[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / RegAllocFast.cpp
blob707161d5a8b07315c1feb575690930fd2433bc31
1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
11 /// appropriate.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocCommon.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cassert>
49 #include <tuple>
50 #include <vector>
52 using namespace llvm;
54 #define DEBUG_TYPE "regalloc"
56 STATISTIC(NumStores, "Number of stores added");
57 STATISTIC(NumLoads , "Number of loads added");
58 STATISTIC(NumCoalesced, "Number of copies coalesced");
60 // FIXME: Remove this switch when all testcases are fixed!
61 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
62 cl::Hidden);
64 static RegisterRegAlloc
65 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
67 namespace {
69 class RegAllocFast : public MachineFunctionPass {
70 public:
71 static char ID;
73 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses,
74 bool ClearVirtRegs_ = true) :
75 MachineFunctionPass(ID),
76 ShouldAllocateClass(F),
77 StackSlotForVirtReg(-1),
78 ClearVirtRegs(ClearVirtRegs_) {
81 private:
82 MachineFrameInfo *MFI;
83 MachineRegisterInfo *MRI;
84 const TargetRegisterInfo *TRI;
85 const TargetInstrInfo *TII;
86 RegisterClassInfo RegClassInfo;
87 const RegClassFilterFunc ShouldAllocateClass;
89 /// Basic block currently being allocated.
90 MachineBasicBlock *MBB;
92 /// Maps virtual regs to the frame index where these values are spilled.
93 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
95 bool ClearVirtRegs;
97 /// Everything we know about a live virtual register.
98 struct LiveReg {
99 MachineInstr *LastUse = nullptr; ///< Last instr to use reg.
100 Register VirtReg; ///< Virtual register number.
101 MCPhysReg PhysReg = 0; ///< Currently held here.
102 bool LiveOut = false; ///< Register is possibly live out.
103 bool Reloaded = false; ///< Register was reloaded.
104 bool Error = false; ///< Could not allocate.
106 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {}
108 unsigned getSparseSetIndex() const {
109 return Register::virtReg2Index(VirtReg);
113 using LiveRegMap = SparseSet<LiveReg>;
114 /// This map contains entries for each virtual register that is currently
115 /// available in a physical register.
116 LiveRegMap LiveVirtRegs;
118 /// Stores assigned virtual registers present in the bundle MI.
119 DenseMap<Register, MCPhysReg> BundleVirtRegsMap;
121 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap;
122 /// List of DBG_VALUE that we encountered without the vreg being assigned
123 /// because they were placed after the last use of the vreg.
124 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues;
126 /// Has a bit set for every virtual register for which it was determined
127 /// that it is alive across blocks.
128 BitVector MayLiveAcrossBlocks;
130 /// State of a register unit.
131 enum RegUnitState {
132 /// A free register is not currently in use and can be allocated
133 /// immediately without checking aliases.
134 regFree,
136 /// A pre-assigned register has been assigned before register allocation
137 /// (e.g., setting up a call parameter).
138 regPreAssigned,
140 /// Used temporarily in reloadAtBegin() to mark register units that are
141 /// live-in to the basic block.
142 regLiveIn,
144 /// A register state may also be a virtual register number, indication
145 /// that the physical register is currently allocated to a virtual
146 /// register. In that case, LiveVirtRegs contains the inverse mapping.
149 /// Maps each physical register to a RegUnitState enum or virtual register.
150 std::vector<unsigned> RegUnitStates;
152 SmallVector<MachineInstr *, 32> Coalesced;
154 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>;
155 /// Set of register units that are used in the current instruction, and so
156 /// cannot be allocated.
157 RegUnitSet UsedInInstr;
158 RegUnitSet PhysRegUses;
159 SmallVector<uint16_t, 8> DefOperandIndexes;
160 // Register masks attached to the current instruction.
161 SmallVector<const uint32_t *> RegMasks;
163 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState);
164 bool isPhysRegFree(MCPhysReg PhysReg) const;
166 /// Mark a physreg as used in this instruction.
167 void markRegUsedInInstr(MCPhysReg PhysReg) {
168 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
169 UsedInInstr.insert(*Units);
172 // Check if physreg is clobbered by instruction's regmask(s).
173 bool isClobberedByRegMasks(MCPhysReg PhysReg) const {
174 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) {
175 return MachineOperand::clobbersPhysReg(Mask, PhysReg);
179 /// Check if a physreg or any of its aliases are used in this instruction.
180 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const {
181 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg))
182 return true;
183 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
184 if (UsedInInstr.count(*Units))
185 return true;
186 if (LookAtPhysRegUses && PhysRegUses.count(*Units))
187 return true;
189 return false;
192 /// Mark physical register as being used in a register use operand.
193 /// This is only used by the special livethrough handling code.
194 void markPhysRegUsedInInstr(MCPhysReg PhysReg) {
195 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
196 PhysRegUses.insert(*Units);
199 /// Remove mark of physical register being used in the instruction.
