1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This register allocator allocates registers to a basic block at a
10 /// time, attempting to keep values in registers and reusing registers as
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/SparseSet.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineFunctionPass.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineOperand.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/RegAllocCommon.h"
31 #include "llvm/CodeGen/RegAllocRegistry.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/CodeGen/TargetInstrInfo.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/TargetSubtargetInfo.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/InitializePasses.h"
40 #include "llvm/MC/MCInstrDesc.h"
41 #include "llvm/MC/MCRegisterInfo.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/Compiler.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include "llvm/Support/raw_ostream.h"
54 #define DEBUG_TYPE "regalloc"
56 STATISTIC(NumStores
, "Number of stores added");
57 STATISTIC(NumLoads
, "Number of loads added");
58 STATISTIC(NumCoalesced
, "Number of copies coalesced");
60 // FIXME: Remove this switch when all testcases are fixed!
61 static cl::opt
<bool> IgnoreMissingDefs("rafast-ignore-missing-defs",
64 static RegisterRegAlloc
65 fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator
);
69 class RegAllocFast
: public MachineFunctionPass
{
73 RegAllocFast(const RegClassFilterFunc F
= allocateAllRegClasses
,
74 bool ClearVirtRegs_
= true) :
75 MachineFunctionPass(ID
),
76 ShouldAllocateClass(F
),
77 StackSlotForVirtReg(-1),
78 ClearVirtRegs(ClearVirtRegs_
) {
82 MachineFrameInfo
*MFI
;
83 MachineRegisterInfo
*MRI
;
84 const TargetRegisterInfo
*TRI
;
85 const TargetInstrInfo
*TII
;
86 RegisterClassInfo RegClassInfo
;
87 const RegClassFilterFunc ShouldAllocateClass
;
89 /// Basic block currently being allocated.
90 MachineBasicBlock
*MBB
;
92 /// Maps virtual regs to the frame index where these values are spilled.
93 IndexedMap
<int, VirtReg2IndexFunctor
> StackSlotForVirtReg
;
97 /// Everything we know about a live virtual register.
99 MachineInstr
*LastUse
= nullptr; ///< Last instr to use reg.
100 Register VirtReg
; ///< Virtual register number.
101 MCPhysReg PhysReg
= 0; ///< Currently held here.
102 bool LiveOut
= false; ///< Register is possibly live out.
103 bool Reloaded
= false; ///< Register was reloaded.
104 bool Error
= false; ///< Could not allocate.
106 explicit LiveReg(Register VirtReg
) : VirtReg(VirtReg
) {}
108 unsigned getSparseSetIndex() const {
109 return Register::virtReg2Index(VirtReg
);
113 using LiveRegMap
= SparseSet
<LiveReg
>;
114 /// This map contains entries for each virtual register that is currently
115 /// available in a physical register.
116 LiveRegMap LiveVirtRegs
;
118 /// Stores assigned virtual registers present in the bundle MI.
119 DenseMap
<Register
, MCPhysReg
> BundleVirtRegsMap
;
121 DenseMap
<unsigned, SmallVector
<MachineOperand
*, 2>> LiveDbgValueMap
;
122 /// List of DBG_VALUE that we encountered without the vreg being assigned
123 /// because they were placed after the last use of the vreg.
124 DenseMap
<unsigned, SmallVector
<MachineInstr
*, 1>> DanglingDbgValues
;
126 /// Has a bit set for every virtual register for which it was determined
127 /// that it is alive across blocks.
128 BitVector MayLiveAcrossBlocks
;
130 /// State of a register unit.
132 /// A free register is not currently in use and can be allocated
133 /// immediately without checking aliases.
136 /// A pre-assigned register has been assigned before register allocation
137 /// (e.g., setting up a call parameter).
140 /// Used temporarily in reloadAtBegin() to mark register units that are
141 /// live-in to the basic block.
144 /// A register state may also be a virtual register number, indication
145 /// that the physical register is currently allocated to a virtual
146 /// register. In that case, LiveVirtRegs contains the inverse mapping.
149 /// Maps each physical register to a RegUnitState enum or virtual register.
150 std::vector
<unsigned> RegUnitStates
;
152 SmallVector
<MachineInstr
*, 32> Coalesced
;
154 using RegUnitSet
= SparseSet
<uint16_t, identity
<uint16_t>>;
155 /// Set of register units that are used in the current instruction, and so
156 /// cannot be allocated.
157 RegUnitSet UsedInInstr
;
158 RegUnitSet PhysRegUses
;
159 SmallVector
<uint16_t, 8> DefOperandIndexes
;
160 // Register masks attached to the current instruction.
161 SmallVector
<const uint32_t *> RegMasks
;
163 void setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
);
164 bool isPhysRegFree(MCPhysReg PhysReg
) const;
166 /// Mark a physreg as used in this instruction.
167 void markRegUsedInInstr(MCPhysReg PhysReg
) {
168 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
169 UsedInInstr
.insert(*Units
);
172 // Check if physreg is clobbered by instruction's regmask(s).
173 bool isClobberedByRegMasks(MCPhysReg PhysReg
) const {
174 return llvm::any_of(RegMasks
, [PhysReg
](const uint32_t *Mask
) {
175 return MachineOperand::clobbersPhysReg(Mask
, PhysReg
);
179 /// Check if a physreg or any of its aliases are used in this instruction.
180 bool isRegUsedInInstr(MCPhysReg PhysReg
, bool LookAtPhysRegUses
) const {
181 if (LookAtPhysRegUses
&& isClobberedByRegMasks(PhysReg
))
183 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
184 if (UsedInInstr
.count(*Units
))
186 if (LookAtPhysRegUses
&& PhysRegUses
.count(*Units
))
192 /// Mark physical register as being used in a register use operand.
193 /// This is only used by the special livethrough handling code.
194 void markPhysRegUsedInInstr(MCPhysReg PhysReg
) {
195 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
196 PhysRegUses
.insert(*Units
);
199 /// Remove mark of physical register being used in the instruction.
