1 //===- MachineFunction.cpp ------------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetLowering.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/CodeGen/WasmEHFuncInfo.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/Config/llvm-config.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/DataLayout.h"
47 #include "llvm/IR/DebugInfoMetadata.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Function.h"
50 #include "llvm/IR/GlobalValue.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/ModuleSlotTracker.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/MC/MCContext.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/CommandLine.h"
62 #include "llvm/Support/Compiler.h"
63 #include "llvm/Support/DOTGraphTraits.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/GraphWriter.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Target/TargetMachine.h"
75 #include <type_traits>
81 #define DEBUG_TYPE "codegen"
83 static cl::opt
<unsigned> AlignAllFunctions(
84 "align-all-functions",
85 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
86 "means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden
);
89 static const char *getPropertyName(MachineFunctionProperties::Property Prop
) {
90 using P
= MachineFunctionProperties::Property
;
93 case P::FailedISel
: return "FailedISel";
94 case P::IsSSA
: return "IsSSA";
95 case P::Legalized
: return "Legalized";
96 case P::NoPHIs
: return "NoPHIs";
97 case P::NoVRegs
: return "NoVRegs";
98 case P::RegBankSelected
: return "RegBankSelected";
99 case P::Selected
: return "Selected";
100 case P::TracksLiveness
: return "TracksLiveness";
101 case P::TiedOpsRewritten
: return "TiedOpsRewritten";
103 llvm_unreachable("Invalid machine function property");
106 // Pin the vtable to this file.
107 void MachineFunction::Delegate::anchor() {}
109 void MachineFunctionProperties::print(raw_ostream
&OS
) const {
110 const char *Separator
= "";
111 for (BitVector::size_type I
= 0; I
< Properties
.size(); ++I
) {
114 OS
<< Separator
<< getPropertyName(static_cast<Property
>(I
));
119 //===----------------------------------------------------------------------===//
120 // MachineFunction implementation
121 //===----------------------------------------------------------------------===//
123 // Out-of-line virtual method.
124 MachineFunctionInfo::~MachineFunctionInfo() = default;
126 void ilist_alloc_traits
<MachineBasicBlock
>::deleteNode(MachineBasicBlock
*MBB
) {
127 MBB
->getParent()->DeleteMachineBasicBlock(MBB
);
130 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo
*STI
,
132 if (auto MA
= F
.getFnStackAlign())
134 return STI
->getFrameLowering()->getStackAlign().value();
137 MachineFunction::MachineFunction(Function
&F
, const LLVMTargetMachine
&Target
,
138 const TargetSubtargetInfo
&STI
,
139 unsigned FunctionNum
, MachineModuleInfo
&mmi
)
140 : F(F
), Target(Target
), STI(&STI
), Ctx(mmi
.getContext()), MMI(mmi
) {
141 FunctionNumber
= FunctionNum
;
145 void MachineFunction::handleInsertion(MachineInstr
&MI
) {
147 TheDelegate
->MF_HandleInsertion(MI
);
150 void MachineFunction::handleRemoval(MachineInstr
&MI
) {
152 TheDelegate
->MF_HandleRemoval(MI
);
155 void MachineFunction::init() {
156 // Assume the function starts in SSA form with correct liveness.
157 Properties
.set(MachineFunctionProperties::Property::IsSSA
);
158 Properties
.set(MachineFunctionProperties::Property::TracksLiveness
);
159 if (STI
->getRegisterInfo())
160 RegInfo
= new (Allocator
) MachineRegisterInfo(this);
165 // We can realign the stack if the target supports it and the user hasn't
166 // explicitly asked us not to.
167 bool CanRealignSP
= STI
->getFrameLowering()->isStackRealignable() &&
168 !F
.hasFnAttribute("no-realign-stack");
169 FrameInfo
= new (Allocator
) MachineFrameInfo(
170 getFnStackAlignment(STI
, F
), /*StackRealignable=*/CanRealignSP
,
171 /*ForcedRealign=*/CanRealignSP
&&
172 F
.hasFnAttribute(Attribute::StackAlignment
));
174 if (F
.hasFnAttribute(Attribute::StackAlignment
))
175 FrameInfo
->ensureMaxAlignment(*F
.getFnStackAlign());
177 ConstantPool
= new (Allocator
) MachineConstantPool(getDataLayout());
178 Alignment
= STI
->getTargetLowering()->getMinFunctionAlignment();
180 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
181 // FIXME: Use Function::hasOptSize().
182 if (!F
.hasFnAttribute(Attribute::OptimizeForSize
))
183 Alignment
= std::max(Alignment
,
184 STI
->getTargetLowering()->getPrefFunctionAlignment());
186 if (AlignAllFunctions
)
187 Alignment
= Align(1ULL << AlignAllFunctions
);
189 JumpTableInfo
= nullptr;
191 if (isFuncletEHPersonality(classifyEHPersonality(
192 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
193 WinEHInfo
= new (Allocator
) WinEHFuncInfo();
196 if (isScopedEHPersonality(classifyEHPersonality(
197 F
.hasPersonalityFn() ? F
.getPersonalityFn() : nullptr))) {
198 WasmEHInfo
= new (Allocator
) WasmEHFuncInfo();
201 assert(Target
.isCompatibleDataLayout(getDataLayout()) &&
202 "Can't create a MachineFunction using a Module with a "
203 "Target-incompatible DataLayout attached\n");
206 std::make_unique
<PseudoSourceValueManager
>(*(getSubtarget().
210 MachineFunction::~MachineFunction() {
214 void MachineFunction::clear() {
216 // Don't call destructors on MachineInstr and MachineOperand. All of their
217 // memory comes from the BumpPtrAllocator which is about to be purged.
219 // Do call MachineBasicBlock destructors, it contains std::vectors.
220 for (iterator I
= begin(), E
= end(); I
!= E
; I
= BasicBlocks
.erase(I
))
221 I
->Insts
.clearAndLeakNodesUnsafely();
222 MBBNumbering
.clear();
224 InstructionRecycler
.clear(Allocator
);
225 OperandRecycler
.clear(Allocator
);
226 BasicBlockRecycler
.clear(Allocator
);
227 CodeViewAnnotations
.clear();
228 VariableDbgInfos
.clear();
230 RegInfo
->~MachineRegisterInfo();
231 Allocator
.Deallocate(RegInfo
);
234 MFInfo
->~MachineFunctionInfo();
235 Allocator
.Deallocate(MFInfo
);
238 FrameInfo
->~MachineFrameInfo();
239 Allocator
.Deallocate(FrameInfo
);
241 ConstantPool
->~MachineConstantPool();
242 Allocator
.Deallocate(ConstantPool
);
245 JumpTableInfo
->~MachineJumpTableInfo();
246 Allocator
.Deallocate(JumpTableInfo
);
250 WinEHInfo
->~WinEHFuncInfo();
251 Allocator
.Deallocate(WinEHInfo
);
255 WasmEHInfo
->~WasmEHFuncInfo();
256 Allocator
.Deallocate(WasmEHInfo
);
260 const DataLayout
&MachineFunction::getDataLayout() const {
261 return F
.getParent()->getDataLayout();
264 /// Get the JumpTableInfo for this function.
