[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / MachineVerifier.cpp
blob93942cdd0e4de53e1fd6986b03518028c963eb13
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/Analysis/EHPersonalities.h"
35 #include "llvm/CodeGen/GlobalISel/RegisterBank.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervalCalc.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFrameInfo.h"
43 #include "llvm/CodeGen/MachineFunction.h"
44 #include "llvm/CodeGen/MachineFunctionPass.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBundle.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/PseudoSourceValue.h"
51 #include "llvm/CodeGen/SlotIndexes.h"
52 #include "llvm/CodeGen/StackMaps.h"
53 #include "llvm/CodeGen/TargetInstrInfo.h"
54 #include "llvm/CodeGen/TargetOpcodes.h"
55 #include "llvm/CodeGen/TargetRegisterInfo.h"
56 #include "llvm/CodeGen/TargetSubtargetInfo.h"
57 #include "llvm/IR/BasicBlock.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/InlineAsm.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/InitializePasses.h"
62 #include "llvm/MC/LaneBitmask.h"
63 #include "llvm/MC/MCAsmInfo.h"
64 #include "llvm/MC/MCInstrDesc.h"
65 #include "llvm/MC/MCRegisterInfo.h"
66 #include "llvm/MC/MCTargetOptions.h"
67 #include "llvm/Pass.h"
68 #include "llvm/Support/Casting.h"
69 #include "llvm/Support/ErrorHandling.h"
70 #include "llvm/Support/LowLevelTypeImpl.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include "llvm/Target/TargetMachine.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <string>
80 #include <utility>
82 using namespace llvm;
84 namespace {
86 struct MachineVerifier {
87 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
89 unsigned verify(const MachineFunction &MF);
91 Pass *const PASS;
92 const char *Banner;
93 const MachineFunction *MF;
94 const TargetMachine *TM;
95 const TargetInstrInfo *TII;
96 const TargetRegisterInfo *TRI;
97 const MachineRegisterInfo *MRI;
99 unsigned foundErrors;
101 // Avoid querying the MachineFunctionProperties for each operand.
102 bool isFunctionRegBankSelected;
103 bool isFunctionSelected;
105 using RegVector = SmallVector<Register, 16>;
106 using RegMaskVector = SmallVector<const uint32_t *, 4>;
107 using RegSet = DenseSet<Register>;
108 using RegMap = DenseMap<Register, const MachineInstr *>;
109 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
111 const MachineInstr *FirstNonPHI;
112 const MachineInstr *FirstTerminator;
113 BlockSet FunctionBlocks;
115 BitVector regsReserved;
116 RegSet regsLive;
117 RegVector regsDefined, regsDead, regsKilled;
118 RegMaskVector regMasks;
120 SlotIndex lastIndex;
122 // Add Reg and any sub-registers to RV
123 void addRegWithSubRegs(RegVector &RV, Register Reg) {
124 RV.push_back(Reg);
125 if (Reg.isPhysical())
126 append_range(RV, TRI->subregs(Reg.asMCReg()));
129 struct BBInfo {
130 // Is this MBB reachable from the MF entry point?
131 bool reachable = false;
133 // Vregs that must be live in because they are used without being
134 // defined. Map value is the user. vregsLiveIn doesn't include regs
135 // that only are used by PHI nodes.
136 RegMap vregsLiveIn;
138 // Regs killed in MBB. They may be defined again, and will then be in both
139 // regsKilled and regsLiveOut.
140 RegSet regsKilled;
142 // Regs defined in MBB and live out. Note that vregs passing through may
143 // be live out without being mentioned here.
144 RegSet regsLiveOut;
146 // Vregs that pass through MBB untouched. This set is disjoint from
147 // regsKilled and regsLiveOut.
148 RegSet vregsPassed;
150 // Vregs that must pass through MBB because they are needed by a successor
151 // block. This set is disjoint from regsLiveOut.
152 RegSet vregsRequired;
154 // Set versions of block's predecessor and successor lists.
155 BlockSet Preds, Succs;
157 BBInfo() = default;
159 // Add register to vregsRequired if it belongs there. Return true if
160 // anything changed.
161 bool addRequired(Register Reg) {
162 if (!Reg.isVirtual())
163 return false;
164 if (regsLiveOut.count(Reg))
165 return false;
166 return vregsRequired.insert(Reg).second;
169 // Same for a full set.
170 bool addRequired(const RegSet &RS) {
171 bool Changed = false;
172 for (Register Reg : RS)
173 Changed |= addRequired(Reg);
174 return Changed;
177 // Same for a full map.
178 bool addRequired(const RegMap &RM) {
179 bool Changed = false;
180 for (const auto &I : RM)
181 Changed |= addRequired(I.first);
182 return Changed;
185 // Live-out registers are either in regsLiveOut or vregsPassed.
186 bool isLiveOut(Register Reg) const {
187 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
191 // Extra register info per MBB.
192 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
194 bool isReserved(Register Reg) {
195 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
198 bool isAllocatable(Register Reg) const {
199 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
200 !regsReserved.test(Reg.id());
203 // Analysis information if available
204 LiveVariables *LiveVars;
205 LiveIntervals *LiveInts;
206 LiveStacks *LiveStks;
207 SlotIndexes *Indexes;
209 void visitMachineFunctionBefore();
210 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
211 void visitMachineBundleBefore(const MachineInstr *MI);
213 /// Verify that all of \p MI's virtual register operands are scalars.
214 /// \returns True if all virtual register operands are scalar. False
215 /// otherwise.
216 bool verifyAllRegOpsScalar(const MachineInstr &MI,
217 const MachineRegisterInfo &MRI);
218 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
219 void verifyPreISelGenericInstruction(const MachineInstr *MI);
220 void visitMachineInstrBefore(const MachineInstr *MI);
221 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
222 void visitMachineBundleAfter(const MachineInstr *MI);
223 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
224 void visitMachineFunctionAfter();
226 void report(const char *msg, const MachineFunction *MF);
227 void report(const char *msg, const MachineBasicBlock *MBB);
228 void report(const char *msg, const MachineInstr *MI);
229 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
230 LLT MOVRegType = LLT{});
231 void report(const Twine &Msg, const MachineInstr *MI);
233 void report_context(const LiveInterval &LI) const;
234 void report_context(const LiveRange &LR, Register VRegUnit,
235 LaneBitmask LaneMask) const;
236 void report_context(const LiveRange::Segment &S) const;
237 void report_context(const VNInfo &VNI) const;
238 void report_context(SlotIndex Pos) const;
239 void report_context(MCPhysReg PhysReg) const;
240 void report_context_liverange(const LiveRange &LR) const;
241 void report_context_lanemask(LaneBitmask LaneMask) const;
242 void report_context_vreg(Register VReg) const;
243 void report_context_vreg_regunit(Register VRegOrUnit) const;
245 void verifyInlineAsm(const MachineInstr *MI);
247 void checkLiveness(const MachineOperand *MO, unsigned MONum);
248 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
249 SlotIndex UseIdx, const LiveRange &LR,
250 Register VRegOrUnit,
251 LaneBitmask LaneMask = LaneBitmask::getNone());
252 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
253 SlotIndex DefIdx, const LiveRange &LR,
254 Register VRegOrUnit, bool SubRangeCheck = false,
255 LaneBitmask LaneMask = LaneBitmask::getNone());
257 void markReachable(const MachineBasicBlock *MBB);
258 void calcRegsPassed();
259 void checkPHIOps(const MachineBasicBlock &MBB);
261 void calcRegsRequired();
262 void verifyLiveVariables();
263 void verifyLiveIntervals();
264 void verifyLiveInterval(const LiveInterval&);
265 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
266 LaneBitmask);
267 void verifyLiveRangeSegment(const LiveRange &,
268 const LiveRange::const_iterator I, Register,
269 LaneBitmask);
270 void verifyLiveRange(const LiveRange &, Register,
271 LaneBitmask LaneMask = LaneBitmask::getNone());
273 void verifyStackFrame();
275 void verifySlotIndexes() const;
276 void verifyProperties(const MachineFunction &MF);
279 struct MachineVerifierPass : public MachineFunctionPass {
280 static char ID; // Pass ID, replacement for typeid
282 const std::string Banner;
284 MachineVerifierPass(std::string banner = std::string())
285 : MachineFunctionPass(ID), Banner(std::move(banner)) {
286 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
289 void getAnalysisUsage(AnalysisUsage &AU) const override {
290 AU.setPreservesAll();
291 MachineFunctionPass::getAnalysisUsage(AU);
294 bool runOnMachineFunction(MachineFunction &MF) override {
295 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
296 if (FoundErrors)
297 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
298 return false;
302 } // end anonymous namespace
304 char MachineVerifierPass::ID = 0;
306 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
307 "Verify generated machine code", false, false)
309 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
310 return new MachineVerifierPass(Banner);
313 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
314 const std::string &Banner,
315 const MachineFunction &MF) {
316 // TODO: Use MFAM after porting below analyses.
317 // LiveVariables *LiveVars;
318 // LiveIntervals *LiveInts;
319 // LiveStacks *LiveStks;
320 // SlotIndexes *Indexes;
321 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
322 if (FoundErrors)
323 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
326 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
327 const {
328 MachineFunction &MF = const_cast<MachineFunction&>(*this);
329 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
330 if (AbortOnErrors && FoundErrors)
331 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
332 return FoundErrors == 0;
335 void MachineVerifier::verifySlotIndexes() const {
336 if (Indexes == nullptr)
337 return;
339 // Ensure the IdxMBB list is sorted by slot indexes.
340 SlotIndex Last;
341 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
342 E = Indexes->MBBIndexEnd(); I != E; ++I) {
343 assert(!Last.isValid() || I->first > Last);
344 Last = I->first;
348 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
349 // If a pass has introduced virtual registers without clearing the
350 // NoVRegs property (or set it without allocating the vregs)
351 // then report an error.
352 if (MF.getProperties().hasProperty(
353 MachineFunctionProperties::Property::NoVRegs) &&
354 MRI->getNumVirtRegs())
355 report("Function has NoVRegs property but there are VReg operands", &MF);
358 unsigned MachineVerifier::verify(const MachineFunction &MF) {
359 foundErrors = 0;
361 this->MF = &MF;
362 TM = &MF.getTarget();
363 TII = MF.getSubtarget().getInstrInfo();
364 TRI = MF.getSubtarget().getRegisterInfo();
365 MRI = &MF.getRegInfo();
367 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
368 MachineFunctionProperties::Property::FailedISel);
370 // If we're mid-GlobalISel and we already triggered the fallback path then
371 // it's expected that the MIR is somewhat broken but that's ok since we'll
372 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
373 if (isFunctionFailedISel)
374 return foundErrors;
376 isFunctionRegBankSelected = MF.getProperties().hasProperty(
377 MachineFunctionProperties::Property::RegBankSelected);
378 isFunctionSelected = MF.getProperties().hasProperty(
379 MachineFunctionProperties::Property::Selected);
381 LiveVars = nullptr;
382 LiveInts = nullptr;
383 LiveStks = nullptr;
384 Indexes = nullptr;
385 if (PASS) {
386 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
387 // We don't want to verify LiveVariables if LiveIntervals is available.
388 if (!LiveInts)
389 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
390 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
391 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
394 verifySlotIndexes();
396 verifyProperties(MF);
398 visitMachineFunctionBefore();
399 for (const MachineBasicBlock &MBB : MF) {
400 visitMachineBasicBlockBefore(&MBB);
401 // Keep track of the current bundle header.
402 const MachineInstr *CurBundle = nullptr;
403 // Do we expect the next instruction to be part of the same bundle?
404 bool InBundle = false;
406 for (const MachineInstr &MI : MBB.instrs()) {
407 if (MI.getParent() != &MBB) {
408 report("Bad instruction parent pointer", &MBB);
409 errs() << "Instruction: " << MI;
410 continue;
413 // Check for consistent bundle flags.
414 if (InBundle && !MI.isBundledWithPred())
415 report("Missing BundledPred flag, "
416 "BundledSucc was set on predecessor",
417 &MI);
418 if (!InBundle && MI.isBundledWithPred())
419 report("BundledPred flag is set, "
420 "but BundledSucc not set on predecessor",
421 &MI);
423 // Is this a bundle header?
424 if (!MI.isInsideBundle()) {
425 if (CurBundle)
426 visitMachineBundleAfter(CurBundle);
427 CurBundle = &MI;
428 visitMachineBundleBefore(CurBundle);
429 } else if (!CurBundle)
430 report("No bundle header", &MI);
431 visitMachineInstrBefore(&MI);
432 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
433 const MachineOperand &Op = MI.getOperand(I);
434 if (Op.getParent() != &MI) {
435 // Make sure to use correct addOperand / RemoveOperand / ChangeTo
436 // functions when replacing operands of a MachineInstr.
