[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineLICM.cpp
blob42708659c79e1602e49969d36c16c7c756e6c529
1 //===- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass performs loop invariant code motion on machine instructions. We
10 // attempt to remove as much code from the body of a loop as possible.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for the LLVM-IR-level LICM pass. It is only designed to hoist simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineMemOperand.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/PseudoSourceValue.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSchedule.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCInstrDesc.h"
45 #include "llvm/MC/MCRegister.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <limits>
55 #include <vector>
57 using namespace llvm;
59 #define DEBUG_TYPE "machinelicm"
61 static cl::opt<bool>
62 AvoidSpeculation("avoid-speculation",
63 cl::desc("MachineLICM should avoid speculation"),
64 cl::init(true), cl::Hidden);
66 static cl::opt<bool>
67 HoistCheapInsts("hoist-cheap-insts",
68 cl::desc("MachineLICM should hoist even cheap instructions"),
69 cl::init(false), cl::Hidden);
71 static cl::opt<bool>
72 HoistConstStores("hoist-const-stores",
73 cl::desc("Hoist invariant stores"),
74 cl::init(true), cl::Hidden);
75 // The default threshold of 100 (i.e. if target block is 100 times hotter)
76 // is based on empirical data on a single target and is subject to tuning.
77 static cl::opt<unsigned>
78 BlockFrequencyRatioThreshold("block-freq-ratio-threshold",
79 cl::desc("Do not hoist instructions if target"
80 "block is N times hotter than the source."),
81 cl::init(100), cl::Hidden);
83 enum class UseBFI { None, PGO, All };
85 static cl::opt<UseBFI>
86 DisableHoistingToHotterBlocks("disable-hoisting-to-hotter-blocks",
87 cl::desc("Disable hoisting instructions to"
88 " hotter blocks"),
89 cl::init(UseBFI::PGO), cl::Hidden,
90 cl::values(clEnumValN(UseBFI::None, "none",
91 "disable the feature"),
92 clEnumValN(UseBFI::PGO, "pgo",
93 "enable the feature when using profile data"),
94 clEnumValN(UseBFI::All, "all",
95 "enable the feature with/wo profile data")));
97 STATISTIC(NumHoisted,
98 "Number of machine instructions hoisted out of loops");
99 STATISTIC(NumLowRP,
100 "Number of instructions hoisted in low reg pressure situation");
101 STATISTIC(NumHighLatency,
102 "Number of high latency instructions hoisted");
103 STATISTIC(NumCSEed,
104 "Number of hoisted machine instructions CSEed");
105 STATISTIC(NumPostRAHoisted,
106 "Number of machine instructions hoisted out of loops post regalloc");
107 STATISTIC(NumStoreConst,
108 "Number of stores of const phys reg hoisted out of loops");
109 STATISTIC(NumNotHoistedDueToHotness,
110 "Number of instructions not hoisted due to block frequency");
112 namespace {
114 class MachineLICMBase : public MachineFunctionPass {
115 const TargetInstrInfo *TII;
116 const TargetLoweringBase *TLI;
117 const TargetRegisterInfo *TRI;
118 const MachineFrameInfo *MFI;
119 MachineRegisterInfo *MRI;
120 TargetSchedModel SchedModel;
121 bool PreRegAlloc;
122 bool HasProfileData;
124 // Various analyses that we use...
125 AliasAnalysis *AA; // Alias analysis info.
126 MachineBlockFrequencyInfo *MBFI; // Machine block frequncy info
127 MachineLoopInfo *MLI; // Current MachineLoopInfo
128 MachineDominatorTree *DT; // Machine dominator tree for the cur loop
130 // State that is updated as we process loops
131 bool Changed; // True if a loop is changed.
132 bool FirstInLoop; // True if it's the first LICM in the loop.
133 MachineLoop *CurLoop; // The current loop we are working on.
134 MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
136 // Exit blocks for CurLoop.
137 SmallVector<MachineBasicBlock *, 8> ExitBlocks;
139 bool isExitBlock(const MachineBasicBlock *MBB) const {
140 return is_contained(ExitBlocks, MBB);
143 // Track 'estimated' register pressure.
144 SmallSet<Register, 32> RegSeen;
145 SmallVector<unsigned, 8> RegPressure;
147 // Register pressure "limit" per register pressure set. If the pressure
148 // is higher than the limit, then it's considered high.
149 SmallVector<unsigned, 8> RegLimit;
151 // Register pressure on path leading from loop preheader to current BB.
152 SmallVector<SmallVector<unsigned, 8>, 16> BackTrace;
154 // For each opcode, keep a list of potential CSE instructions.
155 DenseMap<unsigned, std::vector<MachineInstr *>> CSEMap;
157 enum {
158 SpeculateFalse = 0,
159 SpeculateTrue = 1,
160 SpeculateUnknown = 2
163 // If a MBB does not dominate loop exiting blocks then it may not safe
164 // to hoist loads from this block.
165 // Tri-state: 0 - false, 1 - true, 2 - unknown
166 unsigned SpeculationState;
168 public:
169 MachineLICMBase(char &PassID, bool PreRegAlloc)
170 : MachineFunctionPass(PassID), PreRegAlloc(PreRegAlloc) {}
172 bool runOnMachineFunction(MachineFunction &MF) override;
174 void getAnalysisUsage(AnalysisUsage &AU) const override {
175 AU.addRequired<MachineLoopInfo>();
176 if (DisableHoistingToHotterBlocks != UseBFI::None)
177 AU.addRequired<MachineBlockFrequencyInfo>();
178 AU.addRequired<MachineDominatorTree>();
179 AU.addRequired<AAResultsWrapperPass>();
180 AU.addPreserved<MachineLoopInfo>();
181 MachineFunctionPass::getAnalysisUsage(AU);
184 void releaseMemory() override {
185 RegSeen.clear();
186 RegPressure.clear();
187 RegLimit.clear();
188 BackTrace.clear();
189 CSEMap.clear();
192 private:
193 /// Keep track of information about hoisting candidates.
