[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineFunction.cpp
blob88dc5a6544a7dfd0011bcb013f4ff93b920abd79
1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include <algorithm>
70 #include <cassert>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <string>
75 #include <type_traits>
76 #include <utility>
77 #include <vector>
79 using namespace llvm;
81 #define DEBUG_TYPE "codegen"
83 static cl::opt<unsigned> AlignAllFunctions(
84 "align-all-functions",
85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86 "means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden);
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
90 using P = MachineFunctionProperties::Property;
92 switch(Prop) {
93 case P::FailedISel: return "FailedISel";
94 case P::IsSSA: return "IsSSA";
95 case P::Legalized: return "Legalized";
96 case P::NoPHIs: return "NoPHIs";
97 case P::NoVRegs: return "NoVRegs";
98 case P::RegBankSelected: return "RegBankSelected";
99 case P::Selected: return "Selected";
100 case P::TracksLiveness: return "TracksLiveness";
101 case P::TiedOpsRewritten: return "TiedOpsRewritten";
103 llvm_unreachable("Invalid machine function property");
106 // Pin the vtable to this file.
107 void MachineFunction::Delegate::anchor() {}
109 void MachineFunctionProperties::print(raw_ostream &OS) const {
110 const char *Separator = "";
111 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
112 if (!Properties[I])
113 continue;
114 OS << Separator << getPropertyName(static_cast<Property>(I));
115 Separator = ", ";
119 //===----------------------------------------------------------------------===//
120 // MachineFunction implementation
121 //===----------------------------------------------------------------------===//
123 // Out-of-line virtual method.
124 MachineFunctionInfo::~MachineFunctionInfo() = default;
126 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
127 MBB->getParent()->DeleteMachineBasicBlock(MBB);
130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
131 const Function &F) {
132 if (auto MA = F.getFnStackAlign())
133 return MA->value();
134 return STI->getFrameLowering()->getStackAlign().value();
137 MachineFunction::MachineFunction(Function &F, const LLVMTargetMachine &Target,
138 const TargetSubtargetInfo &STI,
139 unsigned FunctionNum, MachineModuleInfo &mmi)
140 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
141 FunctionNumber = FunctionNum;
142 init();
145 void MachineFunction::handleInsertion(MachineInstr &MI) {
146 if (TheDelegate)
147 TheDelegate->MF_HandleInsertion(MI);
150 void MachineFunction::handleRemoval(MachineInstr &MI) {
151 if (TheDelegate)
152 TheDelegate->MF_HandleRemoval(MI);
155 void MachineFunction::init() {
156 // Assume the function starts in SSA form with correct liveness.
157 Properties.set(MachineFunctionProperties::Property::IsSSA);
158 Properties.set(MachineFunctionProperties::Property::TracksLiveness);
159 if (STI->getRegisterInfo())
160 RegInfo = new (Allocator) MachineRegisterInfo(this);
161 else
162 RegInfo = nullptr;
164 MFInfo = nullptr;
165 // We can realign the stack if the target supports it and the user hasn't
166 // explicitly asked us not to.
167 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
168 !F.hasFnAttribute("no-realign-stack");
169 FrameInfo = new (Allocator) MachineFrameInfo(
170 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
171 /*ForcedRealign=*/CanRealignSP &&
172 F.hasFnAttribute(Attribute::StackAlignment));
174 if (F.hasFnAttribute(Attribute::StackAlignment))
175 FrameInfo->ensureMaxAlignment(*F.getFnStackAlign());
177 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
178 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
180 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181 // FIXME: Use Function::hasOptSize().
182 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
183 Alignment = std::max(Alignment,
184 STI->getTargetLowering()->getPrefFunctionAlignment());
186 if (AlignAllFunctions)
187 Alignment = Align(1ULL << AlignAllFunctions);
189 JumpTableInfo = nullptr;
191 if (isFuncletEHPersonality(classifyEHPersonality(
192 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
193 WinEHInfo = new (Allocator) WinEHFuncInfo();
196 if (isScopedEHPersonality(classifyEHPersonality(
197 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
198 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
201 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
202 "Can't create a MachineFunction using a Module with a "
203 "Target-incompatible DataLayout attached\n");
205 PSVManager =
206 std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
207 getInstrInfo()));
210 MachineFunction::~MachineFunction() {
211 clear();
214 void MachineFunction::clear() {
215 Properties.reset();
216 // Don't call destructors on MachineInstr and MachineOperand. All of their
217 // memory comes from the BumpPtrAllocator which is about to be purged.
219 // Do call MachineBasicBlock destructors, it contains std::vectors.
220 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
221 I->Insts.clearAndLeakNodesUnsafely();
222 MBBNumbering.clear();
224 InstructionRecycler.clear(Allocator);
225 OperandRecycler.clear(Allocator);
226 BasicBlockRecycler.clear(Allocator);
227 CodeViewAnnotations.clear();
228 VariableDbgInfos.clear();
229 if (RegInfo) {
230 RegInfo->~MachineRegisterInfo();
231 Allocator.Deallocate(RegInfo);
233 if (MFInfo) {
234 MFInfo->~MachineFunctionInfo();
235 Allocator.Deallocate(MFInfo);
238 FrameInfo->~MachineFrameInfo();
239 Allocator.Deallocate(FrameInfo);
241 ConstantPool->~MachineConstantPool();
242 Allocator.Deallocate(ConstantPool);
244 if (JumpTableInfo) {
245 JumpTableInfo->~MachineJumpTableInfo();
246 Allocator.Deallocate(JumpTableInfo);
249 if (WinEHInfo) {
250 WinEHInfo->~WinEHFuncInfo();
251 Allocator.Deallocate(WinEHInfo);
254 if (WasmEHInfo) {
255 WasmEHInfo->~WasmEHFuncInfo();
256 Allocator.Deallocate(WasmEHInfo);
260 const DataLayout &MachineFunction::getDataLayout() const {
261 return F.getParent()->getDataLayout();
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo *MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind) {
268 if (JumpTableInfo) return JumpTableInfo;
270 JumpTableInfo = new (Allocator)
271 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
272 return JumpTableInfo;
275 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
276 return F.getDenormalMode(FPType);
279 /// Should we be emitting segmented stack stuff for the function
280 bool MachineFunction::shouldSplitStack() const {
281 return getFunction().hasFnAttribute("split-stack");
284 LLVM_NODISCARD unsigned
285 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
286 FrameInstructions.push_back(Inst);
287 return FrameInstructions.size() - 1;
290 /// This discards all of the MachineBasicBlock numbers and recomputes them.
