1 //===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs global common subexpression elimination on machine
10 // instructions using a scoped hash table based value numbering scheme. It
11 // must be run while the machine function is still in SSA form.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/ScopedHashTable.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineFunctionPass.h"
28 #include "llvm/CodeGen/MachineInstr.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/TargetInstrInfo.h"
33 #include "llvm/CodeGen/TargetOpcodes.h"
34 #include "llvm/CodeGen/TargetRegisterInfo.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/MC/MCInstrDesc.h"
38 #include "llvm/MC/MCRegister.h"
39 #include "llvm/MC/MCRegisterInfo.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/RecyclingAllocator.h"
44 #include "llvm/Support/raw_ostream.h"
52 #define DEBUG_TYPE "machine-cse"
54 STATISTIC(NumCoalesces
, "Number of copies coalesced");
55 STATISTIC(NumCSEs
, "Number of common subexpression eliminated");
56 STATISTIC(NumPREs
, "Number of partial redundant expression"
57 " transformed to fully redundant");
58 STATISTIC(NumPhysCSEs
,
59 "Number of physreg referencing common subexpr eliminated");
60 STATISTIC(NumCrossBBCSEs
,
61 "Number of cross-MBB physreg referencing CS eliminated");
62 STATISTIC(NumCommutes
, "Number of copies coalesced after commuting");
66 class MachineCSE
: public MachineFunctionPass
{
67 const TargetInstrInfo
*TII
;
68 const TargetRegisterInfo
*TRI
;
70 MachineDominatorTree
*DT
;
71 MachineRegisterInfo
*MRI
;
72 MachineBlockFrequencyInfo
*MBFI
;
75 static char ID
; // Pass identification
77 MachineCSE() : MachineFunctionPass(ID
) {
78 initializeMachineCSEPass(*PassRegistry::getPassRegistry());
81 bool runOnMachineFunction(MachineFunction
&MF
) override
;
83 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
85 MachineFunctionPass::getAnalysisUsage(AU
);
86 AU
.addRequired
<AAResultsWrapperPass
>();
87 AU
.addPreservedID(MachineLoopInfoID
);
88 AU
.addRequired
<MachineDominatorTree
>();
89 AU
.addPreserved
<MachineDominatorTree
>();
90 AU
.addRequired
<MachineBlockFrequencyInfo
>();
91 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
94 void releaseMemory() override
{
101 using AllocatorTy
= RecyclingAllocator
<BumpPtrAllocator
,
102 ScopedHashTableVal
<MachineInstr
*, unsigned>>;
104 ScopedHashTable
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
,
106 using ScopeType
= ScopedHTType::ScopeTy
;
107 using PhysDefVector
= SmallVector
<std::pair
<unsigned, unsigned>, 2>;
109 unsigned LookAheadLimit
= 0;
110 DenseMap
<MachineBasicBlock
*, ScopeType
*> ScopeMap
;
111 DenseMap
<MachineInstr
*, MachineBasicBlock
*, MachineInstrExpressionTrait
>
114 SmallVector
<MachineInstr
*, 64> Exps
;
117 bool PerformTrivialCopyPropagation(MachineInstr
*MI
,
118 MachineBasicBlock
*MBB
);
119 bool isPhysDefTriviallyDead(MCRegister Reg
,
120 MachineBasicBlock::const_iterator I
,
121 MachineBasicBlock::const_iterator E
) const;
122 bool hasLivePhysRegDefUses(const MachineInstr
*MI
,
123 const MachineBasicBlock
*MBB
,
124 SmallSet
<MCRegister
, 8> &PhysRefs
,
125 PhysDefVector
&PhysDefs
, bool &PhysUseDef
) const;
126 bool PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
127 SmallSet
<MCRegister
, 8> &PhysRefs
,
128 PhysDefVector
&PhysDefs
, bool &NonLocal
) const;
129 bool isCSECandidate(MachineInstr
*MI
);
130 bool isProfitableToCSE(Register CSReg
, Register Reg
,
131 MachineBasicBlock
*CSBB
, MachineInstr
*MI
);
132 void EnterScope(MachineBasicBlock
*MBB
);
133 void ExitScope(MachineBasicBlock
*MBB
);
134 bool ProcessBlockCSE(MachineBasicBlock
*MBB
);
135 void ExitScopeIfDone(MachineDomTreeNode
*Node
,
136 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
);
137 bool PerformCSE(MachineDomTreeNode
*Node
);
139 bool isPRECandidate(MachineInstr
*MI
);
140 bool ProcessBlockPRE(MachineDominatorTree
*MDT
, MachineBasicBlock
*MBB
);
141 bool PerformSimplePRE(MachineDominatorTree
*DT
);
142 /// Heuristics to see if it's profitable to move common computations of MBB
143 /// and MBB1 to CandidateBB.