437 report("Instruction has operand with wrong parent set", &MI);
440 visitMachineOperand(&Op, I);
443 // Was this the last bundled instruction?
444 InBundle = MI.isBundledWithSucc();
446 if (CurBundle)
447 visitMachineBundleAfter(CurBundle);
448 if (InBundle)
449 report("BundledSucc flag set on last instruction in block", &MBB.back());
450 visitMachineBasicBlockAfter(&MBB);
452 visitMachineFunctionAfter();
454 // Clean up.
455 regsLive.clear();
456 regsDefined.clear();
457 regsDead.clear();
458 regsKilled.clear();
459 regMasks.clear();
460 MBBInfoMap.clear();
462 return foundErrors;
465 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
466 assert(MF);
467 errs() << '\n';
468 if (!foundErrors++) {
469 if (Banner)
470 errs() << "# " << Banner << '\n';
471 if (LiveInts != nullptr)
472 LiveInts->print(errs());
473 else
474 MF->print(errs(), Indexes);
476 errs() << "*** Bad machine code: " << msg << " ***\n"
477 << "- function: " << MF->getName() << "\n";
480 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
481 assert(MBB);
482 report(msg, MBB->getParent());
483 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
484 << MBB->getName() << " (" << (const void *)MBB << ')';
485 if (Indexes)
486 errs() << " [" << Indexes->getMBBStartIdx(MBB)
487 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
488 errs() << '\n';
491 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
492 assert(MI);
493 report(msg, MI->getParent());
494 errs() << "- instruction: ";
495 if (Indexes && Indexes->hasIndex(*MI))
496 errs() << Indexes->getInstructionIndex(*MI) << '\t';
497 MI->print(errs(), /*IsStandalone=*/true);
500 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
501 unsigned MONum, LLT MOVRegType) {
502 assert(MO);
503 report(msg, MO->getParent());
504 errs() << "- operand " << MONum << ": ";
505 MO->print(errs(), MOVRegType, TRI);
506 errs() << "\n";
509 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
510 report(Msg.str().c_str(), MI);
513 void MachineVerifier::report_context(SlotIndex Pos) const {
514 errs() << "- at: " << Pos << '\n';
517 void MachineVerifier::report_context(const LiveInterval &LI) const {
518 errs() << "- interval: " << LI << '\n';
521 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
522 LaneBitmask LaneMask) const {
523 report_context_liverange(LR);
524 report_context_vreg_regunit(VRegUnit);
525 if (LaneMask.any())
526 report_context_lanemask(LaneMask);
529 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
530 errs() << "- segment: " << S << '\n';
533 void MachineVerifier::report_context(const VNInfo &VNI) const {
534 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
537 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
538 errs() << "- liverange: " << LR << '\n';
541 void MachineVerifier::report_context(MCPhysReg PReg) const {
542 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
545 void MachineVerifier::report_context_vreg(Register VReg) const {
546 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
549 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
550 if (Register::isVirtualRegister(VRegOrUnit)) {
551 report_context_vreg(VRegOrUnit);
552 } else {
553 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
557 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
558 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
561 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
562 BBInfo &MInfo = MBBInfoMap[MBB];
563 if (!MInfo.reachable) {
564 MInfo.reachable = true;
565 for (const MachineBasicBlock *Succ : MBB->successors())
566 markReachable(Succ);
570 void MachineVerifier::visitMachineFunctionBefore() {
571 lastIndex = SlotIndex();
572 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
573 : TRI->getReservedRegs(*MF);
575 if (!MF->empty())
576 markReachable(&MF->front());
578 // Build a set of the basic blocks in the function.
579 FunctionBlocks.clear();
580 for (const auto &MBB : *MF) {
581 FunctionBlocks.insert(&MBB);
582 BBInfo &MInfo = MBBInfoMap[&MBB];
584 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
585 if (MInfo.Preds.size() != MBB.pred_size())
586 report("MBB has duplicate entries in its predecessor list.", &MBB);
588 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
589 if (MInfo.Succs.size() != MBB.succ_size())
590 report("MBB has duplicate entries in its successor list.", &MBB);
593 // Check that the register use lists are sane.
594 MRI->verifyUseLists();
596 if (!MF->empty())
597 verifyStackFrame();
600 void
601 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
602 FirstTerminator = nullptr;
603 FirstNonPHI = nullptr;
605 if (!MF->getProperties().hasProperty(
606 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
607 // If this block has allocatable physical registers live-in, check that
608 // it is an entry block or landing pad.
609 for (const auto &LI : MBB->liveins()) {
610 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
611 MBB->getIterator() != MBB->getParent()->begin()) {
612 report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
613 report_context(LI.PhysReg);
618 // Count the number of landing pad successors.
619 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
620 for (const auto *succ : MBB->successors()) {
621 if (succ->isEHPad())
622 LandingPadSuccs.insert(succ);
623 if (!FunctionBlocks.count(succ))
624 report("MBB has successor that isn't part of the function.", MBB);
625 if (!MBBInfoMap[succ].Preds.count(MBB)) {
626 report("Inconsistent CFG", MBB);
627 errs() << "MBB is not in the predecessor list of the successor "
628 << printMBBReference(*succ) << ".\n";
632 // Check the predecessor list.
633 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
634 if (!FunctionBlocks.count(Pred))
635 report("MBB has predecessor that isn't part of the function.", MBB);
636 if (!MBBInfoMap[Pred].Succs.count(MBB)) {
637 report("Inconsistent CFG", MBB);
638 errs() << "MBB is not in the successor list of the predecessor "
639 << printMBBReference(*Pred) << ".\n";
643 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
644 const BasicBlock *BB = MBB->getBasicBlock();
645 const Function &F = MF->getFunction();
646 if (LandingPadSuccs.size() > 1 &&
647 !(AsmInfo &&
648 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
649 BB && isa<SwitchInst>(BB->getTerminator())) &&
650 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
651 report("MBB has more than one landing pad successor", MBB);
653 // Call analyzeBranch. If it succeeds, there several more conditions to check.
654 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
655 SmallVector<MachineOperand, 4> Cond;
656 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
657 Cond)) {
658 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
659 // check whether its answers match up with reality.
660 if (!TBB && !FBB) {
661 // Block falls through to its successor.
662 if (!MBB->empty() && MBB->back().isBarrier() &&
663 !TII->isPredicated(MBB->back())) {
664 report("MBB exits via unconditional fall-through but ends with a "
665 "barrier instruction!", MBB);
667 if (!Cond.empty()) {
668 report("MBB exits via unconditional fall-through but has a condition!",
669 MBB);
671 } else if (TBB && !FBB && Cond.empty()) {
672 // Block unconditionally branches somewhere.
673 if (MBB->empty()) {
674 report("MBB exits via unconditional branch but doesn't contain "
675 "any instructions!", MBB);
676 } else if (!MBB->back().isBarrier()) {
677 report("MBB exits via unconditional branch but doesn't end with a "
678 "barrier instruction!", MBB);
679 } else if (!MBB->back().isTerminator()) {
680 report("MBB exits via unconditional branch but the branch isn't a "
681 "terminator instruction!", MBB);
683 } else if (TBB && !FBB && !Cond.empty()) {
684 // Block conditionally branches somewhere, otherwise falls through.
685 if (MBB->empty()) {
686 report("MBB exits via conditional branch/fall-through but doesn't "
687 "contain any instructions!", MBB);
688 } else if (MBB->back().isBarrier()) {
689 report("MBB exits via conditional branch/fall-through but ends with a "
690 "barrier instruction!", MBB);
691 } else if (!MBB->back().isTerminator()) {
692 report("MBB exits via conditional branch/fall-through but the branch "
693 "isn't a terminator instruction!", MBB);
695 } else if (TBB && FBB) {
696 // Block conditionally branches somewhere, otherwise branches
697 // somewhere else.
698 if (MBB->empty()) {
699 report("MBB exits via conditional branch/branch but doesn't "
700 "contain any instructions!", MBB);
701 } else if (!MBB->back().isBarrier()) {
702 report("MBB exits via conditional branch/branch but doesn't end with a "
703 "barrier instruction!", MBB);
704 } else if (!MBB->back().isTerminator()) {
705 report("MBB exits via conditional branch/branch but the branch "
706 "isn't a terminator instruction!", MBB);
708 if (Cond.empty()) {
709 report("MBB exits via conditional branch/branch but there's no "
710 "condition!", MBB);
712 } else {
713 report("analyzeBranch returned invalid data!", MBB);
716 // Now check that the successors match up with the answers reported by
717 // analyzeBranch.
718 if (TBB && !MBB->isSuccessor(TBB))
719 report("MBB exits via jump or conditional branch, but its target isn't a "
720 "CFG successor!",
721 MBB);
722 if (FBB && !MBB->isSuccessor(FBB))
723 report("MBB exits via conditional branch, but its target isn't a CFG "
724 "successor!",
725 MBB);
727 // There might be a fallthrough to the next block if there's either no
728 // unconditional true branch, or if there's a condition, and one of the
729 // branches is missing.
730 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
732 // A conditional fallthrough must be an actual CFG successor, not
733 // unreachable. (Conversely, an unconditional fallthrough might not really
734 // be a successor, because the block might end in unreachable.)
735 if (!Cond.empty() && !FBB) {
736 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
737 if (MBBI == MF->end()) {
738 report("MBB conditionally falls through out of function!", MBB);
739 } else if (!MBB->isSuccessor(&*MBBI))
740 report("MBB exits via conditional branch/fall-through but the CFG "
741 "successors don't match the actual successors!",
742 MBB);
745 // Verify that there aren't any extra un-accounted-for successors.
746 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
747 // If this successor is one of the branch targets, it's okay.
748 if (SuccMBB == TBB || SuccMBB == FBB)
749 continue;
750 // If we might have a fallthrough, and the successor is the fallthrough
751 // block, that's also ok.
752 if (Fallthrough && SuccMBB == MBB->getNextNode())
753 continue;
754 // Also accept successors which are for exception-handling or might be
755 // inlineasm_br targets.
756 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
757 continue;
758 report("MBB has unexpected successors which are not branch targets, "
759 "fallthrough, EHPads, or inlineasm_br targets.",
760 MBB);
764 regsLive.clear();
765 if (MRI->tracksLiveness()) {
766 for (const auto &LI : MBB->liveins()) {
767 if (!Register::isPhysicalRegister(LI.PhysReg)) {
768 report("MBB live-in list contains non-physical register", MBB);
769 continue;
771 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
772 regsLive.insert(SubReg);
776 const MachineFrameInfo &MFI = MF->getFrameInfo();
777 BitVector PR = MFI.getPristineRegs(*MF);
778 for (unsigned I : PR.set_bits()) {
779 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
780 regsLive.insert(SubReg);
783 regsKilled.clear();
784 regsDefined.clear();
786 if (Indexes)
787 lastIndex = Indexes->getMBBStartIdx(MBB);
790 // This function gets called for all bundle headers, including normal
791 // stand-alone unbundled instructions.
792 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
793 if (Indexes && Indexes->hasIndex(*MI)) {
794 SlotIndex idx = Indexes->getInstructionIndex(*MI);
795 if (!(idx > lastIndex)) {
796 report("Instruction index out of order", MI);
797 errs() << "Last instruction was at " << lastIndex << '\n';
799 lastIndex = idx;
802 // Ensure non-terminators don't follow terminators.
803 if (MI->isTerminator()) {
804 if (!FirstTerminator)
805 FirstTerminator = MI;
806 } else if (FirstTerminator) {
807 report("Non-terminator instruction after the first terminator", MI);
808 errs() << "First terminator was:\t" << *FirstTerminator;
812 // The operands on an INLINEASM instruction must follow a template.
813 // Verify that the flag operands make sense.
814 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
815 // The first two operands on INLINEASM are the asm string and global flags.
816 if (MI->getNumOperands() < 2) {
817 report("Too few operands on inline asm", MI);
818 return;
820 if (!MI->getOperand(0).isSymbol())
821 report("Asm string must be an external symbol", MI);
822 if (!MI->getOperand(1).isImm())
823 report("Asm flags must be an immediate", MI);
824 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
825 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
826 // and Extra_IsConvergent = 32.
827 if (!isUInt<6>(MI->getOperand(1).getImm()))
828 report("Unknown asm flags", &MI->getOperand(1), 1);
830 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
832 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
833 unsigned NumOps;
834 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
835 const MachineOperand &MO = MI->getOperand(OpNo);
836 // There may be implicit ops after the fixed operands.
837 if (!MO.isImm())
838 break;
839 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
842 if (OpNo > MI->getNumOperands())
843 report("Missing operands in last group", MI);
845 // An optional MDNode follows the groups.
846 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
847 ++OpNo;
849 // All trailing operands must be implicit registers.
