1 //===- PhiElimination.cpp - Eliminate PHI nodes by inserting copies -------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass eliminates machine instruction PHI nodes by inserting copy
10 // instructions. This destroys SSA information, but is the desired input for
11 // some register allocators.
13 //===----------------------------------------------------------------------===//
15 #include "PHIEliminationUtils.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/CodeGen/LiveInterval.h"
21 #include "llvm/CodeGen/LiveIntervals.h"
22 #include "llvm/CodeGen/LiveVariables.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineDominators.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/SlotIndexes.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetLowering.h"
35 #include "llvm/CodeGen/TargetOpcodes.h"
36 #include "llvm/CodeGen/TargetPassConfig.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/Pass.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
49 #define DEBUG_TYPE "phi-node-elimination"
52 DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
53 cl::Hidden
, cl::desc("Disable critical edge splitting "
54 "during PHI elimination"));
57 SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
58 cl::Hidden
, cl::desc("Split all critical edges during "
61 static cl::opt
<bool> NoPhiElimLiveOutEarlyExit(
62 "no-phi-elim-live-out-early-exit", cl::init(false), cl::Hidden
,
63 cl::desc("Do not use an early exit if isLiveOutPastPHIs returns true."));
67 class PHIElimination
: public MachineFunctionPass
{
68 MachineRegisterInfo
*MRI
; // Machine register information
73 static char ID
; // Pass identification, replacement for typeid
75 PHIElimination() : MachineFunctionPass(ID
) {
76 initializePHIEliminationPass(*PassRegistry::getPassRegistry());
79 bool runOnMachineFunction(MachineFunction
&MF
) override
;
80 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
83 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
84 /// in predecessor basic blocks.
85 bool EliminatePHINodes(MachineFunction
&MF
, MachineBasicBlock
&MBB
);
87 void LowerPHINode(MachineBasicBlock
&MBB
,
88 MachineBasicBlock::iterator LastPHIIt
);
90 /// analyzePHINodes - Gather information about the PHI nodes in
91 /// here. In particular, we want to map the number of uses of a virtual
92 /// register which is used in a PHI node. We map that to the BB the
93 /// vreg is coming from. This is used later to determine when the vreg
94 /// is killed in the BB.
95 void analyzePHINodes(const MachineFunction
& MF
);
97 /// Split critical edges where necessary for good coalescer performance.
98 bool SplitPHIEdges(MachineFunction
&MF
, MachineBasicBlock
&MBB
,
100 std::vector
<SparseBitVector
<>> *LiveInSets
);
102 // These functions are temporary abstractions around LiveVariables and
103 // LiveIntervals, so they can go away when LiveVariables does.
104 bool isLiveIn(Register Reg
, const MachineBasicBlock
*MBB
);
105 bool isLiveOutPastPHIs(Register Reg
, const MachineBasicBlock
*MBB
);
107 using BBVRegPair
= std::pair
<unsigned, Register
>;
108 using VRegPHIUse
= DenseMap
<BBVRegPair
, unsigned>;
110 VRegPHIUse VRegPHIUseCount
;
112 // Defs of PHI sources which are implicit_def.
113 SmallPtrSet
<MachineInstr
*, 4> ImpDefs
;
115 // Map reusable lowered PHI node -> incoming join register.
116 using LoweredPHIMap
=
117 DenseMap
<MachineInstr
*, unsigned, MachineInstrExpressionTrait
>;
118 LoweredPHIMap LoweredPHIs
;
121 } // end anonymous namespace
123 STATISTIC(NumLowered
, "Number of phis lowered");
124 STATISTIC(NumCriticalEdgesSplit
, "Number of critical edges split");
125 STATISTIC(NumReused
, "Number of reused lowered phis");
127 char PHIElimination::ID
= 0;
129 char& llvm::PHIEliminationID
= PHIElimination::ID
;
131 INITIALIZE_PASS_BEGIN(PHIElimination
, DEBUG_TYPE
,
132 "Eliminate PHI nodes for register allocation",
134 INITIALIZE_PASS_DEPENDENCY(LiveVariables
)
135 INITIALIZE_PASS_END(PHIElimination
, DEBUG_TYPE
,
136 "Eliminate PHI nodes for register allocation", false, false)
138 void PHIElimination::getAnalysisUsage(AnalysisUsage
&AU
) const {
139 AU
.addUsedIfAvailable
<LiveVariables
>();
140 AU
.addPreserved
<LiveVariables
>();
141 AU
.addPreserved
<SlotIndexes
>();
142 AU
.addPreserved
<LiveIntervals
>();
143 AU
.addPreserved
<MachineDominatorTree
>();
144 AU
.addPreserved
<MachineLoopInfo
>();
145 MachineFunctionPass::getAnalysisUsage(AU
);
148 bool PHIElimination::runOnMachineFunction(MachineFunction
&MF
) {
149 MRI
= &MF
.getRegInfo();
150 LV
= getAnalysisIfAvailable
<LiveVariables
>();
151 LIS
= getAnalysisIfAvailable
<LiveIntervals
>();
153 bool Changed
= false;
155 // Split critical edges to help the coalescer.