144 bool isProfitableToHoistInto(MachineBasicBlock
*CandidateBB
,
145 MachineBasicBlock
*MBB
,
146 MachineBasicBlock
*MBB1
);
149 } // end anonymous namespace
151 char MachineCSE::ID
= 0;
153 char &llvm::MachineCSEID
= MachineCSE::ID
;
155 INITIALIZE_PASS_BEGIN(MachineCSE
, DEBUG_TYPE
,
156 "Machine Common Subexpression Elimination", false, false)
157 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
158 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
159 INITIALIZE_PASS_END(MachineCSE
, DEBUG_TYPE
,
160 "Machine Common Subexpression Elimination", false, false)
162 /// The source register of a COPY machine instruction can be propagated to all
163 /// its users, and this propagation could increase the probability of finding
164 /// common subexpressions. If the COPY has only one user, the COPY itself can
166 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr
*MI
,
167 MachineBasicBlock
*MBB
) {
168 bool Changed
= false;
169 for (MachineOperand
&MO
: MI
->operands()) {
170 if (!MO
.isReg() || !MO
.isUse())
172 Register Reg
= MO
.getReg();
173 if (!Register::isVirtualRegister(Reg
))
175 bool OnlyOneUse
= MRI
->hasOneNonDBGUse(Reg
);
176 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
177 if (!DefMI
->isCopy())
179 Register SrcReg
= DefMI
->getOperand(1).getReg();
180 if (!Register::isVirtualRegister(SrcReg
))
182 if (DefMI
->getOperand(0).getSubReg())
184 // FIXME: We should trivially coalesce subregister copies to expose CSE
185 // opportunities on instructions with truncated operands (see
186 // cse-add-with-overflow.ll). This can be done here as follows:
188 // RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
190 // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
192 // The 2-addr pass has been updated to handle coalesced subregs. However,
193 // some machine-specific code still can't handle it.
194 // To handle it properly we also need a way find a constrained subregister
195 // class given a super-reg class and subreg index.
196 if (DefMI
->getOperand(1).getSubReg())
198 if (!MRI
->constrainRegAttrs(SrcReg
, Reg
))
200 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
201 LLVM_DEBUG(dbgs() << "*** to: " << *MI
);
203 // Propagate SrcReg of copies to MI.
205 MRI
->clearKillFlags(SrcReg
);
206 // Coalesce single use copies.
208 // If (and only if) we've eliminated all uses of the copy, also
209 // copy-propagate to any debug-users of MI, or they'll be left using
210 // an undefined value.
211 DefMI
->changeDebugValuesDefReg(SrcReg
);
213 DefMI
->eraseFromParent();
222 bool MachineCSE::isPhysDefTriviallyDead(
223 MCRegister Reg
, MachineBasicBlock::const_iterator I
,
224 MachineBasicBlock::const_iterator E
) const {
225 unsigned LookAheadLeft
= LookAheadLimit
;
226 while (LookAheadLeft
) {
227 // Skip over dbg_value's.
228 I
= skipDebugInstructionsForward(I
, E
);
231 // Reached end of block, we don't know if register is dead or not.