291 /// This guarantees that the MBB numbers are sequential, dense, and match the
292 /// ordering of the blocks within the function. If a specific MachineBasicBlock
293 /// is specified, only that block and those after it are renumbered.
294 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
295 if (empty()) { MBBNumbering.clear(); return; }
296 MachineFunction::iterator MBBI, E = end();
297 if (MBB == nullptr)
298 MBBI = begin();
299 else
300 MBBI = MBB->getIterator();
302 // Figure out the block number this should have.
303 unsigned BlockNo = 0;
304 if (MBBI != begin())
305 BlockNo = std::prev(MBBI)->getNumber() + 1;
307 for (; MBBI != E; ++MBBI, ++BlockNo) {
308 if (MBBI->getNumber() != (int)BlockNo) {
309 // Remove use of the old number.
310 if (MBBI->getNumber() != -1) {
311 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
312 "MBB number mismatch!");
313 MBBNumbering[MBBI->getNumber()] = nullptr;
316 // If BlockNo is already taken, set that block's number to -1.
317 if (MBBNumbering[BlockNo])
318 MBBNumbering[BlockNo]->setNumber(-1);
320 MBBNumbering[BlockNo] = &*MBBI;
321 MBBI->setNumber(BlockNo);
325 // Okay, all the blocks are renumbered. If we have compactified the block
326 // numbering, shrink MBBNumbering now.
327 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
328 MBBNumbering.resize(BlockNo);
331 /// This method iterates over the basic blocks and assigns their IsBeginSection
332 /// and IsEndSection fields. This must be called after MBB layout is finalized
333 /// and the SectionID's are assigned to MBBs.
334 void MachineFunction::assignBeginEndSections() {
335 front().setIsBeginSection();
336 auto CurrentSectionID = front().getSectionID();
337 for (auto MBBI = std::next(begin()), E = end(); MBBI != E; ++MBBI) {
338 if (MBBI->getSectionID() == CurrentSectionID)
339 continue;
340 MBBI->setIsBeginSection();
341 std::prev(MBBI)->setIsEndSection();
342 CurrentSectionID = MBBI->getSectionID();
344 back().setIsEndSection();
347 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
348 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
349 const DebugLoc &DL,
350 bool NoImplicit) {
351 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
352 MachineInstr(*this, MCID, DL, NoImplicit);
355 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
356 /// identical in all ways except the instruction has no parent, prev, or next.
357 MachineInstr *
358 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
359 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
360 MachineInstr(*this, *Orig);
363 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
364 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
365 MachineInstr *FirstClone = nullptr;
366 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
367 while (true) {
368 MachineInstr *Cloned = CloneMachineInstr(&*I);
369 MBB.insert(InsertBefore, Cloned);
370 if (FirstClone == nullptr) {
371 FirstClone = Cloned;
372 } else {
373 Cloned->bundleWithPred();
376 if (!I->isBundledWithSucc())
377 break;
378 ++I;
380 // Copy over call site info to the cloned instruction if needed. If Orig is in
381 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
382 // the bundle.
383 if (Orig.shouldUpdateCallSiteInfo())
384 copyCallSiteInfo(&Orig, FirstClone);
385 return *FirstClone;
388 /// Delete the given MachineInstr.
390 /// This function also serves as the MachineInstr destructor - the real
391 /// ~MachineInstr() destructor must be empty.
392 void
393 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
394 // Verify that a call site info is at valid state. This assertion should
395 // be triggered during the implementation of support for the
396 // call site info of a new architecture. If the assertion is triggered,
397 // back trace will tell where to insert a call to updateCallSiteInfo().
398 assert((!MI->isCandidateForCallSiteEntry() ||
399 CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
400 "Call site info was not updated!");
401 // Strip it for parts. The operand array and the MI object itself are
402 // independently recyclable.
403 if (MI->Operands)
404 deallocateOperandArray(MI->CapOperands, MI->Operands);
405 // Don't call ~MachineInstr() which must be trivial anyway because
406 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
407 // destructors.
408 InstructionRecycler.Deallocate(Allocator, MI);
411 /// Allocate a new MachineBasicBlock. Use this instead of
412 /// `new MachineBasicBlock'.
413 MachineBasicBlock *
414 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
415 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
416 MachineBasicBlock(*this, bb);
419 /// Delete the given MachineBasicBlock.
420 void
421 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
422 assert(MBB->getParent() == this && "MBB parent mismatch!");
423 // Clean up any references to MBB in jump tables before deleting it.
