1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
110 using namespace llvm
;
111 using namespace PatternMatch
;
112 using namespace SwitchCG
;
114 #define DEBUG_TYPE "isel"
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision
;
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
125 static cl::opt
<unsigned, true>
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
129 cl::location(LimitFloatPrecision
), cl::Hidden
,
132 static cl::opt
<unsigned> SwitchPeelThreshold(
133 "switch-peel-threshold", cl::Hidden
, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains
= 64;
154 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
155 const SDValue
*Parts
, unsigned NumParts
,
156 MVT PartVT
, EVT ValueVT
, const Value
*V
,
157 Optional
<CallingConv::ID
> CC
);
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent. If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
165 const SDValue
*Parts
, unsigned NumParts
,
166 MVT PartVT
, EVT ValueVT
, const Value
*V
,
167 Optional
<CallingConv::ID
> CC
= None
,
168 Optional
<ISD::NodeType
> AssertOp
= None
) {
169 // Let the target assemble the parts if it wants to
170 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
171 if (SDValue Val
= TLI
.joinRegisterPartsIntoValue(DAG
, DL
, Parts
, NumParts
,
172 PartVT
, ValueVT
, CC
))
175 if (ValueVT
.isVector())
176 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
179 assert(NumParts
> 0 && "No parts to assemble!");
180 SDValue Val
= Parts
[0];
183 // Assemble the value from multiple parts.
184 if (ValueVT
.isInteger()) {
185 unsigned PartBits
= PartVT
.getSizeInBits();
186 unsigned ValueBits
= ValueVT
.getSizeInBits();
188 // Assemble the power of 2 part.
189 unsigned RoundParts
=
190 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
191 unsigned RoundBits
= PartBits
* RoundParts
;
192 EVT RoundVT
= RoundBits
== ValueBits
?
193 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
196 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
198 if (RoundParts
> 2) {
199 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
201 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
202 RoundParts
/ 2, PartVT
, HalfVT
, V
);
204 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
205 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
208 if (DAG
.getDataLayout().isBigEndian())
211 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
213 if (RoundParts
< NumParts
) {
214 // Assemble the trailing non-power-of-2 part.
215 unsigned OddParts
= NumParts
- RoundParts
;
216 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
217 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
220 // Combine the round and odd parts.
222 if (DAG
.getDataLayout().isBigEndian())
224 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
225 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
227 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
228 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
229 TLI
.getPointerTy(DAG
.getDataLayout())));
230 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
231 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
233 } else if (PartVT
.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
238 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
239 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
240 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
242 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
244 // FP split into integer parts (soft fp)
245 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
246 !PartVT
.isVector() && "Unexpected split");
247 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
248 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
252 // There is now one part, held in Val. Correct it to match ValueVT.
253 // PartEVT is the type of the register class that holds the value.
254 // ValueVT is the type of the inline asm operation.
255 EVT PartEVT
= Val
.getValueType();
257 if (PartEVT
== ValueVT
)
260 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
261 ValueVT
.bitsLT(PartEVT
)) {
262 // For an FP value in an integer part, we need to truncate to the right
264 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
265 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
268 // Handle types that have the same size.
269 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
270 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
272 // Handle types with different sizes.
273 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
274 if (ValueVT
.bitsLT(PartEVT
)) {
275 // For a truncate, see if we have any information to
276 // indicate whether the truncated bits will always be
277 // zero or sign-extension.
278 if (AssertOp
.hasValue())
279 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
280 DAG
.getValueType(ValueVT
));
281 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
283 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
286 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
287 // FP_ROUND's are always exact here.
288 if (ValueVT
.bitsLT(Val
.getValueType()))
290 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
291 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
293 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
298 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
299 ValueVT
.bitsLT(PartEVT
)) {
300 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
301 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
304 report_fatal_error("Unknown mismatch in getCopyFromParts!");
307 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
308 const Twine
&ErrMsg
) {
309 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
311 return Ctx
.emitError(ErrMsg
);
313 const char *AsmError
= ", possible invalid constraint for vector type";
314 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
315 if (CI
->isInlineAsm())
316 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
318 return Ctx
.emitError(I
, ErrMsg
);
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent. If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
327 const SDValue
*Parts
, unsigned NumParts
,
328 MVT PartVT
, EVT ValueVT
, const Value
*V
,
329 Optional
<CallingConv::ID
> CallConv
) {
330 assert(ValueVT
.isVector() && "Not a vector value");
331 assert(NumParts
> 0 && "No parts to assemble!");
332 const bool IsABIRegCopy
= CallConv
.hasValue();
334 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
335 SDValue Val
= Parts
[0];
337 // Handle a multi-element vector.
341 unsigned NumIntermediates
;
345 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
346 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
347 NumIntermediates
, RegisterVT
);
350 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
351 NumIntermediates
, RegisterVT
);
354 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
355 NumParts
= NumRegs
; // Silence a compiler warning.
356 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
357 assert(RegisterVT
.getSizeInBits() ==
358 Parts
[0].getSimpleValueType().getSizeInBits() &&
359 "Part type sizes don't match!");
361 // Assemble the parts into intermediate operands.
362 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
363 if (NumIntermediates
== NumParts
) {
364 // If the register was not expanded, truncate or copy the value,
366 for (unsigned i
= 0; i
!= NumParts
; ++i
)
367 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
368 PartVT
, IntermediateVT
, V
, CallConv
);
369 } else if (NumParts
> 0) {
370 // If the intermediate type was expanded, build the intermediate
371 // operands from the parts.
372 assert(NumParts
% NumIntermediates
== 0 &&
373 "Must expand into a divisible number of parts!");
374 unsigned Factor
= NumParts
/ NumIntermediates
;
375 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
376 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
377 PartVT
, IntermediateVT
, V
, CallConv
);
380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381 // intermediate operands.
