1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/PointerIntPair.h"
21 #include "llvm/ADT/SetVector.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/ADT/SparseBitVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
29 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
30 #include "llvm/CodeGen/MachineDominators.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineFunctionPass.h"
33 #include "llvm/CodeGen/MachineInstr.h"
34 #include "llvm/CodeGen/MachineLoopInfo.h"
35 #include "llvm/CodeGen/MachineOperand.h"
36 #include "llvm/CodeGen/MachinePostDominators.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/RegisterClassInfo.h"
39 #include "llvm/CodeGen/RegisterPressure.h"
40 #include "llvm/CodeGen/TargetInstrInfo.h"
41 #include "llvm/CodeGen/TargetRegisterInfo.h"
42 #include "llvm/CodeGen/TargetSubtargetInfo.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/DebugInfoMetadata.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/InitializePasses.h"
47 #include "llvm/MC/MCRegisterInfo.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/BranchProbability.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
62 #define DEBUG_TYPE "machine-sink"
65 SplitEdges("machine-sink-split",
66 cl::desc("Split critical edges during machine sinking"),
67 cl::init(true), cl::Hidden
);
70 UseBlockFreqInfo("machine-sink-bfi",
71 cl::desc("Use block frequency info to find successors to sink"),
72 cl::init(true), cl::Hidden
);
74 static cl::opt
<unsigned> SplitEdgeProbabilityThreshold(
75 "machine-sink-split-probability-threshold",
77 "Percentage threshold for splitting single-instruction critical edge. "
78 "If the branch threshold is higher than this threshold, we allow "
79 "speculative execution of up to 1 instruction to avoid branching to "
80 "splitted critical edge"),
81 cl::init(40), cl::Hidden
);
83 static cl::opt
<unsigned> SinkLoadInstsPerBlockThreshold(
84 "machine-sink-load-instrs-threshold",
85 cl::desc("Do not try to find alias store for a load if there is a in-path "
86 "block whose instruction number is higher than this threshold."),
87 cl::init(2000), cl::Hidden
);
89 static cl::opt
<unsigned> SinkLoadBlocksThreshold(
90 "machine-sink-load-blocks-threshold",
91 cl::desc("Do not try to find alias store for a load if the block number in "
92 "the straight line is higher than this threshold."),
93 cl::init(20), cl::Hidden
);
96 SinkInstsIntoLoop("sink-insts-to-avoid-spills",
97 cl::desc("Sink instructions into loops to avoid "
99 cl::init(false), cl::Hidden
);
101 static cl::opt
<unsigned> SinkIntoLoopLimit(
102 "machine-sink-loop-limit",
103 cl::desc("The maximum number of instructions considered for loop sinking."),
104 cl::init(50), cl::Hidden
);
106 STATISTIC(NumSunk
, "Number of machine instructions sunk");
107 STATISTIC(NumLoopSunk
, "Number of machine instructions sunk into a loop");
108 STATISTIC(NumSplit
, "Number of critical edges split");
109 STATISTIC(NumCoalesces
, "Number of copies coalesced");
110 STATISTIC(NumPostRACopySink
, "Number of copies sunk after RA");
114 class MachineSinking
: public MachineFunctionPass
{
115 const TargetInstrInfo
*TII
;
116 const TargetRegisterInfo
*TRI
;
117 MachineRegisterInfo
*MRI
; // Machine register information
118 MachineDominatorTree
*DT
; // Machine dominator tree
119 MachinePostDominatorTree
*PDT
; // Machine post dominator tree
121 MachineBlockFrequencyInfo
*MBFI
;
122 const MachineBranchProbabilityInfo
*MBPI
;
124 RegisterClassInfo RegClassInfo
;
126 // Remember which edges have been considered for breaking.
127 SmallSet
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, 8>
129 // Remember which edges we are about to split.
130 // This is different from CEBCandidates since those edges
132 SetVector
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>> ToSplit
;
134 SparseBitVector
<> RegsToClearKillFlags
;
136 using AllSuccsCache
=
137 std::map
<MachineBasicBlock
*, SmallVector
<MachineBasicBlock
*, 4>>;
139 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
140 /// post-dominated by another DBG_VALUE of the same variable location.
141 /// This is necessary to detect sequences such as:
143 /// DBG_VALUE %0, !123, !DIExpression()
145 /// DBG_VALUE %1, !123, !DIExpression()
146 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
147 /// would re-order assignments.
148 using SeenDbgUser
= PointerIntPair
<MachineInstr
*, 1>;
150 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
151 /// debug instructions to sink.
152 SmallDenseMap
<unsigned, TinyPtrVector
<SeenDbgUser
>> SeenDbgUsers
;
154 /// Record of debug variables that have had their locations set in the
156 DenseSet
<DebugVariable
> SeenDbgVars
;
158 std::map
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>, bool>
160 std::map
<std::pair
<MachineBasicBlock
*, MachineBasicBlock
*>,
161 std::vector
<MachineInstr
*>>
164 /// Cached BB's register pressure.
165 std::map
<MachineBasicBlock
*, std::vector
<unsigned>> CachedRegisterPressure
;
168 static char ID
; // Pass identification
170 MachineSinking() : MachineFunctionPass(ID
) {
171 initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
174 bool runOnMachineFunction(MachineFunction
&MF
) override
;
176 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
177 MachineFunctionPass::getAnalysisUsage(AU
);
178 AU
.addRequired
<AAResultsWrapperPass
>();
179 AU
.addRequired
<MachineDominatorTree
>();
180 AU
.addRequired
<MachinePostDominatorTree
>();
181 AU
.addRequired
<MachineLoopInfo
>();
182 AU
.addRequired
<MachineBranchProbabilityInfo
>();
183 AU
.addPreserved
<MachineLoopInfo
>();
184 if (UseBlockFreqInfo
)
185 AU
.addRequired
<MachineBlockFrequencyInfo
>();
188 void releaseMemory() override
{
189 CEBCandidates
.clear();
193 bool ProcessBlock(MachineBasicBlock
&MBB
);
194 void ProcessDbgInst(MachineInstr
&MI
);
195 bool isWorthBreakingCriticalEdge(MachineInstr
&MI
,
196 MachineBasicBlock
*From
,
197 MachineBasicBlock
*To
);
199 bool hasStoreBetween(MachineBasicBlock
*From
, MachineBasicBlock
*To
,
202 /// Postpone the splitting of the given critical
203 /// edge (\p From, \p To).
205 /// We do not split the edges on the fly. Indeed, this invalidates
206 /// the dominance information and thus triggers a lot of updates
207 /// of that information underneath.
208 /// Instead, we postpone all the splits after each iteration of
209 /// the main loop. That way, the information is at least valid
210 /// for the lifetime of an iteration.
212 /// \return True if the edge is marked as toSplit, false otherwise.
213 /// False can be returned if, for instance, this is not profitable.
214 bool PostponeSplitCriticalEdge(MachineInstr
&MI
,
215 MachineBasicBlock
*From
,
216 MachineBasicBlock
*To
,
218 bool SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
219 AllSuccsCache
&AllSuccessors
);
221 /// If we sink a COPY inst, some debug users of it's destination may no
222 /// longer be dominated by the COPY, and will eventually be dropped.
223 /// This is easily rectified by forwarding the non-dominated debug uses
224 /// to the copy source.