156 if (!DisableEdgeSplitting
&& (LV
|| LIS
)) {
157 // A set of live-in regs for each MBB which is used to update LV
158 // efficiently also with large functions.
159 std::vector
<SparseBitVector
<>> LiveInSets
;
161 LiveInSets
.resize(MF
.size());
162 for (unsigned Index
= 0, e
= MRI
->getNumVirtRegs(); Index
!= e
; ++Index
) {
163 // Set the bit for this register for each MBB where it is
164 // live-through or live-in (killed).
165 unsigned VirtReg
= Register::index2VirtReg(Index
);
166 MachineInstr
*DefMI
= MRI
->getVRegDef(VirtReg
);
169 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(VirtReg
);
170 SparseBitVector
<>::iterator AliveBlockItr
= VI
.AliveBlocks
.begin();
171 SparseBitVector
<>::iterator EndItr
= VI
.AliveBlocks
.end();
172 while (AliveBlockItr
!= EndItr
) {
173 unsigned BlockNum
= *(AliveBlockItr
++);
174 LiveInSets
[BlockNum
].set(Index
);
176 // The register is live into an MBB in which it is killed but not
177 // defined. See comment for VarInfo in LiveVariables.h.
178 MachineBasicBlock
*DefMBB
= DefMI
->getParent();
179 if (VI
.Kills
.size() > 1 ||
180 (!VI
.Kills
.empty() && VI
.Kills
.front()->getParent() != DefMBB
))
181 for (auto *MI
: VI
.Kills
)
182 LiveInSets
[MI
->getParent()->getNumber()].set(Index
);
186 MachineLoopInfo
*MLI
= getAnalysisIfAvailable
<MachineLoopInfo
>();
188 Changed
|= SplitPHIEdges(MF
, MBB
, MLI
, (LV
? &LiveInSets
: nullptr));
191 // This pass takes the function out of SSA form.
194 // Populate VRegPHIUseCount
197 // Eliminate PHI instructions by inserting copies into predecessor blocks.
199 Changed
|= EliminatePHINodes(MF
, MBB
);
201 // Remove dead IMPLICIT_DEF instructions.
202 for (MachineInstr
*DefMI
: ImpDefs
) {
203 Register DefReg
= DefMI
->getOperand(0).getReg();
204 if (MRI
->use_nodbg_empty(DefReg
)) {
206 LIS
->RemoveMachineInstrFromMaps(*DefMI
);
207 DefMI
->eraseFromParent();
211 // Clean up the lowered PHI instructions.
212 for (auto &I
: LoweredPHIs
) {
214 LIS
->RemoveMachineInstrFromMaps(*I
.first
);
215 MF
.DeleteMachineInstr(I
.first
);
218 // TODO: we should use the incremental DomTree updater here.
220 if (auto *MDT
= getAnalysisIfAvailable
<MachineDominatorTree
>())
221 MDT
->getBase().recalculate(MF
);
225 VRegPHIUseCount
.clear();
227 MF
.getProperties().set(MachineFunctionProperties::Property::NoPHIs
);
232 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
233 /// predecessor basic blocks.
234 bool PHIElimination::EliminatePHINodes(MachineFunction
&MF
,
235 MachineBasicBlock
&MBB
) {
236 if (MBB
.empty() || !MBB
.front().isPHI())
237 return false; // Quick exit for basic blocks without PHIs.
239 // Get an iterator to the last PHI node.
240 MachineBasicBlock::iterator LastPHIIt
=
241 std::prev(MBB
.SkipPHIsAndLabels(MBB
.begin()));
243 while (MBB
.front().isPHI())
244 LowerPHINode(MBB
, LastPHIIt
);
249 /// Return true if all defs of VirtReg are implicit-defs.