383 IntermediateVT
.isVector()
385 *DAG
.getContext(), IntermediateVT
.getScalarType(),
386 IntermediateVT
.getVectorElementCount() * NumParts
)
387 : EVT::getVectorVT(*DAG
.getContext(),
388 IntermediateVT
.getScalarType(),
390 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
392 DL
, BuiltVectorTy
, Ops
);
395 // There is now one part, held in Val. Correct it to match ValueVT.
396 EVT PartEVT
= Val
.getValueType();
398 if (PartEVT
== ValueVT
)
401 if (PartEVT
.isVector()) {
402 // Vector/Vector bitcast.
403 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
404 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
406 // If the element type of the source/dest vectors are the same, but the
407 // parts vector has more elements than the value vector, then we have a
408 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
410 if (PartEVT
.getVectorElementCount() != ValueVT
.getVectorElementCount()) {
411 assert((PartEVT
.getVectorElementCount().getKnownMinValue() >
412 ValueVT
.getVectorElementCount().getKnownMinValue()) &&
413 (PartEVT
.getVectorElementCount().isScalable() ==
414 ValueVT
.getVectorElementCount().isScalable()) &&
415 "Cannot narrow, it would be a lossy transformation");
417 EVT::getVectorVT(*DAG
.getContext(), PartEVT
.getVectorElementType(),
418 ValueVT
.getVectorElementCount());
419 Val
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, PartEVT
, Val
,
420 DAG
.getVectorIdxConstant(0, DL
));
421 if (PartEVT
== ValueVT
)
425 // Promoted vector extract
426 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
429 // Trivial bitcast if the types are the same size and the destination
430 // vector type is legal.
431 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
432 TLI
.isTypeLegal(ValueVT
))
433 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
435 if (ValueVT
.getVectorNumElements() != 1) {
436 // Certain ABIs require that vectors are passed as integers. For vectors
437 // are the same size, this is an obvious bitcast.
438 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
439 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
440 } else if (ValueVT
.bitsLT(PartEVT
)) {
441 const uint64_t ValueSize
= ValueVT
.getFixedSizeInBits();
442 EVT IntermediateType
= EVT::getIntegerVT(*DAG
.getContext(), ValueSize
);
443 // Drop the extra bits.
444 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, IntermediateType
, Val
);
445 return DAG
.getBitcast(ValueVT
, Val
);
448 diagnosePossiblyInvalidConstraint(
449 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
450 return DAG
.getUNDEF(ValueVT
);
453 // Handle cases such as i8 -> <1 x i1>
454 EVT ValueSVT
= ValueVT
.getVectorElementType();
455 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
) {
456 if (ValueSVT
.getSizeInBits() == PartEVT
.getSizeInBits())
457 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueSVT
, Val
);
459 Val
= ValueVT
.isFloatingPoint()
460 ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
461 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
464 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
467 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
468 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
469 MVT PartVT
, const Value
*V
,
470 Optional
<CallingConv::ID
> CallConv
);
472 /// getCopyToParts - Create a series of nodes that contain the specified value
473 /// split into legal parts. If the parts contain more bits than Val, then, for
474 /// integers, ExtendKind can be used to specify how to generate the extra bits.
475 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
476 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
478 Optional
<CallingConv::ID
> CallConv
= None
,
479 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
480 // Let the target split the parts if it wants to
481 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
482 if (TLI
.splitValueIntoRegisterParts(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
,
485 EVT ValueVT
= Val
.getValueType();
487 // Handle the vector case separately.
488 if (ValueVT
.isVector())
489 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
492 unsigned PartBits
= PartVT
.getSizeInBits();
493 unsigned OrigNumParts
= NumParts
;
494 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
495 "Copying to an illegal type!");
500 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
501 EVT PartEVT
= PartVT
;
502 if (PartEVT
== ValueVT
) {
503 assert(NumParts
== 1 && "No-op copy with multiple parts!");
508 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
509 // If the parts cover more bits than the value has, promote the value.
510 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
511 assert(NumParts
== 1 && "Do not know what to promote to!");
512 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
514 if (ValueVT
.isFloatingPoint()) {
515 // FP values need to be bitcast, then extended if they are being put
516 // into a larger container.
517 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
518 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
520 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
521 ValueVT
.isInteger() &&
522 "Unknown mismatch!");
523 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
524 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
525 if (PartVT
== MVT::x86mmx
)
526 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
528 } else if (PartBits
== ValueVT
.getSizeInBits()) {
529 // Different types of the same size.
530 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
531 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
532 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
533 // If the parts cover less bits than value has, truncate the value.
534 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
535 ValueVT
.isInteger() &&
536 "Unknown mismatch!");
537 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
538 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
539 if (PartVT
== MVT::x86mmx
)
540 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
543 // The value may have changed - recompute ValueVT.
544 ValueVT
= Val
.getValueType();
545 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
546 "Failed to tile the value with PartVT!");
549 if (PartEVT
!= ValueVT
) {
550 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
551 "scalar-to-vector conversion failed");
552 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
559 // Expand the value into multiple parts.
560 if (NumParts
& (NumParts
- 1)) {
561 // The number of parts is not a power of 2. Split off and copy the tail.
562 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
563 "Do not know what to expand to!");
564 unsigned RoundParts
= 1 << Log2_32(NumParts
);
565 unsigned RoundBits
= RoundParts
* PartBits
;
566 unsigned OddParts
= NumParts
- RoundParts
;
567 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
568 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
570 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
573 if (DAG
.getDataLayout().isBigEndian())
574 // The odd parts were reversed by getCopyToParts - unreverse them.