850 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
851 const MachineOperand &MO = MI->getOperand(OpNo);
852 if (!MO.isReg() || !MO.isImplicit())
853 report("Expected implicit register after groups", &MO, OpNo);
857 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
858 const MachineRegisterInfo &MRI) {
859 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
860 if (!Op.isReg())
861 return false;
862 const auto Reg = Op.getReg();
863 if (Reg.isPhysical())
864 return false;
865 return !MRI.getType(Reg).isScalar();
867 return true;
868 report("All register operands must have scalar types", &MI);
869 return false;
872 /// Check that types are consistent when two operands need to have the same
873 /// number of vector elements.
874 /// \return true if the types are valid.
875 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
876 const MachineInstr *MI) {
877 if (Ty0.isVector() != Ty1.isVector()) {
878 report("operand types must be all-vector or all-scalar", MI);
879 // Generally we try to report as many issues as possible at once, but in
880 // this case it's not clear what should we be comparing the size of the
881 // scalar with: the size of the whole vector or its lane. Instead of
882 // making an arbitrary choice and emitting not so helpful message, let's
883 // avoid the extra noise and stop here.
884 return false;
887 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
888 report("operand types must preserve number of vector elements", MI);
889 return false;
892 return true;
895 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
896 if (isFunctionSelected)
897 report("Unexpected generic instruction in a Selected function", MI);
899 const MCInstrDesc &MCID = MI->getDesc();
900 unsigned NumOps = MI->getNumOperands();
902 // Branches must reference a basic block if they are not indirect
903 if (MI->isBranch() && !MI->isIndirectBranch()) {
904 bool HasMBB = false;
905 for (const MachineOperand &Op : MI->operands()) {
906 if (Op.isMBB()) {
907 HasMBB = true;
908 break;
912 if (!HasMBB) {
913 report("Branch instruction is missing a basic block operand or "
914 "isIndirectBranch property",
915 MI);
919 // Check types.
920 SmallVector<LLT, 4> Types;
921 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
922 I != E; ++I) {
923 if (!MCID.OpInfo[I].isGenericType())
924 continue;
925 // Generic instructions specify type equality constraints between some of
926 // their operands. Make sure these are consistent.
927 size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
928 Types.resize(std::max(TypeIdx + 1, Types.size()));
930 const MachineOperand *MO = &MI->getOperand(I);
931 if (!MO->isReg()) {
932 report("generic instruction must use register operands", MI);
933 continue;
936 LLT OpTy = MRI->getType(MO->getReg());
937 // Don't report a type mismatch if there is no actual mismatch, only a
938 // type missing, to reduce noise:
939 if (OpTy.isValid()) {
940 // Only the first valid type for a type index will be printed: don't
941 // overwrite it later so it's always clear which type was expected:
942 if (!Types[TypeIdx].isValid())
943 Types[TypeIdx] = OpTy;
944 else if (Types[TypeIdx] != OpTy)
945 report("Type mismatch in generic instruction", MO, I, OpTy);
946 } else {
947 // Generic instructions must have types attached to their operands.
948 report("Generic instruction is missing a virtual register type", MO, I);
952 // Generic opcodes must not have physical register operands.
953 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
954 const MachineOperand *MO = &MI->getOperand(I);
955 if (MO->isReg() && Register::isPhysicalRegister(MO->getReg()))
956 report("Generic instruction cannot have physical register", MO, I);
959 // Avoid out of bounds in checks below. This was already reported earlier.
960 if (MI->getNumOperands() < MCID.getNumOperands())
961 return;
963 StringRef ErrorInfo;
964 if (!TII->verifyInstruction(*MI, ErrorInfo))
965 report(ErrorInfo.data(), MI);
967 // Verify properties of various specific instruction types
968 unsigned Opc = MI->getOpcode();
969 switch (Opc) {
970 case TargetOpcode::G_ISNAN: {
971 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
972 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
973 LLT S1 = DstTy.isVector() ? DstTy.getElementType() : DstTy;
974 if (S1 != LLT::scalar(1)) {
975 report("Destination must be a 1-bit scalar or vector of 1-bit elements",
976 MI);
977 break;
980 // Disallow pointers.
981 LLT SrcOrElt = SrcTy.isVector() ? SrcTy.getElementType() : SrcTy;
982 if (!SrcOrElt.isScalar()) {
983 report("Source must be a scalar or vector of scalars", MI);
984 break;
986 verifyVectorElementMatch(DstTy, SrcTy, MI);
987 break;
989 case TargetOpcode::G_ASSERT_SEXT:
990 case TargetOpcode::G_ASSERT_ZEXT: {
991 std::string OpcName =
992 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
993 if (!MI->getOperand(2).isImm()) {
994 report(Twine(OpcName, " expects an immediate operand #2"), MI);
995 break;
998 Register Dst = MI->getOperand(0).getReg();
999 Register Src = MI->getOperand(1).getReg();
1000 LLT SrcTy = MRI->getType(Src);
1001 int64_t Imm = MI->getOperand(2).getImm();
1002 if (Imm <= 0) {
1003 report(Twine(OpcName, " size must be >= 1"), MI);
1004 break;
1007 if (Imm >= SrcTy.getScalarSizeInBits()) {
1008 report(Twine(OpcName, " size must be less than source bit width"), MI);
1009 break;
1012 if (MRI->getRegBankOrNull(Src) != MRI->getRegBankOrNull(Dst)) {
1013 report(
1014 Twine(OpcName, " source and destination register banks must match"),
1015 MI);
1016 break;
1019 if (MRI->getRegClassOrNull(Src) != MRI->getRegClassOrNull(Dst))
1020 report(
1021 Twine(OpcName, " source and destination register classes must match"),
1022 MI);
1024 break;
1027 case TargetOpcode::G_CONSTANT:
1028 case TargetOpcode::G_FCONSTANT: {
1029 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1030 if (DstTy.isVector())
1031 report("Instruction cannot use a vector result type", MI);
1033 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1034 if (!MI->getOperand(1).isCImm()) {
1035 report("G_CONSTANT operand must be cimm", MI);
1036 break;
1039 const ConstantInt *CI = MI->getOperand(1).getCImm();
1040 if (CI->getBitWidth() != DstTy.getSizeInBits())
1041 report("inconsistent constant size", MI);
1042 } else {
1043 if (!MI->getOperand(1).isFPImm()) {
1044 report("G_FCONSTANT operand must be fpimm", MI);
1045 break;
1047 const ConstantFP *CF = MI->getOperand(1).getFPImm();
1049 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1050 DstTy.getSizeInBits()) {
1051 report("inconsistent constant size", MI);
1055 break;
1057 case TargetOpcode::G_LOAD:
1058 case TargetOpcode::G_STORE:
1059 case TargetOpcode::G_ZEXTLOAD:
1060 case TargetOpcode::G_SEXTLOAD: {
1061 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1062 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1063 if (!PtrTy.isPointer())
1064 report("Generic memory instruction must access a pointer", MI);
1066 // Generic loads and stores must have a single MachineMemOperand
1067 // describing that access.
1068 if (!MI->hasOneMemOperand()) {
1069 report("Generic instruction accessing memory must have one mem operand",
1070 MI);
1071 } else {
1072 const MachineMemOperand &MMO = **MI->memoperands_begin();
1073 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1074 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1075 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1076 report("Generic extload must have a narrower memory type", MI);
1077 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1078 if (MMO.getSize() > ValTy.getSizeInBytes())
1079 report("load memory size cannot exceed result size", MI);
1080 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1081 if (ValTy.getSizeInBytes() < MMO.getSize())
1082 report("store memory size cannot exceed value size", MI);
1086 break;
1088 case TargetOpcode::G_PHI: {
1089 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1090 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1091 [this, &DstTy](const MachineOperand &MO) {
1092 if (!MO.isReg())
1093 return true;
1094 LLT Ty = MRI->getType(MO.getReg());
1095 if (!Ty.isValid() || (Ty != DstTy))
1096 return false;
1097 return true;
1099 report("Generic Instruction G_PHI has operands with incompatible/missing "
1100 "types",
1101 MI);
1102 break;
1104 case TargetOpcode::G_BITCAST: {
1105 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1106 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1107 if (!DstTy.isValid() || !SrcTy.isValid())
1108 break;
1110 if (SrcTy.isPointer() != DstTy.isPointer())
1111 report("bitcast cannot convert between pointers and other types", MI);
1113 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1114 report("bitcast sizes must match", MI);
1116 if (SrcTy == DstTy)
1117 report("bitcast must change the type", MI);
1119 break;
1121 case TargetOpcode::G_INTTOPTR:
1122 case TargetOpcode::G_PTRTOINT:
1123 case TargetOpcode::G_ADDRSPACE_CAST: {
1124 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1125 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1126 if (!DstTy.isValid() || !SrcTy.isValid())
1127 break;
1129 verifyVectorElementMatch(DstTy, SrcTy, MI);
1131 DstTy = DstTy.getScalarType();
1132 SrcTy = SrcTy.getScalarType();
1134 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1135 if (!DstTy.isPointer())
1136 report("inttoptr result type must be a pointer", MI);
1137 if (SrcTy.isPointer())
1138 report("inttoptr source type must not be a pointer", MI);
1139 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1140 if (!SrcTy.isPointer())
1141 report("ptrtoint source type must be a pointer", MI);
1142 if (DstTy.isPointer())
1143 report("ptrtoint result type must not be a pointer", MI);
1144 } else {
1145 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1146 if (!SrcTy.isPointer() || !DstTy.isPointer())
1147 report("addrspacecast types must be pointers", MI);
1148 else {
1149 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1150 report("addrspacecast must convert different address spaces", MI);
1154 break;
1156 case TargetOpcode::G_PTR_ADD: {
1157 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1158 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1159 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1160 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1161 break;
1163 if (!PtrTy.getScalarType().isPointer())
1164 report("gep first operand must be a pointer", MI);
1166 if (OffsetTy.getScalarType().isPointer())
1167 report("gep offset operand must not be a pointer", MI);
1169 // TODO: Is the offset allowed to be a scalar with a vector?
1170 break;
1172 case TargetOpcode::G_PTRMASK: {
1173 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1174 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1175 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1176 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1177 break;
1179 if (!DstTy.getScalarType().isPointer())
1180 report("ptrmask result type must be a pointer", MI);
1182 if (!MaskTy.getScalarType().isScalar())
1183 report("ptrmask mask type must be an integer", MI);
1185 verifyVectorElementMatch(DstTy, MaskTy, MI);
1186 break;
1188 case TargetOpcode::G_SEXT:
1189 case TargetOpcode::G_ZEXT:
1190 case TargetOpcode::G_ANYEXT:
1191 case TargetOpcode::G_TRUNC:
1192 case TargetOpcode::G_FPEXT:
1193 case TargetOpcode::G_FPTRUNC: {
1194 // Number of operands and presense of types is already checked (and
1195 // reported in case of any issues), so no need to report them again. As
1196 // we're trying to report as many issues as possible at once, however, the
1197 // instructions aren't guaranteed to have the right number of operands or
1198 // types attached to them at this point
1199 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1200 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1201 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1202 if (!DstTy.isValid() || !SrcTy.isValid())
1203 break;
1205 LLT DstElTy = DstTy.getScalarType();
1206 LLT SrcElTy = SrcTy.getScalarType();
1207 if (DstElTy.isPointer() || SrcElTy.isPointer())
1208 report("Generic extend/truncate can not operate on pointers", MI);
1210 verifyVectorElementMatch(DstTy, SrcTy, MI);
1212 unsigned DstSize = DstElTy.getSizeInBits();
1213 unsigned SrcSize = SrcElTy.getSizeInBits();
1214 switch (MI->getOpcode()) {
1215 default:
1216 if (DstSize <= SrcSize)
1217 report("Generic extend has destination type no larger than source", MI);
1218 break;
1219 case TargetOpcode::G_TRUNC:
1220 case TargetOpcode::G_FPTRUNC:
1221 if (DstSize >= SrcSize)
1222 report("Generic truncate has destination type no smaller than source",
1223 MI);
1224 break;
1226 break;
1228 case TargetOpcode::G_SELECT: {
1229 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1230 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1231 if (!SelTy.isValid() || !CondTy.isValid())
1232 break;
1234 // Scalar condition select on a vector is valid.
1235 if (CondTy.isVector())
1236 verifyVectorElementMatch(SelTy, CondTy, MI);
1237 break;
1239 case TargetOpcode::G_MERGE_VALUES: {
1240 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1241 // e.g. s2N = MERGE sN, sN
1242 // Merging multiple scalars into a vector is not allowed, should use
1243 // G_BUILD_VECTOR for that.
1244 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1245 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1246 if (DstTy.isVector() || SrcTy.isVector())
1247 report("G_MERGE_VALUES cannot operate on vectors", MI);
1249 const unsigned NumOps = MI->getNumOperands();
1250 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1251 report("G_MERGE_VALUES result size is inconsistent", MI);
1253 for (unsigned I = 2; I != NumOps; ++I) {
1254 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1255 report("G_MERGE_VALUES source types do not match", MI);
1258 break;
1260 case TargetOpcode::G_UNMERGE_VALUES: {
1261 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1262 LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
1263 // For now G_UNMERGE can split vectors.