225 void SalvageUnsunkDebugUsersOfCopy(MachineInstr
&,
226 MachineBasicBlock
*TargetBlock
);
227 bool AllUsesDominatedByBlock(Register Reg
, MachineBasicBlock
*MBB
,
228 MachineBasicBlock
*DefMBB
, bool &BreakPHIEdge
,
229 bool &LocalUse
) const;
230 MachineBasicBlock
*FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
231 bool &BreakPHIEdge
, AllSuccsCache
&AllSuccessors
);
233 void FindLoopSinkCandidates(MachineLoop
*L
, MachineBasicBlock
*BB
,
234 SmallVectorImpl
<MachineInstr
*> &Candidates
);
235 bool SinkIntoLoop(MachineLoop
*L
, MachineInstr
&I
);
237 bool isProfitableToSinkTo(Register Reg
, MachineInstr
&MI
,
238 MachineBasicBlock
*MBB
,
239 MachineBasicBlock
*SuccToSinkTo
,
240 AllSuccsCache
&AllSuccessors
);
242 bool PerformTrivialForwardCoalescing(MachineInstr
&MI
,
243 MachineBasicBlock
*MBB
);
245 SmallVector
<MachineBasicBlock
*, 4> &
246 GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
247 AllSuccsCache
&AllSuccessors
) const;
249 std::vector
<unsigned> &getBBRegisterPressure(MachineBasicBlock
&MBB
);
252 } // end anonymous namespace
254 char MachineSinking::ID
= 0;
256 char &llvm::MachineSinkingID
= MachineSinking::ID
;
258 INITIALIZE_PASS_BEGIN(MachineSinking
, DEBUG_TYPE
,
259 "Machine code sinking", false, false)
260 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
261 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
262 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
263 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
264 INITIALIZE_PASS_END(MachineSinking
, DEBUG_TYPE
,
265 "Machine code sinking", false, false)
267 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr
&MI
,
268 MachineBasicBlock
*MBB
) {
272 Register SrcReg
= MI
.getOperand(1).getReg();
273 Register DstReg
= MI
.getOperand(0).getReg();
274 if (!Register::isVirtualRegister(SrcReg
) ||
275 !Register::isVirtualRegister(DstReg
) || !MRI
->hasOneNonDBGUse(SrcReg
))
278 const TargetRegisterClass
*SRC
= MRI
->getRegClass(SrcReg
);
279 const TargetRegisterClass
*DRC
= MRI
->getRegClass(DstReg
);
283 MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
);
284 if (DefMI
->isCopyLike())
286 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI
);
287 LLVM_DEBUG(dbgs() << "*** to: " << MI
);
288 MRI
->replaceRegWith(DstReg
, SrcReg
);
289 MI
.eraseFromParent();
291 // Conservatively, clear any kill flags, since it's possible that they are no
293 MRI
->clearKillFlags(SrcReg
);
299 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
300 /// occur in blocks dominated by the specified block. If any use is in the
301 /// definition block, then return false since it is never legal to move def
303 bool MachineSinking::AllUsesDominatedByBlock(Register Reg
,
304 MachineBasicBlock
*MBB
,
305 MachineBasicBlock
*DefMBB
,
307 bool &LocalUse
) const {
308 assert(Register::isVirtualRegister(Reg
) && "Only makes sense for vregs");
310 // Ignore debug uses because debug info doesn't affect the code.
311 if (MRI
->use_nodbg_empty(Reg
))
314 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
315 // into and they are all PHI nodes. In this case, machine-sink must break
316 // the critical edge first. e.g.
319 // Predecessors according to CFG: %bb.0
321 // %def = DEC64_32r %x, implicit-def dead %eflags
323 // JE_4 <%bb.37>, implicit %eflags
324 // Successors according to CFG: %bb.37 %bb.2
327 // %p = PHI %y, %bb.0, %def, %bb.1
328 if (all_of(MRI
->use_nodbg_operands(Reg
), [&](MachineOperand
&MO
) {
329 MachineInstr
*UseInst
= MO
.getParent();
330 unsigned OpNo
= UseInst
->getOperandNo(&MO
);
331 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
332 return UseBlock
== MBB
&& UseInst
->isPHI() &&
333 UseInst
->getOperand(OpNo
+ 1).getMBB() == DefMBB
;
339 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
340 // Determine the block of the use.
341 MachineInstr
*UseInst
= MO
.getParent();
342 unsigned OpNo
= &MO
- &UseInst
->getOperand(0);
343 MachineBasicBlock
*UseBlock
= UseInst
->getParent();
344 if (UseInst
->isPHI()) {
345 // PHI nodes use the operand in the predecessor block, not the block with
347 UseBlock
= UseInst
->getOperand(OpNo
+1).getMBB();
348 } else if (UseBlock
== DefMBB
) {
353 // Check that it dominates.
354 if (!DT
->dominates(MBB
, UseBlock
))
361 /// Return true if this machine instruction loads from global offset table or
363 static bool mayLoadFromGOTOrConstantPool(MachineInstr
&MI
) {
364 assert(MI
.mayLoad() && "Expected MI that loads!");
366 // If we lost memory operands, conservatively assume that the instruction
367 // reads from everything..
368 if (MI
.memoperands_empty())
371 for (MachineMemOperand
*MemOp
: MI
.memoperands())
372 if (const PseudoSourceValue
*PSV
= MemOp
->getPseudoValue())
373 if (PSV
->isGOT() || PSV
->isConstantPool())
379 void MachineSinking::FindLoopSinkCandidates(MachineLoop
*L
, MachineBasicBlock
*BB
,
380 SmallVectorImpl
<MachineInstr
*> &Candidates
) {
381 for (auto &MI
: *BB
) {
382 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI
);
383 if (!TII
->shouldSink(MI
)) {
384 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this "
388 if (!L
->isLoopInvariant(MI
)) {
389 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n");
392 bool DontMoveAcrossStore
= true;
393 if (!MI
.isSafeToMove(AA
, DontMoveAcrossStore
)) {
394 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n");
397 if (MI
.mayLoad() && !mayLoadFromGOTOrConstantPool(MI
)) {
398 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n");
401 if (MI
.isConvergent())
404 const MachineOperand
&MO
= MI
.getOperand(0);
405 if (!MO
.isReg() || !MO
.getReg() || !MO
.isDef())
407 if (!MRI
->hasOneDef(MO
.getReg()))
410 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n");
411 Candidates
.push_back(&MI
);
415 bool MachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
416 if (skipFunction(MF
.getFunction()))
419 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
421 TII
= MF
.getSubtarget().getInstrInfo();
422 TRI
= MF
.getSubtarget().getRegisterInfo();
423 MRI
= &MF
.getRegInfo();
424 DT
= &getAnalysis
<MachineDominatorTree
>();
425 PDT
= &getAnalysis
<MachinePostDominatorTree
>();
426 LI
= &getAnalysis
<MachineLoopInfo
>();
427 MBFI
= UseBlockFreqInfo
? &getAnalysis
<MachineBlockFrequencyInfo
>() : nullptr;
428 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
429 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
430 RegClassInfo
.runOnMachineFunction(MF
);
432 bool EverMadeChange
= false;
435 bool MadeChange
= false;
437 // Process all basic blocks.
438 CEBCandidates
.clear();
441 MadeChange
|= ProcessBlock(MBB
);
443 // If we have anything we marked as toSplit, split it now.
444 for (auto &Pair
: ToSplit
) {
445 auto NewSucc
= Pair
.first
->SplitCriticalEdge(Pair
.second
, *this);
446 if (NewSucc
!= nullptr) {
447 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
448 << printMBBReference(*Pair
.first
) << " -- "
449 << printMBBReference(*NewSucc
) << " -- "
450 << printMBBReference(*Pair
.second
) << '\n');
452 MBFI
->onEdgeSplit(*Pair
.first
, *NewSucc
, *MBPI
);
457 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
459 // If this iteration over the code changed anything, keep iterating.
460 if (!MadeChange
) break;
461 EverMadeChange
= true;
464 if (SinkInstsIntoLoop
) {
465 SmallVector
<MachineLoop
*, 8> Loops(LI
->begin(), LI
->end());
466 for (auto *L
: Loops
) {
467 MachineBasicBlock
*Preheader
= LI
->findLoopPreheader(L
);
469 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n");
472 SmallVector
<MachineInstr
*, 8> Candidates
;
473 FindLoopSinkCandidates(L
, Preheader
, Candidates
);
475 // Walk the candidates in reverse order so that we start with the use
476 // of a def-use chain, if there is any.
477 // TODO: Sort the candidates using a cost-model.
479 for (auto It
= Candidates
.rbegin(); It
!= Candidates
.rend(); ++It
) {
480 if (i
++ == SinkIntoLoopLimit
) {
481 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to "
486 MachineInstr
*I
= *It
;
487 if (!SinkIntoLoop(L
, *I
))
489 EverMadeChange
= true;
495 HasStoreCache
.clear();
496 StoreInstrCache
.clear();
498 // Now clear any kill flags for recorded registers.
499 for (auto I
: RegsToClearKillFlags
)
500 MRI
->clearKillFlags(I
);
501 RegsToClearKillFlags
.clear();
503 return EverMadeChange
;
506 bool MachineSinking::ProcessBlock(MachineBasicBlock
&MBB
) {
507 // Can't sink anything out of a block that has less than two successors.