575 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
577 NumParts
= RoundParts
;
578 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
579 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
582 // The number of parts is a power of 2. Repeatedly bisect the value using
584 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
585 EVT::getIntegerVT(*DAG
.getContext(),
586 ValueVT
.getSizeInBits()),
589 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
590 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
591 unsigned ThisBits
= StepSize
* PartBits
/ 2;
592 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
593 SDValue
&Part0
= Parts
[i
];
594 SDValue
&Part1
= Parts
[i
+StepSize
/2];
596 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
597 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
598 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
599 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
601 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
602 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
603 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
608 if (DAG
.getDataLayout().isBigEndian())
609 std::reverse(Parts
, Parts
+ OrigNumParts
);
612 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
, SDValue Val
,
613 const SDLoc
&DL
, EVT PartVT
) {
614 if (!PartVT
.isVector())
617 EVT ValueVT
= Val
.getValueType();
618 ElementCount PartNumElts
= PartVT
.getVectorElementCount();
619 ElementCount ValueNumElts
= ValueVT
.getVectorElementCount();
621 // We only support widening vectors with equivalent element types and
622 // fixed/scalable properties. If a target needs to widen a fixed-length type
623 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
624 if (ElementCount::isKnownLE(PartNumElts
, ValueNumElts
) ||
625 PartNumElts
.isScalable() != ValueNumElts
.isScalable() ||
626 PartVT
.getVectorElementType() != ValueVT
.getVectorElementType())
629 // Widening a scalable vector to another scalable vector is done by inserting
630 // the vector into a larger undef one.
631 if (PartNumElts
.isScalable())
632 return DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, PartVT
, DAG
.getUNDEF(PartVT
),
633 Val
, DAG
.getVectorIdxConstant(0, DL
));
635 EVT ElementVT
= PartVT
.getVectorElementType();
636 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
638 SmallVector
<SDValue
, 16> Ops
;
639 DAG
.ExtractVectorElements(Val
, Ops
);
640 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
641 Ops
.append((PartNumElts
- ValueNumElts
).getFixedValue(), EltUndef
);
643 // FIXME: Use CONCAT for 2x -> 4x.
644 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
647 /// getCopyToPartsVector - Create a series of nodes that contain the specified
648 /// value split into legal parts.
649 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
650 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
651 MVT PartVT
, const Value
*V
,
652 Optional
<CallingConv::ID
> CallConv
) {
653 EVT ValueVT
= Val
.getValueType();
654 assert(ValueVT
.isVector() && "Not a vector");
655 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
656 const bool IsABIRegCopy
= CallConv
.hasValue();
659 EVT PartEVT
= PartVT
;
660 if (PartEVT
== ValueVT
) {
662 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
663 // Bitconvert vector->vector case.
664 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
665 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
667 } else if (PartVT
.isVector() &&
668 PartEVT
.getVectorElementType().bitsGE(
669 ValueVT
.getVectorElementType()) &&
670 PartEVT
.getVectorElementCount() ==
671 ValueVT
.getVectorElementCount()) {
673 // Promoted vector extract
674 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
676 if (ValueVT
.getVectorElementCount().isScalar()) {
677 Val
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
678 DAG
.getVectorIdxConstant(0, DL
));
680 uint64_t ValueSize
= ValueVT
.getFixedSizeInBits();
681 assert(PartVT
.getFixedSizeInBits() > ValueSize
&&
682 "lossy conversion of vector to scalar type");
683 EVT IntermediateType
= EVT::getIntegerVT(*DAG
.getContext(), ValueSize
);
684 Val
= DAG
.getBitcast(IntermediateType
, Val
);
685 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
689 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
694 // Handle a multi-element vector.
697 unsigned NumIntermediates
;
700 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
701 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
702 NumIntermediates
, RegisterVT
);
705 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
706 NumIntermediates
, RegisterVT
);
709 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
710 NumParts
= NumRegs
; // Silence a compiler warning.
711 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
713 assert(IntermediateVT
.isScalableVector() == ValueVT
.isScalableVector() &&
714 "Mixing scalable and fixed vectors when copying in parts");
716 Optional
<ElementCount
> DestEltCnt
;
718 if (IntermediateVT
.isVector())
719 DestEltCnt
= IntermediateVT
.getVectorElementCount() * NumIntermediates
;
721 DestEltCnt
= ElementCount::getFixed(NumIntermediates
);
723 EVT BuiltVectorTy
= EVT::getVectorVT(
724 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestEltCnt
.getValue());
726 if (ValueVT
== BuiltVectorTy
) {
728 } else if (ValueVT
.getSizeInBits() == BuiltVectorTy
.getSizeInBits()) {
729 // Bitconvert vector->vector case.
730 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
732 if (BuiltVectorTy
.getVectorElementType().bitsGT(
733 ValueVT
.getVectorElementType())) {
734 // Integer promotion.
735 ValueVT
= EVT::getVectorVT(*DAG
.getContext(),
736 BuiltVectorTy
.getVectorElementType(),
737 ValueVT
.getVectorElementCount());
738 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
741 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
)) {
746 assert(Val
.getValueType() == BuiltVectorTy
&& "Unexpected vector value type");
748 // Split the vector into intermediate operands.
749 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
750 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
751 if (IntermediateVT
.isVector()) {
752 // This does something sensible for scalable vectors - see the
753 // definition of EXTRACT_SUBVECTOR for further details.
754 unsigned IntermediateNumElts
= IntermediateVT
.getVectorMinNumElements();
756 DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
757 DAG
.getVectorIdxConstant(i
* IntermediateNumElts
, DL
));
759 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
760 DAG
.getVectorIdxConstant(i
, DL
));
764 // Split the intermediate operands into legal parts.
765 if (NumParts
== NumIntermediates
) {
766 // If the register was not expanded, promote or copy the value,
768 for (unsigned i
= 0; i
!= NumParts
; ++i
)
769 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
770 } else if (NumParts
> 0) {
771 // If the intermediate type was expanded, split each the value into
773 assert(NumIntermediates
!= 0 && "division by zero");
774 assert(NumParts
% NumIntermediates
== 0 &&
775 "Must expand into a divisible number of parts!");
776 unsigned Factor
= NumParts
/ NumIntermediates
;
777 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
778 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
783 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
784 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
785 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
786 RegCount(1, regs
.size()), CallConv(CC
) {}
788 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
789 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
790 Optional
<CallingConv::ID
> CC
) {
791 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
795 for (EVT ValueVT
: ValueVTs
) {
798 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
799 : TLI
.getNumRegisters(Context
, ValueVT
);
802 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
803 : TLI
.getRegisterType(Context
, ValueVT
);
804 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
805 Regs
.push_back(Reg
+ i
);
806 RegVTs
.push_back(RegisterVT
);
807 RegCount
.push_back(NumRegs
);
812 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
813 FunctionLoweringInfo
&FuncInfo
,
814 const SDLoc
&dl
, SDValue
&Chain
,
815 SDValue
*Flag
, const Value
*V
) const {
816 // A Value with type {} or [0 x %t] needs no registers.
