[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineCSE.cpp
blobcb2e18e8c81346308fc4422f1fc1ecc8cc988fea
1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include <cassert>
46 #include <iterator>
47 #include <utility>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "machine-cse"
54 STATISTIC(NumCoalesces, "Number of copies coalesced");
55 STATISTIC(NumCSEs, "Number of common subexpression eliminated");
56 STATISTIC(NumPREs, "Number of partial redundant expression"
57 " transformed to fully redundant");
58 STATISTIC(NumPhysCSEs,
59 "Number of physreg referencing common subexpr eliminated");
60 STATISTIC(NumCrossBBCSEs,
61 "Number of cross-MBB physreg referencing CS eliminated");
62 STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
64 namespace {
66 class MachineCSE : public MachineFunctionPass {
67 const TargetInstrInfo *TII;
68 const TargetRegisterInfo *TRI;
69 AliasAnalysis *AA;
70 MachineDominatorTree *DT;
71 MachineRegisterInfo *MRI;
72 MachineBlockFrequencyInfo *MBFI;
74 public:
75 static char ID; // Pass identification
77 MachineCSE() : MachineFunctionPass(ID) {
78 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
81 bool runOnMachineFunction(MachineFunction &MF) override;
83 void getAnalysisUsage(AnalysisUsage &AU) const override {
84 AU.setPreservesCFG();
85 MachineFunctionPass::getAnalysisUsage(AU);
86 AU.addRequired<AAResultsWrapperPass>();
87 AU.addPreservedID(MachineLoopInfoID);
88 AU.addRequired<MachineDominatorTree>();
89 AU.addPreserved<MachineDominatorTree>();
90 AU.addRequired<MachineBlockFrequencyInfo>();
91 AU.addPreserved<MachineBlockFrequencyInfo>();
94 void releaseMemory() override {
95 ScopeMap.clear();
96 PREMap.clear();
97 Exps.clear();
100 private:
101 using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
102 ScopedHashTableVal<MachineInstr *, unsigned>>;
103 using ScopedHTType =
104 ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
105 AllocatorTy>;
106 using ScopeType = ScopedHTType::ScopeTy;
107 using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
109 unsigned LookAheadLimit = 0;
110 DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
111 DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
112 PREMap;
113 ScopedHTType VNT;
114 SmallVector<MachineInstr *, 64> Exps;
115 unsigned CurrVN = 0;
117 bool PerformTrivialCopyPropagation(MachineInstr *MI,
118 MachineBasicBlock *MBB);
119 bool isPhysDefTriviallyDead(MCRegister Reg,
120 MachineBasicBlock::const_iterator I,
121 MachineBasicBlock::const_iterator E) const;
122 bool hasLivePhysRegDefUses(const MachineInstr *MI,
123 const MachineBasicBlock *MBB,
124 SmallSet<MCRegister, 8> &PhysRefs,
125 PhysDefVector &PhysDefs, bool &PhysUseDef) const;
126 bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
127 SmallSet<MCRegister, 8> &PhysRefs,
128 PhysDefVector &PhysDefs, bool &NonLocal) const;
129 bool isCSECandidate(MachineInstr *MI);
130 bool isProfitableToCSE(Register CSReg, Register Reg,
131 MachineBasicBlock *CSBB, MachineInstr *MI);
132 void EnterScope(MachineBasicBlock *MBB);
133 void ExitScope(MachineBasicBlock *MBB);
134 bool ProcessBlockCSE(MachineBasicBlock *MBB);
135 void ExitScopeIfDone(MachineDomTreeNode *Node,
136 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
137 bool PerformCSE(MachineDomTreeNode *Node);
139 bool isPRECandidate(MachineInstr *MI);
140 bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
141 bool PerformSimplePRE(MachineDominatorTree *DT);
142 /// Heuristics to see if it's profitable to move common computations of MBB
143 /// and MBB1 to CandidateBB.
