[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / PHIElimination.cpp
blob54805584dbc1c8425e7736fa3c4e7dce27b965b7
1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include <cassert>
44 #include <iterator>
45 #include <utility>
47 using namespace llvm;
49 #define DEBUG_TYPE "phi-node-elimination"
51 static cl::opt<bool>
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53 cl::Hidden, cl::desc("Disable critical edge splitting "
54 "during PHI elimination"));
56 static cl::opt<bool>
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58 cl::Hidden, cl::desc("Split all critical edges during "
59 "PHI elimination"));
61 static cl::opt<bool> NoPhiElimLiveOutEarlyExit(
62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden,
63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
65 namespace {
67 class PHIElimination : public MachineFunctionPass {
68 MachineRegisterInfo *MRI; // Machine register information
69 LiveVariables *LV;
70 LiveIntervals *LIS;
72 public:
73 static char ID; // Pass identification, replacement for typeid
75 PHIElimination() : MachineFunctionPass(ID) {
76 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
79 bool runOnMachineFunction(MachineFunction &MF) override;
80 void getAnalysisUsage(AnalysisUsage &AU) const override;
82 private:
83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84 /// in predecessor basic blocks.
85 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
87 void LowerPHINode(MachineBasicBlock &MBB,
88 MachineBasicBlock::iterator LastPHIIt);
90 /// analyzePHINodes - Gather information about the PHI nodes in
91 /// here. In particular, we want to map the number of uses of a virtual
92 /// register which is used in a PHI node. We map that to the BB the
93 /// vreg is coming from. This is used later to determine when the vreg
94 /// is killed in the BB.
95 void analyzePHINodes(const MachineFunction& MF);
97 /// Split critical edges where necessary for good coalescer performance.
98 bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
99 MachineLoopInfo *MLI,
100 std::vector<SparseBitVector<>> *LiveInSets);
102 // These functions are temporary abstractions around LiveVariables and
103 // LiveIntervals, so they can go away when LiveVariables does.
104 bool isLiveIn(Register Reg, const MachineBasicBlock *MBB);
105 bool isLiveOutPastPHIs(Register Reg, const MachineBasicBlock *MBB);
107 using BBVRegPair = std::pair<unsigned, Register>;
108 using VRegPHIUse = DenseMap<BBVRegPair, unsigned>;
110 VRegPHIUse VRegPHIUseCount;
112 // Defs of PHI sources which are implicit_def.
113 SmallPtrSet<MachineInstr*, 4> ImpDefs;
115 // Map reusable lowered PHI node -> incoming join register.
116 using LoweredPHIMap =
117 DenseMap<MachineInstr*, unsigned, MachineInstrExpressionTrait>;
118 LoweredPHIMap LoweredPHIs;
121 } // end anonymous namespace
123 STATISTIC(NumLowered, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
125 STATISTIC(NumReused, "Number of reused lowered phis");
127 char PHIElimination::ID = 0;
129 char& llvm::PHIEliminationID = PHIElimination::ID;
131 INITIALIZE_PASS_BEGIN(PHIElimination, DEBUG_TYPE,
132 "Eliminate PHI nodes for register allocation",
133 false, false)
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
135 INITIALIZE_PASS_END(PHIElimination, DEBUG_TYPE,
136 "Eliminate PHI nodes for register allocation", false, false)
138 void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
139 AU.addUsedIfAvailable<LiveVariables>();
140 AU.addPreserved<LiveVariables>();
141 AU.addPreserved<SlotIndexes>();
142 AU.addPreserved<LiveIntervals>();
143 AU.addPreserved<MachineDominatorTree>();
144 AU.addPreserved<MachineLoopInfo>();
145 MachineFunctionPass::getAnalysisUsage(AU);
148 bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
149 MRI = &MF.getRegInfo();
150 LV = getAnalysisIfAvailable<LiveVariables>();
151 LIS = getAnalysisIfAvailable<LiveIntervals>();
153 bool Changed = false;
155 // Split critical edges to help the coalescer.
156 if (!DisableEdgeSplitting && (LV || LIS)) {
157 // A set of live-in regs for each MBB which is used to update LV
158 // efficiently also with large functions.