1264 for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
1265 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
1266 report("G_UNMERGE_VALUES destination types do not match", MI);
1268 if (SrcTy.getSizeInBits() !=
1269 (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
1270 report("G_UNMERGE_VALUES source operand does not cover dest operands",
1271 MI);
1273 break;
1275 case TargetOpcode::G_BUILD_VECTOR: {
1276 // Source types must be scalars, dest type a vector. Total size of scalars
1277 // must match the dest vector size.
1278 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1279 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1280 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1281 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1282 break;
1285 if (DstTy.getElementType() != SrcEltTy)
1286 report("G_BUILD_VECTOR result element type must match source type", MI);
1288 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1289 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1291 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1292 if (MRI->getType(MI->getOperand(1).getReg()) !=
1293 MRI->getType(MI->getOperand(i).getReg()))
1294 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1297 break;
1299 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1300 // Source types must be scalars, dest type a vector. Scalar types must be
1301 // larger than the dest vector elt type, as this is a truncating operation.
1302 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1303 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1304 if (!DstTy.isVector() || SrcEltTy.isVector())
1305 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1306 MI);
1307 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1308 if (MRI->getType(MI->getOperand(1).getReg()) !=
1309 MRI->getType(MI->getOperand(i).getReg()))
1310 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1311 MI);
1313 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1314 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1315 "dest elt type",
1316 MI);
1317 break;
1319 case TargetOpcode::G_CONCAT_VECTORS: {
1320 // Source types should be vectors, and total size should match the dest
1321 // vector size.
1322 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1323 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1324 if (!DstTy.isVector() || !SrcTy.isVector())
1325 report("G_CONCAT_VECTOR requires vector source and destination operands",
1326 MI);
1328 if (MI->getNumOperands() < 3)
1329 report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1331 for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
1332 if (MRI->getType(MI->getOperand(1).getReg()) !=
1333 MRI->getType(MI->getOperand(i).getReg()))
1334 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1336 if (DstTy.getNumElements() !=
1337 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1338 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1339 break;
1341 case TargetOpcode::G_ICMP:
1342 case TargetOpcode::G_FCMP: {
1343 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1344 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1346 if ((DstTy.isVector() != SrcTy.isVector()) ||
1347 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1348 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1350 break;
1352 case TargetOpcode::G_EXTRACT: {
1353 const MachineOperand &SrcOp = MI->getOperand(1);
1354 if (!SrcOp.isReg()) {
1355 report("extract source must be a register", MI);
1356 break;
1359 const MachineOperand &OffsetOp = MI->getOperand(2);
1360 if (!OffsetOp.isImm()) {
1361 report("extract offset must be a constant", MI);
1362 break;
1365 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1366 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1367 if (SrcSize == DstSize)
1368 report("extract source must be larger than result", MI);
1370 if (DstSize + OffsetOp.getImm() > SrcSize)
1371 report("extract reads past end of register", MI);
1372 break;
1374 case TargetOpcode::G_INSERT: {
1375 const MachineOperand &SrcOp = MI->getOperand(2);
1376 if (!SrcOp.isReg()) {
1377 report("insert source must be a register", MI);
1378 break;
1381 const MachineOperand &OffsetOp = MI->getOperand(3);
1382 if (!OffsetOp.isImm()) {
1383 report("insert offset must be a constant", MI);
1384 break;
1387 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1388 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1390 if (DstSize <= SrcSize)
1391 report("inserted size must be smaller than total register", MI);
1393 if (SrcSize + OffsetOp.getImm() > DstSize)
1394 report("insert writes past end of register", MI);
1396 break;
1398 case TargetOpcode::G_JUMP_TABLE: {
1399 if (!MI->getOperand(1).isJTI())
1400 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1401 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1402 if (!DstTy.isPointer())
1403 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1404 break;
1406 case TargetOpcode::G_BRJT: {
1407 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1408 report("G_BRJT src operand 0 must be a pointer type", MI);
1410 if (!MI->getOperand(1).isJTI())
1411 report("G_BRJT src operand 1 must be a jump table index", MI);
1413 const auto &IdxOp = MI->getOperand(2);
1414 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1415 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1416 break;
1418 case TargetOpcode::G_INTRINSIC:
1419 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
1420 // TODO: Should verify number of def and use operands, but the current
1421 // interface requires passing in IR types for mangling.
1422 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1423 if (!IntrIDOp.isIntrinsicID()) {
1424 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1425 break;
1428 bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
1429 unsigned IntrID = IntrIDOp.getIntrinsicID();
1430 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1431 AttributeList Attrs
1432 = Intrinsic::getAttributes(MF->getFunction().getContext(),
1433 static_cast<Intrinsic::ID>(IntrID));
1434 bool DeclHasSideEffects = !Attrs.hasFnAttr(Attribute::ReadNone);
1435 if (NoSideEffects && DeclHasSideEffects) {
1436 report("G_INTRINSIC used with intrinsic that accesses memory", MI);
1437 break;
1439 if (!NoSideEffects && !DeclHasSideEffects) {
1440 report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
1441 break;
1445 break;
1447 case TargetOpcode::G_SEXT_INREG: {
1448 if (!MI->getOperand(2).isImm()) {
1449 report("G_SEXT_INREG expects an immediate operand #2", MI);
1450 break;
1453 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1454 int64_t Imm = MI->getOperand(2).getImm();
1455 if (Imm <= 0)
1456 report("G_SEXT_INREG size must be >= 1", MI);
1457 if (Imm >= SrcTy.getScalarSizeInBits())
1458 report("G_SEXT_INREG size must be less than source bit width", MI);
1459 break;
1461 case TargetOpcode::G_SHUFFLE_VECTOR: {
1462 const MachineOperand &MaskOp = MI->getOperand(3);
1463 if (!MaskOp.isShuffleMask()) {
1464 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1465 break;
1468 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1469 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1470 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1472 if (Src0Ty != Src1Ty)
1473 report("Source operands must be the same type", MI);
1475 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1476 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1478 // Don't check that all operands are vector because scalars are used in
1479 // place of 1 element vectors.
1480 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1481 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1483 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1485 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1486 report("Wrong result type for shufflemask", MI);
1488 for (int Idx : MaskIdxes) {
1489 if (Idx < 0)
1490 continue;
1492 if (Idx >= 2 * SrcNumElts)
1493 report("Out of bounds shuffle index", MI);
1496 break;
1498 case TargetOpcode::G_DYN_STACKALLOC: {
1499 const MachineOperand &DstOp = MI->getOperand(0);
1500 const MachineOperand &AllocOp = MI->getOperand(1);
1501 const MachineOperand &AlignOp = MI->getOperand(2);
1503 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1504 report("dst operand 0 must be a pointer type", MI);
1505 break;
1508 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1509 report("src operand 1 must be a scalar reg type", MI);
1510 break;
1513 if (!AlignOp.isImm()) {
1514 report("src operand 2 must be an immediate type", MI);
1515 break;
1517 break;
1519 case TargetOpcode::G_MEMCPY_INLINE:
1520 case TargetOpcode::G_MEMCPY:
1521 case TargetOpcode::G_MEMMOVE: {
1522 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1523 if (MMOs.size() != 2) {
1524 report("memcpy/memmove must have 2 memory operands", MI);
1525 break;
1528 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1529 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1530 report("wrong memory operand types", MI);
1531 break;
1534 if (MMOs[0]->getSize() != MMOs[1]->getSize())
1535 report("inconsistent memory operand sizes", MI);
1537 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1538 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1540 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1541 report("memory instruction operand must be a pointer", MI);
1542 break;
1545 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1546 report("inconsistent store address space", MI);
1547 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1548 report("inconsistent load address space", MI);
1550 if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1551 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1552 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1554 break;
1556 case TargetOpcode::G_BZERO:
1557 case TargetOpcode::G_MEMSET: {
1558 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1559 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1560 if (MMOs.size() != 1) {
1561 report(Twine(Name, " must have 1 memory operand"), MI);
1562 break;
1565 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1566 report(Twine(Name, " memory operand must be a store"), MI);
1567 break;
1570 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1571 if (!DstPtrTy.isPointer()) {
1572 report(Twine(Name, " operand must be a pointer"), MI);
1573 break;
1576 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1577 report("inconsistent " + Twine(Name, " address space"), MI);
1579 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1580 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1581 report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1583 break;
1585 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1586 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1587 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1588 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1589 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1590 if (!DstTy.isScalar())
1591 report("Vector reduction requires a scalar destination type", MI);
1592 if (!Src1Ty.isScalar())
1593 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1594 if (!Src2Ty.isVector())
1595 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1596 break;
1598 case TargetOpcode::G_VECREDUCE_FADD:
1599 case TargetOpcode::G_VECREDUCE_FMUL:
1600 case TargetOpcode::G_VECREDUCE_FMAX:
1601 case TargetOpcode::G_VECREDUCE_FMIN:
1602 case TargetOpcode::G_VECREDUCE_ADD:
1603 case TargetOpcode::G_VECREDUCE_MUL:
1604 case TargetOpcode::G_VECREDUCE_AND:
1605 case TargetOpcode::G_VECREDUCE_OR:
1606 case TargetOpcode::G_VECREDUCE_XOR:
1607 case TargetOpcode::G_VECREDUCE_SMAX:
1608 case TargetOpcode::G_VECREDUCE_SMIN:
1609 case TargetOpcode::G_VECREDUCE_UMAX:
1610 case TargetOpcode::G_VECREDUCE_UMIN: {
1611 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1612 if (!DstTy.isScalar())
1613 report("Vector reduction requires a scalar destination type", MI);
1614 break;
1617 case TargetOpcode::G_SBFX:
1618 case TargetOpcode::G_UBFX: {
1619 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1620 if (DstTy.isVector()) {
1621 report("Bitfield extraction is not supported on vectors", MI);
1622 break;
1624 break;
1626 case TargetOpcode::G_ROTR:
1627 case TargetOpcode::G_ROTL: {
1628 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1629 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1630 if (Src1Ty.isVector() != Src2Ty.isVector()) {
1631 report("Rotate requires operands to be either all scalars or all vectors",
1632 MI);
1633 break;
1635 break;
1637 case TargetOpcode::G_LLROUND:
1638 case TargetOpcode::G_LROUND: {
1639 verifyAllRegOpsScalar(*MI, *MRI);
1640 break;
1642 default:
1643 break;
1647 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1648 const MCInstrDesc &MCID = MI->getDesc();
1649 if (MI->getNumOperands() < MCID.getNumOperands()) {
1650 report("Too few operands", MI);
1651 errs() << MCID.getNumOperands() << " operands expected, but "
1652 << MI->getNumOperands() << " given.\n";
1655 if (MI->isPHI()) {
1656 if (MF->getProperties().hasProperty(
1657 MachineFunctionProperties::Property::NoPHIs))
1658 report("Found PHI instruction with NoPHIs property set", MI);
1660 if (FirstNonPHI)
1661 report("Found PHI instruction after non-PHI", MI);
1662 } else if (FirstNonPHI == nullptr)
1663 FirstNonPHI = MI;
1665 // Check the tied operands.
1666 if (MI->isInlineAsm())
1667 verifyInlineAsm(MI);
1669 // Check that unspillable terminators define a reg and have at most one use.
1670 if (TII->isUnspillableTerminator(MI)) {
1671 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1672 report("Unspillable Terminator does not define a reg", MI);
1673 Register Def = MI->getOperand(0).getReg();
1674 if (Def.isVirtual() &&
1675 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1676 report("Unspillable Terminator expected to have at most one use!", MI);
1679 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1680 // DBG_VALUEs: these are convenient to use in tests, but should never get
1681 // generated.
1682 if (MI->isDebugValue() && MI->getNumOperands() == 4)
1683 if (!MI->getDebugLoc())
1684 report("Missing DebugLoc for debug instruction", MI);
1686 // Meta instructions should never be the subject of debug value tracking,
1687 // they don't create a value in the output program at all.
1688 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1689 report("Metadata instruction should not have a value tracking number", MI);
1691 // Check the MachineMemOperands for basic consistency.
1692 for (MachineMemOperand *Op : MI->memoperands()) {
1693 if (Op->isLoad() && !MI->mayLoad())
1694 report("Missing mayLoad flag", MI);
1695 if (Op->isStore() && !MI->mayStore())
1696 report("Missing mayStore flag", MI);
1699 // Debug values must not have a slot index.
1700 // Other instructions must have one, unless they are inside a bundle.