200 void unmarkRegUsedInInstr(MCPhysReg PhysReg) {
201 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
202 UsedInInstr.erase(*Units);
205 enum : unsigned {
206 spillClean = 50,
207 spillDirty = 100,
208 spillPrefBonus = 20,
209 spillImpossible = ~0u
212 public:
213 StringRef getPassName() const override { return "Fast Register Allocator"; }
215 void getAnalysisUsage(AnalysisUsage &AU) const override {
216 AU.setPreservesCFG();
217 MachineFunctionPass::getAnalysisUsage(AU);
220 MachineFunctionProperties getRequiredProperties() const override {
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoPHIs);
225 MachineFunctionProperties getSetProperties() const override {
226 if (ClearVirtRegs) {
227 return MachineFunctionProperties().set(
228 MachineFunctionProperties::Property::NoVRegs);
231 return MachineFunctionProperties();
234 MachineFunctionProperties getClearedProperties() const override {
235 return MachineFunctionProperties().set(
236 MachineFunctionProperties::Property::IsSSA);
239 private:
240 bool runOnMachineFunction(MachineFunction &MF) override;
242 void allocateBasicBlock(MachineBasicBlock &MBB);
244 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
245 Register Reg) const;
247 void allocateInstruction(MachineInstr &MI);
248 void handleDebugValue(MachineInstr &MI);
249 void handleBundle(MachineInstr &MI);
251 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
252 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
253 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg);
254 void freePhysReg(MCPhysReg PhysReg);
256 unsigned calcSpillCost(MCPhysReg PhysReg) const;
258 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) {
259 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
262 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const {
263 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg));
266 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg);
267 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint,
268 bool LookAtPhysRegUses = false);
269 void allocVirtRegUndef(MachineOperand &MO);
270 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg,
271 MCPhysReg Reg);
272 void defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
273 Register VirtReg);
274 void defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg,
275 bool LookAtPhysRegUses = false);
276 void useVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg);
278 MachineBasicBlock::iterator
279 getMBBBeginInsertionPoint(MachineBasicBlock &MBB,
280 SmallSet<Register, 2> &PrologLiveIns) const;
282 void reloadAtBegin(MachineBasicBlock &MBB);
283 void setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg);
285 Register traceCopies(Register VirtReg) const;
286 Register traceCopyChain(Register Reg) const;
288 int getStackSpaceFor(Register VirtReg);
289 void spill(MachineBasicBlock::iterator Before, Register VirtReg,
290 MCPhysReg AssignedReg, bool Kill, bool LiveOut);
291 void reload(MachineBasicBlock::iterator Before, Register VirtReg,
292 MCPhysReg PhysReg);
294 bool mayLiveOut(Register VirtReg);
295 bool mayLiveIn(Register VirtReg);
297 void dumpState() const;
300 } // end anonymous namespace
302 char RegAllocFast::ID = 0;
304 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false,
305 false)
307 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) {
308 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI)
309 RegUnitStates[*UI] = NewState;
312 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg) const {
313 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
314 if (RegUnitStates[*UI] != regFree)
315 return false;
317 return true;
320 /// This allocates space for the specified virtual register to be held on the
321 /// stack.
322 int RegAllocFast::getStackSpaceFor(Register VirtReg) {
323 // Find the location Reg would belong...
324 int SS = StackSlotForVirtReg[VirtReg];
325 // Already has space allocated?
326 if (SS != -1)
327 return SS;
329 // Allocate a new stack object for this spill location...
330 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
331 unsigned Size = TRI->getSpillSize(RC);
332 Align Alignment = TRI->getSpillAlign(RC);
333 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment);
335 // Assign the slot.
336 StackSlotForVirtReg[VirtReg] = FrameIdx;
337 return FrameIdx;
340 static bool dominates(MachineBasicBlock &MBB,
341 MachineBasicBlock::const_iterator A,
342 MachineBasicBlock::const_iterator B) {
343 auto MBBEnd = MBB.end();
344 if (B == MBBEnd)
345 return true;
347 MachineBasicBlock::const_iterator I = MBB.begin();
348 for (; &*I != A && &*I != B; ++I)
351 return &*I == A;
354 /// Returns false if \p VirtReg is known to not live out of the current block.
355 bool RegAllocFast::mayLiveOut(Register VirtReg) {
356 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) {
357 // Cannot be live-out if there are no successors.
358 return !MBB->succ_empty();
361 const MachineInstr *SelfLoopDef = nullptr;
363 // If this block loops back to itself, it is necessary to check whether the
364 // use comes after the def.
365 if (MBB->isSuccessor(MBB)) {
366 SelfLoopDef = MRI->getUniqueVRegDef(VirtReg);
367 if (!SelfLoopDef) {
368 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
369 return true;
373 // See if the first \p Limit uses of the register are all in the current
374 // block.
375 static const unsigned Limit = 8;
376 unsigned C = 0;
377 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) {
378 if (UseInst.getParent() != MBB || ++C >= Limit) {
379 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
380 // Cannot be live-out if there are no successors.
381 return !MBB->succ_empty();
384 if (SelfLoopDef) {
385 // Try to handle some simple cases to avoid spilling and reloading every
386 // value inside a self looping block.
387 if (SelfLoopDef == &UseInst ||
388 !dominates(*MBB, SelfLoopDef->getIterator(), UseInst.getIterator())) {
389 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
390 return true;
395 return false;
398 /// Returns false if \p VirtReg is known to not be live into the current block.
399 bool RegAllocFast::mayLiveIn(Register VirtReg) {
400 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg)))
401 return !MBB->pred_empty();
403 // See if the first \p Limit def of the register are all in the current block.
404 static const unsigned Limit = 8;
405 unsigned C = 0;
406 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) {
407 if (DefInst.getParent() != MBB || ++C >= Limit) {
408 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg));
409 return !MBB->pred_empty();
413 return false;
416 /// Insert spill instruction for \p AssignedReg before \p Before. Update
417 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
418 void RegAllocFast::spill(MachineBasicBlock::iterator Before, Register VirtReg,
419 MCPhysReg AssignedReg, bool Kill, bool LiveOut) {
420 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI)
421 << " in " << printReg(AssignedReg, TRI));
422 int FI = getStackSpaceFor(VirtReg);
423 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n');
425 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
426 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI);
427 ++NumStores;
429 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator();
431 // When we spill a virtual register, we will have spill instructions behind
432 // every definition of it, meaning we can switch all the DBG_VALUEs over
433 // to just reference the stack slot.
434 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg];
435 SmallDenseMap<MachineInstr *, SmallVector<const MachineOperand *>>
436 SpilledOperandsMap;
437 for (MachineOperand *MO : LRIDbgOperands)
438 SpilledOperandsMap[MO->getParent()].push_back(MO);
439 for (auto MISpilledOperands : SpilledOperandsMap) {
440 MachineInstr &DBG = *MISpilledOperands.first;
441 MachineInstr *NewDV = buildDbgValueForSpill(
442 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second);
443 assert(NewDV->getParent() == MBB && "dangling parent pointer");
444 (void)NewDV;
445 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV);
447 if (LiveOut) {
448 // We need to insert a DBG_VALUE at the end of the block if the spill slot
449 // is live out, but there is another use of the value after the
450 // spill. This will allow LiveDebugValues to see the correct live out
451 // value to propagate to the successors.