424 if (JumpTableInfo)
425 JumpTableInfo->RemoveMBBFromJumpTables(MBB);
426 MBB->~MachineBasicBlock();
427 BasicBlockRecycler.Deallocate(Allocator, MBB);
430 MachineMemOperand *MachineFunction::getMachineMemOperand(
431 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
432 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
433 SyncScope::ID SSID, AtomicOrdering Ordering,
434 AtomicOrdering FailureOrdering) {
435 return new (Allocator)
436 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
437 SSID, Ordering, FailureOrdering);
440 MachineMemOperand *MachineFunction::getMachineMemOperand(
441 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, LLT MemTy,
442 Align base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
443 SyncScope::ID SSID, AtomicOrdering Ordering,
444 AtomicOrdering FailureOrdering) {
445 return new (Allocator)
446 MachineMemOperand(PtrInfo, f, MemTy, base_alignment, AAInfo, Ranges, SSID,
447 Ordering, FailureOrdering);
450 MachineMemOperand *MachineFunction::getMachineMemOperand(
451 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, uint64_t Size) {
452 return new (Allocator)
453 MachineMemOperand(PtrInfo, MMO->getFlags(), Size, MMO->getBaseAlign(),
454 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
455 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
458 MachineMemOperand *MachineFunction::getMachineMemOperand(
459 const MachineMemOperand *MMO, const MachinePointerInfo &PtrInfo, LLT Ty) {
460 return new (Allocator)
461 MachineMemOperand(PtrInfo, MMO->getFlags(), Ty, MMO->getBaseAlign(),
462 AAMDNodes(), nullptr, MMO->getSyncScopeID(),
463 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
466 MachineMemOperand *
467 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
468 int64_t Offset, LLT Ty) {
469 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
471 // If there is no pointer value, the offset isn't tracked so we need to adjust
472 // the base alignment.
473 Align Alignment = PtrInfo.V.isNull()
474 ? commonAlignment(MMO->getBaseAlign(), Offset)
475 : MMO->getBaseAlign();
477 // Do not preserve ranges, since we don't necessarily know what the high bits
478 // are anymore.
479 return new (Allocator) MachineMemOperand(
480 PtrInfo.getWithOffset(Offset), MMO->getFlags(), Ty, Alignment,
481 MMO->getAAInfo(), nullptr, MMO->getSyncScopeID(),
482 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
485 MachineMemOperand *
486 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
487 const AAMDNodes &AAInfo) {
488 MachinePointerInfo MPI = MMO->getValue() ?
489 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
490 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
492 return new (Allocator) MachineMemOperand(
493 MPI, MMO->getFlags(), MMO->getSize(), MMO->getBaseAlign(), AAInfo,
494 MMO->getRanges(), MMO->getSyncScopeID(), MMO->getSuccessOrdering(),
495 MMO->getFailureOrdering());
498 MachineMemOperand *
499 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
500 MachineMemOperand::Flags Flags) {
501 return new (Allocator) MachineMemOperand(
502 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlign(),
503 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
504 MMO->getSuccessOrdering(), MMO->getFailureOrdering());
507 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
508 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
509 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
510 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
511 PostInstrSymbol, HeapAllocMarker);
514 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
515 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
516 llvm::copy(Name, Dest);
517 Dest[Name.size()] = 0;
518 return Dest;
521 uint32_t *MachineFunction::allocateRegMask() {
522 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
523 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
524 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
525 memset(Mask, 0, Size * sizeof(Mask[0]));
526 return Mask;
529 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
530 int* AllocMask = Allocator.Allocate<int>(Mask.size());
531 copy(Mask, AllocMask);
532 return {AllocMask, Mask.size()};
535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
536 LLVM_DUMP_METHOD void MachineFunction::dump() const {
537 print(dbgs());
539 #endif
541 StringRef MachineFunction::getName() const {
542 return getFunction().getName();
545 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
546 OS << "# Machine code for function " << getName() << ": ";
547 getProperties().print(OS);
548 OS << '\n';
550 // Print Frame Information
551 FrameInfo->print(*this, OS);
553 // Print JumpTable Information
554 if (JumpTableInfo)
555 JumpTableInfo->print(OS);
557 // Print Constant Pool
558 ConstantPool->print(OS);
560 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
562 if (RegInfo && !RegInfo->livein_empty()) {
563 OS << "Function Live Ins: ";
564 for (MachineRegisterInfo::livein_iterator
565 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
566 OS << printReg(I->first, TRI);
567 if (I->second)
568 OS << " in " << printReg(I->second, TRI);
569 if (std::next(I) != E)
570 OS << ", ";
572 OS << '\n';
575 ModuleSlotTracker MST(getFunction().getParent());
576 MST.incorporateFunction(getFunction());
577 for (const auto &BB : *this) {
578 OS << '\n';
579 // If we print the whole function, print it at its most verbose level.
580 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
583 OS << "\n# End machine code for function " << getName() << ".\n\n";
586 /// True if this function needs frame moves for debug or exceptions.
587 bool MachineFunction::needsFrameMoves() const {
588 return getMMI().hasDebugInfo() ||
589 getTarget().Options.ForceDwarfFrameSection ||
590 F.needsUnwindTableEntry();
593 namespace llvm {
595 template<>
596 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
597 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
599 static std::string getGraphName(const MachineFunction *F) {
600 return ("CFG for '" + F->getName() + "' function").str();
603 std::string getNodeLabel(const MachineBasicBlock *Node,
604 const MachineFunction *Graph) {
605 std::string OutStr;
607 raw_string_ostream OSS(OutStr);
609 if (isSimple()) {
610 OSS << printMBBReference(*Node);
611 if (const BasicBlock *BB = Node->getBasicBlock())
612 OSS << ": " << BB->getName();
613 } else
614 Node->print(OSS);
617 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
619 // Process string output to make it nicer...