200 void unmarkRegUsedInInstr(MCPhysReg PhysReg
) {
201 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
)
202 UsedInInstr
.erase(*Units
);
209 spillImpossible
= ~0u
213 StringRef
getPassName() const override
{ return "Fast Register Allocator"; }
215 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
216 AU
.setPreservesCFG();
217 MachineFunctionPass::getAnalysisUsage(AU
);
220 MachineFunctionProperties
getRequiredProperties() const override
{
221 return MachineFunctionProperties().set(
222 MachineFunctionProperties::Property::NoPHIs
);
225 MachineFunctionProperties
getSetProperties() const override
{
227 return MachineFunctionProperties().set(
228 MachineFunctionProperties::Property::NoVRegs
);
231 return MachineFunctionProperties();
234 MachineFunctionProperties
getClearedProperties() const override
{
235 return MachineFunctionProperties().set(
236 MachineFunctionProperties::Property::IsSSA
);
240 bool runOnMachineFunction(MachineFunction
&MF
) override
;
242 void allocateBasicBlock(MachineBasicBlock
&MBB
);
244 void addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
247 void allocateInstruction(MachineInstr
&MI
);
248 void handleDebugValue(MachineInstr
&MI
);
249 void handleBundle(MachineInstr
&MI
);
251 bool usePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
252 bool definePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
253 bool displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
);
254 void freePhysReg(MCPhysReg PhysReg
);
256 unsigned calcSpillCost(MCPhysReg PhysReg
) const;
258 LiveRegMap::iterator
findLiveVirtReg(Register VirtReg
) {
259 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
262 LiveRegMap::const_iterator
findLiveVirtReg(Register VirtReg
) const {
263 return LiveVirtRegs
.find(Register::virtReg2Index(VirtReg
));
266 void assignVirtToPhysReg(MachineInstr
&MI
, LiveReg
&, MCPhysReg PhysReg
);
267 void allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
, Register Hint
,
268 bool LookAtPhysRegUses
= false);
269 void allocVirtRegUndef(MachineOperand
&MO
);
270 void assignDanglingDebugValues(MachineInstr
&Def
, Register VirtReg
,
272 void defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
274 void defineVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
,
275 bool LookAtPhysRegUses
= false);
276 void useVirtReg(MachineInstr
&MI
, unsigned OpNum
, Register VirtReg
);
278 MachineBasicBlock::iterator
279 getMBBBeginInsertionPoint(MachineBasicBlock
&MBB
,
280 SmallSet
<Register
, 2> &PrologLiveIns
) const;
282 void reloadAtBegin(MachineBasicBlock
&MBB
);
283 void setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
, MCPhysReg PhysReg
);
285 Register
traceCopies(Register VirtReg
) const;
286 Register
traceCopyChain(Register Reg
) const;
288 int getStackSpaceFor(Register VirtReg
);
289 void spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
290 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
);
291 void reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
294 bool mayLiveOut(Register VirtReg
);
295 bool mayLiveIn(Register VirtReg
);
297 void dumpState() const;
300 } // end anonymous namespace
302 char RegAllocFast::ID
= 0;
304 INITIALIZE_PASS(RegAllocFast
, "regallocfast", "Fast Register Allocator", false,
307 void RegAllocFast::setPhysRegState(MCPhysReg PhysReg
, unsigned NewState
) {
308 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
)
309 RegUnitStates
[*UI
] = NewState
;
312 bool RegAllocFast::isPhysRegFree(MCPhysReg PhysReg
) const {
313 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
314 if (RegUnitStates
[*UI
] != regFree
)
320 /// This allocates space for the specified virtual register to be held on the
322 int RegAllocFast::getStackSpaceFor(Register VirtReg
) {
323 // Find the location Reg would belong...
324 int SS
= StackSlotForVirtReg
[VirtReg
];
325 // Already has space allocated?
329 // Allocate a new stack object for this spill location...
330 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
331 unsigned Size
= TRI
->getSpillSize(RC
);
332 Align Alignment
= TRI
->getSpillAlign(RC
);
333 int FrameIdx
= MFI
->CreateSpillStackObject(Size
, Alignment
);
336 StackSlotForVirtReg
[VirtReg
] = FrameIdx
;
340 static bool dominates(MachineBasicBlock
&MBB
,
341 MachineBasicBlock::const_iterator A
,
342 MachineBasicBlock::const_iterator B
) {
343 auto MBBEnd
= MBB
.end();
347 MachineBasicBlock::const_iterator I
= MBB
.begin();
348 for (; &*I
!= A
&& &*I
!= B
; ++I
)
354 /// Returns false if \p VirtReg is known to not live out of the current block.
355 bool RegAllocFast::mayLiveOut(Register VirtReg
) {
356 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
))) {
357 // Cannot be live-out if there are no successors.
358 return !MBB
->succ_empty();
361 const MachineInstr
*SelfLoopDef
= nullptr;
363 // If this block loops back to itself, it is necessary to check whether the
364 // use comes after the def.
365 if (MBB
->isSuccessor(MBB
)) {
366 SelfLoopDef
= MRI
->getUniqueVRegDef(VirtReg
);
368 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
373 // See if the first \p Limit uses of the register are all in the current
375 static const unsigned Limit
= 8;
377 for (const MachineInstr
&UseInst
: MRI
->use_nodbg_instructions(VirtReg
)) {
378 if (UseInst
.getParent() != MBB
|| ++C
>= Limit
) {
379 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
380 // Cannot be live-out if there are no successors.
381 return !MBB
->succ_empty();
385 // Try to handle some simple cases to avoid spilling and reloading every
386 // value inside a self looping block.
387 if (SelfLoopDef
== &UseInst
||
388 !dominates(*MBB
, SelfLoopDef
->getIterator(), UseInst
.getIterator())) {
389 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
398 /// Returns false if \p VirtReg is known to not be live into the current block.
399 bool RegAllocFast::mayLiveIn(Register VirtReg
) {
400 if (MayLiveAcrossBlocks
.test(Register::virtReg2Index(VirtReg
)))
401 return !MBB
->pred_empty();
403 // See if the first \p Limit def of the register are all in the current block.
404 static const unsigned Limit
= 8;
406 for (const MachineInstr
&DefInst
: MRI
->def_instructions(VirtReg
)) {
407 if (DefInst
.getParent() != MBB
|| ++C
>= Limit
) {
408 MayLiveAcrossBlocks
.set(Register::virtReg2Index(VirtReg
));
409 return !MBB
->pred_empty();
416 /// Insert spill instruction for \p AssignedReg before \p Before. Update
417 /// DBG_VALUEs with \p VirtReg operands with the stack slot.
418 void RegAllocFast::spill(MachineBasicBlock::iterator Before
, Register VirtReg
,
419 MCPhysReg AssignedReg
, bool Kill
, bool LiveOut
) {
420 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg
, TRI
)
421 << " in " << printReg(AssignedReg
, TRI
));
422 int FI
= getStackSpaceFor(VirtReg
);
423 LLVM_DEBUG(dbgs() << " to stack slot #" << FI
<< '\n');
425 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
426 TII
->storeRegToStackSlot(*MBB
, Before
, AssignedReg
, Kill
, FI
, &RC
, TRI
);
429 MachineBasicBlock::iterator FirstTerm
= MBB
->getFirstTerminator();
431 // When we spill a virtual register, we will have spill instructions behind
432 // every definition of it, meaning we can switch all the DBG_VALUEs over
433 // to just reference the stack slot.