265 /// If it does not already exist, allocate one.
266 MachineJumpTableInfo
*MachineFunction::
267 getOrCreateJumpTableInfo(unsigned EntryKind
) {
268 if (JumpTableInfo
) return JumpTableInfo
;
270 JumpTableInfo
= new (Allocator
)
271 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind
)EntryKind
);
272 return JumpTableInfo
;
275 DenormalMode
MachineFunction::getDenormalMode(const fltSemantics
&FPType
) const {
276 return F
.getDenormalMode(FPType
);
279 /// Should we be emitting segmented stack stuff for the function
280 bool MachineFunction::shouldSplitStack() const {
281 return getFunction().hasFnAttribute("split-stack");
284 LLVM_NODISCARD
unsigned
285 MachineFunction::addFrameInst(const MCCFIInstruction
&Inst
) {
286 FrameInstructions
.push_back(Inst
);
287 return FrameInstructions
.size() - 1;
290 /// This discards all of the MachineBasicBlock numbers and recomputes them.
291 /// This guarantees that the MBB numbers are sequential, dense, and match the
292 /// ordering of the blocks within the function. If a specific MachineBasicBlock
293 /// is specified, only that block and those after it are renumbered.
294 void MachineFunction::RenumberBlocks(MachineBasicBlock
*MBB
) {
295 if (empty()) { MBBNumbering
.clear(); return; }
296 MachineFunction::iterator MBBI
, E
= end();
300 MBBI
= MBB
->getIterator();
302 // Figure out the block number this should have.
303 unsigned BlockNo
= 0;
305 BlockNo
= std::prev(MBBI
)->getNumber() + 1;
307 for (; MBBI
!= E
; ++MBBI
, ++BlockNo
) {
308 if (MBBI
->getNumber() != (int)BlockNo
) {
309 // Remove use of the old number.
310 if (MBBI
->getNumber() != -1) {
311 assert(MBBNumbering
[MBBI
->getNumber()] == &*MBBI
&&
312 "MBB number mismatch!");
313 MBBNumbering
[MBBI
->getNumber()] = nullptr;
316 // If BlockNo is already taken, set that block's number to -1.
317 if (MBBNumbering
[BlockNo
])
318 MBBNumbering
[BlockNo
]->setNumber(-1);
320 MBBNumbering
[BlockNo
] = &*MBBI
;
321 MBBI
->setNumber(BlockNo
);
325 // Okay, all the blocks are renumbered. If we have compactified the block
326 // numbering, shrink MBBNumbering now.
327 assert(BlockNo
<= MBBNumbering
.size() && "Mismatch!");
328 MBBNumbering
.resize(BlockNo
);
331 /// This method iterates over the basic blocks and assigns their IsBeginSection
332 /// and IsEndSection fields. This must be called after MBB layout is finalized
333 /// and the SectionID's are assigned to MBBs.
334 void MachineFunction::assignBeginEndSections() {
335 front().setIsBeginSection();
336 auto CurrentSectionID
= front().getSectionID();
337 for (auto MBBI
= std::next(begin()), E
= end(); MBBI
!= E
; ++MBBI
) {
338 if (MBBI
->getSectionID() == CurrentSectionID
)
340 MBBI
->setIsBeginSection();
341 std::prev(MBBI
)->setIsEndSection();
342 CurrentSectionID
= MBBI
->getSectionID();
344 back().setIsEndSection();
347 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
348 MachineInstr
*MachineFunction::CreateMachineInstr(const MCInstrDesc
&MCID
,
351 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
352 MachineInstr(*this, MCID
, DL
, NoImplicit
);
355 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
356 /// identical in all ways except the instruction has no parent, prev, or next.
358 MachineFunction::CloneMachineInstr(const MachineInstr
*Orig
) {
359 return new (InstructionRecycler
.Allocate
<MachineInstr
>(Allocator
))
360 MachineInstr(*this, *Orig
);
363 MachineInstr
&MachineFunction::CloneMachineInstrBundle(MachineBasicBlock
&MBB
,
364 MachineBasicBlock::iterator InsertBefore
, const MachineInstr
&Orig
) {
365 MachineInstr
*FirstClone
= nullptr;
366 MachineBasicBlock::const_instr_iterator I
= Orig
.getIterator();
368 MachineInstr
*Cloned
= CloneMachineInstr(&*I
);
369 MBB
.insert(InsertBefore
, Cloned
);
370 if (FirstClone
== nullptr) {
373 Cloned
->bundleWithPred();
376 if (!I
->isBundledWithSucc())
380 // Copy over call site info to the cloned instruction if needed. If Orig is in
381 // a bundle, copyCallSiteInfo takes care of finding the call instruction in
383 if (Orig
.shouldUpdateCallSiteInfo())
384 copyCallSiteInfo(&Orig
, FirstClone
);
388 /// Delete the given MachineInstr.
390 /// This function also serves as the MachineInstr destructor - the real
391 /// ~MachineInstr() destructor must be empty.
393 MachineFunction::DeleteMachineInstr(MachineInstr
*MI
) {
394 // Verify that a call site info is at valid state. This assertion should
395 // be triggered during the implementation of support for the
396 // call site info of a new architecture. If the assertion is triggered,
397 // back trace will tell where to insert a call to updateCallSiteInfo().
398 assert((!MI
->isCandidateForCallSiteEntry() ||
399 CallSitesInfo
.find(MI
) == CallSitesInfo
.end()) &&
400 "Call site info was not updated!");
401 // Strip it for parts. The operand array and the MI object itself are
402 // independently recyclable.
404 deallocateOperandArray(MI
->CapOperands
, MI
->Operands
);
405 // Don't call ~MachineInstr() which must be trivial anyway because
406 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
408 InstructionRecycler
.Deallocate(Allocator
, MI
);
411 /// Allocate a new MachineBasicBlock. Use this instead of
412 /// `new MachineBasicBlock'.
414 MachineFunction::CreateMachineBasicBlock(const BasicBlock
*bb
) {
415 return new (BasicBlockRecycler
.Allocate
<MachineBasicBlock
>(Allocator
))
416 MachineBasicBlock(*this, bb
);
419 /// Delete the given MachineBasicBlock.
421 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock
*MBB
) {
422 assert(MBB
->getParent() == this && "MBB parent mismatch!");
423 // Clean up any references to MBB in jump tables before deleting it.