250 /// This includes registers with no defs.
251 static bool isImplicitlyDefined(unsigned VirtReg
,
252 const MachineRegisterInfo
&MRI
) {
253 for (MachineInstr
&DI
: MRI
.def_instructions(VirtReg
))
254 if (!DI
.isImplicitDef())
259 /// Return true if all sources of the phi node are implicit_def's, or undef's.
260 static bool allPhiOperandsUndefined(const MachineInstr
&MPhi
,
261 const MachineRegisterInfo
&MRI
) {
262 for (unsigned I
= 1, E
= MPhi
.getNumOperands(); I
!= E
; I
+= 2) {
263 const MachineOperand
&MO
= MPhi
.getOperand(I
);
264 if (!isImplicitlyDefined(MO
.getReg(), MRI
) && !MO
.isUndef())
269 /// LowerPHINode - Lower the PHI node at the top of the specified block.
270 void PHIElimination::LowerPHINode(MachineBasicBlock
&MBB
,
271 MachineBasicBlock::iterator LastPHIIt
) {
274 MachineBasicBlock::iterator AfterPHIsIt
= std::next(LastPHIIt
);
276 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
277 MachineInstr
*MPhi
= MBB
.remove(&*MBB
.begin());
279 unsigned NumSrcs
= (MPhi
->getNumOperands() - 1) / 2;
280 Register DestReg
= MPhi
->getOperand(0).getReg();
281 assert(MPhi
->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
282 bool isDead
= MPhi
->getOperand(0).isDead();
284 // Create a new register for the incoming PHI arguments.
285 MachineFunction
&MF
= *MBB
.getParent();
286 unsigned IncomingReg
= 0;
287 bool reusedIncoming
= false; // Is IncomingReg reused from an earlier PHI?
289 // Insert a register to register copy at the top of the current block (but
290 // after any remaining phi nodes) which copies the new incoming register
291 // into the phi node destination.
292 MachineInstr
*PHICopy
= nullptr;
293 const TargetInstrInfo
*TII
= MF
.getSubtarget().getInstrInfo();
294 if (allPhiOperandsUndefined(*MPhi
, *MRI
))
295 // If all sources of a PHI node are implicit_def or undef uses, just emit an
296 // implicit_def instead of a copy.
297 PHICopy
= BuildMI(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
298 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
300 // Can we reuse an earlier PHI node? This only happens for critical edges,
301 // typically those created by tail duplication.
302 unsigned &entry
= LoweredPHIs
[MPhi
];
304 // An identical PHI node was already lowered. Reuse the incoming register.
306 reusedIncoming
= true;
308 LLVM_DEBUG(dbgs() << "Reusing " << printReg(IncomingReg
) << " for "
311 const TargetRegisterClass
*RC
= MF
.getRegInfo().getRegClass(DestReg
);
312 entry
= IncomingReg
= MF
.getRegInfo().createVirtualRegister(RC
);
314 // Give the target possiblity to handle special cases fallthrough otherwise
315 PHICopy
= TII
->createPHIDestinationCopy(MBB
, AfterPHIsIt
, MPhi
->getDebugLoc(),
316 IncomingReg
, DestReg
);
319 if (MPhi
->peekDebugInstrNum()) {
320 // If referred to by debug-info, store where this PHI was.
321 MachineFunction
*MF
= MBB
.getParent();
322 unsigned ID
= MPhi
->peekDebugInstrNum();
323 auto P
= MachineFunction::DebugPHIRegallocPos(&MBB
, IncomingReg
, 0);
324 auto Res
= MF
->DebugPHIPositions
.insert({ID
, P
});
329 // Update live variable information if there is any.
332 LiveVariables::VarInfo
&VI
= LV
->getVarInfo(IncomingReg
);
334 // Increment use count of the newly created virtual register.
335 LV
->setPHIJoin(IncomingReg
);
337 MachineInstr
*OldKill
= nullptr;
338 bool IsPHICopyAfterOldKill
= false;
340 if (reusedIncoming
&& (OldKill
= VI
.findKill(&MBB
))) {
341 // Calculate whether the PHICopy is after the OldKill.