159 std::vector<SparseBitVector<>> LiveInSets;
160 if (LV) {
161 LiveInSets.resize(MF.size());
162 for (unsigned Index = 0, e = MRI->getNumVirtRegs(); Index != e; ++Index) {
163 // Set the bit for this register for each MBB where it is
164 // live-through or live-in (killed).
165 unsigned VirtReg = Register::index2VirtReg(Index);
166 MachineInstr *DefMI = MRI->getVRegDef(VirtReg);
167 if (!DefMI)
168 continue;
169 LiveVariables::VarInfo &VI = LV->getVarInfo(VirtReg);
170 SparseBitVector<>::iterator AliveBlockItr = VI.AliveBlocks.begin();
171 SparseBitVector<>::iterator EndItr = VI.AliveBlocks.end();
172 while (AliveBlockItr != EndItr) {
173 unsigned BlockNum = *(AliveBlockItr++);
174 LiveInSets[BlockNum].set(Index);
176 // The register is live into an MBB in which it is killed but not
177 // defined. See comment for VarInfo in LiveVariables.h.
178 MachineBasicBlock *DefMBB = DefMI->getParent();
179 if (VI.Kills.size() > 1 ||
180 (!VI.Kills.empty() && VI.Kills.front()->getParent() != DefMBB))
181 for (auto *MI : VI.Kills)
182 LiveInSets[MI->getParent()->getNumber()].set(Index);
186 MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
187 for (auto &MBB : MF)
188 Changed |= SplitPHIEdges(MF, MBB, MLI, (LV ? &LiveInSets : nullptr));
191 // This pass takes the function out of SSA form.
192 MRI->leaveSSA();
194 // Populate VRegPHIUseCount
195 analyzePHINodes(MF);
197 // Eliminate PHI instructions by inserting copies into predecessor blocks.
198 for (auto &MBB : MF)
199 Changed |= EliminatePHINodes(MF, MBB);
201 // Remove dead IMPLICIT_DEF instructions.
202 for (MachineInstr *DefMI : ImpDefs) {
203 Register DefReg = DefMI->getOperand(0).getReg();
204 if (MRI->use_nodbg_empty(DefReg)) {
205 if (LIS)
206 LIS->RemoveMachineInstrFromMaps(*DefMI);
207 DefMI->eraseFromParent();
211 // Clean up the lowered PHI instructions.
212 for (auto &I : LoweredPHIs) {
213 if (LIS)
214 LIS->RemoveMachineInstrFromMaps(*I.first);
215 MF.DeleteMachineInstr(I.first);
218 // TODO: we should use the incremental DomTree updater here.
219 if (Changed)
220 if (auto *MDT = getAnalysisIfAvailable<MachineDominatorTree>())
221 MDT->getBase().recalculate(MF);
223 LoweredPHIs.clear();
224 ImpDefs.clear();
225 VRegPHIUseCount.clear();
227 MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
229 return Changed;
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
235 MachineBasicBlock &MBB) {
236 if (MBB.empty() || !MBB.front().isPHI())
237 return false; // Quick exit for basic blocks without PHIs.
239 // Get an iterator to the last PHI node.
240 MachineBasicBlock::iterator LastPHIIt =
241 std::prev(MBB.SkipPHIsAndLabels(MBB.begin()));
243 while (MBB.front().isPHI())
244 LowerPHINode(MBB, LastPHIIt);
246 return true;
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg,
252 const MachineRegisterInfo &MRI) {
253 for (MachineInstr &DI : MRI.def_instructions(VirtReg))
254 if (!DI.isImplicitDef())
255 return false;
256 return true;
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr &MPhi,
261 const MachineRegisterInfo &MRI) {
262 for (unsigned I = 1, E = MPhi.getNumOperands(); I != E; I += 2) {
263 const MachineOperand &MO = MPhi.getOperand(I);
264 if (!isImplicitlyDefined(MO.getReg(), MRI) && !MO.isUndef())
265 return false;
267 return true;
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
271 MachineBasicBlock::iterator LastPHIIt) {
272 ++NumLowered;
274 MachineBasicBlock::iterator AfterPHIsIt = std::next(LastPHIIt);
276 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277 MachineInstr *MPhi = MBB.remove(&*MBB.begin());
279 unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
280 Register DestReg = MPhi->getOperand(0).getReg();
281 assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282 bool isDead = MPhi->getOperand(0).isDead();
284 // Create a new register for the incoming PHI arguments.
