1 //===- RegAllocGreedy.cpp - greedy register allocator ---------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the RAGreedy function pass for register allocation in
12 //===----------------------------------------------------------------------===//
14 #include "AllocationOrder.h"
15 #include "InterferenceCache.h"
16 #include "LiveDebugVariables.h"
17 #include "RegAllocBase.h"
18 #include "SpillPlacement.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/IndexedMap.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SetVector.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/ADT/StringRef.h"
31 #include "llvm/Analysis/AliasAnalysis.h"
32 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
33 #include "llvm/CodeGen/CalcSpillWeights.h"
34 #include "llvm/CodeGen/EdgeBundles.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervalUnion.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeEdit.h"
39 #include "llvm/CodeGen/LiveRegMatrix.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
43 #include "llvm/CodeGen/MachineDominators.h"
44 #include "llvm/CodeGen/MachineFrameInfo.h"
45 #include "llvm/CodeGen/MachineFunction.h"
46 #include "llvm/CodeGen/MachineFunctionPass.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineLoopInfo.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RegAllocRegistry.h"
53 #include "llvm/CodeGen/RegisterClassInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/Spiller.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/TargetSubtargetInfo.h"
59 #include "llvm/CodeGen/VirtRegMap.h"
60 #include "llvm/IR/Function.h"
61 #include "llvm/IR/LLVMContext.h"
62 #include "llvm/MC/MCRegisterInfo.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/BlockFrequency.h"
65 #include "llvm/Support/BranchProbability.h"
66 #include "llvm/Support/CommandLine.h"
67 #include "llvm/Support/Debug.h"
68 #include "llvm/Support/MathExtras.h"
69 #include "llvm/Support/Timer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Target/TargetMachine.h"
72 #include "llvm/IR/DebugInfoMetadata.h"
83 #define DEBUG_TYPE "regalloc"
85 STATISTIC(NumGlobalSplits
, "Number of split global live ranges");
86 STATISTIC(NumLocalSplits
, "Number of split local live ranges");
87 STATISTIC(NumEvicted
, "Number of interferences evicted");
89 static cl::opt
<SplitEditor::ComplementSpillMode
> SplitSpillMode(
90 "split-spill-mode", cl::Hidden
,
91 cl::desc("Spill mode for splitting live ranges"),
92 cl::values(clEnumValN(SplitEditor::SM_Partition
, "default", "Default"),
93 clEnumValN(SplitEditor::SM_Size
, "size", "Optimize for size"),
94 clEnumValN(SplitEditor::SM_Speed
, "speed", "Optimize for speed")),
95 cl::init(SplitEditor::SM_Speed
));
97 static cl::opt
<unsigned>
98 LastChanceRecoloringMaxDepth("lcr-max-depth", cl::Hidden
,
99 cl::desc("Last chance recoloring max depth"),
102 static cl::opt
<unsigned> LastChanceRecoloringMaxInterference(
103 "lcr-max-interf", cl::Hidden
,
104 cl::desc("Last chance recoloring maximum number of considered"
105 " interference at a time"),
108 static cl::opt
<bool> ExhaustiveSearch(
109 "exhaustive-register-search", cl::NotHidden
,
110 cl::desc("Exhaustive Search for registers bypassing the depth "
111 "and interference cutoffs of last chance recoloring"),
114 static cl::opt
<bool> EnableLocalReassignment(
115 "enable-local-reassign", cl::Hidden
,
116 cl::desc("Local reassignment can yield better allocation decisions, but "
117 "may be compile time intensive"),
120 static cl::opt
<bool> EnableDeferredSpilling(
121 "enable-deferred-spilling", cl::Hidden
,
122 cl::desc("Instead of spilling a variable right away, defer the actual "
123 "code insertion to the end of the allocation. That way the "
124 "allocator might still find a suitable coloring for this "
125 "variable because of other evicted variables."),
128 // FIXME: Find a good default for this flag and remove the flag.
129 static cl::opt
<unsigned>
130 CSRFirstTimeCost("regalloc-csr-first-time-cost",
131 cl::desc("Cost for first time use of callee-saved register."),
132 cl::init(0), cl::Hidden
);
134 static cl::opt
<bool> ConsiderLocalIntervalCost(
135 "consider-local-interval-cost", cl::Hidden
,
136 cl::desc("Consider the cost of local intervals created by a split "
137 "candidate when choosing the best split candidate."),
140 static RegisterRegAlloc
greedyRegAlloc("greedy", "greedy register allocator",
141 createGreedyRegisterAllocator
);
145 class RAGreedy
: public MachineFunctionPass
,
147 private LiveRangeEdit::Delegate
{
148 // Convenient shortcuts.
149 using PQueue
= std::priority_queue
<std::pair
<unsigned, unsigned>>;
150 using SmallLISet
= SmallPtrSet
<LiveInterval
*, 4>;
151 using SmallVirtRegSet
= SmallSet
<Register
, 16>;
156 // Shortcuts to some useful interface.
157 const TargetInstrInfo
*TII
;
158 const TargetRegisterInfo
*TRI
;
159 RegisterClassInfo RCI
;
162 SlotIndexes
*Indexes
;
163 MachineBlockFrequencyInfo
*MBFI
;
164 MachineDominatorTree
*DomTree
;
165 MachineLoopInfo
*Loops
;
166 MachineOptimizationRemarkEmitter
*ORE
;
167 EdgeBundles
*Bundles
;
168 SpillPlacement
*SpillPlacer
;
169 LiveDebugVariables
*DebugVars
;
173 std::unique_ptr
<Spiller
> SpillerInstance
;
175 unsigned NextCascade
;
176 std::unique_ptr
<VirtRegAuxInfo
> VRAI
;
178 // Live ranges pass through a number of stages as we try to allocate them.
179 // Some of the stages may also create new live ranges:
181 // - Region splitting.
182 // - Per-block splitting.
183 // - Local splitting.
186 // Ranges produced by one of the stages skip the previous stages when they are
187 // dequeued. This improves performance because we can skip interference checks
188 // that are unlikely to give any results. It also guarantees that the live
189 // range splitting algorithm terminates, something that is otherwise hard to
191 enum LiveRangeStage
{
192 /// Newly created live range that has never been queued.
195 /// Only attempt assignment and eviction. Then requeue as RS_Split.
198 /// Attempt live range splitting if assignment is impossible.
201 /// Attempt more aggressive live range splitting that is guaranteed to make
202 /// progress. This is used for split products that may not be making
206 /// Live range will be spilled. No more splitting will be attempted.
210 /// Live range is in memory. Because of other evictions, it might get moved
211 /// in a register in the end.
214 /// There is nothing more we can do to this live range. Abort compilation
215 /// if it can't be assigned.
219 // Enum CutOffStage to keep a track whether the register allocation failed
220 // because of the cutoffs encountered in last chance recoloring.
221 // Note: This is used as bitmask. New value should be next power of 2.
223 // No cutoffs encountered
226 // lcr-max-depth cutoff encountered
229 // lcr-max-interf cutoff encountered
236 static const char *const StageName
[];
239 // RegInfo - Keep additional information about each live range.
241 LiveRangeStage Stage
= RS_New
;
243 // Cascade - Eviction loop prevention. See canEvictInterference().
244 unsigned Cascade
= 0;
249 IndexedMap
<RegInfo
, VirtReg2IndexFunctor
> ExtraRegInfo
;
251 LiveRangeStage
getStage(const LiveInterval
&VirtReg
) const {
252 return ExtraRegInfo
[VirtReg
.reg()].Stage
;
255 void setStage(const LiveInterval
&VirtReg
, LiveRangeStage Stage
) {
256 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
257 ExtraRegInfo
[VirtReg
.reg()].Stage
= Stage
;
260 template<typename Iterator
>
261 void setStage(Iterator Begin
, Iterator End
, LiveRangeStage NewStage
) {
262 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
263 for (;Begin
!= End
; ++Begin
) {
264 Register Reg
= *Begin
;
265 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
266 ExtraRegInfo
[Reg
].Stage
= NewStage
;
270 /// Cost of evicting interference.
271 struct EvictionCost
{
272 unsigned BrokenHints
= 0; ///< Total number of broken hints.
273 float MaxWeight
= 0; ///< Maximum spill weight evicted.
275 EvictionCost() = default;
277 bool isMax() const { return BrokenHints
== ~0u; }
279 void setMax() { BrokenHints
= ~0u; }
281 void setBrokenHints(unsigned NHints
) { BrokenHints
= NHints
; }
283 bool operator<(const EvictionCost
&O
) const {
284 return std::tie(BrokenHints
, MaxWeight
) <
285 std::tie(O
.BrokenHints
, O
.MaxWeight
);
289 /// EvictionTrack - Keeps track of past evictions in order to optimize region
291 class EvictionTrack
{
295 std::pair
<Register
/* evictor */, MCRegister
/* physreg */>;
296 using EvicteeInfo
= llvm::DenseMap
<Register
/* evictee */, EvictorInfo
>;
299 /// Each Vreg that has been evicted in the last stage of selectOrSplit will
300 /// be mapped to the evictor Vreg and the PhysReg it was evicted from.
301 EvicteeInfo Evictees
;
304 /// Clear all eviction information.
305 void clear() { Evictees
.clear(); }
307 /// Clear eviction information for the given evictee Vreg.
308 /// E.g. when Vreg get's a new allocation, the old eviction info is no
310 /// \param Evictee The evictee Vreg for whom we want to clear collected
312 void clearEvicteeInfo(Register Evictee
) { Evictees
.erase(Evictee
); }
314 /// Track new eviction.
315 /// The Evictor vreg has evicted the Evictee vreg from Physreg.
316 /// \param PhysReg The physical register Evictee was evicted from.
317 /// \param Evictor The evictor Vreg that evicted Evictee.
318 /// \param Evictee The evictee Vreg.
319 void addEviction(MCRegister PhysReg
, Register Evictor
, Register Evictee
) {
320 Evictees
[Evictee
].first
= Evictor
;
321 Evictees
[Evictee
].second
= PhysReg
;
324 /// Return the Evictor Vreg which evicted Evictee Vreg from PhysReg.
325 /// \param Evictee The evictee vreg.
326 /// \return The Evictor vreg which evicted Evictee vreg from PhysReg. 0 if
327 /// nobody has evicted Evictee from PhysReg.
328 EvictorInfo
getEvictor(Register Evictee
) {
329 if (Evictees
.count(Evictee
)) {
330 return Evictees
[Evictee
];
333 return EvictorInfo(0, 0);
337 // Keeps track of past evictions in order to optimize region split decision.
338 EvictionTrack LastEvicted
;
341 std::unique_ptr
<SplitAnalysis
> SA
;
342 std::unique_ptr
<SplitEditor
> SE
;
344 /// Cached per-block interference maps
345 InterferenceCache IntfCache
;
347 /// All basic blocks where the current register has uses.
348 SmallVector
<SpillPlacement::BlockConstraint
, 8> SplitConstraints
;
350 /// Global live range splitting candidate info.
351 struct GlobalSplitCandidate
{
352 // Register intended for assignment, or 0.
355 // SplitKit interval index for this candidate.
358 // Interference for PhysReg.
359 InterferenceCache::Cursor Intf
;
361 // Bundles where this candidate should be live.
362 BitVector LiveBundles
;
363 SmallVector
<unsigned, 8> ActiveBlocks
;
365 void reset(InterferenceCache
&Cache
, MCRegister Reg
) {
368 Intf
.setPhysReg(Cache
, Reg
);
370 ActiveBlocks
.clear();
373 // Set B[I] = C for every live bundle where B[I] was NoCand.
374 unsigned getBundles(SmallVectorImpl
<unsigned> &B
, unsigned C
) {
376 for (unsigned I
: LiveBundles
.set_bits())
377 if (B
[I
] == NoCand
) {
385 /// Candidate info for each PhysReg in AllocationOrder.
386 /// This vector never shrinks, but grows to the size of the largest register
388 SmallVector
<GlobalSplitCandidate
, 32> GlobalCand
;
390 enum : unsigned { NoCand
= ~0u };
392 /// Candidate map. Each edge bundle is assigned to a GlobalCand entry, or to
393 /// NoCand which indicates the stack interval.
394 SmallVector
<unsigned, 32> BundleCand
;
396 /// Callee-save register cost, calculated once per machine function.
397 BlockFrequency CSRCost
;
399 /// Run or not the local reassignment heuristic. This information is
400 /// obtained from the TargetSubtargetInfo.
401 bool EnableLocalReassign
;
403 /// Enable or not the consideration of the cost of local intervals created
404 /// by a split candidate when choosing the best split candidate.
405 bool EnableAdvancedRASplitCost
;
407 /// Set of broken hints that may be reconciled later because of eviction.
408 SmallSetVector
<LiveInterval
*, 8> SetOfBrokenHints
;
410 /// The register cost values. This list will be recreated for each Machine
412 ArrayRef
<uint8_t> RegCosts
;
415 RAGreedy(const RegClassFilterFunc F
= allocateAllRegClasses
);
417 /// Return the pass name.
418 StringRef
getPassName() const override
{ return "Greedy Register Allocator"; }
420 /// RAGreedy analysis usage.
421 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
422 void releaseMemory() override
;
423 Spiller
&spiller() override
{ return *SpillerInstance
; }
424 void enqueueImpl(LiveInterval
*LI
) override
;
425 LiveInterval
*dequeue() override
;
426 MCRegister
selectOrSplit(LiveInterval
&,
427 SmallVectorImpl
<Register
> &) override
;
428 void aboutToRemoveInterval(LiveInterval
&) override
;
430 /// Perform register allocation.
431 bool runOnMachineFunction(MachineFunction
&mf
) override
;
433 MachineFunctionProperties
getRequiredProperties() const override
{
434 return MachineFunctionProperties().set(
435 MachineFunctionProperties::Property::NoPHIs
);
438 MachineFunctionProperties
getClearedProperties() const override
{
439 return MachineFunctionProperties().set(
440 MachineFunctionProperties::Property::IsSSA
);
446 MCRegister
selectOrSplitImpl(LiveInterval
&, SmallVectorImpl
<Register
> &,
447 SmallVirtRegSet
&, unsigned = 0);
449 bool LRE_CanEraseVirtReg(Register
) override
;
450 void LRE_WillShrinkVirtReg(Register
) override
;
451 void LRE_DidCloneVirtReg(Register
, Register
) override
;
452 void enqueue(PQueue
&CurQueue
, LiveInterval
*LI
);
453 LiveInterval
*dequeue(PQueue
&CurQueue
);
455 BlockFrequency
calcSpillCost();
456 bool addSplitConstraints(InterferenceCache::Cursor
, BlockFrequency
&);
457 bool addThroughConstraints(InterferenceCache::Cursor
, ArrayRef
<unsigned>);
458 bool growRegion(GlobalSplitCandidate
&Cand
);
459 bool splitCanCauseEvictionChain(Register Evictee
, GlobalSplitCandidate
&Cand
,
461 const AllocationOrder
&Order
);
462 bool splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
463 GlobalSplitCandidate
&Cand
, unsigned BBNumber
,
464 const AllocationOrder
&Order
);
465 BlockFrequency
calcGlobalSplitCost(GlobalSplitCandidate
&,
466 const AllocationOrder
&Order
,
467 bool *CanCauseEvictionChain
);
468 bool calcCompactRegion(GlobalSplitCandidate
&);
469 void splitAroundRegion(LiveRangeEdit
&, ArrayRef
<unsigned>);
470 void calcGapWeights(MCRegister
, SmallVectorImpl
<float> &);
471 Register
canReassign(LiveInterval
&VirtReg
, Register PrevReg
) const;
472 bool shouldEvict(LiveInterval
&A
, bool, LiveInterval
&B
, bool) const;
473 bool canEvictInterference(LiveInterval
&, MCRegister
, bool, EvictionCost
&,
474 const SmallVirtRegSet
&) const;
475 bool canEvictInterferenceInRange(const LiveInterval
&VirtReg
,
476 MCRegister PhysReg
, SlotIndex Start
,
477 SlotIndex End
, EvictionCost
&MaxCost
) const;
478 MCRegister
getCheapestEvicteeWeight(const AllocationOrder
&Order
,
479 const LiveInterval
&VirtReg
,
480 SlotIndex Start
, SlotIndex End
,
481 float *BestEvictWeight
) const;
482 void evictInterference(LiveInterval
&, MCRegister
,
483 SmallVectorImpl
<Register
> &);
484 bool mayRecolorAllInterferences(MCRegister PhysReg
, LiveInterval
&VirtReg
,
485 SmallLISet
&RecoloringCandidates
,
486 const SmallVirtRegSet
&FixedRegisters
);
488 MCRegister
tryAssign(LiveInterval
&, AllocationOrder
&,
489 SmallVectorImpl
<Register
>&,
490 const SmallVirtRegSet
&);
491 MCRegister
tryEvict(LiveInterval
&, AllocationOrder
&,
492 SmallVectorImpl
<Register
> &, uint8_t,
493 const SmallVirtRegSet
&);
494 MCRegister
tryRegionSplit(LiveInterval
&, AllocationOrder
&,
495 SmallVectorImpl
<Register
> &);
496 /// Calculate cost of region splitting.