234 bool SeenDef
= false;
235 for (const MachineOperand
&MO
: I
->operands()) {
236 if (MO
.isRegMask() && MO
.clobbersPhysReg(Reg
))
238 if (!MO
.isReg() || !MO
.getReg())
240 if (!TRI
->regsOverlap(MO
.getReg(), Reg
))
248 // See a def of Reg (or an alias) before encountering any use, it's
258 static bool isCallerPreservedOrConstPhysReg(MCRegister Reg
,
259 const MachineFunction
&MF
,
260 const TargetRegisterInfo
&TRI
) {
261 // MachineRegisterInfo::isConstantPhysReg directly called by
262 // MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
263 // reserved registers to be frozen. That doesn't cause a problem post-ISel as
264 // most (if not all) targets freeze reserved registers right after ISel.
266 // It does cause issues mid-GlobalISel, however, hence the additional
267 // reservedRegsFrozen check.
268 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
269 return TRI
.isCallerPreservedPhysReg(Reg
, MF
) ||
270 (MRI
.reservedRegsFrozen() && MRI
.isConstantPhysReg(Reg
));
273 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
274 /// physical registers (except for dead defs of physical registers). It also
275 /// returns the physical register def by reference if it's the only one and the
276 /// instruction does not uses a physical register.
277 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr
*MI
,
278 const MachineBasicBlock
*MBB
,
279 SmallSet
<MCRegister
, 8> &PhysRefs
,
280 PhysDefVector
&PhysDefs
,
281 bool &PhysUseDef
) const {
282 // First, add all uses to PhysRefs.
283 for (const MachineOperand
&MO
: MI
->operands()) {
284 if (!MO
.isReg() || MO
.isDef())
286 Register Reg
= MO
.getReg();
289 if (Register::isVirtualRegister(Reg
))
291 // Reading either caller preserved or constant physregs is ok.
292 if (!isCallerPreservedOrConstPhysReg(Reg
.asMCReg(), *MI
->getMF(), *TRI
))
293 for (MCRegAliasIterator
AI(Reg
, TRI
, true); AI
.isValid(); ++AI
)
294 PhysRefs
.insert(*AI
);
297 // Next, collect all defs into PhysDefs. If any is already in PhysRefs
298 // (which currently contains only uses), set the PhysUseDef flag.
300 MachineBasicBlock::const_iterator I
= MI
; I
= std::next(I
);
301 for (const auto &MOP
: llvm::enumerate(MI
->operands())) {
302 const MachineOperand
&MO
= MOP
.value();
303 if (!MO
.isReg() || !MO
.isDef())
305 Register Reg
= MO
.getReg();
308 if (Register::isVirtualRegister(Reg
))
310 // Check against PhysRefs even if the def is "dead".
311 if (PhysRefs
.count(Reg
.asMCReg()))
313 // If the def is dead, it's ok. But the def may not marked "dead". That's
314 // common since this pass is run before livevariables. We can scan
315 // forward a few instructions and check if it is obviously dead.
316 if (!MO
.isDead() && !isPhysDefTriviallyDead(Reg
.asMCReg(), I
, MBB
->end()))
317 PhysDefs
.push_back(std::make_pair(MOP
.index(), Reg
));
320 // Finally, add all defs to PhysRefs as well.
321 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
)
322 for (MCRegAliasIterator
AI(PhysDefs
[i
].second
, TRI
, true); AI
.isValid();
324 PhysRefs
.insert(*AI
);
326 return !PhysRefs
.empty();
329 bool MachineCSE::PhysRegDefsReach(MachineInstr
*CSMI
, MachineInstr
*MI
,
330 SmallSet
<MCRegister
, 8> &PhysRefs
,
331 PhysDefVector
&PhysDefs
,
332 bool &NonLocal
) const {
333 // For now conservatively returns false if the common subexpression is
334 // not in the same basic block as the given instruction. The only exception
335 // is if the common subexpression is in the sole predecessor block.
336 const MachineBasicBlock
*MBB
= MI
->getParent();
337 const MachineBasicBlock
*CSMBB
= CSMI
->getParent();
339 bool CrossMBB
= false;
341 if (MBB
->pred_size() != 1 || *MBB
->pred_begin() != CSMBB
)
344 for (unsigned i
= 0, e
= PhysDefs
.size(); i
!= e
; ++i
) {
345 if (MRI
->isAllocatable(PhysDefs
[i
].second
) ||
346 MRI
->isReserved(PhysDefs
[i
].second
))
347 // Avoid extending live range of physical registers if they are
348 //allocatable or reserved.