508 if (MBB
.succ_size() <= 1 || MBB
.empty()) return false;
510 // Don't bother sinking code out of unreachable blocks. In addition to being
511 // unprofitable, it can also lead to infinite looping, because in an
512 // unreachable loop there may be nowhere to stop.
513 if (!DT
->isReachableFromEntry(&MBB
)) return false;
515 bool MadeChange
= false;
517 // Cache all successors, sorted by frequency info and loop depth.
518 AllSuccsCache AllSuccessors
;
520 // Walk the basic block bottom-up. Remember if we saw a store.
521 MachineBasicBlock::iterator I
= MBB
.end();
523 bool ProcessedBegin
, SawStore
= false;
525 MachineInstr
&MI
= *I
; // The instruction to sink.
527 // Predecrement I (if it's not begin) so that it isn't invalidated by
529 ProcessedBegin
= I
== MBB
.begin();
533 if (MI
.isDebugOrPseudoInstr()) {
534 if (MI
.isDebugValue())
539 bool Joined
= PerformTrivialForwardCoalescing(MI
, &MBB
);
545 if (SinkInstruction(MI
, SawStore
, AllSuccessors
)) {
550 // If we just processed the first instruction in the block, we're done.
551 } while (!ProcessedBegin
);
553 SeenDbgUsers
.clear();
555 // recalculate the bb register pressure after sinking one BB.
556 CachedRegisterPressure
.clear();
561 void MachineSinking::ProcessDbgInst(MachineInstr
&MI
) {
562 // When we see DBG_VALUEs for registers, record any vreg it reads, so that
563 // we know what to sink if the vreg def sinks.
564 assert(MI
.isDebugValue() && "Expected DBG_VALUE for processing");
566 DebugVariable
Var(MI
.getDebugVariable(), MI
.getDebugExpression(),
567 MI
.getDebugLoc()->getInlinedAt());
568 bool SeenBefore
= SeenDbgVars
.contains(Var
);
570 for (MachineOperand
&MO
: MI
.debug_operands()) {
571 if (MO
.isReg() && MO
.getReg().isVirtual())
572 SeenDbgUsers
[MO
.getReg()].push_back(SeenDbgUser(&MI
, SeenBefore
));
575 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
576 SeenDbgVars
.insert(Var
);
579 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr
&MI
,
580 MachineBasicBlock
*From
,
581 MachineBasicBlock
*To
) {
582 // FIXME: Need much better heuristics.
584 // If the pass has already considered breaking this edge (during this pass
585 // through the function), then let's go ahead and break it. This means
586 // sinking multiple "cheap" instructions into the same block.
587 if (!CEBCandidates
.insert(std::make_pair(From
, To
)).second
)
590 if (!MI
.isCopy() && !TII
->isAsCheapAsAMove(MI
))
593 if (From
->isSuccessor(To
) && MBPI
->getEdgeProbability(From
, To
) <=
594 BranchProbability(SplitEdgeProbabilityThreshold
, 100))
597 // MI is cheap, we probably don't want to break the critical edge for it.
598 // However, if this would allow some definitions of its source operands
599 // to be sunk then it's probably worth it.
600 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
601 const MachineOperand
&MO
= MI
.getOperand(i
);
602 if (!MO
.isReg() || !MO
.isUse())
604 Register Reg
= MO
.getReg();
608 // We don't move live definitions of physical registers,
609 // so sinking their uses won't enable any opportunities.
610 if (Register::isPhysicalRegister(Reg
))
613 // If this instruction is the only user of a virtual register,
614 // check if breaking the edge will enable sinking
615 // both this instruction and the defining instruction.
616 if (MRI
->hasOneNonDBGUse(Reg
)) {
617 // If the definition resides in same MBB,
618 // claim it's likely we can sink these together.
619 // If definition resides elsewhere, we aren't
620 // blocking it from being sunk so don't break the edge.
621 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
622 if (DefMI
->getParent() == MI
.getParent())
630 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr
&MI
,
631 MachineBasicBlock
*FromBB
,
632 MachineBasicBlock
*ToBB
,
634 if (!isWorthBreakingCriticalEdge(MI
, FromBB
, ToBB
))
637 // Avoid breaking back edge. From == To means backedge for single BB loop.
638 if (!SplitEdges
|| FromBB
== ToBB
)
641 // Check for backedges of more "complex" loops.
642 if (LI
->getLoopFor(FromBB
) == LI
->getLoopFor(ToBB
) &&
643 LI
->isLoopHeader(ToBB
))
646 // It's not always legal to break critical edges and sink the computation
654 // ... no uses of v1024
660 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
669 // ... no uses of v1024
675 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
676 // flow. We need to ensure the new basic block where the computation is
677 // sunk to dominates all the uses.
678 // It's only legal to break critical edge and sink the computation to the
679 // new block if all the predecessors of "To", except for "From", are
680 // not dominated by "From". Given SSA property, this means these
681 // predecessors are dominated by "To".
683 // There is no need to do this check if all the uses are PHI nodes. PHI
684 // sources are only defined on the specific predecessor edges.
686 for (MachineBasicBlock::pred_iterator PI
= ToBB
->pred_begin(),
687 E
= ToBB
->pred_end(); PI
!= E
; ++PI
) {
690 if (!DT
->dominates(ToBB
, *PI
))
695 ToSplit
.insert(std::make_pair(FromBB
, ToBB
));
700 std::vector
<unsigned> &
701 MachineSinking::getBBRegisterPressure(MachineBasicBlock
&MBB
) {
702 // Currently to save compiling time, MBB's register pressure will not change
703 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
704 // register pressure is changed after sinking any instructions into it.
705 // FIXME: need a accurate and cheap register pressure estiminate model here.
706 auto RP
= CachedRegisterPressure
.find(&MBB
);
707 if (RP
!= CachedRegisterPressure
.end())
710 RegionPressure Pressure
;
711 RegPressureTracker
RPTracker(Pressure
);
713 // Initialize the register pressure tracker.
714 RPTracker
.init(MBB
.getParent(), &RegClassInfo
, nullptr, &MBB
, MBB
.end(),
715 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
717 for (MachineBasicBlock::iterator MII
= MBB
.instr_end(),
718 MIE
= MBB
.instr_begin();
720 MachineInstr
&MI
= *std::prev(MII
);
721 if (MI
.isDebugInstr() || MI
.isPseudoProbe())
723 RegisterOperands RegOpers
;
724 RegOpers
.collect(MI
, *TRI
, *MRI
, false, false);
725 RPTracker
.recedeSkipDebugValues();
726 assert(&*RPTracker
.getPos() == &MI
&& "RPTracker sync error!");
727 RPTracker
.recede(RegOpers
);
730 RPTracker
.closeRegion();
731 auto It
= CachedRegisterPressure
.insert(
732 std::make_pair(&MBB
, RPTracker
.getPressure().MaxSetPressure
));
733 return It
.first
->second
;
736 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
737 bool MachineSinking::isProfitableToSinkTo(Register Reg
, MachineInstr
&MI
,
738 MachineBasicBlock
*MBB
,
739 MachineBasicBlock
*SuccToSinkTo
,
740 AllSuccsCache
&AllSuccessors
) {
741 assert (SuccToSinkTo
&& "Invalid SinkTo Candidate BB");
743 if (MBB
== SuccToSinkTo
)
746 // It is profitable if SuccToSinkTo does not post dominate current block.
747 if (!PDT
->dominates(SuccToSinkTo
, MBB
))
750 // It is profitable to sink an instruction from a deeper loop to a shallower
751 // loop, even if the latter post-dominates the former (PR21115).
752 if (LI
->getLoopDepth(MBB
) > LI
->getLoopDepth(SuccToSinkTo
))
755 // Check if only use in post dominated block is PHI instruction.
756 bool NonPHIUse
= false;
757 for (MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(Reg
)) {
758 MachineBasicBlock
*UseBlock
= UseInst
.getParent();
759 if (UseBlock
== SuccToSinkTo
&& !UseInst
.isPHI())
765 // If SuccToSinkTo post dominates then also it may be profitable if MI
766 // can further profitably sinked into another block in next round.
767 bool BreakPHIEdge
= false;
768 // FIXME - If finding successor is compile time expensive then cache results.
