[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineSink.cpp
blobec98394dca79daa2e78a0d43a79e17a14d44e255
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachinePostDominators.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/RegisterClassInfo.h"
39 #include "llvm/CodeGen/RegisterPressure.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <map>
57 #include <utility>
58 #include <vector>
60 using namespace llvm;
62 #define DEBUG_TYPE "machine-sink"
64 static cl::opt<bool>
65 SplitEdges("machine-sink-split",
66 cl::desc("Split critical edges during machine sinking"),
67 cl::init(true), cl::Hidden);
69 static cl::opt<bool>
70 UseBlockFreqInfo("machine-sink-bfi",
71 cl::desc("Use block frequency info to find successors to sink"),
72 cl::init(true), cl::Hidden);
74 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
75 "machine-sink-split-probability-threshold",
76 cl::desc(
77 "Percentage threshold for splitting single-instruction critical edge. "
78 "If the branch threshold is higher than this threshold, we allow "
79 "speculative execution of up to 1 instruction to avoid branching to "
80 "splitted critical edge"),
81 cl::init(40), cl::Hidden);
83 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
84 "machine-sink-load-instrs-threshold",
85 cl::desc("Do not try to find alias store for a load if there is a in-path "
86 "block whose instruction number is higher than this threshold."),
87 cl::init(2000), cl::Hidden);
89 static cl::opt<unsigned> SinkLoadBlocksThreshold(
90 "machine-sink-load-blocks-threshold",
91 cl::desc("Do not try to find alias store for a load if the block number in "
92 "the straight line is higher than this threshold."),
93 cl::init(20), cl::Hidden);
95 static cl::opt<bool>
96 SinkInstsIntoLoop("sink-insts-to-avoid-spills",
97 cl::desc("Sink instructions into loops to avoid "
98 "register spills"),
99 cl::init(false), cl::Hidden);
101 static cl::opt<unsigned> SinkIntoLoopLimit(
102 "machine-sink-loop-limit",
103 cl::desc("The maximum number of instructions considered for loop sinking."),
104 cl::init(50), cl::Hidden);
106 STATISTIC(NumSunk, "Number of machine instructions sunk");
107 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop");
108 STATISTIC(NumSplit, "Number of critical edges split");
109 STATISTIC(NumCoalesces, "Number of copies coalesced");
110 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
112 namespace {
114 class MachineSinking : public MachineFunctionPass {
115 const TargetInstrInfo *TII;
116 const TargetRegisterInfo *TRI;
117 MachineRegisterInfo *MRI; // Machine register information
118 MachineDominatorTree *DT; // Machine dominator tree
119 MachinePostDominatorTree *PDT; // Machine post dominator tree
120 MachineLoopInfo *LI;
121 MachineBlockFrequencyInfo *MBFI;
122 const MachineBranchProbabilityInfo *MBPI;
123 AliasAnalysis *AA;
124 RegisterClassInfo RegClassInfo;
126 // Remember which edges have been considered for breaking.
127 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
128 CEBCandidates;
129 // Remember which edges we are about to split.
130 // This is different from CEBCandidates since those edges
131 // will be split.
132 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
134 SparseBitVector<> RegsToClearKillFlags;
136 using AllSuccsCache =
137 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
140 /// post-dominated by another DBG_VALUE of the same variable location.
141 /// This is necessary to detect sequences such as:
142 /// %0 = someinst
143 /// DBG_VALUE %0, !123, !DIExpression()
144 /// %1 = anotherinst
145 /// DBG_VALUE %1, !123, !DIExpression()
146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
147 /// would re-order assignments.
148 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
151 /// debug instructions to sink.
152 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
154 /// Record of debug variables that have had their locations set in the
155 /// current block.
156 DenseSet<DebugVariable> SeenDbgVars;
158 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
159 HasStoreCache;
160 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
161 std::vector<MachineInstr *>>
162 StoreInstrCache;
164 /// Cached BB's register pressure.
165 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure;
167 public:
168 static char ID; // Pass identification
170 MachineSinking() : MachineFunctionPass(ID) {
171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
174 bool runOnMachineFunction(MachineFunction &MF) override;
176 void getAnalysisUsage(AnalysisUsage &AU) const override {
177 MachineFunctionPass::getAnalysisUsage(AU);
178 AU.addRequired<AAResultsWrapperPass>();
179 AU.addRequired<MachineDominatorTree>();
180 AU.addRequired<MachinePostDominatorTree>();
181 AU.addRequired<MachineLoopInfo>();
182 AU.addRequired<MachineBranchProbabilityInfo>();
183 AU.addPreserved<MachineLoopInfo>();
184 if (UseBlockFreqInfo)
185 AU.addRequired<MachineBlockFrequencyInfo>();
188 void releaseMemory() override {
189 CEBCandidates.clear();
192 private:
193 bool ProcessBlock(MachineBasicBlock &MBB);
194 void ProcessDbgInst(MachineInstr &MI);
195 bool isWorthBreakingCriticalEdge(MachineInstr &MI,
196 MachineBasicBlock *From,
197 MachineBasicBlock *To);
199 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
200 MachineInstr &MI);
202 /// Postpone the splitting of the given critical
203 /// edge (\p From, \p To).
205 /// We do not split the edges on the fly. Indeed, this invalidates
206 /// the dominance information and thus triggers a lot of updates
207 /// of that information underneath.
208 /// Instead, we postpone all the splits after each iteration of
209 /// the main loop. That way, the information is at least valid
210 /// for the lifetime of an iteration.
212 /// \return True if the edge is marked as toSplit, false otherwise.
213 /// False can be returned if, for instance, this is not profitable.
214 bool PostponeSplitCriticalEdge(MachineInstr &MI,
215 MachineBasicBlock *From,
216 MachineBasicBlock *To,
217 bool BreakPHIEdge);
218 bool SinkInstruction(MachineInstr &MI, bool &SawStore,
219 AllSuccsCache &AllSuccessors);
221 /// If we sink a COPY inst, some debug users of it's destination may no
222 /// longer be dominated by the COPY, and will eventually be dropped.
223 /// This is easily rectified by forwarding the non-dominated debug uses
224 /// to the copy source.