342 // In general, the PHICopy is inserted as the first non-phi instruction
343 // by default, so it's before the OldKill. But some Target hooks for
344 // createPHIDestinationCopy() may modify the default insert position of
346 for (auto I
= MBB
.SkipPHIsAndLabels(MBB
.begin()), E
= MBB
.end();
352 IsPHICopyAfterOldKill
= true;
358 // When we are reusing the incoming register and it has been marked killed
359 // by OldKill, if the PHICopy is after the OldKill, we should remove the
360 // killed flag from OldKill.
361 if (IsPHICopyAfterOldKill
) {
362 LLVM_DEBUG(dbgs() << "Remove old kill from " << *OldKill
);
363 LV
->removeVirtualRegisterKilled(IncomingReg
, *OldKill
);
364 LLVM_DEBUG(MBB
.dump());
367 // Add information to LiveVariables to know that the first used incoming
368 // value or the resued incoming value whose PHICopy is after the OldKIll
369 // is killed. Note that because the value is defined in several places
370 // (once each for each incoming block), the "def" block and instruction
371 // fields for the VarInfo is not filled in.
372 if (!OldKill
|| IsPHICopyAfterOldKill
)
373 LV
->addVirtualRegisterKilled(IncomingReg
, *PHICopy
);
376 // Since we are going to be deleting the PHI node, if it is the last use of
377 // any registers, or if the value itself is dead, we need to move this
378 // information over to the new copy we just inserted.
379 LV
->removeVirtualRegistersKilled(*MPhi
);
381 // If the result is dead, update LV.
383 LV
->addVirtualRegisterDead(DestReg
, *PHICopy
);
384 LV
->removeVirtualRegisterDead(DestReg
, *MPhi
);
388 // Update LiveIntervals for the new copy or implicit def.
390 SlotIndex DestCopyIndex
= LIS
->InsertMachineInstrInMaps(*PHICopy
);
392 SlotIndex MBBStartIndex
= LIS
->getMBBStartIdx(&MBB
);
394 // Add the region from the beginning of MBB to the copy instruction to
395 // IncomingReg's live interval.
396 LiveInterval
&IncomingLI
= LIS
->createEmptyInterval(IncomingReg
);
397 VNInfo
*IncomingVNI
= IncomingLI
.getVNInfoAt(MBBStartIndex
);
399 IncomingVNI
= IncomingLI
.getNextValue(MBBStartIndex
,
400 LIS
->getVNInfoAllocator());
401 IncomingLI
.addSegment(LiveInterval::Segment(MBBStartIndex
,
402 DestCopyIndex
.getRegSlot(),
406 LiveInterval
&DestLI
= LIS
->getInterval(DestReg
);
407 assert(!DestLI
.empty() && "PHIs should have nonempty LiveIntervals.");
408 if (DestLI
.endIndex().isDead()) {
409 // A dead PHI's live range begins and ends at the start of the MBB, but
410 // the lowered copy, which will still be dead, needs to begin and end at
411 // the copy instruction.
412 VNInfo
*OrigDestVNI
= DestLI
.getVNInfoAt(MBBStartIndex
);
413 assert(OrigDestVNI
&& "PHI destination should be live at block entry.");
414 DestLI
.removeSegment(MBBStartIndex
, MBBStartIndex
.getDeadSlot());
415 DestLI
.createDeadDef(DestCopyIndex
.getRegSlot(),
416 LIS
->getVNInfoAllocator());
417 DestLI
.removeValNo(OrigDestVNI
);
419 // Otherwise, remove the region from the beginning of MBB to the copy
420 // instruction from DestReg's live interval.
421 DestLI
.removeSegment(MBBStartIndex
, DestCopyIndex
.getRegSlot());
422 VNInfo
*DestVNI
= DestLI
.getVNInfoAt(DestCopyIndex
.getRegSlot());
423 assert(DestVNI
&& "PHI destination should be live at its definition.");
424 DestVNI
->def
= DestCopyIndex
.getRegSlot();
428 // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
429 for (unsigned i
= 1; i
!= MPhi
->getNumOperands(); i
+= 2)
430 --VRegPHIUseCount
[BBVRegPair(MPhi
->getOperand(i
+1).getMBB()->getNumber(),
431 MPhi
->getOperand(i
).getReg())];
433 // Now loop over all of the incoming arguments, changing them to copy into the
434 // IncomingReg register in the corresponding predecessor basic block.