497 unsigned calculateRegionSplitCost(LiveInterval
&VirtReg
,
498 AllocationOrder
&Order
,
499 BlockFrequency
&BestCost
,
500 unsigned &NumCands
, bool IgnoreCSR
,
501 bool *CanCauseEvictionChain
= nullptr);
502 /// Perform region splitting.
503 unsigned doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
505 SmallVectorImpl
<Register
> &NewVRegs
);
506 /// Check other options before using a callee-saved register for the first
508 MCRegister
tryAssignCSRFirstTime(LiveInterval
&VirtReg
,
509 AllocationOrder
&Order
, MCRegister PhysReg
,
510 uint8_t &CostPerUseLimit
,
511 SmallVectorImpl
<Register
> &NewVRegs
);
512 void initializeCSRCost();
513 unsigned tryBlockSplit(LiveInterval
&, AllocationOrder
&,
514 SmallVectorImpl
<Register
>&);
515 unsigned tryInstructionSplit(LiveInterval
&, AllocationOrder
&,
516 SmallVectorImpl
<Register
>&);
517 unsigned tryLocalSplit(LiveInterval
&, AllocationOrder
&,
518 SmallVectorImpl
<Register
>&);
519 unsigned trySplit(LiveInterval
&, AllocationOrder
&,
520 SmallVectorImpl
<Register
>&,
521 const SmallVirtRegSet
&);
522 unsigned tryLastChanceRecoloring(LiveInterval
&, AllocationOrder
&,
523 SmallVectorImpl
<Register
> &,
524 SmallVirtRegSet
&, unsigned);
525 bool tryRecoloringCandidates(PQueue
&, SmallVectorImpl
<Register
> &,
526 SmallVirtRegSet
&, unsigned);
527 void tryHintRecoloring(LiveInterval
&);
528 void tryHintsRecoloring();
530 /// Model the information carried by one end of a copy.
532 /// The frequency of the copy.
534 /// The virtual register or physical register.
536 /// Its currently assigned register.
537 /// In case of a physical register Reg == PhysReg.
540 HintInfo(BlockFrequency Freq
, Register Reg
, MCRegister PhysReg
)
541 : Freq(Freq
), Reg(Reg
), PhysReg(PhysReg
) {}
543 using HintsInfo
= SmallVector
<HintInfo
, 4>;
545 BlockFrequency
getBrokenHintFreq(const HintsInfo
&, MCRegister
);
546 void collectHintInfo(Register
, HintsInfo
&);
548 bool isUnusedCalleeSavedReg(MCRegister PhysReg
) const;
550 /// Greedy RA statistic to remark.
551 struct RAGreedyStats
{
552 unsigned Reloads
= 0;
553 unsigned FoldedReloads
= 0;
554 unsigned ZeroCostFoldedReloads
= 0;
556 unsigned FoldedSpills
= 0;
558 float ReloadsCost
= 0.0f
;
559 float FoldedReloadsCost
= 0.0f
;
560 float SpillsCost
= 0.0f
;
561 float FoldedSpillsCost
= 0.0f
;
562 float CopiesCost
= 0.0f
;
565 return !(Reloads
|| FoldedReloads
|| Spills
|| FoldedSpills
||
566 ZeroCostFoldedReloads
|| Copies
);
569 void add(RAGreedyStats other
) {
570 Reloads
+= other
.Reloads
;
571 FoldedReloads
+= other
.FoldedReloads
;
572 ZeroCostFoldedReloads
+= other
.ZeroCostFoldedReloads
;
573 Spills
+= other
.Spills
;
574 FoldedSpills
+= other
.FoldedSpills
;
575 Copies
+= other
.Copies
;
576 ReloadsCost
+= other
.ReloadsCost
;
577 FoldedReloadsCost
+= other
.FoldedReloadsCost
;
578 SpillsCost
+= other
.SpillsCost
;
579 FoldedSpillsCost
+= other
.FoldedSpillsCost
;
580 CopiesCost
+= other
.CopiesCost
;
583 void report(MachineOptimizationRemarkMissed
&R
);
586 /// Compute statistic for a basic block.
587 RAGreedyStats
computeStats(MachineBasicBlock
&MBB
);
589 /// Compute and report statistic through a remark.
590 RAGreedyStats
reportStats(MachineLoop
*L
);
592 /// Report the statistic for each loop.
596 } // end anonymous namespace
598 char RAGreedy::ID
= 0;
599 char &llvm::RAGreedyID
= RAGreedy::ID
;
601 INITIALIZE_PASS_BEGIN(RAGreedy
, "greedy",
602 "Greedy Register Allocator", false, false)
603 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariables
)
604 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
605 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
606 INITIALIZE_PASS_DEPENDENCY(RegisterCoalescer
)
607 INITIALIZE_PASS_DEPENDENCY(MachineScheduler
)
608 INITIALIZE_PASS_DEPENDENCY(LiveStacks
)
609 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
610 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
611 INITIALIZE_PASS_DEPENDENCY(VirtRegMap
)
612 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrix
)
613 INITIALIZE_PASS_DEPENDENCY(EdgeBundles
)
614 INITIALIZE_PASS_DEPENDENCY(SpillPlacement
)
615 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass
)
616 INITIALIZE_PASS_END(RAGreedy
, "greedy",
617 "Greedy Register Allocator", false, false)
620 const char *const RAGreedy::StageName
[] = {
631 // Hysteresis to use when comparing floats.
632 // This helps stabilize decisions based on float comparisons.
633 const float Hysteresis
= (2007 / 2048.0f
); // 0.97998046875
635 FunctionPass
* llvm::createGreedyRegisterAllocator() {
636 return new RAGreedy();
640 FunctionPass
* createGreedyRegisterAllocator(
641 std::function
<bool(const TargetRegisterInfo
&TRI
,
642 const TargetRegisterClass
&RC
)> Ftor
);
646 FunctionPass
* llvm::createGreedyRegisterAllocator(
647 std::function
<bool(const TargetRegisterInfo
&TRI
,
648 const TargetRegisterClass
&RC
)> Ftor
) {
649 return new RAGreedy(Ftor
);
652 RAGreedy::RAGreedy(RegClassFilterFunc F
):
653 MachineFunctionPass(ID
),
657 void RAGreedy::getAnalysisUsage(AnalysisUsage
&AU
) const {
658 AU
.setPreservesCFG();
659 AU
.addRequired
<MachineBlockFrequencyInfo
>();
660 AU
.addPreserved
<MachineBlockFrequencyInfo
>();
661 AU
.addRequired
<AAResultsWrapperPass
>();
662 AU
.addPreserved
<AAResultsWrapperPass
>();
663 AU
.addRequired
<LiveIntervals
>();
664 AU
.addPreserved
<LiveIntervals
>();
665 AU
.addRequired
<SlotIndexes
>();
666 AU
.addPreserved
<SlotIndexes
>();
667 AU
.addRequired
<LiveDebugVariables
>();
668 AU
.addPreserved
<LiveDebugVariables
>();
669 AU
.addRequired
<LiveStacks
>();
670 AU
.addPreserved
<LiveStacks
>();
671 AU
.addRequired
<MachineDominatorTree
>();
672 AU
.addPreserved
<MachineDominatorTree
>();
673 AU
.addRequired
<MachineLoopInfo
>();
674 AU
.addPreserved
<MachineLoopInfo
>();
675 AU
.addRequired
<VirtRegMap
>();
676 AU
.addPreserved
<VirtRegMap
>();
677 AU
.addRequired
<LiveRegMatrix
>();
678 AU
.addPreserved
<LiveRegMatrix
>();
679 AU
.addRequired
<EdgeBundles
>();
680 AU
.addRequired
<SpillPlacement
>();
681 AU
.addRequired
<MachineOptimizationRemarkEmitterPass
>();
682 MachineFunctionPass::getAnalysisUsage(AU
);
685 //===----------------------------------------------------------------------===//
686 // LiveRangeEdit delegate methods
687 //===----------------------------------------------------------------------===//
689 bool RAGreedy::LRE_CanEraseVirtReg(Register VirtReg
) {
690 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
691 if (VRM
->hasPhys(VirtReg
)) {
692 Matrix
->unassign(LI
);
693 aboutToRemoveInterval(LI
);
696 // Unassigned virtreg is probably in the priority queue.
697 // RegAllocBase will erase it after dequeueing.
698 // Nonetheless, clear the live-range so that the debug
699 // dump will show the right state for that VirtReg.
704 void RAGreedy::LRE_WillShrinkVirtReg(Register VirtReg
) {
705 if (!VRM
->hasPhys(VirtReg
))
708 // Register is assigned, put it back on the queue for reassignment.
709 LiveInterval
&LI
= LIS
->getInterval(VirtReg
);
710 Matrix
->unassign(LI
);
711 RegAllocBase::enqueue(&LI
);
714 void RAGreedy::LRE_DidCloneVirtReg(Register New
, Register Old
) {
715 // Cloning a register we haven't even heard about yet? Just ignore it.
716 if (!ExtraRegInfo
.inBounds(Old
))
719 // LRE may clone a virtual register because dead code elimination causes it to
720 // be split into connected components. The new components are much smaller
721 // than the original, so they should get a new chance at being assigned.
722 // same stage as the parent.
723 ExtraRegInfo
[Old
].Stage
= RS_Assign
;
724 ExtraRegInfo
.grow(New
);
725 ExtraRegInfo
[New
] = ExtraRegInfo
[Old
];
728 void RAGreedy::releaseMemory() {
729 SpillerInstance
.reset();
730 ExtraRegInfo
.clear();
734 void RAGreedy::enqueueImpl(LiveInterval
*LI
) { enqueue(Queue
, LI
); }
736 void RAGreedy::enqueue(PQueue
&CurQueue
, LiveInterval
*LI
) {
737 // Prioritize live ranges by size, assigning larger ranges first.
738 // The queue holds (size, reg) pairs.
739 const unsigned Size
= LI
->getSize();
740 const Register Reg
= LI
->reg();
741 assert(Reg
.isVirtual() && "Can only enqueue virtual registers");
744 ExtraRegInfo
.grow(Reg
);
745 if (ExtraRegInfo
[Reg
].Stage
== RS_New
)
746 ExtraRegInfo
[Reg
].Stage
= RS_Assign
;
748 if (ExtraRegInfo
[Reg
].Stage
== RS_Split
) {
749 // Unsplit ranges that couldn't be allocated immediately are deferred until
750 // everything else has been allocated.
752 } else if (ExtraRegInfo
[Reg
].Stage
== RS_Memory
) {
753 // Memory operand should be considered last.
754 // Change the priority such that Memory operand are assigned in
755 // the reverse order that they came in.
756 // TODO: Make this a member variable and probably do something about hints.
757 static unsigned MemOp
= 0;
760 // Giant live ranges fall back to the global assignment heuristic, which
761 // prevents excessive spilling in pathological cases.
762 bool ReverseLocal
= TRI
->reverseLocalAssignment();
763 const TargetRegisterClass
&RC
= *MRI
->getRegClass(Reg
);
764 bool ForceGlobal
= !ReverseLocal
&&
765 (Size
/ SlotIndex::InstrDist
) > (2 * RC
.getNumRegs());
767 if (ExtraRegInfo
[Reg
].Stage
== RS_Assign
&& !ForceGlobal
&& !LI
->empty() &&
768 LIS
->intervalIsInOneMBB(*LI
)) {
769 // Allocate original local ranges in linear instruction order. Since they
770 // are singly defined, this produces optimal coloring in the absence of
771 // global interference and other constraints.
773 Prio
= LI
->beginIndex().getInstrDistance(Indexes
->getLastIndex());
775 // Allocating bottom up may allow many short LRGs to be assigned first
776 // to one of the cheap registers. This could be much faster for very
777 // large blocks on targets with many physical registers.
778 Prio
= Indexes
->getZeroIndex().getInstrDistance(LI
->endIndex());
780 Prio
|= RC
.AllocationPriority
<< 24;
782 // Allocate global and split ranges in long->short order. Long ranges that
783 // don't fit should be spilled (or split) ASAP so they don't create
784 // interference. Mark a bit to prioritize global above local ranges.
785 Prio
= (1u << 29) + Size
;
787 Prio
|= RC
.AllocationPriority
<< 24;
789 // Mark a higher bit to prioritize global and local above RS_Split.
792 // Boost ranges that have a physical register hint.
793 if (VRM
->hasKnownPreference(Reg
))
796 // The virtual register number is a tie breaker for same-sized ranges.
797 // Give lower vreg numbers higher priority to assign them first.
798 CurQueue
.push(std::make_pair(Prio
, ~Reg
));
801 LiveInterval
*RAGreedy::dequeue() { return dequeue(Queue
); }
803 LiveInterval
*RAGreedy::dequeue(PQueue
&CurQueue
) {
804 if (CurQueue
.empty())
806 LiveInterval
*LI
= &LIS
->getInterval(~CurQueue
.top().second
);
811 //===----------------------------------------------------------------------===//
813 //===----------------------------------------------------------------------===//
815 /// tryAssign - Try to assign VirtReg to an available register.
816 MCRegister
RAGreedy::tryAssign(LiveInterval
&VirtReg
,
817 AllocationOrder
&Order
,
818 SmallVectorImpl
<Register
> &NewVRegs
,
819 const SmallVirtRegSet
&FixedRegisters
) {
821 for (auto I
= Order
.begin(), E
= Order
.end(); I
!= E
&& !PhysReg
; ++I
) {
823 if (!Matrix
->checkInterference(VirtReg
, *I
)) {
830 if (!PhysReg
.isValid())
833 // PhysReg is available, but there may be a better choice.
835 // If we missed a simple hint, try to cheaply evict interference from the
836 // preferred register.
837 if (Register Hint
= MRI
->getSimpleHint(VirtReg
.reg()))
838 if (Order
.isHint(Hint
)) {
839 MCRegister PhysHint
= Hint
.asMCReg();
840 LLVM_DEBUG(dbgs() << "missed hint " << printReg(PhysHint
, TRI
) << '\n');
841 EvictionCost MaxCost
;
842 MaxCost
.setBrokenHints(1);
843 if (canEvictInterference(VirtReg
, PhysHint
, true, MaxCost
,
845 evictInterference(VirtReg
, PhysHint
, NewVRegs
);
848 // Record the missed hint, we may be able to recover
849 // at the end if the surrounding allocation changed.
850 SetOfBrokenHints
.insert(&VirtReg
);
853 // Try to evict interference from a cheaper alternative.
854 uint8_t Cost
= RegCosts
[PhysReg
];
856 // Most registers have 0 additional cost.
860 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << " is available at cost "
862 MCRegister CheapReg
= tryEvict(VirtReg
, Order
, NewVRegs
, Cost
, FixedRegisters
);
863 return CheapReg
? CheapReg
: PhysReg
;
866 //===----------------------------------------------------------------------===//
867 // Interference eviction
868 //===----------------------------------------------------------------------===//
870 Register
RAGreedy::canReassign(LiveInterval
&VirtReg
, Register PrevReg
) const {
872 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
);
874 for (auto I
= Order
.begin(), E
= Order
.end(); I
!= E
&& !PhysReg
; ++I
) {
875 if ((*I
).id() == PrevReg
.id())
878 MCRegUnitIterator
Units(*I
, TRI
);
879 for (; Units
.isValid(); ++Units
) {
880 // Instantiate a "subquery", not to be confused with the Queries array.
881 LiveIntervalUnion::Query
subQ(VirtReg
, Matrix
->getLiveUnions()[*Units
]);
882 if (subQ
.checkInterference())
885 // If no units have interference, break out with the current PhysReg.
886 if (!Units
.isValid())
890 LLVM_DEBUG(dbgs() << "can reassign: " << VirtReg
<< " from "
891 << printReg(PrevReg
, TRI
) << " to "
892 << printReg(PhysReg
, TRI
) << '\n');
896 /// shouldEvict - determine if A should evict the assigned live range B. The
897 /// eviction policy defined by this function together with the allocation order
898 /// defined by enqueue() decides which registers ultimately end up being split
901 /// Cascade numbers are used to prevent infinite loops if this function is a
904 /// @param A The live range to be assigned.
905 /// @param IsHint True when A is about to be assigned to its preferred
907 /// @param B The live range to be evicted.
908 /// @param BreaksHint True when B is already assigned to its preferred register.
909 bool RAGreedy::shouldEvict(LiveInterval
&A
, bool IsHint
,
910 LiveInterval
&B
, bool BreaksHint
) const {
911 bool CanSplit
= getStage(B
) < RS_Spill
;
913 // Be fairly aggressive about following hints as long as the evictee can be
915 if (CanSplit
&& IsHint
&& !BreaksHint
)
918 if (A
.weight() > B
.weight()) {
919 LLVM_DEBUG(dbgs() << "should evict: " << B
<< " w= " << B
.weight() << '\n');
925 /// canEvictInterference - Return true if all interferences between VirtReg and
926 /// PhysReg can be evicted.