434 SmallVectorImpl
<MachineOperand
*> &LRIDbgOperands
= LiveDbgValueMap
[VirtReg
];
435 SmallDenseMap
<MachineInstr
*, SmallVector
<const MachineOperand
*>>
437 for (MachineOperand
*MO
: LRIDbgOperands
)
438 SpilledOperandsMap
[MO
->getParent()].push_back(MO
);
439 for (auto MISpilledOperands
: SpilledOperandsMap
) {
440 MachineInstr
&DBG
= *MISpilledOperands
.first
;
441 MachineInstr
*NewDV
= buildDbgValueForSpill(
442 *MBB
, Before
, *MISpilledOperands
.first
, FI
, MISpilledOperands
.second
);
443 assert(NewDV
->getParent() == MBB
&& "dangling parent pointer");
445 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV
);
448 // We need to insert a DBG_VALUE at the end of the block if the spill slot
449 // is live out, but there is another use of the value after the
450 // spill. This will allow LiveDebugValues to see the correct live out
451 // value to propagate to the successors.
452 MachineInstr
*ClonedDV
= MBB
->getParent()->CloneMachineInstr(NewDV
);
453 MBB
->insert(FirstTerm
, ClonedDV
);
454 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n");
457 // Rewrite unassigned dbg_values to use the stack slot.
458 // TODO We can potentially do this for list debug values as well if we know
459 // how the dbg_values are getting unassigned.
460 if (DBG
.isNonListDebugValue()) {
461 MachineOperand
&MO
= DBG
.getDebugOperand(0);
462 if (MO
.isReg() && MO
.getReg() == 0) {
463 updateDbgValueForSpill(DBG
, FI
, 0);
467 // Now this register is spilled there is should not be any DBG_VALUE
468 // pointing to this register because they are all pointing to spilled value
470 LRIDbgOperands
.clear();
473 /// Insert reload instruction for \p PhysReg before \p Before.
474 void RegAllocFast::reload(MachineBasicBlock::iterator Before
, Register VirtReg
,
476 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg
, TRI
) << " into "
477 << printReg(PhysReg
, TRI
) << '\n');
478 int FI
= getStackSpaceFor(VirtReg
);
479 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
480 TII
->loadRegFromStackSlot(*MBB
, Before
, PhysReg
, FI
, &RC
, TRI
);
484 /// Get basic block begin insertion point.
485 /// This is not just MBB.begin() because surprisingly we have EH_LABEL
486 /// instructions marking the begin of a basic block. This means we must insert
487 /// new instructions after such labels...
488 MachineBasicBlock::iterator
489 RegAllocFast::getMBBBeginInsertionPoint(
490 MachineBasicBlock
&MBB
, SmallSet
<Register
, 2> &PrologLiveIns
) const {
491 MachineBasicBlock::iterator I
= MBB
.begin();
492 while (I
!= MBB
.end()) {
498 // Most reloads should be inserted after prolog instructions.
499 if (!TII
->isBasicBlockPrologue(*I
))
502 // However if a prolog instruction reads a register that needs to be
503 // reloaded, the reload should be inserted before the prolog.
504 for (MachineOperand
&MO
: I
->operands()) {
506 PrologLiveIns
.insert(MO
.getReg());
515 /// Reload all currently assigned virtual registers.
516 void RegAllocFast::reloadAtBegin(MachineBasicBlock
&MBB
) {
517 if (LiveVirtRegs
.empty())
520 for (MachineBasicBlock::RegisterMaskPair P
: MBB
.liveins()) {
521 MCPhysReg Reg
= P
.PhysReg
;
522 // Set state to live-in. This possibly overrides mappings to virtual
523 // registers but we don't care anymore at this point.
524 setPhysRegState(Reg
, regLiveIn
);
528 SmallSet
<Register
, 2> PrologLiveIns
;
530 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
531 // of spilling here is deterministic, if arbitrary.
532 MachineBasicBlock::iterator InsertBefore
533 = getMBBBeginInsertionPoint(MBB
, PrologLiveIns
);
534 for (const LiveReg
&LR
: LiveVirtRegs
) {
535 MCPhysReg PhysReg
= LR
.PhysReg
;
539 MCRegister FirstUnit
= *MCRegUnitIterator(PhysReg
, TRI
);
540 if (RegUnitStates
[FirstUnit
] == regLiveIn
)
543 assert((&MBB
!= &MBB
.getParent()->front() || IgnoreMissingDefs
) &&
544 "no reload in start block. Missing vreg def?");
546 if (PrologLiveIns
.count(PhysReg
)) {
547 // FIXME: Theoretically this should use an insert point skipping labels
548 // but I'm not sure how labels should interact with prolog instruction
549 // that need reloads.
550 reload(MBB
.begin(), LR
.VirtReg
, PhysReg
);
552 reload(InsertBefore
, LR
.VirtReg
, PhysReg
);
554 LiveVirtRegs
.clear();
557 /// Handle the direct use of a physical register. Check that the register is
558 /// not used by a virtreg. Kill the physreg, marking it free. This may add
559 /// implicit kills to MO->getParent() and invalidate MO.
560 bool RegAllocFast::usePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
561 assert(Register::isPhysicalRegister(Reg
) && "expected physreg");
562 bool displacedAny
= displacePhysReg(MI
, Reg
);
563 setPhysRegState(Reg
, regPreAssigned
);
564 markRegUsedInInstr(Reg
);
568 bool RegAllocFast::definePhysReg(MachineInstr
&MI
, MCPhysReg Reg
) {
569 bool displacedAny
= displacePhysReg(MI
, Reg
);
570 setPhysRegState(Reg
, regPreAssigned
);
574 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very
575 /// similar to defineVirtReg except the physreg is reserved instead of
577 bool RegAllocFast::displacePhysReg(MachineInstr
&MI
, MCPhysReg PhysReg
) {
578 bool displacedAny
= false;
580 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
582 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
584 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
585 assert(LRI
!= LiveVirtRegs
.end() && "datastructures in sync");
586 MachineBasicBlock::iterator ReloadBefore
=
587 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
588 reload(ReloadBefore
, VirtReg
, LRI
->PhysReg
);
590 setPhysRegState(LRI
->PhysReg
, regFree
);
592 LRI
->Reloaded
= true;
597 RegUnitStates
[Unit
] = regFree
;
607 void RegAllocFast::freePhysReg(MCPhysReg PhysReg
) {
608 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg
, TRI
) << ':');
610 MCRegister FirstUnit
= *MCRegUnitIterator(PhysReg
, TRI
);
611 switch (unsigned VirtReg
= RegUnitStates
[FirstUnit
]) {
613 LLVM_DEBUG(dbgs() << '\n');
616 LLVM_DEBUG(dbgs() << '\n');
617 setPhysRegState(PhysReg
, regFree
);
620 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
621 assert(LRI
!= LiveVirtRegs
.end());
622 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI
->VirtReg
, TRI
) << '\n');
623 setPhysRegState(LRI
->PhysReg
, regFree
);
630 /// Return the cost of spilling clearing out PhysReg and aliases so it is free
631 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases
632 /// disabled - it can be allocated directly.