285 MachineFunction &MF = *MBB.getParent();
286 unsigned IncomingReg = 0;
287 bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
289 // Insert a register to register copy at the top of the current block (but
290 // after any remaining phi nodes) which copies the new incoming register
291 // into the phi node destination.
292 MachineInstr *PHICopy = nullptr;
293 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
294 if (allPhiOperandsUndefined(*MPhi, *MRI))
295 // If all sources of a PHI node are implicit_def or undef uses, just emit an
296 // implicit_def instead of a copy.
297 PHICopy = BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
298 TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
299 else {
300 // Can we reuse an earlier PHI node? This only happens for critical edges,
301 // typically those created by tail duplication.
302 unsigned &entry = LoweredPHIs[MPhi];
303 if (entry) {
304 // An identical PHI node was already lowered. Reuse the incoming register.
305 IncomingReg = entry;
306 reusedIncoming = true;
307 ++NumReused;
308 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg) << " for "
309 << *MPhi);
310 } else {
311 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
312 entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
314 // Give the target possiblity to handle special cases fallthrough otherwise
315 PHICopy = TII->createPHIDestinationCopy(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
316 IncomingReg, DestReg);
319 if (MPhi->peekDebugInstrNum()) {
320 // If referred to by debug-info, store where this PHI was.
321 MachineFunction *MF = MBB.getParent();
322 unsigned ID = MPhi->peekDebugInstrNum();
323 auto P = MachineFunction::DebugPHIRegallocPos(&MBB, IncomingReg, 0);
324 auto Res = MF->DebugPHIPositions.insert({ID, P});
325 assert(Res.second);
326 (void)Res;
329 // Update live variable information if there is any.
330 if (LV) {
331 if (IncomingReg) {
332 LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
334 // Increment use count of the newly created virtual register.
335 LV->setPHIJoin(IncomingReg);
337 MachineInstr *OldKill = nullptr;
338 bool IsPHICopyAfterOldKill = false;
340 if (reusedIncoming && (OldKill = VI.findKill(&MBB))) {
341 // Calculate whether the PHICopy is after the OldKill.
342 // In general, the PHICopy is inserted as the first non-phi instruction
343 // by default, so it's before the OldKill. But some Target hooks for
344 // createPHIDestinationCopy() may modify the default insert position of
345 // PHICopy.
346 for (auto I = MBB.SkipPHIsAndLabels(MBB.begin()), E = MBB.end();
347 I != E; ++I) {
348 if (I == PHICopy)
349 break;
351 if (I == OldKill) {
352 IsPHICopyAfterOldKill = true;
353 break;
358 // When we are reusing the incoming register and it has been marked killed
359 // by OldKill, if the PHICopy is after the OldKill, we should remove the
360 // killed flag from OldKill.
361 if (IsPHICopyAfterOldKill) {
362 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill);
363 LV->removeVirtualRegisterKilled(IncomingReg, *OldKill);
364 LLVM_DEBUG(MBB.dump());
367 // Add information to LiveVariables to know that the first used incoming
368 // value or the resued incoming value whose PHICopy is after the OldKIll
369 // is killed. Note that because the value is defined in several places
370 // (once each for each incoming block), the "def" block and instruction
371 // fields for the VarInfo is not filled in.
372 if (!OldKill || IsPHICopyAfterOldKill)
373 LV->addVirtualRegisterKilled(IncomingReg, *PHICopy);
376 // Since we are going to be deleting the PHI node, if it is the last use of
377 // any registers, or if the value itself is dead, we need to move this
378 // information over to the new copy we just inserted.
379 LV->removeVirtualRegistersKilled(*MPhi);
381 // If the result is dead, update LV.
382 if (isDead) {
383 LV->addVirtualRegisterDead(DestReg, *PHICopy);
384 LV->removeVirtualRegisterDead(DestReg, *MPhi);
388 // Update LiveIntervals for the new copy or implicit def.
389 if (LIS) {
390 SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(*PHICopy);
392 SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
393 if (IncomingReg) {
394 // Add the region from the beginning of MBB to the copy instruction to
395 // IncomingReg's live interval.