144 bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
145 MachineBasicBlock *MBB,
146 MachineBasicBlock *MBB1);
149 } // end anonymous namespace
151 char MachineCSE::ID = 0;
153 char &llvm::MachineCSEID = MachineCSE::ID;
155 INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
156 "Machine Common Subexpression Elimination", false, false)
157 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
158 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
159 INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
160 "Machine Common Subexpression Elimination", false, false)
162 /// The source register of a COPY machine instruction can be propagated to all
163 /// its users, and this propagation could increase the probability of finding
164 /// common subexpressions. If the COPY has only one user, the COPY itself can
165 /// be removed.
166 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
167 MachineBasicBlock *MBB) {
168 bool Changed = false;
169 for (MachineOperand &MO : MI->operands()) {
170 if (!MO.isReg() || !MO.isUse())
171 continue;
172 Register Reg = MO.getReg();
173 if (!Register::isVirtualRegister(Reg))
174 continue;
175 bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
176 MachineInstr *DefMI = MRI->getVRegDef(Reg);
177 if (!DefMI->isCopy())
178 continue;
179 Register SrcReg = DefMI->getOperand(1).getReg();
180 if (!Register::isVirtualRegister(SrcReg))
181 continue;
182 if (DefMI->getOperand(0).getSubReg())
183 continue;
184 // FIXME: We should trivially coalesce subregister copies to expose CSE
185 // opportunities on instructions with truncated operands (see
186 // cse-add-with-overflow.ll). This can be done here as follows:
187 // if (SrcSubReg)
188 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
189 // SrcSubReg);
190 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
192 // The 2-addr pass has been updated to handle coalesced subregs. However,
193 // some machine-specific code still can't handle it.
194 // To handle it properly we also need a way find a constrained subregister
195 // class given a super-reg class and subreg index.
196 if (DefMI->getOperand(1).getSubReg())
197 continue;
198 if (!MRI->constrainRegAttrs(SrcReg, Reg))
199 continue;
200 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
201 LLVM_DEBUG(dbgs() << "*** to: " << *MI);
203 // Propagate SrcReg of copies to MI.
204 MO.setReg(SrcReg);
205 MRI->clearKillFlags(SrcReg);
206 // Coalesce single use copies.
207 if (OnlyOneUse) {
208 // If (and only if) we've eliminated all uses of the copy, also
209 // copy-propagate to any debug-users of MI, or they'll be left using
210 // an undefined value.
211 DefMI->changeDebugValuesDefReg(SrcReg);
213 DefMI->eraseFromParent();
214 ++NumCoalesces;
216 Changed = true;
219 return Changed;
222 bool MachineCSE::isPhysDefTriviallyDead(
223 MCRegister Reg, MachineBasicBlock::const_iterator I,
224 MachineBasicBlock::const_iterator E) const {
225 unsigned LookAheadLeft = LookAheadLimit;
226 while (LookAheadLeft) {
227 // Skip over dbg_value's.
228 I = skipDebugInstructionsForward(I, E);
230 if (I == E)
231 // Reached end of block, we don't know if register is dead or not.
232 return false;
234 bool SeenDef = false;
235 for (const MachineOperand &MO : I->operands()) {
236 if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
237 SeenDef = true;
238 if (!MO.isReg() || !MO.getReg())
239 continue;
240 if (!TRI->regsOverlap(MO.getReg(), Reg))
241 continue;
242 if (MO.isUse())
243 // Found a use!
244 return false;
245 SeenDef = true;
247 if (SeenDef)
248 // See a def of Reg (or an alias) before encountering any use, it's
249 // trivially dead.
250 return true;
252 --LookAheadLeft;
253 ++I;
255 return false;
258 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg,
259 const MachineFunction &MF,
260 const TargetRegisterInfo &TRI) {
261 // MachineRegisterInfo::isConstantPhysReg directly called by
262 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
263 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
264 // most (if not all) targets freeze reserved registers right after ISel.
266 // It does cause issues mid-GlobalISel, however, hence the additional
267 // reservedRegsFrozen check.
268 const MachineRegisterInfo &MRI = MF.getRegInfo();
269 return TRI.isCallerPreservedPhysReg(Reg, MF) ||
270 (MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
273 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
274 /// physical registers (except for dead defs of physical registers). It also
275 /// returns the physical register def by reference if it's the only one and the
276 /// instruction does not uses a physical register.