928 /// @param VirtReg Live range that is about to be assigned.
929 /// @param PhysReg Desired register for assignment.
930 /// @param IsHint True when PhysReg is VirtReg's preferred register.
931 /// @param MaxCost Only look for cheaper candidates and update with new cost
932 /// when returning true.
933 /// @returns True when interference can be evicted cheaper than MaxCost.
934 bool RAGreedy::canEvictInterference(
935 LiveInterval
&VirtReg
, MCRegister PhysReg
, bool IsHint
,
936 EvictionCost
&MaxCost
, const SmallVirtRegSet
&FixedRegisters
) const {
937 // It is only possible to evict virtual register interference.
938 if (Matrix
->checkInterference(VirtReg
, PhysReg
) > LiveRegMatrix::IK_VirtReg
)
941 bool IsLocal
= LIS
->intervalIsInOneMBB(VirtReg
);
943 // Find VirtReg's cascade number. This will be unassigned if VirtReg was never
944 // involved in an eviction before. If a cascade number was assigned, deny
945 // evicting anything with the same or a newer cascade number. This prevents
946 // infinite eviction loops.
948 // This works out so a register without a cascade number is allowed to evict
949 // anything, and it can be evicted by anything.
950 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg()].Cascade
;
952 Cascade
= NextCascade
;
955 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
956 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
957 // If there is 10 or more interferences, chances are one is heavier.
958 if (Q
.collectInterferingVRegs(10) >= 10)
961 // Check if any interfering live range is heavier than MaxWeight.
962 for (LiveInterval
*Intf
: reverse(Q
.interferingVRegs())) {
963 assert(Register::isVirtualRegister(Intf
->reg()) &&
964 "Only expecting virtual register interference from query");
966 // Do not allow eviction of a virtual register if we are in the middle
967 // of last-chance recoloring and this virtual register is one that we
968 // have scavenged a physical register for.
969 if (FixedRegisters
.count(Intf
->reg()))
972 // Never evict spill products. They cannot split or spill.
973 if (getStage(*Intf
) == RS_Done
)
975 // Once a live range becomes small enough, it is urgent that we find a
976 // register for it. This is indicated by an infinite spill weight. These
977 // urgent live ranges get to evict almost anything.
979 // Also allow urgent evictions of unspillable ranges from a strictly
980 // larger allocation order.
982 !VirtReg
.isSpillable() &&
983 (Intf
->isSpillable() ||
984 RegClassInfo
.getNumAllocatableRegs(MRI
->getRegClass(VirtReg
.reg())) <
985 RegClassInfo
.getNumAllocatableRegs(
986 MRI
->getRegClass(Intf
->reg())));
987 // Only evict older cascades or live ranges without a cascade.
988 unsigned IntfCascade
= ExtraRegInfo
[Intf
->reg()].Cascade
;
989 if (Cascade
<= IntfCascade
) {
992 // We permit breaking cascades for urgent evictions. It should be the
993 // last resort, though, so make it really expensive.
994 Cost
.BrokenHints
+= 10;
996 // Would this break a satisfied hint?
997 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg());
998 // Update eviction cost.
999 Cost
.BrokenHints
+= BreaksHint
;
1000 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight());
1001 // Abort if this would be too expensive.
1002 if (!(Cost
< MaxCost
))
1006 // Apply the eviction policy for non-urgent evictions.
1007 if (!shouldEvict(VirtReg
, IsHint
, *Intf
, BreaksHint
))
1009 // If !MaxCost.isMax(), then we're just looking for a cheap register.
1010 // Evicting another local live range in this case could lead to suboptimal
1012 if (!MaxCost
.isMax() && IsLocal
&& LIS
->intervalIsInOneMBB(*Intf
) &&
1013 (!EnableLocalReassign
|| !canReassign(*Intf
, PhysReg
))) {
1022 /// Return true if all interferences between VirtReg and PhysReg between
1023 /// Start and End can be evicted.
1025 /// \param VirtReg Live range that is about to be assigned.
1026 /// \param PhysReg Desired register for assignment.
1027 /// \param Start Start of range to look for interferences.
1028 /// \param End End of range to look for interferences.
1029 /// \param MaxCost Only look for cheaper candidates and update with new cost
1030 /// when returning true.
1031 /// \return True when interference can be evicted cheaper than MaxCost.
1032 bool RAGreedy::canEvictInterferenceInRange(const LiveInterval
&VirtReg
,
1033 MCRegister PhysReg
, SlotIndex Start
,
1035 EvictionCost
&MaxCost
) const {
1038 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1039 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
1040 Q
.collectInterferingVRegs();
1042 // Check if any interfering live range is heavier than MaxWeight.
1043 for (const LiveInterval
*Intf
: reverse(Q
.interferingVRegs())) {
1044 // Check if interference overlast the segment in interest.
1045 if (!Intf
->overlaps(Start
, End
))
1048 // Cannot evict non virtual reg interference.
1049 if (!Register::isVirtualRegister(Intf
->reg()))
1051 // Never evict spill products. They cannot split or spill.
1052 if (getStage(*Intf
) == RS_Done
)
1055 // Would this break a satisfied hint?
1056 bool BreaksHint
= VRM
->hasPreferredPhys(Intf
->reg());
1057 // Update eviction cost.
1058 Cost
.BrokenHints
+= BreaksHint
;
1059 Cost
.MaxWeight
= std::max(Cost
.MaxWeight
, Intf
->weight());
1060 // Abort if this would be too expensive.
1061 if (!(Cost
< MaxCost
))
1066 if (Cost
.MaxWeight
== 0)
1073 /// Return the physical register that will be best
1074 /// candidate for eviction by a local split interval that will be created
1075 /// between Start and End.
1077 /// \param Order The allocation order
1078 /// \param VirtReg Live range that is about to be assigned.
1079 /// \param Start Start of range to look for interferences
1080 /// \param End End of range to look for interferences
1081 /// \param BestEvictweight The eviction cost of that eviction
1082 /// \return The PhysReg which is the best candidate for eviction and the
1083 /// eviction cost in BestEvictweight
1084 MCRegister
RAGreedy::getCheapestEvicteeWeight(const AllocationOrder
&Order
,
1085 const LiveInterval
&VirtReg
,
1086 SlotIndex Start
, SlotIndex End
,
1087 float *BestEvictweight
) const {
1088 EvictionCost BestEvictCost
;
1089 BestEvictCost
.setMax();
1090 BestEvictCost
.MaxWeight
= VirtReg
.weight();
1091 MCRegister BestEvicteePhys
;
1093 // Go over all physical registers and find the best candidate for eviction
1094 for (MCRegister PhysReg
: Order
.getOrder()) {
1096 if (!canEvictInterferenceInRange(VirtReg
, PhysReg
, Start
, End
,
1101 BestEvicteePhys
= PhysReg
;
1103 *BestEvictweight
= BestEvictCost
.MaxWeight
;
1104 return BestEvicteePhys
;
1107 /// evictInterference - Evict any interferring registers that prevent VirtReg
1108 /// from being assigned to Physreg. This assumes that canEvictInterference
1110 void RAGreedy::evictInterference(LiveInterval
&VirtReg
, MCRegister PhysReg
,
1111 SmallVectorImpl
<Register
> &NewVRegs
) {
1112 // Make sure that VirtReg has a cascade number, and assign that cascade
1113 // number to every evicted register. These live ranges than then only be
1114 // evicted by a newer cascade, preventing infinite loops.
1115 unsigned Cascade
= ExtraRegInfo
[VirtReg
.reg()].Cascade
;
1117 Cascade
= ExtraRegInfo
[VirtReg
.reg()].Cascade
= NextCascade
++;
1119 LLVM_DEBUG(dbgs() << "evicting " << printReg(PhysReg
, TRI
)
1120 << " interference: Cascade " << Cascade
<< '\n');
1122 // Collect all interfering virtregs first.
1123 SmallVector
<LiveInterval
*, 8> Intfs
;
1124 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
1125 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
1126 // We usually have the interfering VRegs cached so collectInterferingVRegs()
1127 // should be fast, we may need to recalculate if when different physregs
1128 // overlap the same register unit so we had different SubRanges queried
1130 Q
.collectInterferingVRegs();
1131 ArrayRef
<LiveInterval
*> IVR
= Q
.interferingVRegs();
1132 Intfs
.append(IVR
.begin(), IVR
.end());
1135 // Evict them second. This will invalidate the queries.
1136 for (LiveInterval
*Intf
: Intfs
) {
1137 // The same VirtReg may be present in multiple RegUnits. Skip duplicates.
1138 if (!VRM
->hasPhys(Intf
->reg()))
1141 LastEvicted
.addEviction(PhysReg
, VirtReg
.reg(), Intf
->reg());
1143 Matrix
->unassign(*Intf
);
1144 assert((ExtraRegInfo
[Intf
->reg()].Cascade
< Cascade
||
1145 VirtReg
.isSpillable() < Intf
->isSpillable()) &&
1146 "Cannot decrease cascade number, illegal eviction");
1147 ExtraRegInfo
[Intf
->reg()].Cascade
= Cascade
;
1149 NewVRegs
.push_back(Intf
->reg());
1153 /// Returns true if the given \p PhysReg is a callee saved register and has not
1154 /// been used for allocation yet.
1155 bool RAGreedy::isUnusedCalleeSavedReg(MCRegister PhysReg
) const {
1156 MCRegister CSR
= RegClassInfo
.getLastCalleeSavedAlias(PhysReg
);
1160 return !Matrix
->isPhysRegUsed(PhysReg
);
1163 /// tryEvict - Try to evict all interferences for a physreg.
1164 /// @param VirtReg Currently unassigned virtual register.
1165 /// @param Order Physregs to try.
1166 /// @return Physreg to assign VirtReg, or 0.
1167 MCRegister
RAGreedy::tryEvict(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
1168 SmallVectorImpl
<Register
> &NewVRegs
,
1169 uint8_t CostPerUseLimit
,
1170 const SmallVirtRegSet
&FixedRegisters
) {
1171 NamedRegionTimer
T("evict", "Evict", TimerGroupName
, TimerGroupDescription
,
1172 TimePassesIsEnabled
);
1174 // Keep track of the cheapest interference seen so far.
1175 EvictionCost BestCost
;
1177 MCRegister BestPhys
;
1178 unsigned OrderLimit
= Order
.getOrder().size();
1180 // When we are just looking for a reduced cost per use, don't break any
1181 // hints, and only evict smaller spill weights.
1182 if (CostPerUseLimit
< uint8_t(~0u)) {
1183 BestCost
.BrokenHints
= 0;
1184 BestCost
.MaxWeight
= VirtReg
.weight();
1186 // Check of any registers in RC are below CostPerUseLimit.
1187 const TargetRegisterClass
*RC
= MRI
->getRegClass(VirtReg
.reg());
1188 uint8_t MinCost
= RegClassInfo
.getMinCost(RC
);
1189 if (MinCost
>= CostPerUseLimit
) {
1190 LLVM_DEBUG(dbgs() << TRI
->getRegClassName(RC
) << " minimum cost = "
1191 << MinCost
<< ", no cheaper registers to be found.\n");
1195 // It is normal for register classes to have a long tail of registers with
1196 // the same cost. We don't need to look at them if they're too expensive.
1197 if (RegCosts
[Order
.getOrder().back()] >= CostPerUseLimit
) {
1198 OrderLimit
= RegClassInfo
.getLastCostChange(RC
);
1199 LLVM_DEBUG(dbgs() << "Only trying the first " << OrderLimit
1204 for (auto I
= Order
.begin(), E
= Order
.getOrderLimitEnd(OrderLimit
); I
!= E
;
1206 MCRegister PhysReg
= *I
;
1208 if (RegCosts
[PhysReg
] >= CostPerUseLimit
)
1210 // The first use of a callee-saved register in a function has cost 1.
1211 // Don't start using a CSR when the CostPerUseLimit is low.
1212 if (CostPerUseLimit
== 1 && isUnusedCalleeSavedReg(PhysReg
)) {
1214 dbgs() << printReg(PhysReg
, TRI
) << " would clobber CSR "
1215 << printReg(RegClassInfo
.getLastCalleeSavedAlias(PhysReg
), TRI
)
1220 if (!canEvictInterference(VirtReg
, PhysReg
, false, BestCost
,
1227 // Stop if the hint can be used.
1232 if (BestPhys
.isValid())
1233 evictInterference(VirtReg
, BestPhys
, NewVRegs
);
1237 //===----------------------------------------------------------------------===//
1239 //===----------------------------------------------------------------------===//
1241 /// addSplitConstraints - Fill out the SplitConstraints vector based on the
1242 /// interference pattern in Physreg and its aliases. Add the constraints to
1243 /// SpillPlacement and return the static cost of this split in Cost, assuming
1244 /// that all preferences in SplitConstraints are met.
1245 /// Return false if there are no bundles with positive bias.
1246 bool RAGreedy::addSplitConstraints(InterferenceCache::Cursor Intf
,
1247 BlockFrequency
&Cost
) {
1248 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1250 // Reset interference dependent info.
1251 SplitConstraints
.resize(UseBlocks
.size());
1252 BlockFrequency StaticCost
= 0;
1253 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
1254 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
1255 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
1257 BC
.Number
= BI
.MBB
->getNumber();
1258 Intf
.moveToBlock(BC
.Number
);
1259 BC
.Entry
= BI
.LiveIn
? SpillPlacement::PrefReg
: SpillPlacement::DontCare
;
1260 BC
.Exit
= (BI
.LiveOut
&&
1261 !LIS
->getInstructionFromIndex(BI
.LastInstr
)->isImplicitDef())
1262 ? SpillPlacement::PrefReg
1263 : SpillPlacement::DontCare
;
1264 BC
.ChangesValue
= BI
.FirstDef
.isValid();
1266 if (!Intf
.hasInterference())
1269 // Number of spill code instructions to insert.
1272 // Interference for the live-in value.
1274 if (Intf
.first() <= Indexes
->getMBBStartIdx(BC
.Number
)) {
1275 BC
.Entry
= SpillPlacement::MustSpill
;
1277 } else if (Intf
.first() < BI
.FirstInstr
) {
1278 BC
.Entry
= SpillPlacement::PrefSpill
;
1280 } else if (Intf
.first() < BI
.LastInstr
) {
1284 // Abort if the spill cannot be inserted at the MBB' start
1285 if (((BC
.Entry
== SpillPlacement::MustSpill
) ||
1286 (BC
.Entry
== SpillPlacement::PrefSpill
)) &&
1287 SlotIndex::isEarlierInstr(BI
.FirstInstr
,
1288 SA
->getFirstSplitPoint(BC
.Number
)))
1292 // Interference for the live-out value.
1294 if (Intf
.last() >= SA
->getLastSplitPoint(BC
.Number
)) {
1295 BC
.Exit
= SpillPlacement::MustSpill
;
1297 } else if (Intf
.last() > BI
.LastInstr
) {
1298 BC
.Exit
= SpillPlacement::PrefSpill
;
1300 } else if (Intf
.last() > BI
.FirstInstr
) {
1305 // Accumulate the total frequency of inserted spill code.
1307 StaticCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1311 // Add constraints for use-blocks. Note that these are the only constraints
1312 // that may add a positive bias, it is downhill from here.
1313 SpillPlacer
->addConstraints(SplitConstraints
);
1314 return SpillPlacer
->scanActiveBundles();
1317 /// addThroughConstraints - Add constraints and links to SpillPlacer from the
1318 /// live-through blocks in Blocks.
1319 bool RAGreedy::addThroughConstraints(InterferenceCache::Cursor Intf
,
1320 ArrayRef
<unsigned> Blocks
) {
1321 const unsigned GroupSize
= 8;
1322 SpillPlacement::BlockConstraint BCS
[GroupSize
];
1323 unsigned TBS
[GroupSize
];
1324 unsigned B
= 0, T
= 0;
1326 for (unsigned Number
: Blocks
) {
1327 Intf
.moveToBlock(Number
);
1329 if (!Intf
.hasInterference()) {
1330 assert(T
< GroupSize
&& "Array overflow");
1332 if (++T
== GroupSize
) {
1333 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1339 assert(B
< GroupSize
&& "Array overflow");
1340 BCS
[B
].Number
= Number
;
1342 // Abort if the spill cannot be inserted at the MBB' start
1343 MachineBasicBlock
*MBB
= MF
->getBlockNumbered(Number
);
1344 auto FirstNonDebugInstr
= MBB
->getFirstNonDebugInstr();
1345 if (FirstNonDebugInstr
!= MBB
->end() &&
1346 SlotIndex::isEarlierInstr(LIS
->getInstructionIndex(*FirstNonDebugInstr
),
1347 SA
->getFirstSplitPoint(Number
)))
1349 // Interference for the live-in value.
1350 if (Intf
.first() <= Indexes
->getMBBStartIdx(Number
))
1351 BCS
[B
].Entry
= SpillPlacement::MustSpill
;
1353 BCS
[B
].Entry
= SpillPlacement::PrefSpill
;
1355 // Interference for the live-out value.