452 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV);
453 MBB->insert(FirstTerm, ClonedDV);
454 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
457 // Rewrite unassigned dbg_values to use the stack slot.
458 // TODO We can potentially do this for list debug values as well if we know
459 // how the dbg_values are getting unassigned.
460 if (DBG.isNonListDebugValue()) {
461 MachineOperand &MO = DBG.getDebugOperand(0);
462 if (MO.isReg() && MO.getReg() == 0) {
463 updateDbgValueForSpill(DBG, FI, 0);
467 // Now this register is spilled there is should not be any DBG_VALUE
468 // pointing to this register because they are all pointing to spilled value
469 // now.
470 LRIDbgOperands.clear();
473 /// Insert reload instruction for \p PhysReg before \p Before.
474 void RegAllocFast::reload(MachineBasicBlock::iterator Before, Register VirtReg,
475 MCPhysReg PhysReg) {
476 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into "
477 << printReg(PhysReg, TRI) << '\n');
478 int FI = getStackSpaceFor(VirtReg);
479 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
480 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI);
481 ++NumLoads;
484 /// Get basic block begin insertion point.
485 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
486 /// instructions marking the begin of a basic block. This means we must insert
487 /// new instructions after such labels...
488 MachineBasicBlock::iterator
489 RegAllocFast::getMBBBeginInsertionPoint(
490 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const {
491 MachineBasicBlock::iterator I = MBB.begin();
492 while (I != MBB.end()) {
493 if (I->isLabel()) {
494 ++I;
495 continue;
498 // Most reloads should be inserted after prolog instructions.
499 if (!TII->isBasicBlockPrologue(*I))
500 break;
502 // However if a prolog instruction reads a register that needs to be
503 // reloaded, the reload should be inserted before the prolog.
504 for (MachineOperand &MO : I->operands()) {
505 if (MO.isReg())
506 PrologLiveIns.insert(MO.getReg());
509 ++I;
512 return I;
515 /// Reload all currently assigned virtual registers.
516 void RegAllocFast::reloadAtBegin(MachineBasicBlock &MBB) {
517 if (LiveVirtRegs.empty())
518 return;
520 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
521 MCPhysReg Reg = P.PhysReg;
522 // Set state to live-in. This possibly overrides mappings to virtual
523 // registers but we don't care anymore at this point.
524 setPhysRegState(Reg, regLiveIn);
528 SmallSet<Register, 2> PrologLiveIns;
530 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
531 // of spilling here is deterministic, if arbitrary.
532 MachineBasicBlock::iterator InsertBefore
533 = getMBBBeginInsertionPoint(MBB, PrologLiveIns);
534 for (const LiveReg &LR : LiveVirtRegs) {
535 MCPhysReg PhysReg = LR.PhysReg;
536 if (PhysReg == 0)
537 continue;
539 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
540 if (RegUnitStates[FirstUnit] == regLiveIn)
541 continue;
543 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) &&
544 "no reload in start block. Missing vreg def?");
546 if (PrologLiveIns.count(PhysReg)) {
547 // FIXME: Theoretically this should use an insert point skipping labels
548 // but I'm not sure how labels should interact with prolog instruction
549 // that need reloads.
550 reload(MBB.begin(), LR.VirtReg, PhysReg);
551 } else
552 reload(InsertBefore, LR.VirtReg, PhysReg);
554 LiveVirtRegs.clear();
557 /// Handle the direct use of a physical register. Check that the register is
558 /// not used by a virtreg. Kill the physreg, marking it free. This may add
559 /// implicit kills to MO->getParent() and invalidate MO.
560 bool RegAllocFast::usePhysReg(MachineInstr &MI, MCPhysReg Reg) {
561 assert(Register::isPhysicalRegister(Reg) && "expected physreg");
562 bool displacedAny = displacePhysReg(MI, Reg);
563 setPhysRegState(Reg, regPreAssigned);
564 markRegUsedInInstr(Reg);
565 return displacedAny;
568 bool RegAllocFast::definePhysReg(MachineInstr &MI, MCPhysReg Reg) {
569 bool displacedAny = displacePhysReg(MI, Reg);
570 setPhysRegState(Reg, regPreAssigned);
571 return displacedAny;
574 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
575 /// similar to defineVirtReg except the physreg is reserved instead of
576 /// allocated.
577 bool RegAllocFast::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) {
578 bool displacedAny = false;
580 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
581 unsigned Unit = *UI;
582 switch (unsigned VirtReg = RegUnitStates[Unit]) {
583 default: {
584 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
585 assert(LRI != LiveVirtRegs.end() && "datastructures in sync");
586 MachineBasicBlock::iterator ReloadBefore =
587 std::next((MachineBasicBlock::iterator)MI.getIterator());
588 reload(ReloadBefore, VirtReg, LRI->PhysReg);
590 setPhysRegState(LRI->PhysReg, regFree);
591 LRI->PhysReg = 0;
592 LRI->Reloaded = true;
593 displacedAny = true;
594 break;
596 case regPreAssigned:
597 RegUnitStates[Unit] = regFree;
598 displacedAny = true;
599 break;
600 case regFree:
601 break;
604 return displacedAny;
607 void RegAllocFast::freePhysReg(MCPhysReg PhysReg) {
608 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':');
610 MCRegister FirstUnit = *MCRegUnitIterator(PhysReg, TRI);
611 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) {
612 case regFree:
613 LLVM_DEBUG(dbgs() << '\n');
614 return;
615 case regPreAssigned:
616 LLVM_DEBUG(dbgs() << '\n');
617 setPhysRegState(PhysReg, regFree);
618 return;
619 default: {
620 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
621 assert(LRI != LiveVirtRegs.end());
622 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n');
623 setPhysRegState(LRI->PhysReg, regFree);
624 LRI->PhysReg = 0;
626 return;
630 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
631 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
632 /// disabled - it can be allocated directly.