620 for (unsigned i = 0; i != OutStr.length(); ++i)
621 if (OutStr[i] == '\n') { // Left justify
622 OutStr[i] = '\\';
623 OutStr.insert(OutStr.begin()+i+1, 'l');
625 return OutStr;
629 } // end namespace llvm
631 void MachineFunction::viewCFG() const
633 #ifndef NDEBUG
634 ViewGraph(this, "mf" + getName());
635 #else
636 errs() << "MachineFunction::viewCFG is only available in debug builds on "
637 << "systems with Graphviz or gv!\n";
638 #endif // NDEBUG
641 void MachineFunction::viewCFGOnly() const
643 #ifndef NDEBUG
644 ViewGraph(this, "mf" + getName(), true);
645 #else
646 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
647 << "systems with Graphviz or gv!\n";
648 #endif // NDEBUG
651 /// Add the specified physical register as a live-in value and
652 /// create a corresponding virtual register for it.
653 Register MachineFunction::addLiveIn(MCRegister PReg,
654 const TargetRegisterClass *RC) {
655 MachineRegisterInfo &MRI = getRegInfo();
656 Register VReg = MRI.getLiveInVirtReg(PReg);
657 if (VReg) {
658 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
659 (void)VRegRC;
660 // A physical register can be added several times.
661 // Between two calls, the register class of the related virtual register
662 // may have been constrained to match some operation constraints.
663 // In that case, check that the current register class includes the
664 // physical register and is a sub class of the specified RC.
665 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
666 RC->hasSubClassEq(VRegRC))) &&
667 "Register class mismatch!");
668 return VReg;
670 VReg = MRI.createVirtualRegister(RC);
671 MRI.addLiveIn(PReg, VReg);
672 return VReg;
675 /// Return the MCSymbol for the specified non-empty jump table.
676 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
677 /// normal 'L' label is returned.
678 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
679 bool isLinkerPrivate) const {
680 const DataLayout &DL = getDataLayout();
681 assert(JumpTableInfo && "No jump tables");
682 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
684 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
685 : DL.getPrivateGlobalPrefix();
686 SmallString<60> Name;
687 raw_svector_ostream(Name)
688 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
689 return Ctx.getOrCreateSymbol(Name);
692 /// Return a function-local symbol to represent the PIC base.
693 MCSymbol *MachineFunction::getPICBaseSymbol() const {
694 const DataLayout &DL = getDataLayout();
695 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
696 Twine(getFunctionNumber()) + "$pb");
699 /// \name Exception Handling
700 /// \{
702 LandingPadInfo &
703 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
704 unsigned N = LandingPads.size();
705 for (unsigned i = 0; i < N; ++i) {
706 LandingPadInfo &LP = LandingPads[i];
707 if (LP.LandingPadBlock == LandingPad)
708 return LP;
711 LandingPads.push_back(LandingPadInfo(LandingPad));
712 return LandingPads[N];
715 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
716 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
717 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
718 LP.BeginLabels.push_back(BeginLabel);
719 LP.EndLabels.push_back(EndLabel);
722 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
723 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
724 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
725 LP.LandingPadLabel = LandingPadLabel;
727 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
728 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
729 if (const auto *PF =
730 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
731 getMMI().addPersonality(PF);
733 if (LPI->isCleanup())
734 addCleanup(LandingPad);
736 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
737 // correct, but we need to do it this way because of how the DWARF EH
738 // emitter processes the clauses.
739 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
740 Value *Val = LPI->getClause(I - 1);
741 if (LPI->isCatch(I - 1)) {
742 addCatchTypeInfo(LandingPad,
743 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
744 } else {
745 // Add filters in a list.
746 auto *CVal = cast<Constant>(Val);
747 SmallVector<const GlobalValue *, 4> FilterList;
748 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
749 II != IE; ++II)
750 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
752 addFilterTypeInfo(LandingPad, FilterList);
756 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
757 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
758 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
759 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
762 } else {
763 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
766 return LandingPadLabel;
769 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
770 ArrayRef<const GlobalValue *> TyInfo) {
771 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
772 for (unsigned N = TyInfo.size(); N; --N)
773 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
776 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
777 ArrayRef<const GlobalValue *> TyInfo) {
778 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
779 std::vector<unsigned> IdsInFilter(TyInfo.size());
780 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
781 IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
782 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
785 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
786 bool TidyIfNoBeginLabels) {
787 for (unsigned i = 0; i != LandingPads.size(); ) {
788 LandingPadInfo &LandingPad = LandingPads[i];
789 if (LandingPad.LandingPadLabel &&
790 !LandingPad.LandingPadLabel->isDefined() &&
791 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
792 LandingPad.LandingPadLabel = nullptr;
794 // Special case: we *should* emit LPs with null LP MBB. This indicates
795 // "nounwind" case.
796 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
797 LandingPads.erase(LandingPads.begin() + i);
798 continue;
801 if (TidyIfNoBeginLabels) {
802 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
803 MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
804 MCSymbol *EndLabel = LandingPad.EndLabels[j];
805 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
806 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
807 continue;
809 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
810 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
811 --j;
812 --e;
815 // Remove landing pads with no try-ranges.
816 if (LandingPads[i].BeginLabels.empty()) {
817 LandingPads.erase(LandingPads.begin() + i);
818 continue;
822 // If there is no landing pad, ensure that the list of typeids is empty.
823 // If the only typeid is a cleanup, this is the same as having no typeids.