225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
226 MachineBasicBlock *TargetBlock);
227 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
228 MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
229 bool &LocalUse) const;
230 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
231 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
233 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
234 SmallVectorImpl<MachineInstr *> &Candidates);
235 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I);
237 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
238 MachineBasicBlock *MBB,
239 MachineBasicBlock *SuccToSinkTo,
240 AllSuccsCache &AllSuccessors);
242 bool PerformTrivialForwardCoalescing(MachineInstr &MI,
243 MachineBasicBlock *MBB);
245 SmallVector<MachineBasicBlock *, 4> &
246 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
247 AllSuccsCache &AllSuccessors) const;
249 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB);
252 } // end anonymous namespace
254 char MachineSinking::ID = 0;
256 char &llvm::MachineSinkingID = MachineSinking::ID;
258 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
259 "Machine code sinking", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
264 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
265 "Machine code sinking", false, false)
267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
268 MachineBasicBlock *MBB) {
269 if (!MI.isCopy())
270 return false;
272 Register SrcReg = MI.getOperand(1).getReg();
273 Register DstReg = MI.getOperand(0).getReg();
274 if (!Register::isVirtualRegister(SrcReg) ||
275 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
276 return false;
278 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
279 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
280 if (SRC != DRC)
281 return false;
283 MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
284 if (DefMI->isCopyLike())
285 return false;
286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
287 LLVM_DEBUG(dbgs() << "*** to: " << MI);
288 MRI->replaceRegWith(DstReg, SrcReg);
289 MI.eraseFromParent();
291 // Conservatively, clear any kill flags, since it's possible that they are no
292 // longer correct.
293 MRI->clearKillFlags(SrcReg);
295 ++NumCoalesces;
296 return true;
299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
300 /// occur in blocks dominated by the specified block. If any use is in the
301 /// definition block, then return false since it is never legal to move def
302 /// after uses.
303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
304 MachineBasicBlock *MBB,
305 MachineBasicBlock *DefMBB,
306 bool &BreakPHIEdge,
307 bool &LocalUse) const {
308 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
310 // Ignore debug uses because debug info doesn't affect the code.
311 if (MRI->use_nodbg_empty(Reg))
312 return true;
314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
315 // into and they are all PHI nodes. In this case, machine-sink must break
316 // the critical edge first. e.g.
318 // %bb.1:
319 // Predecessors according to CFG: %bb.0
320 // ...
321 // %def = DEC64_32r %x, implicit-def dead %eflags
322 // ...
323 // JE_4 <%bb.37>, implicit %eflags
324 // Successors according to CFG: %bb.37 %bb.2
326 // %bb.2:
327 // %p = PHI %y, %bb.0, %def, %bb.1
328 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
329 MachineInstr *UseInst = MO.getParent();
330 unsigned OpNo = UseInst->getOperandNo(&MO);
331 MachineBasicBlock *UseBlock = UseInst->getParent();
332 return UseBlock == MBB && UseInst->isPHI() &&
333 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
334 })) {
335 BreakPHIEdge = true;
336 return true;
339 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
340 // Determine the block of the use.
341 MachineInstr *UseInst = MO.getParent();
342 unsigned OpNo = &MO - &UseInst->getOperand(0);
343 MachineBasicBlock *UseBlock = UseInst->getParent();
344 if (UseInst->isPHI()) {
345 // PHI nodes use the operand in the predecessor block, not the block with
346 // the PHI.
347 UseBlock = UseInst->getOperand(OpNo+1).getMBB();
348 } else if (UseBlock == DefMBB) {
349 LocalUse = true;
350 return false;
353 // Check that it dominates.
354 if (!DT->dominates(MBB, UseBlock))
355 return false;
358 return true;
361 /// Return true if this machine instruction loads from global offset table or
362 /// constant pool.
363 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
364 assert(MI.mayLoad() && "Expected MI that loads!");
366 // If we lost memory operands, conservatively assume that the instruction
367 // reads from everything..
368 if (MI.memoperands_empty())
369 return true;
371 for (MachineMemOperand *MemOp : MI.memoperands())
372 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
373 if (PSV->isGOT() || PSV->isConstantPool())
374 return true;
376 return false;
379 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB,
380 SmallVectorImpl<MachineInstr *> &Candidates) {
381 for (auto &MI : *BB) {
382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI);
383 if (!TII->shouldSink(MI)) {
384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "
385 "target\n");
386 continue;
388 if (!L->isLoopInvariant(MI)) {
389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n");
390 continue;
392 bool DontMoveAcrossStore = true;
393 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n");
395 continue;
397 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n");
399 continue;
401 if (MI.isConvergent())
402 continue;
404 const MachineOperand &MO = MI.getOperand(0);
405 if (!MO.isReg() || !MO.getReg() || !MO.isDef())
406 continue;
407 if (!MRI->hasOneDef(MO.getReg()))
408 continue;
410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n");
411 Candidates.push_back(&MI);
415 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
416 if (skipFunction(MF.getFunction()))
417 return false;
419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
421 TII = MF.getSubtarget().getInstrInfo();
422 TRI = MF.getSubtarget().getRegisterInfo();
423 MRI = &MF.getRegInfo();
424 DT = &getAnalysis<MachineDominatorTree>();
425 PDT = &getAnalysis<MachinePostDominatorTree>();
426 LI = &getAnalysis<MachineLoopInfo>();
427 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
428 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
429 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
430 RegClassInfo.runOnMachineFunction(MF);
432 bool EverMadeChange = false;
434 while (true) {
435 bool MadeChange = false;
437 // Process all basic blocks.
438 CEBCandidates.clear();
439 ToSplit.clear();
440 for (auto &MBB: MF)
441 MadeChange |= ProcessBlock(MBB);
443 // If we have anything we marked as toSplit, split it now.
444 for (auto &Pair : ToSplit) {
445 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
446 if (NewSucc != nullptr) {
447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
448 << printMBBReference(*Pair.first) << " -- "
449 << printMBBReference(*NewSucc) << " -- "
450 << printMBBReference(*Pair.second) << '\n');
451 if (MBFI)
452 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
454 MadeChange = true;
455 ++NumSplit;
456 } else
457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
459 // If this iteration over the code changed anything, keep iterating.
460 if (!MadeChange) break;
461 EverMadeChange = true;
464 if (SinkInstsIntoLoop) {
465 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end());
466 for (auto *L : Loops) {
467 MachineBasicBlock *Preheader = LI->findLoopPreheader(L);
468 if (!Preheader) {
469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n");
470 continue;
472 SmallVector<MachineInstr *, 8> Candidates;
473 FindLoopSinkCandidates(L, Preheader, Candidates);
475 // Walk the candidates in reverse order so that we start with the use
476 // of a def-use chain, if there is any.
477 // TODO: Sort the candidates using a cost-model.
478 unsigned i = 0;
479 for (auto It = Candidates.rbegin(); It != Candidates.rend(); ++It) {
480 if (i++ == SinkIntoLoopLimit) {
481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to "
482 "be analysed.");
483 break;
486 MachineInstr *I = *It;
487 if (!SinkIntoLoop(L, *I))
488 break;
489 EverMadeChange = true;
490 ++NumLoopSunk;
495 HasStoreCache.clear();
496 StoreInstrCache.clear();
498 // Now clear any kill flags for recorded registers.
499 for (auto I : RegsToClearKillFlags)
500 MRI->clearKillFlags(I);
501 RegsToClearKillFlags.clear();
503 return EverMadeChange;
506 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
507 // Can't sink anything out of a block that has less than two successors.