353 MachineBasicBlock::const_iterator I
= CSMI
; I
= std::next(I
);
354 MachineBasicBlock::const_iterator E
= MI
;
355 MachineBasicBlock::const_iterator EE
= CSMBB
->end();
356 unsigned LookAheadLeft
= LookAheadLimit
;
357 while (LookAheadLeft
) {
358 // Skip over dbg_value's.
359 while (I
!= E
&& I
!= EE
&& I
->isDebugInstr())
363 assert(CrossMBB
&& "Reaching end-of-MBB without finding MI?");
375 for (const MachineOperand
&MO
: I
->operands()) {
376 // RegMasks go on instructions like calls that clobber lots of physregs.
377 // Don't attempt to CSE across such an instruction.
380 if (!MO
.isReg() || !MO
.isDef())
382 Register MOReg
= MO
.getReg();
383 if (Register::isVirtualRegister(MOReg
))
385 if (PhysRefs
.count(MOReg
.asMCReg()))
396 bool MachineCSE::isCSECandidate(MachineInstr
*MI
) {
397 if (MI
->isPosition() || MI
->isPHI() || MI
->isImplicitDef() || MI
->isKill() ||
398 MI
->isInlineAsm() || MI
->isDebugInstr())
402 if (MI
->isCopyLike())
405 // Ignore stuff that we obviously can't move.
406 if (MI
->mayStore() || MI
->isCall() || MI
->isTerminator() ||
407 MI
->mayRaiseFPException() || MI
->hasUnmodeledSideEffects())
411 // Okay, this instruction does a load. As a refinement, we allow the target
412 // to decide whether the loaded value is actually a constant. If so, we can
413 // actually use it as a load.
414 if (!MI
->isDereferenceableInvariantLoad(AA
))
415 // FIXME: we should be able to hoist loads with no other side effects if
416 // there are no other instructions which can change memory in this loop.
417 // This is a trivial form of alias analysis.
421 // Ignore stack guard loads, otherwise the register that holds CSEed value may
422 // be spilled and get loaded back with corrupted data.
423 if (MI
->getOpcode() == TargetOpcode::LOAD_STACK_GUARD
)
429 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
430 /// common expression that defines Reg. CSBB is basic block where CSReg is
432 bool MachineCSE::isProfitableToCSE(Register CSReg
, Register Reg
,
433 MachineBasicBlock
*CSBB
, MachineInstr
*MI
) {
434 // FIXME: Heuristics that works around the lack the live range splitting.
436 // If CSReg is used at all uses of Reg, CSE should not increase register
437 // pressure of CSReg.
438 bool MayIncreasePressure
= true;
439 if (Register::isVirtualRegister(CSReg
) && Register::isVirtualRegister(Reg
)) {
440 MayIncreasePressure
= false;
441 SmallPtrSet
<MachineInstr
*, 8> CSUses
;
442 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(CSReg
)) {
445 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
446 if (!CSUses
.count(&MI
)) {
447 MayIncreasePressure
= true;
452 if (!MayIncreasePressure
) return true;
454 // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
455 // an immediate predecessor. We don't want to increase register pressure and
456 // end up causing other computation to be spilled.
457 if (TII
->isAsCheapAsAMove(*MI
)) {
458 MachineBasicBlock
*BB
= MI
->getParent();
459 if (CSBB
!= BB
&& !CSBB
->isSuccessor(BB
))
463 // Heuristics #2: If the expression doesn't not use a vr and the only use
464 // of the redundant computation are copies, do not cse.
465 bool HasVRegUse
= false;
466 for (const MachineOperand
&MO
: MI
->operands()) {
467 if (MO
.isReg() && MO
.isUse() && Register::isVirtualRegister(MO
.getReg())) {
473 bool HasNonCopyUse
= false;
474 for (MachineInstr
&MI
: MRI
->use_nodbg_instructions(Reg
)) {
476 if (!MI
.isCopyLike()) {
477 HasNonCopyUse
= true;
485 // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
486 // it unless the defined value is already used in the BB of the new use.