277 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
278 const MachineBasicBlock *MBB,
279 SmallSet<MCRegister, 8> &PhysRefs,
280 PhysDefVector &PhysDefs,
281 bool &PhysUseDef) const {
282 // First, add all uses to PhysRefs.
283 for (const MachineOperand &MO : MI->operands()) {
284 if (!MO.isReg() || MO.isDef())
285 continue;
286 Register Reg = MO.getReg();
287 if (!Reg)
288 continue;
289 if (Register::isVirtualRegister(Reg))
290 continue;
291 // Reading either caller preserved or constant physregs is ok.
292 if (!isCallerPreservedOrConstPhysReg(Reg.asMCReg(), *MI->getMF(), *TRI))
293 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
294 PhysRefs.insert(*AI);
297 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
298 // (which currently contains only uses), set the PhysUseDef flag.
299 PhysUseDef = false;
300 MachineBasicBlock::const_iterator I = MI; I = std::next(I);
301 for (const auto &MOP : llvm::enumerate(MI->operands())) {
302 const MachineOperand &MO = MOP.value();
303 if (!MO.isReg() || !MO.isDef())
304 continue;
305 Register Reg = MO.getReg();
306 if (!Reg)
307 continue;
308 if (Register::isVirtualRegister(Reg))
309 continue;
310 // Check against PhysRefs even if the def is "dead".
311 if (PhysRefs.count(Reg.asMCReg()))
312 PhysUseDef = true;
313 // If the def is dead, it's ok. But the def may not marked "dead". That's
314 // common since this pass is run before livevariables. We can scan
315 // forward a few instructions and check if it is obviously dead.
316 if (!MO.isDead() && !isPhysDefTriviallyDead(Reg.asMCReg(), I, MBB->end()))
317 PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
320 // Finally, add all defs to PhysRefs as well.
321 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
322 for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
323 ++AI)
324 PhysRefs.insert(*AI);
326 return !PhysRefs.empty();
329 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
330 SmallSet<MCRegister, 8> &PhysRefs,
331 PhysDefVector &PhysDefs,
332 bool &NonLocal) const {
333 // For now conservatively returns false if the common subexpression is
334 // not in the same basic block as the given instruction. The only exception
335 // is if the common subexpression is in the sole predecessor block.
336 const MachineBasicBlock *MBB = MI->getParent();
337 const MachineBasicBlock *CSMBB = CSMI->getParent();
339 bool CrossMBB = false;
340 if (CSMBB != MBB) {
341 if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
342 return false;
344 for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
345 if (MRI->isAllocatable(PhysDefs[i].second) ||
346 MRI->isReserved(PhysDefs[i].second))
347 // Avoid extending live range of physical registers if they are
348 //allocatable or reserved.
349 return false;
351 CrossMBB = true;
353 MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
354 MachineBasicBlock::const_iterator E = MI;
355 MachineBasicBlock::const_iterator EE = CSMBB->end();
356 unsigned LookAheadLeft = LookAheadLimit;
357 while (LookAheadLeft) {
358 // Skip over dbg_value's.
359 while (I != E && I != EE && I->isDebugInstr())
360 ++I;
362 if (I == EE) {
363 assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
364 (void)CrossMBB;
365 CrossMBB = false;
366 NonLocal = true;
367 I = MBB->begin();
368 EE = MBB->end();
369 continue;
372 if (I == E)
373 return true;
375 for (const MachineOperand &MO : I->operands()) {
376 // RegMasks go on instructions like calls that clobber lots of physregs.
377 // Don't attempt to CSE across such an instruction.
378 if (MO.isRegMask())
379 return false;
380 if (!MO.isReg() || !MO.isDef())
381 continue;
382 Register MOReg = MO.getReg();
383 if (Register::isVirtualRegister(MOReg))
384 continue;
385 if (PhysRefs.count(MOReg.asMCReg()))
386 return false;
389 --LookAheadLeft;
390 ++I;
393 return false;
396 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
397 if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
398 MI->isInlineAsm() || MI->isDebugInstr())
399 return false;
401 // Ignore copies.