425 JumpTableInfo
->RemoveMBBFromJumpTables(MBB
);
426 MBB
->~MachineBasicBlock();
427 BasicBlockRecycler
.Deallocate(Allocator
, MBB
);
430 MachineMemOperand
*MachineFunction::getMachineMemOperand(
431 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, uint64_t s
,
432 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
433 SyncScope::ID SSID
, AtomicOrdering Ordering
,
434 AtomicOrdering FailureOrdering
) {
435 return new (Allocator
)
436 MachineMemOperand(PtrInfo
, f
, s
, base_alignment
, AAInfo
, Ranges
,
437 SSID
, Ordering
, FailureOrdering
);
440 MachineMemOperand
*MachineFunction::getMachineMemOperand(
441 MachinePointerInfo PtrInfo
, MachineMemOperand::Flags f
, LLT MemTy
,
442 Align base_alignment
, const AAMDNodes
&AAInfo
, const MDNode
*Ranges
,
443 SyncScope::ID SSID
, AtomicOrdering Ordering
,
444 AtomicOrdering FailureOrdering
) {
445 return new (Allocator
)
446 MachineMemOperand(PtrInfo
, f
, MemTy
, base_alignment
, AAInfo
, Ranges
, SSID
,
447 Ordering
, FailureOrdering
);
450 MachineMemOperand
*MachineFunction::getMachineMemOperand(
451 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, uint64_t Size
) {
452 return new (Allocator
)
453 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Size
, MMO
->getBaseAlign(),
454 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
455 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
458 MachineMemOperand
*MachineFunction::getMachineMemOperand(
459 const MachineMemOperand
*MMO
, const MachinePointerInfo
&PtrInfo
, LLT Ty
) {
460 return new (Allocator
)
461 MachineMemOperand(PtrInfo
, MMO
->getFlags(), Ty
, MMO
->getBaseAlign(),
462 AAMDNodes(), nullptr, MMO
->getSyncScopeID(),
463 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
467 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
468 int64_t Offset
, LLT Ty
) {
469 const MachinePointerInfo
&PtrInfo
= MMO
->getPointerInfo();
471 // If there is no pointer value, the offset isn't tracked so we need to adjust
472 // the base alignment.
473 Align Alignment
= PtrInfo
.V
.isNull()
474 ? commonAlignment(MMO
->getBaseAlign(), Offset
)
475 : MMO
->getBaseAlign();
477 // Do not preserve ranges, since we don't necessarily know what the high bits
479 return new (Allocator
) MachineMemOperand(
480 PtrInfo
.getWithOffset(Offset
), MMO
->getFlags(), Ty
, Alignment
,
481 MMO
->getAAInfo(), nullptr, MMO
->getSyncScopeID(),
482 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
486 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
487 const AAMDNodes
&AAInfo
) {
488 MachinePointerInfo MPI
= MMO
->getValue() ?
489 MachinePointerInfo(MMO
->getValue(), MMO
->getOffset()) :
490 MachinePointerInfo(MMO
->getPseudoValue(), MMO
->getOffset());
492 return new (Allocator
) MachineMemOperand(
493 MPI
, MMO
->getFlags(), MMO
->getSize(), MMO
->getBaseAlign(), AAInfo
,
494 MMO
->getRanges(), MMO
->getSyncScopeID(), MMO
->getSuccessOrdering(),
495 MMO
->getFailureOrdering());
499 MachineFunction::getMachineMemOperand(const MachineMemOperand
*MMO
,
500 MachineMemOperand::Flags Flags
) {
501 return new (Allocator
) MachineMemOperand(
502 MMO
->getPointerInfo(), Flags
, MMO
->getSize(), MMO
->getBaseAlign(),
503 MMO
->getAAInfo(), MMO
->getRanges(), MMO
->getSyncScopeID(),
504 MMO
->getSuccessOrdering(), MMO
->getFailureOrdering());
507 MachineInstr::ExtraInfo
*MachineFunction::createMIExtraInfo(
508 ArrayRef
<MachineMemOperand
*> MMOs
, MCSymbol
*PreInstrSymbol
,
509 MCSymbol
*PostInstrSymbol
, MDNode
*HeapAllocMarker
) {
510 return MachineInstr::ExtraInfo::create(Allocator
, MMOs
, PreInstrSymbol
,
511 PostInstrSymbol
, HeapAllocMarker
);
514 const char *MachineFunction::createExternalSymbolName(StringRef Name
) {
515 char *Dest
= Allocator
.Allocate
<char>(Name
.size() + 1);
516 llvm::copy(Name
, Dest
);
517 Dest
[Name
.size()] = 0;
521 uint32_t *MachineFunction::allocateRegMask() {
522 unsigned NumRegs
= getSubtarget().getRegisterInfo()->getNumRegs();
523 unsigned Size
= MachineOperand::getRegMaskSize(NumRegs
);
524 uint32_t *Mask
= Allocator
.Allocate
<uint32_t>(Size
);
525 memset(Mask
, 0, Size
* sizeof(Mask
[0]));
529 ArrayRef
<int> MachineFunction::allocateShuffleMask(ArrayRef
<int> Mask
) {
530 int* AllocMask
= Allocator
.Allocate
<int>(Mask
.size());
531 copy(Mask
, AllocMask
);
532 return {AllocMask
, Mask
.size()};
535 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
536 LLVM_DUMP_METHOD
void MachineFunction::dump() const {
541 StringRef
MachineFunction::getName() const {
542 return getFunction().getName();
545 void MachineFunction::print(raw_ostream
&OS
, const SlotIndexes
*Indexes
) const {
546 OS
<< "# Machine code for function " << getName() << ": ";
547 getProperties().print(OS
);
550 // Print Frame Information
551 FrameInfo
->print(*this, OS
);
553 // Print JumpTable Information
555 JumpTableInfo
->print(OS
);
557 // Print Constant Pool
558 ConstantPool
->print(OS
);
560 const TargetRegisterInfo
*TRI
= getSubtarget().getRegisterInfo();
562 if (RegInfo
&& !RegInfo
->livein_empty()) {
563 OS
<< "Function Live Ins: ";
564 for (MachineRegisterInfo::livein_iterator
565 I
= RegInfo
->livein_begin(), E
= RegInfo
->livein_end(); I
!= E
; ++I
) {
566 OS
<< printReg(I
->first
, TRI
);
568 OS
<< " in " << printReg(I
->second
, TRI
);
569 if (std::next(I
) != E
)
575 ModuleSlotTracker
MST(getFunction().getParent());
576 MST
.incorporateFunction(getFunction());
577 for (const auto &BB
: *this) {
579 // If we print the whole function, print it at its most verbose level.
580 BB
.print(OS
, MST
, Indexes
, /*IsStandalone=*/true);
583 OS
<< "\n# End machine code for function " << getName() << ".\n\n";
586 /// True if this function needs frame moves for debug or exceptions.
587 bool MachineFunction::needsFrameMoves() const {
588 return getMMI().hasDebugInfo() ||
589 getTarget().Options
.ForceDwarfFrameSection
||
590 F
.needsUnwindTableEntry();
596 struct DOTGraphTraits
<const MachineFunction
*> : public DefaultDOTGraphTraits
{
597 DOTGraphTraits(bool isSimple
= false) : DefaultDOTGraphTraits(isSimple
) {}
599 static std::string
getGraphName(const MachineFunction
*F
) {
600 return ("CFG for '" + F
->getName() + "' function").str();
603 std::string
getNodeLabel(const MachineBasicBlock
*Node
,
604 const MachineFunction
*Graph
) {
607 raw_string_ostream
OSS(OutStr
);
610 OSS
<< printMBBReference(*Node
);
611 if (const BasicBlock
*BB
= Node
->getBasicBlock())
612 OSS
<< ": " << BB
->getName();
617 if (OutStr
[0] == '\n') OutStr
.erase(OutStr
.begin());
619 // Process string output to make it nicer...