633 /// \returns spillImpossible when PhysReg or an alias can't be spilled.
634 unsigned RegAllocFast::calcSpillCost(MCPhysReg PhysReg
) const {
635 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
636 switch (unsigned VirtReg
= RegUnitStates
[*UI
]) {
640 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned "
641 << printReg(PhysReg
, TRI
) << '\n');
642 return spillImpossible
;
644 bool SureSpill
= StackSlotForVirtReg
[VirtReg
] != -1 ||
645 findLiveVirtReg(VirtReg
)->LiveOut
;
646 return SureSpill
? spillClean
: spillDirty
;
653 void RegAllocFast::assignDanglingDebugValues(MachineInstr
&Definition
,
654 Register VirtReg
, MCPhysReg Reg
) {
655 auto UDBGValIter
= DanglingDbgValues
.find(VirtReg
);
656 if (UDBGValIter
== DanglingDbgValues
.end())
659 SmallVectorImpl
<MachineInstr
*> &Dangling
= UDBGValIter
->second
;
660 for (MachineInstr
*DbgValue
: Dangling
) {
661 assert(DbgValue
->isDebugValue());
662 if (!DbgValue
->hasDebugOperandForReg(VirtReg
))
665 // Test whether the physreg survives from the definition to the DBG_VALUE.
666 MCPhysReg SetToReg
= Reg
;
668 for (MachineBasicBlock::iterator I
= std::next(Definition
.getIterator()),
669 E
= DbgValue
->getIterator(); I
!= E
; ++I
) {
670 if (I
->modifiesRegister(Reg
, TRI
) || --Limit
== 0) {
671 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
677 for (MachineOperand
&MO
: DbgValue
->getDebugOperandsForReg(VirtReg
)) {
686 /// This method updates local state so that we know that PhysReg is the
687 /// proper container for VirtReg now. The physical register must not be used
688 /// for anything else when this is called.
689 void RegAllocFast::assignVirtToPhysReg(MachineInstr
&AtMI
, LiveReg
&LR
,
691 Register VirtReg
= LR
.VirtReg
;
692 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg
, TRI
) << " to "
693 << printReg(PhysReg
, TRI
) << '\n');
694 assert(LR
.PhysReg
== 0 && "Already assigned a physreg");
695 assert(PhysReg
!= 0 && "Trying to assign no register");
696 LR
.PhysReg
= PhysReg
;
697 setPhysRegState(PhysReg
, VirtReg
);
699 assignDanglingDebugValues(AtMI
, VirtReg
, PhysReg
);
702 static bool isCoalescable(const MachineInstr
&MI
) {
703 return MI
.isFullCopy();
706 Register
RegAllocFast::traceCopyChain(Register Reg
) const {
707 static const unsigned ChainLengthLimit
= 3;
710 if (Reg
.isPhysical())
712 assert(Reg
.isVirtual());
714 MachineInstr
*VRegDef
= MRI
->getUniqueVRegDef(Reg
);
715 if (!VRegDef
|| !isCoalescable(*VRegDef
))
717 Reg
= VRegDef
->getOperand(1).getReg();
718 } while (++C
<= ChainLengthLimit
);
722 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the
723 /// chain of copies to check whether we reach a physical register we can
725 Register
RegAllocFast::traceCopies(Register VirtReg
) const {
726 static const unsigned DefLimit
= 3;
728 for (const MachineInstr
&MI
: MRI
->def_instructions(VirtReg
)) {
729 if (isCoalescable(MI
)) {
730 Register Reg
= MI
.getOperand(1).getReg();
731 Reg
= traceCopyChain(Reg
);
742 /// Allocates a physical register for VirtReg.
743 void RegAllocFast::allocVirtReg(MachineInstr
&MI
, LiveReg
&LR
,
744 Register Hint0
, bool LookAtPhysRegUses
) {
745 const Register VirtReg
= LR
.VirtReg
;
746 assert(LR
.PhysReg
== 0);
748 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
749 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg
)
750 << " in class " << TRI
->getRegClassName(&RC
)
751 << " with hint " << printReg(Hint0
, TRI
) << '\n');
753 // Take hint when possible.
754 if (Hint0
.isPhysical() && MRI
->isAllocatable(Hint0
) && RC
.contains(Hint0
) &&
755 !isRegUsedInInstr(Hint0
, LookAtPhysRegUses
)) {
756 // Take hint if the register is currently free.
757 if (isPhysRegFree(Hint0
)) {
758 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0
, TRI
)
760 assignVirtToPhysReg(MI
, LR
, Hint0
);
763 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0
, TRI
)
772 Register Hint1
= traceCopies(VirtReg
);
773 if (Hint1
.isPhysical() && MRI
->isAllocatable(Hint1
) && RC
.contains(Hint1
) &&
774 !isRegUsedInInstr(Hint1
, LookAtPhysRegUses
)) {
775 // Take hint if the register is currently free.
776 if (isPhysRegFree(Hint1
)) {
777 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1
, TRI
)
779 assignVirtToPhysReg(MI
, LR
, Hint1
);
782 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1
, TRI
)
789 MCPhysReg BestReg
= 0;
790 unsigned BestCost
= spillImpossible
;
791 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
792 for (MCPhysReg PhysReg
: AllocationOrder
) {
793 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg
, TRI
) << ' ');
794 if (isRegUsedInInstr(PhysReg
, LookAtPhysRegUses
)) {
795 LLVM_DEBUG(dbgs() << "already used in instr.\n");
799 unsigned Cost
= calcSpillCost(PhysReg
);
800 LLVM_DEBUG(dbgs() << "Cost: " << Cost
<< " BestCost: " << BestCost
<< '\n');
801 // Immediate take a register with cost 0.