402 if (MI->isCopyLike())
403 return false;
405 // Ignore stuff that we obviously can't move.
406 if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
407 MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
408 return false;
410 if (MI->mayLoad()) {
411 // Okay, this instruction does a load. As a refinement, we allow the target
412 // to decide whether the loaded value is actually a constant. If so, we can
413 // actually use it as a load.
414 if (!MI->isDereferenceableInvariantLoad(AA))
415 // FIXME: we should be able to hoist loads with no other side effects if
416 // there are no other instructions which can change memory in this loop.
417 // This is a trivial form of alias analysis.
418 return false;
421 // Ignore stack guard loads, otherwise the register that holds CSEed value may
422 // be spilled and get loaded back with corrupted data.
423 if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
424 return false;
426 return true;
429 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
430 /// common expression that defines Reg. CSBB is basic block where CSReg is
431 /// defined.
432 bool MachineCSE::isProfitableToCSE(Register CSReg, Register Reg,
433 MachineBasicBlock *CSBB, MachineInstr *MI) {
434 // FIXME: Heuristics that works around the lack the live range splitting.
436 // If CSReg is used at all uses of Reg, CSE should not increase register
437 // pressure of CSReg.
438 bool MayIncreasePressure = true;
439 if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
440 MayIncreasePressure = false;
441 SmallPtrSet<MachineInstr*, 8> CSUses;
442 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
443 CSUses.insert(&MI);
445 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
446 if (!CSUses.count(&MI)) {
447 MayIncreasePressure = true;
448 break;
452 if (!MayIncreasePressure) return true;
454 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
455 // an immediate predecessor. We don't want to increase register pressure and
456 // end up causing other computation to be spilled.
457 if (TII->isAsCheapAsAMove(*MI)) {
458 MachineBasicBlock *BB = MI->getParent();
459 if (CSBB != BB && !CSBB->isSuccessor(BB))
460 return false;
463 // Heuristics #2: If the expression doesn't not use a vr and the only use
464 // of the redundant computation are copies, do not cse.
465 bool HasVRegUse = false;
466 for (const MachineOperand &MO : MI->operands()) {
467 if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
468 HasVRegUse = true;
469 break;
472 if (!HasVRegUse) {
473 bool HasNonCopyUse = false;
474 for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
475 // Ignore copies.
476 if (!MI.isCopyLike()) {
477 HasNonCopyUse = true;
478 break;
481 if (!HasNonCopyUse)
482 return false;
485 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
486 // it unless the defined value is already used in the BB of the new use.
487 bool HasPHI = false;
488 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
489 HasPHI |= UseMI.isPHI();
490 if (UseMI.getParent() == MI->getParent())
491 return true;
494 return !HasPHI;
497 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
498 LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
499 ScopeType *Scope = new ScopeType(VNT);
500 ScopeMap[MBB] = Scope;
503 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
504 LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
505 DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
506 assert(SI != ScopeMap.end());
507 delete SI->second;
508 ScopeMap.erase(SI);
511 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
512 bool Changed = false;
514 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
515 SmallVector<unsigned, 2> ImplicitDefsToUpdate;
516 SmallVector<unsigned, 2> ImplicitDefs;
517 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
518 MachineInstr *MI = &*I;
519 ++I;
521 if (!isCSECandidate(MI))
522 continue;
524 bool FoundCSE = VNT.count(MI);
525 if (!FoundCSE) {
526 // Using trivial copy propagation to find more CSE opportunities.
527 if (PerformTrivialCopyPropagation(MI, MBB)) {
528 Changed = true;
530 // After coalescing MI itself may become a copy.
531 if (MI->isCopyLike())
532 continue;
534 // Try again to see if CSE is possible.
535 FoundCSE = VNT.count(MI);
539 // Commute commutable instructions.
540 bool Commuted = false;
541 if (!FoundCSE && MI->isCommutable()) {
542 if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
543 Commuted = true;
544 FoundCSE = VNT.count(NewMI);
545 if (NewMI != MI) {
546 // New instruction. It doesn't need to be kept.
547 NewMI->eraseFromParent();
548 Changed = true;
549 } else if (!FoundCSE)
550 // MI was changed but it didn't help, commute it back!