769 if (MachineBasicBlock
*MBB2
=
770 FindSuccToSinkTo(MI
, SuccToSinkTo
, BreakPHIEdge
, AllSuccessors
))
771 return isProfitableToSinkTo(Reg
, MI
, SuccToSinkTo
, MBB2
, AllSuccessors
);
773 MachineLoop
*ML
= LI
->getLoopFor(MBB
);
775 // If the instruction is not inside a loop, it is not profitable to sink MI to
776 // a post dominate block SuccToSinkTo.
780 auto isRegisterPressureSetExceedLimit
= [&](const TargetRegisterClass
*RC
) {
781 unsigned Weight
= TRI
->getRegClassWeight(RC
).RegWeight
;
782 const int *PS
= TRI
->getRegClassPressureSets(RC
);
783 // Get register pressure for block SuccToSinkTo.
784 std::vector
<unsigned> BBRegisterPressure
=
785 getBBRegisterPressure(*SuccToSinkTo
);
786 for (; *PS
!= -1; PS
++)
787 // check if any register pressure set exceeds limit in block SuccToSinkTo
789 if (Weight
+ BBRegisterPressure
[*PS
] >=
790 TRI
->getRegPressureSetLimit(*MBB
->getParent(), *PS
))
795 // If this instruction is inside a loop and sinking this instruction can make
796 // more registers live range shorten, it is still prifitable.
797 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
798 const MachineOperand
&MO
= MI
.getOperand(i
);
799 // Ignore non-register operands.
802 Register Reg
= MO
.getReg();
806 // Don't handle physical register.
807 if (Register::isPhysicalRegister(Reg
))
810 // Users for the defs are all dominated by SuccToSinkTo.
812 // This def register's live range is shortened after sinking.
813 bool LocalUse
= false;
814 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
, BreakPHIEdge
,
818 MachineInstr
*DefMI
= MRI
->getVRegDef(Reg
);
819 // DefMI is defined outside of loop. There should be no live range
820 // impact for this operand. Defination outside of loop means:
821 // 1: defination is outside of loop.
822 // 2: defination is in this loop, but it is a PHI in the loop header.
823 if (LI
->getLoopFor(DefMI
->getParent()) != ML
||
824 (DefMI
->isPHI() && LI
->isLoopHeader(DefMI
->getParent())))
826 // The DefMI is defined inside the loop.
827 // If sinking this operand makes some register pressure set exceed limit,
828 // it is not profitable.
829 if (isRegisterPressureSetExceedLimit(MRI
->getRegClass(Reg
))) {
830 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
836 // If MI is in loop and all its operands are alive across the whole loop or if
837 // no operand sinking make register pressure set exceed limit, it is
838 // profitable to sink MI.
842 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
843 /// computing it if it was not already cached.
844 SmallVector
<MachineBasicBlock
*, 4> &
845 MachineSinking::GetAllSortedSuccessors(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
846 AllSuccsCache
&AllSuccessors
) const {
847 // Do we have the sorted successors in cache ?
848 auto Succs
= AllSuccessors
.find(MBB
);
849 if (Succs
!= AllSuccessors
.end())
850 return Succs
->second
;
852 SmallVector
<MachineBasicBlock
*, 4> AllSuccs(MBB
->successors());
854 // Handle cases where sinking can happen but where the sink point isn't a
855 // successor. For example:
861 for (MachineDomTreeNode
*DTChild
: DT
->getNode(MBB
)->children()) {
862 // DomTree children of MBB that have MBB as immediate dominator are added.
863 if (DTChild
->getIDom()->getBlock() == MI
.getParent() &&
864 // Skip MBBs already added to the AllSuccs vector above.
865 !MBB
->isSuccessor(DTChild
->getBlock()))
866 AllSuccs
.push_back(DTChild
->getBlock());
869 // Sort Successors according to their loop depth or block frequency info.
871 AllSuccs
, [this](const MachineBasicBlock
*L
, const MachineBasicBlock
*R
) {
872 uint64_t LHSFreq
= MBFI
? MBFI
->getBlockFreq(L
).getFrequency() : 0;
873 uint64_t RHSFreq
= MBFI
? MBFI
->getBlockFreq(R
).getFrequency() : 0;
874 bool HasBlockFreq
= LHSFreq
!= 0 && RHSFreq
!= 0;
875 return HasBlockFreq
? LHSFreq
< RHSFreq
876 : LI
->getLoopDepth(L
) < LI
->getLoopDepth(R
);
879 auto it
= AllSuccessors
.insert(std::make_pair(MBB
, AllSuccs
));
881 return it
.first
->second
;
884 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
886 MachineSinking::FindSuccToSinkTo(MachineInstr
&MI
, MachineBasicBlock
*MBB
,
888 AllSuccsCache
&AllSuccessors
) {
889 assert (MBB
&& "Invalid MachineBasicBlock!");
891 // Loop over all the operands of the specified instruction. If there is
892 // anything we can't handle, bail out.
894 // SuccToSinkTo - This is the successor to sink this instruction to, once we
896 MachineBasicBlock
*SuccToSinkTo
= nullptr;
897 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
898 const MachineOperand
&MO
= MI
.getOperand(i
);
899 if (!MO
.isReg()) continue; // Ignore non-register operands.
901 Register Reg
= MO
.getReg();
902 if (Reg
== 0) continue;
904 if (Register::isPhysicalRegister(Reg
)) {
906 // If the physreg has no defs anywhere, it's just an ambient register
907 // and we can freely move its uses. Alternatively, if it's allocatable,
908 // it could get allocated to something with a def during allocation.
909 if (!MRI
->isConstantPhysReg(Reg
))
911 } else if (!MO
.isDead()) {
912 // A def that isn't dead. We can't move it.
916 // Virtual register uses are always safe to sink.
917 if (MO
.isUse()) continue;
919 // If it's not safe to move defs of the register class, then abort.
920 if (!TII
->isSafeToMoveRegClassDefs(MRI
->getRegClass(Reg
)))
923 // Virtual register defs can only be sunk if all their uses are in blocks
924 // dominated by one of the successors.
926 // If a previous operand picked a block to sink to, then this operand
927 // must be sinkable to the same block.
928 bool LocalUse
= false;
929 if (!AllUsesDominatedByBlock(Reg
, SuccToSinkTo
, MBB
,
930 BreakPHIEdge
, LocalUse
))
936 // Otherwise, we should look at all the successors and decide which one
937 // we should sink to. If we have reliable block frequency information
938 // (frequency != 0) available, give successors with smaller frequencies
939 // higher priority, otherwise prioritize smaller loop depths.
940 for (MachineBasicBlock
*SuccBlock
:
941 GetAllSortedSuccessors(MI
, MBB
, AllSuccessors
)) {
942 bool LocalUse
= false;
943 if (AllUsesDominatedByBlock(Reg
, SuccBlock
, MBB
,
944 BreakPHIEdge
, LocalUse
)) {
945 SuccToSinkTo
= SuccBlock
;
949 // Def is used locally, it's never safe to move this def.
953 // If we couldn't find a block to sink to, ignore this instruction.
956 if (!isProfitableToSinkTo(Reg
, MI
, MBB
, SuccToSinkTo
, AllSuccessors
))
961 // It is not possible to sink an instruction into its own block. This can
962 // happen with loops.
963 if (MBB
== SuccToSinkTo
)
966 // It's not safe to sink instructions to EH landing pad. Control flow into
967 // landing pad is implicitly defined.
968 if (SuccToSinkTo
&& SuccToSinkTo
->isEHPad())
971 // It ought to be okay to sink instructions into an INLINEASM_BR target, but
972 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
973 // the source block (which this code does not yet do). So for now, forbid
975 if (SuccToSinkTo
&& SuccToSinkTo
->isInlineAsmBrIndirectTarget())
981 /// Return true if MI is likely to be usable as a memory operation by the
982 /// implicit null check optimization.
984 /// This is a "best effort" heuristic, and should not be relied upon for
985 /// correctness. This returning true does not guarantee that the implicit null
986 /// check optimization is legal over MI, and this returning false does not
987 /// guarantee MI cannot possibly be used to do a null check.