824 if (!LandingPad.LandingPadBlock ||
825 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
826 LandingPad.TypeIds.clear();
827 ++i;
831 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
832 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
833 LP.TypeIds.push_back(0);
836 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
837 const Function *Filter,
838 const BlockAddress *RecoverBA) {
839 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
840 SEHHandler Handler;
841 Handler.FilterOrFinally = Filter;
842 Handler.RecoverBA = RecoverBA;
843 LP.SEHHandlers.push_back(Handler);
846 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
847 const Function *Cleanup) {
848 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
849 SEHHandler Handler;
850 Handler.FilterOrFinally = Cleanup;
851 Handler.RecoverBA = nullptr;
852 LP.SEHHandlers.push_back(Handler);
855 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
856 ArrayRef<unsigned> Sites) {
857 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
860 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
861 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
862 if (TypeInfos[i] == TI) return i + 1;
864 TypeInfos.push_back(TI);
865 return TypeInfos.size();
868 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
869 // If the new filter coincides with the tail of an existing filter, then
870 // re-use the existing filter. Folding filters more than this requires
871 // re-ordering filters and/or their elements - probably not worth it.
872 for (unsigned i : FilterEnds) {
873 unsigned j = TyIds.size();
875 while (i && j)
876 if (FilterIds[--i] != TyIds[--j])
877 goto try_next;
879 if (!j)
880 // The new filter coincides with range [i, end) of the existing filter.
881 return -(1 + i);
883 try_next:;
886 // Add the new filter.
887 int FilterID = -(1 + FilterIds.size());
888 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
889 llvm::append_range(FilterIds, TyIds);
890 FilterEnds.push_back(FilterIds.size());
891 FilterIds.push_back(0); // terminator
892 return FilterID;
895 MachineFunction::CallSiteInfoMap::iterator
896 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
897 assert(MI->isCandidateForCallSiteEntry() &&
898 "Call site info refers only to call (MI) candidates");
900 if (!Target.Options.EmitCallSiteInfo)
901 return CallSitesInfo.end();
902 return CallSitesInfo.find(MI);
905 /// Return the call machine instruction or find a call within bundle.
906 static const MachineInstr *getCallInstr(const MachineInstr *MI) {
907 if (!MI->isBundle())
908 return MI;
910 for (auto &BMI : make_range(getBundleStart(MI->getIterator()),
911 getBundleEnd(MI->getIterator())))
912 if (BMI.isCandidateForCallSiteEntry())
913 return &BMI;
915 llvm_unreachable("Unexpected bundle without a call site candidate");
918 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
919 assert(MI->shouldUpdateCallSiteInfo() &&
920 "Call site info refers only to call (MI) candidates or "
921 "candidates inside bundles");
923 const MachineInstr *CallMI = getCallInstr(MI);
924 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(CallMI);
925 if (CSIt == CallSitesInfo.end())
926 return;
927 CallSitesInfo.erase(CSIt);
930 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
931 const MachineInstr *New) {
932 assert(Old->shouldUpdateCallSiteInfo() &&
933 "Call site info refers only to call (MI) candidates or "
934 "candidates inside bundles");
936 if (!New->isCandidateForCallSiteEntry())
937 return eraseCallSiteInfo(Old);
939 const MachineInstr *OldCallMI = getCallInstr(Old);
940 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
941 if (CSIt == CallSitesInfo.end())
942 return;
944 CallSiteInfo CSInfo = CSIt->second;
945 CallSitesInfo[New] = CSInfo;
948 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
949 const MachineInstr *New) {
950 assert(Old->shouldUpdateCallSiteInfo() &&
951 "Call site info refers only to call (MI) candidates or "
952 "candidates inside bundles");
954 if (!New->isCandidateForCallSiteEntry())
955 return eraseCallSiteInfo(Old);
957 const MachineInstr *OldCallMI = getCallInstr(Old);
958 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(OldCallMI);
959 if (CSIt == CallSitesInfo.end())
960 return;
962 CallSiteInfo CSInfo = std::move(CSIt->second);
963 CallSitesInfo.erase(CSIt);
964 CallSitesInfo[New] = CSInfo;
967 void MachineFunction::setDebugInstrNumberingCount(unsigned Num) {
968 DebugInstrNumberingCount = Num;
971 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A,
972 DebugInstrOperandPair B,
973 unsigned Subreg) {
974 // Catch any accidental self-loops.
975 assert(A.first != B.first);
976 DebugValueSubstitutions.push_back({A, B, Subreg});
979 void MachineFunction::substituteDebugValuesForInst(const MachineInstr &Old,
980 MachineInstr &New,
981 unsigned MaxOperand) {
982 // If the Old instruction wasn't tracked at all, there is no work to do.
983 unsigned OldInstrNum = Old.peekDebugInstrNum();
984 if (!OldInstrNum)
985 return;
987 // Iterate over all operands looking for defs to create substitutions for.
988 // Avoid creating new instr numbers unless we create a new substitution.
989 // While this has no functional effect, it risks confusing someone reading
990 // MIR output.
991 // Examine all the operands, or the first N specified by the caller.
992 MaxOperand = std::min(MaxOperand, Old.getNumOperands());
993 for (unsigned int I = 0; I < MaxOperand; ++I) {
994 const auto &OldMO = Old.getOperand(I);
995 auto &NewMO = New.getOperand(I);
996 (void)NewMO;
998 if (!OldMO.isReg() || !OldMO.isDef())
999 continue;
1000 assert(NewMO.isDef());
1002 unsigned NewInstrNum = New.getDebugInstrNum();
1003 makeDebugValueSubstitution(std::make_pair(OldInstrNum, I),
1004 std::make_pair(NewInstrNum, I));
1008 auto MachineFunction::salvageCopySSA(MachineInstr &MI)
1009 -> DebugInstrOperandPair {
1010 MachineRegisterInfo &MRI = getRegInfo();
1011 const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
1012 const TargetInstrInfo &TII = *getSubtarget().getInstrInfo();
1014 // Chase the value read by a copy-like instruction back to the instruction
1015 // that ultimately _defines_ that value. This may pass:
1016 // * Through multiple intermediate copies, including subregister moves /
1017 // copies,
1018 // * Copies from physical registers that must then be traced back to the
1019 // defining instruction,
1020 // * Or, physical registers may be live-in to (only) the entry block, which
1021 // requires a DBG_PHI to be created.