194 struct CandidateInfo {
195 MachineInstr *MI;
196 unsigned Def;
197 int FI;
199 CandidateInfo(MachineInstr *mi, unsigned def, int fi)
200 : MI(mi), Def(def), FI(fi) {}
203 void HoistRegionPostRA();
205 void HoistPostRA(MachineInstr *MI, unsigned Def);
207 void ProcessMI(MachineInstr *MI, BitVector &PhysRegDefs,
208 BitVector &PhysRegClobbers, SmallSet<int, 32> &StoredFIs,
209 SmallVectorImpl<CandidateInfo> &Candidates);
211 void AddToLiveIns(MCRegister Reg);
213 bool IsLICMCandidate(MachineInstr &I);
215 bool IsLoopInvariantInst(MachineInstr &I);
217 bool HasLoopPHIUse(const MachineInstr *MI) const;
219 bool HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
220 Register Reg) const;
222 bool IsCheapInstruction(MachineInstr &MI) const;
224 bool CanCauseHighRegPressure(const DenseMap<unsigned, int> &Cost,
225 bool Cheap);
227 void UpdateBackTraceRegPressure(const MachineInstr *MI);
229 bool IsProfitableToHoist(MachineInstr &MI);
231 bool IsGuaranteedToExecute(MachineBasicBlock *BB);
233 bool isTriviallyReMaterializable(const MachineInstr &MI,
234 AAResults *AA) const;
236 void EnterScope(MachineBasicBlock *MBB);
238 void ExitScope(MachineBasicBlock *MBB);
240 void ExitScopeIfDone(
241 MachineDomTreeNode *Node,
242 DenseMap<MachineDomTreeNode *, unsigned> &OpenChildren,
243 DenseMap<MachineDomTreeNode *, MachineDomTreeNode *> &ParentMap);
245 void HoistOutOfLoop(MachineDomTreeNode *HeaderN);
247 void InitRegPressure(MachineBasicBlock *BB);
249 DenseMap<unsigned, int> calcRegisterCost(const MachineInstr *MI,
250 bool ConsiderSeen,
251 bool ConsiderUnseenAsDef);
253 void UpdateRegPressure(const MachineInstr *MI,
254 bool ConsiderUnseenAsDef = false);
256 MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
258 MachineInstr *LookForDuplicate(const MachineInstr *MI,
259 std::vector<MachineInstr *> &PrevMIs);
261 bool
262 EliminateCSE(MachineInstr *MI,
263 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI);
265 bool MayCSE(MachineInstr *MI);
267 bool Hoist(MachineInstr *MI, MachineBasicBlock *Preheader);
269 void InitCSEMap(MachineBasicBlock *BB);
271 bool isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
272 MachineBasicBlock *TgtBlock);
273 MachineBasicBlock *getCurPreheader();
276 class MachineLICM : public MachineLICMBase {
277 public:
278 static char ID;
279 MachineLICM() : MachineLICMBase(ID, false) {
280 initializeMachineLICMPass(*PassRegistry::getPassRegistry());
284 class EarlyMachineLICM : public MachineLICMBase {
285 public:
286 static char ID;
287 EarlyMachineLICM() : MachineLICMBase(ID, true) {
288 initializeEarlyMachineLICMPass(*PassRegistry::getPassRegistry());
292 } // end anonymous namespace
294 char MachineLICM::ID;
295 char EarlyMachineLICM::ID;
297 char &llvm::MachineLICMID = MachineLICM::ID;
298 char &llvm::EarlyMachineLICMID = EarlyMachineLICM::ID;
300 INITIALIZE_PASS_BEGIN(MachineLICM, DEBUG_TYPE,
301 "Machine Loop Invariant Code Motion", false, false)
302 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
303 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
304 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
305 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
306 INITIALIZE_PASS_END(MachineLICM, DEBUG_TYPE,
307 "Machine Loop Invariant Code Motion", false, false)
309 INITIALIZE_PASS_BEGIN(EarlyMachineLICM, "early-machinelicm",
310 "Early Machine Loop Invariant Code Motion", false, false)
311 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
312 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
313 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
314 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
315 INITIALIZE_PASS_END(EarlyMachineLICM, "early-machinelicm",
316 "Early Machine Loop Invariant Code Motion", false, false)
318 /// Test if the given loop is the outer-most loop that has a unique predecessor.
319 static bool LoopIsOuterMostWithPredecessor(MachineLoop *CurLoop) {
320 // Check whether this loop even has a unique predecessor.
321 if (!CurLoop->getLoopPredecessor())
322 return false;
323 // Ok, now check to see if any of its outer loops do.
324 for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
325 if (L->getLoopPredecessor())
326 return false;
327 // None of them did, so this is the outermost with a unique predecessor.
328 return true;
331 bool MachineLICMBase::runOnMachineFunction(MachineFunction &MF) {
332 if (skipFunction(MF.getFunction()))
333 return false;
335 Changed = FirstInLoop = false;
336 const TargetSubtargetInfo &ST = MF.getSubtarget();
337 TII = ST.getInstrInfo();
338 TLI = ST.getTargetLowering();
339 TRI = ST.getRegisterInfo();
340 MFI = &MF.getFrameInfo();
341 MRI = &MF.getRegInfo();
342 SchedModel.init(&ST);
344 PreRegAlloc = MRI->isSSA();
345 HasProfileData = MF.getFunction().hasProfileData();
347 if (PreRegAlloc)
348 LLVM_DEBUG(dbgs() << "******** Pre-regalloc Machine LICM: ");
349 else
350 LLVM_DEBUG(dbgs() << "******** Post-regalloc Machine LICM: ");
351 LLVM_DEBUG(dbgs() << MF.getName() << " ********\n");
353 if (PreRegAlloc) {
354 // Estimate register pressure during pre-regalloc pass.
355 unsigned NumRPS = TRI->getNumRegPressureSets();
356 RegPressure.resize(NumRPS);
357 std::fill(RegPressure.begin(), RegPressure.end(), 0);
358 RegLimit.resize(NumRPS);
359 for (unsigned i = 0, e = NumRPS; i != e; ++i)
360 RegLimit[i] = TRI->getRegPressureSetLimit(MF, i);
363 // Get our Loop information...
364 if (DisableHoistingToHotterBlocks != UseBFI::None)
365 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
366 MLI = &getAnalysis<MachineLoopInfo>();
367 DT = &getAnalysis<MachineDominatorTree>();
368 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
370 SmallVector<MachineLoop *, 8> Worklist(MLI->begin(), MLI->end());
371 while (!Worklist.empty()) {
372 CurLoop = Worklist.pop_back_val();
373 CurPreheader = nullptr;
374 ExitBlocks.clear();
376 // If this is done before regalloc, only visit outer-most preheader-sporting
377 // loops.
378 if (PreRegAlloc && !LoopIsOuterMostWithPredecessor(CurLoop)) {
379 Worklist.append(CurLoop->begin(), CurLoop->end());
380 continue;
383 CurLoop->getExitBlocks(ExitBlocks);
385 if (!PreRegAlloc)
386 HoistRegionPostRA();
387 else {
388 // CSEMap is initialized for loop header when the first instruction is
389 // being hoisted.
390 MachineDomTreeNode *N = DT->getNode(CurLoop->getHeader());
391 FirstInLoop = true;
392 HoistOutOfLoop(N);
393 CSEMap.clear();
397 return Changed;
400 /// Return true if instruction stores to the specified frame.
401 static bool InstructionStoresToFI(const MachineInstr *MI, int FI) {
402 // Check mayStore before memory operands so that e.g. DBG_VALUEs will return
403 // true since they have no memory operands.
404 if (!MI->mayStore())
405 return false;
406 // If we lost memory operands, conservatively assume that the instruction
407 // writes to all slots.
408 if (MI->memoperands_empty())
409 return true;
410 for (const MachineMemOperand *MemOp : MI->memoperands()) {
411 if (!MemOp->isStore() || !MemOp->getPseudoValue())
412 continue;
413 if (const FixedStackPseudoSourceValue *Value =
414 dyn_cast<FixedStackPseudoSourceValue>(MemOp->getPseudoValue())) {
415 if (Value->getFrameIndex() == FI)
416 return true;
419 return false;
422 /// Examine the instruction for potentai LICM candidate. Also
423 /// gather register def and frame object update information.