551 (void)TII->commuteInstruction(*MI);
555 // If the instruction defines physical registers and the values *may* be
556 // used, then it's not safe to replace it with a common subexpression.
557 // It's also not safe if the instruction uses physical registers.
558 bool CrossMBBPhysDef = false;
559 SmallSet<MCRegister, 8> PhysRefs;
560 PhysDefVector PhysDefs;
561 bool PhysUseDef = false;
562 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
563 PhysDefs, PhysUseDef)) {
564 FoundCSE = false;
566 // ... Unless the CS is local or is in the sole predecessor block
567 // and it also defines the physical register which is not clobbered
568 // in between and the physical register uses were not clobbered.
569 // This can never be the case if the instruction both uses and
570 // defines the same physical register, which was detected above.
571 if (!PhysUseDef) {
572 unsigned CSVN = VNT.lookup(MI);
573 MachineInstr *CSMI = Exps[CSVN];
574 if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
575 FoundCSE = true;
579 if (!FoundCSE) {
580 VNT.insert(MI, CurrVN++);
581 Exps.push_back(MI);
582 continue;
585 // Found a common subexpression, eliminate it.
586 unsigned CSVN = VNT.lookup(MI);
587 MachineInstr *CSMI = Exps[CSVN];
588 LLVM_DEBUG(dbgs() << "Examining: " << *MI);
589 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
591 // Prevent CSE-ing non-local convergent instructions.
592 // LLVM's current definition of `isConvergent` does not necessarily prove
593 // that non-local CSE is illegal. The following check extends the definition
594 // of `isConvergent` to assume a convergent instruction is dependent not
595 // only on additional conditions, but also on fewer conditions. LLVM does
596 // not have a MachineInstr attribute which expresses this extended
597 // definition, so it's necessary to use `isConvergent` to prevent illegally
598 // CSE-ing the subset of `isConvergent` instructions which do fall into this
599 // extended definition.
600 if (MI->isConvergent() && MI->getParent() != CSMI->getParent()) {
601 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
602 "different BBs, avoid CSE!\n");
603 VNT.insert(MI, CurrVN++);
604 Exps.push_back(MI);
605 continue;
608 // Check if it's profitable to perform this CSE.
609 bool DoCSE = true;
610 unsigned NumDefs = MI->getNumDefs();
612 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
613 MachineOperand &MO = MI->getOperand(i);
614 if (!MO.isReg() || !MO.isDef())
615 continue;
616 Register OldReg = MO.getReg();
617 Register NewReg = CSMI->getOperand(i).getReg();
619 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
620 // we should make sure it is not dead at CSMI.
621 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
622 ImplicitDefsToUpdate.push_back(i);
624 // Keep track of implicit defs of CSMI and MI, to clear possibly
625 // made-redundant kill flags.
626 if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
627 ImplicitDefs.push_back(OldReg);
629 if (OldReg == NewReg) {
630 --NumDefs;
631 continue;
634 assert(Register::isVirtualRegister(OldReg) &&
635 Register::isVirtualRegister(NewReg) &&
636 "Do not CSE physical register defs!");
638 if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
639 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
640 DoCSE = false;
641 break;
644 // Don't perform CSE if the result of the new instruction cannot exist
645 // within the constraints (register class, bank, or low-level type) of
646 // the old instruction.
647 if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
648 LLVM_DEBUG(
649 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
650 DoCSE = false;
651 break;
654 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
655 --NumDefs;
658 // Actually perform the elimination.
659 if (DoCSE) {
660 for (const std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
661 unsigned OldReg = CSEPair.first;
662 unsigned NewReg = CSEPair.second;
663 // OldReg may have been unused but is used now, clear the Dead flag
664 MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
665 assert(Def != nullptr && "CSEd register has no unique definition?");
666 Def->clearRegisterDeads(NewReg);
667 // Replace with NewReg and clear kill flags which may be wrong now.
668 MRI->replaceRegWith(OldReg, NewReg);
669 MRI->clearKillFlags(NewReg);
672 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
673 // we should make sure it is not dead at CSMI.