508 if (MBB.succ_size() <= 1 || MBB.empty()) return false;
510 // Don't bother sinking code out of unreachable blocks. In addition to being
511 // unprofitable, it can also lead to infinite looping, because in an
512 // unreachable loop there may be nowhere to stop.
513 if (!DT->isReachableFromEntry(&MBB)) return false;
515 bool MadeChange = false;
517 // Cache all successors, sorted by frequency info and loop depth.
518 AllSuccsCache AllSuccessors;
520 // Walk the basic block bottom-up. Remember if we saw a store.
521 MachineBasicBlock::iterator I = MBB.end();
522 --I;
523 bool ProcessedBegin, SawStore = false;
524 do {
525 MachineInstr &MI = *I; // The instruction to sink.
527 // Predecrement I (if it's not begin) so that it isn't invalidated by
528 // sinking.
529 ProcessedBegin = I == MBB.begin();
530 if (!ProcessedBegin)
531 --I;
533 if (MI.isDebugOrPseudoInstr()) {
534 if (MI.isDebugValue())
535 ProcessDbgInst(MI);
536 continue;
539 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
540 if (Joined) {
541 MadeChange = true;
542 continue;
545 if (SinkInstruction(MI, SawStore, AllSuccessors)) {
546 ++NumSunk;
547 MadeChange = true;
550 // If we just processed the first instruction in the block, we're done.
551 } while (!ProcessedBegin);
553 SeenDbgUsers.clear();
554 SeenDbgVars.clear();
555 // recalculate the bb register pressure after sinking one BB.
556 CachedRegisterPressure.clear();
558 return MadeChange;
561 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
562 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
563 // we know what to sink if the vreg def sinks.
564 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
566 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
567 MI.getDebugLoc()->getInlinedAt());
568 bool SeenBefore = SeenDbgVars.contains(Var);
570 for (MachineOperand &MO : MI.debug_operands()) {
571 if (MO.isReg() && MO.getReg().isVirtual())
572 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
575 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
576 SeenDbgVars.insert(Var);
579 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
580 MachineBasicBlock *From,
581 MachineBasicBlock *To) {
582 // FIXME: Need much better heuristics.
584 // If the pass has already considered breaking this edge (during this pass
585 // through the function), then let's go ahead and break it. This means
586 // sinking multiple "cheap" instructions into the same block.
587 if (!CEBCandidates.insert(std::make_pair(From, To)).second)
588 return true;
590 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
591 return true;
593 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
594 BranchProbability(SplitEdgeProbabilityThreshold, 100))
595 return true;
597 // MI is cheap, we probably don't want to break the critical edge for it.
598 // However, if this would allow some definitions of its source operands
599 // to be sunk then it's probably worth it.
600 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
601 const MachineOperand &MO = MI.getOperand(i);
602 if (!MO.isReg() || !MO.isUse())
603 continue;
604 Register Reg = MO.getReg();
605 if (Reg == 0)
606 continue;
608 // We don't move live definitions of physical registers,
609 // so sinking their uses won't enable any opportunities.
610 if (Register::isPhysicalRegister(Reg))
611 continue;
613 // If this instruction is the only user of a virtual register,
614 // check if breaking the edge will enable sinking
615 // both this instruction and the defining instruction.
616 if (MRI->hasOneNonDBGUse(Reg)) {
617 // If the definition resides in same MBB,
618 // claim it's likely we can sink these together.
619 // If definition resides elsewhere, we aren't
620 // blocking it from being sunk so don't break the edge.
621 MachineInstr *DefMI = MRI->getVRegDef(Reg);
622 if (DefMI->getParent() == MI.getParent())
623 return true;
627 return false;
630 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
631 MachineBasicBlock *FromBB,
632 MachineBasicBlock *ToBB,
633 bool BreakPHIEdge) {
634 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
635 return false;
637 // Avoid breaking back edge. From == To means backedge for single BB loop.
638 if (!SplitEdges || FromBB == ToBB)
639 return false;
641 // Check for backedges of more "complex" loops.
642 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
643 LI->isLoopHeader(ToBB))
644 return false;
646 // It's not always legal to break critical edges and sink the computation
647 // to the edge.
649 // %bb.1:
650 // v1024
651 // Beq %bb.3
652 // <fallthrough>
653 // %bb.2:
654 // ... no uses of v1024
655 // <fallthrough>
656 // %bb.3:
657 // ...
658 // = v1024
660 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
662 // %bb.1:
663 // ...
664 // Bne %bb.2
665 // %bb.4:
666 // v1024 =
667 // B %bb.3
668 // %bb.2:
669 // ... no uses of v1024
670 // <fallthrough>
671 // %bb.3:
672 // ...
673 // = v1024
675 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
676 // flow. We need to ensure the new basic block where the computation is
677 // sunk to dominates all the uses.
678 // It's only legal to break critical edge and sink the computation to the
679 // new block if all the predecessors of "To", except for "From", are
680 // not dominated by "From". Given SSA property, this means these
681 // predecessors are dominated by "To".
683 // There is no need to do this check if all the uses are PHI nodes. PHI
684 // sources are only defined on the specific predecessor edges.
685 if (!BreakPHIEdge) {
686 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
687 E = ToBB->pred_end(); PI != E; ++PI) {
688 if (*PI == FromBB)
689 continue;
690 if (!DT->dominates(ToBB, *PI))
691 return false;
695 ToSplit.insert(std::make_pair(FromBB, ToBB));
697 return true;
700 std::vector<unsigned> &
701 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) {
702 // Currently to save compiling time, MBB's register pressure will not change
703 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
704 // register pressure is changed after sinking any instructions into it.
705 // FIXME: need a accurate and cheap register pressure estiminate model here.
706 auto RP = CachedRegisterPressure.find(&MBB);
707 if (RP != CachedRegisterPressure.end())
708 return RP->second;
710 RegionPressure Pressure;
711 RegPressureTracker RPTracker(Pressure);
713 // Initialize the register pressure tracker.
714 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
715 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
717 for (MachineBasicBlock::iterator MII = MBB.instr_end(),
718 MIE = MBB.instr_begin();
719 MII != MIE; --MII) {
720 MachineInstr &MI = *std::prev(MII);
721 if (MI.isDebugInstr() || MI.isPseudoProbe())
722 continue;
723 RegisterOperands RegOpers;
724 RegOpers.collect(MI, *TRI, *MRI, false, false);
725 RPTracker.recedeSkipDebugValues();
726 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
727 RPTracker.recede(RegOpers);
730 RPTracker.closeRegion();
731 auto It = CachedRegisterPressure.insert(
732 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
733 return It.first->second;
736 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
737 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
738 MachineBasicBlock *MBB,
739 MachineBasicBlock *SuccToSinkTo,
740 AllSuccsCache &AllSuccessors) {
741 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
743 if (MBB == SuccToSinkTo)
744 return false;
746 // It is profitable if SuccToSinkTo does not post dominate current block.