1356 if (Intf
.last() >= SA
->getLastSplitPoint(Number
))
1357 BCS
[B
].Exit
= SpillPlacement::MustSpill
;
1359 BCS
[B
].Exit
= SpillPlacement::PrefSpill
;
1361 if (++B
== GroupSize
) {
1362 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1367 SpillPlacer
->addConstraints(makeArrayRef(BCS
, B
));
1368 SpillPlacer
->addLinks(makeArrayRef(TBS
, T
));
1372 bool RAGreedy::growRegion(GlobalSplitCandidate
&Cand
) {
1373 // Keep track of through blocks that have not been added to SpillPlacer.
1374 BitVector Todo
= SA
->getThroughBlocks();
1375 SmallVectorImpl
<unsigned> &ActiveBlocks
= Cand
.ActiveBlocks
;
1376 unsigned AddedTo
= 0;
1378 unsigned Visited
= 0;
1382 ArrayRef
<unsigned> NewBundles
= SpillPlacer
->getRecentPositive();
1383 // Find new through blocks in the periphery of PrefRegBundles.
1384 for (unsigned Bundle
: NewBundles
) {
1385 // Look at all blocks connected to Bundle in the full graph.
1386 ArrayRef
<unsigned> Blocks
= Bundles
->getBlocks(Bundle
);
1387 for (unsigned Block
: Blocks
) {
1388 if (!Todo
.test(Block
))
1391 // This is a new through block. Add it to SpillPlacer later.
1392 ActiveBlocks
.push_back(Block
);
1398 // Any new blocks to add?
1399 if (ActiveBlocks
.size() == AddedTo
)
1402 // Compute through constraints from the interference, or assume that all
1403 // through blocks prefer spilling when forming compact regions.
1404 auto NewBlocks
= makeArrayRef(ActiveBlocks
).slice(AddedTo
);
1406 if (!addThroughConstraints(Cand
.Intf
, NewBlocks
))
1409 // Provide a strong negative bias on through blocks to prevent unwanted
1410 // liveness on loop backedges.
1411 SpillPlacer
->addPrefSpill(NewBlocks
, /* Strong= */ true);
1412 AddedTo
= ActiveBlocks
.size();
1414 // Perhaps iterating can enable more bundles?
1415 SpillPlacer
->iterate();
1417 LLVM_DEBUG(dbgs() << ", v=" << Visited
);
1421 /// calcCompactRegion - Compute the set of edge bundles that should be live
1422 /// when splitting the current live range into compact regions. Compact
1423 /// regions can be computed without looking at interference. They are the
1424 /// regions formed by removing all the live-through blocks from the live range.
1426 /// Returns false if the current live range is already compact, or if the
1427 /// compact regions would form single block regions anyway.
1428 bool RAGreedy::calcCompactRegion(GlobalSplitCandidate
&Cand
) {
1429 // Without any through blocks, the live range is already compact.
1430 if (!SA
->getNumThroughBlocks())
1433 // Compact regions don't correspond to any physreg.
1434 Cand
.reset(IntfCache
, MCRegister::NoRegister
);
1436 LLVM_DEBUG(dbgs() << "Compact region bundles");
1438 // Use the spill placer to determine the live bundles. GrowRegion pretends
1439 // that all the through blocks have interference when PhysReg is unset.
1440 SpillPlacer
->prepare(Cand
.LiveBundles
);
1442 // The static split cost will be zero since Cand.Intf reports no interference.
1443 BlockFrequency Cost
;
1444 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1445 LLVM_DEBUG(dbgs() << ", none.\n");
1449 if (!growRegion(Cand
)) {
1450 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1454 SpillPlacer
->finish();
1456 if (!Cand
.LiveBundles
.any()) {
1457 LLVM_DEBUG(dbgs() << ", none.\n");
1462 for (int I
: Cand
.LiveBundles
.set_bits())
1463 dbgs() << " EB#" << I
;
1469 /// calcSpillCost - Compute how expensive it would be to split the live range in
1470 /// SA around all use blocks instead of forming bundle regions.
1471 BlockFrequency
RAGreedy::calcSpillCost() {
1472 BlockFrequency Cost
= 0;
1473 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1474 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
1475 unsigned Number
= BI
.MBB
->getNumber();
1476 // We normally only need one spill instruction - a load or a store.
1477 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1479 // Unless the value is redefined in the block.
1480 if (BI
.LiveIn
&& BI
.LiveOut
&& BI
.FirstDef
)
1481 Cost
+= SpillPlacer
->getBlockFrequency(Number
);
1486 /// Check if splitting Evictee will create a local split interval in
1487 /// basic block number BBNumber that may cause a bad eviction chain. This is
1488 /// intended to prevent bad eviction sequences like:
1489 /// movl %ebp, 8(%esp) # 4-byte Spill
1500 /// movl 16(%esp), %ebp # 4 - byte Reload
1502 /// Such sequences are created in 2 scenarios:
1505 /// %0 is evicted from physreg0 by %1.
1506 /// Evictee %0 is intended for region splitting with split candidate
1507 /// physreg0 (the reg %0 was evicted from).
1508 /// Region splitting creates a local interval because of interference with the
1509 /// evictor %1 (normally region splitting creates 2 interval, the "by reg"
1510 /// and "by stack" intervals and local interval created when interference
1512 /// One of the split intervals ends up evicting %2 from physreg1.
1513 /// Evictee %2 is intended for region splitting with split candidate
1515 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1518 /// %0 is evicted from physreg0 by %1.
1519 /// %2 is evicted from physreg2 by %3 etc.
1520 /// Evictee %0 is intended for region splitting with split candidate
1522 /// Region splitting creates a local interval because of interference with the
1524 /// One of the split intervals ends up evicting back original evictor %1
1525 /// from physreg0 (the reg %0 was evicted from).
1526 /// Another evictee %2 is intended for region splitting with split candidate
1528 /// One of the split intervals ends up evicting %3 from physreg2, etc.
1530 /// \param Evictee The register considered to be split.
1531 /// \param Cand The split candidate that determines the physical register
1532 /// we are splitting for and the interferences.
1533 /// \param BBNumber The number of a BB for which the region split process will
1534 /// create a local split interval.
1535 /// \param Order The physical registers that may get evicted by a split
1536 /// artifact of Evictee.
1537 /// \return True if splitting Evictee may cause a bad eviction chain, false
1539 bool RAGreedy::splitCanCauseEvictionChain(Register Evictee
,
1540 GlobalSplitCandidate
&Cand
,
1542 const AllocationOrder
&Order
) {
1543 EvictionTrack::EvictorInfo VregEvictorInfo
= LastEvicted
.getEvictor(Evictee
);
1544 unsigned Evictor
= VregEvictorInfo
.first
;
1545 MCRegister PhysReg
= VregEvictorInfo
.second
;
1547 // No actual evictor.
1548 if (!Evictor
|| !PhysReg
)
1551 float MaxWeight
= 0;
1552 MCRegister FutureEvictedPhysReg
=
1553 getCheapestEvicteeWeight(Order
, LIS
->getInterval(Evictee
),
1554 Cand
.Intf
.first(), Cand
.Intf
.last(), &MaxWeight
);
1556 // The bad eviction chain occurs when either the split candidate is the
1557 // evicting reg or one of the split artifact will evict the evicting reg.
1558 if ((PhysReg
!= Cand
.PhysReg
) && (PhysReg
!= FutureEvictedPhysReg
))
1561 Cand
.Intf
.moveToBlock(BBNumber
);
1563 // Check to see if the Evictor contains interference (with Evictee) in the
1564 // given BB. If so, this interference caused the eviction of Evictee from
1565 // PhysReg. This suggest that we will create a local interval during the
1566 // region split to avoid this interference This local interval may cause a bad
1568 if (!LIS
->hasInterval(Evictor
))
1570 LiveInterval
&EvictorLI
= LIS
->getInterval(Evictor
);
1571 if (EvictorLI
.FindSegmentContaining(Cand
.Intf
.first()) == EvictorLI
.end())
1574 // Now, check to see if the local interval we will create is going to be
1575 // expensive enough to evict somebody If so, this may cause a bad eviction
1577 float splitArtifactWeight
=
1578 VRAI
->futureWeight(LIS
->getInterval(Evictee
),
1579 Cand
.Intf
.first().getPrevIndex(), Cand
.Intf
.last());
1580 if (splitArtifactWeight
>= 0 && splitArtifactWeight
< MaxWeight
)
1586 /// Check if splitting VirtRegToSplit will create a local split interval
1587 /// in basic block number BBNumber that may cause a spill.
1589 /// \param VirtRegToSplit The register considered to be split.
1590 /// \param Cand The split candidate that determines the physical
1591 /// register we are splitting for and the interferences.
1592 /// \param BBNumber The number of a BB for which the region split process
1593 /// will create a local split interval.
1594 /// \param Order The physical registers that may get evicted by a
1595 /// split artifact of VirtRegToSplit.
1596 /// \return True if splitting VirtRegToSplit may cause a spill, false
1598 bool RAGreedy::splitCanCauseLocalSpill(unsigned VirtRegToSplit
,
1599 GlobalSplitCandidate
&Cand
,
1601 const AllocationOrder
&Order
) {
1602 Cand
.Intf
.moveToBlock(BBNumber
);
1604 // Check if the local interval will find a non interfereing assignment.
1605 for (auto PhysReg
: Order
.getOrder()) {
1606 if (!Matrix
->checkInterference(Cand
.Intf
.first().getPrevIndex(),
1607 Cand
.Intf
.last(), PhysReg
))
1611 // The local interval is not able to find non interferencing assignment
1612 // and not able to evict a less worthy interval, therfore, it can cause a
1617 /// calcGlobalSplitCost - Return the global split cost of following the split
1618 /// pattern in LiveBundles. This cost should be added to the local cost of the
1619 /// interference pattern in SplitConstraints.
1621 BlockFrequency
RAGreedy::calcGlobalSplitCost(GlobalSplitCandidate
&Cand
,
1622 const AllocationOrder
&Order
,
1623 bool *CanCauseEvictionChain
) {
1624 BlockFrequency GlobalCost
= 0;
1625 const BitVector
&LiveBundles
= Cand
.LiveBundles
;
1626 Register VirtRegToSplit
= SA
->getParent().reg();
1627 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1628 for (unsigned I
= 0; I
!= UseBlocks
.size(); ++I
) {
1629 const SplitAnalysis::BlockInfo
&BI
= UseBlocks
[I
];
1630 SpillPlacement::BlockConstraint
&BC
= SplitConstraints
[I
];
1631 bool RegIn
= LiveBundles
[Bundles
->getBundle(BC
.Number
, false)];
1632 bool RegOut
= LiveBundles
[Bundles
->getBundle(BC
.Number
, true)];
1635 Cand
.Intf
.moveToBlock(BC
.Number
);
1636 // Check wheather a local interval is going to be created during the region
1637 // split. Calculate adavanced spilt cost (cost of local intervals) if option
1639 if (EnableAdvancedRASplitCost
&& Cand
.Intf
.hasInterference() && BI
.LiveIn
&&
1640 BI
.LiveOut
&& RegIn
&& RegOut
) {
1642 if (CanCauseEvictionChain
&&
1643 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, BC
.Number
, Order
)) {
1644 // This interference causes our eviction from this assignment, we might
1645 // evict somebody else and eventually someone will spill, add that cost.
1646 // See splitCanCauseEvictionChain for detailed description of scenarios.
1647 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1648 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1650 *CanCauseEvictionChain
= true;
1652 } else if (splitCanCauseLocalSpill(VirtRegToSplit
, Cand
, BC
.Number
,
1654 // This interference causes local interval to spill, add that cost.
1655 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1656 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1661 Ins
+= RegIn
!= (BC
.Entry
== SpillPlacement::PrefReg
);
1663 Ins
+= RegOut
!= (BC
.Exit
== SpillPlacement::PrefReg
);
1665 GlobalCost
+= SpillPlacer
->getBlockFrequency(BC
.Number
);
1668 for (unsigned Number
: Cand
.ActiveBlocks
) {
1669 bool RegIn
= LiveBundles
[Bundles
->getBundle(Number
, false)];
1670 bool RegOut
= LiveBundles
[Bundles
->getBundle(Number
, true)];
1671 if (!RegIn
&& !RegOut
)
1673 if (RegIn
&& RegOut
) {
1674 // We need double spill code if this block has interference.
1675 Cand
.Intf
.moveToBlock(Number
);
1676 if (Cand
.Intf
.hasInterference()) {
1677 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1678 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1680 // Check wheather a local interval is going to be created during the
1682 if (EnableAdvancedRASplitCost
&& CanCauseEvictionChain
&&
1683 splitCanCauseEvictionChain(VirtRegToSplit
, Cand
, Number
, Order
)) {
1684 // This interference cause our eviction from this assignment, we might
1685 // evict somebody else, add that cost.
1686 // See splitCanCauseEvictionChain for detailed description of
1688 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1689 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1691 *CanCauseEvictionChain
= true;
1696 // live-in / stack-out or stack-in live-out.
1697 GlobalCost
+= SpillPlacer
->getBlockFrequency(Number
);
1702 /// splitAroundRegion - Split the current live range around the regions
1703 /// determined by BundleCand and GlobalCand.
1705 /// Before calling this function, GlobalCand and BundleCand must be initialized
1706 /// so each bundle is assigned to a valid candidate, or NoCand for the
1707 /// stack-bound bundles. The shared SA/SE SplitAnalysis and SplitEditor
1708 /// objects must be initialized for the current live range, and intervals
1709 /// created for the used candidates.
1711 /// @param LREdit The LiveRangeEdit object handling the current split.
1712 /// @param UsedCands List of used GlobalCand entries. Every BundleCand value
1713 /// must appear in this list.
1714 void RAGreedy::splitAroundRegion(LiveRangeEdit
&LREdit
,
1715 ArrayRef
<unsigned> UsedCands
) {
1716 // These are the intervals created for new global ranges. We may create more
1717 // intervals for local ranges.
1718 const unsigned NumGlobalIntvs
= LREdit
.size();
1719 LLVM_DEBUG(dbgs() << "splitAroundRegion with " << NumGlobalIntvs
1721 assert(NumGlobalIntvs
&& "No global intervals configured");
1723 // Isolate even single instructions when dealing with a proper sub-class.
1724 // That guarantees register class inflation for the stack interval because it
1726 Register Reg
= SA
->getParent().reg();
1727 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
1729 // First handle all the blocks with uses.
1730 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
1731 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
1732 unsigned Number
= BI
.MBB
->getNumber();
1733 unsigned IntvIn
= 0, IntvOut
= 0;
1734 SlotIndex IntfIn
, IntfOut
;
1736 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1737 if (CandIn
!= NoCand
) {
1738 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1739 IntvIn
= Cand
.IntvIdx
;
1740 Cand
.Intf
.moveToBlock(Number
);
1741 IntfIn
= Cand
.Intf
.first();
1745 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1746 if (CandOut
!= NoCand
) {
1747 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1748 IntvOut
= Cand
.IntvIdx
;
1749 Cand
.Intf
.moveToBlock(Number
);
1750 IntfOut
= Cand
.Intf
.last();
1754 // Create separate intervals for isolated blocks with multiple uses.
1755 if (!IntvIn
&& !IntvOut
) {
1756 LLVM_DEBUG(dbgs() << printMBBReference(*BI
.MBB
) << " isolated.\n");
1757 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
1758 SE
->splitSingleBlock(BI
);
1762 if (IntvIn
&& IntvOut
)
1763 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1765 SE
->splitRegInBlock(BI
, IntvIn
, IntfIn
);
1767 SE
->splitRegOutBlock(BI
, IntvOut
, IntfOut
);
1770 // Handle live-through blocks. The relevant live-through blocks are stored in
1771 // the ActiveBlocks list with each candidate. We need to filter out
1773 BitVector Todo
= SA
->getThroughBlocks();
1774 for (unsigned c
= 0; c
!= UsedCands
.size(); ++c
) {
1775 ArrayRef
<unsigned> Blocks
= GlobalCand
[UsedCands
[c
]].ActiveBlocks
;
1776 for (unsigned Number
: Blocks
) {
1777 if (!Todo
.test(Number
))
1781 unsigned IntvIn
= 0, IntvOut
= 0;
1782 SlotIndex IntfIn
, IntfOut
;
1784 unsigned CandIn
= BundleCand
[Bundles
->getBundle(Number
, false)];
1785 if (CandIn
!= NoCand
) {
1786 GlobalSplitCandidate
&Cand
= GlobalCand
[CandIn
];
1787 IntvIn
= Cand
.IntvIdx
;
1788 Cand
.Intf
.moveToBlock(Number
);
1789 IntfIn
= Cand
.Intf
.first();
1792 unsigned CandOut
= BundleCand
[Bundles
->getBundle(Number
, true)];
1793 if (CandOut
!= NoCand
) {
1794 GlobalSplitCandidate
&Cand
= GlobalCand
[CandOut
];
1795 IntvOut
= Cand
.IntvIdx
;
1796 Cand
.Intf
.moveToBlock(Number
);
1797 IntfOut
= Cand
.Intf
.last();
1799 if (!IntvIn
&& !IntvOut
)
1801 SE
->splitLiveThroughBlock(Number
, IntvIn
, IntfIn
, IntvOut
, IntfOut
);
1807 SmallVector
<unsigned, 8> IntvMap
;
1808 SE
->finish(&IntvMap
);
1809 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
1811 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
1812 unsigned OrigBlocks
= SA
->getNumLiveBlocks();
1814 // Sort out the new intervals created by splitting. We get four kinds:
1815 // - Remainder intervals should not be split again.