988 static bool SinkingPreventsImplicitNullCheck(MachineInstr
&MI
,
989 const TargetInstrInfo
*TII
,
990 const TargetRegisterInfo
*TRI
) {
991 using MachineBranchPredicate
= TargetInstrInfo::MachineBranchPredicate
;
993 auto *MBB
= MI
.getParent();
994 if (MBB
->pred_size() != 1)
997 auto *PredMBB
= *MBB
->pred_begin();
998 auto *PredBB
= PredMBB
->getBasicBlock();
1000 // Frontends that don't use implicit null checks have no reason to emit
1001 // branches with make.implicit metadata, and this function should always
1002 // return false for them.
1004 !PredBB
->getTerminator()->getMetadata(LLVMContext::MD_make_implicit
))
1007 const MachineOperand
*BaseOp
;
1009 bool OffsetIsScalable
;
1010 if (!TII
->getMemOperandWithOffset(MI
, BaseOp
, Offset
, OffsetIsScalable
, TRI
))
1013 if (!BaseOp
->isReg())
1016 if (!(MI
.mayLoad() && !MI
.isPredicable()))
1019 MachineBranchPredicate MBP
;
1020 if (TII
->analyzeBranchPredicate(*PredMBB
, MBP
, false))
1023 return MBP
.LHS
.isReg() && MBP
.RHS
.isImm() && MBP
.RHS
.getImm() == 0 &&
1024 (MBP
.Predicate
== MachineBranchPredicate::PRED_NE
||
1025 MBP
.Predicate
== MachineBranchPredicate::PRED_EQ
) &&
1026 MBP
.LHS
.getReg() == BaseOp
->getReg();
1029 /// If the sunk instruction is a copy, try to forward the copy instead of
1030 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1031 /// there's any subregister weirdness involved. Returns true if copy
1032 /// propagation occurred.
1033 static bool attemptDebugCopyProp(MachineInstr
&SinkInst
, MachineInstr
&DbgMI
,
1035 const MachineRegisterInfo
&MRI
= SinkInst
.getMF()->getRegInfo();
1036 const TargetInstrInfo
&TII
= *SinkInst
.getMF()->getSubtarget().getInstrInfo();
1038 // Copy DBG_VALUE operand and set the original to undef. We then check to
1039 // see whether this is something that can be copy-forwarded. If it isn't,
1040 // continue around the loop.
1042 const MachineOperand
*SrcMO
= nullptr, *DstMO
= nullptr;
1043 auto CopyOperands
= TII
.isCopyInstr(SinkInst
);
1046 SrcMO
= CopyOperands
->Source
;
1047 DstMO
= CopyOperands
->Destination
;
1049 // Check validity of forwarding this copy.
1050 bool PostRA
= MRI
.getNumVirtRegs() == 0;
1052 // Trying to forward between physical and virtual registers is too hard.
1053 if (Reg
.isVirtual() != SrcMO
->getReg().isVirtual())
1056 // Only try virtual register copy-forwarding before regalloc, and physical
1057 // register copy-forwarding after regalloc.
1058 bool arePhysRegs
= !Reg
.isVirtual();
1059 if (arePhysRegs
!= PostRA
)
1062 // Pre-regalloc, only forward if all subregisters agree (or there are no
1063 // subregs at all). More analysis might recover some forwardable copies.
1065 for (auto &DbgMO
: DbgMI
.getDebugOperandsForReg(Reg
))
1066 if (DbgMO
.getSubReg() != SrcMO
->getSubReg() ||
1067 DbgMO
.getSubReg() != DstMO
->getSubReg())
1070 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1071 // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1072 // matches the copy destination.
1073 if (PostRA
&& Reg
!= DstMO
->getReg())
1076 for (auto &DbgMO
: DbgMI
.getDebugOperandsForReg(Reg
)) {
1077 DbgMO
.setReg(SrcMO
->getReg());
1078 DbgMO
.setSubReg(SrcMO
->getSubReg());
1083 using MIRegs
= std::pair
<MachineInstr
*, SmallVector
<unsigned, 2>>;
1084 /// Sink an instruction and its associated debug instructions.
1085 static void performSink(MachineInstr
&MI
, MachineBasicBlock
&SuccToSinkTo
,
1086 MachineBasicBlock::iterator InsertPos
,
1087 SmallVectorImpl
<MIRegs
> &DbgValuesToSink
) {
1089 // If we cannot find a location to use (merge with), then we erase the debug
1090 // location to prevent debug-info driven tools from potentially reporting
1091 // wrong location information.
1092 if (!SuccToSinkTo
.empty() && InsertPos
!= SuccToSinkTo
.end())
1093 MI
.setDebugLoc(DILocation::getMergedLocation(MI
.getDebugLoc(),
1094 InsertPos
->getDebugLoc()));
1096 MI
.setDebugLoc(DebugLoc());
1098 // Move the instruction.
1099 MachineBasicBlock
*ParentBlock
= MI
.getParent();
1100 SuccToSinkTo
.splice(InsertPos
, ParentBlock
, MI
,
1101 ++MachineBasicBlock::iterator(MI
));
1103 // Sink a copy of debug users to the insert position. Mark the original
1104 // DBG_VALUE location as 'undef', indicating that any earlier variable
1105 // location should be terminated as we've optimised away the value at this
1107 for (auto DbgValueToSink
: DbgValuesToSink
) {
1108 MachineInstr
*DbgMI
= DbgValueToSink
.first
;
1109 MachineInstr
*NewDbgMI
= DbgMI
->getMF()->CloneMachineInstr(DbgMI
);
1110 SuccToSinkTo
.insert(InsertPos
, NewDbgMI
);
1112 bool PropagatedAllSunkOps
= true;
1113 for (unsigned Reg
: DbgValueToSink
.second
) {
1114 if (DbgMI
->hasDebugOperandForReg(Reg
)) {
1115 if (!attemptDebugCopyProp(MI
, *DbgMI
, Reg
)) {
1116 PropagatedAllSunkOps
= false;
1121 if (!PropagatedAllSunkOps
)
1122 DbgMI
->setDebugValueUndef();
1126 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1128 bool MachineSinking::hasStoreBetween(MachineBasicBlock
*From
,
1129 MachineBasicBlock
*To
, MachineInstr
&MI
) {
1130 // Make sure From and To are in straight line which means From dominates To
1131 // and To post dominates From.
1132 if (!DT
->dominates(From
, To
) || !PDT
->dominates(To
, From
))
1135 auto BlockPair
= std::make_pair(From
, To
);
1137 // Does these two blocks pair be queried before and have a definite cached
1139 if (HasStoreCache
.find(BlockPair
) != HasStoreCache
.end())
1140 return HasStoreCache
[BlockPair
];
1142 if (StoreInstrCache
.find(BlockPair
) != StoreInstrCache
.end())
1143 return llvm::any_of(StoreInstrCache
[BlockPair
], [&](MachineInstr
*I
) {
1144 return I
->mayAlias(AA
, MI
, false);
1147 bool SawStore
= false;
1148 bool HasAliasedStore
= false;
1149 DenseSet
<MachineBasicBlock
*> HandledBlocks
;
1150 DenseSet
<MachineBasicBlock
*> HandledDomBlocks
;
1151 // Go through all reachable blocks from From.
1152 for (MachineBasicBlock
*BB
: depth_first(From
)) {
1153 // We insert the instruction at the start of block To, so no need to worry
1154 // about stores inside To.
1155 // Store in block From should be already considered when just enter function
1157 if (BB
== To
|| BB
== From
)
1160 // We already handle this BB in previous iteration.
1161 if (HandledBlocks
.count(BB
))
1164 HandledBlocks
.insert(BB
);
1165 // To post dominates BB, it must be a path from block From.
1166 if (PDT
->dominates(To
, BB
)) {
1167 if (!HandledDomBlocks
.count(BB
))
1168 HandledDomBlocks
.insert(BB
);
1170 // If this BB is too big or the block number in straight line between From
1171 // and To is too big, stop searching to save compiling time.