620 for (unsigned i
= 0; i
!= OutStr
.length(); ++i
)
621 if (OutStr
[i
] == '\n') { // Left justify
623 OutStr
.insert(OutStr
.begin()+i
+1, 'l');
629 } // end namespace llvm
631 void MachineFunction::viewCFG() const
634 ViewGraph(this, "mf" + getName());
636 errs() << "MachineFunction::viewCFG is only available in debug builds on "
637 << "systems with Graphviz or gv!\n";
641 void MachineFunction::viewCFGOnly() const
644 ViewGraph(this, "mf" + getName(), true);
646 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
647 << "systems with Graphviz or gv!\n";
651 /// Add the specified physical register as a live-in value and
652 /// create a corresponding virtual register for it.
653 Register
MachineFunction::addLiveIn(MCRegister PReg
,
654 const TargetRegisterClass
*RC
) {
655 MachineRegisterInfo
&MRI
= getRegInfo();
656 Register VReg
= MRI
.getLiveInVirtReg(PReg
);
658 const TargetRegisterClass
*VRegRC
= MRI
.getRegClass(VReg
);
660 // A physical register can be added several times.
661 // Between two calls, the register class of the related virtual register
662 // may have been constrained to match some operation constraints.
663 // In that case, check that the current register class includes the
664 // physical register and is a sub class of the specified RC.
665 assert((VRegRC
== RC
|| (VRegRC
->contains(PReg
) &&
666 RC
->hasSubClassEq(VRegRC
))) &&
667 "Register class mismatch!");
670 VReg
= MRI
.createVirtualRegister(RC
);
671 MRI
.addLiveIn(PReg
, VReg
);
675 /// Return the MCSymbol for the specified non-empty jump table.
676 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
677 /// normal 'L' label is returned.
678 MCSymbol
*MachineFunction::getJTISymbol(unsigned JTI
, MCContext
&Ctx
,
679 bool isLinkerPrivate
) const {
680 const DataLayout
&DL
= getDataLayout();
681 assert(JumpTableInfo
&& "No jump tables");
682 assert(JTI
< JumpTableInfo
->getJumpTables().size() && "Invalid JTI!");
684 StringRef Prefix
= isLinkerPrivate
? DL
.getLinkerPrivateGlobalPrefix()
685 : DL
.getPrivateGlobalPrefix();
686 SmallString
<60> Name
;
687 raw_svector_ostream(Name
)
688 << Prefix
<< "JTI" << getFunctionNumber() << '_' << JTI
;
689 return Ctx
.getOrCreateSymbol(Name
);
692 /// Return a function-local symbol to represent the PIC base.
693 MCSymbol
*MachineFunction::getPICBaseSymbol() const {
694 const DataLayout
&DL
= getDataLayout();
695 return Ctx
.getOrCreateSymbol(Twine(DL
.getPrivateGlobalPrefix()) +
696 Twine(getFunctionNumber()) + "$pb");
699 /// \name Exception Handling
703 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock
*LandingPad
) {
704 unsigned N
= LandingPads
.size();
705 for (unsigned i
= 0; i
< N
; ++i
) {
706 LandingPadInfo
&LP
= LandingPads
[i
];
707 if (LP
.LandingPadBlock
== LandingPad
)
711 LandingPads
.push_back(LandingPadInfo(LandingPad
));
712 return LandingPads
[N
];
715 void MachineFunction::addInvoke(MachineBasicBlock
*LandingPad
,
716 MCSymbol
*BeginLabel
, MCSymbol
*EndLabel
) {
717 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
718 LP
.BeginLabels
.push_back(BeginLabel
);
719 LP
.EndLabels
.push_back(EndLabel
);
722 MCSymbol
*MachineFunction::addLandingPad(MachineBasicBlock
*LandingPad
) {
723 MCSymbol
*LandingPadLabel
= Ctx
.createTempSymbol();
724 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
725 LP
.LandingPadLabel
= LandingPadLabel
;
727 const Instruction
*FirstI
= LandingPad
->getBasicBlock()->getFirstNonPHI();
728 if (const auto *LPI
= dyn_cast
<LandingPadInst
>(FirstI
)) {
730 dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts()))
731 getMMI().addPersonality(PF
);
733 if (LPI
->isCleanup())
734 addCleanup(LandingPad
);
736 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
737 // correct, but we need to do it this way because of how the DWARF EH
738 // emitter processes the clauses.
739 for (unsigned I
= LPI
->getNumClauses(); I
!= 0; --I
) {
740 Value
*Val
= LPI
->getClause(I
- 1);
741 if (LPI
->isCatch(I
- 1)) {
742 addCatchTypeInfo(LandingPad
,
743 dyn_cast
<GlobalValue
>(Val
->stripPointerCasts()));
745 // Add filters in a list.
746 auto *CVal
= cast
<Constant
>(Val
);
747 SmallVector
<const GlobalValue
*, 4> FilterList
;
748 for (User::op_iterator II
= CVal
->op_begin(), IE
= CVal
->op_end();
750 FilterList
.push_back(cast
<GlobalValue
>((*II
)->stripPointerCasts()));
752 addFilterTypeInfo(LandingPad
, FilterList
);
756 } else if (const auto *CPI
= dyn_cast
<CatchPadInst
>(FirstI
)) {
757 for (unsigned I
= CPI
->getNumArgOperands(); I
!= 0; --I
) {
758 Value
*TypeInfo
= CPI
->getArgOperand(I
- 1)->stripPointerCasts();
759 addCatchTypeInfo(LandingPad
, dyn_cast
<GlobalValue
>(TypeInfo
));
763 assert(isa
<CleanupPadInst
>(FirstI
) && "Invalid landingpad!");
766 return LandingPadLabel
;
769 void MachineFunction::addCatchTypeInfo(MachineBasicBlock
*LandingPad
,
770 ArrayRef
<const GlobalValue
*> TyInfo
) {
771 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
772 for (unsigned N
= TyInfo
.size(); N
; --N
)
773 LP
.TypeIds
.push_back(getTypeIDFor(TyInfo
[N
- 1]));
776 void MachineFunction::addFilterTypeInfo(MachineBasicBlock
*LandingPad
,
777 ArrayRef
<const GlobalValue
*> TyInfo
) {
778 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
779 std::vector
<unsigned> IdsInFilter(TyInfo
.size());
780 for (unsigned I
= 0, E
= TyInfo
.size(); I
!= E
; ++I
)
781 IdsInFilter
[I
] = getTypeIDFor(TyInfo
[I
]);
782 LP
.TypeIds
.push_back(getFilterIDFor(IdsInFilter
));
785 void MachineFunction::tidyLandingPads(DenseMap
<MCSymbol
*, uintptr_t> *LPMap
,
786 bool TidyIfNoBeginLabels
) {
787 for (unsigned i
= 0; i
!= LandingPads
.size(); ) {
788 LandingPadInfo
&LandingPad
= LandingPads
[i
];
789 if (LandingPad
.LandingPadLabel
&&
790 !LandingPad
.LandingPadLabel
->isDefined() &&
791 (!LPMap
|| (*LPMap
)[LandingPad
.LandingPadLabel
] == 0))
792 LandingPad
.LandingPadLabel
= nullptr;
794 // Special case: we *should* emit LPs with null LP MBB. This indicates
796 if (!LandingPad
.LandingPadLabel
&& LandingPad
.LandingPadBlock
) {
797 LandingPads
.erase(LandingPads
.begin() + i
);
801 if (TidyIfNoBeginLabels
) {
802 for (unsigned j
= 0, e
= LandingPads
[i
].BeginLabels
.size(); j
!= e
; ++j
) {
803 MCSymbol
*BeginLabel
= LandingPad
.BeginLabels
[j
];
804 MCSymbol
*EndLabel
= LandingPad
.EndLabels
[j
];
805 if ((BeginLabel
->isDefined() || (LPMap
&& (*LPMap
)[BeginLabel
] != 0)) &&
806 (EndLabel
->isDefined() || (LPMap
&& (*LPMap
)[EndLabel
] != 0)))
809 LandingPad
.BeginLabels
.erase(LandingPad
.BeginLabels
.begin() + j
);
810 LandingPad
.EndLabels
.erase(LandingPad
.EndLabels
.begin() + j
);
815 // Remove landing pads with no try-ranges.