488 for (MachineInstr
&UseMI
: MRI
->use_nodbg_instructions(CSReg
)) {
489 HasPHI
|= UseMI
.isPHI();
490 if (UseMI
.getParent() == MI
->getParent())
497 void MachineCSE::EnterScope(MachineBasicBlock
*MBB
) {
498 LLVM_DEBUG(dbgs() << "Entering: " << MBB
->getName() << '\n');
499 ScopeType
*Scope
= new ScopeType(VNT
);
500 ScopeMap
[MBB
] = Scope
;
503 void MachineCSE::ExitScope(MachineBasicBlock
*MBB
) {
504 LLVM_DEBUG(dbgs() << "Exiting: " << MBB
->getName() << '\n');
505 DenseMap
<MachineBasicBlock
*, ScopeType
*>::iterator SI
= ScopeMap
.find(MBB
);
506 assert(SI
!= ScopeMap
.end());
511 bool MachineCSE::ProcessBlockCSE(MachineBasicBlock
*MBB
) {
512 bool Changed
= false;
514 SmallVector
<std::pair
<unsigned, unsigned>, 8> CSEPairs
;
515 SmallVector
<unsigned, 2> ImplicitDefsToUpdate
;
516 SmallVector
<unsigned, 2> ImplicitDefs
;
517 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
; ) {
518 MachineInstr
*MI
= &*I
;
521 if (!isCSECandidate(MI
))
524 bool FoundCSE
= VNT
.count(MI
);
526 // Using trivial copy propagation to find more CSE opportunities.
527 if (PerformTrivialCopyPropagation(MI
, MBB
)) {
530 // After coalescing MI itself may become a copy.
531 if (MI
->isCopyLike())
534 // Try again to see if CSE is possible.
535 FoundCSE
= VNT
.count(MI
);
539 // Commute commutable instructions.
540 bool Commuted
= false;
541 if (!FoundCSE
&& MI
->isCommutable()) {
542 if (MachineInstr
*NewMI
= TII
->commuteInstruction(*MI
)) {
544 FoundCSE
= VNT
.count(NewMI
);
546 // New instruction. It doesn't need to be kept.
547 NewMI
->eraseFromParent();
549 } else if (!FoundCSE
)
550 // MI was changed but it didn't help, commute it back!
551 (void)TII
->commuteInstruction(*MI
);
555 // If the instruction defines physical registers and the values *may* be
556 // used, then it's not safe to replace it with a common subexpression.
557 // It's also not safe if the instruction uses physical registers.
558 bool CrossMBBPhysDef
= false;
559 SmallSet
<MCRegister
, 8> PhysRefs
;
560 PhysDefVector PhysDefs
;
561 bool PhysUseDef
= false;
562 if (FoundCSE
&& hasLivePhysRegDefUses(MI
, MBB
, PhysRefs
,
563 PhysDefs
, PhysUseDef
)) {
566 // ... Unless the CS is local or is in the sole predecessor block
567 // and it also defines the physical register which is not clobbered
568 // in between and the physical register uses were not clobbered.
569 // This can never be the case if the instruction both uses and
570 // defines the same physical register, which was detected above.
572 unsigned CSVN
= VNT
.lookup(MI
);
573 MachineInstr
*CSMI
= Exps
[CSVN
];
574 if (PhysRegDefsReach(CSMI
, MI
, PhysRefs
, PhysDefs
, CrossMBBPhysDef
))
580 VNT
.insert(MI
, CurrVN
++);
585 // Found a common subexpression, eliminate it.
586 unsigned CSVN
= VNT
.lookup(MI
);
587 MachineInstr
*CSMI
= Exps
[CSVN
];
588 LLVM_DEBUG(dbgs() << "Examining: " << *MI
);
589 LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI
);
591 // Prevent CSE-ing non-local convergent instructions.
592 // LLVM's current definition of `isConvergent` does not necessarily prove
593 // that non-local CSE is illegal. The following check extends the definition
594 // of `isConvergent` to assume a convergent instruction is dependent not
595 // only on additional conditions, but also on fewer conditions. LLVM does
596 // not have a MachineInstr attribute which expresses this extended
597 // definition, so it's necessary to use `isConvergent` to prevent illegally
598 // CSE-ing the subset of `isConvergent` instructions which do fall into this
599 // extended definition.