424 void MachineLICMBase::ProcessMI(MachineInstr *MI,
425 BitVector &PhysRegDefs,
426 BitVector &PhysRegClobbers,
427 SmallSet<int, 32> &StoredFIs,
428 SmallVectorImpl<CandidateInfo> &Candidates) {
429 bool RuledOut = false;
430 bool HasNonInvariantUse = false;
431 unsigned Def = 0;
432 for (const MachineOperand &MO : MI->operands()) {
433 if (MO.isFI()) {
434 // Remember if the instruction stores to the frame index.
435 int FI = MO.getIndex();
436 if (!StoredFIs.count(FI) &&
437 MFI->isSpillSlotObjectIndex(FI) &&
438 InstructionStoresToFI(MI, FI))
439 StoredFIs.insert(FI);
440 HasNonInvariantUse = true;
441 continue;
444 // We can't hoist an instruction defining a physreg that is clobbered in
445 // the loop.
446 if (MO.isRegMask()) {
447 PhysRegClobbers.setBitsNotInMask(MO.getRegMask());
448 continue;
451 if (!MO.isReg())
452 continue;
453 Register Reg = MO.getReg();
454 if (!Reg)
455 continue;
456 assert(Register::isPhysicalRegister(Reg) &&
457 "Not expecting virtual register!");
459 if (!MO.isDef()) {
460 if (Reg && (PhysRegDefs.test(Reg) || PhysRegClobbers.test(Reg)))
461 // If it's using a non-loop-invariant register, then it's obviously not
462 // safe to hoist.
463 HasNonInvariantUse = true;
464 continue;
467 if (MO.isImplicit()) {
468 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
469 PhysRegClobbers.set(*AI);
470 if (!MO.isDead())
471 // Non-dead implicit def? This cannot be hoisted.
472 RuledOut = true;
473 // No need to check if a dead implicit def is also defined by
474 // another instruction.
475 continue;
478 // FIXME: For now, avoid instructions with multiple defs, unless
479 // it's a dead implicit def.
480 if (Def)
481 RuledOut = true;
482 else
483 Def = Reg;
485 // If we have already seen another instruction that defines the same
486 // register, then this is not safe. Two defs is indicated by setting a
487 // PhysRegClobbers bit.
488 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS) {
489 if (PhysRegDefs.test(*AS))
490 PhysRegClobbers.set(*AS);
492 // Need a second loop because MCRegAliasIterator can visit the same
493 // register twice.
494 for (MCRegAliasIterator AS(Reg, TRI, true); AS.isValid(); ++AS)
495 PhysRegDefs.set(*AS);
497 if (PhysRegClobbers.test(Reg))
498 // MI defined register is seen defined by another instruction in
499 // the loop, it cannot be a LICM candidate.
500 RuledOut = true;
503 // Only consider reloads for now and remats which do not have register
504 // operands. FIXME: Consider unfold load folding instructions.
505 if (Def && !RuledOut) {
506 int FI = std::numeric_limits<int>::min();
507 if ((!HasNonInvariantUse && IsLICMCandidate(*MI)) ||
508 (TII->isLoadFromStackSlot(*MI, FI) && MFI->isSpillSlotObjectIndex(FI)))
509 Candidates.push_back(CandidateInfo(MI, Def, FI));
513 /// Walk the specified region of the CFG and hoist loop invariants out to the
514 /// preheader.
515 void MachineLICMBase::HoistRegionPostRA() {
516 MachineBasicBlock *Preheader = getCurPreheader();
517 if (!Preheader)
518 return;
520 unsigned NumRegs = TRI->getNumRegs();
521 BitVector PhysRegDefs(NumRegs); // Regs defined once in the loop.
522 BitVector PhysRegClobbers(NumRegs); // Regs defined more than once.
524 SmallVector<CandidateInfo, 32> Candidates;
525 SmallSet<int, 32> StoredFIs;
527 // Walk the entire region, count number of defs for each register, and
528 // collect potential LICM candidates.
529 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
530 // If the header of the loop containing this basic block is a landing pad,
531 // then don't try to hoist instructions out of this loop.
532 const MachineLoop *ML = MLI->getLoopFor(BB);
533 if (ML && ML->getHeader()->isEHPad()) continue;
535 // Conservatively treat live-in's as an external def.
536 // FIXME: That means a reload that're reused in successor block(s) will not
537 // be LICM'ed.
538 for (const auto &LI : BB->liveins()) {
539 for (MCRegAliasIterator AI(LI.PhysReg, TRI, true); AI.isValid(); ++AI)
540 PhysRegDefs.set(*AI);
543 SpeculationState = SpeculateUnknown;
544 for (MachineInstr &MI : *BB)
545 ProcessMI(&MI, PhysRegDefs, PhysRegClobbers, StoredFIs, Candidates);
548 // Gather the registers read / clobbered by the terminator.
549 BitVector TermRegs(NumRegs);
550 MachineBasicBlock::iterator TI = Preheader->getFirstTerminator();
551 if (TI != Preheader->end()) {
552 for (const MachineOperand &MO : TI->operands()) {
553 if (!MO.isReg())
554 continue;
555 Register Reg = MO.getReg();
556 if (!Reg)
557 continue;
558 for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
559 TermRegs.set(*AI);
563 // Now evaluate whether the potential candidates qualify.
564 // 1. Check if the candidate defined register is defined by another
565 // instruction in the loop.
566 // 2. If the candidate is a load from stack slot (always true for now),
567 // check if the slot is stored anywhere in the loop.
568 // 3. Make sure candidate def should not clobber
569 // registers read by the terminator. Similarly its def should not be
570 // clobbered by the terminator.
571 for (CandidateInfo &Candidate : Candidates) {
572 if (Candidate.FI != std::numeric_limits<int>::min() &&
573 StoredFIs.count(Candidate.FI))
574 continue;
576 unsigned Def = Candidate.Def;
577 if (!PhysRegClobbers.test(Def) && !TermRegs.test(Def)) {
578 bool Safe = true;
579 MachineInstr *MI = Candidate.MI;
580 for (const MachineOperand &MO : MI->operands()) {
581 if (!MO.isReg() || MO.isDef() || !MO.getReg())
582 continue;
583 Register Reg = MO.getReg();
584 if (PhysRegDefs.test(Reg) ||
585 PhysRegClobbers.test(Reg)) {
586 // If it's using a non-loop-invariant register, then it's obviously
587 // not safe to hoist.
588 Safe = false;
589 break;
592 if (Safe)
593 HoistPostRA(MI, Candidate.Def);
598 /// Add register 'Reg' to the livein sets of BBs in the current loop, and make
599 /// sure it is not killed by any instructions in the loop.
600 void MachineLICMBase::AddToLiveIns(MCRegister Reg) {
601 for (MachineBasicBlock *BB : CurLoop->getBlocks()) {
602 if (!BB->isLiveIn(Reg))
603 BB->addLiveIn(Reg);
604 for (MachineInstr &MI : *BB) {
605 for (MachineOperand &MO : MI.operands()) {
606 if (!MO.isReg() || !MO.getReg() || MO.isDef()) continue;
607 if (MO.getReg() == Reg || TRI->isSuperRegister(Reg, MO.getReg()))
608 MO.setIsKill(false);
614 /// When an instruction is found to only use loop invariant operands that is
615 /// safe to hoist, this instruction is called to do the dirty work.
616 void MachineLICMBase::HoistPostRA(MachineInstr *MI, unsigned Def) {
617 MachineBasicBlock *Preheader = getCurPreheader();
619 // Now move the instructions to the predecessor, inserting it before any
620 // terminator instructions.