1172 if (BB
->size() > SinkLoadInstsPerBlockThreshold
||
1173 HandledDomBlocks
.size() > SinkLoadBlocksThreshold
) {
1174 for (auto *DomBB
: HandledDomBlocks
) {
1175 if (DomBB
!= BB
&& DT
->dominates(DomBB
, BB
))
1176 HasStoreCache
[std::make_pair(DomBB
, To
)] = true;
1177 else if(DomBB
!= BB
&& DT
->dominates(BB
, DomBB
))
1178 HasStoreCache
[std::make_pair(From
, DomBB
)] = true;
1180 HasStoreCache
[BlockPair
] = true;
1184 for (MachineInstr
&I
: *BB
) {
1185 // Treat as alias conservatively for a call or an ordered memory
1187 if (I
.isCall() || I
.hasOrderedMemoryRef()) {
1188 for (auto *DomBB
: HandledDomBlocks
) {
1189 if (DomBB
!= BB
&& DT
->dominates(DomBB
, BB
))
1190 HasStoreCache
[std::make_pair(DomBB
, To
)] = true;
1191 else if(DomBB
!= BB
&& DT
->dominates(BB
, DomBB
))
1192 HasStoreCache
[std::make_pair(From
, DomBB
)] = true;
1194 HasStoreCache
[BlockPair
] = true;
1200 // We still have chance to sink MI if all stores between are not
1202 // Cache all store instructions, so that we don't need to go through
1203 // all From reachable blocks for next load instruction.
1204 if (I
.mayAlias(AA
, MI
, false))
1205 HasAliasedStore
= true;
1206 StoreInstrCache
[BlockPair
].push_back(&I
);
1211 // If there is no store at all, cache the result.
1213 HasStoreCache
[BlockPair
] = false;
1214 return HasAliasedStore
;
1217 /// Sink instructions into loops if profitable. This especially tries to prevent
1218 /// register spills caused by register pressure if there is little to no
1219 /// overhead moving instructions into loops.
1220 bool MachineSinking::SinkIntoLoop(MachineLoop
*L
, MachineInstr
&I
) {
1221 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I
);
1222 MachineBasicBlock
*Preheader
= L
->getLoopPreheader();
1223 assert(Preheader
&& "Loop sink needs a preheader block");
1224 MachineBasicBlock
*SinkBlock
= nullptr;
1225 bool CanSink
= true;
1226 const MachineOperand
&MO
= I
.getOperand(0);
1228 for (MachineInstr
&MI
: MRI
->use_instructions(MO
.getReg())) {
1229 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI
);
1230 if (!L
->contains(&MI
)) {
1231 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n");
1236 // FIXME: Come up with a proper cost model that estimates whether sinking
1237 // the instruction (and thus possibly executing it on every loop
1238 // iteration) is more expensive than a register.
1239 // For now assumes that copies are cheap and thus almost always worth it.
1241 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n");
1246 SinkBlock
= MI
.getParent();
1247 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: "
1248 << printMBBReference(*SinkBlock
) << "\n");
1251 SinkBlock
= DT
->findNearestCommonDominator(SinkBlock
, MI
.getParent());
1253 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n");
1257 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " <<
1258 printMBBReference(*SinkBlock
) << "\n");
1262 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n");
1266 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n");
1269 if (SinkBlock
== Preheader
) {
1270 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n");
1273 if (SinkBlock
->size() > SinkLoadInstsPerBlockThreshold
) {
1274 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n");
1278 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n");
1279 SinkBlock
->splice(SinkBlock
->getFirstNonPHI(), Preheader
, I
);
1281 // The instruction is moved from its basic block, so do not retain the
1282 // debug information.
1283 assert(!I
.isDebugInstr() && "Should not sink debug inst");
1284 I
.setDebugLoc(DebugLoc());
1288 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1289 /// instruction out of its current block into a successor.
1290 bool MachineSinking::SinkInstruction(MachineInstr
&MI
, bool &SawStore
,
1291 AllSuccsCache
&AllSuccessors
) {
1292 // Don't sink instructions that the target prefers not to sink.
1293 if (!TII
->shouldSink(MI
))
1296 // Check if it's safe to move the instruction.
1297 if (!MI
.isSafeToMove(AA
, SawStore
))
1300 // Convergent operations may not be made control-dependent on additional
1302 if (MI
.isConvergent())
1305 // Don't break implicit null checks. This is a performance heuristic, and not
1306 // required for correctness.
1307 if (SinkingPreventsImplicitNullCheck(MI
, TII
, TRI
))
1310 // FIXME: This should include support for sinking instructions within the
1311 // block they are currently in to shorten the live ranges. We often get
1312 // instructions sunk into the top of a large block, but it would be better to
1313 // also sink them down before their first use in the block. This xform has to
1314 // be careful not to *increase* register pressure though, e.g. sinking
1315 // "x = y + z" down if it kills y and z would increase the live ranges of y
1316 // and z and only shrink the live range of x.
1318 bool BreakPHIEdge
= false;
1319 MachineBasicBlock
*ParentBlock
= MI
.getParent();
1320 MachineBasicBlock
*SuccToSinkTo
=
1321 FindSuccToSinkTo(MI
, ParentBlock
, BreakPHIEdge
, AllSuccessors
);
1323 // If there are no outputs, it must have side-effects.
1327 // If the instruction to move defines a dead physical register which is live
1328 // when leaving the basic block, don't move it because it could turn into a
1329 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
1330 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
!= E
; ++I
) {
1331 const MachineOperand
&MO
= MI
.getOperand(I
);
1332 if (!MO
.isReg()) continue;
1333 Register Reg
= MO
.getReg();
1334 if (Reg
== 0 || !Register::isPhysicalRegister(Reg
))
1336 if (SuccToSinkTo
->isLiveIn(Reg
))
1340 LLVM_DEBUG(dbgs() << "Sink instr " << MI
<< "\tinto block " << *SuccToSinkTo
);
1342 // If the block has multiple predecessors, this is a critical edge.
1343 // Decide if we can sink along it or need to break the edge.
1344 if (SuccToSinkTo
->pred_size() > 1) {
1345 // We cannot sink a load across a critical edge - there may be stores in
1346 // other code paths.
1347 bool TryBreak
= false;
1349 MI
.mayLoad() ? hasStoreBetween(ParentBlock
, SuccToSinkTo
, MI
) : true;
1350 if (!MI
.isSafeToMove(AA
, Store
)) {
1351 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1355 // We don't want to sink across a critical edge if we don't dominate the
1356 // successor. We could be introducing calculations to new code paths.
1357 if (!TryBreak
&& !DT
->dominates(ParentBlock
, SuccToSinkTo
)) {
1358 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1362 // Don't sink instructions into a loop.
1363 if (!TryBreak
&& LI
->isLoopHeader(SuccToSinkTo
)) {
1364 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
1368 // Otherwise we are OK with sinking along a critical edge.
1370 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1372 // Mark this edge as to be split.
1373 // If the edge can actually be split, the next iteration of the main loop
1374 // will sink MI in the newly created block.
1376 PostponeSplitCriticalEdge(MI
, ParentBlock
, SuccToSinkTo
, BreakPHIEdge
);
1378 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1379 "break critical edge\n");
1380 // The instruction will not be sunk this time.
1386 // BreakPHIEdge is true if all the uses are in the successor MBB being
1387 // sunken into and they are all PHI nodes. In this case, machine-sink must
1388 // break the critical edge first.
1389 bool Status
= PostponeSplitCriticalEdge(MI
, ParentBlock
,
1390 SuccToSinkTo
, BreakPHIEdge
);
1392 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1393 "break critical edge\n");
1394 // The instruction will not be sunk this time.
1398 // Determine where to insert into. Skip phi nodes.
1399 MachineBasicBlock::iterator InsertPos
= SuccToSinkTo
->begin();
1400 while (InsertPos
!= SuccToSinkTo
->end() && InsertPos
->isPHI())
1403 // Collect debug users of any vreg that this inst defines.
1404 SmallVector
<MIRegs
, 4> DbgUsersToSink
;
1405 for (auto &MO
: MI
.operands()) {
1406 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg().isVirtual())
1408 if (!SeenDbgUsers
.count(MO
.getReg()))
1411 // Sink any users that don't pass any other DBG_VALUEs for this variable.
1412 auto &Users
= SeenDbgUsers
[MO
.getReg()];
1413 for (auto &User
: Users
) {
1414 MachineInstr
*DbgMI
= User
.getPointer();
1415 if (User
.getInt()) {
1416 // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1417 // it, it can't be recovered. Set it undef.