817 if (ValueVTs
.empty())
820 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
822 // Assemble the legal parts into the final values.
823 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
824 SmallVector
<SDValue
, 8> Parts
;
825 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
826 // Copy the legal parts from the registers.
827 EVT ValueVT
= ValueVTs
[Value
];
828 unsigned NumRegs
= RegCount
[Value
];
829 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
831 CallConv
.getValue(), RegVTs
[Value
])
834 Parts
.resize(NumRegs
);
835 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
838 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
840 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
841 *Flag
= P
.getValue(2);
844 Chain
= P
.getValue(1);
847 // If the source register was virtual and if we know something about it,
848 // add an assert node.
849 if (!Register::isVirtualRegister(Regs
[Part
+ i
]) ||
850 !RegisterVT
.isInteger())
853 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
854 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
858 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
859 unsigned NumSignBits
= LOI
->NumSignBits
;
860 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
862 if (NumZeroBits
== RegSize
) {
863 // The current value is a zero.
864 // Explicitly express that as it would be easier for
865 // optimizations to kick in.
866 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
870 // FIXME: We capture more information than the dag can represent. For
871 // now, just use the tightest assertzext/assertsext possible.
873 EVT
FromVT(MVT::Other
);
875 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
877 } else if (NumSignBits
> 1) {
879 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
884 // Add an assertion node.
885 assert(FromVT
!= MVT::Other
);
886 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
887 RegisterVT
, P
, DAG
.getValueType(FromVT
));
890 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
891 RegisterVT
, ValueVT
, V
, CallConv
);
896 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
899 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
900 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
902 ISD::NodeType PreferredExtendType
) const {
903 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
904 ISD::NodeType ExtendKind
= PreferredExtendType
;
906 // Get the list of the values's legal parts.
907 unsigned NumRegs
= Regs
.size();
908 SmallVector
<SDValue
, 8> Parts(NumRegs
);
909 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
910 unsigned NumParts
= RegCount
[Value
];
912 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
914 CallConv
.getValue(), RegVTs
[Value
])
917 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
918 ExtendKind
= ISD::ZERO_EXTEND
;
920 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
921 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
925 // Copy the parts into the registers.
926 SmallVector
<SDValue
, 8> Chains(NumRegs
);
927 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
930 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
932 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
933 *Flag
= Part
.getValue(1);
936 Chains
[i
] = Part
.getValue(0);
939 if (NumRegs
== 1 || Flag
)
940 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941 // flagged to it. That is the CopyToReg nodes and the user are considered
942 // a single scheduling unit. If we create a TokenFactor and return it as
943 // chain, then the TokenFactor is both a predecessor (operand) of the
944 // user as well as a successor (the TF operands are flagged to the user).
945 // c1, f1 = CopyToReg
946 // c2, f2 = CopyToReg
947 // c3 = TokenFactor c1, c2
950 Chain
= Chains
[NumRegs
-1];
952 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
955 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
956 unsigned MatchingIdx
, const SDLoc
&dl
,
958 std::vector
<SDValue
> &Ops
) const {
959 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
961 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
963 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
964 else if (!Regs
.empty() && Register::isVirtualRegister(Regs
.front())) {
965 // Put the register class of the virtual registers in the flag word. That
966 // way, later passes can recompute register class constraints for inline
967 // assembly as well as normal instructions.
968 // Don't do this for tied operands that can use the regclass information
970 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
971 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
972 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
975 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
978 if (Code
== InlineAsm::Kind_Clobber
) {
979 // Clobbers should always have a 1:1 mapping with registers, and may
980 // reference registers that have illegal (e.g. vector) types. Hence, we
981 // shouldn't try to apply any sort of splitting logic to them.
982 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
983 "No 1:1 mapping from clobbers to regs?");
984 Register SP
= TLI
.getStackPointerRegisterToSaveRestore();
986 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
987 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
990 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991 "If we clobbered the stack pointer, MFI should know about it.");
996 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
997 MVT RegisterVT
= RegVTs
[Value
];
998 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
],
1000 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
1001 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
1002 unsigned TheReg
= Regs
[Reg
++];
1003 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
1008 SmallVector
<std::pair
<unsigned, TypeSize
>, 4>
1009 RegsForValue::getRegsAndSizes() const {
1010 SmallVector
<std::pair
<unsigned, TypeSize
>, 4> OutVec
;
1012 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
1013 unsigned RegCount
= std::get
<0>(CountAndVT
);
1014 MVT RegisterVT
= std::get
<1>(CountAndVT
);
1015 TypeSize RegisterSize
= RegisterVT
.getSizeInBits();
1016 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
1017 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
1022 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
1023 const TargetLibraryInfo
*li
) {
1027 DL
= &DAG
.getDataLayout();
1028 Context
= DAG
.getContext();
1029 LPadToCallSiteMap
.clear();
1030 SL
->init(DAG
.getTargetLoweringInfo(), TM
, DAG
.getDataLayout());
1033 void SelectionDAGBuilder::clear() {
1035 UnusedArgNodeMap
.clear();
1036 PendingLoads
.clear();
1037 PendingExports
.clear();
1038 PendingConstrainedFP
.clear();
1039 PendingConstrainedFPStrict
.clear();
1041 HasTailCall
= false;
1042 SDNodeOrder
= LowestSDNodeOrder
;
1043 StatepointLowering
.clear();
1046 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1047 DanglingDebugInfoMap
.clear();
1050 // Update DAG root to include dependencies on Pending chains.