816 if (LandingPads
[i
].BeginLabels
.empty()) {
817 LandingPads
.erase(LandingPads
.begin() + i
);
822 // If there is no landing pad, ensure that the list of typeids is empty.
823 // If the only typeid is a cleanup, this is the same as having no typeids.
824 if (!LandingPad
.LandingPadBlock
||
825 (LandingPad
.TypeIds
.size() == 1 && !LandingPad
.TypeIds
[0]))
826 LandingPad
.TypeIds
.clear();
831 void MachineFunction::addCleanup(MachineBasicBlock
*LandingPad
) {
832 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
833 LP
.TypeIds
.push_back(0);
836 void MachineFunction::addSEHCatchHandler(MachineBasicBlock
*LandingPad
,
837 const Function
*Filter
,
838 const BlockAddress
*RecoverBA
) {
839 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
841 Handler
.FilterOrFinally
= Filter
;
842 Handler
.RecoverBA
= RecoverBA
;
843 LP
.SEHHandlers
.push_back(Handler
);
846 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock
*LandingPad
,
847 const Function
*Cleanup
) {
848 LandingPadInfo
&LP
= getOrCreateLandingPadInfo(LandingPad
);
850 Handler
.FilterOrFinally
= Cleanup
;
851 Handler
.RecoverBA
= nullptr;
852 LP
.SEHHandlers
.push_back(Handler
);
855 void MachineFunction::setCallSiteLandingPad(MCSymbol
*Sym
,
856 ArrayRef
<unsigned> Sites
) {
857 LPadToCallSiteMap
[Sym
].append(Sites
.begin(), Sites
.end());
860 unsigned MachineFunction::getTypeIDFor(const GlobalValue
*TI
) {
861 for (unsigned i
= 0, N
= TypeInfos
.size(); i
!= N
; ++i
)
862 if (TypeInfos
[i
] == TI
) return i
+ 1;
864 TypeInfos
.push_back(TI
);
865 return TypeInfos
.size();
868 int MachineFunction::getFilterIDFor(std::vector
<unsigned> &TyIds
) {
869 // If the new filter coincides with the tail of an existing filter, then
870 // re-use the existing filter. Folding filters more than this requires
871 // re-ordering filters and/or their elements - probably not worth it.
872 for (unsigned i
: FilterEnds
) {
873 unsigned j
= TyIds
.size();
876 if (FilterIds
[--i
] != TyIds
[--j
])
880 // The new filter coincides with range [i, end) of the existing filter.
886 // Add the new filter.
887 int FilterID
= -(1 + FilterIds
.size());
888 FilterIds
.reserve(FilterIds
.size() + TyIds
.size() + 1);
889 llvm::append_range(FilterIds
, TyIds
);
890 FilterEnds
.push_back(FilterIds
.size());
891 FilterIds
.push_back(0); // terminator
895 MachineFunction::CallSiteInfoMap::iterator
896 MachineFunction::getCallSiteInfo(const MachineInstr
*MI
) {
897 assert(MI
->isCandidateForCallSiteEntry() &&
898 "Call site info refers only to call (MI) candidates");
900 if (!Target
.Options
.EmitCallSiteInfo
)
901 return CallSitesInfo
.end();
902 return CallSitesInfo
.find(MI
);
905 /// Return the call machine instruction or find a call within bundle.
906 static const MachineInstr
*getCallInstr(const MachineInstr
*MI
) {
910 for (auto &BMI
: make_range(getBundleStart(MI
->getIterator()),
911 getBundleEnd(MI
->getIterator())))
912 if (BMI
.isCandidateForCallSiteEntry())
915 llvm_unreachable("Unexpected bundle without a call site candidate");
918 void MachineFunction::eraseCallSiteInfo(const MachineInstr
*MI
) {
919 assert(MI
->shouldUpdateCallSiteInfo() &&
920 "Call site info refers only to call (MI) candidates or "
921 "candidates inside bundles");
923 const MachineInstr
*CallMI
= getCallInstr(MI
);
924 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(CallMI
);
925 if (CSIt
== CallSitesInfo
.end())
927 CallSitesInfo
.erase(CSIt
);
930 void MachineFunction::copyCallSiteInfo(const MachineInstr
*Old
,
931 const MachineInstr
*New
) {
932 assert(Old
->shouldUpdateCallSiteInfo() &&
933 "Call site info refers only to call (MI) candidates or "
934 "candidates inside bundles");
936 if (!New
->isCandidateForCallSiteEntry())
937 return eraseCallSiteInfo(Old
);
939 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
940 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
941 if (CSIt
== CallSitesInfo
.end())
944 CallSiteInfo CSInfo
= CSIt
->second
;
945 CallSitesInfo
[New
] = CSInfo
;
948 void MachineFunction::moveCallSiteInfo(const MachineInstr
*Old
,
949 const MachineInstr
*New
) {
950 assert(Old
->shouldUpdateCallSiteInfo() &&
951 "Call site info refers only to call (MI) candidates or "
952 "candidates inside bundles");
954 if (!New
->isCandidateForCallSiteEntry())
955 return eraseCallSiteInfo(Old
);
957 const MachineInstr
*OldCallMI
= getCallInstr(Old
);
958 CallSiteInfoMap::iterator CSIt
= getCallSiteInfo(OldCallMI
);
959 if (CSIt
== CallSitesInfo
.end())
962 CallSiteInfo CSInfo
= std::move(CSIt
->second
);
963 CallSitesInfo
.erase(CSIt
);
964 CallSitesInfo
[New
] = CSInfo
;
967 void MachineFunction::setDebugInstrNumberingCount(unsigned Num
) {
968 DebugInstrNumberingCount
= Num
;
971 void MachineFunction::makeDebugValueSubstitution(DebugInstrOperandPair A
,
972 DebugInstrOperandPair B
,
974 // Catch any accidental self-loops.