1418 if (!attemptDebugCopyProp(MI
, *DbgMI
, MO
.getReg()))
1419 DbgMI
->setDebugValueUndef();
1421 DbgUsersToSink
.push_back(
1422 {DbgMI
, SmallVector
<unsigned, 2>(1, MO
.getReg())});
1427 // After sinking, some debug users may not be dominated any more. If possible,
1428 // copy-propagate their operands. As it's expensive, don't do this if there's
1429 // no debuginfo in the program.
1430 if (MI
.getMF()->getFunction().getSubprogram() && MI
.isCopy())
1431 SalvageUnsunkDebugUsersOfCopy(MI
, SuccToSinkTo
);
1433 performSink(MI
, *SuccToSinkTo
, InsertPos
, DbgUsersToSink
);
1435 // Conservatively, clear any kill flags, since it's possible that they are no
1437 // Note that we have to clear the kill flags for any register this instruction
1438 // uses as we may sink over another instruction which currently kills the
1440 for (MachineOperand
&MO
: MI
.operands()) {
1441 if (MO
.isReg() && MO
.isUse())
1442 RegsToClearKillFlags
.set(MO
.getReg()); // Remember to clear kill flags.
1448 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1449 MachineInstr
&MI
, MachineBasicBlock
*TargetBlock
) {
1450 assert(MI
.isCopy());
1451 assert(MI
.getOperand(1).isReg());
1453 // Enumerate all users of vreg operands that are def'd. Skip those that will
1454 // be sunk. For the rest, if they are not dominated by the block we will sink
1455 // MI into, propagate the copy source to them.
1456 SmallVector
<MachineInstr
*, 4> DbgDefUsers
;
1457 SmallVector
<Register
, 4> DbgUseRegs
;
1458 const MachineRegisterInfo
&MRI
= MI
.getMF()->getRegInfo();
1459 for (auto &MO
: MI
.operands()) {
1460 if (!MO
.isReg() || !MO
.isDef() || !MO
.getReg().isVirtual())
1462 DbgUseRegs
.push_back(MO
.getReg());
1463 for (auto &User
: MRI
.use_instructions(MO
.getReg())) {
1464 if (!User
.isDebugValue() || DT
->dominates(TargetBlock
, User
.getParent()))
1467 // If is in same block, will either sink or be use-before-def.
1468 if (User
.getParent() == MI
.getParent())
1471 assert(User
.hasDebugOperandForReg(MO
.getReg()) &&
1472 "DBG_VALUE user of vreg, but has no operand for it?");
1473 DbgDefUsers
.push_back(&User
);
1477 // Point the users of this copy that are no longer dominated, at the source
1479 for (auto *User
: DbgDefUsers
) {
1480 for (auto &Reg
: DbgUseRegs
) {
1481 for (auto &DbgOp
: User
->getDebugOperandsForReg(Reg
)) {
1482 DbgOp
.setReg(MI
.getOperand(1).getReg());
1483 DbgOp
.setSubReg(MI
.getOperand(1).getSubReg());
1489 //===----------------------------------------------------------------------===//
1490 // This pass is not intended to be a replacement or a complete alternative
1491 // for the pre-ra machine sink pass. It is only designed to sink COPY
1492 // instructions which should be handled after RA.
1494 // This pass sinks COPY instructions into a successor block, if the COPY is not
1495 // used in the current block and the COPY is live-in to a single successor
1496 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the
1497 // copy on paths where their results aren't needed. This also exposes
1498 // additional opportunites for dead copy elimination and shrink wrapping.
1500 // These copies were either not handled by or are inserted after the MachineSink
1501 // pass. As an example of the former case, the MachineSink pass cannot sink
1502 // COPY instructions with allocatable source registers; for AArch64 these type
1503 // of copy instructions are frequently used to move function parameters (PhyReg)
1504 // into virtual registers in the entry block.
1506 // For the machine IR below, this pass will sink %w19 in the entry into its
1507 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1509 // %wzr = SUBSWri %w1, 1
1515 // %w0 = ADDWrr %w0, %w19
1520 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1521 // able to see %bb.0 as a candidate.
1522 //===----------------------------------------------------------------------===//
1525 class PostRAMachineSinking
: public MachineFunctionPass
{
1527 bool runOnMachineFunction(MachineFunction
&MF
) override
;
1530 PostRAMachineSinking() : MachineFunctionPass(ID
) {}
1531 StringRef
getPassName() const override
{ return "PostRA Machine Sink"; }
1533 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
1534 AU
.setPreservesCFG();
1535 MachineFunctionPass::getAnalysisUsage(AU
);
1538 MachineFunctionProperties
getRequiredProperties() const override
{
1539 return MachineFunctionProperties().set(
1540 MachineFunctionProperties::Property::NoVRegs
);
1544 /// Track which register units have been modified and used.
1545 LiveRegUnits ModifiedRegUnits
, UsedRegUnits
;
1547 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1548 /// entry in this map for each unit it touches. The DBG_VALUE's entry
1549 /// consists of a pointer to the instruction itself, and a vector of registers
1550 /// referred to by the instruction that overlap the key register unit.
1551 DenseMap
<unsigned, SmallVector
<MIRegs
, 2>> SeenDbgInstrs
;
1553 /// Sink Copy instructions unused in the same block close to their uses in
1555 bool tryToSinkCopy(MachineBasicBlock
&BB
, MachineFunction
&MF
,
1556 const TargetRegisterInfo
*TRI
, const TargetInstrInfo
*TII
);
1560 char PostRAMachineSinking::ID
= 0;
1561 char &llvm::PostRAMachineSinkingID
= PostRAMachineSinking::ID
;
1563 INITIALIZE_PASS(PostRAMachineSinking
, "postra-machine-sink",
1564 "PostRA Machine Sink", false, false)
1566 static bool aliasWithRegsInLiveIn(MachineBasicBlock
&MBB
, unsigned Reg
,
1567 const TargetRegisterInfo
*TRI
) {
1568 LiveRegUnits
LiveInRegUnits(*TRI
);
1569 LiveInRegUnits
.addLiveIns(MBB
);
1570 return !LiveInRegUnits
.available(Reg
);
1573 static MachineBasicBlock
*
1574 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1575 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1576 unsigned Reg
, const TargetRegisterInfo
*TRI
) {
1577 // Try to find a single sinkable successor in which Reg is live-in.
1578 MachineBasicBlock
*BB
= nullptr;
1579 for (auto *SI
: SinkableBBs
) {
1580 if (aliasWithRegsInLiveIn(*SI
, Reg
, TRI
)) {
1581 // If BB is set here, Reg is live-in to at least two sinkable successors,
1588 // Reg is not live-in to any sinkable successors.
1592 // Check if any register aliased with Reg is live-in in other successors.