1816 // - Candidate intervals can be assigned to Cand.PhysReg.
1817 // - Block-local splits are candidates for local splitting.
1818 // - DCE leftovers should go back on the queue.
1819 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
1820 LiveInterval
&Reg
= LIS
->getInterval(LREdit
.get(I
));
1822 // Ignore old intervals from DCE.
1823 if (getStage(Reg
) != RS_New
)
1826 // Remainder interval. Don't try splitting again, spill if it doesn't
1828 if (IntvMap
[I
] == 0) {
1829 setStage(Reg
, RS_Spill
);
1833 // Global intervals. Allow repeated splitting as long as the number of live
1834 // blocks is strictly decreasing.
1835 if (IntvMap
[I
] < NumGlobalIntvs
) {
1836 if (SA
->countLiveBlocks(&Reg
) >= OrigBlocks
) {
1837 LLVM_DEBUG(dbgs() << "Main interval covers the same " << OrigBlocks
1838 << " blocks as original.\n");
1839 // Don't allow repeated splitting as a safe guard against looping.
1840 setStage(Reg
, RS_Split2
);
1845 // Other intervals are treated as new. This includes local intervals created
1846 // for blocks with multiple uses, and anything created by DCE.
1850 MF
->verify(this, "After splitting live range around region");
1853 MCRegister
RAGreedy::tryRegionSplit(LiveInterval
&VirtReg
,
1854 AllocationOrder
&Order
,
1855 SmallVectorImpl
<Register
> &NewVRegs
) {
1856 if (!TRI
->shouldRegionSplitForVirtReg(*MF
, VirtReg
))
1857 return MCRegister::NoRegister
;
1858 unsigned NumCands
= 0;
1859 BlockFrequency SpillCost
= calcSpillCost();
1860 BlockFrequency BestCost
;
1862 // Check if we can split this live range around a compact region.
1863 bool HasCompact
= calcCompactRegion(GlobalCand
.front());
1865 // Yes, keep GlobalCand[0] as the compact region candidate.
1867 BestCost
= BlockFrequency::getMaxFrequency();
1869 // No benefit from the compact region, our fallback will be per-block
1870 // splitting. Make sure we find a solution that is cheaper than spilling.
1871 BestCost
= SpillCost
;
1872 LLVM_DEBUG(dbgs() << "Cost of isolating all blocks = ";
1873 MBFI
->printBlockFreq(dbgs(), BestCost
) << '\n');
1876 bool CanCauseEvictionChain
= false;
1878 calculateRegionSplitCost(VirtReg
, Order
, BestCost
, NumCands
,
1879 false /*IgnoreCSR*/, &CanCauseEvictionChain
);
1881 // Split candidates with compact regions can cause a bad eviction sequence.
1882 // See splitCanCauseEvictionChain for detailed description of scenarios.
1883 // To avoid it, we need to comapre the cost with the spill cost and not the
1884 // current max frequency.
1885 if (HasCompact
&& (BestCost
> SpillCost
) && (BestCand
!= NoCand
) &&
1886 CanCauseEvictionChain
) {
1887 return MCRegister::NoRegister
;
1890 // No solutions found, fall back to single block splitting.
1891 if (!HasCompact
&& BestCand
== NoCand
)
1892 return MCRegister::NoRegister
;
1894 return doRegionSplit(VirtReg
, BestCand
, HasCompact
, NewVRegs
);
1897 unsigned RAGreedy::calculateRegionSplitCost(LiveInterval
&VirtReg
,
1898 AllocationOrder
&Order
,
1899 BlockFrequency
&BestCost
,
1900 unsigned &NumCands
, bool IgnoreCSR
,
1901 bool *CanCauseEvictionChain
) {
1902 unsigned BestCand
= NoCand
;
1903 for (MCPhysReg PhysReg
: Order
) {
1905 if (IgnoreCSR
&& isUnusedCalleeSavedReg(PhysReg
))
1908 // Discard bad candidates before we run out of interference cache cursors.
1909 // This will only affect register classes with a lot of registers (>32).
1910 if (NumCands
== IntfCache
.getMaxCursors()) {
1911 unsigned WorstCount
= ~0u;
1913 for (unsigned CandIndex
= 0; CandIndex
!= NumCands
; ++CandIndex
) {
1914 if (CandIndex
== BestCand
|| !GlobalCand
[CandIndex
].PhysReg
)
1916 unsigned Count
= GlobalCand
[CandIndex
].LiveBundles
.count();
1917 if (Count
< WorstCount
) {
1923 GlobalCand
[Worst
] = GlobalCand
[NumCands
];
1924 if (BestCand
== NumCands
)
1928 if (GlobalCand
.size() <= NumCands
)
1929 GlobalCand
.resize(NumCands
+1);
1930 GlobalSplitCandidate
&Cand
= GlobalCand
[NumCands
];
1931 Cand
.reset(IntfCache
, PhysReg
);
1933 SpillPlacer
->prepare(Cand
.LiveBundles
);
1934 BlockFrequency Cost
;
1935 if (!addSplitConstraints(Cand
.Intf
, Cost
)) {
1936 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tno positive bundles\n");
1939 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << "\tstatic = ";
1940 MBFI
->printBlockFreq(dbgs(), Cost
));
1941 if (Cost
>= BestCost
) {
1943 if (BestCand
== NoCand
)
1944 dbgs() << " worse than no bundles\n";
1946 dbgs() << " worse than "
1947 << printReg(GlobalCand
[BestCand
].PhysReg
, TRI
) << '\n';
1951 if (!growRegion(Cand
)) {
1952 LLVM_DEBUG(dbgs() << ", cannot spill all interferences.\n");
1956 SpillPlacer
->finish();
1958 // No live bundles, defer to splitSingleBlocks().
1959 if (!Cand
.LiveBundles
.any()) {
1960 LLVM_DEBUG(dbgs() << " no bundles.\n");
1964 bool HasEvictionChain
= false;
1965 Cost
+= calcGlobalSplitCost(Cand
, Order
, &HasEvictionChain
);
1967 dbgs() << ", total = ";
1968 MBFI
->printBlockFreq(dbgs(), Cost
) << " with bundles";
1969 for (int I
: Cand
.LiveBundles
.set_bits())
1970 dbgs() << " EB#" << I
;
1973 if (Cost
< BestCost
) {
1974 BestCand
= NumCands
;
1976 // See splitCanCauseEvictionChain for detailed description of bad
1977 // eviction chain scenarios.
1978 if (CanCauseEvictionChain
)
1979 *CanCauseEvictionChain
= HasEvictionChain
;
1984 if (CanCauseEvictionChain
&& BestCand
!= NoCand
) {
1985 // See splitCanCauseEvictionChain for detailed description of bad
1986 // eviction chain scenarios.
1987 LLVM_DEBUG(dbgs() << "Best split candidate of vreg "
1988 << printReg(VirtReg
.reg(), TRI
) << " may ");
1989 if (!(*CanCauseEvictionChain
))
1990 LLVM_DEBUG(dbgs() << "not ");
1991 LLVM_DEBUG(dbgs() << "cause bad eviction chain\n");
1997 unsigned RAGreedy::doRegionSplit(LiveInterval
&VirtReg
, unsigned BestCand
,
1999 SmallVectorImpl
<Register
> &NewVRegs
) {
2000 SmallVector
<unsigned, 8> UsedCands
;
2001 // Prepare split editor.
2002 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2003 SE
->reset(LREdit
, SplitSpillMode
);
2005 // Assign all edge bundles to the preferred candidate, or NoCand.
2006 BundleCand
.assign(Bundles
->getNumBundles(), NoCand
);
2008 // Assign bundles for the best candidate region.
2009 if (BestCand
!= NoCand
) {
2010 GlobalSplitCandidate
&Cand
= GlobalCand
[BestCand
];
2011 if (unsigned B
= Cand
.getBundles(BundleCand
, BestCand
)) {
2012 UsedCands
.push_back(BestCand
);
2013 Cand
.IntvIdx
= SE
->openIntv();
2014 LLVM_DEBUG(dbgs() << "Split for " << printReg(Cand
.PhysReg
, TRI
) << " in "
2015 << B
<< " bundles, intv " << Cand
.IntvIdx
<< ".\n");
2020 // Assign bundles for the compact region.
2022 GlobalSplitCandidate
&Cand
= GlobalCand
.front();
2023 assert(!Cand
.PhysReg
&& "Compact region has no physreg");
2024 if (unsigned B
= Cand
.getBundles(BundleCand
, 0)) {
2025 UsedCands
.push_back(0);
2026 Cand
.IntvIdx
= SE
->openIntv();
2027 LLVM_DEBUG(dbgs() << "Split for compact region in " << B
2028 << " bundles, intv " << Cand
.IntvIdx
<< ".\n");
2033 splitAroundRegion(LREdit
, UsedCands
);
2037 //===----------------------------------------------------------------------===//
2038 // Per-Block Splitting
2039 //===----------------------------------------------------------------------===//
2041 /// tryBlockSplit - Split a global live range around every block with uses. This
2042 /// creates a lot of local live ranges, that will be split by tryLocalSplit if
2043 /// they don't allocate.
2044 unsigned RAGreedy::tryBlockSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2045 SmallVectorImpl
<Register
> &NewVRegs
) {
2046 assert(&SA
->getParent() == &VirtReg
&& "Live range wasn't analyzed");
2047 Register Reg
= VirtReg
.reg();
2048 bool SingleInstrs
= RegClassInfo
.isProperSubClass(MRI
->getRegClass(Reg
));
2049 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2050 SE
->reset(LREdit
, SplitSpillMode
);
2051 ArrayRef
<SplitAnalysis::BlockInfo
> UseBlocks
= SA
->getUseBlocks();
2052 for (const SplitAnalysis::BlockInfo
&BI
: UseBlocks
) {
2053 if (SA
->shouldSplitSingleBlock(BI
, SingleInstrs
))
2054 SE
->splitSingleBlock(BI
);
2056 // No blocks were split.
2060 // We did split for some blocks.
2061 SmallVector
<unsigned, 8> IntvMap
;
2062 SE
->finish(&IntvMap
);
2064 // Tell LiveDebugVariables about the new ranges.
2065 DebugVars
->splitRegister(Reg
, LREdit
.regs(), *LIS
);
2067 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2069 // Sort out the new intervals created by splitting. The remainder interval
2070 // goes straight to spilling, the new local ranges get to stay RS_New.
2071 for (unsigned I
= 0, E
= LREdit
.size(); I
!= E
; ++I
) {
2072 LiveInterval
&LI
= LIS
->getInterval(LREdit
.get(I
));
2073 if (getStage(LI
) == RS_New
&& IntvMap
[I
] == 0)
2074 setStage(LI
, RS_Spill
);
2078 MF
->verify(this, "After splitting live range around basic blocks");
2082 //===----------------------------------------------------------------------===//
2083 // Per-Instruction Splitting
2084 //===----------------------------------------------------------------------===//
2086 /// Get the number of allocatable registers that match the constraints of \p Reg
2087 /// on \p MI and that are also in \p SuperRC.
2088 static unsigned getNumAllocatableRegsForConstraints(
2089 const MachineInstr
*MI
, Register Reg
, const TargetRegisterClass
*SuperRC
,
2090 const TargetInstrInfo
*TII
, const TargetRegisterInfo
*TRI
,
2091 const RegisterClassInfo
&RCI
) {
2092 assert(SuperRC
&& "Invalid register class");
2094 const TargetRegisterClass
*ConstrainedRC
=
2095 MI
->getRegClassConstraintEffectForVReg(Reg
, SuperRC
, TII
, TRI
,
2096 /* ExploreBundle */ true);
2099 return RCI
.getNumAllocatableRegs(ConstrainedRC
);
2102 /// tryInstructionSplit - Split a live range around individual instructions.
2103 /// This is normally not worthwhile since the spiller is doing essentially the
2104 /// same thing. However, when the live range is in a constrained register
2105 /// class, it may help to insert copies such that parts of the live range can
2106 /// be moved to a larger register class.
2108 /// This is similar to spilling to a larger register class.
2110 RAGreedy::tryInstructionSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2111 SmallVectorImpl
<Register
> &NewVRegs
) {
2112 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
2113 // There is no point to this if there are no larger sub-classes.
2114 if (!RegClassInfo
.isProperSubClass(CurRC
))
2117 // Always enable split spill mode, since we're effectively spilling to a
2119 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2120 SE
->reset(LREdit
, SplitEditor::SM_Size
);
2122 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2123 if (Uses
.size() <= 1)
2126 LLVM_DEBUG(dbgs() << "Split around " << Uses
.size()
2127 << " individual instrs.\n");
2129 const TargetRegisterClass
*SuperRC
=
2130 TRI
->getLargestLegalSuperClass(CurRC
, *MF
);
2131 unsigned SuperRCNumAllocatableRegs
= RCI
.getNumAllocatableRegs(SuperRC
);
2132 // Split around every non-copy instruction if this split will relax
2133 // the constraints on the virtual register.
2134 // Otherwise, splitting just inserts uncoalescable copies that do not help
2136 for (const auto &Use
: Uses
) {
2137 if (const MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Use
))
2138 if (MI
->isFullCopy() ||
2139 SuperRCNumAllocatableRegs
==
2140 getNumAllocatableRegsForConstraints(MI
, VirtReg
.reg(), SuperRC
,
2142 LLVM_DEBUG(dbgs() << " skip:\t" << Use
<< '\t' << *MI
);
2146 SlotIndex SegStart
= SE
->enterIntvBefore(Use
);
2147 SlotIndex SegStop
= SE
->leaveIntvAfter(Use
);
2148 SE
->useIntv(SegStart
, SegStop
);
2151 if (LREdit
.empty()) {
2152 LLVM_DEBUG(dbgs() << "All uses were copies.\n");
2156 SmallVector
<unsigned, 8> IntvMap
;
2157 SE
->finish(&IntvMap
);
2158 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
2159 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
2161 // Assign all new registers to RS_Spill. This was the last chance.
2162 setStage(LREdit
.begin(), LREdit
.end(), RS_Spill
);
2166 //===----------------------------------------------------------------------===//
2168 //===----------------------------------------------------------------------===//
2170 /// calcGapWeights - Compute the maximum spill weight that needs to be evicted
2171 /// in order to use PhysReg between two entries in SA->UseSlots.
2173 /// GapWeight[I] represents the gap between UseSlots[I] and UseSlots[I + 1].
2175 void RAGreedy::calcGapWeights(MCRegister PhysReg
,
2176 SmallVectorImpl
<float> &GapWeight
) {
2177 assert(SA
->getUseBlocks().size() == 1 && "Not a local interval");
2178 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2179 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2180 const unsigned NumGaps
= Uses
.size()-1;
2182 // Start and end points for the interference check.
2183 SlotIndex StartIdx
=
2184 BI
.LiveIn
? BI
.FirstInstr
.getBaseIndex() : BI
.FirstInstr
;
2186 BI
.LiveOut
? BI
.LastInstr
.getBoundaryIndex() : BI
.LastInstr
;
2188 GapWeight
.assign(NumGaps
, 0.0f
);
2190 // Add interference from each overlapping register.
2191 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2192 if (!Matrix
->query(const_cast<LiveInterval
&>(SA
->getParent()), *Units
)
2193 .checkInterference())
2196 // We know that VirtReg is a continuous interval from FirstInstr to
2197 // LastInstr, so we don't need InterferenceQuery.
2199 // Interference that overlaps an instruction is counted in both gaps
2200 // surrounding the instruction. The exception is interference before
2201 // StartIdx and after StopIdx.
2203 LiveIntervalUnion::SegmentIter IntI
=
2204 Matrix
->getLiveUnions()[*Units
] .find(StartIdx
);
2205 for (unsigned Gap
= 0; IntI
.valid() && IntI
.start() < StopIdx
; ++IntI
) {
2206 // Skip the gaps before IntI.
2207 while (Uses
[Gap
+1].getBoundaryIndex() < IntI
.start())
2208 if (++Gap
== NumGaps
)
2213 // Update the gaps covered by IntI.
2214 const float weight
= IntI
.value()->weight();
2215 for (; Gap
!= NumGaps
; ++Gap
) {
2216 GapWeight
[Gap
] = std::max(GapWeight
[Gap
], weight
);
2217 if (Uses
[Gap
+1].getBaseIndex() >= IntI
.stop())
2225 // Add fixed interference.