975 assert(A
.first
!= B
.first
);
976 DebugValueSubstitutions
.push_back({A
, B
, Subreg
});
979 void MachineFunction::substituteDebugValuesForInst(const MachineInstr
&Old
,
981 unsigned MaxOperand
) {
982 // If the Old instruction wasn't tracked at all, there is no work to do.
983 unsigned OldInstrNum
= Old
.peekDebugInstrNum();
987 // Iterate over all operands looking for defs to create substitutions for.
988 // Avoid creating new instr numbers unless we create a new substitution.
989 // While this has no functional effect, it risks confusing someone reading
991 // Examine all the operands, or the first N specified by the caller.
992 MaxOperand
= std::min(MaxOperand
, Old
.getNumOperands());
993 for (unsigned int I
= 0; I
< MaxOperand
; ++I
) {
994 const auto &OldMO
= Old
.getOperand(I
);
995 auto &NewMO
= New
.getOperand(I
);
998 if (!OldMO
.isReg() || !OldMO
.isDef())
1000 assert(NewMO
.isDef());
1002 unsigned NewInstrNum
= New
.getDebugInstrNum();
1003 makeDebugValueSubstitution(std::make_pair(OldInstrNum
, I
),
1004 std::make_pair(NewInstrNum
, I
));
1008 auto MachineFunction::salvageCopySSA(MachineInstr
&MI
)
1009 -> DebugInstrOperandPair
{
1010 MachineRegisterInfo
&MRI
= getRegInfo();
1011 const TargetRegisterInfo
&TRI
= *MRI
.getTargetRegisterInfo();
1012 const TargetInstrInfo
&TII
= *getSubtarget().getInstrInfo();
1014 // Chase the value read by a copy-like instruction back to the instruction
1015 // that ultimately _defines_ that value. This may pass:
1016 // * Through multiple intermediate copies, including subregister moves /
1018 // * Copies from physical registers that must then be traced back to the
1019 // defining instruction,
1020 // * Or, physical registers may be live-in to (only) the entry block, which
1021 // requires a DBG_PHI to be created.
1022 // We can pursue this problem in that order: trace back through copies,
1023 // optionally through a physical register, to a defining instruction. We
1024 // should never move from physreg to vreg. As we're still in SSA form, no need
1025 // to worry about partial definitions of registers.
1027 // Helper lambda to interpret a copy-like instruction. Takes instruction,
1028 // returns the register read and any subregister identifying which part is
1030 auto GetRegAndSubreg
=
1031 [&](const MachineInstr
&Cpy
) -> std::pair
<Register
, unsigned> {
1032 Register NewReg
, OldReg
;
1035 OldReg
= Cpy
.getOperand(0).getReg();
1036 NewReg
= Cpy
.getOperand(1).getReg();
1037 SubReg
= Cpy
.getOperand(1).getSubReg();
1038 } else if (Cpy
.isSubregToReg()) {
1039 OldReg
= Cpy
.getOperand(0).getReg();
1040 NewReg
= Cpy
.getOperand(2).getReg();
1041 SubReg
= Cpy
.getOperand(3).getImm();
1043 auto CopyDetails
= *TII
.isCopyInstr(Cpy
);
1044 const MachineOperand
&Src
= *CopyDetails
.Source
;
1045 const MachineOperand
&Dest
= *CopyDetails
.Destination
;
1046 OldReg
= Dest
.getReg();
1047 NewReg
= Src
.getReg();
1048 SubReg
= Src
.getSubReg();
1051 return {NewReg
, SubReg
};
1054 // First seek either the defining instruction, or a copy from a physreg.
1055 // During search, the current state is the current copy instruction, and which
1056 // register we've read. Accumulate qualifying subregisters into SubregsSeen;
1057 // deal with those later.
1058 auto State
= GetRegAndSubreg(MI
);
1059 auto CurInst
= MI
.getIterator();
1060 SmallVector
<unsigned, 4> SubregsSeen
;
1062 // If we've found a copy from a physreg, first portion of search is over.
1063 if (!State
.first
.isVirtual())
1066 // Record any subregister qualifier.
1068 SubregsSeen
.push_back(State
.second
);
1070 assert(MRI
.hasOneDef(State
.first
));
1071 MachineInstr
&Inst
= *MRI
.def_begin(State
.first
)->getParent();
1072 CurInst
= Inst
.getIterator();
1074 // Any non-copy instruction is the defining instruction we're seeking.
1075 if (!Inst
.isCopyLike() && !TII
.isCopyInstr(Inst
))
1077 State
= GetRegAndSubreg(Inst
);
1080 // Helper lambda to apply additional subregister substitutions to a known
1081 // instruction/operand pair. Adds new (fake) substitutions so that we can
1082 // record the subregister. FIXME: this isn't very space efficient if multiple
1083 // values are tracked back through the same copies; cache something later.
1084 auto ApplySubregisters
=
1085 [&](DebugInstrOperandPair P
) -> DebugInstrOperandPair
{
1086 for (unsigned Subreg
: reverse(SubregsSeen
)) {
1087 // Fetch a new instruction number, not attached to an actual instruction.
1088 unsigned NewInstrNumber
= getNewDebugInstrNum();
1089 // Add a substitution from the "new" number to the known one, with a
1090 // qualifying subreg.
1091 makeDebugValueSubstitution({NewInstrNumber
, 0}, P
, Subreg
);
1092 // Return the new number; to find the underlying value, consumers need to
1093 // deal with the qualifying subreg.
1094 P
= {NewInstrNumber
, 0};
1099 // If we managed to find the defining instruction after COPYs, return an
1100 // instruction / operand pair after adding subregister qualifiers.
1101 if (State
.first
.isVirtual()) {
1102 // Virtual register def -- we can just look up where this happens.
1103 MachineInstr
*Inst
= MRI
.def_begin(State
.first
)->getParent();
1104 for (auto &MO
: Inst
->operands()) {
1105 if (!MO
.isReg() || !MO
.isDef() || MO
.getReg() != State
.first
)
1107 return ApplySubregisters(
1108 {Inst
->getDebugInstrNum(), Inst
->getOperandNo(&MO
)});
1111 llvm_unreachable("Vreg def with no corresponding operand?");
1114 // Our search ended in a copy from a physreg: walk back up the function
1115 // looking for whatever defines the physreg.
1116 assert(CurInst
->isCopyLike() || TII
.isCopyInstr(*CurInst
));
1117 State
= GetRegAndSubreg(*CurInst
);
1118 Register RegToSeek
= State
.first
;
1120 auto RMII
= CurInst
->getReverseIterator();
1121 auto PrevInstrs
= make_range(RMII
, CurInst
->getParent()->instr_rend());
1122 for (auto &ToExamine
: PrevInstrs
) {
1123 for (auto &MO
: ToExamine
.operands()) {
1124 // Test for operand that defines something aliasing RegToSeek.