396 LiveInterval &IncomingLI = LIS->createEmptyInterval(IncomingReg);
397 VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
398 if (!IncomingVNI)
399 IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
400 LIS->getVNInfoAllocator());
401 IncomingLI.addSegment(LiveInterval::Segment(MBBStartIndex,
402 DestCopyIndex.getRegSlot(),
403 IncomingVNI));
406 LiveInterval &DestLI = LIS->getInterval(DestReg);
407 assert(!DestLI.empty() && "PHIs should have nonempty LiveIntervals.");
408 if (DestLI.endIndex().isDead()) {
409 // A dead PHI's live range begins and ends at the start of the MBB, but
410 // the lowered copy, which will still be dead, needs to begin and end at
411 // the copy instruction.
412 VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
413 assert(OrigDestVNI && "PHI destination should be live at block entry.");
414 DestLI.removeSegment(MBBStartIndex, MBBStartIndex.getDeadSlot());
415 DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
416 LIS->getVNInfoAllocator());
417 DestLI.removeValNo(OrigDestVNI);
418 } else {
419 // Otherwise, remove the region from the beginning of MBB to the copy
420 // instruction from DestReg's live interval.
421 DestLI.removeSegment(MBBStartIndex, DestCopyIndex.getRegSlot());
422 VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
423 assert(DestVNI && "PHI destination should be live at its definition.");
424 DestVNI->def = DestCopyIndex.getRegSlot();
428 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
429 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
430 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
431 MPhi->getOperand(i).getReg())];
433 // Now loop over all of the incoming arguments, changing them to copy into the
434 // IncomingReg register in the corresponding predecessor basic block.
435 SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
436 for (int i = NumSrcs - 1; i >= 0; --i) {
437 Register SrcReg = MPhi->getOperand(i * 2 + 1).getReg();
438 unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
439 bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
440 isImplicitlyDefined(SrcReg, *MRI);
441 assert(Register::isVirtualRegister(SrcReg) &&
442 "Machine PHI Operands must all be virtual registers!");
444 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
445 // path the PHI.
446 MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
448 // Check to make sure we haven't already emitted the copy for this block.
449 // This can happen because PHI nodes may have multiple entries for the same
450 // basic block.
451 if (!MBBsInsertedInto.insert(&opBlock).second)
452 continue; // If the copy has already been emitted, we're done.
454 MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg);
455 if (SrcRegDef && TII->isUnspillableTerminator(SrcRegDef)) {
456 assert(SrcRegDef->getOperand(0).isReg() &&
457 SrcRegDef->getOperand(0).isDef() &&
458 "Expected operand 0 to be a reg def!");
459 // Now that the PHI's use has been removed (as the instruction was
460 // removed) there should be no other uses of the SrcReg.
461 assert(MRI->use_empty(SrcReg) &&
462 "Expected a single use from UnspillableTerminator");
463 SrcRegDef->getOperand(0).setReg(IncomingReg);
464 continue;
467 // Find a safe location to insert the copy, this may be the first terminator
468 // in the block (or end()).
469 MachineBasicBlock::iterator InsertPos =
470 findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
472 // Insert the copy.
473 MachineInstr *NewSrcInstr = nullptr;
474 if (!reusedIncoming && IncomingReg) {
475 if (SrcUndef) {
476 // The source register is undefined, so there is no need for a real
477 // COPY, but we still need to ensure joint dominance by defs.
478 // Insert an IMPLICIT_DEF instruction.
479 NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
480 TII->get(TargetOpcode::IMPLICIT_DEF),
481 IncomingReg);
483 // Clean up the old implicit-def, if there even was one.
484 if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
485 if (DefMI->isImplicitDef())
486 ImpDefs.insert(DefMI);
487 } else {
488 // Delete the debug location, since the copy is inserted into a
489 // different basic block.
490 NewSrcInstr = TII->createPHISourceCopy(opBlock, InsertPos, nullptr,
491 SrcReg, SrcSubReg, IncomingReg);
495 // We only need to update the LiveVariables kill of SrcReg if this was the
496 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
497 // out of the predecessor. We can also ignore undef sources.