600 if (MI
->isConvergent() && MI
->getParent() != CSMI
->getParent()) {
601 LLVM_DEBUG(dbgs() << "*** Convergent MI and subexpression exist in "
602 "different BBs, avoid CSE!\n");
603 VNT
.insert(MI
, CurrVN
++);
608 // Check if it's profitable to perform this CSE.
610 unsigned NumDefs
= MI
->getNumDefs();
612 for (unsigned i
= 0, e
= MI
->getNumOperands(); NumDefs
&& i
!= e
; ++i
) {
613 MachineOperand
&MO
= MI
->getOperand(i
);
614 if (!MO
.isReg() || !MO
.isDef())
616 Register OldReg
= MO
.getReg();
617 Register NewReg
= CSMI
->getOperand(i
).getReg();
619 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
620 // we should make sure it is not dead at CSMI.
621 if (MO
.isImplicit() && !MO
.isDead() && CSMI
->getOperand(i
).isDead())
622 ImplicitDefsToUpdate
.push_back(i
);
624 // Keep track of implicit defs of CSMI and MI, to clear possibly
625 // made-redundant kill flags.
626 if (MO
.isImplicit() && !MO
.isDead() && OldReg
== NewReg
)
627 ImplicitDefs
.push_back(OldReg
);
629 if (OldReg
== NewReg
) {
634 assert(Register::isVirtualRegister(OldReg
) &&
635 Register::isVirtualRegister(NewReg
) &&
636 "Do not CSE physical register defs!");
638 if (!isProfitableToCSE(NewReg
, OldReg
, CSMI
->getParent(), MI
)) {
639 LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
644 // Don't perform CSE if the result of the new instruction cannot exist
645 // within the constraints (register class, bank, or low-level type) of
646 // the old instruction.
647 if (!MRI
->constrainRegAttrs(NewReg
, OldReg
)) {
649 dbgs() << "*** Not the same register constraints, avoid CSE!\n");
654 CSEPairs
.push_back(std::make_pair(OldReg
, NewReg
));
658 // Actually perform the elimination.
660 for (const std::pair
<unsigned, unsigned> &CSEPair
: CSEPairs
) {
661 unsigned OldReg
= CSEPair
.first
;
662 unsigned NewReg
= CSEPair
.second
;
663 // OldReg may have been unused but is used now, clear the Dead flag
664 MachineInstr
*Def
= MRI
->getUniqueVRegDef(NewReg
);
665 assert(Def
!= nullptr && "CSEd register has no unique definition?");
666 Def
->clearRegisterDeads(NewReg
);
667 // Replace with NewReg and clear kill flags which may be wrong now.
668 MRI
->replaceRegWith(OldReg
, NewReg
);
669 MRI
->clearKillFlags(NewReg
);
672 // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
673 // we should make sure it is not dead at CSMI.
674 for (unsigned ImplicitDefToUpdate
: ImplicitDefsToUpdate
)
675 CSMI
->getOperand(ImplicitDefToUpdate
).setIsDead(false);
676 for (const auto &PhysDef
: PhysDefs
)
677 if (!MI
->getOperand(PhysDef
.first
).isDead())
678 CSMI
->getOperand(PhysDef
.first
).setIsDead(false);
680 // Go through implicit defs of CSMI and MI, and clear the kill flags on
681 // their uses in all the instructions between CSMI and MI.
682 // We might have made some of the kill flags redundant, consider:
683 // subs ... implicit-def %nzcv <- CSMI
684 // csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
685 // subs ... implicit-def %nzcv <- MI, to be eliminated
686 // csinc ... implicit killed %nzcv
687 // Since we eliminated MI, and reused a register imp-def'd by CSMI
688 // (here %nzcv), that register, if it was killed before MI, should have
689 // that kill flag removed, because it's lifetime was extended.