1125 if (!MO
.isReg() || !MO
.isDef() ||
1126 !TRI
.regsOverlap(RegToSeek
, MO
.getReg()))
1129 return ApplySubregisters(
1130 {ToExamine
.getDebugInstrNum(), ToExamine
.getOperandNo(&MO
)});
1134 MachineBasicBlock
&InsertBB
= *CurInst
->getParent();
1136 // We reached the start of the block before finding a defining instruction.
1137 // It could be from a constant register, otherwise it must be an argument.
1138 if (TRI
.isConstantPhysReg(State
.first
)) {
1139 // We can produce a DBG_PHI that identifies the constant physreg. Doesn't
1140 // matter where we put it, as it's constant valued.
1141 assert(CurInst
->isCopy());
1142 } else if (State
.first
== TRI
.getFrameRegister(*this)) {
1143 // LLVM IR is allowed to read the framepointer by calling a
1144 // llvm.frameaddress.* intrinsic. We can support this by emitting a
1145 // DBG_PHI $fp. This isn't ideal, because it extends the behaviours /
1146 // position that DBG_PHIs appear at, limiting what can be done later.
1147 // TODO: see if there's a better way of expressing these variable
1151 // Assert that this is the entry block. If it isn't, then there is some
1152 // code construct we don't recognise that deals with physregs across
1154 assert(!State
.first
.isVirtual());
1155 assert(&*InsertBB
.getParent()->begin() == &InsertBB
);
1158 // Create DBG_PHI for specified physreg.
1159 auto Builder
= BuildMI(InsertBB
, InsertBB
.getFirstNonPHI(), DebugLoc(),
1160 TII
.get(TargetOpcode::DBG_PHI
));
1161 Builder
.addReg(State
.first
, RegState::Debug
);
1162 unsigned NewNum
= getNewDebugInstrNum();
1163 Builder
.addImm(NewNum
);
1164 return ApplySubregisters({NewNum
, 0u});
1167 void MachineFunction::finalizeDebugInstrRefs() {
1168 auto *TII
= getSubtarget().getInstrInfo();
1170 auto MakeDbgValue
= [&](MachineInstr
&MI
) {
1171 const MCInstrDesc
&RefII
= TII
->get(TargetOpcode::DBG_VALUE
);
1173 MI
.getOperand(1).ChangeToRegister(0, false);
1174 MI
.getOperand(0).setIsDebug();
1177 if (!getTarget().Options
.ValueTrackingVariableLocations
)
1180 for (auto &MBB
: *this) {
1181 for (auto &MI
: MBB
) {
1182 if (!MI
.isDebugRef() || !MI
.getOperand(0).isReg())
1185 Register Reg
= MI
.getOperand(0).getReg();
1187 // Some vregs can be deleted as redundant in the meantime. Mark those
1188 // as DBG_VALUE $noreg.
1194 assert(Reg
.isVirtual());
1195 MachineInstr
&DefMI
= *RegInfo
->def_instr_begin(Reg
);
1196 assert(RegInfo
->hasOneDef(Reg
));
1198 // If we've found a copy-like instruction, follow it back to the
1199 // instruction that defines the source value, see salvageCopySSA docs
1200 // for why this is important.
1201 if (DefMI
.isCopyLike() || TII
->isCopyInstr(DefMI
)) {
1202 auto Result
= salvageCopySSA(DefMI
);
1203 MI
.getOperand(0).ChangeToImmediate(Result
.first
);
1204 MI
.getOperand(1).setImm(Result
.second
);
1206 // Otherwise, identify the operand number that the VReg refers to.
1207 unsigned OperandIdx
= 0;
1208 for (const auto &MO
: DefMI
.operands()) {
1209 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
)
1213 assert(OperandIdx
< DefMI
.getNumOperands());
1215 // Morph this instr ref to point at the given instruction and operand.
1216 unsigned ID
= DefMI
.getDebugInstrNum();
1217 MI
.getOperand(0).ChangeToImmediate(ID
);
1218 MI
.getOperand(1).setImm(OperandIdx
);
1226 //===----------------------------------------------------------------------===//
1227 // MachineJumpTableInfo implementation
1228 //===----------------------------------------------------------------------===//
1230 /// Return the size of each entry in the jump table.
1231 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout
&TD
) const {
1232 // The size of a jump table entry is 4 bytes unless the entry is just the
1233 // address of a block, in which case it is the pointer size.
1234 switch (getEntryKind()) {
1235 case MachineJumpTableInfo::EK_BlockAddress
:
1236 return TD
.getPointerSize();
1237 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1239 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1240 case MachineJumpTableInfo::EK_LabelDifference32
:
1241 case MachineJumpTableInfo::EK_Custom32
:
1243 case MachineJumpTableInfo::EK_Inline
:
1246 llvm_unreachable("Unknown jump table encoding!");
1249 /// Return the alignment of each entry in the jump table.
1250 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout
&TD
) const {
1251 // The alignment of a jump table entry is the alignment of int32 unless the
1252 // entry is just the address of a block, in which case it is the pointer
1254 switch (getEntryKind()) {
1255 case MachineJumpTableInfo::EK_BlockAddress
:
1256 return TD
.getPointerABIAlignment(0).value();
1257 case MachineJumpTableInfo::EK_GPRel64BlockAddress
:
1258 return TD
.getABIIntegerTypeAlignment(64).value();
1259 case MachineJumpTableInfo::EK_GPRel32BlockAddress
:
1260 case MachineJumpTableInfo::EK_LabelDifference32
:
1261 case MachineJumpTableInfo::EK_Custom32
:
1262 return TD
.getABIIntegerTypeAlignment(32).value();
1263 case MachineJumpTableInfo::EK_Inline
:
1266 llvm_unreachable("Unknown jump table encoding!");
1269 /// Create a new jump table entry in the jump table info.
1270 unsigned MachineJumpTableInfo::createJumpTableIndex(
1271 const std::vector
<MachineBasicBlock
*> &DestBBs
) {
1272 assert(!DestBBs
.empty() && "Cannot create an empty jump table!");
1273 JumpTables
.push_back(MachineJumpTableEntry(DestBBs
));
1274 return JumpTables
.size()-1;
1277 /// If Old is the target of any jump tables, update the jump tables to branch
1279 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock
*Old
,
1280 MachineBasicBlock
*New
) {
1281 assert(Old
!= New
&& "Not making a change?");
1282 bool MadeChange
= false;
1283 for (size_t i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
)
1284 ReplaceMBBInJumpTable(i
, Old
, New
);
1288 /// If MBB is present in any jump tables, remove it.