2226 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2227 const LiveRange
&LR
= LIS
->getRegUnit(*Units
);
2228 LiveRange::const_iterator I
= LR
.find(StartIdx
);
2229 LiveRange::const_iterator E
= LR
.end();
2231 // Same loop as above. Mark any overlapped gaps as HUGE_VALF.
2232 for (unsigned Gap
= 0; I
!= E
&& I
->start
< StopIdx
; ++I
) {
2233 while (Uses
[Gap
+1].getBoundaryIndex() < I
->start
)
2234 if (++Gap
== NumGaps
)
2239 for (; Gap
!= NumGaps
; ++Gap
) {
2240 GapWeight
[Gap
] = huge_valf
;
2241 if (Uses
[Gap
+1].getBaseIndex() >= I
->end
)
2250 /// tryLocalSplit - Try to split VirtReg into smaller intervals inside its only
2253 unsigned RAGreedy::tryLocalSplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2254 SmallVectorImpl
<Register
> &NewVRegs
) {
2255 // TODO: the function currently only handles a single UseBlock; it should be
2256 // possible to generalize.
2257 if (SA
->getUseBlocks().size() != 1)
2260 const SplitAnalysis::BlockInfo
&BI
= SA
->getUseBlocks().front();
2262 // Note that it is possible to have an interval that is live-in or live-out
2263 // while only covering a single block - A phi-def can use undef values from
2264 // predecessors, and the block could be a single-block loop.
2265 // We don't bother doing anything clever about such a case, we simply assume
2266 // that the interval is continuous from FirstInstr to LastInstr. We should
2267 // make sure that we don't do anything illegal to such an interval, though.
2269 ArrayRef
<SlotIndex
> Uses
= SA
->getUseSlots();
2270 if (Uses
.size() <= 2)
2272 const unsigned NumGaps
= Uses
.size()-1;
2275 dbgs() << "tryLocalSplit: ";
2276 for (const auto &Use
: Uses
)
2277 dbgs() << ' ' << Use
;
2281 // If VirtReg is live across any register mask operands, compute a list of
2282 // gaps with register masks.
2283 SmallVector
<unsigned, 8> RegMaskGaps
;
2284 if (Matrix
->checkRegMaskInterference(VirtReg
)) {
2285 // Get regmask slots for the whole block.
2286 ArrayRef
<SlotIndex
> RMS
= LIS
->getRegMaskSlotsInBlock(BI
.MBB
->getNumber());
2287 LLVM_DEBUG(dbgs() << RMS
.size() << " regmasks in block:");
2288 // Constrain to VirtReg's live range.
2290 llvm::lower_bound(RMS
, Uses
.front().getRegSlot()) - RMS
.begin();
2291 unsigned RE
= RMS
.size();
2292 for (unsigned I
= 0; I
!= NumGaps
&& RI
!= RE
; ++I
) {
2293 // Look for Uses[I] <= RMS <= Uses[I + 1].
2294 assert(!SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
]));
2295 if (SlotIndex::isEarlierInstr(Uses
[I
+ 1], RMS
[RI
]))
2297 // Skip a regmask on the same instruction as the last use. It doesn't
2298 // overlap the live range.
2299 if (SlotIndex::isSameInstr(Uses
[I
+ 1], RMS
[RI
]) && I
+ 1 == NumGaps
)
2301 LLVM_DEBUG(dbgs() << ' ' << RMS
[RI
] << ':' << Uses
[I
] << '-'
2303 RegMaskGaps
.push_back(I
);
2304 // Advance ri to the next gap. A regmask on one of the uses counts in
2306 while (RI
!= RE
&& SlotIndex::isEarlierInstr(RMS
[RI
], Uses
[I
+ 1]))
2309 LLVM_DEBUG(dbgs() << '\n');
2312 // Since we allow local split results to be split again, there is a risk of
2313 // creating infinite loops. It is tempting to require that the new live
2314 // ranges have less instructions than the original. That would guarantee
2315 // convergence, but it is too strict. A live range with 3 instructions can be
2316 // split 2+3 (including the COPY), and we want to allow that.
2318 // Instead we use these rules:
2320 // 1. Allow any split for ranges with getStage() < RS_Split2. (Except for the
2321 // noop split, of course).
2322 // 2. Require progress be made for ranges with getStage() == RS_Split2. All
2323 // the new ranges must have fewer instructions than before the split.
2324 // 3. New ranges with the same number of instructions are marked RS_Split2,
2325 // smaller ranges are marked RS_New.
2327 // These rules allow a 3 -> 2+3 split once, which we need. They also prevent
2328 // excessive splitting and infinite loops.
2330 bool ProgressRequired
= getStage(VirtReg
) >= RS_Split2
;
2332 // Best split candidate.
2333 unsigned BestBefore
= NumGaps
;
2334 unsigned BestAfter
= 0;
2337 const float blockFreq
=
2338 SpillPlacer
->getBlockFrequency(BI
.MBB
->getNumber()).getFrequency() *
2339 (1.0f
/ MBFI
->getEntryFreq());
2340 SmallVector
<float, 8> GapWeight
;
2342 for (MCPhysReg PhysReg
: Order
) {
2344 // Keep track of the largest spill weight that would need to be evicted in
2345 // order to make use of PhysReg between UseSlots[I] and UseSlots[I + 1].
2346 calcGapWeights(PhysReg
, GapWeight
);
2348 // Remove any gaps with regmask clobbers.
2349 if (Matrix
->checkRegMaskInterference(VirtReg
, PhysReg
))
2350 for (unsigned I
= 0, E
= RegMaskGaps
.size(); I
!= E
; ++I
)
2351 GapWeight
[RegMaskGaps
[I
]] = huge_valf
;
2353 // Try to find the best sequence of gaps to close.
2354 // The new spill weight must be larger than any gap interference.
2356 // We will split before Uses[SplitBefore] and after Uses[SplitAfter].
2357 unsigned SplitBefore
= 0, SplitAfter
= 1;
2359 // MaxGap should always be max(GapWeight[SplitBefore..SplitAfter-1]).
2360 // It is the spill weight that needs to be evicted.
2361 float MaxGap
= GapWeight
[0];
2364 // Live before/after split?
2365 const bool LiveBefore
= SplitBefore
!= 0 || BI
.LiveIn
;
2366 const bool LiveAfter
= SplitAfter
!= NumGaps
|| BI
.LiveOut
;
2368 LLVM_DEBUG(dbgs() << printReg(PhysReg
, TRI
) << ' ' << Uses
[SplitBefore
]
2369 << '-' << Uses
[SplitAfter
] << " I=" << MaxGap
);
2371 // Stop before the interval gets so big we wouldn't be making progress.
2372 if (!LiveBefore
&& !LiveAfter
) {
2373 LLVM_DEBUG(dbgs() << " all\n");
2376 // Should the interval be extended or shrunk?
2379 // How many gaps would the new range have?
2380 unsigned NewGaps
= LiveBefore
+ SplitAfter
- SplitBefore
+ LiveAfter
;
2382 // Legally, without causing looping?
2383 bool Legal
= !ProgressRequired
|| NewGaps
< NumGaps
;
2385 if (Legal
&& MaxGap
< huge_valf
) {
2386 // Estimate the new spill weight. Each instruction reads or writes the
2387 // register. Conservatively assume there are no read-modify-write
2390 // Try to guess the size of the new interval.
2391 const float EstWeight
= normalizeSpillWeight(
2392 blockFreq
* (NewGaps
+ 1),
2393 Uses
[SplitBefore
].distance(Uses
[SplitAfter
]) +
2394 (LiveBefore
+ LiveAfter
) * SlotIndex::InstrDist
,
2396 // Would this split be possible to allocate?
2397 // Never allocate all gaps, we wouldn't be making progress.
2398 LLVM_DEBUG(dbgs() << " w=" << EstWeight
);
2399 if (EstWeight
* Hysteresis
>= MaxGap
) {
2401 float Diff
= EstWeight
- MaxGap
;
2402 if (Diff
> BestDiff
) {
2403 LLVM_DEBUG(dbgs() << " (best)");
2404 BestDiff
= Hysteresis
* Diff
;
2405 BestBefore
= SplitBefore
;
2406 BestAfter
= SplitAfter
;
2413 if (++SplitBefore
< SplitAfter
) {
2414 LLVM_DEBUG(dbgs() << " shrink\n");
2415 // Recompute the max when necessary.
2416 if (GapWeight
[SplitBefore
- 1] >= MaxGap
) {
2417 MaxGap
= GapWeight
[SplitBefore
];
2418 for (unsigned I
= SplitBefore
+ 1; I
!= SplitAfter
; ++I
)
2419 MaxGap
= std::max(MaxGap
, GapWeight
[I
]);
2426 // Try to extend the interval.
2427 if (SplitAfter
>= NumGaps
) {
2428 LLVM_DEBUG(dbgs() << " end\n");
2432 LLVM_DEBUG(dbgs() << " extend\n");
2433 MaxGap
= std::max(MaxGap
, GapWeight
[SplitAfter
++]);
2437 // Didn't find any candidates?
2438 if (BestBefore
== NumGaps
)
2441 LLVM_DEBUG(dbgs() << "Best local split range: " << Uses
[BestBefore
] << '-'
2442 << Uses
[BestAfter
] << ", " << BestDiff
<< ", "
2443 << (BestAfter
- BestBefore
+ 1) << " instrs\n");
2445 LiveRangeEdit
LREdit(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
2449 SlotIndex SegStart
= SE
->enterIntvBefore(Uses
[BestBefore
]);
2450 SlotIndex SegStop
= SE
->leaveIntvAfter(Uses
[BestAfter
]);
2451 SE
->useIntv(SegStart
, SegStop
);
2452 SmallVector
<unsigned, 8> IntvMap
;
2453 SE
->finish(&IntvMap
);
2454 DebugVars
->splitRegister(VirtReg
.reg(), LREdit
.regs(), *LIS
);
2456 // If the new range has the same number of instructions as before, mark it as
2457 // RS_Split2 so the next split will be forced to make progress. Otherwise,
2458 // leave the new intervals as RS_New so they can compete.
2459 bool LiveBefore
= BestBefore
!= 0 || BI
.LiveIn
;
2460 bool LiveAfter
= BestAfter
!= NumGaps
|| BI
.LiveOut
;
2461 unsigned NewGaps
= LiveBefore
+ BestAfter
- BestBefore
+ LiveAfter
;
2462 if (NewGaps
>= NumGaps
) {
2463 LLVM_DEBUG(dbgs() << "Tagging non-progress ranges:");
2464 assert(!ProgressRequired
&& "Didn't make progress when it was required.");
2465 for (unsigned I
= 0, E
= IntvMap
.size(); I
!= E
; ++I
)
2466 if (IntvMap
[I
] == 1) {
2467 setStage(LIS
->getInterval(LREdit
.get(I
)), RS_Split2
);
2468 LLVM_DEBUG(dbgs() << ' ' << printReg(LREdit
.get(I
)));
2470 LLVM_DEBUG(dbgs() << '\n');
2477 //===----------------------------------------------------------------------===//
2478 // Live Range Splitting
2479 //===----------------------------------------------------------------------===//
2481 /// trySplit - Try to split VirtReg or one of its interferences, making it
2483 /// @return Physreg when VirtReg may be assigned and/or new NewVRegs.
2484 unsigned RAGreedy::trySplit(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2485 SmallVectorImpl
<Register
> &NewVRegs
,
2486 const SmallVirtRegSet
&FixedRegisters
) {
2487 // Ranges must be Split2 or less.
2488 if (getStage(VirtReg
) >= RS_Spill
)
2491 // Local intervals are handled separately.
2492 if (LIS
->intervalIsInOneMBB(VirtReg
)) {
2493 NamedRegionTimer
T("local_split", "Local Splitting", TimerGroupName
,
2494 TimerGroupDescription
, TimePassesIsEnabled
);
2495 SA
->analyze(&VirtReg
);
2496 Register PhysReg
= tryLocalSplit(VirtReg
, Order
, NewVRegs
);
2497 if (PhysReg
|| !NewVRegs
.empty())
2499 return tryInstructionSplit(VirtReg
, Order
, NewVRegs
);
2502 NamedRegionTimer
T("global_split", "Global Splitting", TimerGroupName
,
2503 TimerGroupDescription
, TimePassesIsEnabled
);
2505 SA
->analyze(&VirtReg
);
2507 // FIXME: SplitAnalysis may repair broken live ranges coming from the
2508 // coalescer. That may cause the range to become allocatable which means that
2509 // tryRegionSplit won't be making progress. This check should be replaced with
2510 // an assertion when the coalescer is fixed.
2511 if (SA
->didRepairRange()) {
2512 // VirtReg has changed, so all cached queries are invalid.
2513 Matrix
->invalidateVirtRegs();
2514 if (Register PhysReg
= tryAssign(VirtReg
, Order
, NewVRegs
, FixedRegisters
))
2518 // First try to split around a region spanning multiple blocks. RS_Split2
2519 // ranges already made dubious progress with region splitting, so they go
2520 // straight to single block splitting.
2521 if (getStage(VirtReg
) < RS_Split2
) {
2522 MCRegister PhysReg
= tryRegionSplit(VirtReg
, Order
, NewVRegs
);
2523 if (PhysReg
|| !NewVRegs
.empty())
2527 // Then isolate blocks.
2528 return tryBlockSplit(VirtReg
, Order
, NewVRegs
);
2531 //===----------------------------------------------------------------------===//
2532 // Last Chance Recoloring
2533 //===----------------------------------------------------------------------===//
2535 /// Return true if \p reg has any tied def operand.
2536 static bool hasTiedDef(MachineRegisterInfo
*MRI
, unsigned reg
) {
2537 for (const MachineOperand
&MO
: MRI
->def_operands(reg
))
2544 /// mayRecolorAllInterferences - Check if the virtual registers that
2545 /// interfere with \p VirtReg on \p PhysReg (or one of its aliases) may be
2546 /// recolored to free \p PhysReg.
2547 /// When true is returned, \p RecoloringCandidates has been augmented with all
2548 /// the live intervals that need to be recolored in order to free \p PhysReg
2550 /// \p FixedRegisters contains all the virtual registers that cannot be
2552 bool RAGreedy::mayRecolorAllInterferences(
2553 MCRegister PhysReg
, LiveInterval
&VirtReg
, SmallLISet
&RecoloringCandidates
,
2554 const SmallVirtRegSet
&FixedRegisters
) {
2555 const TargetRegisterClass
*CurRC
= MRI
->getRegClass(VirtReg
.reg());
2557 for (MCRegUnitIterator
Units(PhysReg
, TRI
); Units
.isValid(); ++Units
) {
2558 LiveIntervalUnion::Query
&Q
= Matrix
->query(VirtReg
, *Units
);
2559 // If there is LastChanceRecoloringMaxInterference or more interferences,
2560 // chances are one would not be recolorable.
2561 if (Q
.collectInterferingVRegs(LastChanceRecoloringMaxInterference
) >=
2562 LastChanceRecoloringMaxInterference
&& !ExhaustiveSearch
) {
2563 LLVM_DEBUG(dbgs() << "Early abort: too many interferences.\n");
2564 CutOffInfo
|= CO_Interf
;
2567 for (LiveInterval
*Intf
: reverse(Q
.interferingVRegs())) {
2568 // If Intf is done and sit on the same register class as VirtReg,
2569 // it would not be recolorable as it is in the same state as VirtReg.
2570 // However, if VirtReg has tied defs and Intf doesn't, then
2571 // there is still a point in examining if it can be recolorable.
2572 if (((getStage(*Intf
) == RS_Done
&&
2573 MRI
->getRegClass(Intf
->reg()) == CurRC
) &&
2574 !(hasTiedDef(MRI
, VirtReg
.reg()) &&
2575 !hasTiedDef(MRI
, Intf
->reg()))) ||
2576 FixedRegisters
.count(Intf
->reg())) {
2578 dbgs() << "Early abort: the interference is not recolorable.\n");
2581 RecoloringCandidates
.insert(Intf
);
2587 /// tryLastChanceRecoloring - Try to assign a color to \p VirtReg by recoloring
2588 /// its interferences.
2589 /// Last chance recoloring chooses a color for \p VirtReg and recolors every
2590 /// virtual register that was using it. The recoloring process may recursively
2591 /// use the last chance recoloring. Therefore, when a virtual register has been
2592 /// assigned a color by this mechanism, it is marked as Fixed, i.e., it cannot
2593 /// be last-chance-recolored again during this recoloring "session".
2596 /// vA can use {R1, R2 }
2597 /// vB can use { R2, R3}
2598 /// vC can use {R1 }
2599 /// Where vA, vB, and vC cannot be split anymore (they are reloads for
2600 /// instance) and they all interfere.
2602 /// vA is assigned R1
2603 /// vB is assigned R2
2604 /// vC tries to evict vA but vA is already done.
2605 /// Regular register allocation fails.
2607 /// Last chance recoloring kicks in:
2608 /// vC does as if vA was evicted => vC uses R1.
2609 /// vC is marked as fixed.
2610 /// vA needs to find a color.
2611 /// None are available.
2612 /// vA cannot evict vC: vC is a fixed virtual register now.