1051 SDValue
SelectionDAGBuilder::updateRoot(SmallVectorImpl
<SDValue
> &Pending
) {
1052 SDValue Root
= DAG
.getRoot();
1054 if (Pending
.empty())
1057 // Add current root to PendingChains, unless we already indirectly
1059 if (Root
.getOpcode() != ISD::EntryToken
) {
1060 unsigned i
= 0, e
= Pending
.size();
1061 for (; i
!= e
; ++i
) {
1062 assert(Pending
[i
].getNode()->getNumOperands() > 1);
1063 if (Pending
[i
].getNode()->getOperand(0) == Root
)
1064 break; // Don't add the root if we already indirectly depend on it.
1068 Pending
.push_back(Root
);
1071 if (Pending
.size() == 1)
1074 Root
= DAG
.getTokenFactor(getCurSDLoc(), Pending
);
1081 SDValue
SelectionDAGBuilder::getMemoryRoot() {
1082 return updateRoot(PendingLoads
);
1085 SDValue
SelectionDAGBuilder::getRoot() {
1086 // Chain up all pending constrained intrinsics together with all
1087 // pending loads, by simply appending them to PendingLoads and
1088 // then calling getMemoryRoot().
1089 PendingLoads
.reserve(PendingLoads
.size() +
1090 PendingConstrainedFP
.size() +
1091 PendingConstrainedFPStrict
.size());
1092 PendingLoads
.append(PendingConstrainedFP
.begin(),
1093 PendingConstrainedFP
.end());
1094 PendingLoads
.append(PendingConstrainedFPStrict
.begin(),
1095 PendingConstrainedFPStrict
.end());
1096 PendingConstrainedFP
.clear();
1097 PendingConstrainedFPStrict
.clear();
1098 return getMemoryRoot();
1101 SDValue
SelectionDAGBuilder::getControlRoot() {
1102 // We need to emit pending fpexcept.strict constrained intrinsics,
1103 // so append them to the PendingExports list.
1104 PendingExports
.append(PendingConstrainedFPStrict
.begin(),
1105 PendingConstrainedFPStrict
.end());
1106 PendingConstrainedFPStrict
.clear();
1107 return updateRoot(PendingExports
);
1110 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1111 // Set up outgoing PHI node register values before emitting the terminator.
1112 if (I
.isTerminator()) {
1113 HandlePHINodesInSuccessorBlocks(I
.getParent());
1116 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1117 if (!isa
<DbgInfoIntrinsic
>(I
))
1122 visit(I
.getOpcode(), I
);
1124 if (!I
.isTerminator() && !HasTailCall
&&
1125 !isa
<GCStatepointInst
>(I
)) // statepoints handle their exports internally
1126 CopyToExportRegsIfNeeded(&I
);
1131 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1132 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1135 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1136 // Note: this doesn't use InstVisitor, because it has to work with
1137 // ConstantExpr's in addition to instructions.
1139 default: llvm_unreachable("Unknown instruction type encountered!");
1140 // Build the switch statement using the Instruction.def file.
1141 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1142 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1143 #include "llvm/IR/Instruction.def"
1147 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst
*DI
,
1148 DebugLoc DL
, unsigned Order
) {
1149 // We treat variadic dbg_values differently at this stage.
1150 if (DI
->hasArgList()) {
1151 // For variadic dbg_values we will now insert an undef.
1152 // FIXME: We can potentially recover these!
1153 SmallVector
<SDDbgOperand
, 2> Locs
;
1154 for (const Value
*V
: DI
->getValues()) {
1155 auto Undef
= UndefValue::get(V
->getType());
1156 Locs
.push_back(SDDbgOperand::fromConst(Undef
));
1158 SDDbgValue
*SDV
= DAG
.getDbgValueList(
1159 DI
->getVariable(), DI
->getExpression(), Locs
, {},
1160 /*IsIndirect=*/false, DL
, Order
, /*IsVariadic=*/true);
1161 DAG
.AddDbgValue(SDV
, /*isParameter=*/false);
1163 // TODO: Dangling debug info will eventually either be resolved or produce
1164 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1165 // between the original dbg.value location and its resolved DBG_VALUE,
1166 // which we should ideally fill with an extra Undef DBG_VALUE.
1167 assert(DI
->getNumVariableLocationOps() == 1 &&
1168 "DbgValueInst without an ArgList should have a single location "
1170 DanglingDebugInfoMap
[DI
->getValue(0)].emplace_back(DI
, DL
, Order
);
1174 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1175 const DIExpression
*Expr
) {
1176 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1177 const DbgValueInst
*DI
= DDI
.getDI();
1178 DIVariable
*DanglingVariable
= DI
->getVariable();
1179 DIExpression
*DanglingExpr
= DI
->getExpression();
1180 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1181 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1187 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1188 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1190 // If debug info is to be dropped, run it through final checks to see
1191 // whether it can be salvaged.
1192 for (auto &DDI
: DDIV
)
1193 if (isMatchingDbgValue(DDI
))
1194 salvageUnresolvedDbgValue(DDI
);
1196 erase_if(DDIV
, isMatchingDbgValue
);
1200 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1201 // generate the debug data structures now that we've seen its definition.
1202 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1204 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1205 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1208 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1209 for (auto &DDI
: DDIV
) {
1210 const DbgValueInst
*DI
= DDI
.getDI();
1211 assert(!DI
->hasArgList() && "Not implemented for variadic dbg_values");
1212 assert(DI
&& "Ill-formed DanglingDebugInfo");
1213 DebugLoc dl
= DDI
.getdl();
1214 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1215 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1216 DILocalVariable
*Variable
= DI
->getVariable();
1217 DIExpression
*Expr
= DI
->getExpression();
1218 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1219 "Expected inlined-at fields to agree");
1221 if (Val
.getNode()) {
1222 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1223 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1224 // we couldn't resolve it directly when examining the DbgValue intrinsic
1225 // in the first place we should not be more successful here). Unless we
1226 // have some test case that prove this to be correct we should avoid
1227 // calling EmitFuncArgumentDbgValue here.