747 if (!PDT->dominates(SuccToSinkTo, MBB))
748 return true;
750 // It is profitable to sink an instruction from a deeper loop to a shallower
751 // loop, even if the latter post-dominates the former (PR21115).
752 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
753 return true;
755 // Check if only use in post dominated block is PHI instruction.
756 bool NonPHIUse = false;
757 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
758 MachineBasicBlock *UseBlock = UseInst.getParent();
759 if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
760 NonPHIUse = true;
762 if (!NonPHIUse)
763 return true;
765 // If SuccToSinkTo post dominates then also it may be profitable if MI
766 // can further profitably sinked into another block in next round.
767 bool BreakPHIEdge = false;
768 // FIXME - If finding successor is compile time expensive then cache results.
769 if (MachineBasicBlock *MBB2 =
770 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
771 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
773 MachineLoop *ML = LI->getLoopFor(MBB);
775 // If the instruction is not inside a loop, it is not profitable to sink MI to
776 // a post dominate block SuccToSinkTo.
777 if (!ML)
778 return false;
780 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) {
781 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight;
782 const int *PS = TRI->getRegClassPressureSets(RC);
783 // Get register pressure for block SuccToSinkTo.
784 std::vector<unsigned> BBRegisterPressure =
785 getBBRegisterPressure(*SuccToSinkTo);
786 for (; *PS != -1; PS++)
787 // check if any register pressure set exceeds limit in block SuccToSinkTo
788 // after sinking.
789 if (Weight + BBRegisterPressure[*PS] >=
790 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS))
791 return true;
792 return false;
795 // If this instruction is inside a loop and sinking this instruction can make
796 // more registers live range shorten, it is still prifitable.
797 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
798 const MachineOperand &MO = MI.getOperand(i);
799 // Ignore non-register operands.
800 if (!MO.isReg())
801 continue;
802 Register Reg = MO.getReg();
803 if (Reg == 0)
804 continue;
806 // Don't handle physical register.
807 if (Register::isPhysicalRegister(Reg))
808 return false;
810 // Users for the defs are all dominated by SuccToSinkTo.
811 if (MO.isDef()) {
812 // This def register's live range is shortened after sinking.
813 bool LocalUse = false;
814 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
815 LocalUse))
816 return false;
817 } else {
818 MachineInstr *DefMI = MRI->getVRegDef(Reg);
819 // DefMI is defined outside of loop. There should be no live range
820 // impact for this operand. Defination outside of loop means:
821 // 1: defination is outside of loop.
822 // 2: defination is in this loop, but it is a PHI in the loop header.
823 if (LI->getLoopFor(DefMI->getParent()) != ML ||
824 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
825 continue;
826 // The DefMI is defined inside the loop.
827 // If sinking this operand makes some register pressure set exceed limit,
828 // it is not profitable.
829 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) {
830 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
831 return false;
836 // If MI is in loop and all its operands are alive across the whole loop or if
837 // no operand sinking make register pressure set exceed limit, it is
838 // profitable to sink MI.
839 return true;
842 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
843 /// computing it if it was not already cached.
844 SmallVector<MachineBasicBlock *, 4> &
845 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
846 AllSuccsCache &AllSuccessors) const {
847 // Do we have the sorted successors in cache ?
848 auto Succs = AllSuccessors.find(MBB);
849 if (Succs != AllSuccessors.end())
850 return Succs->second;
852 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
854 // Handle cases where sinking can happen but where the sink point isn't a
855 // successor. For example:
857 // x = computation
858 // if () {} else {}
859 // use x
861 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
862 // DomTree children of MBB that have MBB as immediate dominator are added.
863 if (DTChild->getIDom()->getBlock() == MI.getParent() &&
864 // Skip MBBs already added to the AllSuccs vector above.
865 !MBB->isSuccessor(DTChild->getBlock()))
866 AllSuccs.push_back(DTChild->getBlock());
869 // Sort Successors according to their loop depth or block frequency info.
870 llvm::stable_sort(
871 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
872 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
873 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
874 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
875 return HasBlockFreq ? LHSFreq < RHSFreq
876 : LI->getLoopDepth(L) < LI->getLoopDepth(R);
879 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
881 return it.first->second;
884 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
885 MachineBasicBlock *
886 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
887 bool &BreakPHIEdge,
888 AllSuccsCache &AllSuccessors) {
889 assert (MBB && "Invalid MachineBasicBlock!");
891 // Loop over all the operands of the specified instruction. If there is
892 // anything we can't handle, bail out.
894 // SuccToSinkTo - This is the successor to sink this instruction to, once we
895 // decide.
896 MachineBasicBlock *SuccToSinkTo = nullptr;
897 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
898 const MachineOperand &MO = MI.getOperand(i);
899 if (!MO.isReg()) continue; // Ignore non-register operands.
901 Register Reg = MO.getReg();
902 if (Reg == 0) continue;
904 if (Register::isPhysicalRegister(Reg)) {
905 if (MO.isUse()) {
906 // If the physreg has no defs anywhere, it's just an ambient register
907 // and we can freely move its uses. Alternatively, if it's allocatable,
908 // it could get allocated to something with a def during allocation.
909 if (!MRI->isConstantPhysReg(Reg))
910 return nullptr;
911 } else if (!MO.isDead()) {
912 // A def that isn't dead. We can't move it.
913 return nullptr;
915 } else {
916 // Virtual register uses are always safe to sink.
917 if (MO.isUse()) continue;
919 // If it's not safe to move defs of the register class, then abort.
920 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
921 return nullptr;
923 // Virtual register defs can only be sunk if all their uses are in blocks
924 // dominated by one of the successors.
925 if (SuccToSinkTo) {
926 // If a previous operand picked a block to sink to, then this operand
927 // must be sinkable to the same block.
928 bool LocalUse = false;
929 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
930 BreakPHIEdge, LocalUse))
931 return nullptr;
933 continue;
936 // Otherwise, we should look at all the successors and decide which one
937 // we should sink to. If we have reliable block frequency information
938 // (frequency != 0) available, give successors with smaller frequencies
939 // higher priority, otherwise prioritize smaller loop depths.
940 for (MachineBasicBlock *SuccBlock :
941 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
942 bool LocalUse = false;
943 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
944 BreakPHIEdge, LocalUse)) {
945 SuccToSinkTo = SuccBlock;
946 break;
948 if (LocalUse)
949 // Def is used locally, it's never safe to move this def.
950 return nullptr;
953 // If we couldn't find a block to sink to, ignore this instruction.