2613 /// vA does as if vB was evicted => vA uses R2.
2614 /// vB needs to find a color.
2615 /// R3 is available.
2616 /// Recoloring => vC = R1, vA = R2, vB = R3
2618 /// \p Order defines the preferred allocation order for \p VirtReg.
2619 /// \p NewRegs will contain any new virtual register that have been created
2620 /// (split, spill) during the process and that must be assigned.
2621 /// \p FixedRegisters contains all the virtual registers that cannot be
2623 /// \p Depth gives the current depth of the last chance recoloring.
2624 /// \return a physical register that can be used for VirtReg or ~0u if none
2626 unsigned RAGreedy::tryLastChanceRecoloring(LiveInterval
&VirtReg
,
2627 AllocationOrder
&Order
,
2628 SmallVectorImpl
<Register
> &NewVRegs
,
2629 SmallVirtRegSet
&FixedRegisters
,
2631 if (!TRI
->shouldUseLastChanceRecoloringForVirtReg(*MF
, VirtReg
))
2634 LLVM_DEBUG(dbgs() << "Try last chance recoloring for " << VirtReg
<< '\n');
2635 // Ranges must be Done.
2636 assert((getStage(VirtReg
) >= RS_Done
|| !VirtReg
.isSpillable()) &&
2637 "Last chance recoloring should really be last chance");
2638 // Set the max depth to LastChanceRecoloringMaxDepth.
2639 // We may want to reconsider that if we end up with a too large search space
2640 // for target with hundreds of registers.
2641 // Indeed, in that case we may want to cut the search space earlier.
2642 if (Depth
>= LastChanceRecoloringMaxDepth
&& !ExhaustiveSearch
) {
2643 LLVM_DEBUG(dbgs() << "Abort because max depth has been reached.\n");
2644 CutOffInfo
|= CO_Depth
;
2648 // Set of Live intervals that will need to be recolored.
2649 SmallLISet RecoloringCandidates
;
2650 // Record the original mapping virtual register to physical register in case
2651 // the recoloring fails.
2652 DenseMap
<Register
, MCRegister
> VirtRegToPhysReg
;
2653 // Mark VirtReg as fixed, i.e., it will not be recolored pass this point in
2654 // this recoloring "session".
2655 assert(!FixedRegisters
.count(VirtReg
.reg()));
2656 FixedRegisters
.insert(VirtReg
.reg());
2657 SmallVector
<Register
, 4> CurrentNewVRegs
;
2659 for (MCRegister PhysReg
: Order
) {
2660 assert(PhysReg
.isValid());
2661 LLVM_DEBUG(dbgs() << "Try to assign: " << VirtReg
<< " to "
2662 << printReg(PhysReg
, TRI
) << '\n');
2663 RecoloringCandidates
.clear();
2664 VirtRegToPhysReg
.clear();
2665 CurrentNewVRegs
.clear();
2667 // It is only possible to recolor virtual register interference.
2668 if (Matrix
->checkInterference(VirtReg
, PhysReg
) >
2669 LiveRegMatrix::IK_VirtReg
) {
2671 dbgs() << "Some interferences are not with virtual registers.\n");
2676 // Early give up on this PhysReg if it is obvious we cannot recolor all
2677 // the interferences.
2678 if (!mayRecolorAllInterferences(PhysReg
, VirtReg
, RecoloringCandidates
,
2680 LLVM_DEBUG(dbgs() << "Some interferences cannot be recolored.\n");
2684 // RecoloringCandidates contains all the virtual registers that interfer
2685 // with VirtReg on PhysReg (or one of its aliases).
2686 // Enqueue them for recoloring and perform the actual recoloring.
2687 PQueue RecoloringQueue
;
2688 for (LiveInterval
*RC
: RecoloringCandidates
) {
2689 Register ItVirtReg
= RC
->reg();
2690 enqueue(RecoloringQueue
, RC
);
2691 assert(VRM
->hasPhys(ItVirtReg
) &&
2692 "Interferences are supposed to be with allocated variables");
2694 // Record the current allocation.
2695 VirtRegToPhysReg
[ItVirtReg
] = VRM
->getPhys(ItVirtReg
);
2696 // unset the related struct.
2697 Matrix
->unassign(*RC
);
2700 // Do as if VirtReg was assigned to PhysReg so that the underlying
2701 // recoloring has the right information about the interferes and
2702 // available colors.
2703 Matrix
->assign(VirtReg
, PhysReg
);
2705 // Save the current recoloring state.
2706 // If we cannot recolor all the interferences, we will have to start again
2707 // at this point for the next physical register.
2708 SmallVirtRegSet
SaveFixedRegisters(FixedRegisters
);
2709 if (tryRecoloringCandidates(RecoloringQueue
, CurrentNewVRegs
,
2710 FixedRegisters
, Depth
)) {
2711 // Push the queued vregs into the main queue.
2712 for (Register NewVReg
: CurrentNewVRegs
)
2713 NewVRegs
.push_back(NewVReg
);
2714 // Do not mess up with the global assignment process.
2715 // I.e., VirtReg must be unassigned.
2716 Matrix
->unassign(VirtReg
);
2720 LLVM_DEBUG(dbgs() << "Fail to assign: " << VirtReg
<< " to "
2721 << printReg(PhysReg
, TRI
) << '\n');
2723 // The recoloring attempt failed, undo the changes.
2724 FixedRegisters
= SaveFixedRegisters
;
2725 Matrix
->unassign(VirtReg
);
2727 // For a newly created vreg which is also in RecoloringCandidates,
2728 // don't add it to NewVRegs because its physical register will be restored
2729 // below. Other vregs in CurrentNewVRegs are created by calling
2730 // selectOrSplit and should be added into NewVRegs.
2731 for (Register
&R
: CurrentNewVRegs
) {
2732 if (RecoloringCandidates
.count(&LIS
->getInterval(R
)))
2734 NewVRegs
.push_back(R
);
2737 for (LiveInterval
*RC
: RecoloringCandidates
) {
2738 Register ItVirtReg
= RC
->reg();
2739 if (VRM
->hasPhys(ItVirtReg
))
2740 Matrix
->unassign(*RC
);
2741 MCRegister ItPhysReg
= VirtRegToPhysReg
[ItVirtReg
];
2742 Matrix
->assign(*RC
, ItPhysReg
);
2746 // Last chance recoloring did not worked either, give up.
2750 /// tryRecoloringCandidates - Try to assign a new color to every register
2751 /// in \RecoloringQueue.
2752 /// \p NewRegs will contain any new virtual register created during the
2753 /// recoloring process.
2754 /// \p FixedRegisters[in/out] contains all the registers that have been
2756 /// \return true if all virtual registers in RecoloringQueue were successfully
2757 /// recolored, false otherwise.
2758 bool RAGreedy::tryRecoloringCandidates(PQueue
&RecoloringQueue
,
2759 SmallVectorImpl
<Register
> &NewVRegs
,
2760 SmallVirtRegSet
&FixedRegisters
,
2762 while (!RecoloringQueue
.empty()) {
2763 LiveInterval
*LI
= dequeue(RecoloringQueue
);
2764 LLVM_DEBUG(dbgs() << "Try to recolor: " << *LI
<< '\n');
2765 MCRegister PhysReg
=
2766 selectOrSplitImpl(*LI
, NewVRegs
, FixedRegisters
, Depth
+ 1);
2767 // When splitting happens, the live-range may actually be empty.
2768 // In that case, this is okay to continue the recoloring even
2769 // if we did not find an alternative color for it. Indeed,
2770 // there will not be anything to color for LI in the end.
2771 if (PhysReg
== ~0u || (!PhysReg
&& !LI
->empty()))
2775 assert(LI
->empty() && "Only empty live-range do not require a register");
2776 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2777 << " succeeded. Empty LI.\n");
2780 LLVM_DEBUG(dbgs() << "Recoloring of " << *LI
2781 << " succeeded with: " << printReg(PhysReg
, TRI
) << '\n');
2783 Matrix
->assign(*LI
, PhysReg
);
2784 FixedRegisters
.insert(LI
->reg());
2789 //===----------------------------------------------------------------------===//
2791 //===----------------------------------------------------------------------===//
2793 MCRegister
RAGreedy::selectOrSplit(LiveInterval
&VirtReg
,
2794 SmallVectorImpl
<Register
> &NewVRegs
) {
2795 CutOffInfo
= CO_None
;
2796 LLVMContext
&Ctx
= MF
->getFunction().getContext();
2797 SmallVirtRegSet FixedRegisters
;
2798 MCRegister Reg
= selectOrSplitImpl(VirtReg
, NewVRegs
, FixedRegisters
);
2799 if (Reg
== ~0U && (CutOffInfo
!= CO_None
)) {
2800 uint8_t CutOffEncountered
= CutOffInfo
& (CO_Depth
| CO_Interf
);
2801 if (CutOffEncountered
== CO_Depth
)
2802 Ctx
.emitError("register allocation failed: maximum depth for recoloring "
2803 "reached. Use -fexhaustive-register-search to skip "
2805 else if (CutOffEncountered
== CO_Interf
)
2806 Ctx
.emitError("register allocation failed: maximum interference for "
2807 "recoloring reached. Use -fexhaustive-register-search "
2809 else if (CutOffEncountered
== (CO_Depth
| CO_Interf
))
2810 Ctx
.emitError("register allocation failed: maximum interference and "
2811 "depth for recoloring reached. Use "
2812 "-fexhaustive-register-search to skip cutoffs");
2817 /// Using a CSR for the first time has a cost because it causes push|pop
2818 /// to be added to prologue|epilogue. Splitting a cold section of the live
2819 /// range can have lower cost than using the CSR for the first time;
2820 /// Spilling a live range in the cold path can have lower cost than using
2821 /// the CSR for the first time. Returns the physical register if we decide
2822 /// to use the CSR; otherwise return 0.
2824 RAGreedy::tryAssignCSRFirstTime(LiveInterval
&VirtReg
, AllocationOrder
&Order
,
2825 MCRegister PhysReg
, uint8_t &CostPerUseLimit
,
2826 SmallVectorImpl
<Register
> &NewVRegs
) {
2827 if (getStage(VirtReg
) == RS_Spill
&& VirtReg
.isSpillable()) {
2828 // We choose spill over using the CSR for the first time if the spill cost
2829 // is lower than CSRCost.
2830 SA
->analyze(&VirtReg
);
2831 if (calcSpillCost() >= CSRCost
)
2834 // We are going to spill, set CostPerUseLimit to 1 to make sure that
2835 // we will not use a callee-saved register in tryEvict.
2836 CostPerUseLimit
= 1;
2839 if (getStage(VirtReg
) < RS_Split
) {
2840 // We choose pre-splitting over using the CSR for the first time if
2841 // the cost of splitting is lower than CSRCost.
2842 SA
->analyze(&VirtReg
);
2843 unsigned NumCands
= 0;
2844 BlockFrequency BestCost
= CSRCost
; // Don't modify CSRCost.
2845 unsigned BestCand
= calculateRegionSplitCost(VirtReg
, Order
, BestCost
,
2846 NumCands
, true /*IgnoreCSR*/);
2847 if (BestCand
== NoCand
)
2848 // Use the CSR if we can't find a region split below CSRCost.
2851 // Perform the actual pre-splitting.
2852 doRegionSplit(VirtReg
, BestCand
, false/*HasCompact*/, NewVRegs
);
2858 void RAGreedy::aboutToRemoveInterval(LiveInterval
&LI
) {
2859 // Do not keep invalid information around.
2860 SetOfBrokenHints
.remove(&LI
);
2863 void RAGreedy::initializeCSRCost() {
2864 // We use the larger one out of the command-line option and the value report
2866 CSRCost
= BlockFrequency(
2867 std::max((unsigned)CSRFirstTimeCost
, TRI
->getCSRFirstUseCost()));
2868 if (!CSRCost
.getFrequency())
2871 // Raw cost is relative to Entry == 2^14; scale it appropriately.
2872 uint64_t ActualEntry
= MBFI
->getEntryFreq();
2877 uint64_t FixedEntry
= 1 << 14;
2878 if (ActualEntry
< FixedEntry
)
2879 CSRCost
*= BranchProbability(ActualEntry
, FixedEntry
);
2880 else if (ActualEntry
<= UINT32_MAX
)
2881 // Invert the fraction and divide.
2882 CSRCost
/= BranchProbability(FixedEntry
, ActualEntry
);
2884 // Can't use BranchProbability in general, since it takes 32-bit numbers.
2885 CSRCost
= CSRCost
.getFrequency() * (ActualEntry
/ FixedEntry
);
2888 /// Collect the hint info for \p Reg.
2889 /// The results are stored into \p Out.
2890 /// \p Out is not cleared before being populated.
2891 void RAGreedy::collectHintInfo(Register Reg
, HintsInfo
&Out
) {
2892 for (const MachineInstr
&Instr
: MRI
->reg_nodbg_instructions(Reg
)) {
2893 if (!Instr
.isFullCopy())
2895 // Look for the other end of the copy.
2896 Register OtherReg
= Instr
.getOperand(0).getReg();
2897 if (OtherReg
== Reg
) {
2898 OtherReg
= Instr
.getOperand(1).getReg();
2899 if (OtherReg
== Reg
)
2902 // Get the current assignment.
2903 MCRegister OtherPhysReg
=
2904 OtherReg
.isPhysical() ? OtherReg
.asMCReg() : VRM
->getPhys(OtherReg
);
2905 // Push the collected information.
2906 Out
.push_back(HintInfo(MBFI
->getBlockFreq(Instr
.getParent()), OtherReg
,
2911 /// Using the given \p List, compute the cost of the broken hints if
2912 /// \p PhysReg was used.
2913 /// \return The cost of \p List for \p PhysReg.
2914 BlockFrequency
RAGreedy::getBrokenHintFreq(const HintsInfo
&List
,
2915 MCRegister PhysReg
) {
2916 BlockFrequency Cost
= 0;
2917 for (const HintInfo
&Info
: List
) {
2918 if (Info
.PhysReg
!= PhysReg
)
2924 /// Using the register assigned to \p VirtReg, try to recolor
2925 /// all the live ranges that are copy-related with \p VirtReg.
2926 /// The recoloring is then propagated to all the live-ranges that have
2927 /// been recolored and so on, until no more copies can be coalesced or
2928 /// it is not profitable.
2929 /// For a given live range, profitability is determined by the sum of the
2930 /// frequencies of the non-identity copies it would introduce with the old
2931 /// and new register.
2932 void RAGreedy::tryHintRecoloring(LiveInterval
&VirtReg
) {
2933 // We have a broken hint, check if it is possible to fix it by
2934 // reusing PhysReg for the copy-related live-ranges. Indeed, we evicted
2935 // some register and PhysReg may be available for the other live-ranges.
2936 SmallSet
<Register
, 4> Visited
;
2937 SmallVector
<unsigned, 2> RecoloringCandidates
;
2939 Register Reg
= VirtReg
.reg();
2940 MCRegister PhysReg
= VRM
->getPhys(Reg
);
2941 // Start the recoloring algorithm from the input live-interval, then
2942 // it will propagate to the ones that are copy-related with it.
2943 Visited
.insert(Reg
);
2944 RecoloringCandidates
.push_back(Reg
);
2946 LLVM_DEBUG(dbgs() << "Trying to reconcile hints for: " << printReg(Reg
, TRI
)
2947 << '(' << printReg(PhysReg
, TRI
) << ")\n");
2950 Reg
= RecoloringCandidates
.pop_back_val();
2952 // We cannot recolor physical register.
2953 if (Register::isPhysicalRegister(Reg
))
2956 // This may be a skipped class
2957 if (!VRM
->hasPhys(Reg
)) {
2958 assert(!ShouldAllocateClass(*TRI
, *MRI
->getRegClass(Reg
)) &&
2959 "We have an unallocated variable which should have been handled");
2963 // Get the live interval mapped with this virtual register to be able
2964 // to check for the interference with the new color.
2965 LiveInterval
&LI
= LIS
->getInterval(Reg
);
2966 MCRegister CurrPhys
= VRM
->getPhys(Reg
);
2967 // Check that the new color matches the register class constraints and
2968 // that it is free for this live range.
2969 if (CurrPhys
!= PhysReg
&& (!MRI
->getRegClass(Reg
)->contains(PhysReg
) ||
2970 Matrix
->checkInterference(LI
, PhysReg
)))
2973 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
) << '(' << printReg(CurrPhys
, TRI
)
2974 << ") is recolorable.\n");
2976 // Gather the hint info.
2978 collectHintInfo(Reg
, Info
);
2979 // Check if recoloring the live-range will increase the cost of the
2980 // non-identity copies.