621 LLVM_DEBUG(dbgs() << "Hoisting to " << printMBBReference(*Preheader)
622 << " from " << printMBBReference(*MI->getParent()) << ": "
623 << *MI);
625 // Splice the instruction to the preheader.
626 MachineBasicBlock *MBB = MI->getParent();
627 Preheader->splice(Preheader->getFirstTerminator(), MBB, MI);
629 // Since we are moving the instruction out of its basic block, we do not
630 // retain its debug location. Doing so would degrade the debugging
631 // experience and adversely affect the accuracy of profiling information.
632 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
633 MI->setDebugLoc(DebugLoc());
635 // Add register to livein list to all the BBs in the current loop since a
636 // loop invariant must be kept live throughout the whole loop. This is
637 // important to ensure later passes do not scavenge the def register.
638 AddToLiveIns(Def);
640 ++NumPostRAHoisted;
641 Changed = true;
644 /// Check if this mbb is guaranteed to execute. If not then a load from this mbb
645 /// may not be safe to hoist.
646 bool MachineLICMBase::IsGuaranteedToExecute(MachineBasicBlock *BB) {
647 if (SpeculationState != SpeculateUnknown)
648 return SpeculationState == SpeculateFalse;
650 if (BB != CurLoop->getHeader()) {
651 // Check loop exiting blocks.
652 SmallVector<MachineBasicBlock*, 8> CurrentLoopExitingBlocks;
653 CurLoop->getExitingBlocks(CurrentLoopExitingBlocks);
654 for (MachineBasicBlock *CurrentLoopExitingBlock : CurrentLoopExitingBlocks)
655 if (!DT->dominates(BB, CurrentLoopExitingBlock)) {
656 SpeculationState = SpeculateTrue;
657 return false;
661 SpeculationState = SpeculateFalse;
662 return true;
665 /// Check if \p MI is trivially remateralizable and if it does not have any
666 /// virtual register uses. Even though rematerializable RA might not actually
667 /// rematerialize it in this scenario. In that case we do not want to hoist such
668 /// instruction out of the loop in a belief RA will sink it back if needed.
669 bool MachineLICMBase::isTriviallyReMaterializable(const MachineInstr &MI,
670 AAResults *AA) const {
671 if (!TII->isTriviallyReMaterializable(MI, AA))
672 return false;
674 for (const MachineOperand &MO : MI.operands()) {
675 if (MO.isReg() && MO.isUse() && MO.getReg().isVirtual())
676 return false;
679 return true;
682 void MachineLICMBase::EnterScope(MachineBasicBlock *MBB) {
683 LLVM_DEBUG(dbgs() << "Entering " << printMBBReference(*MBB) << '\n');
685 // Remember livein register pressure.
686 BackTrace.push_back(RegPressure);
689 void MachineLICMBase::ExitScope(MachineBasicBlock *MBB) {
690 LLVM_DEBUG(dbgs() << "Exiting " << printMBBReference(*MBB) << '\n');
691 BackTrace.pop_back();
694 /// Destroy scope for the MBB that corresponds to the given dominator tree node
695 /// if its a leaf or all of its children are done. Walk up the dominator tree to
696 /// destroy ancestors which are now done.
697 void MachineLICMBase::ExitScopeIfDone(MachineDomTreeNode *Node,
698 DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren,
699 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> &ParentMap) {
700 if (OpenChildren[Node])
701 return;
703 // Pop scope.
704 ExitScope(Node->getBlock());
706 // Now traverse upwards to pop ancestors whose offsprings are all done.
707 while (MachineDomTreeNode *Parent = ParentMap[Node]) {
708 unsigned Left = --OpenChildren[Parent];
709 if (Left != 0)
710 break;
711 ExitScope(Parent->getBlock());
712 Node = Parent;
716 /// Walk the specified loop in the CFG (defined by all blocks dominated by the
717 /// specified header block, and that are in the current loop) in depth first
718 /// order w.r.t the DominatorTree. This allows us to visit definitions before
719 /// uses, allowing us to hoist a loop body in one pass without iteration.
720 void MachineLICMBase::HoistOutOfLoop(MachineDomTreeNode *HeaderN) {
721 MachineBasicBlock *Preheader = getCurPreheader();
722 if (!Preheader)
723 return;
725 SmallVector<MachineDomTreeNode*, 32> Scopes;
726 SmallVector<MachineDomTreeNode*, 8> WorkList;
727 DenseMap<MachineDomTreeNode*, MachineDomTreeNode*> ParentMap;
728 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
730 // Perform a DFS walk to determine the order of visit.
731 WorkList.push_back(HeaderN);
732 while (!WorkList.empty()) {
733 MachineDomTreeNode *Node = WorkList.pop_back_val();
734 assert(Node && "Null dominator tree node?");
735 MachineBasicBlock *BB = Node->getBlock();
737 // If the header of the loop containing this basic block is a landing pad,
738 // then don't try to hoist instructions out of this loop.
739 const MachineLoop *ML = MLI->getLoopFor(BB);
740 if (ML && ML->getHeader()->isEHPad())
741 continue;
743 // If this subregion is not in the top level loop at all, exit.
744 if (!CurLoop->contains(BB))
745 continue;
747 Scopes.push_back(Node);
748 unsigned NumChildren = Node->getNumChildren();
750 // Don't hoist things out of a large switch statement. This often causes
751 // code to be hoisted that wasn't going to be executed, and increases
752 // register pressure in a situation where it's likely to matter.
753 if (BB->succ_size() >= 25)
754 NumChildren = 0;
756 OpenChildren[Node] = NumChildren;
757 if (NumChildren) {
758 // Add children in reverse order as then the next popped worklist node is
759 // the first child of this node. This means we ultimately traverse the
760 // DOM tree in exactly the same order as if we'd recursed.
761 for (MachineDomTreeNode *Child : reverse(Node->children())) {
762 ParentMap[Child] = Node;
763 WorkList.push_back(Child);
768 if (Scopes.size() == 0)
769 return;
771 // Compute registers which are livein into the loop headers.
772 RegSeen.clear();
773 BackTrace.clear();
774 InitRegPressure(Preheader);
776 // Now perform LICM.
777 for (MachineDomTreeNode *Node : Scopes) {
778 MachineBasicBlock *MBB = Node->getBlock();
780 EnterScope(MBB);
782 // Process the block
783 SpeculationState = SpeculateUnknown;
784 for (MachineBasicBlock::iterator
785 MII = MBB->begin(), E = MBB->end(); MII != E; ) {
786 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
787 MachineInstr *MI = &*MII;
788 if (!Hoist(MI, Preheader))
789 UpdateRegPressure(MI);
790 // If we have hoisted an instruction that may store, it can only be a
791 // constant store.
792 MII = NextMII;
795 // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
796 ExitScopeIfDone(Node, OpenChildren, ParentMap);
800 static bool isOperandKill(const MachineOperand &MO, MachineRegisterInfo *MRI) {
801 return MO.isKill() || MRI->hasOneNonDBGUse(MO.getReg());
804 /// Find all virtual register references that are liveout of the preheader to
805 /// initialize the starting "register pressure". Note this does not count live
806 /// through (livein but not used) registers.