1228 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1229 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1230 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1231 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1232 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1233 // inserted after the definition of Val when emitting the instructions
1234 // after ISel. An alternative could be to teach
1235 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1236 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1237 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1238 << ValSDNodeOrder
<< "\n");
1239 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1240 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1241 DAG
.AddDbgValue(SDV
, false);
1243 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1244 << "in EmitFuncArgumentDbgValue\n");
1246 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1247 auto Undef
= UndefValue::get(DDI
.getDI()->getValue(0)->getType());
1249 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1250 DAG
.AddDbgValue(SDV
, false);
1256 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1257 // TODO: For the variadic implementation, instead of only checking the fail
1258 // state of `handleDebugValue`, we need know specifically which values were
1259 // invalid, so that we attempt to salvage only those values when processing
1261 assert(!DDI
.getDI()->hasArgList() &&
1262 "Not implemented for variadic dbg_values");
1263 Value
*V
= DDI
.getDI()->getValue(0);
1264 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1265 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1266 DebugLoc DL
= DDI
.getdl();
1267 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1268 unsigned SDOrder
= DDI
.getSDNodeOrder();
1269 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1270 // that DW_OP_stack_value is desired.
1271 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1272 bool StackValue
= true;
1274 // Can this Value can be encoded without any further work?
1275 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
, /*IsVariadic=*/false))
1278 // Attempt to salvage back through as many instructions as possible. Bail if
1279 // a non-instruction is seen, such as a constant expression or global
1280 // variable. FIXME: Further work could recover those too.
1281 while (isa
<Instruction
>(V
)) {
1282 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1283 // Temporary "0", awaiting real implementation.
1284 SmallVector
<uint64_t, 16> Ops
;
1285 SmallVector
<Value
*, 4> AdditionalValues
;
1286 V
= salvageDebugInfoImpl(VAsInst
, Expr
->getNumLocationOperands(), Ops
,
1288 // If we cannot salvage any further, and haven't yet found a suitable debug
1289 // expression, bail out.
1293 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1294 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1295 // here for variadic dbg_values, remove that condition.
1296 if (!AdditionalValues
.empty())
1299 // New value and expr now represent this debuginfo.
1300 Expr
= DIExpression::appendOpsToArg(Expr
, Ops
, 0, StackValue
);
1302 // Some kind of simplification occurred: check whether the operand of the
1303 // salvaged debug expression can be encoded in this DAG.
1304 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
,
1305 /*IsVariadic=*/false)) {
1306 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1307 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1312 // This was the final opportunity to salvage this debug information, and it
1313 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1314 // any earlier variable location.
1315 auto Undef
= UndefValue::get(DDI
.getDI()->getValue(0)->getType());
1316 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1317 DAG
.AddDbgValue(SDV
, false);
1319 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1321 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1325 bool SelectionDAGBuilder::handleDebugValue(ArrayRef
<const Value
*> Values
,
1326 DILocalVariable
*Var
,
1327 DIExpression
*Expr
, DebugLoc dl
,
1328 DebugLoc InstDL
, unsigned Order
,
1332 SmallVector
<SDDbgOperand
> LocationOps
;
1333 SmallVector
<SDNode
*> Dependencies
;
1334 for (const Value
*V
: Values
) {
1336 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1337 isa
<ConstantPointerNull
>(V
)) {
1338 LocationOps
.emplace_back(SDDbgOperand::fromConst(V
));
1342 // If the Value is a frame index, we can create a FrameIndex debug value
1343 // without relying on the DAG at all.
1344 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1345 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1346 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1347 LocationOps
.emplace_back(SDDbgOperand::fromFrameIdx(SI
->second
));
1352 // Do not use getValue() in here; we don't want to generate code at
1353 // this point if it hasn't been done yet.
1354 SDValue N
= NodeMap
[V
];
1355 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1356 N
= UnusedArgNodeMap
[V
];
1358 // Only emit func arg dbg value for non-variadic dbg.values for now.
1359 if (!IsVariadic
&& EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1361 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
1362 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1363 // describe stack slot locations.
1365 // Consider "int x = 0; int *px = &x;". There are two kinds of
1366 // interesting debug values here after optimization:
1368 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1369 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1371 // Both describe the direct values of their associated variables.
1372 Dependencies
.push_back(N
.getNode());
1373 LocationOps
.emplace_back(SDDbgOperand::fromFrameIdx(FISDN
->getIndex()));
1376 LocationOps
.emplace_back(
1377 SDDbgOperand::fromNode(N
.getNode(), N
.getResNo()));
1381 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1382 // Special rules apply for the first dbg.values of parameter variables in a
1383 // function. Identify them by the fact they reference Argument Values, that
1384 // they're parameters, and they are parameters of the current function. We
1385 // need to let them dangle until they get an SDNode.
1386 bool IsParamOfFunc
=
1387 isa
<Argument
>(V
) && Var
->isParameter() && !InstDL
.getInlinedAt();
1391 // The value is not used in this block yet (or it would have an SDNode).
1392 // We still want the value to appear for the user if possible -- if it has
1393 // an associated VReg, we can refer to that instead.
1394 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1395 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1396 unsigned Reg
= VMI
->second
;
1397 // If this is a PHI node, it may be split up into several MI PHI nodes
1398 // (in FunctionLoweringInfo::set).
1399 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1400 V
->getType(), None
);
1401 if (RFV
.occupiesMultipleRegs()) {
1402 // FIXME: We could potentially support variadic dbg_values here.
1405 unsigned Offset
= 0;
1406 unsigned BitsToDescribe
= 0;
1407 if (auto VarSize
= Var
->getSizeInBits())
1408 BitsToDescribe
= *VarSize
;
1409 if (auto Fragment
= Expr
->getFragmentInfo())
1410 BitsToDescribe
= Fragment
->SizeInBits
;
1411 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1412 // Bail out if all bits are described already.