498 if (LV && !SrcUndef &&
499 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
500 !LV->isLiveOut(SrcReg, opBlock)) {
501 // We want to be able to insert a kill of the register if this PHI (aka,
502 // the copy we just inserted) is the last use of the source value. Live
503 // variable analysis conservatively handles this by saying that the value
504 // is live until the end of the block the PHI entry lives in. If the value
505 // really is dead at the PHI copy, there will be no successor blocks which
506 // have the value live-in.
508 // Okay, if we now know that the value is not live out of the block, we
509 // can add a kill marker in this block saying that it kills the incoming
510 // value!
512 // In our final twist, we have to decide which instruction kills the
513 // register. In most cases this is the copy, however, terminator
514 // instructions at the end of the block may also use the value. In this
515 // case, we should mark the last such terminator as being the killing
516 // block, not the copy.
517 MachineBasicBlock::iterator KillInst = opBlock.end();
518 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
519 for (MachineBasicBlock::iterator Term = FirstTerm;
520 Term != opBlock.end(); ++Term) {
521 if (Term->readsRegister(SrcReg))
522 KillInst = Term;
525 if (KillInst == opBlock.end()) {
526 // No terminator uses the register.
528 if (reusedIncoming || !IncomingReg) {
529 // We may have to rewind a bit if we didn't insert a copy this time.
530 KillInst = FirstTerm;
531 while (KillInst != opBlock.begin()) {
532 --KillInst;
533 if (KillInst->isDebugInstr())
534 continue;
535 if (KillInst->readsRegister(SrcReg))
536 break;
538 } else {
539 // We just inserted this copy.
540 KillInst = NewSrcInstr;
543 assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
545 // Finally, mark it killed.
546 LV->addVirtualRegisterKilled(SrcReg, *KillInst);
548 // This vreg no longer lives all of the way through opBlock.
549 unsigned opBlockNum = opBlock.getNumber();
550 LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
553 if (LIS) {
554 if (NewSrcInstr) {
555 LIS->InsertMachineInstrInMaps(*NewSrcInstr);
556 LIS->addSegmentToEndOfBlock(IncomingReg, *NewSrcInstr);
559 if (!SrcUndef &&
560 !VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
561 LiveInterval &SrcLI = LIS->getInterval(SrcReg);
563 bool isLiveOut = false;
564 for (MachineBasicBlock *Succ : opBlock.successors()) {
565 SlotIndex startIdx = LIS->getMBBStartIdx(Succ);
566 VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
568 // Definitions by other PHIs are not truly live-in for our purposes.
569 if (VNI && VNI->def != startIdx) {
570 isLiveOut = true;
571 break;
575 if (!isLiveOut) {
576 MachineBasicBlock::iterator KillInst = opBlock.end();
577 MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
578 for (MachineBasicBlock::iterator Term = FirstTerm;
579 Term != opBlock.end(); ++Term) {
580 if (Term->readsRegister(SrcReg))
581 KillInst = Term;
584 if (KillInst == opBlock.end()) {
585 // No terminator uses the register.
587 if (reusedIncoming || !IncomingReg) {
588 // We may have to rewind a bit if we didn't just insert a copy.
589 KillInst = FirstTerm;
590 while (KillInst != opBlock.begin()) {
591 --KillInst;
592 if (KillInst->isDebugInstr())
593 continue;
594 if (KillInst->readsRegister(SrcReg))
595 break;
597 } else {
598 // We just inserted this copy.
599 KillInst = std::prev(InsertPos);
602 assert(KillInst->readsRegister(SrcReg) &&
603 "Cannot find kill instruction");
605 SlotIndex LastUseIndex = LIS->getInstructionIndex(*KillInst);
606 SrcLI.removeSegment(LastUseIndex.getRegSlot(),
607 LIS->getMBBEndIdx(&opBlock));
613 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
614 if (reusedIncoming || !IncomingReg) {
615 if (LIS)
616 LIS->RemoveMachineInstrFromMaps(*MPhi);
617 MF.DeleteMachineInstr(MPhi);
621 /// analyzePHINodes - Gather information about the PHI nodes in here. In
622 /// particular, we want to map the number of uses of a virtual register which is
623 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
624 /// used later to determine when the vreg is killed in the BB.