807 void MachineLICMBase::InitRegPressure(MachineBasicBlock *BB) {
808 std::fill(RegPressure.begin(), RegPressure.end(), 0);
810 // If the preheader has only a single predecessor and it ends with a
811 // fallthrough or an unconditional branch, then scan its predecessor for live
812 // defs as well. This happens whenever the preheader is created by splitting
813 // the critical edge from the loop predecessor to the loop header.
814 if (BB->pred_size() == 1) {
815 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
816 SmallVector<MachineOperand, 4> Cond;
817 if (!TII->analyzeBranch(*BB, TBB, FBB, Cond, false) && Cond.empty())
818 InitRegPressure(*BB->pred_begin());
821 for (const MachineInstr &MI : *BB)
822 UpdateRegPressure(&MI, /*ConsiderUnseenAsDef=*/true);
825 /// Update estimate of register pressure after the specified instruction.
826 void MachineLICMBase::UpdateRegPressure(const MachineInstr *MI,
827 bool ConsiderUnseenAsDef) {
828 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/true, ConsiderUnseenAsDef);
829 for (const auto &RPIdAndCost : Cost) {
830 unsigned Class = RPIdAndCost.first;
831 if (static_cast<int>(RegPressure[Class]) < -RPIdAndCost.second)
832 RegPressure[Class] = 0;
833 else
834 RegPressure[Class] += RPIdAndCost.second;
838 /// Calculate the additional register pressure that the registers used in MI
839 /// cause.
841 /// If 'ConsiderSeen' is true, updates 'RegSeen' and uses the information to
842 /// figure out which usages are live-ins.
843 /// FIXME: Figure out a way to consider 'RegSeen' from all code paths.
844 DenseMap<unsigned, int>
845 MachineLICMBase::calcRegisterCost(const MachineInstr *MI, bool ConsiderSeen,
846 bool ConsiderUnseenAsDef) {
847 DenseMap<unsigned, int> Cost;
848 if (MI->isImplicitDef())
849 return Cost;
850 for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
851 const MachineOperand &MO = MI->getOperand(i);
852 if (!MO.isReg() || MO.isImplicit())
853 continue;
854 Register Reg = MO.getReg();
855 if (!Register::isVirtualRegister(Reg))
856 continue;
858 // FIXME: It seems bad to use RegSeen only for some of these calculations.
859 bool isNew = ConsiderSeen ? RegSeen.insert(Reg).second : false;
860 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
862 RegClassWeight W = TRI->getRegClassWeight(RC);
863 int RCCost = 0;
864 if (MO.isDef())
865 RCCost = W.RegWeight;
866 else {
867 bool isKill = isOperandKill(MO, MRI);
868 if (isNew && !isKill && ConsiderUnseenAsDef)
869 // Haven't seen this, it must be a livein.
870 RCCost = W.RegWeight;
871 else if (!isNew && isKill)
872 RCCost = -W.RegWeight;
874 if (RCCost == 0)
875 continue;
876 const int *PS = TRI->getRegClassPressureSets(RC);
877 for (; *PS != -1; ++PS) {
878 if (Cost.find(*PS) == Cost.end())
879 Cost[*PS] = RCCost;
880 else
881 Cost[*PS] += RCCost;
884 return Cost;
887 /// Return true if this machine instruction loads from global offset table or
888 /// constant pool.
889 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
890 assert(MI.mayLoad() && "Expected MI that loads!");
892 // If we lost memory operands, conservatively assume that the instruction
893 // reads from everything..
894 if (MI.memoperands_empty())
895 return true;
897 for (MachineMemOperand *MemOp : MI.memoperands())
898 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
899 if (PSV->isGOT() || PSV->isConstantPool())
900 return true;
902 return false;
905 // This function iterates through all the operands of the input store MI and
906 // checks that each register operand statisfies isCallerPreservedPhysReg.
907 // This means, the value being stored and the address where it is being stored
908 // is constant throughout the body of the function (not including prologue and
909 // epilogue). When called with an MI that isn't a store, it returns false.
910 // A future improvement can be to check if the store registers are constant
911 // throughout the loop rather than throughout the funtion.
912 static bool isInvariantStore(const MachineInstr &MI,
913 const TargetRegisterInfo *TRI,
914 const MachineRegisterInfo *MRI) {
916 bool FoundCallerPresReg = false;
917 if (!MI.mayStore() || MI.hasUnmodeledSideEffects() ||
918 (MI.getNumOperands() == 0))
919 return false;
921 // Check that all register operands are caller-preserved physical registers.
922 for (const MachineOperand &MO : MI.operands()) {
923 if (MO.isReg()) {
924 Register Reg = MO.getReg();
925 // If operand is a virtual register, check if it comes from a copy of a
926 // physical register.
927 if (Register::isVirtualRegister(Reg))
928 Reg = TRI->lookThruCopyLike(MO.getReg(), MRI);
929 if (Register::isVirtualRegister(Reg))
930 return false;
931 if (!TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *MI.getMF()))
932 return false;
933 else
934 FoundCallerPresReg = true;
935 } else if (!MO.isImm()) {
936 return false;
939 return FoundCallerPresReg;
942 // Return true if the input MI is a copy instruction that feeds an invariant
943 // store instruction. This means that the src of the copy has to satisfy
944 // isCallerPreservedPhysReg and atleast one of it's users should satisfy
945 // isInvariantStore.
946 static bool isCopyFeedingInvariantStore(const MachineInstr &MI,
947 const MachineRegisterInfo *MRI,
948 const TargetRegisterInfo *TRI) {
950 // FIXME: If targets would like to look through instructions that aren't
951 // pure copies, this can be updated to a query.
952 if (!MI.isCopy())
953 return false;
955 const MachineFunction *MF = MI.getMF();
956 // Check that we are copying a constant physical register.
957 Register CopySrcReg = MI.getOperand(1).getReg();
958 if (Register::isVirtualRegister(CopySrcReg))
959 return false;
961 if (!TRI->isCallerPreservedPhysReg(CopySrcReg.asMCReg(), *MF))
962 return false;
964 Register CopyDstReg = MI.getOperand(0).getReg();
965 // Check if any of the uses of the copy are invariant stores.
966 assert(Register::isVirtualRegister(CopyDstReg) &&
967 "copy dst is not a virtual reg");
969 for (MachineInstr &UseMI : MRI->use_instructions(CopyDstReg)) {
970 if (UseMI.mayStore() && isInvariantStore(UseMI, TRI, MRI))
971 return true;
973 return false;
976 /// Returns true if the instruction may be a suitable candidate for LICM.
977 /// e.g. If the instruction is a call, then it's obviously not safe to hoist it.
978 bool MachineLICMBase::IsLICMCandidate(MachineInstr &I) {
979 // Check if it's safe to move the instruction.
980 bool DontMoveAcrossStore = true;
981 if ((!I.isSafeToMove(AA, DontMoveAcrossStore)) &&
982 !(HoistConstStores && isInvariantStore(I, TRI, MRI))) {
983 LLVM_DEBUG(dbgs() << "LICM: Instruction not safe to move.\n");
984 return false;
987 // If it is a load then check if it is guaranteed to execute by making sure
988 // that it dominates all exiting blocks. If it doesn't, then there is a path
989 // out of the loop which does not execute this load, so we can't hoist it.