2981 if (CurrPhys
!= PhysReg
) {
2982 LLVM_DEBUG(dbgs() << "Checking profitability:\n");
2983 BlockFrequency OldCopiesCost
= getBrokenHintFreq(Info
, CurrPhys
);
2984 BlockFrequency NewCopiesCost
= getBrokenHintFreq(Info
, PhysReg
);
2985 LLVM_DEBUG(dbgs() << "Old Cost: " << OldCopiesCost
.getFrequency()
2986 << "\nNew Cost: " << NewCopiesCost
.getFrequency()
2988 if (OldCopiesCost
< NewCopiesCost
) {
2989 LLVM_DEBUG(dbgs() << "=> Not profitable.\n");
2992 // At this point, the cost is either cheaper or equal. If it is
2993 // equal, we consider this is profitable because it may expose
2994 // more recoloring opportunities.
2995 LLVM_DEBUG(dbgs() << "=> Profitable.\n");
2996 // Recolor the live-range.
2997 Matrix
->unassign(LI
);
2998 Matrix
->assign(LI
, PhysReg
);
3000 // Push all copy-related live-ranges to keep reconciling the broken
3002 for (const HintInfo
&HI
: Info
) {
3003 if (Visited
.insert(HI
.Reg
).second
)
3004 RecoloringCandidates
.push_back(HI
.Reg
);
3006 } while (!RecoloringCandidates
.empty());
3009 /// Try to recolor broken hints.
3010 /// Broken hints may be repaired by recoloring when an evicted variable
3011 /// freed up a register for a larger live-range.
3012 /// Consider the following example:
3020 /// Let us assume b gets split:
3030 /// Because of how the allocation work, b, c, and d may be assigned different
3031 /// colors. Now, if a gets evicted later:
3041 /// e = ld SpillSlot
3043 /// This is likely that we can assign the same register for b, c, and d,
3044 /// getting rid of 2 copies.
3045 void RAGreedy::tryHintsRecoloring() {
3046 for (LiveInterval
*LI
: SetOfBrokenHints
) {
3047 assert(Register::isVirtualRegister(LI
->reg()) &&
3048 "Recoloring is possible only for virtual registers");
3049 // Some dead defs may be around (e.g., because of debug uses).
3051 if (!VRM
->hasPhys(LI
->reg()))
3053 tryHintRecoloring(*LI
);
3057 MCRegister
RAGreedy::selectOrSplitImpl(LiveInterval
&VirtReg
,
3058 SmallVectorImpl
<Register
> &NewVRegs
,
3059 SmallVirtRegSet
&FixedRegisters
,
3061 uint8_t CostPerUseLimit
= uint8_t(~0u);
3062 // First try assigning a free register.
3064 AllocationOrder::create(VirtReg
.reg(), *VRM
, RegClassInfo
, Matrix
);
3065 if (MCRegister PhysReg
=
3066 tryAssign(VirtReg
, Order
, NewVRegs
, FixedRegisters
)) {
3067 // If VirtReg got an assignment, the eviction info is no longer relevant.
3068 LastEvicted
.clearEvicteeInfo(VirtReg
.reg());
3069 // When NewVRegs is not empty, we may have made decisions such as evicting
3070 // a virtual register, go with the earlier decisions and use the physical
3072 if (CSRCost
.getFrequency() && isUnusedCalleeSavedReg(PhysReg
) &&
3074 MCRegister CSRReg
= tryAssignCSRFirstTime(VirtReg
, Order
, PhysReg
,
3075 CostPerUseLimit
, NewVRegs
);
3076 if (CSRReg
|| !NewVRegs
.empty())
3077 // Return now if we decide to use a CSR or create new vregs due to
3084 LiveRangeStage Stage
= getStage(VirtReg
);
3085 LLVM_DEBUG(dbgs() << StageName
[Stage
] << " Cascade "
3086 << ExtraRegInfo
[VirtReg
.reg()].Cascade
<< '\n');
3088 // Try to evict a less worthy live range, but only for ranges from the primary
3089 // queue. The RS_Split ranges already failed to do this, and they should not
3090 // get a second chance until they have been split.
3091 if (Stage
!= RS_Split
)
3092 if (Register PhysReg
=
3093 tryEvict(VirtReg
, Order
, NewVRegs
, CostPerUseLimit
,
3095 Register Hint
= MRI
->getSimpleHint(VirtReg
.reg());
3096 // If VirtReg has a hint and that hint is broken record this
3097 // virtual register as a recoloring candidate for broken hint.
3098 // Indeed, since we evicted a variable in its neighborhood it is
3099 // likely we can at least partially recolor some of the
3100 // copy-related live-ranges.
3101 if (Hint
&& Hint
!= PhysReg
)
3102 SetOfBrokenHints
.insert(&VirtReg
);
3103 // If VirtReg eviction someone, the eviction info for it as an evictee is
3104 // no longer relevant.
3105 LastEvicted
.clearEvicteeInfo(VirtReg
.reg());
3109 assert((NewVRegs
.empty() || Depth
) && "Cannot append to existing NewVRegs");
3111 // The first time we see a live range, don't try to split or spill.
3112 // Wait until the second time, when all smaller ranges have been allocated.
3113 // This gives a better picture of the interference to split around.
3114 if (Stage
< RS_Split
) {
3115 setStage(VirtReg
, RS_Split
);
3116 LLVM_DEBUG(dbgs() << "wait for second round\n");
3117 NewVRegs
.push_back(VirtReg
.reg());
3121 if (Stage
< RS_Spill
) {
3122 // Try splitting VirtReg or interferences.
3123 unsigned NewVRegSizeBefore
= NewVRegs
.size();
3124 Register PhysReg
= trySplit(VirtReg
, Order
, NewVRegs
, FixedRegisters
);
3125 if (PhysReg
|| (NewVRegs
.size() - NewVRegSizeBefore
)) {
3126 // If VirtReg got split, the eviction info is no longer relevant.
3127 LastEvicted
.clearEvicteeInfo(VirtReg
.reg());
3132 // If we couldn't allocate a register from spilling, there is probably some
3133 // invalid inline assembly. The base class will report it.
3134 if (Stage
>= RS_Done
|| !VirtReg
.isSpillable())
3135 return tryLastChanceRecoloring(VirtReg
, Order
, NewVRegs
, FixedRegisters
,
3138 // Finally spill VirtReg itself.
3139 if ((EnableDeferredSpilling
||
3140 TRI
->shouldUseDeferredSpillingForVirtReg(*MF
, VirtReg
)) &&
3141 getStage(VirtReg
) < RS_Memory
) {
3142 // TODO: This is experimental and in particular, we do not model
3143 // the live range splitting done by spilling correctly.
3144 // We would need a deep integration with the spiller to do the
3145 // right thing here. Anyway, that is still good for early testing.
3146 setStage(VirtReg
, RS_Memory
);
3147 LLVM_DEBUG(dbgs() << "Do as if this register is in memory\n");
3148 NewVRegs
.push_back(VirtReg
.reg());
3150 NamedRegionTimer
T("spill", "Spiller", TimerGroupName
,
3151 TimerGroupDescription
, TimePassesIsEnabled
);
3152 LiveRangeEdit
LRE(&VirtReg
, NewVRegs
, *MF
, *LIS
, VRM
, this, &DeadRemats
);
3153 spiller().spill(LRE
);
3154 setStage(NewVRegs
.begin(), NewVRegs
.end(), RS_Done
);
3156 // Tell LiveDebugVariables about the new ranges. Ranges not being covered by
3157 // the new regs are kept in LDV (still mapping to the old register), until
3158 // we rewrite spilled locations in LDV at a later stage.
3159 DebugVars
->splitRegister(VirtReg
.reg(), LRE
.regs(), *LIS
);
3162 MF
->verify(this, "After spilling");
3165 // The live virtual register requesting allocation was spilled, so tell
3166 // the caller not to allocate anything during this round.
3170 void RAGreedy::RAGreedyStats::report(MachineOptimizationRemarkMissed
&R
) {
3171 using namespace ore
;
3173 R
<< NV("NumSpills", Spills
) << " spills ";
3174 R
<< NV("TotalSpillsCost", SpillsCost
) << " total spills cost ";
3177 R
<< NV("NumFoldedSpills", FoldedSpills
) << " folded spills ";
3178 R
<< NV("TotalFoldedSpillsCost", FoldedSpillsCost
)
3179 << " total folded spills cost ";
3182 R
<< NV("NumReloads", Reloads
) << " reloads ";
3183 R
<< NV("TotalReloadsCost", ReloadsCost
) << " total reloads cost ";
3185 if (FoldedReloads
) {
3186 R
<< NV("NumFoldedReloads", FoldedReloads
) << " folded reloads ";
3187 R
<< NV("TotalFoldedReloadsCost", FoldedReloadsCost
)
3188 << " total folded reloads cost ";
3190 if (ZeroCostFoldedReloads
)
3191 R
<< NV("NumZeroCostFoldedReloads", ZeroCostFoldedReloads
)
3192 << " zero cost folded reloads ";
3194 R
<< NV("NumVRCopies", Copies
) << " virtual registers copies ";
3195 R
<< NV("TotalCopiesCost", CopiesCost
) << " total copies cost ";
3199 RAGreedy::RAGreedyStats
RAGreedy::computeStats(MachineBasicBlock
&MBB
) {
3200 RAGreedyStats Stats
;
3201 const MachineFrameInfo
&MFI
= MF
->getFrameInfo();
3204 auto isSpillSlotAccess
= [&MFI
](const MachineMemOperand
*A
) {
3205 return MFI
.isSpillSlotObjectIndex(cast
<FixedStackPseudoSourceValue
>(
3206 A
->getPseudoValue())->getFrameIndex());
3208 auto isPatchpointInstr
= [](const MachineInstr
&MI
) {
3209 return MI
.getOpcode() == TargetOpcode::PATCHPOINT
||
3210 MI
.getOpcode() == TargetOpcode::STACKMAP
||
3211 MI
.getOpcode() == TargetOpcode::STATEPOINT
;
3213 for (MachineInstr
&MI
: MBB
) {
3215 MachineOperand
&Dest
= MI
.getOperand(0);
3216 MachineOperand
&Src
= MI
.getOperand(1);
3217 if (Dest
.isReg() && Src
.isReg() && Dest
.getReg().isVirtual() &&
3218 Src
.getReg().isVirtual())
3223 SmallVector
<const MachineMemOperand
*, 2> Accesses
;
3224 if (TII
->isLoadFromStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
3228 if (TII
->isStoreToStackSlot(MI
, FI
) && MFI
.isSpillSlotObjectIndex(FI
)) {
3232 if (TII
->hasLoadFromStackSlot(MI
, Accesses
) &&
3233 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
3234 if (!isPatchpointInstr(MI
)) {
3235 Stats
.FoldedReloads
+= Accesses
.size();
3238 // For statepoint there may be folded and zero cost folded stack reloads.
3239 std::pair
<unsigned, unsigned> NonZeroCostRange
=
3240 TII
->getPatchpointUnfoldableRange(MI
);
3241 SmallSet
<unsigned, 16> FoldedReloads
;
3242 SmallSet
<unsigned, 16> ZeroCostFoldedReloads
;
3243 for (unsigned Idx
= 0, E
= MI
.getNumOperands(); Idx
< E
; ++Idx
) {
3244 MachineOperand
&MO
= MI
.getOperand(Idx
);
3245 if (!MO
.isFI() || !MFI
.isSpillSlotObjectIndex(MO
.getIndex()))
3247 if (Idx
>= NonZeroCostRange
.first
&& Idx
< NonZeroCostRange
.second
)
3248 FoldedReloads
.insert(MO
.getIndex());
3250 ZeroCostFoldedReloads
.insert(MO
.getIndex());
3252 // If stack slot is used in folded reload it is not zero cost then.
3253 for (unsigned Slot
: FoldedReloads
)
3254 ZeroCostFoldedReloads
.erase(Slot
);
3255 Stats
.FoldedReloads
+= FoldedReloads
.size();
3256 Stats
.ZeroCostFoldedReloads
+= ZeroCostFoldedReloads
.size();
3260 if (TII
->hasStoreToStackSlot(MI
, Accesses
) &&
3261 llvm::any_of(Accesses
, isSpillSlotAccess
)) {
3262 Stats
.FoldedSpills
+= Accesses
.size();
3265 // Set cost of collected statistic by multiplication to relative frequency of
3266 // this basic block.
3267 float RelFreq
= MBFI
->getBlockFreqRelativeToEntryBlock(&MBB
);
3268 Stats
.ReloadsCost
= RelFreq
* Stats
.Reloads
;
3269 Stats
.FoldedReloadsCost
= RelFreq
* Stats
.FoldedReloads
;
3270 Stats
.SpillsCost
= RelFreq
* Stats
.Spills
;
3271 Stats
.FoldedSpillsCost
= RelFreq
* Stats
.FoldedSpills
;
3272 Stats
.CopiesCost
= RelFreq
* Stats
.Copies
;
3276 RAGreedy::RAGreedyStats
RAGreedy::reportStats(MachineLoop
*L
) {
3277 RAGreedyStats Stats
;
3279 // Sum up the spill and reloads in subloops.
3280 for (MachineLoop
*SubLoop
: *L
)
3281 Stats
.add(reportStats(SubLoop
));
3283 for (MachineBasicBlock
*MBB
: L
->getBlocks())
3284 // Handle blocks that were not included in subloops.
3285 if (Loops
->getLoopFor(MBB
) == L
)
3286 Stats
.add(computeStats(*MBB
));
3288 if (!Stats
.isEmpty()) {
3289 using namespace ore
;
3292 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "LoopSpillReloadCopies",
3293 L
->getStartLoc(), L
->getHeader());
3295 R
<< "generated in loop";
3302 void RAGreedy::reportStats() {
3303 if (!ORE
->allowExtraAnalysis(DEBUG_TYPE
))
3305 RAGreedyStats Stats
;
3306 for (MachineLoop
*L
: *Loops
)
3307 Stats
.add(reportStats(L
));
3308 // Process non-loop blocks.
3309 for (MachineBasicBlock
&MBB
: *MF
)
3310 if (!Loops
->getLoopFor(&MBB
))
3311 Stats
.add(computeStats(MBB
));
3312 if (!Stats
.isEmpty()) {
3313 using namespace ore
;
3317 if (auto *SP
= MF
->getFunction().getSubprogram())
3318 Loc
= DILocation::get(SP
->getContext(), SP
->getLine(), 1, SP
);
3319 MachineOptimizationRemarkMissed
R(DEBUG_TYPE
, "SpillReloadCopies", Loc
,
3322 R
<< "generated in function";
3328 bool RAGreedy::runOnMachineFunction(MachineFunction
&mf
) {
3329 LLVM_DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
3330 << "********** Function: " << mf
.getName() << '\n');
3333 TRI
= MF
->getSubtarget().getRegisterInfo();
3334 TII
= MF
->getSubtarget().getInstrInfo();
3335 RCI
.runOnMachineFunction(mf
);
3337 EnableLocalReassign
= EnableLocalReassignment
||
3338 MF
->getSubtarget().enableRALocalReassignment(
3339 MF
->getTarget().getOptLevel());
3341 EnableAdvancedRASplitCost
=
3342 ConsiderLocalIntervalCost
.getNumOccurrences()
3343 ? ConsiderLocalIntervalCost
3344 : MF
->getSubtarget().enableAdvancedRASplitCost();
3347 MF
->verify(this, "Before greedy register allocator");
3349 RegAllocBase::init(getAnalysis
<VirtRegMap
>(),
3350 getAnalysis
<LiveIntervals
>(),
3351 getAnalysis
<LiveRegMatrix
>());
3352 Indexes
= &getAnalysis
<SlotIndexes
>();
3353 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3354 DomTree
= &getAnalysis
<MachineDominatorTree
>();
3355 ORE
= &getAnalysis
<MachineOptimizationRemarkEmitterPass
>().getORE();
3356 Loops
= &getAnalysis
<MachineLoopInfo
>();
3357 Bundles
= &getAnalysis
<EdgeBundles
>();
3358 SpillPlacer
= &getAnalysis
<SpillPlacement
>();
3359 DebugVars
= &getAnalysis
<LiveDebugVariables
>();
3360 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
3362 initializeCSRCost();
3364 RegCosts
= TRI
->getRegisterCosts(*MF
);
3366 VRAI
= std::make_unique
<VirtRegAuxInfo
>(*MF
, *LIS
, *VRM
, *Loops
, *MBFI
);
3367 SpillerInstance
.reset(createInlineSpiller(*this, *MF
, *VRM
, *VRAI
));
3369 VRAI
->calculateSpillWeightsAndHints();
3371 LLVM_DEBUG(LIS
->dump());
3373 SA
.reset(new SplitAnalysis(*VRM
, *LIS
, *Loops
));
3374 SE
.reset(new SplitEditor(*SA
, *AA
, *LIS
, *VRM
, *DomTree
, *MBFI
, *VRAI
));
3375 ExtraRegInfo
.clear();
3376 ExtraRegInfo
.resize(MRI
->getNumVirtRegs());
3378 IntfCache
.init(MF
, Matrix
->getLiveUnions(), Indexes
, LIS
, TRI
);
3379 GlobalCand
.resize(32); // This will grow as needed.
3380 SetOfBrokenHints
.clear();
3381 LastEvicted
.clear();
3384 tryHintsRecoloring();
3387 MF
->verify(this, "Before post optimization");