1701 if (LiveInts) {
1702 bool mapped = !LiveInts->isNotInMIMap(*MI);
1703 if (MI->isDebugOrPseudoInstr()) {
1704 if (mapped)
1705 report("Debug instruction has a slot index", MI);
1706 } else if (MI->isInsideBundle()) {
1707 if (mapped)
1708 report("Instruction inside bundle has a slot index", MI);
1709 } else {
1710 if (!mapped)
1711 report("Missing slot index", MI);
1715 unsigned Opc = MCID.getOpcode();
1716 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1717 verifyPreISelGenericInstruction(MI);
1718 return;
1721 StringRef ErrorInfo;
1722 if (!TII->verifyInstruction(*MI, ErrorInfo))
1723 report(ErrorInfo.data(), MI);
1725 // Verify properties of various specific instruction types
1726 switch (MI->getOpcode()) {
1727 case TargetOpcode::COPY: {
1728 const MachineOperand &DstOp = MI->getOperand(0);
1729 const MachineOperand &SrcOp = MI->getOperand(1);
1730 const Register SrcReg = SrcOp.getReg();
1731 const Register DstReg = DstOp.getReg();
1733 LLT DstTy = MRI->getType(DstReg);
1734 LLT SrcTy = MRI->getType(SrcReg);
1735 if (SrcTy.isValid() && DstTy.isValid()) {
1736 // If both types are valid, check that the types are the same.
1737 if (SrcTy != DstTy) {
1738 report("Copy Instruction is illegal with mismatching types", MI);
1739 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1742 break;
1745 if (!SrcTy.isValid() && !DstTy.isValid())
1746 break;
1748 // If we have only one valid type, this is likely a copy between a virtual
1749 // and physical register.
1750 unsigned SrcSize = 0;
1751 unsigned DstSize = 0;
1752 if (SrcReg.isPhysical() && DstTy.isValid()) {
1753 const TargetRegisterClass *SrcRC =
1754 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1755 if (SrcRC)
1756 SrcSize = TRI->getRegSizeInBits(*SrcRC);
1759 if (SrcSize == 0)
1760 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1762 if (DstReg.isPhysical() && SrcTy.isValid()) {
1763 const TargetRegisterClass *DstRC =
1764 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1765 if (DstRC)
1766 DstSize = TRI->getRegSizeInBits(*DstRC);
1769 if (DstSize == 0)
1770 DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1772 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1773 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1774 report("Copy Instruction is illegal with mismatching sizes", MI);
1775 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1776 << "\n";
1779 break;
1781 case TargetOpcode::STATEPOINT: {
1782 StatepointOpers SO(MI);
1783 if (!MI->getOperand(SO.getIDPos()).isImm() ||
1784 !MI->getOperand(SO.getNBytesPos()).isImm() ||
1785 !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1786 report("meta operands to STATEPOINT not constant!", MI);
1787 break;
1790 auto VerifyStackMapConstant = [&](unsigned Offset) {
1791 if (Offset >= MI->getNumOperands()) {
1792 report("stack map constant to STATEPOINT is out of range!", MI);
1793 return;
1795 if (!MI->getOperand(Offset - 1).isImm() ||
1796 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1797 !MI->getOperand(Offset).isImm())
1798 report("stack map constant to STATEPOINT not well formed!", MI);
1800 VerifyStackMapConstant(SO.getCCIdx());
1801 VerifyStackMapConstant(SO.getFlagsIdx());
1802 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1803 VerifyStackMapConstant(SO.getNumGCPtrIdx());
1804 VerifyStackMapConstant(SO.getNumAllocaIdx());
1805 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1807 // Verify that all explicit statepoint defs are tied to gc operands as
1808 // they are expected to be a relocation of gc operands.
1809 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
1810 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
1811 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
1812 unsigned UseOpIdx;
1813 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
1814 report("STATEPOINT defs expected to be tied", MI);
1815 break;
1817 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
1818 report("STATEPOINT def tied to non-gc operand", MI);
1819 break;
1823 // TODO: verify we have properly encoded deopt arguments
1824 } break;
1825 case TargetOpcode::INSERT_SUBREG: {
1826 unsigned InsertedSize;
1827 if (unsigned SubIdx = MI->getOperand(2).getSubReg())
1828 InsertedSize = TRI->getSubRegIdxSize(SubIdx);
1829 else
1830 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
1831 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
1832 if (SubRegSize < InsertedSize) {
1833 report("INSERT_SUBREG expected inserted value to have equal or lesser "
1834 "size than the subreg it was inserted into", MI);
1835 break;
1837 } break;
1841 void
1842 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
1843 const MachineInstr *MI = MO->getParent();
1844 const MCInstrDesc &MCID = MI->getDesc();
1845 unsigned NumDefs = MCID.getNumDefs();
1846 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
1847 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
1849 // The first MCID.NumDefs operands must be explicit register defines
1850 if (MONum < NumDefs) {
1851 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1852 if (!MO->isReg())
1853 report("Explicit definition must be a register", MO, MONum);
1854 else if (!MO->isDef() && !MCOI.isOptionalDef())
1855 report("Explicit definition marked as use", MO, MONum);
1856 else if (MO->isImplicit())
1857 report("Explicit definition marked as implicit", MO, MONum);
1858 } else if (MONum < MCID.getNumOperands()) {
1859 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
1860 // Don't check if it's the last operand in a variadic instruction. See,
1861 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
1862 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
1863 if (!IsOptional) {
1864 if (MO->isReg()) {
1865 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
1866 report("Explicit operand marked as def", MO, MONum);
1867 if (MO->isImplicit())
1868 report("Explicit operand marked as implicit", MO, MONum);
1871 // Check that an instruction has register operands only as expected.
1872 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
1873 !MO->isReg() && !MO->isFI())
1874 report("Expected a register operand.", MO, MONum);
1875 if (MO->isReg()) {
1876 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
1877 (MCOI.OperandType == MCOI::OPERAND_PCREL &&
1878 !TII->isPCRelRegisterOperandLegal(*MO)))
1879 report("Expected a non-register operand.", MO, MONum);
1883 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
1884 if (TiedTo != -1) {
1885 if (!MO->isReg())
1886 report("Tied use must be a register", MO, MONum);
1887 else if (!MO->isTied())
1888 report("Operand should be tied", MO, MONum);
1889 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
1890 report("Tied def doesn't match MCInstrDesc", MO, MONum);
1891 else if (Register::isPhysicalRegister(MO->getReg())) {
1892 const MachineOperand &MOTied = MI->getOperand(TiedTo);
1893 if (!MOTied.isReg())
1894 report("Tied counterpart must be a register", &MOTied, TiedTo);
1895 else if (Register::isPhysicalRegister(MOTied.getReg()) &&
1896 MO->getReg() != MOTied.getReg())
1897 report("Tied physical registers must match.", &MOTied, TiedTo);
1899 } else if (MO->isReg() && MO->isTied())
1900 report("Explicit operand should not be tied", MO, MONum);
1901 } else {
1902 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
1903 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
1904 report("Extra explicit operand on non-variadic instruction", MO, MONum);
1907 switch (MO->getType()) {
1908 case MachineOperand::MO_Register: {
1909 const Register Reg = MO->getReg();
1910 if (!Reg)
1911 return;
1912 if (MRI->tracksLiveness() && !MI->isDebugValue())
1913 checkLiveness(MO, MONum);
1915 // Verify the consistency of tied operands.
1916 if (MO->isTied()) {
1917 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
1918 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
1919 if (!OtherMO.isReg())
1920 report("Must be tied to a register", MO, MONum);
1921 if (!OtherMO.isTied())
1922 report("Missing tie flags on tied operand", MO, MONum);
1923 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
1924 report("Inconsistent tie links", MO, MONum);
1925 if (MONum < MCID.getNumDefs()) {
1926 if (OtherIdx < MCID.getNumOperands()) {
1927 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
1928 report("Explicit def tied to explicit use without tie constraint",
1929 MO, MONum);
1930 } else {
1931 if (!OtherMO.isImplicit())
1932 report("Explicit def should be tied to implicit use", MO, MONum);
1937 // Verify two-address constraints after the twoaddressinstruction pass.
1938 // Both twoaddressinstruction pass and phi-node-elimination pass call
1939 // MRI->leaveSSA() to set MF as NoSSA, we should do the verification after
1940 // twoaddressinstruction pass not after phi-node-elimination pass. So we
1941 // shouldn't use the NoSSA as the condition, we should based on
1942 // TiedOpsRewritten property to verify two-address constraints, this
1943 // property will be set in twoaddressinstruction pass.
1944 unsigned DefIdx;
1945 if (MF->getProperties().hasProperty(
1946 MachineFunctionProperties::Property::TiedOpsRewritten) &&
1947 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
1948 Reg != MI->getOperand(DefIdx).getReg())
1949 report("Two-address instruction operands must be identical", MO, MONum);
1951 // Check register classes.
1952 unsigned SubIdx = MO->getSubReg();
1954 if (Register::isPhysicalRegister(Reg)) {
1955 if (SubIdx) {
1956 report("Illegal subregister index for physical register", MO, MONum);
1957 return;
1959 if (MONum < MCID.getNumOperands()) {
1960 if (const TargetRegisterClass *DRC =
1961 TII->getRegClass(MCID, MONum, TRI, *MF)) {
1962 if (!DRC->contains(Reg)) {
1963 report("Illegal physical register for instruction", MO, MONum);
1964 errs() << printReg(Reg, TRI) << " is not a "
1965 << TRI->getRegClassName(DRC) << " register.\n";
1969 if (MO->isRenamable()) {
1970 if (MRI->isReserved(Reg)) {
1971 report("isRenamable set on reserved register", MO, MONum);
1972 return;
1975 if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
1976 report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
1977 return;
1979 } else {
1980 // Virtual register.
1981 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
1982 if (!RC) {
1983 // This is a generic virtual register.
1985 // Do not allow undef uses for generic virtual registers. This ensures
1986 // getVRegDef can never fail and return null on a generic register.
1988 // FIXME: This restriction should probably be broadened to all SSA
1989 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
1990 // run on the SSA function just before phi elimination.
1991 if (MO->isUndef())
1992 report("Generic virtual register use cannot be undef", MO, MONum);
1994 // If we're post-Select, we can't have gvregs anymore.
1995 if (isFunctionSelected) {
1996 report("Generic virtual register invalid in a Selected function",
1997 MO, MONum);
1998 return;
2001 // The gvreg must have a type and it must not have a SubIdx.
2002 LLT Ty = MRI->getType(Reg);
2003 if (!Ty.isValid()) {
2004 report("Generic virtual register must have a valid type", MO,
2005 MONum);
2006 return;
2009 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2011 // If we're post-RegBankSelect, the gvreg must have a bank.
2012 if (!RegBank && isFunctionRegBankSelected) {
2013 report("Generic virtual register must have a bank in a "
2014 "RegBankSelected function",
2015 MO, MONum);
2016 return;
2019 // Make sure the register fits into its register bank if any.
2020 if (RegBank && Ty.isValid() &&
2021 RegBank->getSize() < Ty.getSizeInBits()) {
2022 report("Register bank is too small for virtual register", MO,
2023 MONum);
2024 errs() << "Register bank " << RegBank->getName() << " too small("
2025 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
2026 << "-bits\n";
2027 return;
2029 if (SubIdx) {
2030 report("Generic virtual register does not allow subregister index", MO,
2031 MONum);
2032 return;
2035 // If this is a target specific instruction and this operand
2036 // has register class constraint, the virtual register must
2037 // comply to it.
2038 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2039 MONum < MCID.getNumOperands() &&
2040 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2041 report("Virtual register does not match instruction constraint", MO,
2042 MONum);
2043 errs() << "Expect register class "
2044 << TRI->getRegClassName(
2045 TII->getRegClass(MCID, MONum, TRI, *MF))
2046 << " but got nothing\n";
2047 return;
2050 break;
2052 if (SubIdx) {
2053 const TargetRegisterClass *SRC =
2054 TRI->getSubClassWithSubReg(RC, SubIdx);
2055 if (!SRC) {
2056 report("Invalid subregister index for virtual register", MO, MONum);
2057 errs() << "Register class " << TRI->getRegClassName(RC)
2058 << " does not support subreg index " << SubIdx << "\n";
2059 return;
2061 if (RC != SRC) {
2062 report("Invalid register class for subregister index", MO, MONum);
2063 errs() << "Register class " << TRI->getRegClassName(RC)
2064 << " does not fully support subreg index " << SubIdx << "\n";
2065 return;
2068 if (MONum < MCID.getNumOperands()) {
2069 if (const TargetRegisterClass *DRC =
2070 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2071 if (SubIdx) {
2072 const TargetRegisterClass *SuperRC =
2073 TRI->getLargestLegalSuperClass(RC, *MF);
2074 if (!SuperRC) {
2075 report("No largest legal super class exists.", MO, MONum);
2076 return;
2078 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2079 if (!DRC) {
2080 report("No matching super-reg register class.", MO, MONum);
2081 return;
2084 if (!RC->hasSuperClassEq(DRC)) {
2085 report("Illegal virtual register for instruction", MO, MONum);
2086 errs() << "Expected a " << TRI->getRegClassName(DRC)
2087 << " register, but got a " << TRI->getRegClassName(RC)
2088 << " register\n";
2093 break;
2096 case MachineOperand::MO_RegisterMask:
2097 regMasks.push_back(MO->getRegMask());
2098 break;
2100 case MachineOperand::MO_MachineBasicBlock:
2101 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2102 report("PHI operand is not in the CFG", MO, MONum);
2103 break;
2105 case MachineOperand::MO_FrameIndex:
2106 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2107 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2108 int FI = MO->getIndex();
2109 LiveInterval &LI = LiveStks->getInterval(FI);
2110 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2112 bool stores = MI->mayStore();
2113 bool loads = MI->mayLoad();
2114 // For a memory-to-memory move, we need to check if the frame
2115 // index is used for storing or loading, by inspecting the
2116 // memory operands.