803 assignVirtToPhysReg(MI
, LR
, PhysReg
);
807 if (PhysReg
== Hint0
|| PhysReg
== Hint1
)
808 Cost
-= spillPrefBonus
;
810 if (Cost
< BestCost
) {
817 // Nothing we can do: Report an error and keep going with an invalid
819 if (MI
.isInlineAsm())
820 MI
.emitError("inline assembly requires more registers than available");
822 MI
.emitError("ran out of registers during register allocation");
829 displacePhysReg(MI
, BestReg
);
830 assignVirtToPhysReg(MI
, LR
, BestReg
);
833 void RegAllocFast::allocVirtRegUndef(MachineOperand
&MO
) {
834 assert(MO
.isUndef() && "expected undef use");
835 Register VirtReg
= MO
.getReg();
836 assert(Register::isVirtualRegister(VirtReg
) && "Expected virtreg");
838 LiveRegMap::const_iterator LRI
= findLiveVirtReg(VirtReg
);
840 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
841 PhysReg
= LRI
->PhysReg
;
843 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
844 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
845 assert(!AllocationOrder
.empty() && "Allocation order must not be empty");
846 PhysReg
= AllocationOrder
[0];
849 unsigned SubRegIdx
= MO
.getSubReg();
850 if (SubRegIdx
!= 0) {
851 PhysReg
= TRI
->getSubReg(PhysReg
, SubRegIdx
);
855 MO
.setIsRenamable(true);
858 /// Variation of defineVirtReg() with special handling for livethrough regs
859 /// (tied or earlyclobber) that may interfere with preassigned uses.
860 void RegAllocFast::defineLiveThroughVirtReg(MachineInstr
&MI
, unsigned OpNum
,
862 LiveRegMap::iterator LRI
= findLiveVirtReg(VirtReg
);
863 if (LRI
!= LiveVirtRegs
.end()) {
864 MCPhysReg PrevReg
= LRI
->PhysReg
;
865 if (PrevReg
!= 0 && isRegUsedInInstr(PrevReg
, true)) {
866 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg
, TRI
)
867 << " (tied/earlyclobber resolution)\n");
868 freePhysReg(PrevReg
);
870 allocVirtReg(MI
, *LRI
, 0, true);
871 MachineBasicBlock::iterator InsertBefore
=
872 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
873 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI
->PhysReg
, TRI
) << " to "
874 << printReg(PrevReg
, TRI
) << '\n');
875 BuildMI(*MBB
, InsertBefore
, MI
.getDebugLoc(),
876 TII
->get(TargetOpcode::COPY
), PrevReg
)
877 .addReg(LRI
->PhysReg
, llvm::RegState::Kill
);
879 MachineOperand
&MO
= MI
.getOperand(OpNum
);
880 if (MO
.getSubReg() && !MO
.isUndef()) {
884 return defineVirtReg(MI
, OpNum
, VirtReg
, true);
887 /// Allocates a register for VirtReg definition. Typically the register is
888 /// already assigned from a use of the virtreg, however we still need to
889 /// perform an allocation if:
890 /// - It is a dead definition without any uses.
891 /// - The value is live out and all uses are in different basic blocks.
892 void RegAllocFast::defineVirtReg(MachineInstr
&MI
, unsigned OpNum
,
893 Register VirtReg
, bool LookAtPhysRegUses
) {
894 assert(VirtReg
.isVirtual() && "Not a virtual register");
895 MachineOperand
&MO
= MI
.getOperand(OpNum
);
896 LiveRegMap::iterator LRI
;
898 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
901 if (mayLiveOut(VirtReg
)) {
904 // It is a dead def without the dead flag; add the flag now.
909 if (LRI
->PhysReg
== 0)
910 allocVirtReg(MI
, *LRI
, 0, LookAtPhysRegUses
);
912 assert(!isRegUsedInInstr(LRI
->PhysReg
, LookAtPhysRegUses
) &&
913 "TODO: preassign mismatch");
914 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg
, TRI
)
915 << " use existing assignment to "
916 << printReg(LRI
->PhysReg
, TRI
) << '\n');
919 MCPhysReg PhysReg
= LRI
->PhysReg
;
920 assert(PhysReg
!= 0 && "Register not assigned");
921 if (LRI
->Reloaded
|| LRI
->LiveOut
) {
922 if (!MI
.isImplicitDef()) {
923 MachineBasicBlock::iterator SpillBefore
=
924 std::next((MachineBasicBlock::iterator
)MI
.getIterator());
925 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI
->LiveOut
<< " RL: "
926 << LRI
->Reloaded
<< '\n');
927 bool Kill
= LRI
->LastUse
== nullptr;
928 spill(SpillBefore
, VirtReg
, PhysReg
, Kill
, LRI
->LiveOut
);
929 LRI
->LastUse
= nullptr;
931 LRI
->LiveOut
= false;
932 LRI
->Reloaded
= false;
934 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
935 BundleVirtRegsMap
[VirtReg
] = PhysReg
;
937 markRegUsedInInstr(PhysReg
);
938 setPhysReg(MI
, MO
, PhysReg
);
941 /// Allocates a register for a VirtReg use.
942 void RegAllocFast::useVirtReg(MachineInstr
&MI
, unsigned OpNum
,
944 assert(VirtReg
.isVirtual() && "Not a virtual register");
945 MachineOperand
&MO
= MI
.getOperand(OpNum
);
946 LiveRegMap::iterator LRI
;
948 std::tie(LRI
, New
) = LiveVirtRegs
.insert(LiveReg(VirtReg
));
950 MachineOperand
&MO
= MI
.getOperand(OpNum
);
952 if (mayLiveOut(VirtReg
)) {
955 // It is a last (killing) use without the kill flag; add the flag now.
960 assert((!MO
.isKill() || LRI
->LastUse
== &MI
) && "Invalid kill flag");
963 // If necessary allocate a register.
964 if (LRI
->PhysReg
== 0) {
965 assert(!MO
.isTied() && "tied op should be allocated");
967 if (MI
.isCopy() && MI
.getOperand(1).getSubReg() == 0) {
968 Hint
= MI
.getOperand(0).getReg();
969 assert(Hint
.isPhysical() &&
970 "Copy destination should already be assigned");
972 allocVirtReg(MI
, *LRI
, Hint
, false);
974 const TargetRegisterClass
&RC
= *MRI
->getRegClass(VirtReg
);
975 ArrayRef
<MCPhysReg
> AllocationOrder
= RegClassInfo
.getOrder(&RC
);
976 setPhysReg(MI
, MO
, *AllocationOrder
.begin());
983 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
984 BundleVirtRegsMap
[VirtReg
] = LRI
->PhysReg
;
986 markRegUsedInInstr(LRI
->PhysReg
);
987 setPhysReg(MI
, MO
, LRI
->PhysReg
);
990 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. This
991 /// may invalidate any operand pointers. Return true if the operand kills its
993 void RegAllocFast::setPhysReg(MachineInstr
&MI
, MachineOperand
&MO
,
995 if (!MO
.getSubReg()) {
997 MO
.setIsRenamable(true);
1001 // Handle subregister index.
1002 MO
.setReg(PhysReg
? TRI
->getSubReg(PhysReg
, MO
.getSubReg()) : MCRegister());
1003 MO
.setIsRenamable(true);
1004 // Note: We leave the subreg number around a little longer in case of defs.
1005 // This is so that the register freeing logic in allocateInstruction can still
1006 // recognize this as subregister defs. The code there will clear the number.