990 // Loads from constant memory are safe to speculate, for example indexed load
991 // from a jump table.
992 // Stores and side effects are already checked by isSafeToMove.
993 if (I.mayLoad() && !mayLoadFromGOTOrConstantPool(I) &&
994 !IsGuaranteedToExecute(I.getParent())) {
995 LLVM_DEBUG(dbgs() << "LICM: Load not guaranteed to execute.\n");
996 return false;
999 // Convergent attribute has been used on operations that involve inter-thread
1000 // communication which results are implicitly affected by the enclosing
1001 // control flows. It is not safe to hoist or sink such operations across
1002 // control flow.
1003 if (I.isConvergent())
1004 return false;
1006 return true;
1009 /// Returns true if the instruction is loop invariant.
1010 bool MachineLICMBase::IsLoopInvariantInst(MachineInstr &I) {
1011 if (!IsLICMCandidate(I)) {
1012 LLVM_DEBUG(dbgs() << "LICM: Instruction not a LICM candidate\n");
1013 return false;
1015 return CurLoop->isLoopInvariant(I);
1018 /// Return true if the specified instruction is used by a phi node and hoisting
1019 /// it could cause a copy to be inserted.
1020 bool MachineLICMBase::HasLoopPHIUse(const MachineInstr *MI) const {
1021 SmallVector<const MachineInstr*, 8> Work(1, MI);
1022 do {
1023 MI = Work.pop_back_val();
1024 for (const MachineOperand &MO : MI->operands()) {
1025 if (!MO.isReg() || !MO.isDef())
1026 continue;
1027 Register Reg = MO.getReg();
1028 if (!Register::isVirtualRegister(Reg))
1029 continue;
1030 for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
1031 // A PHI may cause a copy to be inserted.
1032 if (UseMI.isPHI()) {
1033 // A PHI inside the loop causes a copy because the live range of Reg is
1034 // extended across the PHI.
1035 if (CurLoop->contains(&UseMI))
1036 return true;
1037 // A PHI in an exit block can cause a copy to be inserted if the PHI
1038 // has multiple predecessors in the loop with different values.
1039 // For now, approximate by rejecting all exit blocks.
1040 if (isExitBlock(UseMI.getParent()))
1041 return true;
1042 continue;
1044 // Look past copies as well.
1045 if (UseMI.isCopy() && CurLoop->contains(&UseMI))
1046 Work.push_back(&UseMI);
1049 } while (!Work.empty());
1050 return false;
1053 /// Compute operand latency between a def of 'Reg' and an use in the current
1054 /// loop, return true if the target considered it high.
1055 bool MachineLICMBase::HasHighOperandLatency(MachineInstr &MI, unsigned DefIdx,
1056 Register Reg) const {
1057 if (MRI->use_nodbg_empty(Reg))
1058 return false;
1060 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(Reg)) {
1061 if (UseMI.isCopyLike())
1062 continue;
1063 if (!CurLoop->contains(UseMI.getParent()))
1064 continue;
1065 for (unsigned i = 0, e = UseMI.getNumOperands(); i != e; ++i) {
1066 const MachineOperand &MO = UseMI.getOperand(i);
1067 if (!MO.isReg() || !MO.isUse())
1068 continue;
1069 Register MOReg = MO.getReg();
1070 if (MOReg != Reg)
1071 continue;
1073 if (TII->hasHighOperandLatency(SchedModel, MRI, MI, DefIdx, UseMI, i))
1074 return true;
1077 // Only look at the first in loop use.
1078 break;
1081 return false;
1084 /// Return true if the instruction is marked "cheap" or the operand latency
1085 /// between its def and a use is one or less.
1086 bool MachineLICMBase::IsCheapInstruction(MachineInstr &MI) const {
1087 if (TII->isAsCheapAsAMove(MI) || MI.isCopyLike())
1088 return true;
1090 bool isCheap = false;
1091 unsigned NumDefs = MI.getDesc().getNumDefs();
1092 for (unsigned i = 0, e = MI.getNumOperands(); NumDefs && i != e; ++i) {
1093 MachineOperand &DefMO = MI.getOperand(i);
1094 if (!DefMO.isReg() || !DefMO.isDef())
1095 continue;
1096 --NumDefs;
1097 Register Reg = DefMO.getReg();
1098 if (Register::isPhysicalRegister(Reg))
1099 continue;
1101 if (!TII->hasLowDefLatency(SchedModel, MI, i))
1102 return false;
1103 isCheap = true;
1106 return isCheap;
1109 /// Visit BBs from header to current BB, check if hoisting an instruction of the
1110 /// given cost matrix can cause high register pressure.
1111 bool
1112 MachineLICMBase::CanCauseHighRegPressure(const DenseMap<unsigned, int>& Cost,
1113 bool CheapInstr) {
1114 for (const auto &RPIdAndCost : Cost) {
1115 if (RPIdAndCost.second <= 0)
1116 continue;
1118 unsigned Class = RPIdAndCost.first;
1119 int Limit = RegLimit[Class];
1121 // Don't hoist cheap instructions if they would increase register pressure,
1122 // even if we're under the limit.
1123 if (CheapInstr && !HoistCheapInsts)
1124 return true;
1126 for (const auto &RP : BackTrace)
1127 if (static_cast<int>(RP[Class]) + RPIdAndCost.second >= Limit)
1128 return true;
1131 return false;
1134 /// Traverse the back trace from header to the current block and update their
1135 /// register pressures to reflect the effect of hoisting MI from the current
1136 /// block to the preheader.
1137 void MachineLICMBase::UpdateBackTraceRegPressure(const MachineInstr *MI) {
1138 // First compute the 'cost' of the instruction, i.e. its contribution
1139 // to register pressure.
1140 auto Cost = calcRegisterCost(MI, /*ConsiderSeen=*/false,
1141 /*ConsiderUnseenAsDef=*/false);
1143 // Update register pressure of blocks from loop header to current block.
1144 for (auto &RP : BackTrace)
1145 for (const auto &RPIdAndCost : Cost)
1146 RP[RPIdAndCost.first] += RPIdAndCost.second;
1149 /// Return true if it is potentially profitable to hoist the given loop
1150 /// invariant.
1151 bool MachineLICMBase::IsProfitableToHoist(MachineInstr &MI) {
1152 if (MI.isImplicitDef())
1153 return true;
1155 // Besides removing computation from the loop, hoisting an instruction has
1156 // these effects:
1158 // - The value defined by the instruction becomes live across the entire
1159 // loop. This increases register pressure in the loop.
1161 // - If the value is used by a PHI in the loop, a copy will be required for
1162 // lowering the PHI after extending the live range.
1164 // - When hoisting the last use of a value in the loop, that value no longer
1165 // needs to be live in the loop. This lowers register pressure in the loop.
1167 if (HoistConstStores && isCopyFeedingInvariantStore(MI, MRI, TRI))
1168 return true;
1170 bool CheapInstr = IsCheapInstruction(MI);
1171 bool CreatesCopy = HasLoopPHIUse(&MI);
1173 // Don't hoist a cheap instruction if it would create a copy in the loop.
1174 if (CheapInstr && CreatesCopy) {
1175 LLVM_DEBUG(dbgs() << "Won't hoist cheap instr with loop PHI use: " << MI);
1176 return false;
1179 // Rematerializable instructions should always be hoisted providing the
1180 // register allocator can just pull them down again when needed.