633 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
634 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg) const {
635 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
636 switch (unsigned VirtReg = RegUnitStates[*UI]) {
637 case regFree:
638 break;
639 case regPreAssigned:
640 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
641 << printReg(PhysReg, TRI) << '\n');
642 return spillImpossible;
643 default: {
644 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 ||
645 findLiveVirtReg(VirtReg)->LiveOut;
646 return SureSpill ? spillClean : spillDirty;
650 return 0;
653 void RegAllocFast::assignDanglingDebugValues(MachineInstr &Definition,
654 Register VirtReg, MCPhysReg Reg) {
655 auto UDBGValIter = DanglingDbgValues.find(VirtReg);
656 if (UDBGValIter == DanglingDbgValues.end())
657 return;
659 SmallVectorImpl<MachineInstr*> &Dangling = UDBGValIter->second;
660 for (MachineInstr *DbgValue : Dangling) {
661 assert(DbgValue->isDebugValue());
662 if (!DbgValue->hasDebugOperandForReg(VirtReg))
663 continue;
665 // Test whether the physreg survives from the definition to the DBG_VALUE.
666 MCPhysReg SetToReg = Reg;
667 unsigned Limit = 20;
668 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()),
669 E = DbgValue->getIterator(); I != E; ++I) {
670 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) {
671 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
672 << '\n');
673 SetToReg = 0;
674 break;
677 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) {
678 MO.setReg(SetToReg);
679 if (SetToReg != 0)
680 MO.setIsRenamable();
683 Dangling.clear();
686 /// This method updates local state so that we know that PhysReg is the
687 /// proper container for VirtReg now. The physical register must not be used
688 /// for anything else when this is called.
689 void RegAllocFast::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR,
690 MCPhysReg PhysReg) {
691 Register VirtReg = LR.VirtReg;
692 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to "
693 << printReg(PhysReg, TRI) << '\n');
694 assert(LR.PhysReg == 0 && "Already assigned a physreg");
695 assert(PhysReg != 0 && "Trying to assign no register");
696 LR.PhysReg = PhysReg;
697 setPhysRegState(PhysReg, VirtReg);
699 assignDanglingDebugValues(AtMI, VirtReg, PhysReg);
702 static bool isCoalescable(const MachineInstr &MI) {
703 return MI.isFullCopy();
706 Register RegAllocFast::traceCopyChain(Register Reg) const {
707 static const unsigned ChainLengthLimit = 3;
708 unsigned C = 0;
709 do {
710 if (Reg.isPhysical())
711 return Reg;
712 assert(Reg.isVirtual());
714 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg);
715 if (!VRegDef || !isCoalescable(*VRegDef))
716 return 0;
717 Reg = VRegDef->getOperand(1).getReg();
718 } while (++C <= ChainLengthLimit);
719 return 0;
722 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
723 /// chain of copies to check whether we reach a physical register we can
724 /// coalesce with.
725 Register RegAllocFast::traceCopies(Register VirtReg) const {
726 static const unsigned DefLimit = 3;
727 unsigned C = 0;
728 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) {
729 if (isCoalescable(MI)) {
730 Register Reg = MI.getOperand(1).getReg();
731 Reg = traceCopyChain(Reg);
732 if (Reg.isValid())
733 return Reg;
736 if (++C >= DefLimit)
737 break;
739 return Register();
742 /// Allocates a physical register for VirtReg.
743 void RegAllocFast::allocVirtReg(MachineInstr &MI, LiveReg &LR,
744 Register Hint0, bool LookAtPhysRegUses) {
745 const Register VirtReg = LR.VirtReg;
746 assert(LR.PhysReg == 0);
748 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
749 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg)
750 << " in class " << TRI->getRegClassName(&RC)
751 << " with hint " << printReg(Hint0, TRI) << '\n');
753 // Take hint when possible.
754 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) &&
755 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) {
756 // Take hint if the register is currently free.
757 if (isPhysRegFree(Hint0)) {
758 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI)
759 << '\n');
760 assignVirtToPhysReg(MI, LR, Hint0);
761 return;
762 } else {
763 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI)
764 << " occupied\n");
766 } else {
767 Hint0 = Register();
771 // Try other hint.
772 Register Hint1 = traceCopies(VirtReg);
773 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) &&
774 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) {
775 // Take hint if the register is currently free.
776 if (isPhysRegFree(Hint1)) {
777 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI)
778 << '\n');
779 assignVirtToPhysReg(MI, LR, Hint1);
780 return;
781 } else {
782 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI)
783 << " occupied\n");
785 } else {
786 Hint1 = Register();
789 MCPhysReg BestReg = 0;
790 unsigned BestCost = spillImpossible;
791 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
792 for (MCPhysReg PhysReg : AllocationOrder) {
793 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' ');
794 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) {
795 LLVM_DEBUG(dbgs() << "already used in instr.\n");
796 continue;
799 unsigned Cost = calcSpillCost(PhysReg);
800 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n');
801 // Immediate take a register with cost 0.
802 if (Cost == 0) {
803 assignVirtToPhysReg(MI, LR, PhysReg);
804 return;
807 if (PhysReg == Hint0 || PhysReg == Hint1)
808 Cost -= spillPrefBonus;
810 if (Cost < BestCost) {
811 BestReg = PhysReg;
812 BestCost = Cost;
816 if (!BestReg) {
817 // Nothing we can do: Report an error and keep going with an invalid
818 // allocation.
819 if (MI.isInlineAsm())
820 MI.emitError("inline assembly requires more registers than available");
821 else
822 MI.emitError("ran out of registers during register allocation");
824 LR.Error = true;
825 LR.PhysReg = 0;
826 return;
829 displacePhysReg(MI, BestReg);
830 assignVirtToPhysReg(MI, LR, BestReg);
833 void RegAllocFast::allocVirtRegUndef(MachineOperand &MO) {
834 assert(MO.isUndef() && "expected undef use");
835 Register VirtReg = MO.getReg();
836 assert(Register::isVirtualRegister(VirtReg) && "Expected virtreg");
838 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg);
839 MCPhysReg PhysReg;
840 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
841 PhysReg = LRI->PhysReg;
842 } else {
843 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
844 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
845 assert(!AllocationOrder.empty() && "Allocation order must not be empty");
846 PhysReg = AllocationOrder[0];
849 unsigned SubRegIdx = MO.getSubReg();
850 if (SubRegIdx != 0) {
851 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx);
852 MO.setSubReg(0);
854 MO.setReg(PhysReg);
855 MO.setIsRenamable(true);
858 /// Variation of defineVirtReg() with special handling for livethrough regs
859 /// (tied or earlyclobber) that may interfere with preassigned uses.