690 if (CSMI
->getParent() == MI
->getParent()) {
691 for (MachineBasicBlock::iterator II
= CSMI
, IE
= MI
; II
!= IE
; ++II
)
692 for (auto ImplicitDef
: ImplicitDefs
)
693 if (MachineOperand
*MO
= II
->findRegisterUseOperand(
694 ImplicitDef
, /*isKill=*/true, TRI
))
695 MO
->setIsKill(false);
697 // If the instructions aren't in the same BB, bail out and clear the
698 // kill flag on all uses of the imp-def'd register.
699 for (auto ImplicitDef
: ImplicitDefs
)
700 MRI
->clearKillFlags(ImplicitDef
);
703 if (CrossMBBPhysDef
) {
704 // Add physical register defs now coming in from a predecessor to MBB
706 while (!PhysDefs
.empty()) {
707 auto LiveIn
= PhysDefs
.pop_back_val();
708 if (!MBB
->isLiveIn(LiveIn
.second
))
709 MBB
->addLiveIn(LiveIn
.second
);
714 MI
->eraseFromParent();
716 if (!PhysRefs
.empty())
722 VNT
.insert(MI
, CurrVN
++);
726 ImplicitDefsToUpdate
.clear();
727 ImplicitDefs
.clear();
733 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
734 /// dominator tree node if its a leaf or all of its children are done. Walk
735 /// up the dominator tree to destroy ancestors which are now done.
737 MachineCSE::ExitScopeIfDone(MachineDomTreeNode
*Node
,
738 DenseMap
<MachineDomTreeNode
*, unsigned> &OpenChildren
) {
739 if (OpenChildren
[Node
])
743 ExitScope(Node
->getBlock());
745 // Now traverse upwards to pop ancestors whose offsprings are all done.
746 while (MachineDomTreeNode
*Parent
= Node
->getIDom()) {
747 unsigned Left
= --OpenChildren
[Parent
];
750 ExitScope(Parent
->getBlock());
755 bool MachineCSE::PerformCSE(MachineDomTreeNode
*Node
) {
756 SmallVector
<MachineDomTreeNode
*, 32> Scopes
;
757 SmallVector
<MachineDomTreeNode
*, 8> WorkList
;
758 DenseMap
<MachineDomTreeNode
*, unsigned> OpenChildren
;
762 // Perform a DFS walk to determine the order of visit.
763 WorkList
.push_back(Node
);
765 Node
= WorkList
.pop_back_val();
766 Scopes
.push_back(Node
);
767 OpenChildren
[Node
] = Node
->getNumChildren();
768 append_range(WorkList
, Node
->children());
769 } while (!WorkList
.empty());
772 bool Changed
= false;
773 for (MachineDomTreeNode
*Node
: Scopes
) {
774 MachineBasicBlock
*MBB
= Node
->getBlock();
776 Changed
|= ProcessBlockCSE(MBB
);
777 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
778 ExitScopeIfDone(Node
, OpenChildren
);
784 // We use stronger checks for PRE candidate rather than for CSE ones to embrace
785 // checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
786 // to exclude instrs created by PRE that won't be CSEed later.
787 bool MachineCSE::isPRECandidate(MachineInstr
*MI
) {
788 if (!isCSECandidate(MI
) ||
789 MI
->isNotDuplicable() ||
791 MI
->isAsCheapAsAMove() ||
792 MI
->getNumDefs() != 1 ||
793 MI
->getNumExplicitDefs() != 1)
796 for (const auto &def
: MI
->defs())
797 if (!Register::isVirtualRegister(def
.getReg()))
800 for (const auto &use
: MI
->uses())
801 if (use
.isReg() && !Register::isVirtualRegister(use
.getReg()))
807 bool MachineCSE::ProcessBlockPRE(MachineDominatorTree
*DT
,
808 MachineBasicBlock
*MBB
) {
809 bool Changed
= false;
810 for (MachineBasicBlock::iterator I
= MBB
->begin(), E
= MBB
->end(); I
!= E
;) {
811 MachineInstr
*MI
= &*I
;
814 if (!isPRECandidate(MI
))
817 if (!PREMap
.count(MI
)) {
822 auto MBB1
= PREMap
[MI
];
824 !DT
->properlyDominates(MBB
, MBB1
) &&
825 "MBB cannot properly dominate MBB1 while DFS through dominators tree!");
826 auto CMBB
= DT
->findNearestCommonDominator(MBB
, MBB1
);
827 if (!CMBB
->isLegalToHoistInto())
830 if (!isProfitableToHoistInto(CMBB
, MBB
, MBB1
))
833 // Two instrs are partial redundant if their basic blocks are reachable
834 // from one to another but one doesn't dominate another.