1181 if (isTriviallyReMaterializable(MI, AA))
1182 return true;
1184 // FIXME: If there are long latency loop-invariant instructions inside the
1185 // loop at this point, why didn't the optimizer's LICM hoist them?
1186 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1187 const MachineOperand &MO = MI.getOperand(i);
1188 if (!MO.isReg() || MO.isImplicit())
1189 continue;
1190 Register Reg = MO.getReg();
1191 if (!Register::isVirtualRegister(Reg))
1192 continue;
1193 if (MO.isDef() && HasHighOperandLatency(MI, i, Reg)) {
1194 LLVM_DEBUG(dbgs() << "Hoist High Latency: " << MI);
1195 ++NumHighLatency;
1196 return true;
1200 // Estimate register pressure to determine whether to LICM the instruction.
1201 // In low register pressure situation, we can be more aggressive about
1202 // hoisting. Also, favors hoisting long latency instructions even in
1203 // moderately high pressure situation.
1204 // Cheap instructions will only be hoisted if they don't increase register
1205 // pressure at all.
1206 auto Cost = calcRegisterCost(&MI, /*ConsiderSeen=*/false,
1207 /*ConsiderUnseenAsDef=*/false);
1209 // Visit BBs from header to current BB, if hoisting this doesn't cause
1210 // high register pressure, then it's safe to proceed.
1211 if (!CanCauseHighRegPressure(Cost, CheapInstr)) {
1212 LLVM_DEBUG(dbgs() << "Hoist non-reg-pressure: " << MI);
1213 ++NumLowRP;
1214 return true;
1217 // Don't risk increasing register pressure if it would create copies.
1218 if (CreatesCopy) {
1219 LLVM_DEBUG(dbgs() << "Won't hoist instr with loop PHI use: " << MI);
1220 return false;
1223 // Do not "speculate" in high register pressure situation. If an
1224 // instruction is not guaranteed to be executed in the loop, it's best to be
1225 // conservative.
1226 if (AvoidSpeculation &&
1227 (!IsGuaranteedToExecute(MI.getParent()) && !MayCSE(&MI))) {
1228 LLVM_DEBUG(dbgs() << "Won't speculate: " << MI);
1229 return false;
1232 // High register pressure situation, only hoist if the instruction is going
1233 // to be remat'ed.
1234 if (!isTriviallyReMaterializable(MI, AA) &&
1235 !MI.isDereferenceableInvariantLoad(AA)) {
1236 LLVM_DEBUG(dbgs() << "Can't remat / high reg-pressure: " << MI);
1237 return false;
1240 return true;
1243 /// Unfold a load from the given machineinstr if the load itself could be
1244 /// hoisted. Return the unfolded and hoistable load, or null if the load
1245 /// couldn't be unfolded or if it wouldn't be hoistable.
1246 MachineInstr *MachineLICMBase::ExtractHoistableLoad(MachineInstr *MI) {
1247 // Don't unfold simple loads.
1248 if (MI->canFoldAsLoad())
1249 return nullptr;
1251 // If not, we may be able to unfold a load and hoist that.
1252 // First test whether the instruction is loading from an amenable
1253 // memory location.
1254 if (!MI->isDereferenceableInvariantLoad(AA))
1255 return nullptr;
1257 // Next determine the register class for a temporary register.
1258 unsigned LoadRegIndex;
1259 unsigned NewOpc =
1260 TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
1261 /*UnfoldLoad=*/true,
1262 /*UnfoldStore=*/false,
1263 &LoadRegIndex);
1264 if (NewOpc == 0) return nullptr;
1265 const MCInstrDesc &MID = TII->get(NewOpc);
1266 MachineFunction &MF = *MI->getMF();
1267 const TargetRegisterClass *RC = TII->getRegClass(MID, LoadRegIndex, TRI, MF);
1268 // Ok, we're unfolding. Create a temporary register and do the unfold.
1269 Register Reg = MRI->createVirtualRegister(RC);
1271 SmallVector<MachineInstr *, 2> NewMIs;
1272 bool Success = TII->unfoldMemoryOperand(MF, *MI, Reg,
1273 /*UnfoldLoad=*/true,
1274 /*UnfoldStore=*/false, NewMIs);
1275 (void)Success;
1276 assert(Success &&
1277 "unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
1278 "succeeded!");
1279 assert(NewMIs.size() == 2 &&
1280 "Unfolded a load into multiple instructions!");
1281 MachineBasicBlock *MBB = MI->getParent();
1282 MachineBasicBlock::iterator Pos = MI;
1283 MBB->insert(Pos, NewMIs[0]);
1284 MBB->insert(Pos, NewMIs[1]);
1285 // If unfolding produced a load that wasn't loop-invariant or profitable to
1286 // hoist, discard the new instructions and bail.
1287 if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
1288 NewMIs[0]->eraseFromParent();
1289 NewMIs[1]->eraseFromParent();
1290 return nullptr;
1293 // Update register pressure for the unfolded instruction.
1294 UpdateRegPressure(NewMIs[1]);
1296 // Otherwise we successfully unfolded a load that we can hoist.
1298 // Update the call site info.
1299 if (MI->shouldUpdateCallSiteInfo())
1300 MF.eraseCallSiteInfo(MI);
1302 MI->eraseFromParent();
1303 return NewMIs[0];
1306 /// Initialize the CSE map with instructions that are in the current loop
1307 /// preheader that may become duplicates of instructions that are hoisted
1308 /// out of the loop.
1309 void MachineLICMBase::InitCSEMap(MachineBasicBlock *BB) {
1310 for (MachineInstr &MI : *BB)
1311 CSEMap[MI.getOpcode()].push_back(&MI);
1314 /// Find an instruction amount PrevMIs that is a duplicate of MI.
1315 /// Return this instruction if it's found.
1316 MachineInstr *
1317 MachineLICMBase::LookForDuplicate(const MachineInstr *MI,
1318 std::vector<MachineInstr *> &PrevMIs) {
1319 for (MachineInstr *PrevMI : PrevMIs)
1320 if (TII->produceSameValue(*MI, *PrevMI, (PreRegAlloc ? MRI : nullptr)))
1321 return PrevMI;
1323 return nullptr;
1326 /// Given a LICM'ed instruction, look for an instruction on the preheader that
1327 /// computes the same value. If it's found, do a RAU on with the definition of
1328 /// the existing instruction rather than hoisting the instruction to the
1329 /// preheader.
1330 bool MachineLICMBase::EliminateCSE(
1331 MachineInstr *MI,
1332 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator &CI) {
1333 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1334 // the undef property onto uses.
1335 if (CI == CSEMap.end() || MI->isImplicitDef())
1336 return false;
1338 if (MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
1339 LLVM_DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
1341 // Replace virtual registers defined by MI by their counterparts defined
1342 // by Dup.
1343 SmallVector<unsigned, 2> Defs;
1344 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1345 const MachineOperand &MO = MI->getOperand(i);
1347 // Physical registers may not differ here.