2117 if (stores && loads) {
2118 for (auto *MMO : MI->memoperands()) {
2119 const PseudoSourceValue *PSV = MMO->getPseudoValue();
2120 if (PSV == nullptr) continue;
2121 const FixedStackPseudoSourceValue *Value =
2122 dyn_cast<FixedStackPseudoSourceValue>(PSV);
2123 if (Value == nullptr) continue;
2124 if (Value->getFrameIndex() != FI) continue;
2126 if (MMO->isStore())
2127 loads = false;
2128 else
2129 stores = false;
2130 break;
2132 if (loads == stores)
2133 report("Missing fixed stack memoperand.", MI);
2135 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2136 report("Instruction loads from dead spill slot", MO, MONum);
2137 errs() << "Live stack: " << LI << '\n';
2139 if (stores && !LI.liveAt(Idx.getRegSlot())) {
2140 report("Instruction stores to dead spill slot", MO, MONum);
2141 errs() << "Live stack: " << LI << '\n';
2144 break;
2146 default:
2147 break;
2151 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2152 unsigned MONum, SlotIndex UseIdx,
2153 const LiveRange &LR,
2154 Register VRegOrUnit,
2155 LaneBitmask LaneMask) {
2156 LiveQueryResult LRQ = LR.Query(UseIdx);
2157 // Check if we have a segment at the use, note however that we only need one
2158 // live subregister range, the others may be dead.
2159 if (!LRQ.valueIn() && LaneMask.none()) {
2160 report("No live segment at use", MO, MONum);
2161 report_context_liverange(LR);
2162 report_context_vreg_regunit(VRegOrUnit);
2163 report_context(UseIdx);
2165 if (MO->isKill() && !LRQ.isKill()) {
2166 report("Live range continues after kill flag", MO, MONum);
2167 report_context_liverange(LR);
2168 report_context_vreg_regunit(VRegOrUnit);
2169 if (LaneMask.any())
2170 report_context_lanemask(LaneMask);
2171 report_context(UseIdx);
2175 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2176 unsigned MONum, SlotIndex DefIdx,
2177 const LiveRange &LR,
2178 Register VRegOrUnit,
2179 bool SubRangeCheck,
2180 LaneBitmask LaneMask) {
2181 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2182 assert(VNI && "NULL valno is not allowed");
2183 if (VNI->def != DefIdx) {
2184 report("Inconsistent valno->def", MO, MONum);
2185 report_context_liverange(LR);
2186 report_context_vreg_regunit(VRegOrUnit);
2187 if (LaneMask.any())
2188 report_context_lanemask(LaneMask);
2189 report_context(*VNI);
2190 report_context(DefIdx);
2192 } else {
2193 report("No live segment at def", MO, MONum);
2194 report_context_liverange(LR);
2195 report_context_vreg_regunit(VRegOrUnit);
2196 if (LaneMask.any())
2197 report_context_lanemask(LaneMask);
2198 report_context(DefIdx);
2200 // Check that, if the dead def flag is present, LiveInts agree.
2201 if (MO->isDead()) {
2202 LiveQueryResult LRQ = LR.Query(DefIdx);
2203 if (!LRQ.isDeadDef()) {
2204 assert(Register::isVirtualRegister(VRegOrUnit) &&
2205 "Expecting a virtual register.");
2206 // A dead subreg def only tells us that the specific subreg is dead. There
2207 // could be other non-dead defs of other subregs, or we could have other
2208 // parts of the register being live through the instruction. So unless we
2209 // are checking liveness for a subrange it is ok for the live range to
2210 // continue, given that we have a dead def of a subregister.
2211 if (SubRangeCheck || MO->getSubReg() == 0) {
2212 report("Live range continues after dead def flag", MO, MONum);
2213 report_context_liverange(LR);
2214 report_context_vreg_regunit(VRegOrUnit);
2215 if (LaneMask.any())
2216 report_context_lanemask(LaneMask);
2222 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2223 const MachineInstr *MI = MO->getParent();
2224 const Register Reg = MO->getReg();
2226 // Both use and def operands can read a register.
2227 if (MO->readsReg()) {
2228 if (MO->isKill())
2229 addRegWithSubRegs(regsKilled, Reg);
2231 // Check that LiveVars knows this kill.
2232 if (LiveVars && Register::isVirtualRegister(Reg) && MO->isKill()) {
2233 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2234 if (!is_contained(VI.Kills, MI))
2235 report("Kill missing from LiveVariables", MO, MONum);
2238 // Check LiveInts liveness and kill.
2239 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2240 SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
2241 // Check the cached regunit intervals.
2242 if (Reg.isPhysical() && !isReserved(Reg)) {
2243 for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
2244 ++Units) {
2245 if (MRI->isReservedRegUnit(*Units))
2246 continue;
2247 if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
2248 checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
2252 if (Register::isVirtualRegister(Reg)) {
2253 if (LiveInts->hasInterval(Reg)) {
2254 // This is a virtual register interval.
2255 const LiveInterval &LI = LiveInts->getInterval(Reg);
2256 checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);
2258 if (LI.hasSubRanges() && !MO->isDef()) {
2259 unsigned SubRegIdx = MO->getSubReg();
2260 LaneBitmask MOMask = SubRegIdx != 0
2261 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2262 : MRI->getMaxLaneMaskForVReg(Reg);
2263 LaneBitmask LiveInMask;
2264 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2265 if ((MOMask & SR.LaneMask).none())
2266 continue;
2267 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2268 LiveQueryResult LRQ = SR.Query(UseIdx);
2269 if (LRQ.valueIn())
2270 LiveInMask |= SR.LaneMask;
2272 // At least parts of the register has to be live at the use.
2273 if ((LiveInMask & MOMask).none()) {
2274 report("No live subrange at use", MO, MONum);
2275 report_context(LI);
2276 report_context(UseIdx);
2279 } else {
2280 report("Virtual register has no live interval", MO, MONum);
2285 // Use of a dead register.
2286 if (!regsLive.count(Reg)) {
2287 if (Register::isPhysicalRegister(Reg)) {
2288 // Reserved registers may be used even when 'dead'.
2289 bool Bad = !isReserved(Reg);
2290 // We are fine if just any subregister has a defined value.
2291 if (Bad) {
2293 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2294 if (regsLive.count(SubReg)) {
2295 Bad = false;
2296 break;
2300 // If there is an additional implicit-use of a super register we stop
2301 // here. By definition we are fine if the super register is not
2302 // (completely) dead, if the complete super register is dead we will
2303 // get a report for its operand.
2304 if (Bad) {
2305 for (const MachineOperand &MOP : MI->uses()) {
2306 if (!MOP.isReg() || !MOP.isImplicit())
2307 continue;
2309 if (!Register::isPhysicalRegister(MOP.getReg()))
2310 continue;
2312 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2313 Bad = false;
2316 if (Bad)
2317 report("Using an undefined physical register", MO, MONum);
2318 } else if (MRI->def_empty(Reg)) {
2319 report("Reading virtual register without a def", MO, MONum);
2320 } else {
2321 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2322 // We don't know which virtual registers are live in, so only complain
2323 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2324 // must be live in. PHI instructions are handled separately.
2325 if (MInfo.regsKilled.count(Reg))
2326 report("Using a killed virtual register", MO, MONum);
2327 else if (!MI->isPHI())
2328 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2333 if (MO->isDef()) {
2334 // Register defined.
2335 // TODO: verify that earlyclobber ops are not used.
2336 if (MO->isDead())
2337 addRegWithSubRegs(regsDead, Reg);
2338 else
2339 addRegWithSubRegs(regsDefined, Reg);
2341 // Verify SSA form.
2342 if (MRI->isSSA() && Register::isVirtualRegister(Reg) &&
2343 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2344 report("Multiple virtual register defs in SSA form", MO, MONum);
2346 // Check LiveInts for a live segment, but only for virtual registers.
2347 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2348 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2349 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2351 if (Register::isVirtualRegister(Reg)) {
2352 if (LiveInts->hasInterval(Reg)) {
2353 const LiveInterval &LI = LiveInts->getInterval(Reg);
2354 checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);
2356 if (LI.hasSubRanges()) {
2357 unsigned SubRegIdx = MO->getSubReg();
2358 LaneBitmask MOMask = SubRegIdx != 0
2359 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2360 : MRI->getMaxLaneMaskForVReg(Reg);
2361 for (const LiveInterval::SubRange &SR : LI.subranges()) {
2362 if ((SR.LaneMask & MOMask).none())
2363 continue;
2364 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2367 } else {
2368 report("Virtual register has no Live interval", MO, MONum);
2375 // This function gets called after visiting all instructions in a bundle. The
2376 // argument points to the bundle header.
2377 // Normal stand-alone instructions are also considered 'bundles', and this
2378 // function is called for all of them.
2379 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2380 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2381 set_union(MInfo.regsKilled, regsKilled);
2382 set_subtract(regsLive, regsKilled); regsKilled.clear();
2383 // Kill any masked registers.
2384 while (!regMasks.empty()) {
2385 const uint32_t *Mask = regMasks.pop_back_val();
2386 for (Register Reg : regsLive)
2387 if (Reg.isPhysical() &&
2388 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2389 regsDead.push_back(Reg);
2391 set_subtract(regsLive, regsDead); regsDead.clear();
2392 set_union(regsLive, regsDefined); regsDefined.clear();
2395 void
2396 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2397 MBBInfoMap[MBB].regsLiveOut = regsLive;
2398 regsLive.clear();
2400 if (Indexes) {
2401 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2402 if (!(stop > lastIndex)) {
2403 report("Block ends before last instruction index", MBB);
2404 errs() << "Block ends at " << stop
2405 << " last instruction was at " << lastIndex << '\n';
2407 lastIndex = stop;
2411 namespace {
2412 // This implements a set of registers that serves as a filter: can filter other
2413 // sets by passing through elements not in the filter and blocking those that
2414 // are. Any filter implicitly includes the full set of physical registers upon
2415 // creation, thus filtering them all out. The filter itself as a set only grows,
2416 // and needs to be as efficient as possible.
2417 struct VRegFilter {
2418 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2419 // no duplicates. Both virtual and physical registers are fine.
2420 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2421 SmallVector<Register, 0> VRegsBuffer;
2422 filterAndAdd(FromRegSet, VRegsBuffer);
2424 // Filter \p FromRegSet through the filter and append passed elements into \p
2425 // ToVRegs. All elements appended are then added to the filter itself.
2426 // \returns true if anything changed.
2427 template <typename RegSetT>
2428 bool filterAndAdd(const RegSetT &FromRegSet,
2429 SmallVectorImpl<Register> &ToVRegs) {
2430 unsigned SparseUniverse = Sparse.size();
2431 unsigned NewSparseUniverse = SparseUniverse;
2432 unsigned NewDenseSize = Dense.size();
2433 size_t Begin = ToVRegs.size();
2434 for (Register Reg : FromRegSet) {
2435 if (!Reg.isVirtual())
2436 continue;
2437 unsigned Index = Register::virtReg2Index(Reg);
2438 if (Index < SparseUniverseMax) {
2439 if (Index < SparseUniverse && Sparse.test(Index))
2440 continue;
2441 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2442 } else {
2443 if (Dense.count(Reg))
2444 continue;
2445 ++NewDenseSize;
2447 ToVRegs.push_back(Reg);
2449 size_t End = ToVRegs.size();
2450 if (Begin == End)
2451 return false;
2452 // Reserving space in sets once performs better than doing so continuously
2453 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2454 // tuned all the way down) and double iteration (the second one is over a
2455 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2456 Sparse.resize(NewSparseUniverse);
2457 Dense.reserve(NewDenseSize);
2458 for (unsigned I = Begin; I < End; ++I) {
2459 Register Reg = ToVRegs[I];
2460 unsigned Index = Register::virtReg2Index(Reg);
2461 if (Index < SparseUniverseMax)
2462 Sparse.set(Index);
2463 else
2464 Dense.insert(Reg);
2466 return true;
2469 private:
2470 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2471 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2472 // are tracked by Dense. The only purpose of the threashold and the Dense set
2473 // is to have a reasonably growing memory usage in pathological cases (large
2474 // number of very sparse VRegFilter instances live at the same time). In
2475 // practice even in the worst-by-execution time cases having all elements
2476 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2477 // space efficient than if tracked by Dense. The threashold is set to keep the
2478 // worst-case memory usage within 2x of figures determined empirically for
2479 // "all Dense" scenario in such worst-by-execution-time cases.