435 SmallPtrSet
<MachineBasicBlock
*, 8> MBBsInsertedInto
;
436 for (int i
= NumSrcs
- 1; i
>= 0; --i
) {
437 Register SrcReg
= MPhi
->getOperand(i
* 2 + 1).getReg();
438 unsigned SrcSubReg
= MPhi
->getOperand(i
*2+1).getSubReg();
439 bool SrcUndef
= MPhi
->getOperand(i
*2+1).isUndef() ||
440 isImplicitlyDefined(SrcReg
, *MRI
);
441 assert(Register::isVirtualRegister(SrcReg
) &&
442 "Machine PHI Operands must all be virtual registers!");
444 // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
446 MachineBasicBlock
&opBlock
= *MPhi
->getOperand(i
*2+2).getMBB();
448 // Check to make sure we haven't already emitted the copy for this block.
449 // This can happen because PHI nodes may have multiple entries for the same
451 if (!MBBsInsertedInto
.insert(&opBlock
).second
)
452 continue; // If the copy has already been emitted, we're done.
454 MachineInstr
*SrcRegDef
= MRI
->getVRegDef(SrcReg
);
455 if (SrcRegDef
&& TII
->isUnspillableTerminator(SrcRegDef
)) {
456 assert(SrcRegDef
->getOperand(0).isReg() &&
457 SrcRegDef
->getOperand(0).isDef() &&
458 "Expected operand 0 to be a reg def!");
459 // Now that the PHI's use has been removed (as the instruction was
460 // removed) there should be no other uses of the SrcReg.
461 assert(MRI
->use_empty(SrcReg
) &&
462 "Expected a single use from UnspillableTerminator");
463 SrcRegDef
->getOperand(0).setReg(IncomingReg
);
467 // Find a safe location to insert the copy, this may be the first terminator
468 // in the block (or end()).
469 MachineBasicBlock::iterator InsertPos
=
470 findPHICopyInsertPoint(&opBlock
, &MBB
, SrcReg
);
473 MachineInstr
*NewSrcInstr
= nullptr;
474 if (!reusedIncoming
&& IncomingReg
) {
476 // The source register is undefined, so there is no need for a real
477 // COPY, but we still need to ensure joint dominance by defs.
478 // Insert an IMPLICIT_DEF instruction.
479 NewSrcInstr
= BuildMI(opBlock
, InsertPos
, MPhi
->getDebugLoc(),
480 TII
->get(TargetOpcode::IMPLICIT_DEF
),
483 // Clean up the old implicit-def, if there even was one.
484 if (MachineInstr
*DefMI
= MRI
->getVRegDef(SrcReg
))
485 if (DefMI
->isImplicitDef())
486 ImpDefs
.insert(DefMI
);
488 // Delete the debug location, since the copy is inserted into a
489 // different basic block.
490 NewSrcInstr
= TII
->createPHISourceCopy(opBlock
, InsertPos
, nullptr,
491 SrcReg
, SrcSubReg
, IncomingReg
);
495 // We only need to update the LiveVariables kill of SrcReg if this was the
496 // last PHI use of SrcReg to be lowered on this CFG edge and it is not live
497 // out of the predecessor. We can also ignore undef sources.
498 if (LV
&& !SrcUndef
&&
499 !VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)] &&
500 !LV
->isLiveOut(SrcReg
, opBlock
)) {
501 // We want to be able to insert a kill of the register if this PHI (aka,
502 // the copy we just inserted) is the last use of the source value. Live
503 // variable analysis conservatively handles this by saying that the value
504 // is live until the end of the block the PHI entry lives in. If the value
505 // really is dead at the PHI copy, there will be no successor blocks which
506 // have the value live-in.
508 // Okay, if we now know that the value is not live out of the block, we
509 // can add a kill marker in this block saying that it kills the incoming
512 // In our final twist, we have to decide which instruction kills the
513 // register. In most cases this is the copy, however, terminator
514 // instructions at the end of the block may also use the value. In this
515 // case, we should mark the last such terminator as being the killing
516 // block, not the copy.
517 MachineBasicBlock::iterator KillInst
= opBlock
.end();
518 MachineBasicBlock::iterator FirstTerm
= opBlock
.getFirstTerminator();
519 for (MachineBasicBlock::iterator Term
= FirstTerm
;
520 Term
!= opBlock
.end(); ++Term
) {
521 if (Term
->readsRegister(SrcReg
))
525 if (KillInst
== opBlock
.end()) {
526 // No terminator uses the register.