1413 if (Offset
>= BitsToDescribe
)
1415 // TODO: handle scalable vectors.
1416 unsigned RegisterSize
= RegAndSize
.second
;
1417 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1418 ? BitsToDescribe
- Offset
1420 auto FragmentExpr
= DIExpression::createFragmentExpression(
1421 Expr
, Offset
, FragmentSize
);
1424 SDDbgValue
*SDV
= DAG
.getVRegDbgValue(
1425 Var
, *FragmentExpr
, RegAndSize
.first
, false, dl
, SDNodeOrder
);
1426 DAG
.AddDbgValue(SDV
, false);
1427 Offset
+= RegisterSize
;
1431 // We can use simple vreg locations for variadic dbg_values as well.
1432 LocationOps
.emplace_back(SDDbgOperand::fromVReg(Reg
));
1435 // We failed to create a SDDbgOperand for V.
1439 // We have created a SDDbgOperand for each Value in Values.
1440 // Should use Order instead of SDNodeOrder?
1441 assert(!LocationOps
.empty());
1443 DAG
.getDbgValueList(Var
, Expr
, LocationOps
, Dependencies
,
1444 /*IsIndirect=*/false, dl
, SDNodeOrder
, IsVariadic
);
1445 DAG
.AddDbgValue(SDV
, /*isParameter=*/false);
1449 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1450 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1451 for (auto &Pair
: DanglingDebugInfoMap
)
1452 for (auto &DDI
: Pair
.second
)
1453 salvageUnresolvedDbgValue(DDI
);
1454 clearDanglingDebugInfo();
1457 /// getCopyFromRegs - If there was virtual register allocated for the value V
1458 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1459 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1460 DenseMap
<const Value
*, Register
>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1463 if (It
!= FuncInfo
.ValueMap
.end()) {
1464 Register InReg
= It
->second
;
1466 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1467 DAG
.getDataLayout(), InReg
, Ty
,
1468 None
); // This is not an ABI copy.
1469 SDValue Chain
= DAG
.getEntryNode();
1470 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1472 resolveDanglingDebugInfo(V
, Result
);
1478 /// getValue - Return an SDValue for the given Value.
1479 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1480 // If we already have an SDValue for this value, use it. It's important
1481 // to do this first, so that we don't create a CopyFromReg if we already
1482 // have a regular SDValue.
1483 SDValue
&N
= NodeMap
[V
];
1484 if (N
.getNode()) return N
;
1486 // If there's a virtual register allocated and initialized for this
1488 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1491 // Otherwise create a new SDValue and remember it.
1492 SDValue Val
= getValueImpl(V
);
1494 resolveDanglingDebugInfo(V
, Val
);
1498 /// getNonRegisterValue - Return an SDValue for the given Value, but
1499 /// don't look in FuncInfo.ValueMap for a virtual register.
1500 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1501 // If we already have an SDValue for this value, use it.
1502 SDValue
&N
= NodeMap
[V
];
1504 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1505 // Remove the debug location from the node as the node is about to be used
1506 // in a location which may differ from the original debug location. This
1507 // is relevant to Constant and ConstantFP nodes because they can appear
1508 // as constant expressions inside PHI nodes.
1509 N
->setDebugLoc(DebugLoc());
1514 // Otherwise create a new SDValue and remember it.
1515 SDValue Val
= getValueImpl(V
);
1517 resolveDanglingDebugInfo(V
, Val
);
1521 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1522 /// Create an SDValue for the given value.
1523 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1524 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1526 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1527 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1529 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1530 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1532 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1533 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1535 if (isa
<ConstantPointerNull
>(C
)) {
1536 unsigned AS
= V
->getType()->getPointerAddressSpace();
1537 return DAG
.getConstant(0, getCurSDLoc(),
1538 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1541 if (match(C
, m_VScale(DAG
.getDataLayout())))
1542 return DAG
.getVScale(getCurSDLoc(), VT
, APInt(VT
.getSizeInBits(), 1));
1544 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1545 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1547 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1548 return DAG
.getUNDEF(VT
);
1550 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1551 visit(CE
->getOpcode(), *CE
);
1552 SDValue N1
= NodeMap
[V
];
1553 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1557 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1558 SmallVector
<SDValue
, 4> Constants
;
1559 for (const Use
&U
: C
->operands()) {
1560 SDNode
*Val
= getValue(U
).getNode();
1561 // If the operand is an empty aggregate, there are no values.
1563 // Add each leaf value from the operand to the Constants list
1564 // to form a flattened list of all the values.
1565 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1566 Constants
.push_back(SDValue(Val
, i
));
1569 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1572 if (const ConstantDataSequential
*CDS
=
1573 dyn_cast
<ConstantDataSequential
>(C
)) {
1574 SmallVector
<SDValue
, 4> Ops
;
1575 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1576 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1577 // Add each leaf value from the operand to the Constants list
1578 // to form a flattened list of all the values.
1579 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1580 Ops
.push_back(SDValue(Val
, i
));
1583 if (isa
<ArrayType
>(CDS
->getType()))
1584 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1585 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1588 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1589 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1590 "Unknown struct or array constant!");
1592 SmallVector
<EVT
, 4> ValueVTs
;
1593 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1594 unsigned NumElts
= ValueVTs
.size();
1596 return SDValue(); // empty struct
1597 SmallVector
<SDValue
, 4> Constants(NumElts
);
1598 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1599 EVT EltVT
= ValueVTs
[i
];
1600 if (isa
<UndefValue
>(C
))
1601 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1602 else if (EltVT
.isFloatingPoint())
1603 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1605 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1608 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1611 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1612 return DAG
.getBlockAddress(BA
, VT
);
1614 if (const auto *Equiv
= dyn_cast
<DSOLocalEquivalent
>(C
))
1615 return getValue(Equiv
->getGlobalValue());
1617 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1619 // Now that we know the number and type of the elements, get that number of
1620 // elements into the Ops array based on what kind of constant it is.