625 void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
626 for (const auto &MBB : MF)
627 for (const auto &BBI : MBB) {
628 if (!BBI.isPHI())
629 break;
630 for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
631 ++VRegPHIUseCount[BBVRegPair(BBI.getOperand(i+1).getMBB()->getNumber(),
632 BBI.getOperand(i).getReg())];
636 bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
637 MachineBasicBlock &MBB,
638 MachineLoopInfo *MLI,
639 std::vector<SparseBitVector<>> *LiveInSets) {
640 if (MBB.empty() || !MBB.front().isPHI() || MBB.isEHPad())
641 return false; // Quick exit for basic blocks without PHIs.
643 const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : nullptr;
644 bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
646 bool Changed = false;
647 for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
648 BBI != BBE && BBI->isPHI(); ++BBI) {
649 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
650 Register Reg = BBI->getOperand(i).getReg();
651 MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
652 // Is there a critical edge from PreMBB to MBB?
653 if (PreMBB->succ_size() == 1)
654 continue;
656 // Avoid splitting backedges of loops. It would introduce small
657 // out-of-line blocks into the loop which is very bad for code placement.
658 if (PreMBB == &MBB && !SplitAllCriticalEdges)
659 continue;
660 const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : nullptr;
661 if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
662 continue;
664 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
665 // when the source register is live-out for some other reason than a phi
666 // use. That means the copy we will insert in PreMBB won't be a kill, and
667 // there is a risk it may not be coalesced away.
669 // If the copy would be a kill, there is no need to split the edge.
670 bool ShouldSplit = isLiveOutPastPHIs(Reg, PreMBB);
671 if (!ShouldSplit && !NoPhiElimLiveOutEarlyExit)
672 continue;
673 if (ShouldSplit) {
674 LLVM_DEBUG(dbgs() << printReg(Reg) << " live-out before critical edge "
675 << printMBBReference(*PreMBB) << " -> "
676 << printMBBReference(MBB) << ": " << *BBI);
679 // If Reg is not live-in to MBB, it means it must be live-in to some
680 // other PreMBB successor, and we can avoid the interference by splitting
681 // the edge.
683 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
684 // is likely to be left after coalescing. If we are looking at a loop
685 // exiting edge, split it so we won't insert code in the loop, otherwise
686 // don't bother.
687 ShouldSplit = ShouldSplit && !isLiveIn(Reg, &MBB);
689 // Check for a loop exiting edge.
690 if (!ShouldSplit && CurLoop != PreLoop) {
691 LLVM_DEBUG({
692 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
693 if (PreLoop)
694 dbgs() << "PreLoop: " << *PreLoop;
695 if (CurLoop)
696 dbgs() << "CurLoop: " << *CurLoop;
698 // This edge could be entering a loop, exiting a loop, or it could be
699 // both: Jumping directly form one loop to the header of a sibling
700 // loop.
701 // Split unless this edge is entering CurLoop from an outer loop.
702 ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
704 if (!ShouldSplit && !SplitAllCriticalEdges)
705 continue;
706 if (!PreMBB->SplitCriticalEdge(&MBB, *this, LiveInSets)) {
707 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
708 continue;
710 Changed = true;
711 ++NumCriticalEdgesSplit;
714 return Changed;
717 bool PHIElimination::isLiveIn(Register Reg, const MachineBasicBlock *MBB) {
718 assert((LV || LIS) &&
719 "isLiveIn() requires either LiveVariables or LiveIntervals");
720 if (LIS)
721 return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
722 else
723 return LV->isLiveIn(Reg, *MBB);
726 bool PHIElimination::isLiveOutPastPHIs(Register Reg,
727 const MachineBasicBlock *MBB) {
728 assert((LV || LIS) &&
729 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
730 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
731 // so that a register used only in a PHI is not live out of the block. In
732 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
733 // in the predecessor basic block, so that a register used only in a PHI is live
734 // out of the block.
735 if (LIS) {
736 const LiveInterval &LI = LIS->getInterval(Reg);
737 for (const MachineBasicBlock *SI : MBB->successors())
738 if (LI.liveAt(LIS->getMBBStartIdx(SI)))
739 return true;
740 return false;
741 } else {
742 return LV->isLiveOut(Reg, *MBB);