674 for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
675 CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
676 for (const auto &PhysDef : PhysDefs)
677 if (!MI->getOperand(PhysDef.first).isDead())
678 CSMI->getOperand(PhysDef.first).setIsDead(false);
680 // Go through implicit defs of CSMI and MI, and clear the kill flags on
681 // their uses in all the instructions between CSMI and MI.
682 // We might have made some of the kill flags redundant, consider:
683 // subs ... implicit-def %nzcv <- CSMI
684 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
685 // subs ... implicit-def %nzcv <- MI, to be eliminated
686 // csinc ... implicit killed %nzcv
687 // Since we eliminated MI, and reused a register imp-def'd by CSMI
688 // (here %nzcv), that register, if it was killed before MI, should have
689 // that kill flag removed, because it's lifetime was extended.
690 if (CSMI->getParent() == MI->getParent()) {
691 for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
692 for (auto ImplicitDef : ImplicitDefs)
693 if (MachineOperand *MO = II->findRegisterUseOperand(
694 ImplicitDef, /*isKill=*/true, TRI))
695 MO->setIsKill(false);
696 } else {
697 // If the instructions aren't in the same BB, bail out and clear the
698 // kill flag on all uses of the imp-def'd register.
699 for (auto ImplicitDef : ImplicitDefs)
700 MRI->clearKillFlags(ImplicitDef);
703 if (CrossMBBPhysDef) {
704 // Add physical register defs now coming in from a predecessor to MBB
705 // livein list.
706 while (!PhysDefs.empty()) {
707 auto LiveIn = PhysDefs.pop_back_val();
708 if (!MBB->isLiveIn(LiveIn.second))
709 MBB->addLiveIn(LiveIn.second);
711 ++NumCrossBBCSEs;
714 MI->eraseFromParent();
715 ++NumCSEs;
716 if (!PhysRefs.empty())
717 ++NumPhysCSEs;
718 if (Commuted)
719 ++NumCommutes;
720 Changed = true;
721 } else {
722 VNT.insert(MI, CurrVN++);
723 Exps.push_back(MI);
725 CSEPairs.clear();
726 ImplicitDefsToUpdate.clear();
727 ImplicitDefs.clear();
730 return Changed;
733 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
734 /// dominator tree node if its a leaf or all of its children are done. Walk
735 /// up the dominator tree to destroy ancestors which are now done.
736 void
737 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
738 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
739 if (OpenChildren[Node])
740 return;
742 // Pop scope.
743 ExitScope(Node->getBlock());
745 // Now traverse upwards to pop ancestors whose offsprings are all done.
746 while (MachineDomTreeNode *Parent = Node->getIDom()) {
747 unsigned Left = --OpenChildren[Parent];
748 if (Left != 0)
749 break;
750 ExitScope(Parent->getBlock());
751 Node = Parent;
755 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
756 SmallVector<MachineDomTreeNode*, 32> Scopes;
757 SmallVector<MachineDomTreeNode*, 8> WorkList;
758 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
760 CurrVN = 0;
762 // Perform a DFS walk to determine the order of visit.
763 WorkList.push_back(Node);
764 do {
765 Node = WorkList.pop_back_val();
766 Scopes.push_back(Node);
767 OpenChildren[Node] = Node->getNumChildren();
768 append_range(WorkList, Node->children());
769 } while (!WorkList.empty());
771 // Now perform CSE.
772 bool Changed = false;
773 for (MachineDomTreeNode *Node : Scopes) {
774 MachineBasicBlock *MBB = Node->getBlock();
775 EnterScope(MBB);
776 Changed |= ProcessBlockCSE(MBB);
777 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
778 ExitScopeIfDone(Node, OpenChildren);
781 return Changed;
784 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
785 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
786 // to exclude instrs created by PRE that won't be CSEed later.