860 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum,
861 Register VirtReg) {
862 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
863 if (LRI != LiveVirtRegs.end()) {
864 MCPhysReg PrevReg = LRI->PhysReg;
865 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) {
866 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI)
867 << " (tied/earlyclobber resolution)\n");
868 freePhysReg(PrevReg);
869 LRI->PhysReg = 0;
870 allocVirtReg(MI, *LRI, 0, true);
871 MachineBasicBlock::iterator InsertBefore =
872 std::next((MachineBasicBlock::iterator)MI.getIterator());
873 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to "
874 << printReg(PrevReg, TRI) << '\n');
875 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(),
876 TII->get(TargetOpcode::COPY), PrevReg)
877 .addReg(LRI->PhysReg, llvm::RegState::Kill);
879 MachineOperand &MO = MI.getOperand(OpNum);
880 if (MO.getSubReg() && !MO.isUndef()) {
881 LRI->LastUse = &MI;
884 return defineVirtReg(MI, OpNum, VirtReg, true);
887 /// Allocates a register for VirtReg definition. Typically the register is
888 /// already assigned from a use of the virtreg, however we still need to
889 /// perform an allocation if:
890 /// - It is a dead definition without any uses.
891 /// - The value is live out and all uses are in different basic blocks.
892 void RegAllocFast::defineVirtReg(MachineInstr &MI, unsigned OpNum,
893 Register VirtReg, bool LookAtPhysRegUses) {
894 assert(VirtReg.isVirtual() && "Not a virtual register");
895 MachineOperand &MO = MI.getOperand(OpNum);
896 LiveRegMap::iterator LRI;
897 bool New;
898 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
899 if (New) {
900 if (!MO.isDead()) {
901 if (mayLiveOut(VirtReg)) {
902 LRI->LiveOut = true;
903 } else {
904 // It is a dead def without the dead flag; add the flag now.
905 MO.setIsDead(true);
909 if (LRI->PhysReg == 0)
910 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses);
911 else {
912 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) &&
913 "TODO: preassign mismatch");
914 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI)
915 << " use existing assignment to "
916 << printReg(LRI->PhysReg, TRI) << '\n');
919 MCPhysReg PhysReg = LRI->PhysReg;
920 assert(PhysReg != 0 && "Register not assigned");
921 if (LRI->Reloaded || LRI->LiveOut) {
922 if (!MI.isImplicitDef()) {
923 MachineBasicBlock::iterator SpillBefore =
924 std::next((MachineBasicBlock::iterator)MI.getIterator());
925 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut << " RL: "
926 << LRI->Reloaded << '\n');
927 bool Kill = LRI->LastUse == nullptr;
928 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut);
929 LRI->LastUse = nullptr;
931 LRI->LiveOut = false;
932 LRI->Reloaded = false;
934 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
935 BundleVirtRegsMap[VirtReg] = PhysReg;
937 markRegUsedInInstr(PhysReg);
938 setPhysReg(MI, MO, PhysReg);
941 /// Allocates a register for a VirtReg use.
942 void RegAllocFast::useVirtReg(MachineInstr &MI, unsigned OpNum,
943 Register VirtReg) {
944 assert(VirtReg.isVirtual() && "Not a virtual register");
945 MachineOperand &MO = MI.getOperand(OpNum);
946 LiveRegMap::iterator LRI;
947 bool New;
948 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
949 if (New) {
950 MachineOperand &MO = MI.getOperand(OpNum);
951 if (!MO.isKill()) {
952 if (mayLiveOut(VirtReg)) {
953 LRI->LiveOut = true;
954 } else {
955 // It is a last (killing) use without the kill flag; add the flag now.
956 MO.setIsKill(true);
959 } else {
960 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag");
963 // If necessary allocate a register.
964 if (LRI->PhysReg == 0) {
965 assert(!MO.isTied() && "tied op should be allocated");
966 Register Hint;
967 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) {
968 Hint = MI.getOperand(0).getReg();
969 assert(Hint.isPhysical() &&
970 "Copy destination should already be assigned");
972 allocVirtReg(MI, *LRI, Hint, false);
973 if (LRI->Error) {
974 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg);
975 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC);
976 setPhysReg(MI, MO, *AllocationOrder.begin());
977 return;
981 LRI->LastUse = &MI;
983 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
984 BundleVirtRegsMap[VirtReg] = LRI->PhysReg;
986 markRegUsedInInstr(LRI->PhysReg);
987 setPhysReg(MI, MO, LRI->PhysReg);
990 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
991 /// may invalidate any operand pointers. Return true if the operand kills its
992 /// register.
993 void RegAllocFast::setPhysReg(MachineInstr &MI, MachineOperand &MO,
994 MCPhysReg PhysReg) {
995 if (!MO.getSubReg()) {
996 MO.setReg(PhysReg);
997 MO.setIsRenamable(true);
998 return;
1001 // Handle subregister index.
1002 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister());
1003 MO.setIsRenamable(true);
1004 // Note: We leave the subreg number around a little longer in case of defs.
1005 // This is so that the register freeing logic in allocateInstruction can still
1006 // recognize this as subregister defs. The code there will clear the number.
1007 if (!MO.isDef())
1008 MO.setSubReg(0);
1010 // A kill flag implies killing the full register. Add corresponding super
1011 // register kill.
1012 if (MO.isKill()) {
1013 MI.addRegisterKilled(PhysReg, TRI, true);
1014 return;
1017 // A <def,read-undef> of a sub-register requires an implicit def of the full
1018 // register.