1348 assert((!MO.isReg() || MO.getReg() == 0 ||
1349 !Register::isPhysicalRegister(MO.getReg()) ||
1350 MO.getReg() == Dup->getOperand(i).getReg()) &&
1351 "Instructions with different phys regs are not identical!");
1353 if (MO.isReg() && MO.isDef() &&
1354 !Register::isPhysicalRegister(MO.getReg()))
1355 Defs.push_back(i);
1358 SmallVector<const TargetRegisterClass*, 2> OrigRCs;
1359 for (unsigned i = 0, e = Defs.size(); i != e; ++i) {
1360 unsigned Idx = Defs[i];
1361 Register Reg = MI->getOperand(Idx).getReg();
1362 Register DupReg = Dup->getOperand(Idx).getReg();
1363 OrigRCs.push_back(MRI->getRegClass(DupReg));
1365 if (!MRI->constrainRegClass(DupReg, MRI->getRegClass(Reg))) {
1366 // Restore old RCs if more than one defs.
1367 for (unsigned j = 0; j != i; ++j)
1368 MRI->setRegClass(Dup->getOperand(Defs[j]).getReg(), OrigRCs[j]);
1369 return false;
1373 for (unsigned Idx : Defs) {
1374 Register Reg = MI->getOperand(Idx).getReg();
1375 Register DupReg = Dup->getOperand(Idx).getReg();
1376 MRI->replaceRegWith(Reg, DupReg);
1377 MRI->clearKillFlags(DupReg);
1378 // Clear Dup dead flag if any, we reuse it for Reg.
1379 if (!MRI->use_nodbg_empty(DupReg))
1380 Dup->getOperand(Idx).setIsDead(false);
1383 MI->eraseFromParent();
1384 ++NumCSEed;
1385 return true;
1387 return false;
1390 /// Return true if the given instruction will be CSE'd if it's hoisted out of
1391 /// the loop.
1392 bool MachineLICMBase::MayCSE(MachineInstr *MI) {
1393 unsigned Opcode = MI->getOpcode();
1394 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1395 CSEMap.find(Opcode);
1396 // Do not CSE implicit_def so ProcessImplicitDefs can properly propagate
1397 // the undef property onto uses.
1398 if (CI == CSEMap.end() || MI->isImplicitDef())
1399 return false;
1401 return LookForDuplicate(MI, CI->second) != nullptr;
1404 /// When an instruction is found to use only loop invariant operands
1405 /// that are safe to hoist, this instruction is called to do the dirty work.
1406 /// It returns true if the instruction is hoisted.
1407 bool MachineLICMBase::Hoist(MachineInstr *MI, MachineBasicBlock *Preheader) {
1408 MachineBasicBlock *SrcBlock = MI->getParent();
1410 // Disable the instruction hoisting due to block hotness
1411 if ((DisableHoistingToHotterBlocks == UseBFI::All ||
1412 (DisableHoistingToHotterBlocks == UseBFI::PGO && HasProfileData)) &&
1413 isTgtHotterThanSrc(SrcBlock, Preheader)) {
1414 ++NumNotHoistedDueToHotness;
1415 return false;
1417 // First check whether we should hoist this instruction.
1418 if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
1419 // If not, try unfolding a hoistable load.
1420 MI = ExtractHoistableLoad(MI);
1421 if (!MI) return false;
1424 // If we have hoisted an instruction that may store, it can only be a constant
1425 // store.
1426 if (MI->mayStore())
1427 NumStoreConst++;
1429 // Now move the instructions to the predecessor, inserting it before any
1430 // terminator instructions.
1431 LLVM_DEBUG({
1432 dbgs() << "Hoisting " << *MI;
1433 if (MI->getParent()->getBasicBlock())
1434 dbgs() << " from " << printMBBReference(*MI->getParent());
1435 if (Preheader->getBasicBlock())
1436 dbgs() << " to " << printMBBReference(*Preheader);
1437 dbgs() << "\n";
1440 // If this is the first instruction being hoisted to the preheader,
1441 // initialize the CSE map with potential common expressions.
1442 if (FirstInLoop) {
1443 InitCSEMap(Preheader);
1444 FirstInLoop = false;
1447 // Look for opportunity to CSE the hoisted instruction.
1448 unsigned Opcode = MI->getOpcode();
1449 DenseMap<unsigned, std::vector<MachineInstr *>>::iterator CI =
1450 CSEMap.find(Opcode);
1451 if (!EliminateCSE(MI, CI)) {
1452 // Otherwise, splice the instruction to the preheader.
1453 Preheader->splice(Preheader->getFirstTerminator(),MI->getParent(),MI);
1455 // Since we are moving the instruction out of its basic block, we do not
1456 // retain its debug location. Doing so would degrade the debugging
1457 // experience and adversely affect the accuracy of profiling information.
1458 assert(!MI->isDebugInstr() && "Should not hoist debug inst");
1459 MI->setDebugLoc(DebugLoc());
1461 // Update register pressure for BBs from header to this block.
1462 UpdateBackTraceRegPressure(MI);
1464 // Clear the kill flags of any register this instruction defines,
1465 // since they may need to be live throughout the entire loop
1466 // rather than just live for part of it.
1467 for (MachineOperand &MO : MI->operands())
1468 if (MO.isReg() && MO.isDef() && !MO.isDead())
1469 MRI->clearKillFlags(MO.getReg());
1471 // Add to the CSE map.
1472 if (CI != CSEMap.end())
1473 CI->second.push_back(MI);
1474 else
1475 CSEMap[Opcode].push_back(MI);
1478 ++NumHoisted;
1479 Changed = true;
1481 return true;
1484 /// Get the preheader for the current loop, splitting a critical edge if needed.
1485 MachineBasicBlock *MachineLICMBase::getCurPreheader() {
1486 // Determine the block to which to hoist instructions. If we can't find a
1487 // suitable loop predecessor, we can't do any hoisting.
1489 // If we've tried to get a preheader and failed, don't try again.
1490 if (CurPreheader == reinterpret_cast<MachineBasicBlock *>(-1))
1491 return nullptr;
1493 if (!CurPreheader) {
1494 CurPreheader = CurLoop->getLoopPreheader();
1495 if (!CurPreheader) {
1496 MachineBasicBlock *Pred = CurLoop->getLoopPredecessor();
1497 if (!Pred) {
1498 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1499 return nullptr;
1502 CurPreheader = Pred->SplitCriticalEdge(CurLoop->getHeader(), *this);
1503 if (!CurPreheader) {
1504 CurPreheader = reinterpret_cast<MachineBasicBlock *>(-1);
1505 return nullptr;
1509 return CurPreheader;
1512 /// Is the target basic block at least "BlockFrequencyRatioThreshold"
1513 /// times hotter than the source basic block.
1514 bool MachineLICMBase::isTgtHotterThanSrc(MachineBasicBlock *SrcBlock,
1515 MachineBasicBlock *TgtBlock) {
1516 // Parse source and target basic block frequency from MBFI
1517 uint64_t SrcBF = MBFI->getBlockFreq(SrcBlock).getFrequency();
1518 uint64_t DstBF = MBFI->getBlockFreq(TgtBlock).getFrequency();
1520 // Disable the hoisting if source block frequency is zero
1521 if (!SrcBF)
1522 return true;
1524 double Ratio = (double)DstBF / SrcBF;
1526 // Compare the block frequency ratio with the threshold
1527 return Ratio > BlockFrequencyRatioThreshold;