954 if (!SuccToSinkTo)
955 return nullptr;
956 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
957 return nullptr;
961 // It is not possible to sink an instruction into its own block. This can
962 // happen with loops.
963 if (MBB == SuccToSinkTo)
964 return nullptr;
966 // It's not safe to sink instructions to EH landing pad. Control flow into
967 // landing pad is implicitly defined.
968 if (SuccToSinkTo && SuccToSinkTo->isEHPad())
969 return nullptr;
971 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
972 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
973 // the source block (which this code does not yet do). So for now, forbid
974 // doing so.
975 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
976 return nullptr;
978 return SuccToSinkTo;
981 /// Return true if MI is likely to be usable as a memory operation by the
982 /// implicit null check optimization.
984 /// This is a "best effort" heuristic, and should not be relied upon for
985 /// correctness. This returning true does not guarantee that the implicit null
986 /// check optimization is legal over MI, and this returning false does not
987 /// guarantee MI cannot possibly be used to do a null check.
988 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
989 const TargetInstrInfo *TII,
990 const TargetRegisterInfo *TRI) {
991 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
993 auto *MBB = MI.getParent();
994 if (MBB->pred_size() != 1)
995 return false;
997 auto *PredMBB = *MBB->pred_begin();
998 auto *PredBB = PredMBB->getBasicBlock();
1000 // Frontends that don't use implicit null checks have no reason to emit
1001 // branches with make.implicit metadata, and this function should always
1002 // return false for them.
1003 if (!PredBB ||
1004 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1005 return false;
1007 const MachineOperand *BaseOp;
1008 int64_t Offset;
1009 bool OffsetIsScalable;
1010 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1011 return false;
1013 if (!BaseOp->isReg())
1014 return false;
1016 if (!(MI.mayLoad() && !MI.isPredicable()))
1017 return false;
1019 MachineBranchPredicate MBP;
1020 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1021 return false;
1023 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1024 (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1025 MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1026 MBP.LHS.getReg() == BaseOp->getReg();
1029 /// If the sunk instruction is a copy, try to forward the copy instead of
1030 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1031 /// there's any subregister weirdness involved. Returns true if copy
1032 /// propagation occurred.
1033 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1034 Register Reg) {
1035 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1036 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1038 // Copy DBG_VALUE operand and set the original to undef. We then check to
1039 // see whether this is something that can be copy-forwarded. If it isn't,
1040 // continue around the loop.
1042 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1043 auto CopyOperands = TII.isCopyInstr(SinkInst);
1044 if (!CopyOperands)
1045 return false;
1046 SrcMO = CopyOperands->Source;
1047 DstMO = CopyOperands->Destination;
1049 // Check validity of forwarding this copy.
1050 bool PostRA = MRI.getNumVirtRegs() == 0;
1052 // Trying to forward between physical and virtual registers is too hard.
1053 if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1054 return false;
1056 // Only try virtual register copy-forwarding before regalloc, and physical
1057 // register copy-forwarding after regalloc.
1058 bool arePhysRegs = !Reg.isVirtual();
1059 if (arePhysRegs != PostRA)
1060 return false;
1062 // Pre-regalloc, only forward if all subregisters agree (or there are no
1063 // subregs at all). More analysis might recover some forwardable copies.
1064 if (!PostRA)
1065 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1066 if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1067 DbgMO.getSubReg() != DstMO->getSubReg())
1068 return false;
1070 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1071 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1072 // matches the copy destination.
1073 if (PostRA && Reg != DstMO->getReg())
1074 return false;
1076 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1077 DbgMO.setReg(SrcMO->getReg());
1078 DbgMO.setSubReg(SrcMO->getSubReg());
1080 return true;
1083 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1084 /// Sink an instruction and its associated debug instructions.
1085 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1086 MachineBasicBlock::iterator InsertPos,
1087 SmallVectorImpl<MIRegs> &DbgValuesToSink) {
1089 // If we cannot find a location to use (merge with), then we erase the debug
1090 // location to prevent debug-info driven tools from potentially reporting
1091 // wrong location information.
1092 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1093 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1094 InsertPos->getDebugLoc()));
1095 else
1096 MI.setDebugLoc(DebugLoc());
1098 // Move the instruction.
1099 MachineBasicBlock *ParentBlock = MI.getParent();
1100 SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1101 ++MachineBasicBlock::iterator(MI));
1103 // Sink a copy of debug users to the insert position. Mark the original
1104 // DBG_VALUE location as 'undef', indicating that any earlier variable
1105 // location should be terminated as we've optimised away the value at this
1106 // point.
1107 for (auto DbgValueToSink : DbgValuesToSink) {
1108 MachineInstr *DbgMI = DbgValueToSink.first;
1109 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1110 SuccToSinkTo.insert(InsertPos, NewDbgMI);
1112 bool PropagatedAllSunkOps = true;
1113 for (unsigned Reg : DbgValueToSink.second) {
1114 if (DbgMI->hasDebugOperandForReg(Reg)) {
1115 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1116 PropagatedAllSunkOps = false;
1117 break;
1121 if (!PropagatedAllSunkOps)
1122 DbgMI->setDebugValueUndef();
1126 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1127 /// and To.
1128 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1129 MachineBasicBlock *To, MachineInstr &MI) {
1130 // Make sure From and To are in straight line which means From dominates To
1131 // and To post dominates From.
1132 if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1133 return true;
1135 auto BlockPair = std::make_pair(From, To);
1137 // Does these two blocks pair be queried before and have a definite cached
1138 // result?
1139 if (HasStoreCache.find(BlockPair) != HasStoreCache.end())
1140 return HasStoreCache[BlockPair];
1142 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end())
1143 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) {
1144 return I->mayAlias(AA, MI, false);
1147 bool SawStore = false;
1148 bool HasAliasedStore = false;
1149 DenseSet<MachineBasicBlock *> HandledBlocks;
1150 DenseSet<MachineBasicBlock *> HandledDomBlocks;
1151 // Go through all reachable blocks from From.
1152 for (MachineBasicBlock *BB : depth_first(From)) {
1153 // We insert the instruction at the start of block To, so no need to worry
1154 // about stores inside To.
1155 // Store in block From should be already considered when just enter function
1156 // SinkInstruction.
1157 if (BB == To || BB == From)
1158 continue;
1160 // We already handle this BB in previous iteration.
1161 if (HandledBlocks.count(BB))
1162 continue;
1164 HandledBlocks.insert(BB);
1165 // To post dominates BB, it must be a path from block From.
1166 if (PDT->dominates(To, BB)) {
1167 if (!HandledDomBlocks.count(BB))
1168 HandledDomBlocks.insert(BB);
1170 // If this BB is too big or the block number in straight line between From
1171 // and To is too big, stop searching to save compiling time.