1010 // A kill flag implies killing the full register. Add corresponding super
1013 MI
.addRegisterKilled(PhysReg
, TRI
, true);
1017 // A <def,read-undef> of a sub-register requires an implicit def of the full
1019 if (MO
.isDef() && MO
.isUndef()) {
1021 MI
.addRegisterDead(PhysReg
, TRI
, true);
1023 MI
.addRegisterDefined(PhysReg
, TRI
);
1029 void RegAllocFast::dumpState() const {
1030 for (unsigned Unit
= 1, UnitE
= TRI
->getNumRegUnits(); Unit
!= UnitE
;
1032 switch (unsigned VirtReg
= RegUnitStates
[Unit
]) {
1035 case regPreAssigned
:
1036 dbgs() << " " << printRegUnit(Unit
, TRI
) << "[P]";
1039 llvm_unreachable("Should not have regLiveIn in map");
1041 dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '=' << printReg(VirtReg
);
1042 LiveRegMap::const_iterator I
= findLiveVirtReg(VirtReg
);
1043 assert(I
!= LiveVirtRegs
.end() && "have LiveVirtRegs entry");
1044 if (I
->LiveOut
|| I
->Reloaded
) {
1046 if (I
->LiveOut
) dbgs() << 'O';
1047 if (I
->Reloaded
) dbgs() << 'R';
1050 assert(TRI
->hasRegUnit(I
->PhysReg
, Unit
) && "inverse mapping present");
1056 // Check that LiveVirtRegs is the inverse.
1057 for (const LiveReg
&LR
: LiveVirtRegs
) {
1058 Register VirtReg
= LR
.VirtReg
;
1059 assert(VirtReg
.isVirtual() && "Bad map key");
1060 MCPhysReg PhysReg
= LR
.PhysReg
;
1062 assert(Register::isPhysicalRegister(PhysReg
) &&
1063 "mapped to physreg");
1064 for (MCRegUnitIterator
UI(PhysReg
, TRI
); UI
.isValid(); ++UI
) {
1065 assert(RegUnitStates
[*UI
] == VirtReg
&& "inverse map valid");
1072 /// Count number of defs consumed from each register class by \p Reg
1073 void RegAllocFast::addRegClassDefCounts(std::vector
<unsigned> &RegClassDefCounts
,
1074 Register Reg
) const {
1075 assert(RegClassDefCounts
.size() == TRI
->getNumRegClasses());
1077 if (Reg
.isVirtual()) {
1078 const TargetRegisterClass
*OpRC
= MRI
->getRegClass(Reg
);
1079 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1080 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1081 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1082 // FIXME: Consider aliasing sub/super registers.
1083 if (OpRC
->hasSubClassEq(IdxRC
))
1084 ++RegClassDefCounts
[RCIdx
];
1090 for (unsigned RCIdx
= 0, RCIdxEnd
= TRI
->getNumRegClasses();
1091 RCIdx
!= RCIdxEnd
; ++RCIdx
) {
1092 const TargetRegisterClass
*IdxRC
= TRI
->getRegClass(RCIdx
);
1093 for (MCRegAliasIterator
Alias(Reg
, TRI
, true); Alias
.isValid(); ++Alias
) {
1094 if (IdxRC
->contains(*Alias
)) {
1095 ++RegClassDefCounts
[RCIdx
];
1102 void RegAllocFast::allocateInstruction(MachineInstr
&MI
) {
1103 // The basic algorithm here is:
1104 // 1. Mark registers of def operands as free
1105 // 2. Allocate registers to use operands and place reload instructions for
1106 // registers displaced by the allocation.
1108 // However we need to handle some corner cases:
1109 // - pre-assigned defs and uses need to be handled before the other def/use
1110 // operands are processed to avoid the allocation heuristics clashing with
1111 // the pre-assignment.
1112 // - The "free def operands" step has to come last instead of first for tied
1113 // operands and early-clobbers.
1115 UsedInInstr
.clear();
1117 BundleVirtRegsMap
.clear();
1119 // Scan for special cases; Apply pre-assigned register defs to state.
1120 bool HasPhysRegUse
= false;
1121 bool HasRegMask
= false;
1122 bool HasVRegDef
= false;
1123 bool HasDef
= false;
1124 bool HasEarlyClobber
= false;
1125 bool NeedToAssignLiveThroughs
= false;
1126 for (MachineOperand
&MO
: MI
.operands()) {
1128 Register Reg
= MO
.getReg();
1129 if (Reg
.isVirtual()) {
1133 if (MO
.isEarlyClobber()) {
1134 HasEarlyClobber
= true;
1135 NeedToAssignLiveThroughs
= true;
1137 if (MO
.isTied() || (MO
.getSubReg() != 0 && !MO
.isUndef()))
1138 NeedToAssignLiveThroughs
= true;
1140 } else if (Reg
.isPhysical()) {
1141 if (!MRI
->isReserved(Reg
)) {
1144 bool displacedAny
= definePhysReg(MI
, Reg
);
1145 if (MO
.isEarlyClobber())
1146 HasEarlyClobber
= true;
1151 HasPhysRegUse
= true;
1154 } else if (MO
.isRegMask()) {
1156 RegMasks
.push_back(MO
.getRegMask());
1160 // Allocate virtreg defs.
1163 // Special handling for early clobbers, tied operands or subregister defs:
1164 // Compared to "normal" defs these:
1165 // - Must not use a register that is pre-assigned for a use operand.
1166 // - In order to solve tricky inline assembly constraints we change the
1167 // heuristic to figure out a good operand order before doing
1169 if (NeedToAssignLiveThroughs
) {
1170 DefOperandIndexes
.clear();
1171 PhysRegUses
.clear();
1173 // Track number of defs which may consume a register from the class.
1174 std::vector
<unsigned> RegClassDefCounts(TRI
->getNumRegClasses(), 0);
1175 assert(RegClassDefCounts
[0] == 0);
1177 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n");
1178 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1179 const MachineOperand
&MO
= MI
.getOperand(I
);
1182 Register Reg
= MO
.getReg();
1183 if (MO
.readsReg()) {
1184 if (Reg
.isPhysical()) {
1185 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg
, TRI
)
1187 markPhysRegUsedInInstr(Reg
);
1192 if (Reg
.isVirtual())
1193 DefOperandIndexes
.push_back(I
);
1195 addRegClassDefCounts(RegClassDefCounts
, Reg
);
1199 llvm::sort(DefOperandIndexes
, [&](uint16_t I0
, uint16_t I1
) {
1200 const MachineOperand
&MO0
= MI
.getOperand(I0
);
1201 const MachineOperand
&MO1
= MI
.getOperand(I1
);
1202 Register Reg0
= MO0
.getReg();
1203 Register Reg1
= MO1
.getReg();
1204 const TargetRegisterClass
&RC0
= *MRI
->getRegClass(Reg0
);
1205 const TargetRegisterClass
&RC1
= *MRI
->getRegClass(Reg1
);
1207 // Identify regclass that are easy to use up completely just in this
1209 unsigned ClassSize0
= RegClassInfo
.getOrder(&RC0
).size();
1210 unsigned ClassSize1
= RegClassInfo
.getOrder(&RC1
).size();
1212 bool SmallClass0
= ClassSize0
< RegClassDefCounts
[RC0
.getID()];
1213 bool SmallClass1
= ClassSize1
< RegClassDefCounts
[RC1
.getID()];
1214 if (SmallClass0
> SmallClass1
)
1216 if (SmallClass0
< SmallClass1
)
1219 // Allocate early clobbers and livethrough operands first.