1022 // We can pursue this problem in that order: trace back through copies,
1023 // optionally through a physical register, to a defining instruction. We
1024 // should never move from physreg to vreg. As we're still in SSA form, no need
1025 // to worry about partial definitions of registers.
1027 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1028 // returns the register read and any subregister identifying which part is
1029 // read.
1030 auto GetRegAndSubreg =
1031 [&](const MachineInstr &Cpy) -> std::pair<Register, unsigned> {
1032 Register NewReg, OldReg;
1033 unsigned SubReg;
1034 if (Cpy.isCopy()) {
1035 OldReg = Cpy.getOperand(0).getReg();
1036 NewReg = Cpy.getOperand(1).getReg();
1037 SubReg = Cpy.getOperand(1).getSubReg();
1038 } else if (Cpy.isSubregToReg()) {
1039 OldReg = Cpy.getOperand(0).getReg();
1040 NewReg = Cpy.getOperand(2).getReg();
1041 SubReg = Cpy.getOperand(3).getImm();
1042 } else {
1043 auto CopyDetails = *TII.isCopyInstr(Cpy);
1044 const MachineOperand &Src = *CopyDetails.Source;
1045 const MachineOperand &Dest = *CopyDetails.Destination;
1046 OldReg = Dest.getReg();
1047 NewReg = Src.getReg();
1048 SubReg = Src.getSubReg();
1051 return {NewReg, SubReg};
1054 // First seek either the defining instruction, or a copy from a physreg.
1055 // During search, the current state is the current copy instruction, and which
1056 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1057 // deal with those later.
1058 auto State = GetRegAndSubreg(MI);
1059 auto CurInst = MI.getIterator();
1060 SmallVector<unsigned, 4> SubregsSeen;
1061 while (true) {
1062 // If we've found a copy from a physreg, first portion of search is over.
1063 if (!State.first.isVirtual())
1064 break;
1066 // Record any subregister qualifier.
1067 if (State.second)
1068 SubregsSeen.push_back(State.second);
1070 assert(MRI.hasOneDef(State.first));
1071 MachineInstr &Inst = *MRI.def_begin(State.first)->getParent();
1072 CurInst = Inst.getIterator();
1074 // Any non-copy instruction is the defining instruction we're seeking.
1075 if (!Inst.isCopyLike() && !TII.isCopyInstr(Inst))
1076 break;
1077 State = GetRegAndSubreg(Inst);
1080 // Helper lambda to apply additional subregister substitutions to a known
1081 // instruction/operand pair. Adds new (fake) substitutions so that we can
1082 // record the subregister. FIXME: this isn't very space efficient if multiple
1083 // values are tracked back through the same copies; cache something later.
1084 auto ApplySubregisters =
1085 [&](DebugInstrOperandPair P) -> DebugInstrOperandPair {
1086 for (unsigned Subreg : reverse(SubregsSeen)) {
1087 // Fetch a new instruction number, not attached to an actual instruction.
1088 unsigned NewInstrNumber = getNewDebugInstrNum();
1089 // Add a substitution from the "new" number to the known one, with a
1090 // qualifying subreg.
1091 makeDebugValueSubstitution({NewInstrNumber, 0}, P, Subreg);
1092 // Return the new number; to find the underlying value, consumers need to
1093 // deal with the qualifying subreg.
1094 P = {NewInstrNumber, 0};
1096 return P;
1099 // If we managed to find the defining instruction after COPYs, return an
1100 // instruction / operand pair after adding subregister qualifiers.
1101 if (State.first.isVirtual()) {
1102 // Virtual register def -- we can just look up where this happens.
1103 MachineInstr *Inst = MRI.def_begin(State.first)->getParent();
1104 for (auto &MO : Inst->operands()) {
1105 if (!MO.isReg() || !MO.isDef() || MO.getReg() != State.first)
1106 continue;
1107 return ApplySubregisters(
1108 {Inst->getDebugInstrNum(), Inst->getOperandNo(&MO)});
1111 llvm_unreachable("Vreg def with no corresponding operand?");
1114 // Our search ended in a copy from a physreg: walk back up the function
1115 // looking for whatever defines the physreg.
1116 assert(CurInst->isCopyLike() || TII.isCopyInstr(*CurInst));
1117 State = GetRegAndSubreg(*CurInst);
1118 Register RegToSeek = State.first;
1120 auto RMII = CurInst->getReverseIterator();
1121 auto PrevInstrs = make_range(RMII, CurInst->getParent()->instr_rend());
1122 for (auto &ToExamine : PrevInstrs) {
1123 for (auto &MO : ToExamine.operands()) {
1124 // Test for operand that defines something aliasing RegToSeek.
1125 if (!MO.isReg() || !MO.isDef() ||
1126 !TRI.regsOverlap(RegToSeek, MO.getReg()))
1127 continue;
1129 return ApplySubregisters(
1130 {ToExamine.getDebugInstrNum(), ToExamine.getOperandNo(&MO)});
1134 MachineBasicBlock &InsertBB = *CurInst->getParent();
1136 // We reached the start of the block before finding a defining instruction.
1137 // It could be from a constant register, otherwise it must be an argument.
1138 if (TRI.isConstantPhysReg(State.first)) {
1139 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1140 // matter where we put it, as it's constant valued.