1172 if (BB->size() > SinkLoadInstsPerBlockThreshold ||
1173 HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1174 for (auto *DomBB : HandledDomBlocks) {
1175 if (DomBB != BB && DT->dominates(DomBB, BB))
1176 HasStoreCache[std::make_pair(DomBB, To)] = true;
1177 else if(DomBB != BB && DT->dominates(BB, DomBB))
1178 HasStoreCache[std::make_pair(From, DomBB)] = true;
1180 HasStoreCache[BlockPair] = true;
1181 return true;
1184 for (MachineInstr &I : *BB) {
1185 // Treat as alias conservatively for a call or an ordered memory
1186 // operation.
1187 if (I.isCall() || I.hasOrderedMemoryRef()) {
1188 for (auto *DomBB : HandledDomBlocks) {
1189 if (DomBB != BB && DT->dominates(DomBB, BB))
1190 HasStoreCache[std::make_pair(DomBB, To)] = true;
1191 else if(DomBB != BB && DT->dominates(BB, DomBB))
1192 HasStoreCache[std::make_pair(From, DomBB)] = true;
1194 HasStoreCache[BlockPair] = true;
1195 return true;
1198 if (I.mayStore()) {
1199 SawStore = true;
1200 // We still have chance to sink MI if all stores between are not
1201 // aliased to MI.
1202 // Cache all store instructions, so that we don't need to go through
1203 // all From reachable blocks for next load instruction.
1204 if (I.mayAlias(AA, MI, false))
1205 HasAliasedStore = true;
1206 StoreInstrCache[BlockPair].push_back(&I);
1211 // If there is no store at all, cache the result.
1212 if (!SawStore)
1213 HasStoreCache[BlockPair] = false;
1214 return HasAliasedStore;
1217 /// Sink instructions into loops if profitable. This especially tries to prevent
1218 /// register spills caused by register pressure if there is little to no
1219 /// overhead moving instructions into loops.
1220 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) {
1221 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I);
1222 MachineBasicBlock *Preheader = L->getLoopPreheader();
1223 assert(Preheader && "Loop sink needs a preheader block");
1224 MachineBasicBlock *SinkBlock = nullptr;
1225 bool CanSink = true;
1226 const MachineOperand &MO = I.getOperand(0);
1228 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1229 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI);
1230 if (!L->contains(&MI)) {
1231 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n");
1232 CanSink = false;
1233 break;
1236 // FIXME: Come up with a proper cost model that estimates whether sinking
1237 // the instruction (and thus possibly executing it on every loop
1238 // iteration) is more expensive than a register.
1239 // For now assumes that copies are cheap and thus almost always worth it.
1240 if (!MI.isCopy()) {
1241 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n");
1242 CanSink = false;
1243 break;
1245 if (!SinkBlock) {
1246 SinkBlock = MI.getParent();
1247 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: "
1248 << printMBBReference(*SinkBlock) << "\n");
1249 continue;
1251 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1252 if (!SinkBlock) {
1253 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n");
1254 CanSink = false;
1255 break;
1257 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " <<
1258 printMBBReference(*SinkBlock) << "\n");
1261 if (!CanSink) {
1262 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n");
1263 return false;
1265 if (!SinkBlock) {
1266 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n");
1267 return false;
1269 if (SinkBlock == Preheader) {
1270 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n");
1271 return false;
1273 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) {
1274 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n");
1275 return false;
1278 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n");
1279 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I);
1281 // The instruction is moved from its basic block, so do not retain the
1282 // debug information.
1283 assert(!I.isDebugInstr() && "Should not sink debug inst");
1284 I.setDebugLoc(DebugLoc());
1285 return true;
1288 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1289 /// instruction out of its current block into a successor.
1290 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1291 AllSuccsCache &AllSuccessors) {
1292 // Don't sink instructions that the target prefers not to sink.
1293 if (!TII->shouldSink(MI))
1294 return false;
1296 // Check if it's safe to move the instruction.
1297 if (!MI.isSafeToMove(AA, SawStore))
1298 return false;
1300 // Convergent operations may not be made control-dependent on additional
1301 // values.
1302 if (MI.isConvergent())
1303 return false;
1305 // Don't break implicit null checks. This is a performance heuristic, and not
1306 // required for correctness.
1307 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1308 return false;
1310 // FIXME: This should include support for sinking instructions within the
1311 // block they are currently in to shorten the live ranges. We often get
1312 // instructions sunk into the top of a large block, but it would be better to
1313 // also sink them down before their first use in the block. This xform has to
1314 // be careful not to *increase* register pressure though, e.g. sinking
1315 // "x = y + z" down if it kills y and z would increase the live ranges of y
1316 // and z and only shrink the live range of x.
1318 bool BreakPHIEdge = false;
1319 MachineBasicBlock *ParentBlock = MI.getParent();
1320 MachineBasicBlock *SuccToSinkTo =
1321 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1323 // If there are no outputs, it must have side-effects.
1324 if (!SuccToSinkTo)
1325 return false;
1327 // If the instruction to move defines a dead physical register which is live
1328 // when leaving the basic block, don't move it because it could turn into a
1329 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1330 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1331 const MachineOperand &MO = MI.getOperand(I);
1332 if (!MO.isReg()) continue;
1333 Register Reg = MO.getReg();
1334 if (Reg == 0 || !Register::isPhysicalRegister(Reg))
1335 continue;
1336 if (SuccToSinkTo->isLiveIn(Reg))
1337 return false;
1340 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1342 // If the block has multiple predecessors, this is a critical edge.
1343 // Decide if we can sink along it or need to break the edge.
1344 if (SuccToSinkTo->pred_size() > 1) {
1345 // We cannot sink a load across a critical edge - there may be stores in
1346 // other code paths.
1347 bool TryBreak = false;
1348 bool Store =
1349 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1350 if (!MI.isSafeToMove(AA, Store)) {
1351 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1352 TryBreak = true;
1355 // We don't want to sink across a critical edge if we don't dominate the
1356 // successor. We could be introducing calculations to new code paths.
1357 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1358 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1359 TryBreak = true;
1362 // Don't sink instructions into a loop.
1363 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
1364 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
1365 TryBreak = true;
1368 // Otherwise we are OK with sinking along a critical edge.
1369 if (!TryBreak)
1370 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1371 else {
1372 // Mark this edge as to be split.
1373 // If the edge can actually be split, the next iteration of the main loop
1374 // will sink MI in the newly created block.
1375 bool Status =
1376 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1377 if (!Status)
1378 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1379 "break critical edge\n");
1380 // The instruction will not be sunk this time.
1381 return false;
1385 if (BreakPHIEdge) {
1386 // BreakPHIEdge is true if all the uses are in the successor MBB being
1387 // sunken into and they are all PHI nodes. In this case, machine-sink must
1388 // break the critical edge first.