2480 BitVector Sparse;
2481 DenseSet<unsigned> Dense;
2484 // Implements both a transfer function and a (binary, in-place) join operator
2485 // for a dataflow over register sets with set union join and filtering transfer
2486 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2487 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2488 // time, where n is the size of the set (as opposed to O(U) where U is the
2489 // universe). filter_b implicitly contains all physical registers at all times.
2490 class FilteringVRegSet {
2491 VRegFilter Filter;
2492 SmallVector<Register, 0> VRegs;
2494 public:
2495 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2496 // Both virtual and physical registers are fine.
2497 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2498 Filter.add(RS);
2500 // Passes \p RS through the filter_b (transfer function) and adds what's left
2501 // to itself (out_b).
2502 template <typename RegSetT> bool add(const RegSetT &RS) {
2503 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2504 // a set union) just add everything being added here to the Filter as well.
2505 return Filter.filterAndAdd(RS, VRegs);
2507 using const_iterator = decltype(VRegs)::const_iterator;
2508 const_iterator begin() const { return VRegs.begin(); }
2509 const_iterator end() const { return VRegs.end(); }
2510 size_t size() const { return VRegs.size(); }
2512 } // namespace
2514 // Calculate the largest possible vregsPassed sets. These are the registers that
2515 // can pass through an MBB live, but may not be live every time. It is assumed
2516 // that all vregsPassed sets are empty before the call.
2517 void MachineVerifier::calcRegsPassed() {
2518 if (MF->empty())
2519 // ReversePostOrderTraversal doesn't handle empty functions.
2520 return;
2522 for (const MachineBasicBlock *MB :
2523 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2524 FilteringVRegSet VRegs;
2525 BBInfo &Info = MBBInfoMap[MB];
2526 assert(Info.reachable);
2528 VRegs.addToFilter(Info.regsKilled);
2529 VRegs.addToFilter(Info.regsLiveOut);
2530 for (const MachineBasicBlock *Pred : MB->predecessors()) {
2531 const BBInfo &PredInfo = MBBInfoMap[Pred];
2532 if (!PredInfo.reachable)
2533 continue;
2535 VRegs.add(PredInfo.regsLiveOut);
2536 VRegs.add(PredInfo.vregsPassed);
2538 Info.vregsPassed.reserve(VRegs.size());
2539 Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2543 // Calculate the set of virtual registers that must be passed through each basic
2544 // block in order to satisfy the requirements of successor blocks. This is very
2545 // similar to calcRegsPassed, only backwards.
2546 void MachineVerifier::calcRegsRequired() {
2547 // First push live-in regs to predecessors' vregsRequired.
2548 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2549 for (const auto &MBB : *MF) {
2550 BBInfo &MInfo = MBBInfoMap[&MBB];
2551 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2552 BBInfo &PInfo = MBBInfoMap[Pred];
2553 if (PInfo.addRequired(MInfo.vregsLiveIn))
2554 todo.insert(Pred);
2557 // Handle the PHI node.
2558 for (const MachineInstr &MI : MBB.phis()) {
2559 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2560 // Skip those Operands which are undef regs or not regs.
2561 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2562 continue;
2564 // Get register and predecessor for one PHI edge.
2565 Register Reg = MI.getOperand(i).getReg();
2566 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2568 BBInfo &PInfo = MBBInfoMap[Pred];
2569 if (PInfo.addRequired(Reg))
2570 todo.insert(Pred);
2575 // Iteratively push vregsRequired to predecessors. This will converge to the
2576 // same final state regardless of DenseSet iteration order.
2577 while (!todo.empty()) {
2578 const MachineBasicBlock *MBB = *todo.begin();
2579 todo.erase(MBB);
2580 BBInfo &MInfo = MBBInfoMap[MBB];
2581 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2582 if (Pred == MBB)
2583 continue;
2584 BBInfo &SInfo = MBBInfoMap[Pred];
2585 if (SInfo.addRequired(MInfo.vregsRequired))
2586 todo.insert(Pred);
2591 // Check PHI instructions at the beginning of MBB. It is assumed that
2592 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2593 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2594 BBInfo &MInfo = MBBInfoMap[&MBB];
2596 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2597 for (const MachineInstr &Phi : MBB) {
2598 if (!Phi.isPHI())
2599 break;
2600 seen.clear();
2602 const MachineOperand &MODef = Phi.getOperand(0);
2603 if (!MODef.isReg() || !MODef.isDef()) {
2604 report("Expected first PHI operand to be a register def", &MODef, 0);
2605 continue;
2607 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2608 MODef.isEarlyClobber() || MODef.isDebug())
2609 report("Unexpected flag on PHI operand", &MODef, 0);
2610 Register DefReg = MODef.getReg();
2611 if (!Register::isVirtualRegister(DefReg))
2612 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2614 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2615 const MachineOperand &MO0 = Phi.getOperand(I);
2616 if (!MO0.isReg()) {
2617 report("Expected PHI operand to be a register", &MO0, I);
2618 continue;
2620 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2621 MO0.isDebug() || MO0.isTied())
2622 report("Unexpected flag on PHI operand", &MO0, I);
2624 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2625 if (!MO1.isMBB()) {
2626 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2627 continue;
2630 const MachineBasicBlock &Pre = *MO1.getMBB();
2631 if (!Pre.isSuccessor(&MBB)) {
2632 report("PHI input is not a predecessor block", &MO1, I + 1);
2633 continue;
2636 if (MInfo.reachable) {
2637 seen.insert(&Pre);
2638 BBInfo &PrInfo = MBBInfoMap[&Pre];
2639 if (!MO0.isUndef() && PrInfo.reachable &&
2640 !PrInfo.isLiveOut(MO0.getReg()))
2641 report("PHI operand is not live-out from predecessor", &MO0, I);
2645 // Did we see all predecessors?
2646 if (MInfo.reachable) {
2647 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2648 if (!seen.count(Pred)) {
2649 report("Missing PHI operand", &Phi);
2650 errs() << printMBBReference(*Pred)
2651 << " is a predecessor according to the CFG.\n";
2658 void MachineVerifier::visitMachineFunctionAfter() {
2659 calcRegsPassed();
2661 for (const MachineBasicBlock &MBB : *MF)
2662 checkPHIOps(MBB);
2664 // Now check liveness info if available
2665 calcRegsRequired();
2667 // Check for killed virtual registers that should be live out.
2668 for (const auto &MBB : *MF) {
2669 BBInfo &MInfo = MBBInfoMap[&MBB];
2670 for (Register VReg : MInfo.vregsRequired)
2671 if (MInfo.regsKilled.count(VReg)) {
2672 report("Virtual register killed in block, but needed live out.", &MBB);
2673 errs() << "Virtual register " << printReg(VReg)
2674 << " is used after the block.\n";
2678 if (!MF->empty()) {
2679 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2680 for (Register VReg : MInfo.vregsRequired) {
2681 report("Virtual register defs don't dominate all uses.", MF);
2682 report_context_vreg(VReg);
2686 if (LiveVars)
2687 verifyLiveVariables();
2688 if (LiveInts)
2689 verifyLiveIntervals();
2691 // Check live-in list of each MBB. If a register is live into MBB, check
2692 // that the register is in regsLiveOut of each predecessor block. Since
2693 // this must come from a definition in the predecesssor or its live-in
2694 // list, this will catch a live-through case where the predecessor does not
2695 // have the register in its live-in list. This currently only checks
2696 // registers that have no aliases, are not allocatable and are not
2697 // reserved, which could mean a condition code register for instance.
2698 if (MRI->tracksLiveness())
2699 for (const auto &MBB : *MF)
2700 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2701 MCPhysReg LiveInReg = P.PhysReg;
2702 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2703 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2704 continue;
2705 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2706 BBInfo &PInfo = MBBInfoMap[Pred];
2707 if (!PInfo.regsLiveOut.count(LiveInReg)) {
2708 report("Live in register not found to be live out from predecessor.",
2709 &MBB);
2710 errs() << TRI->getName(LiveInReg)
2711 << " not found to be live out from "
2712 << printMBBReference(*Pred) << "\n";
2717 for (auto CSInfo : MF->getCallSitesInfo())
2718 if (!CSInfo.first->isCall())
2719 report("Call site info referencing instruction that is not call", MF);
2721 // If there's debug-info, check that we don't have any duplicate value
2722 // tracking numbers.
2723 if (MF->getFunction().getSubprogram()) {
2724 DenseSet<unsigned> SeenNumbers;
2725 for (auto &MBB : *MF) {
2726 for (auto &MI : MBB) {
2727 if (auto Num = MI.peekDebugInstrNum()) {
2728 auto Result = SeenNumbers.insert((unsigned)Num);
2729 if (!Result.second)
2730 report("Instruction has a duplicated value tracking number", &MI);
2737 void MachineVerifier::verifyLiveVariables() {
2738 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
2739 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2740 Register Reg = Register::index2VirtReg(I);
2741 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2742 for (const auto &MBB : *MF) {
2743 BBInfo &MInfo = MBBInfoMap[&MBB];
2745 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
2746 if (MInfo.vregsRequired.count(Reg)) {
2747 if (!VI.AliveBlocks.test(MBB.getNumber())) {
2748 report("LiveVariables: Block missing from AliveBlocks", &MBB);
2749 errs() << "Virtual register " << printReg(Reg)
2750 << " must be live through the block.\n";
2752 } else {
2753 if (VI.AliveBlocks.test(MBB.getNumber())) {
2754 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
2755 errs() << "Virtual register " << printReg(Reg)
2756 << " is not needed live through the block.\n";
2763 void MachineVerifier::verifyLiveIntervals() {
2764 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
2765 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
2766 Register Reg = Register::index2VirtReg(I);
2768 // Spilling and splitting may leave unused registers around. Skip them.
2769 if (MRI->reg_nodbg_empty(Reg))
2770 continue;
2772 if (!LiveInts->hasInterval(Reg)) {
2773 report("Missing live interval for virtual register", MF);
2774 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
2775 continue;
2778 const LiveInterval &LI = LiveInts->getInterval(Reg);
2779 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
2780 verifyLiveInterval(LI);
2783 // Verify all the cached regunit intervals.
2784 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
2785 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
2786 verifyLiveRange(*LR, i);
2789 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
2790 const VNInfo *VNI, Register Reg,
2791 LaneBitmask LaneMask) {
2792 if (VNI->isUnused())
2793 return;
2795 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
2797 if (!DefVNI) {
2798 report("Value not live at VNInfo def and not marked unused", MF);
2799 report_context(LR, Reg, LaneMask);
2800 report_context(*VNI);
2801 return;
2804 if (DefVNI != VNI) {
2805 report("Live segment at def has different VNInfo", MF);
2806 report_context(LR, Reg, LaneMask);
2807 report_context(*VNI);
2808 return;
2811 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
2812 if (!MBB) {
2813 report("Invalid VNInfo definition index", MF);
2814 report_context(LR, Reg, LaneMask);
2815 report_context(*VNI);
2816 return;
2819 if (VNI->isPHIDef()) {
2820 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
2821 report("PHIDef VNInfo is not defined at MBB start", MBB);
2822 report_context(LR, Reg, LaneMask);
2823 report_context(*VNI);
2825 return;
2828 // Non-PHI def.
2829 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
2830 if (!MI) {
2831 report("No instruction at VNInfo def index", MBB);
2832 report_context(LR, Reg, LaneMask);
2833 report_context(*VNI);
2834 return;
2837 if (Reg != 0) {
2838 bool hasDef = false;
2839 bool isEarlyClobber = false;
2840 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2841 if (!MOI->isReg() || !MOI->isDef())
2842 continue;
2843 if (Register::isVirtualRegister(Reg)) {
2844 if (MOI->getReg() != Reg)
2845 continue;
2846 } else {
2847 if (!Register::isPhysicalRegister(MOI->getReg()) ||
2848 !TRI->hasRegUnit(MOI->getReg(), Reg))
2849 continue;
2851 if (LaneMask.any() &&
2852 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
2853 continue;
2854 hasDef = true;
2855 if (MOI->isEarlyClobber())
2856 isEarlyClobber = true;
2859 if (!hasDef) {
2860 report("Defining instruction does not modify register", MI);
2861 report_context(LR, Reg, LaneMask);
2862 report_context(*VNI);
2865 // Early clobber defs begin at USE slots, but other defs must begin at
2866 // DEF slots.