1019 if (MO.isDef() && MO.isUndef()) {
1020 if (MO.isDead())
1021 MI.addRegisterDead(PhysReg, TRI, true);
1022 else
1023 MI.addRegisterDefined(PhysReg, TRI);
1027 #ifndef NDEBUG
1029 void RegAllocFast::dumpState() const {
1030 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE;
1031 ++Unit) {
1032 switch (unsigned VirtReg = RegUnitStates[Unit]) {
1033 case regFree:
1034 break;
1035 case regPreAssigned:
1036 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]";
1037 break;
1038 case regLiveIn:
1039 llvm_unreachable("Should not have regLiveIn in map");
1040 default: {
1041 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg);
1042 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
1043 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry");
1044 if (I->LiveOut || I->Reloaded) {
1045 dbgs() << '[';
1046 if (I->LiveOut) dbgs() << 'O';
1047 if (I->Reloaded) dbgs() << 'R';
1048 dbgs() << ']';
1050 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present");
1051 break;
1055 dbgs() << '\n';
1056 // Check that LiveVirtRegs is the inverse.
1057 for (const LiveReg &LR : LiveVirtRegs) {
1058 Register VirtReg = LR.VirtReg;
1059 assert(VirtReg.isVirtual() && "Bad map key");
1060 MCPhysReg PhysReg = LR.PhysReg;
1061 if (PhysReg != 0) {
1062 assert(Register::isPhysicalRegister(PhysReg) &&
1063 "mapped to physreg");
1064 for (MCRegUnitIterator UI(PhysReg, TRI); UI.isValid(); ++UI) {
1065 assert(RegUnitStates[*UI] == VirtReg && "inverse map valid");
1070 #endif
1072 /// Count number of defs consumed from each register class by \p Reg
1073 void RegAllocFast::addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts,
1074 Register Reg) const {
1075 assert(RegClassDefCounts.size() == TRI->getNumRegClasses());
1077 if (Reg.isVirtual()) {
1078 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg);
1079 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1080 RCIdx != RCIdxEnd; ++RCIdx) {
1081 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1082 // FIXME: Consider aliasing sub/super registers.
1083 if (OpRC->hasSubClassEq(IdxRC))
1084 ++RegClassDefCounts[RCIdx];
1087 return;
1090 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses();
1091 RCIdx != RCIdxEnd; ++RCIdx) {
1092 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx);
1093 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) {
1094 if (IdxRC->contains(*Alias)) {
1095 ++RegClassDefCounts[RCIdx];
1096 break;
1102 void RegAllocFast::allocateInstruction(MachineInstr &MI) {
1103 // The basic algorithm here is:
1104 // 1. Mark registers of def operands as free
1105 // 2. Allocate registers to use operands and place reload instructions for
1106 // registers displaced by the allocation.
1108 // However we need to handle some corner cases:
1109 // - pre-assigned defs and uses need to be handled before the other def/use
1110 // operands are processed to avoid the allocation heuristics clashing with
1111 // the pre-assignment.
1112 // - The "free def operands" step has to come last instead of first for tied
1113 // operands and early-clobbers.
1115 UsedInInstr.clear();
1116 RegMasks.clear();
1117 BundleVirtRegsMap.clear();
1119 // Scan for special cases; Apply pre-assigned register defs to state.
1120 bool HasPhysRegUse = false;
1121 bool HasRegMask = false;
1122 bool HasVRegDef = false;
1123 bool HasDef = false;
1124 bool HasEarlyClobber = false;
1125 bool NeedToAssignLiveThroughs = false;
1126 for (MachineOperand &MO : MI.operands()) {
1127 if (MO.isReg()) {
1128 Register Reg = MO.getReg();
1129 if (Reg.isVirtual()) {
1130 if (MO.isDef()) {
1131 HasDef = true;
1132 HasVRegDef = true;
1133 if (MO.isEarlyClobber()) {
1134 HasEarlyClobber = true;
1135 NeedToAssignLiveThroughs = true;
1137 if (MO.isTied() || (MO.getSubReg() != 0 && !MO.isUndef()))
1138 NeedToAssignLiveThroughs = true;
1140 } else if (Reg.isPhysical()) {
1141 if (!MRI->isReserved(Reg)) {
1142 if (MO.isDef()) {
1143 HasDef = true;
1144 bool displacedAny = definePhysReg(MI, Reg);
1145 if (MO.isEarlyClobber())
1146 HasEarlyClobber = true;
1147 if (!displacedAny)
1148 MO.setIsDead(true);
1150 if (MO.readsReg())
1151 HasPhysRegUse = true;
1154 } else if (MO.isRegMask()) {
1155 HasRegMask = true;
1156 RegMasks.push_back(MO.getRegMask());
1160 // Allocate virtreg defs.
1161 if (HasDef) {
1162 if (HasVRegDef) {
1163 // Special handling for early clobbers, tied operands or subregister defs:
1164 // Compared to "normal" defs these:
1165 // - Must not use a register that is pre-assigned for a use operand.
1166 // - In order to solve tricky inline assembly constraints we change the
1167 // heuristic to figure out a good operand order before doing
1168 // assignments.
1169 if (NeedToAssignLiveThroughs) {
1170 DefOperandIndexes.clear();
1171 PhysRegUses.clear();
1173 // Track number of defs which may consume a register from the class.
1174 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0);
1175 assert(RegClassDefCounts[0] == 0);
1177 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1178 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1179 const MachineOperand &MO = MI.getOperand(I);
1180 if (!MO.isReg())
1181 continue;
1182 Register Reg = MO.getReg();
1183 if (MO.readsReg()) {
1184 if (Reg.isPhysical()) {
1185 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI)
1186 << '\n');
1187 markPhysRegUsedInInstr(Reg);
1191 if (MO.isDef()) {
1192 if (Reg.isVirtual())
1193 DefOperandIndexes.push_back(I);
1195 addRegClassDefCounts(RegClassDefCounts, Reg);
1199 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) {
1200 const MachineOperand &MO0 = MI.getOperand(I0);
1201 const MachineOperand &MO1 = MI.getOperand(I1);
1202 Register Reg0 = MO0.getReg();
1203 Register Reg1 = MO1.getReg();
1204 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0);
1205 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1);
1207 // Identify regclass that are easy to use up completely just in this
1208 // instruction.
1209 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size();
1210 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size();
1212 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()];
1213 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()];
1214 if (SmallClass0 > SmallClass1)
1215 return true;
1216 if (SmallClass0 < SmallClass1)
1217 return false;
1219 // Allocate early clobbers and livethrough operands first.