528 if (reusedIncoming
|| !IncomingReg
) {
529 // We may have to rewind a bit if we didn't insert a copy this time.
530 KillInst
= FirstTerm
;
531 while (KillInst
!= opBlock
.begin()) {
533 if (KillInst
->isDebugInstr())
535 if (KillInst
->readsRegister(SrcReg
))
539 // We just inserted this copy.
540 KillInst
= NewSrcInstr
;
543 assert(KillInst
->readsRegister(SrcReg
) && "Cannot find kill instruction");
545 // Finally, mark it killed.
546 LV
->addVirtualRegisterKilled(SrcReg
, *KillInst
);
548 // This vreg no longer lives all of the way through opBlock.
549 unsigned opBlockNum
= opBlock
.getNumber();
550 LV
->getVarInfo(SrcReg
).AliveBlocks
.reset(opBlockNum
);
555 LIS
->InsertMachineInstrInMaps(*NewSrcInstr
);
556 LIS
->addSegmentToEndOfBlock(IncomingReg
, *NewSrcInstr
);
560 !VRegPHIUseCount
[BBVRegPair(opBlock
.getNumber(), SrcReg
)]) {
561 LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
563 bool isLiveOut
= false;
564 for (MachineBasicBlock
*Succ
: opBlock
.successors()) {
565 SlotIndex startIdx
= LIS
->getMBBStartIdx(Succ
);
566 VNInfo
*VNI
= SrcLI
.getVNInfoAt(startIdx
);
568 // Definitions by other PHIs are not truly live-in for our purposes.
569 if (VNI
&& VNI
->def
!= startIdx
) {
576 MachineBasicBlock::iterator KillInst
= opBlock
.end();
577 MachineBasicBlock::iterator FirstTerm
= opBlock
.getFirstTerminator();
578 for (MachineBasicBlock::iterator Term
= FirstTerm
;
579 Term
!= opBlock
.end(); ++Term
) {
580 if (Term
->readsRegister(SrcReg
))
584 if (KillInst
== opBlock
.end()) {
585 // No terminator uses the register.
587 if (reusedIncoming
|| !IncomingReg
) {
588 // We may have to rewind a bit if we didn't just insert a copy.
589 KillInst
= FirstTerm
;
590 while (KillInst
!= opBlock
.begin()) {
592 if (KillInst
->isDebugInstr())
594 if (KillInst
->readsRegister(SrcReg
))
598 // We just inserted this copy.
599 KillInst
= std::prev(InsertPos
);
602 assert(KillInst
->readsRegister(SrcReg
) &&
603 "Cannot find kill instruction");
605 SlotIndex LastUseIndex
= LIS
->getInstructionIndex(*KillInst
);
606 SrcLI
.removeSegment(LastUseIndex
.getRegSlot(),
607 LIS
->getMBBEndIdx(&opBlock
));
613 // Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
614 if (reusedIncoming
|| !IncomingReg
) {
616 LIS
->RemoveMachineInstrFromMaps(*MPhi
);
617 MF
.DeleteMachineInstr(MPhi
);
621 /// analyzePHINodes - Gather information about the PHI nodes in here. In
622 /// particular, we want to map the number of uses of a virtual register which is
623 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
624 /// used later to determine when the vreg is killed in the BB.
625 void PHIElimination::analyzePHINodes(const MachineFunction
& MF
) {
626 for (const auto &MBB
: MF
)
627 for (const auto &BBI
: MBB
) {
630 for (unsigned i
= 1, e
= BBI
.getNumOperands(); i
!= e
; i
+= 2)
631 ++VRegPHIUseCount
[BBVRegPair(BBI
.getOperand(i
+1).getMBB()->getNumber(),
632 BBI
.getOperand(i
).getReg())];
636 bool PHIElimination::SplitPHIEdges(MachineFunction
&MF
,
637 MachineBasicBlock
&MBB
,
638 MachineLoopInfo
*MLI
,
639 std::vector
<SparseBitVector
<>> *LiveInSets
) {
640 if (MBB
.empty() || !MBB
.front().isPHI() || MBB
.isEHPad())
641 return false; // Quick exit for basic blocks without PHIs.