2867 if (isEarlyClobber) {
2868 if (!VNI->def.isEarlyClobber()) {
2869 report("Early clobber def must be at an early-clobber slot", MBB);
2870 report_context(LR, Reg, LaneMask);
2871 report_context(*VNI);
2873 } else if (!VNI->def.isRegister()) {
2874 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
2875 report_context(LR, Reg, LaneMask);
2876 report_context(*VNI);
2881 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
2882 const LiveRange::const_iterator I,
2883 Register Reg,
2884 LaneBitmask LaneMask) {
2885 const LiveRange::Segment &S = *I;
2886 const VNInfo *VNI = S.valno;
2887 assert(VNI && "Live segment has no valno");
2889 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
2890 report("Foreign valno in live segment", MF);
2891 report_context(LR, Reg, LaneMask);
2892 report_context(S);
2893 report_context(*VNI);
2896 if (VNI->isUnused()) {
2897 report("Live segment valno is marked unused", MF);
2898 report_context(LR, Reg, LaneMask);
2899 report_context(S);
2902 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
2903 if (!MBB) {
2904 report("Bad start of live segment, no basic block", MF);
2905 report_context(LR, Reg, LaneMask);
2906 report_context(S);
2907 return;
2909 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
2910 if (S.start != MBBStartIdx && S.start != VNI->def) {
2911 report("Live segment must begin at MBB entry or valno def", MBB);
2912 report_context(LR, Reg, LaneMask);
2913 report_context(S);
2916 const MachineBasicBlock *EndMBB =
2917 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
2918 if (!EndMBB) {
2919 report("Bad end of live segment, no basic block", MF);
2920 report_context(LR, Reg, LaneMask);
2921 report_context(S);
2922 return;
2925 // No more checks for live-out segments.
2926 if (S.end == LiveInts->getMBBEndIdx(EndMBB))
2927 return;
2929 // RegUnit intervals are allowed dead phis.
2930 if (!Register::isVirtualRegister(Reg) && VNI->isPHIDef() &&
2931 S.start == VNI->def && S.end == VNI->def.getDeadSlot())
2932 return;
2934 // The live segment is ending inside EndMBB
2935 const MachineInstr *MI =
2936 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
2937 if (!MI) {
2938 report("Live segment doesn't end at a valid instruction", EndMBB);
2939 report_context(LR, Reg, LaneMask);
2940 report_context(S);
2941 return;
2944 // The block slot must refer to a basic block boundary.
2945 if (S.end.isBlock()) {
2946 report("Live segment ends at B slot of an instruction", EndMBB);
2947 report_context(LR, Reg, LaneMask);
2948 report_context(S);
2951 if (S.end.isDead()) {
2952 // Segment ends on the dead slot.
2953 // That means there must be a dead def.
2954 if (!SlotIndex::isSameInstr(S.start, S.end)) {
2955 report("Live segment ending at dead slot spans instructions", EndMBB);
2956 report_context(LR, Reg, LaneMask);
2957 report_context(S);
2961 // A live segment can only end at an early-clobber slot if it is being
2962 // redefined by an early-clobber def.
2963 if (S.end.isEarlyClobber()) {
2964 if (I+1 == LR.end() || (I+1)->start != S.end) {
2965 report("Live segment ending at early clobber slot must be "
2966 "redefined by an EC def in the same instruction", EndMBB);
2967 report_context(LR, Reg, LaneMask);
2968 report_context(S);
2972 // The following checks only apply to virtual registers. Physreg liveness
2973 // is too weird to check.
2974 if (Register::isVirtualRegister(Reg)) {
2975 // A live segment can end with either a redefinition, a kill flag on a
2976 // use, or a dead flag on a def.
2977 bool hasRead = false;
2978 bool hasSubRegDef = false;
2979 bool hasDeadDef = false;
2980 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
2981 if (!MOI->isReg() || MOI->getReg() != Reg)
2982 continue;
2983 unsigned Sub = MOI->getSubReg();
2984 LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
2985 : LaneBitmask::getAll();
2986 if (MOI->isDef()) {
2987 if (Sub != 0) {
2988 hasSubRegDef = true;
2989 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
2990 // mask for subregister defs. Read-undef defs will be handled by
2991 // readsReg below.
2992 SLM = ~SLM;
2994 if (MOI->isDead())
2995 hasDeadDef = true;
2997 if (LaneMask.any() && (LaneMask & SLM).none())
2998 continue;
2999 if (MOI->readsReg())
3000 hasRead = true;
3002 if (S.end.isDead()) {
3003 // Make sure that the corresponding machine operand for a "dead" live
3004 // range has the dead flag. We cannot perform this check for subregister
3005 // liveranges as partially dead values are allowed.
3006 if (LaneMask.none() && !hasDeadDef) {
3007 report("Instruction ending live segment on dead slot has no dead flag",
3008 MI);
3009 report_context(LR, Reg, LaneMask);
3010 report_context(S);
3012 } else {
3013 if (!hasRead) {
3014 // When tracking subregister liveness, the main range must start new
3015 // values on partial register writes, even if there is no read.
3016 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3017 !hasSubRegDef) {
3018 report("Instruction ending live segment doesn't read the register",
3019 MI);
3020 report_context(LR, Reg, LaneMask);
3021 report_context(S);
3027 // Now check all the basic blocks in this live segment.
3028 MachineFunction::const_iterator MFI = MBB->getIterator();
3029 // Is this live segment the beginning of a non-PHIDef VN?
3030 if (S.start == VNI->def && !VNI->isPHIDef()) {
3031 // Not live-in to any blocks.
3032 if (MBB == EndMBB)
3033 return;
3034 // Skip this block.
3035 ++MFI;
3038 SmallVector<SlotIndex, 4> Undefs;
3039 if (LaneMask.any()) {
3040 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3041 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3044 while (true) {
3045 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3046 // We don't know how to track physregs into a landing pad.
3047 if (!Register::isVirtualRegister(Reg) && MFI->isEHPad()) {
3048 if (&*MFI == EndMBB)
3049 break;
3050 ++MFI;
3051 continue;
3054 // Is VNI a PHI-def in the current block?
3055 bool IsPHI = VNI->isPHIDef() &&
3056 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3058 // Check that VNI is live-out of all predecessors.
3059 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3060 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3061 // Predecessor of landing pad live-out on last call.
3062 if (MFI->isEHPad()) {
3063 for (auto I = Pred->rbegin(), E = Pred->rend(); I != E; ++I) {
3064 if (I->isCall()) {
3065 PEnd = Indexes->getInstructionIndex(*I).getBoundaryIndex();
3066 break;
3070 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3072 // All predecessors must have a live-out value. However for a phi
3073 // instruction with subregister intervals
3074 // only one of the subregisters (not necessarily the current one) needs to
3075 // be defined.
3076 if (!PVNI && (LaneMask.none() || !IsPHI)) {
3077 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3078 continue;
3079 report("Register not marked live out of predecessor", Pred);
3080 report_context(LR, Reg, LaneMask);
3081 report_context(*VNI);
3082 errs() << " live into " << printMBBReference(*MFI) << '@'
3083 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3084 << PEnd << '\n';
3085 continue;
3088 // Only PHI-defs can take different predecessor values.
3089 if (!IsPHI && PVNI != VNI) {
3090 report("Different value live out of predecessor", Pred);
3091 report_context(LR, Reg, LaneMask);
3092 errs() << "Valno #" << PVNI->id << " live out of "
3093 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3094 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3095 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3098 if (&*MFI == EndMBB)
3099 break;
3100 ++MFI;
3104 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3105 LaneBitmask LaneMask) {
3106 for (const VNInfo *VNI : LR.valnos)
3107 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3109 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3110 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3113 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3114 Register Reg = LI.reg();
3115 assert(Register::isVirtualRegister(Reg));
3116 verifyLiveRange(LI, Reg);
3118 LaneBitmask Mask;
3119 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3120 for (const LiveInterval::SubRange &SR : LI.subranges()) {
3121 if ((Mask & SR.LaneMask).any()) {
3122 report("Lane masks of sub ranges overlap in live interval", MF);
3123 report_context(LI);
3125 if ((SR.LaneMask & ~MaxMask).any()) {
3126 report("Subrange lanemask is invalid", MF);
3127 report_context(LI);
3129 if (SR.empty()) {
3130 report("Subrange must not be empty", MF);
3131 report_context(SR, LI.reg(), SR.LaneMask);
3133 Mask |= SR.LaneMask;
3134 verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3135 if (!LI.covers(SR)) {
3136 report("A Subrange is not covered by the main range", MF);
3137 report_context(LI);
3141 // Check the LI only has one connected component.
3142 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3143 unsigned NumComp = ConEQ.Classify(LI);
3144 if (NumComp > 1) {
3145 report("Multiple connected components in live interval", MF);
3146 report_context(LI);
3147 for (unsigned comp = 0; comp != NumComp; ++comp) {
3148 errs() << comp << ": valnos";
3149 for (const VNInfo *I : LI.valnos)
3150 if (comp == ConEQ.getEqClass(I))
3151 errs() << ' ' << I->id;
3152 errs() << '\n';
3157 namespace {
3159 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3160 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3161 // value is zero.
3162 // We use a bool plus an integer to capture the stack state.
3163 struct StackStateOfBB {
3164 StackStateOfBB() = default;
3165 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3166 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3167 ExitIsSetup(ExitSetup) {}
3169 // Can be negative, which means we are setting up a frame.
3170 int EntryValue = 0;
3171 int ExitValue = 0;
3172 bool EntryIsSetup = false;
3173 bool ExitIsSetup = false;
3176 } // end anonymous namespace
3178 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3179 /// by a FrameDestroy <n>, stack adjustments are identical on all
3180 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3181 void MachineVerifier::verifyStackFrame() {
3182 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
3183 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3184 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3185 return;
3187 SmallVector<StackStateOfBB, 8> SPState;
3188 SPState.resize(MF->getNumBlockIDs());
3189 df_iterator_default_set<const MachineBasicBlock*> Reachable;
3191 // Visit the MBBs in DFS order.
3192 for (df_ext_iterator<const MachineFunction *,
3193 df_iterator_default_set<const MachineBasicBlock *>>
3194 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3195 DFI != DFE; ++DFI) {
3196 const MachineBasicBlock *MBB = *DFI;
3198 StackStateOfBB BBState;
3199 // Check the exit state of the DFS stack predecessor.
3200 if (DFI.getPathLength() >= 2) {
3201 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3202 assert(Reachable.count(StackPred) &&
3203 "DFS stack predecessor is already visited.\n");
3204 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3205 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3206 BBState.ExitValue = BBState.EntryValue;
3207 BBState.ExitIsSetup = BBState.EntryIsSetup;
3210 // Update stack state by checking contents of MBB.
3211 for (const auto &I : *MBB) {
3212 if (I.getOpcode() == FrameSetupOpcode) {
3213 if (BBState.ExitIsSetup)
3214 report("FrameSetup is after another FrameSetup", &I);
3215 BBState.ExitValue -= TII->getFrameTotalSize(I);
3216 BBState.ExitIsSetup = true;
3219 if (I.getOpcode() == FrameDestroyOpcode) {
3220 int Size = TII->getFrameTotalSize(I);
3221 if (!BBState.ExitIsSetup)
3222 report("FrameDestroy is not after a FrameSetup", &I);
3223 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3224 BBState.ExitValue;
3225 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3226 report("FrameDestroy <n> is after FrameSetup <m>", &I);
3227 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3228 << AbsSPAdj << ">.\n";
3230 BBState.ExitValue += Size;
3231 BBState.ExitIsSetup = false;
3234 SPState[MBB->getNumber()] = BBState;
3236 // Make sure the exit state of any predecessor is consistent with the entry
3237 // state.
3238 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3239 if (Reachable.count(Pred) &&
3240 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3241 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3242 report("The exit stack state of a predecessor is inconsistent.", MBB);
3243 errs() << "Predecessor " << printMBBReference(*Pred)
3244 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3245 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3246 << printMBBReference(*MBB) << " has entry state ("
3247 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3251 // Make sure the entry state of any successor is consistent with the exit
3252 // state.
3253 for (const MachineBasicBlock *Succ : MBB->successors()) {
3254 if (Reachable.count(Succ) &&
3255 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3256 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3257 report("The entry stack state of a successor is inconsistent.", MBB);
3258 errs() << "Successor " << printMBBReference(*Succ)
3259 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3260 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3261 << printMBBReference(*MBB) << " has exit state ("
3262 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3266 // Make sure a basic block with return ends with zero stack adjustment.
3267 if (!MBB->empty() && MBB->back().isReturn()) {
3268 if (BBState.ExitIsSetup)
3269 report("A return block ends with a FrameSetup.", MBB);
3270 if (BBState.ExitValue)
3271 report("A return block ends with a nonzero stack adjustment.", MBB);