1220 bool Livethrough0
= MO0
.isEarlyClobber() || MO0
.isTied() ||
1221 (MO0
.getSubReg() == 0 && !MO0
.isUndef());
1222 bool Livethrough1
= MO1
.isEarlyClobber() || MO1
.isTied() ||
1223 (MO1
.getSubReg() == 0 && !MO1
.isUndef());
1224 if (Livethrough0
> Livethrough1
)
1226 if (Livethrough0
< Livethrough1
)
1229 // Tie-break rule: operand index.
1233 for (uint16_t OpIdx
: DefOperandIndexes
) {
1234 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
1235 LLVM_DEBUG(dbgs() << "Allocating " << MO
<< '\n');
1236 unsigned Reg
= MO
.getReg();
1237 if (MO
.isEarlyClobber() || MO
.isTied() ||
1238 (MO
.getSubReg() && !MO
.isUndef())) {
1239 defineLiveThroughVirtReg(MI
, OpIdx
, Reg
);
1241 defineVirtReg(MI
, OpIdx
, Reg
);
1245 // Assign virtual register defs.
1246 for (unsigned I
= 0, E
= MI
.getNumOperands(); I
< E
; ++I
) {
1247 MachineOperand
&MO
= MI
.getOperand(I
);
1248 if (!MO
.isReg() || !MO
.isDef())
1250 Register Reg
= MO
.getReg();
1251 if (Reg
.isVirtual())
1252 defineVirtReg(MI
, I
, Reg
);
1257 // Free registers occupied by defs.
1258 // Iterate operands in reverse order, so we see the implicit super register
1259 // defs first (we added them earlier in case of <def,read-undef>).
1260 for (unsigned I
= MI
.getNumOperands(); I
-- > 0;) {
1261 MachineOperand
&MO
= MI
.getOperand(I
);
1262 if (!MO
.isReg() || !MO
.isDef())
1265 // subreg defs don't free the full register. We left the subreg number
1266 // around as a marker in setPhysReg() to recognize this case here.
1267 if (MO
.getSubReg() != 0) {
1272 assert((!MO
.isTied() || !isClobberedByRegMasks(MO
.getReg())) &&
1273 "tied def assigned to clobbered register");
1275 // Do not free tied operands and early clobbers.
1276 if (MO
.isTied() || MO
.isEarlyClobber())
1278 Register Reg
= MO
.getReg();
1281 assert(Reg
.isPhysical());
1282 if (MRI
->isReserved(Reg
))
1285 unmarkRegUsedInInstr(Reg
);
1289 // Displace clobbered registers.
1291 assert(!RegMasks
.empty() && "expected RegMask");
1293 for (const auto *RM
: RegMasks
)
1294 MRI
->addPhysRegsUsedFromRegMask(RM
);
1296 // Displace clobbered registers.
1297 for (const LiveReg
&LR
: LiveVirtRegs
) {
1298 MCPhysReg PhysReg
= LR
.PhysReg
;
1299 if (PhysReg
!= 0 && isClobberedByRegMasks(PhysReg
))
1300 displacePhysReg(MI
, PhysReg
);
1304 // Apply pre-assigned register uses to state.
1305 if (HasPhysRegUse
) {
1306 for (MachineOperand
&MO
: MI
.operands()) {
1307 if (!MO
.isReg() || !MO
.readsReg())
1309 Register Reg
= MO
.getReg();
1310 if (!Reg
.isPhysical())
1312 if (MRI
->isReserved(Reg
))
1314 bool displacedAny
= usePhysReg(MI
, Reg
);
1315 if (!displacedAny
&& !MRI
->isReserved(Reg
))
1320 // Allocate virtreg uses and insert reloads as necessary.
1321 bool HasUndefUse
= false;
1322 for (unsigned I
= 0; I
< MI
.getNumOperands(); ++I
) {
1323 MachineOperand
&MO
= MI
.getOperand(I
);
1324 if (!MO
.isReg() || !MO
.isUse())
1326 Register Reg
= MO
.getReg();
1327 if (!Reg
.isVirtual())
1336 // Populate MayLiveAcrossBlocks in case the use block is allocated before
1337 // the def block (removing the vreg uses).
1341 assert(!MO
.isInternalRead() && "Bundles not supported");
1342 assert(MO
.readsReg() && "reading use");
1343 useVirtReg(MI
, I
, Reg
);
1346 // Allocate undef operands. This is a separate step because in a situation
1347 // like ` = OP undef %X, %X` both operands need the same register assign
1348 // so we should perform the normal assignment first.
1350 for (MachineOperand
&MO
: MI
.uses()) {
1351 if (!MO
.isReg() || !MO
.isUse())
1353 Register Reg
= MO
.getReg();
1354 if (!Reg
.isVirtual())
1357 assert(MO
.isUndef() && "Should only have undef virtreg uses left");
1358 allocVirtRegUndef(MO
);
1362 // Free early clobbers.
1363 if (HasEarlyClobber
) {
1364 for (unsigned I
= MI
.getNumOperands(); I
-- > 0; ) {
1365 MachineOperand
&MO
= MI
.getOperand(I
);
1366 if (!MO
.isReg() || !MO
.isDef() || !MO
.isEarlyClobber())
1368 // subreg defs don't free the full register. We left the subreg number
1369 // around as a marker in setPhysReg() to recognize this case here.
1370 if (MO
.getSubReg() != 0) {
1375 Register Reg
= MO
.getReg();
1378 assert(Reg
.isPhysical() && "should have register assigned");
1380 // We sometimes get odd situations like:
1381 // early-clobber %x0 = INSTRUCTION %x0
1382 // which is semantically questionable as the early-clobber should
1383 // apply before the use. But in practice we consider the use to
1384 // happen before the early clobber now. Don't free the early clobber
1385 // register in this case.