643 const MachineLoop
*CurLoop
= MLI
? MLI
->getLoopFor(&MBB
) : nullptr;
644 bool IsLoopHeader
= CurLoop
&& &MBB
== CurLoop
->getHeader();
646 bool Changed
= false;
647 for (MachineBasicBlock::iterator BBI
= MBB
.begin(), BBE
= MBB
.end();
648 BBI
!= BBE
&& BBI
->isPHI(); ++BBI
) {
649 for (unsigned i
= 1, e
= BBI
->getNumOperands(); i
!= e
; i
+= 2) {
650 Register Reg
= BBI
->getOperand(i
).getReg();
651 MachineBasicBlock
*PreMBB
= BBI
->getOperand(i
+1).getMBB();
652 // Is there a critical edge from PreMBB to MBB?
653 if (PreMBB
->succ_size() == 1)
656 // Avoid splitting backedges of loops. It would introduce small
657 // out-of-line blocks into the loop which is very bad for code placement.
658 if (PreMBB
== &MBB
&& !SplitAllCriticalEdges
)
660 const MachineLoop
*PreLoop
= MLI
? MLI
->getLoopFor(PreMBB
) : nullptr;
661 if (IsLoopHeader
&& PreLoop
== CurLoop
&& !SplitAllCriticalEdges
)
664 // LV doesn't consider a phi use live-out, so isLiveOut only returns true
665 // when the source register is live-out for some other reason than a phi
666 // use. That means the copy we will insert in PreMBB won't be a kill, and
667 // there is a risk it may not be coalesced away.
669 // If the copy would be a kill, there is no need to split the edge.
670 bool ShouldSplit
= isLiveOutPastPHIs(Reg
, PreMBB
);
671 if (!ShouldSplit
&& !NoPhiElimLiveOutEarlyExit
)
674 LLVM_DEBUG(dbgs() << printReg(Reg
) << " live-out before critical edge "
675 << printMBBReference(*PreMBB
) << " -> "
676 << printMBBReference(MBB
) << ": " << *BBI
);
679 // If Reg is not live-in to MBB, it means it must be live-in to some
680 // other PreMBB successor, and we can avoid the interference by splitting
683 // If Reg *is* live-in to MBB, the interference is inevitable and a copy
684 // is likely to be left after coalescing. If we are looking at a loop
685 // exiting edge, split it so we won't insert code in the loop, otherwise
687 ShouldSplit
= ShouldSplit
&& !isLiveIn(Reg
, &MBB
);
689 // Check for a loop exiting edge.
690 if (!ShouldSplit
&& CurLoop
!= PreLoop
) {
692 dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
694 dbgs() << "PreLoop: " << *PreLoop
;
696 dbgs() << "CurLoop: " << *CurLoop
;
698 // This edge could be entering a loop, exiting a loop, or it could be
699 // both: Jumping directly form one loop to the header of a sibling
701 // Split unless this edge is entering CurLoop from an outer loop.
702 ShouldSplit
= PreLoop
&& !PreLoop
->contains(CurLoop
);
704 if (!ShouldSplit
&& !SplitAllCriticalEdges
)
706 if (!PreMBB
->SplitCriticalEdge(&MBB
, *this, LiveInSets
)) {
707 LLVM_DEBUG(dbgs() << "Failed to split critical edge.\n");
711 ++NumCriticalEdgesSplit
;
717 bool PHIElimination::isLiveIn(Register Reg
, const MachineBasicBlock
*MBB
) {
718 assert((LV
|| LIS
) &&
719 "isLiveIn() requires either LiveVariables or LiveIntervals");
721 return LIS
->isLiveInToMBB(LIS
->getInterval(Reg
), MBB
);
723 return LV
->isLiveIn(Reg
, *MBB
);
726 bool PHIElimination::isLiveOutPastPHIs(Register Reg
,
727 const MachineBasicBlock
*MBB
) {
728 assert((LV
|| LIS
) &&
729 "isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
730 // LiveVariables considers uses in PHIs to be in the predecessor basic block,
731 // so that a register used only in a PHI is not live out of the block. In
732 // contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
733 // in the predecessor basic block, so that a register used only in a PHI is live
736 const LiveInterval
&LI
= LIS
->getInterval(Reg
);
737 for (const MachineBasicBlock
*SI
: MBB
->successors())
738 if (LI
.liveAt(LIS
->getMBBStartIdx(SI
)))
742 return LV
->isLiveOut(Reg
, *MBB
);