1593 for (auto *SI
: CurBB
.successors()) {
1594 if (!SinkableBBs
.count(SI
) && aliasWithRegsInLiveIn(*SI
, Reg
, TRI
))
1600 static MachineBasicBlock
*
1601 getSingleLiveInSuccBB(MachineBasicBlock
&CurBB
,
1602 const SmallPtrSetImpl
<MachineBasicBlock
*> &SinkableBBs
,
1603 ArrayRef
<unsigned> DefedRegsInCopy
,
1604 const TargetRegisterInfo
*TRI
) {
1605 MachineBasicBlock
*SingleBB
= nullptr;
1606 for (auto DefReg
: DefedRegsInCopy
) {
1607 MachineBasicBlock
*BB
=
1608 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefReg
, TRI
);
1609 if (!BB
|| (SingleBB
&& SingleBB
!= BB
))
1616 static void clearKillFlags(MachineInstr
*MI
, MachineBasicBlock
&CurBB
,
1617 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1618 LiveRegUnits
&UsedRegUnits
,
1619 const TargetRegisterInfo
*TRI
) {
1620 for (auto U
: UsedOpsInCopy
) {
1621 MachineOperand
&MO
= MI
->getOperand(U
);
1622 Register SrcReg
= MO
.getReg();
1623 if (!UsedRegUnits
.available(SrcReg
)) {
1624 MachineBasicBlock::iterator NI
= std::next(MI
->getIterator());
1625 for (MachineInstr
&UI
: make_range(NI
, CurBB
.end())) {
1626 if (UI
.killsRegister(SrcReg
, TRI
)) {
1627 UI
.clearRegisterKills(SrcReg
, TRI
);
1636 static void updateLiveIn(MachineInstr
*MI
, MachineBasicBlock
*SuccBB
,
1637 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1638 SmallVectorImpl
<unsigned> &DefedRegsInCopy
) {
1639 MachineFunction
&MF
= *SuccBB
->getParent();
1640 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1641 for (unsigned DefReg
: DefedRegsInCopy
)
1642 for (MCSubRegIterator
S(DefReg
, TRI
, true); S
.isValid(); ++S
)
1643 SuccBB
->removeLiveIn(*S
);
1644 for (auto U
: UsedOpsInCopy
) {
1645 Register SrcReg
= MI
->getOperand(U
).getReg();
1647 for (MCRegUnitMaskIterator
S(SrcReg
, TRI
); S
.isValid(); ++S
) {
1648 Mask
|= (*S
).second
;
1650 SuccBB
->addLiveIn(SrcReg
, Mask
.any() ? Mask
: LaneBitmask::getAll());
1652 SuccBB
->sortUniqueLiveIns();
1655 static bool hasRegisterDependency(MachineInstr
*MI
,
1656 SmallVectorImpl
<unsigned> &UsedOpsInCopy
,
1657 SmallVectorImpl
<unsigned> &DefedRegsInCopy
,
1658 LiveRegUnits
&ModifiedRegUnits
,
1659 LiveRegUnits
&UsedRegUnits
) {
1660 bool HasRegDependency
= false;
1661 for (unsigned i
= 0, e
= MI
->getNumOperands(); i
!= e
; ++i
) {
1662 MachineOperand
&MO
= MI
->getOperand(i
);
1665 Register Reg
= MO
.getReg();
1669 if (!ModifiedRegUnits
.available(Reg
) || !UsedRegUnits
.available(Reg
)) {
1670 HasRegDependency
= true;
1673 DefedRegsInCopy
.push_back(Reg
);
1675 // FIXME: instead of isUse(), readsReg() would be a better fix here,
1676 // For example, we can ignore modifications in reg with undef. However,
1677 // it's not perfectly clear if skipping the internal read is safe in all
1679 } else if (MO
.isUse()) {
1680 if (!ModifiedRegUnits
.available(Reg
)) {
1681 HasRegDependency
= true;
1684 UsedOpsInCopy
.push_back(i
);
1687 return HasRegDependency
;
1690 static SmallSet
<MCRegister
, 4> getRegUnits(MCRegister Reg
,
1691 const TargetRegisterInfo
*TRI
) {
1692 SmallSet
<MCRegister
, 4> RegUnits
;
1693 for (auto RI
= MCRegUnitIterator(Reg
, TRI
); RI
.isValid(); ++RI
)
1694 RegUnits
.insert(*RI
);
1698 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock
&CurBB
,
1699 MachineFunction
&MF
,
1700 const TargetRegisterInfo
*TRI
,
1701 const TargetInstrInfo
*TII
) {
1702 SmallPtrSet
<MachineBasicBlock
*, 2> SinkableBBs
;
1703 // FIXME: For now, we sink only to a successor which has a single predecessor
1704 // so that we can directly sink COPY instructions to the successor without
1705 // adding any new block or branch instruction.
1706 for (MachineBasicBlock
*SI
: CurBB
.successors())
1707 if (!SI
->livein_empty() && SI
->pred_size() == 1)
1708 SinkableBBs
.insert(SI
);
1710 if (SinkableBBs
.empty())
1713 bool Changed
= false;
1715 // Track which registers have been modified and used between the end of the
1716 // block and the current instruction.
1717 ModifiedRegUnits
.clear();
1718 UsedRegUnits
.clear();
1719 SeenDbgInstrs
.clear();
1721 for (auto I
= CurBB
.rbegin(), E
= CurBB
.rend(); I
!= E
;) {
1722 MachineInstr
*MI
= &*I
;
1725 // Track the operand index for use in Copy.
1726 SmallVector
<unsigned, 2> UsedOpsInCopy
;
1727 // Track the register number defed in Copy.
1728 SmallVector
<unsigned, 2> DefedRegsInCopy
;
1730 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1731 // for DBG_VALUEs later, record them when they're encountered.
1732 if (MI
->isDebugValue()) {
1733 SmallDenseMap
<MCRegister
, SmallVector
<unsigned, 2>, 4> MIUnits
;
1734 bool IsValid
= true;
1735 for (MachineOperand
&MO
: MI
->debug_operands()) {
1736 if (MO
.isReg() && Register::isPhysicalRegister(MO
.getReg())) {
1737 // Bail if we can already tell the sink would be rejected, rather
1738 // than needlessly accumulating lots of DBG_VALUEs.
1739 if (hasRegisterDependency(MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1740 ModifiedRegUnits
, UsedRegUnits
)) {
1745 // Record debug use of each reg unit.
1746 SmallSet
<MCRegister
, 4> RegUnits
= getRegUnits(MO
.getReg(), TRI
);
1747 for (MCRegister Reg
: RegUnits
)
1748 MIUnits
[Reg
].push_back(MO
.getReg());
1752 for (auto RegOps
: MIUnits
)
1753 SeenDbgInstrs
[RegOps
.first
].push_back({MI
, RegOps
.second
});
1758 if (MI
->isDebugOrPseudoInstr())
1761 // Do not move any instruction across function call.
1765 if (!MI
->isCopy() || !MI
->getOperand(0).isRenamable()) {
1766 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1771 // Don't sink the COPY if it would violate a register dependency.
1772 if (hasRegisterDependency(MI
, UsedOpsInCopy
, DefedRegsInCopy
,
1773 ModifiedRegUnits
, UsedRegUnits
)) {
1774 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1778 assert((!UsedOpsInCopy
.empty() && !DefedRegsInCopy
.empty()) &&
1779 "Unexpect SrcReg or DefReg");
1780 MachineBasicBlock
*SuccBB
=
1781 getSingleLiveInSuccBB(CurBB
, SinkableBBs
, DefedRegsInCopy
, TRI
);
1782 // Don't sink if we cannot find a single sinkable successor in which Reg
1785 LiveRegUnits::accumulateUsedDefed(*MI
, ModifiedRegUnits
, UsedRegUnits
,
1789 assert((SuccBB
->pred_size() == 1 && *SuccBB
->pred_begin() == &CurBB
) &&
1790 "Unexpected predecessor");
1792 // Collect DBG_VALUEs that must sink with this copy. We've previously
1793 // recorded which reg units that DBG_VALUEs read, if this instruction
1794 // writes any of those units then the corresponding DBG_VALUEs must sink.
1795 MapVector
<MachineInstr
*, MIRegs::second_type
> DbgValsToSinkMap
;
1796 for (auto &MO
: MI
->operands()) {
1797 if (!MO
.isReg() || !MO
.isDef())
1800 SmallSet
<MCRegister
, 4> Units
= getRegUnits(MO
.getReg(), TRI
);
1801 for (MCRegister Reg
: Units
) {
1802 for (auto MIRegs
: SeenDbgInstrs
.lookup(Reg
)) {
1803 auto &Regs
= DbgValsToSinkMap
[MIRegs
.first
];
1804 for (unsigned Reg
: MIRegs
.second
)
1805 Regs
.push_back(Reg
);
1809 SmallVector
<MIRegs
, 4> DbgValsToSink(DbgValsToSinkMap
.begin(),
1810 DbgValsToSinkMap
.end());
1812 // Clear the kill flag if SrcReg is killed between MI and the end of the
1814 clearKillFlags(MI
, CurBB
, UsedOpsInCopy
, UsedRegUnits
, TRI
);
1815 MachineBasicBlock::iterator InsertPos
= SuccBB
->getFirstNonPHI();
1816 performSink(*MI
, *SuccBB
, InsertPos
, DbgValsToSink
);
1817 updateLiveIn(MI
, SuccBB
, UsedOpsInCopy
, DefedRegsInCopy
);
1820 ++NumPostRACopySink
;
1825 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction
&MF
) {
1826 if (skipFunction(MF
.getFunction()))
1829 bool Changed
= false;
1830 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1831 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
1833 ModifiedRegUnits
.init(*TRI
);
1834 UsedRegUnits
.init(*TRI
);
1836 Changed
|= tryToSinkCopy(BB
, MF
, TRI
, TII
);