787 bool MachineCSE::isPRECandidate(MachineInstr *MI) {
788 if (!isCSECandidate(MI) ||
789 MI->isNotDuplicable() ||
790 MI->mayLoad() ||
791 MI->isAsCheapAsAMove() ||
792 MI->getNumDefs() != 1 ||
793 MI->getNumExplicitDefs() != 1)
794 return false;
796 for (const auto &def : MI->defs())
797 if (!Register::isVirtualRegister(def.getReg()))
798 return false;
800 for (const auto &use : MI->uses())
801 if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
802 return false;
804 return true;
807 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
808 MachineBasicBlock *MBB) {
809 bool Changed = false;
810 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
811 MachineInstr *MI = &*I;
812 ++I;
814 if (!isPRECandidate(MI))
815 continue;
817 if (!PREMap.count(MI)) {
818 PREMap[MI] = MBB;
819 continue;
822 auto MBB1 = PREMap[MI];
823 assert(
824 !DT->properlyDominates(MBB, MBB1) &&
825 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
826 auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
827 if (!CMBB->isLegalToHoistInto())
828 continue;
830 if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
831 continue;
833 // Two instrs are partial redundant if their basic blocks are reachable
834 // from one to another but one doesn't dominate another.
835 if (CMBB != MBB1) {
836 auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
837 if (BB != nullptr && BB1 != nullptr &&
838 (isPotentiallyReachable(BB1, BB) ||
839 isPotentiallyReachable(BB, BB1))) {
840 // The following check extends the definition of `isConvergent` to
841 // assume a convergent instruction is dependent not only on additional
842 // conditions, but also on fewer conditions. LLVM does not have a
843 // MachineInstr attribute which expresses this extended definition, so
844 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
845 // subset of `isConvergent` instructions which do fall into this
846 // extended definition.
847 if (MI->isConvergent() && CMBB != MBB)
848 continue;
850 assert(MI->getOperand(0).isDef() &&
851 "First operand of instr with one explicit def must be this def");
852 Register VReg = MI->getOperand(0).getReg();
853 Register NewReg = MRI->cloneVirtualRegister(VReg);
854 if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
855 continue;
856 MachineInstr &NewMI =
857 TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
859 // When hoisting, make sure we don't carry the debug location of
860 // the original instruction, as that's not correct and can cause
861 // unexpected jumps when debugging optimized code.
862 auto EmptyDL = DebugLoc();
863 NewMI.setDebugLoc(EmptyDL);
865 NewMI.getOperand(0).setReg(NewReg);
867 PREMap[MI] = CMBB;
868 ++NumPREs;
869 Changed = true;
873 return Changed;
876 // This simple PRE (partial redundancy elimination) pass doesn't actually
877 // eliminate partial redundancy but transforms it to full redundancy,
878 // anticipating that the next CSE step will eliminate this created redundancy.
879 // If CSE doesn't eliminate this, than created instruction will remain dead
880 // and eliminated later by Remove Dead Machine Instructions pass.
881 bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
882 SmallVector<MachineDomTreeNode *, 32> BBs;
884 PREMap.clear();
885 bool Changed = false;
886 BBs.push_back(DT->getRootNode());
887 do {
888 auto Node = BBs.pop_back_val();
889 append_range(BBs, Node->children());
891 MachineBasicBlock *MBB = Node->getBlock();
892 Changed |= ProcessBlockPRE(DT, MBB);
894 } while (!BBs.empty());
896 return Changed;
899 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
900 MachineBasicBlock *MBB,
901 MachineBasicBlock *MBB1) {
902 if (CandidateBB->getParent()->getFunction().hasMinSize())
903 return true;
904 assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
905 assert(DT->dominates(CandidateBB, MBB1) &&
906 "CandidateBB should dominate MBB1");
907 return MBFI->getBlockFreq(CandidateBB) <=
908 MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
911 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
912 if (skipFunction(MF.getFunction()))
913 return false;
915 TII = MF.getSubtarget().getInstrInfo();
916 TRI = MF.getSubtarget().getRegisterInfo();
917 MRI = &MF.getRegInfo();
918 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
919 DT = &getAnalysis<MachineDominatorTree>();
920 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
921 LookAheadLimit = TII->getMachineCSELookAheadLimit();
922 bool ChangedPRE, ChangedCSE;
923 ChangedPRE = PerformSimplePRE(DT);
924 ChangedCSE = PerformCSE(DT->getRootNode());
925 return ChangedPRE || ChangedCSE;