1389 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1390 SuccToSinkTo, BreakPHIEdge);
1391 if (!Status)
1392 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1393 "break critical edge\n");
1394 // The instruction will not be sunk this time.
1395 return false;
1398 // Determine where to insert into. Skip phi nodes.
1399 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
1400 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
1401 ++InsertPos;
1403 // Collect debug users of any vreg that this inst defines.
1404 SmallVector<MIRegs, 4> DbgUsersToSink;
1405 for (auto &MO : MI.operands()) {
1406 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1407 continue;
1408 if (!SeenDbgUsers.count(MO.getReg()))
1409 continue;
1411 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1412 auto &Users = SeenDbgUsers[MO.getReg()];
1413 for (auto &User : Users) {
1414 MachineInstr *DbgMI = User.getPointer();
1415 if (User.getInt()) {
1416 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1417 // it, it can't be recovered. Set it undef.
1418 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1419 DbgMI->setDebugValueUndef();
1420 } else {
1421 DbgUsersToSink.push_back(
1422 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1427 // After sinking, some debug users may not be dominated any more. If possible,
1428 // copy-propagate their operands. As it's expensive, don't do this if there's
1429 // no debuginfo in the program.
1430 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1431 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1433 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1435 // Conservatively, clear any kill flags, since it's possible that they are no
1436 // longer correct.
1437 // Note that we have to clear the kill flags for any register this instruction
1438 // uses as we may sink over another instruction which currently kills the
1439 // used registers.
1440 for (MachineOperand &MO : MI.operands()) {
1441 if (MO.isReg() && MO.isUse())
1442 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1445 return true;
1448 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1449 MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1450 assert(MI.isCopy());
1451 assert(MI.getOperand(1).isReg());
1453 // Enumerate all users of vreg operands that are def'd. Skip those that will
1454 // be sunk. For the rest, if they are not dominated by the block we will sink
1455 // MI into, propagate the copy source to them.
1456 SmallVector<MachineInstr *, 4> DbgDefUsers;
1457 SmallVector<Register, 4> DbgUseRegs;
1458 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1459 for (auto &MO : MI.operands()) {
1460 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1461 continue;
1462 DbgUseRegs.push_back(MO.getReg());
1463 for (auto &User : MRI.use_instructions(MO.getReg())) {
1464 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1465 continue;
1467 // If is in same block, will either sink or be use-before-def.
1468 if (User.getParent() == MI.getParent())
1469 continue;
1471 assert(User.hasDebugOperandForReg(MO.getReg()) &&
1472 "DBG_VALUE user of vreg, but has no operand for it?");
1473 DbgDefUsers.push_back(&User);
1477 // Point the users of this copy that are no longer dominated, at the source
1478 // of the copy.
1479 for (auto *User : DbgDefUsers) {
1480 for (auto &Reg : DbgUseRegs) {
1481 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1482 DbgOp.setReg(MI.getOperand(1).getReg());
1483 DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1489 //===----------------------------------------------------------------------===//
1490 // This pass is not intended to be a replacement or a complete alternative
1491 // for the pre-ra machine sink pass. It is only designed to sink COPY
1492 // instructions which should be handled after RA.
1494 // This pass sinks COPY instructions into a successor block, if the COPY is not
1495 // used in the current block and the COPY is live-in to a single successor
1496 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1497 // copy on paths where their results aren't needed. This also exposes
1498 // additional opportunites for dead copy elimination and shrink wrapping.
1500 // These copies were either not handled by or are inserted after the MachineSink
1501 // pass. As an example of the former case, the MachineSink pass cannot sink
1502 // COPY instructions with allocatable source registers; for AArch64 these type
1503 // of copy instructions are frequently used to move function parameters (PhyReg)
1504 // into virtual registers in the entry block.
1506 // For the machine IR below, this pass will sink %w19 in the entry into its
1507 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1508 // %bb.0:
1509 // %wzr = SUBSWri %w1, 1
1510 // %w19 = COPY %w0
1511 // Bcc 11, %bb.2
1512 // %bb.1:
1513 // Live Ins: %w19
1514 // BL @fun
1515 // %w0 = ADDWrr %w0, %w19
1516 // RET %w0
1517 // %bb.2:
1518 // %w0 = COPY %wzr
1519 // RET %w0
1520 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1521 // able to see %bb.0 as a candidate.
1522 //===----------------------------------------------------------------------===//
1523 namespace {
1525 class PostRAMachineSinking : public MachineFunctionPass {
1526 public:
1527 bool runOnMachineFunction(MachineFunction &MF) override;
1529 static char ID;
1530 PostRAMachineSinking() : MachineFunctionPass(ID) {}
1531 StringRef getPassName() const override { return "PostRA Machine Sink"; }
1533 void getAnalysisUsage(AnalysisUsage &AU) const override {
1534 AU.setPreservesCFG();
1535 MachineFunctionPass::getAnalysisUsage(AU);
1538 MachineFunctionProperties getRequiredProperties() const override {
1539 return MachineFunctionProperties().set(
1540 MachineFunctionProperties::Property::NoVRegs);
1543 private:
1544 /// Track which register units have been modified and used.
1545 LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1547 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1548 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1549 /// consists of a pointer to the instruction itself, and a vector of registers
1550 /// referred to by the instruction that overlap the key register unit.
1551 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1553 /// Sink Copy instructions unused in the same block close to their uses in
1554 /// successors.
1555 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1556 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1558 } // namespace
1560 char PostRAMachineSinking::ID = 0;
1561 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1563 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1564 "PostRA Machine Sink", false, false)
1566 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1567 const TargetRegisterInfo *TRI) {
1568 LiveRegUnits LiveInRegUnits(*TRI);
1569 LiveInRegUnits.addLiveIns(MBB);
1570 return !LiveInRegUnits.available(Reg);
1573 static MachineBasicBlock *
1574 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1575 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1576 unsigned Reg, const TargetRegisterInfo *TRI) {
1577 // Try to find a single sinkable successor in which Reg is live-in.
1578 MachineBasicBlock *BB = nullptr;
1579 for (auto *SI : SinkableBBs) {
1580 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1581 // If BB is set here, Reg is live-in to at least two sinkable successors,
1582 // so quit.
1583 if (BB)
1584 return nullptr;
1585 BB = SI;
1588 // Reg is not live-in to any sinkable successors.
1589 if (!BB)
1590 return nullptr;
1592 // Check if any register aliased with Reg is live-in in other successors.