1141 assert(CurInst->isCopy());
1142 } else if (State.first == TRI.getFrameRegister(*this)) {
1143 // LLVM IR is allowed to read the framepointer by calling a
1144 // llvm.frameaddress.* intrinsic. We can support this by emitting a
1145 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1146 // position that DBG_PHIs appear at, limiting what can be done later.
1147 // TODO: see if there's a better way of expressing these variable
1148 // locations.
1150 } else {
1151 // Assert that this is the entry block. If it isn't, then there is some
1152 // code construct we don't recognise that deals with physregs across
1153 // blocks.
1154 assert(!State.first.isVirtual());
1155 assert(&*InsertBB.getParent()->begin() == &InsertBB);
1158 // Create DBG_PHI for specified physreg.
1159 auto Builder = BuildMI(InsertBB, InsertBB.getFirstNonPHI(), DebugLoc(),
1160 TII.get(TargetOpcode::DBG_PHI));
1161 Builder.addReg(State.first, RegState::Debug);
1162 unsigned NewNum = getNewDebugInstrNum();
1163 Builder.addImm(NewNum);
1164 return ApplySubregisters({NewNum, 0u});
1167 void MachineFunction::finalizeDebugInstrRefs() {
1168 auto *TII = getSubtarget().getInstrInfo();
1170 auto MakeDbgValue = [&](MachineInstr &MI) {
1171 const MCInstrDesc &RefII = TII->get(TargetOpcode::DBG_VALUE);
1172 MI.setDesc(RefII);
1173 MI.getOperand(1).ChangeToRegister(0, false);
1174 MI.getOperand(0).setIsDebug();
1177 if (!getTarget().Options.ValueTrackingVariableLocations)
1178 return;
1180 for (auto &MBB : *this) {
1181 for (auto &MI : MBB) {
1182 if (!MI.isDebugRef() || !MI.getOperand(0).isReg())
1183 continue;
1185 Register Reg = MI.getOperand(0).getReg();
1187 // Some vregs can be deleted as redundant in the meantime. Mark those
1188 // as DBG_VALUE $noreg.
1189 if (Reg == 0) {
1190 MakeDbgValue(MI);
1191 continue;
1194 assert(Reg.isVirtual());
1195 MachineInstr &DefMI = *RegInfo->def_instr_begin(Reg);
1196 assert(RegInfo->hasOneDef(Reg));
1198 // If we've found a copy-like instruction, follow it back to the
1199 // instruction that defines the source value, see salvageCopySSA docs
1200 // for why this is important.
1201 if (DefMI.isCopyLike() || TII->isCopyInstr(DefMI)) {
1202 auto Result = salvageCopySSA(DefMI);
1203 MI.getOperand(0).ChangeToImmediate(Result.first);
1204 MI.getOperand(1).setImm(Result.second);
1205 } else {
1206 // Otherwise, identify the operand number that the VReg refers to.
1207 unsigned OperandIdx = 0;
1208 for (const auto &MO : DefMI.operands()) {
1209 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
1210 break;
1211 ++OperandIdx;
1213 assert(OperandIdx < DefMI.getNumOperands());
1215 // Morph this instr ref to point at the given instruction and operand.
1216 unsigned ID = DefMI.getDebugInstrNum();
1217 MI.getOperand(0).ChangeToImmediate(ID);
1218 MI.getOperand(1).setImm(OperandIdx);
1224 /// \}
1226 //===----------------------------------------------------------------------===//
1227 // MachineJumpTableInfo implementation
1228 //===----------------------------------------------------------------------===//
1230 /// Return the size of each entry in the jump table.
1231 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
1232 // The size of a jump table entry is 4 bytes unless the entry is just the
1233 // address of a block, in which case it is the pointer size.
1234 switch (getEntryKind()) {
1235 case MachineJumpTableInfo::EK_BlockAddress:
1236 return TD.getPointerSize();
1237 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1238 return 8;
1239 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1240 case MachineJumpTableInfo::EK_LabelDifference32:
1241 case MachineJumpTableInfo::EK_Custom32:
1242 return 4;
1243 case MachineJumpTableInfo::EK_Inline:
1244 return 0;
1246 llvm_unreachable("Unknown jump table encoding!");
1249 /// Return the alignment of each entry in the jump table.
1250 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
1251 // The alignment of a jump table entry is the alignment of int32 unless the
1252 // entry is just the address of a block, in which case it is the pointer
1253 // alignment.
1254 switch (getEntryKind()) {
1255 case MachineJumpTableInfo::EK_BlockAddress:
1256 return TD.getPointerABIAlignment(0).value();
1257 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
1258 return TD.getABIIntegerTypeAlignment(64).value();
1259 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1260 case MachineJumpTableInfo::EK_LabelDifference32:
1261 case MachineJumpTableInfo::EK_Custom32:
1262 return TD.getABIIntegerTypeAlignment(32).value();
1263 case MachineJumpTableInfo::EK_Inline:
1264 return 1;
1266 llvm_unreachable("Unknown jump table encoding!");
1269 /// Create a new jump table entry in the jump table info.
1270 unsigned MachineJumpTableInfo::createJumpTableIndex(
1271 const std::vector<MachineBasicBlock*> &DestBBs) {
1272 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
1273 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
1274 return JumpTables.size()-1;
1277 /// If Old is the target of any jump tables, update the jump tables to branch
1278 /// to New instead.
1279 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
1280 MachineBasicBlock *New) {
1281 assert(Old != New && "Not making a change?");
1282 bool MadeChange = false;
1283 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
1284 ReplaceMBBInJumpTable(i, Old, New);
1285 return MadeChange;
1288 /// If MBB is present in any jump tables, remove it.
