge() &&
3370 BranchFoldPlacement;
3371 // No tail merging opportunities if the block number is less than four.
3372 if (MF.size() > 3 && EnableTailMerge) {
3373 unsigned TailMergeSize = TailDupSize + 1;
3374 BranchFolder BF(/*DefaultEnableTailMerge=*/true, /*CommonHoist=*/false,
3375 *MBFI, *MBPI, PSI, TailMergeSize);
3377 if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), MLI,
3378 /*AfterPlacement=*/true)) {
3379 // Redo the layout if tail merging creates/removes/moves blocks.
3380 BlockToChain.clear();
3381 ComputedEdges.clear();
3382 // Must redo the post-dominator tree if blocks were changed.
3383 if (MPDT)
3384 MPDT->runOnMachineFunction(MF);
3385 ChainAllocator.DestroyAll();
3386 buildCFGChains();
3390 optimizeBranches();
3391 alignBlocks();
3393 BlockToChain.clear();
3394 ComputedEdges.clear();
3395 ChainAllocator.DestroyAll();
3397 if (AlignAllBlock)
3398 // Align all of the blocks in the function to a specific alignment.
3399 for (MachineBasicBlock &MBB : MF)
3400 MBB.setAlignment(Align(1ULL << AlignAllBlock));
3401 else if (AlignAllNonFallThruBlocks) {
3402 // Align all of the blocks that have no fall-through predecessors to a
3403 // specific alignment.
3404 for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) {
3405 auto LayoutPred = std::prev(MBI);
3406 if (!LayoutPred->isSuccessor(&*MBI))
3407 MBI->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks));
3410 if (ViewBlockLayoutWithBFI != GVDT_None &&
3411 (ViewBlockFreqFuncName.empty() ||
3412 F->getFunction().getName().equals(ViewBlockFreqFuncName))) {
3413 MBFI->view("MBP." + MF.getName(), false);
3417 // We always return true as we have no way to track whether the final order
3418 // differs from the original order.
3419 return true;
3422 namespace {
3424 /// A pass to compute block placement statistics.
3426 /// A separate pass to compute interesting statistics for evaluating block
3427 /// placement. This is separate from the actual placement pass so that they can
3428 /// be computed in the absence of any placement transformations or when using
3429 /// alternative placement strategies.
3430 class MachineBlockPlacementStats : public MachineFunctionPass {
3431 /// A handle to the branch probability pass.
3432 const MachineBranchProbabilityInfo *MBPI;
3434 /// A handle to the function-wide block frequency pass.
3435 const MachineBlockFrequencyInfo *MBFI;
3437 public:
3438 static char ID; // Pass identification, replacement for typeid
3440 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
3441 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3444 bool runOnMachineFunction(MachineFunction &F) override;
3446 void getAnalysisUsage(AnalysisUsage &AU) const override {
3447 AU.addRequired<MachineBranchProbabilityInfo>();
3448 AU.addRequired<MachineBlockFrequencyInfo>();
3449 AU.setPreservesAll();
3450 MachineFunctionPass::getAnalysisUsage(AU);
3454 } // end anonymous namespace
3456 char MachineBlockPlacementStats::ID = 0;
3458 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
3460 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
3461 "Basic Block Placement Stats", false, false)
3462 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
3463 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
3464 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
3465 "Basic Block Placement Stats", false, false)
3467 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
3468 // Check for single-block functions and skip them.
3469 if (std::next(F.begin()) == F.end())
3470 return false;
3472 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
3473 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
3475 for (MachineBasicBlock &MBB : F) {
3476 BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB);
3477 Statistic &NumBranches =
3478 (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches;
3479 Statistic &BranchTakenFreq =
3480 (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq;
3481 for (MachineBasicBlock *Succ : MBB.successors()) {
3482 // Skip if this successor is a fallthrough.
3483 if (MBB.isLayoutSuccessor(Succ))
3484 continue;
3486 BlockFrequency EdgeFreq =
3487 BlockFreq * MBPI->getEdgeProbability(&MBB, Succ);
3488 ++NumBranches;
3489 BranchTakenFreq += EdgeFreq.getFrequency();
3493 return false;