1593 for (auto *SI : CurBB.successors()) {
1594 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1595 return nullptr;
1597 return BB;
1600 static MachineBasicBlock *
1601 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1602 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1603 ArrayRef<unsigned> DefedRegsInCopy,
1604 const TargetRegisterInfo *TRI) {
1605 MachineBasicBlock *SingleBB = nullptr;
1606 for (auto DefReg : DefedRegsInCopy) {
1607 MachineBasicBlock *BB =
1608 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1609 if (!BB || (SingleBB && SingleBB != BB))
1610 return nullptr;
1611 SingleBB = BB;
1613 return SingleBB;
1616 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1617 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1618 LiveRegUnits &UsedRegUnits,
1619 const TargetRegisterInfo *TRI) {
1620 for (auto U : UsedOpsInCopy) {
1621 MachineOperand &MO = MI->getOperand(U);
1622 Register SrcReg = MO.getReg();
1623 if (!UsedRegUnits.available(SrcReg)) {
1624 MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1625 for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1626 if (UI.killsRegister(SrcReg, TRI)) {
1627 UI.clearRegisterKills(SrcReg, TRI);
1628 MO.setIsKill(true);
1629 break;
1636 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1637 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1638 SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1639 MachineFunction &MF = *SuccBB->getParent();
1640 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1641 for (unsigned DefReg : DefedRegsInCopy)
1642 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1643 SuccBB->removeLiveIn(*S);
1644 for (auto U : UsedOpsInCopy) {
1645 Register SrcReg = MI->getOperand(U).getReg();
1646 LaneBitmask Mask;
1647 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1648 Mask |= (*S).second;
1650 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1652 SuccBB->sortUniqueLiveIns();
1655 static bool hasRegisterDependency(MachineInstr *MI,
1656 SmallVectorImpl<unsigned> &UsedOpsInCopy,
1657 SmallVectorImpl<unsigned> &DefedRegsInCopy,
1658 LiveRegUnits &ModifiedRegUnits,
1659 LiveRegUnits &UsedRegUnits) {
1660 bool HasRegDependency = false;
1661 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1662 MachineOperand &MO = MI->getOperand(i);
1663 if (!MO.isReg())
1664 continue;
1665 Register Reg = MO.getReg();
1666 if (!Reg)
1667 continue;
1668 if (MO.isDef()) {
1669 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1670 HasRegDependency = true;
1671 break;
1673 DefedRegsInCopy.push_back(Reg);
1675 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1676 // For example, we can ignore modifications in reg with undef. However,
1677 // it's not perfectly clear if skipping the internal read is safe in all
1678 // other targets.
1679 } else if (MO.isUse()) {
1680 if (!ModifiedRegUnits.available(Reg)) {
1681 HasRegDependency = true;
1682 break;
1684 UsedOpsInCopy.push_back(i);
1687 return HasRegDependency;
1690 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg,
1691 const TargetRegisterInfo *TRI) {
1692 SmallSet<MCRegister, 4> RegUnits;
1693 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1694 RegUnits.insert(*RI);
1695 return RegUnits;
1698 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1699 MachineFunction &MF,
1700 const TargetRegisterInfo *TRI,
1701 const TargetInstrInfo *TII) {
1702 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1703 // FIXME: For now, we sink only to a successor which has a single predecessor
1704 // so that we can directly sink COPY instructions to the successor without
1705 // adding any new block or branch instruction.
1706 for (MachineBasicBlock *SI : CurBB.successors())
1707 if (!SI->livein_empty() && SI->pred_size() == 1)
1708 SinkableBBs.insert(SI);
1710 if (SinkableBBs.empty())
1711 return false;
1713 bool Changed = false;
1715 // Track which registers have been modified and used between the end of the
1716 // block and the current instruction.
1717 ModifiedRegUnits.clear();
1718 UsedRegUnits.clear();
1719 SeenDbgInstrs.clear();
1721 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1722 MachineInstr *MI = &*I;
1723 ++I;
1725 // Track the operand index for use in Copy.
1726 SmallVector<unsigned, 2> UsedOpsInCopy;
1727 // Track the register number defed in Copy.
1728 SmallVector<unsigned, 2> DefedRegsInCopy;
1730 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1731 // for DBG_VALUEs later, record them when they're encountered.
1732 if (MI->isDebugValue()) {
1733 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
1734 bool IsValid = true;
1735 for (MachineOperand &MO : MI->debug_operands()) {
1736 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1737 // Bail if we can already tell the sink would be rejected, rather
1738 // than needlessly accumulating lots of DBG_VALUEs.
1739 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1740 ModifiedRegUnits, UsedRegUnits)) {
1741 IsValid = false;
1742 break;
1745 // Record debug use of each reg unit.
1746 SmallSet<MCRegister, 4> RegUnits = getRegUnits(MO.getReg(), TRI);
1747 for (MCRegister Reg : RegUnits)
1748 MIUnits[Reg].push_back(MO.getReg());
1751 if (IsValid) {
1752 for (auto RegOps : MIUnits)
1753 SeenDbgInstrs[RegOps.first].push_back({MI, RegOps.second});
1755 continue;
1758 if (MI->isDebugOrPseudoInstr())
1759 continue;
1761 // Do not move any instruction across function call.
1762 if (MI->isCall())
1763 return false;
1765 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1766 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1767 TRI);
1768 continue;
1771 // Don't sink the COPY if it would violate a register dependency.
1772 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1773 ModifiedRegUnits, UsedRegUnits)) {
1774 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1775 TRI);
1776 continue;
1778 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1779 "Unexpect SrcReg or DefReg");
1780 MachineBasicBlock *SuccBB =
1781 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1782 // Don't sink if we cannot find a single sinkable successor in which Reg
1783 // is live-in.
1784 if (!SuccBB) {
1785 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1786 TRI);
1787 continue;
1789 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1790 "Unexpected predecessor");
1792 // Collect DBG_VALUEs that must sink with this copy. We've previously
1793 // recorded which reg units that DBG_VALUEs read, if this instruction
1794 // writes any of those units then the corresponding DBG_VALUEs must sink.
1795 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
1796 for (auto &MO : MI->operands()) {
1797 if (!MO.isReg() || !MO.isDef())
1798 continue;
1800 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI);
1801 for (MCRegister Reg : Units) {
1802 for (auto MIRegs : SeenDbgInstrs.lookup(Reg)) {
1803 auto &Regs = DbgValsToSinkMap[MIRegs.first];
1804 for (unsigned Reg : MIRegs.second)
1805 Regs.push_back(Reg);
1809 SmallVector<MIRegs, 4> DbgValsToSink(DbgValsToSinkMap.begin(),
1810 DbgValsToSinkMap.end());
1812 // Clear the kill flag if SrcReg is killed between MI and the end of the
1813 // block.
1814 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1815 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1816 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1817 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1819 Changed = true;
1820 ++NumPostRACopySink;
1822 return Changed;
1825 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1826 if (skipFunction(MF.getFunction()))
1827 return false;
1829 bool Changed = false;
1830 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1831 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1833 ModifiedRegUnits.init(*TRI);
1834 UsedRegUnits.init(*TRI);
1835 for (auto &BB : MF)
1836 Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1838 return Changed;