1386 if (MI
.readsRegister(Reg
, TRI
))
1393 LLVM_DEBUG(dbgs() << "<< " << MI
);
1394 if (MI
.isCopy() && MI
.getOperand(0).getReg() == MI
.getOperand(1).getReg() &&
1395 MI
.getNumOperands() == 2) {
1396 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n");
1397 Coalesced
.push_back(&MI
);
1401 void RegAllocFast::handleDebugValue(MachineInstr
&MI
) {
1402 // Ignore DBG_VALUEs that aren't based on virtual registers. These are
1403 // mostly constants and frame indices.
1404 for (Register Reg
: MI
.getUsedDebugRegs()) {
1405 if (!Register::isVirtualRegister(Reg
))
1408 // Already spilled to a stackslot?
1409 int SS
= StackSlotForVirtReg
[Reg
];
1411 // Modify DBG_VALUE now that the value is in a spill slot.
1412 updateDbgValueForSpill(MI
, SS
, Reg
);
1413 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI
);
1417 // See if this virtual register has already been allocated to a physical
1418 // register or spilled to a stack slot.
1419 LiveRegMap::iterator LRI
= findLiveVirtReg(Reg
);
1420 SmallVector
<MachineOperand
*> DbgOps
;
1421 for (MachineOperand
&Op
: MI
.getDebugOperandsForReg(Reg
))
1422 DbgOps
.push_back(&Op
);
1424 if (LRI
!= LiveVirtRegs
.end() && LRI
->PhysReg
) {
1425 // Update every use of Reg within MI.
1426 for (auto &RegMO
: DbgOps
)
1427 setPhysReg(MI
, *RegMO
, LRI
->PhysReg
);
1429 DanglingDbgValues
[Reg
].push_back(&MI
);
1432 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so
1433 // that future spills of Reg will have DBG_VALUEs.
1434 LiveDbgValueMap
[Reg
].append(DbgOps
.begin(), DbgOps
.end());
1438 void RegAllocFast::handleBundle(MachineInstr
&MI
) {
1439 MachineBasicBlock::instr_iterator BundledMI
= MI
.getIterator();
1441 while (BundledMI
->isBundledWithPred()) {
1442 for (unsigned I
= 0; I
< BundledMI
->getNumOperands(); ++I
) {
1443 MachineOperand
&MO
= BundledMI
->getOperand(I
);
1447 Register Reg
= MO
.getReg();
1448 if (!Reg
.isVirtual())
1451 DenseMap
<Register
, MCPhysReg
>::iterator DI
;
1452 DI
= BundleVirtRegsMap
.find(Reg
);
1453 assert(DI
!= BundleVirtRegsMap
.end() && "Unassigned virtual register");
1455 setPhysReg(MI
, MO
, DI
->second
);
1462 void RegAllocFast::allocateBasicBlock(MachineBasicBlock
&MBB
) {
1464 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB
);
1466 RegUnitStates
.assign(TRI
->getNumRegUnits(), regFree
);
1467 assert(LiveVirtRegs
.empty() && "Mapping not cleared from last block?");
1469 for (auto &LiveReg
: MBB
.liveouts())
1470 setPhysRegState(LiveReg
.PhysReg
, regPreAssigned
);
1474 // Traverse block in reverse order allocating instructions one by one.
1475 for (MachineInstr
&MI
: reverse(MBB
)) {
1477 dbgs() << "\n>> " << MI
<< "Regs:";
1481 // Special handling for debug values. Note that they are not allowed to
1482 // affect codegen of the other instructions in any way.
1483 if (MI
.isDebugValue()) {
1484 handleDebugValue(MI
);
1488 allocateInstruction(MI
);
1490 // Once BUNDLE header is assigned registers, same assignments need to be
1491 // done for bundled MIs.
1492 if (MI
.getOpcode() == TargetOpcode::BUNDLE
) {
1498 dbgs() << "Begin Regs:";
1502 // Spill all physical registers holding virtual registers now.
1503 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n");
1506 // Erase all the coalesced copies. We are delaying it until now because
1507 // LiveVirtRegs might refer to the instrs.
1508 for (MachineInstr
*MI
: Coalesced
)
1510 NumCoalesced
+= Coalesced
.size();
1512 for (auto &UDBGPair
: DanglingDbgValues
) {
1513 for (MachineInstr
*DbgValue
: UDBGPair
.second
) {
1514 assert(DbgValue
->isDebugValue() && "expected DBG_VALUE");
1515 // Nothing to do if the vreg was spilled in the meantime.
1516 if (!DbgValue
->hasDebugOperandForReg(UDBGPair
.first
))
1518 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue
1520 DbgValue
->setDebugValueUndef();
1523 DanglingDbgValues
.clear();
1525 LLVM_DEBUG(MBB
.dump());
1528 bool RegAllocFast::runOnMachineFunction(MachineFunction
&MF
) {
1529 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1530 << "********** Function: " << MF
.getName() << '\n');
1531 MRI
= &MF
.getRegInfo();
1532 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1533 TRI
= STI
.getRegisterInfo();
1534 TII
= STI
.getInstrInfo();
1535 MFI
= &MF
.getFrameInfo();
1536 MRI
->freezeReservedRegs(MF
);
1537 RegClassInfo
.runOnMachineFunction(MF
);
1538 unsigned NumRegUnits
= TRI
->getNumRegUnits();
1539 UsedInInstr
.clear();
1540 UsedInInstr
.setUniverse(NumRegUnits
);
1541 PhysRegUses
.clear();
1542 PhysRegUses
.setUniverse(NumRegUnits
);
1544 // initialize the virtual->physical register map to have a 'null'
1545 // mapping for all virtual registers
1546 unsigned NumVirtRegs
= MRI
->getNumVirtRegs();
1547 StackSlotForVirtReg
.resize(NumVirtRegs
);
1548 LiveVirtRegs
.setUniverse(NumVirtRegs
);
1549 MayLiveAcrossBlocks
.clear();
1550 MayLiveAcrossBlocks
.resize(NumVirtRegs
);
1552 // Loop over all of the basic blocks, eliminating virtual register references
1553 for (MachineBasicBlock
&MBB
: MF
)
1554 allocateBasicBlock(MBB
);
1556 if (ClearVirtRegs
) {
1557 // All machine operands and other references to virtual registers have been
1558 // replaced. Remove the virtual registers.
1559 MRI
->clearVirtRegs();
1562 StackSlotForVirtReg
.clear();
1563 LiveDbgValueMap
.clear();
1567 FunctionPass
*llvm::createFastRegisterAllocator() {
1568 return new RegAllocFast();
1571 FunctionPass
*llvm::createFastRegisterAllocator(
1572 std::function
<bool(const TargetRegisterInfo
&TRI
,
1573 const TargetRegisterClass
&RC
)> Ftor
, bool ClearVirtRegs
) {
1574 return new RegAllocFast(Ftor
, ClearVirtRegs
);