1220 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() ||
1221 (MO0.getSubReg() == 0 && !MO0.isUndef());
1222 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() ||
1223 (MO1.getSubReg() == 0 && !MO1.isUndef());
1224 if (Livethrough0 > Livethrough1)
1225 return true;
1226 if (Livethrough0 < Livethrough1)
1227 return false;
1229 // Tie-break rule: operand index.
1230 return I0 < I1;
1233 for (uint16_t OpIdx : DefOperandIndexes) {
1234 MachineOperand &MO = MI.getOperand(OpIdx);
1235 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n');
1236 unsigned Reg = MO.getReg();
1237 if (MO.isEarlyClobber() || MO.isTied() ||
1238 (MO.getSubReg() && !MO.isUndef())) {
1239 defineLiveThroughVirtReg(MI, OpIdx, Reg);
1240 } else {
1241 defineVirtReg(MI, OpIdx, Reg);
1244 } else {
1245 // Assign virtual register defs.
1246 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) {
1247 MachineOperand &MO = MI.getOperand(I);
1248 if (!MO.isReg() || !MO.isDef())
1249 continue;
1250 Register Reg = MO.getReg();
1251 if (Reg.isVirtual())
1252 defineVirtReg(MI, I, Reg);
1257 // Free registers occupied by defs.
1258 // Iterate operands in reverse order, so we see the implicit super register
1259 // defs first (we added them earlier in case of <def,read-undef>).
1260 for (unsigned I = MI.getNumOperands(); I-- > 0;) {
1261 MachineOperand &MO = MI.getOperand(I);
1262 if (!MO.isReg() || !MO.isDef())
1263 continue;
1265 // subreg defs don't free the full register. We left the subreg number
1266 // around as a marker in setPhysReg() to recognize this case here.
1267 if (MO.getSubReg() != 0) {
1268 MO.setSubReg(0);
1269 continue;
1272 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) &&
1273 "tied def assigned to clobbered register");
1275 // Do not free tied operands and early clobbers.
1276 if (MO.isTied() || MO.isEarlyClobber())
1277 continue;
1278 Register Reg = MO.getReg();
1279 if (!Reg)
1280 continue;
1281 assert(Reg.isPhysical());
1282 if (MRI->isReserved(Reg))
1283 continue;
1284 freePhysReg(Reg);
1285 unmarkRegUsedInInstr(Reg);
1289 // Displace clobbered registers.
1290 if (HasRegMask) {
1291 assert(!RegMasks.empty() && "expected RegMask");
1292 // MRI bookkeeping.
1293 for (const auto *RM : RegMasks)
1294 MRI->addPhysRegsUsedFromRegMask(RM);
1296 // Displace clobbered registers.
1297 for (const LiveReg &LR : LiveVirtRegs) {
1298 MCPhysReg PhysReg = LR.PhysReg;
1299 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg))
1300 displacePhysReg(MI, PhysReg);
1304 // Apply pre-assigned register uses to state.
1305 if (HasPhysRegUse) {
1306 for (MachineOperand &MO : MI.operands()) {
1307 if (!MO.isReg() || !MO.readsReg())
1308 continue;
1309 Register Reg = MO.getReg();
1310 if (!Reg.isPhysical())
1311 continue;
1312 if (MRI->isReserved(Reg))
1313 continue;
1314 bool displacedAny = usePhysReg(MI, Reg);
1315 if (!displacedAny && !MRI->isReserved(Reg))
1316 MO.setIsKill(true);
1320 // Allocate virtreg uses and insert reloads as necessary.
1321 bool HasUndefUse = false;
1322 for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
1323 MachineOperand &MO = MI.getOperand(I);
1324 if (!MO.isReg() || !MO.isUse())
1325 continue;
1326 Register Reg = MO.getReg();
1327 if (!Reg.isVirtual())
1328 continue;
1330 if (MO.isUndef()) {
1331 HasUndefUse = true;
1332 continue;
1336 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1337 // the def block (removing the vreg uses).
1338 mayLiveIn(Reg);
1341 assert(!MO.isInternalRead() && "Bundles not supported");
1342 assert(MO.readsReg() && "reading use");
1343 useVirtReg(MI, I, Reg);
1346 // Allocate undef operands. This is a separate step because in a situation
1347 // like ` = OP undef %X, %X` both operands need the same register assign
1348 // so we should perform the normal assignment first.
1349 if (HasUndefUse) {
1350 for (MachineOperand &MO : MI.uses()) {
1351 if (!MO.isReg() || !MO.isUse())
1352 continue;
1353 Register Reg = MO.getReg();
1354 if (!Reg.isVirtual())
1355 continue;
1357 assert(MO.isUndef() && "Should only have undef virtreg uses left");
1358 allocVirtRegUndef(MO);
1362 // Free early clobbers.
1363 if (HasEarlyClobber) {
1364 for (unsigned I = MI.getNumOperands(); I-- > 0; ) {
1365 MachineOperand &MO = MI.getOperand(I);
1366 if (!MO.isReg() || !MO.isDef() || !MO.isEarlyClobber())
1367 continue;
1368 // subreg defs don't free the full register. We left the subreg number
1369 // around as a marker in setPhysReg() to recognize this case here.
1370 if (MO.getSubReg() != 0) {
1371 MO.setSubReg(0);
1372 continue;
1375 Register Reg = MO.getReg();
1376 if (!Reg)
1377 continue;
1378 assert(Reg.isPhysical() && "should have register assigned");
1380 // We sometimes get odd situations like:
1381 // early-clobber %x0 = INSTRUCTION %x0
1382 // which is semantically questionable as the early-clobber should
1383 // apply before the use. But in practice we consider the use to
1384 // happen before the early clobber now. Don't free the early clobber
1385 // register in this case.
1386 if (MI.readsRegister(Reg, TRI))
1387 continue;
1389 freePhysReg(Reg);
1393 LLVM_DEBUG(dbgs() << "<< " << MI);
1394 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() &&
1395 MI.getNumOperands() == 2) {
1396 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1397 Coalesced.push_back(&MI);
1401 void RegAllocFast::handleDebugValue(MachineInstr &MI) {
1402 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1403 // mostly constants and frame indices.