1289 bool MachineJumpTableInfo::RemoveMBBFromJumpTables(MachineBasicBlock
*MBB
) {
1290 bool MadeChange
= false;
1291 for (MachineJumpTableEntry
&JTE
: JumpTables
) {
1292 auto removeBeginItr
= std::remove(JTE
.MBBs
.begin(), JTE
.MBBs
.end(), MBB
);
1293 MadeChange
|= (removeBeginItr
!= JTE
.MBBs
.end());
1294 JTE
.MBBs
.erase(removeBeginItr
, JTE
.MBBs
.end());
1299 /// If Old is a target of the jump tables, update the jump table to branch to
1301 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx
,
1302 MachineBasicBlock
*Old
,
1303 MachineBasicBlock
*New
) {
1304 assert(Old
!= New
&& "Not making a change?");
1305 bool MadeChange
= false;
1306 MachineJumpTableEntry
&JTE
= JumpTables
[Idx
];
1307 for (size_t j
= 0, e
= JTE
.MBBs
.size(); j
!= e
; ++j
)
1308 if (JTE
.MBBs
[j
] == Old
) {
1315 void MachineJumpTableInfo::print(raw_ostream
&OS
) const {
1316 if (JumpTables
.empty()) return;
1318 OS
<< "Jump Tables:\n";
1320 for (unsigned i
= 0, e
= JumpTables
.size(); i
!= e
; ++i
) {
1321 OS
<< printJumpTableEntryReference(i
) << ':';
1322 for (unsigned j
= 0, f
= JumpTables
[i
].MBBs
.size(); j
!= f
; ++j
)
1323 OS
<< ' ' << printMBBReference(*JumpTables
[i
].MBBs
[j
]);
1331 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1332 LLVM_DUMP_METHOD
void MachineJumpTableInfo::dump() const { print(dbgs()); }
1335 Printable
llvm::printJumpTableEntryReference(unsigned Idx
) {
1336 return Printable([Idx
](raw_ostream
&OS
) { OS
<< "%jump-table." << Idx
; });
1339 //===----------------------------------------------------------------------===//
1340 // MachineConstantPool implementation
1341 //===----------------------------------------------------------------------===//
1343 void MachineConstantPoolValue::anchor() {}
1345 unsigned MachineConstantPoolValue::getSizeInBytes(const DataLayout
&DL
) const {
1346 return DL
.getTypeAllocSize(Ty
);
1349 unsigned MachineConstantPoolEntry::getSizeInBytes(const DataLayout
&DL
) const {
1350 if (isMachineConstantPoolEntry())
1351 return Val
.MachineCPVal
->getSizeInBytes(DL
);
1352 return DL
.getTypeAllocSize(Val
.ConstVal
->getType());
1355 bool MachineConstantPoolEntry::needsRelocation() const {
1356 if (isMachineConstantPoolEntry())
1358 return Val
.ConstVal
->needsDynamicRelocation();
1362 MachineConstantPoolEntry::getSectionKind(const DataLayout
*DL
) const {
1363 if (needsRelocation())
1364 return SectionKind::getReadOnlyWithRel();
1365 switch (getSizeInBytes(*DL
)) {
1367 return SectionKind::getMergeableConst4();
1369 return SectionKind::getMergeableConst8();
1371 return SectionKind::getMergeableConst16();
1373 return SectionKind::getMergeableConst32();
1375 return SectionKind::getReadOnly();
1379 MachineConstantPool::~MachineConstantPool() {
1380 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1381 // so keep track of which we've deleted to avoid double deletions.
1382 DenseSet
<MachineConstantPoolValue
*> Deleted
;
1383 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1384 if (Constants
[i
].isMachineConstantPoolEntry()) {
1385 Deleted
.insert(Constants
[i
].Val
.MachineCPVal
);
1386 delete Constants
[i
].Val
.MachineCPVal
;
1388 for (MachineConstantPoolValue
*CPV
: MachineCPVsSharingEntries
) {
1389 if (Deleted
.count(CPV
) == 0)
1394 /// Test whether the given two constants can be allocated the same constant pool
1396 static bool CanShareConstantPoolEntry(const Constant
*A
, const Constant
*B
,
1397 const DataLayout
&DL
) {
1398 // Handle the trivial case quickly.
1399 if (A
== B
) return true;
1401 // If they have the same type but weren't the same constant, quickly
1403 if (A
->getType() == B
->getType()) return false;
1405 // We can't handle structs or arrays.
1406 if (isa
<StructType
>(A
->getType()) || isa
<ArrayType
>(A
->getType()) ||
1407 isa
<StructType
>(B
->getType()) || isa
<ArrayType
>(B
->getType()))
1410 // For now, only support constants with the same size.
1411 uint64_t StoreSize
= DL
.getTypeStoreSize(A
->getType());
1412 if (StoreSize
!= DL
.getTypeStoreSize(B
->getType()) || StoreSize
> 128)
1415 Type
*IntTy
= IntegerType::get(A
->getContext(), StoreSize
*8);
1417 // Try constant folding a bitcast of both instructions to an integer. If we
1418 // get two identical ConstantInt's, then we are good to share them. We use
1419 // the constant folding APIs to do this so that we get the benefit of
1421 if (isa
<PointerType
>(A
->getType()))
1422 A
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1423 const_cast<Constant
*>(A
), IntTy
, DL
);
1424 else if (A
->getType() != IntTy
)
1425 A
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(A
),
1427 if (isa
<PointerType
>(B
->getType()))
1428 B
= ConstantFoldCastOperand(Instruction::PtrToInt
,
1429 const_cast<Constant
*>(B
), IntTy
, DL
);
1430 else if (B
->getType() != IntTy
)
1431 B
= ConstantFoldCastOperand(Instruction::BitCast
, const_cast<Constant
*>(B
),
1437 /// Create a new entry in the constant pool or return an existing one.
1438 /// User must specify the log2 of the minimum required alignment for the object.
1439 unsigned MachineConstantPool::getConstantPoolIndex(const Constant
*C
,
1441 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1443 // Check to see if we already have this constant.
1445 // FIXME, this could be made much more efficient for large constant pools.
1446 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
)
1447 if (!Constants
[i
].isMachineConstantPoolEntry() &&
1448 CanShareConstantPoolEntry(Constants
[i
].Val
.ConstVal
, C
, DL
)) {
1449 if (Constants
[i
].getAlign() < Alignment
)
1450 Constants
[i
].Alignment
= Alignment
;
1454 Constants
.push_back(MachineConstantPoolEntry(C
, Alignment
));
1455 return Constants
.size()-1;
1458 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue
*V
,
1460 if (Alignment
> PoolAlignment
) PoolAlignment
= Alignment
;
1462 // Check to see if we already have this constant.
1464 // FIXME, this could be made much more efficient for large constant pools.
1465 int Idx
= V
->getExistingMachineCPValue(this, Alignment
);
1467 MachineCPVsSharingEntries
.insert(V
);
1468 return (unsigned)Idx
;
1471 Constants
.push_back(MachineConstantPoolEntry(V
, Alignment
));
1472 return Constants
.size()-1;
1475 void MachineConstantPool::print(raw_ostream
&OS
) const {
1476 if (Constants
.empty()) return;
1478 OS
<< "Constant Pool:\n";
1479 for (unsigned i
= 0, e
= Constants
.size(); i
!= e
; ++i
) {
1480 OS
<< " cp#" << i
<< ": ";
1481 if (Constants
[i
].isMachineConstantPoolEntry())
1482 Constants
[i
].Val
.MachineCPVal
->print(OS
);
1484 Constants
[i
].Val
.ConstVal
->printAsOperand(OS
, /*PrintType=*/false);
1485 OS
<< ", align=" << Constants
[i
].getAlign().value();
1490 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1491 LLVM_DUMP_METHOD
void MachineConstantPool::dump() const { print(dbgs()); }