836 auto BB
= MBB
->getBasicBlock(), BB1
= MBB1
->getBasicBlock();
837 if (BB
!= nullptr && BB1
!= nullptr &&
838 (isPotentiallyReachable(BB1
, BB
) ||
839 isPotentiallyReachable(BB
, BB1
))) {
840 // The following check extends the definition of `isConvergent` to
841 // assume a convergent instruction is dependent not only on additional
842 // conditions, but also on fewer conditions. LLVM does not have a
843 // MachineInstr attribute which expresses this extended definition, so
844 // it's necessary to use `isConvergent` to prevent illegally PRE-ing the
845 // subset of `isConvergent` instructions which do fall into this
846 // extended definition.
847 if (MI
->isConvergent() && CMBB
!= MBB
)
850 assert(MI
->getOperand(0).isDef() &&
851 "First operand of instr with one explicit def must be this def");
852 Register VReg
= MI
->getOperand(0).getReg();
853 Register NewReg
= MRI
->cloneVirtualRegister(VReg
);
854 if (!isProfitableToCSE(NewReg
, VReg
, CMBB
, MI
))
856 MachineInstr
&NewMI
=
857 TII
->duplicate(*CMBB
, CMBB
->getFirstTerminator(), *MI
);
859 // When hoisting, make sure we don't carry the debug location of
860 // the original instruction, as that's not correct and can cause
861 // unexpected jumps when debugging optimized code.
862 auto EmptyDL
= DebugLoc();
863 NewMI
.setDebugLoc(EmptyDL
);
865 NewMI
.getOperand(0).setReg(NewReg
);
876 // This simple PRE (partial redundancy elimination) pass doesn't actually
877 // eliminate partial redundancy but transforms it to full redundancy,
878 // anticipating that the next CSE step will eliminate this created redundancy.
879 // If CSE doesn't eliminate this, than created instruction will remain dead
880 // and eliminated later by Remove Dead Machine Instructions pass.
881 bool MachineCSE::PerformSimplePRE(MachineDominatorTree
*DT
) {
882 SmallVector
<MachineDomTreeNode
*, 32> BBs
;
885 bool Changed
= false;
886 BBs
.push_back(DT
->getRootNode());
888 auto Node
= BBs
.pop_back_val();
889 append_range(BBs
, Node
->children());
891 MachineBasicBlock
*MBB
= Node
->getBlock();
892 Changed
|= ProcessBlockPRE(DT
, MBB
);
894 } while (!BBs
.empty());
899 bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock
*CandidateBB
,
900 MachineBasicBlock
*MBB
,
901 MachineBasicBlock
*MBB1
) {
902 if (CandidateBB
->getParent()->getFunction().hasMinSize())
904 assert(DT
->dominates(CandidateBB
, MBB
) && "CandidateBB should dominate MBB");
905 assert(DT
->dominates(CandidateBB
, MBB1
) &&
906 "CandidateBB should dominate MBB1");
907 return MBFI
->getBlockFreq(CandidateBB
) <=
908 MBFI
->getBlockFreq(MBB
) + MBFI
->getBlockFreq(MBB1
);
911 bool MachineCSE::runOnMachineFunction(MachineFunction
&MF
) {
912 if (skipFunction(MF
.getFunction()))
915 TII
= MF
.getSubtarget().getInstrInfo();
916 TRI
= MF
.getSubtarget().getRegisterInfo();
917 MRI
= &MF
.getRegInfo();
918 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
919 DT
= &getAnalysis
<MachineDominatorTree
>();
920 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
921 LookAheadLimit
= TII
->getMachineCSELookAheadLimit();
922 bool ChangedPRE
, ChangedCSE
;
923 ChangedPRE
= PerformSimplePRE(DT
);
924 ChangedCSE
= PerformCSE(DT
->getRootNode());
925 return ChangedPRE
|| ChangedCSE
;