1404 for (Register Reg : MI.getUsedDebugRegs()) {
1405 if (!Register::isVirtualRegister(Reg))
1406 continue;
1408 // Already spilled to a stackslot?
1409 int SS = StackSlotForVirtReg[Reg];
1410 if (SS != -1) {
1411 // Modify DBG_VALUE now that the value is in a spill slot.
1412 updateDbgValueForSpill(MI, SS, Reg);
1413 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI);
1414 continue;
1417 // See if this virtual register has already been allocated to a physical
1418 // register or spilled to a stack slot.
1419 LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
1420 SmallVector<MachineOperand *> DbgOps;
1421 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg))
1422 DbgOps.push_back(&Op);
1424 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) {
1425 // Update every use of Reg within MI.
1426 for (auto &RegMO : DbgOps)
1427 setPhysReg(MI, *RegMO, LRI->PhysReg);
1428 } else {
1429 DanglingDbgValues[Reg].push_back(&MI);
1432 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1433 // that future spills of Reg will have DBG_VALUEs.
1434 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end());
1438 void RegAllocFast::handleBundle(MachineInstr &MI) {
1439 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator();
1440 ++BundledMI;
1441 while (BundledMI->isBundledWithPred()) {
1442 for (unsigned I = 0; I < BundledMI->getNumOperands(); ++I) {
1443 MachineOperand &MO = BundledMI->getOperand(I);
1444 if (!MO.isReg())
1445 continue;
1447 Register Reg = MO.getReg();
1448 if (!Reg.isVirtual())
1449 continue;
1451 DenseMap<Register, MCPhysReg>::iterator DI;
1452 DI = BundleVirtRegsMap.find(Reg);
1453 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register");
1455 setPhysReg(MI, MO, DI->second);
1458 ++BundledMI;
1462 void RegAllocFast::allocateBasicBlock(MachineBasicBlock &MBB) {
1463 this->MBB = &MBB;
1464 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB);
1466 RegUnitStates.assign(TRI->getNumRegUnits(), regFree);
1467 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
1469 for (auto &LiveReg : MBB.liveouts())
1470 setPhysRegState(LiveReg.PhysReg, regPreAssigned);
1472 Coalesced.clear();
1474 // Traverse block in reverse order allocating instructions one by one.
1475 for (MachineInstr &MI : reverse(MBB)) {
1476 LLVM_DEBUG(
1477 dbgs() << "\n>> " << MI << "Regs:";
1478 dumpState()
1481 // Special handling for debug values. Note that they are not allowed to
1482 // affect codegen of the other instructions in any way.
1483 if (MI.isDebugValue()) {
1484 handleDebugValue(MI);
1485 continue;
1488 allocateInstruction(MI);
1490 // Once BUNDLE header is assigned registers, same assignments need to be
1491 // done for bundled MIs.
1492 if (MI.getOpcode() == TargetOpcode::BUNDLE) {
1493 handleBundle(MI);
1497 LLVM_DEBUG(
1498 dbgs() << "Begin Regs:";
1499 dumpState()
1502 // Spill all physical registers holding virtual registers now.
1503 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1504 reloadAtBegin(MBB);
1506 // Erase all the coalesced copies. We are delaying it until now because
1507 // LiveVirtRegs might refer to the instrs.
1508 for (MachineInstr *MI : Coalesced)
1509 MBB.erase(MI);
1510 NumCoalesced += Coalesced.size();
1512 for (auto &UDBGPair : DanglingDbgValues) {
1513 for (MachineInstr *DbgValue : UDBGPair.second) {
1514 assert(DbgValue->isDebugValue() && "expected DBG_VALUE");
1515 // Nothing to do if the vreg was spilled in the meantime.
1516 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first))
1517 continue;
1518 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1519 << '\n');
1520 DbgValue->setDebugValueUndef();
1523 DanglingDbgValues.clear();
1525 LLVM_DEBUG(MBB.dump());
1528 bool RegAllocFast::runOnMachineFunction(MachineFunction &MF) {
1529 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1530 << "********** Function: " << MF.getName() << '\n');
1531 MRI = &MF.getRegInfo();
1532 const TargetSubtargetInfo &STI = MF.getSubtarget();
1533 TRI = STI.getRegisterInfo();
1534 TII = STI.getInstrInfo();
1535 MFI = &MF.getFrameInfo();
1536 MRI->freezeReservedRegs(MF);
1537 RegClassInfo.runOnMachineFunction(MF);
1538 unsigned NumRegUnits = TRI->getNumRegUnits();
1539 UsedInInstr.clear();
1540 UsedInInstr.setUniverse(NumRegUnits);
1541 PhysRegUses.clear();
1542 PhysRegUses.setUniverse(NumRegUnits);
1544 // initialize the virtual->physical register map to have a 'null'
1545 // mapping for all virtual registers
1546 unsigned NumVirtRegs = MRI->getNumVirtRegs();
1547 StackSlotForVirtReg.resize(NumVirtRegs);
1548 LiveVirtRegs.setUniverse(NumVirtRegs);
1549 MayLiveAcrossBlocks.clear();
1550 MayLiveAcrossBlocks.resize(NumVirtRegs);
1552 // Loop over all of the basic blocks, eliminating virtual register references
1553 for (MachineBasicBlock &MBB : MF)
1554 allocateBasicBlock(MBB);
1556 if (ClearVirtRegs) {
1557 // All machine operands and other references to virtual registers have been
1558 // replaced. Remove the virtual registers.
1559 MRI->clearVirtRegs();
1562 StackSlotForVirtReg.clear();
1563 LiveDbgValueMap.clear();
1564 return true;
1567 FunctionPass *llvm::createFastRegisterAllocator() {
1568 return new RegAllocFast();
1571 FunctionPass *llvm::createFastRegisterAllocator(
1572 std::function<bool(const TargetRegisterInfo &TRI,
1573 const TargetRegisterClass &RC)> Ftor, bool ClearVirtRegs) {
1574 return new RegAllocFast(Ftor, ClearVirtRegs);