1289 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock *MBB) {
1290 bool MadeChange = false;
1291 for (MachineJumpTableEntry &JTE : JumpTables) {
1292 auto removeBeginItr = std::remove(JTE.MBBs.begin(), JTE.MBBs.end(), MBB);
1293 MadeChange |= (removeBeginItr != JTE.MBBs.end());
1294 JTE.MBBs.erase(removeBeginItr, JTE.MBBs.end());
1296 return MadeChange;
1299 /// If Old is a target of the jump tables, update the jump table to branch to
1300 /// New instead.
1301 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
1302 MachineBasicBlock *Old,
1303 MachineBasicBlock *New) {
1304 assert(Old != New && "Not making a change?");
1305 bool MadeChange = false;
1306 MachineJumpTableEntry &JTE = JumpTables[Idx];
1307 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
1308 if (JTE.MBBs[j] == Old) {
1309 JTE.MBBs[j] = New;
1310 MadeChange = true;
1312 return MadeChange;
1315 void MachineJumpTableInfo::print(raw_ostream &OS) const {
1316 if (JumpTables.empty()) return;
1318 OS << "Jump Tables:\n";
1320 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
1321 OS << printJumpTableEntryReference(i) << ':';
1322 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
1323 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
1324 if (i != e)
1325 OS << '\n';
1328 OS << '\n';
1331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1332 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
1333 #endif
1335 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
1336 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
1339 //===----------------------------------------------------------------------===//
1340 // MachineConstantPool implementation
1341 //===----------------------------------------------------------------------===//
1343 void MachineConstantPoolValue::anchor() {}
1345 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout &DL) const {
1346 return DL.getTypeAllocSize(Ty);
1349 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout &DL) const {
1350 if (isMachineConstantPoolEntry())
1351 return Val.MachineCPVal->getSizeInBytes(DL);
1352 return DL.getTypeAllocSize(Val.ConstVal->getType());
1355 bool MachineConstantPoolEntry::needsRelocation() const {
1356 if (isMachineConstantPoolEntry())
1357 return true;
1358 return Val.ConstVal->needsDynamicRelocation();
1361 SectionKind
1362 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1363 if (needsRelocation())
1364 return SectionKind::getReadOnlyWithRel();
1365 switch (getSizeInBytes(*DL)) {
1366 case 4:
1367 return SectionKind::getMergeableConst4();
1368 case 8:
1369 return SectionKind::getMergeableConst8();
1370 case 16:
1371 return SectionKind::getMergeableConst16();
1372 case 32:
1373 return SectionKind::getMergeableConst32();
1374 default:
1375 return SectionKind::getReadOnly();
1379 MachineConstantPool::~MachineConstantPool() {
1380 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1381 // so keep track of which we've deleted to avoid double deletions.
1382 DenseSet<MachineConstantPoolValue*> Deleted;
1383 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1384 if (Constants[i].isMachineConstantPoolEntry()) {
1385 Deleted.insert(Constants[i].Val.MachineCPVal);
1386 delete Constants[i].Val.MachineCPVal;
1388 for (MachineConstantPoolValue *CPV : MachineCPVsSharingEntries) {
1389 if (Deleted.count(CPV) == 0)
1390 delete CPV;
1394 /// Test whether the given two constants can be allocated the same constant pool
1395 /// entry.
1396 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1397 const DataLayout &DL) {
1398 // Handle the trivial case quickly.
1399 if (A == B) return true;
1401 // If they have the same type but weren't the same constant, quickly
1402 // reject them.
1403 if (A->getType() == B->getType()) return false;
1405 // We can't handle structs or arrays.
1406 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1407 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1408 return false;
1410 // For now, only support constants with the same size.
1411 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1412 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1413 return false;
1415 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1417 // Try constant folding a bitcast of both instructions to an integer. If we
1418 // get two identical ConstantInt's, then we are good to share them. We use
1419 // the constant folding APIs to do this so that we get the benefit of
1420 // DataLayout.
1421 if (isa<PointerType>(A->getType()))
1422 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1423 const_cast<Constant *>(A), IntTy, DL);
1424 else if (A->getType() != IntTy)
1425 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1426 IntTy, DL);
1427 if (isa<PointerType>(B->getType()))
1428 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1429 const_cast<Constant *>(B), IntTy, DL);
1430 else if (B->getType() != IntTy)
1431 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1432 IntTy, DL);
1434 return A == B;
1437 /// Create a new entry in the constant pool or return an existing one.
1438 /// User must specify the log2 of the minimum required alignment for the object.
1439 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1440 Align Alignment) {
1441 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1443 // Check to see if we already have this constant.
1445 // FIXME, this could be made much more efficient for large constant pools.
1446 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1447 if (!Constants[i].isMachineConstantPoolEntry() &&
1448 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1449 if (Constants[i].getAlign() < Alignment)
1450 Constants[i].Alignment = Alignment;
1451 return i;
1454 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1455 return Constants.size()-1;
1458 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1459 Align Alignment) {
1460 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1462 // Check to see if we already have this constant.
1464 // FIXME, this could be made much more efficient for large constant pools.
1465 int Idx = V->getExistingMachineCPValue(this, Alignment);
1466 if (Idx != -1) {
1467 MachineCPVsSharingEntries.insert(V);
1468 return (unsigned)Idx;
1471 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1472 return Constants.size()-1;
1475 void MachineConstantPool::print(raw_ostream &OS) const {
1476 if (Constants.empty()) return;
1478 OS << "Constant Pool:\n";
1479 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1480 OS << " cp#" << i << ": ";
1481 if (Constants[i].isMachineConstantPoolEntry())
1482 Constants[i].Val.MachineCPVal->print(OS);
1483 else
1484 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1485 OS << ", align=" << Constants[i].getAlign().value();
1486 OS << "\n";
1490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1492 #endif