1621 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1622 SmallVector
<SDValue
, 16> Ops
;
1623 unsigned NumElements
= cast
<FixedVectorType
>(VecTy
)->getNumElements();
1624 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1625 Ops
.push_back(getValue(CV
->getOperand(i
)));
1627 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1628 } else if (isa
<ConstantAggregateZero
>(C
)) {
1630 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1633 if (EltVT
.isFloatingPoint())
1634 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1636 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1638 if (isa
<ScalableVectorType
>(VecTy
))
1639 return NodeMap
[V
] = DAG
.getSplatVector(VT
, getCurSDLoc(), Op
);
1641 SmallVector
<SDValue
, 16> Ops
;
1642 Ops
.assign(cast
<FixedVectorType
>(VecTy
)->getNumElements(), Op
);
1643 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1646 llvm_unreachable("Unknown vector constant");
1649 // If this is a static alloca, generate it as the frameindex instead of
1651 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1652 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1653 FuncInfo
.StaticAllocaMap
.find(AI
);
1654 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1655 return DAG
.getFrameIndex(SI
->second
,
1656 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1659 // If this is an instruction which fast-isel has deferred, select it now.
1660 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1661 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1663 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1664 Inst
->getType(), None
);
1665 SDValue Chain
= DAG
.getEntryNode();
1666 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1669 if (const MetadataAsValue
*MD
= dyn_cast
<MetadataAsValue
>(V
)) {
1670 return DAG
.getMDNode(cast
<MDNode
>(MD
->getMetadata()));
1672 llvm_unreachable("Can't get register for value!");
1675 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1676 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1677 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1678 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1679 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1680 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1682 CatchPadMBB
->setIsEHScopeEntry();
1683 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1684 if (IsMSVCCXX
|| IsCoreCLR
)
1685 CatchPadMBB
->setIsEHFuncletEntry();
1688 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1689 // Update machine-CFG edge.
1690 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1691 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1692 TargetMBB
->setIsEHCatchretTarget(true);
1693 DAG
.getMachineFunction().setHasEHCatchret(true);
1695 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1696 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1698 // If this is not a fall-through branch or optimizations are switched off,
1700 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1701 TM
.getOptLevel() == CodeGenOpt::None
)
1702 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1703 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1707 // Figure out the funclet membership for the catchret's successor.
1708 // This will be used by the FuncletLayout pass to determine how to order the
1710 // A 'catchret' returns to the outer scope's color.
1711 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1712 const BasicBlock
*SuccessorColor
;
1713 if (isa
<ConstantTokenNone
>(ParentPad
))
1714 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1716 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1717 assert(SuccessorColor
&& "No parent funclet for catchret!");
1718 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1719 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1721 // Create the terminator node.
1722 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1723 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1724 DAG
.getBasicBlock(SuccessorColorMBB
));
1728 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1729 // Don't emit any special code for the cleanuppad instruction. It just marks
1730 // the start of an EH scope/funclet.
1731 FuncInfo
.MBB
->setIsEHScopeEntry();
1732 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1733 if (Pers
!= EHPersonality::Wasm_CXX
) {
1734 FuncInfo
.MBB
->setIsEHFuncletEntry();
1735 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1739 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1740 // not match, it is OK to add only the first unwind destination catchpad to the
1741 // successors, because there will be at least one invoke instruction within the
1742 // catch scope that points to the next unwind destination, if one exists, so
1743 // CFGSort cannot mess up with BB sorting order.
1744 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1745 // call within them, and catchpads only consisting of 'catch (...)' have a
1746 // '__cxa_end_catch' call within them, both of which generate invokes in case
1747 // the next unwind destination exists, i.e., the next unwind destination is not
1750 // Having at most one EH pad successor is also simpler and helps later
1755 // invoke void @foo to ... unwind label %catch.dispatch
1757 // %0 = catchswitch within ... [label %catch.start] unwind label %next
1760 // ... in this BB or some other child BB dominated by this BB there will be an
1761 // invoke that points to 'next' BB as an unwind destination
1763 // next: ; We don't need to add this to 'current' BB's successor
1765 static void findWasmUnwindDestinations(
1766 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1767 BranchProbability Prob
,
1768 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1771 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1772 if (isa
<CleanupPadInst
>(Pad
)) {
1773 // Stop on cleanup pads.
1774 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1775 UnwindDests
.back().first
->setIsEHScopeEntry();
1777 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1778 // Add the catchpad handlers to the possible destinations. We don't
1779 // continue to the unwind destination of the catchswitch for wasm.
1780 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1781 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1782 UnwindDests
.back().first
->setIsEHScopeEntry();
1791 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1792 /// many places it could ultimately go. In the IR, we have a single unwind
1793 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1794 /// This function skips over imaginary basic blocks that hold catchswitch
1795 /// instructions, and finds all the "real" machine
1796 /// basic block destinations. As those destinations may not be successors of
1797 /// EHPadBB, here we also calculate the edge probability to those destinations.
1798 /// The passed-in Prob is the edge probability to EHPadBB.
1799 static void findUnwindDestinations(
1800 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1801 BranchProbability Prob
,
1802 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1804 EHPersonality Personality
=
1805 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1806 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1807 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1808 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1809 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1812 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1813 assert(UnwindDests
.size() <= 1 &&
1814 "There should be at most one unwind destination for wasm");
1819 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1820 BasicBlock
*NewEHPadBB
= nullptr;
1821 if (isa
<LandingPadInst
>(Pad
)) {
1822 // Stop on landingpads. They are not funclets.
1823 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1825 } else if (isa
<CleanupPadInst
>(Pad
)) {
1826 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1828 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1829 UnwindDests
.back().first
->setIsEHScopeEntry();
1830 UnwindDests
.back().first
->setIsEHFuncletEntry();
1832 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1833 // Add the catchpad handlers to the possible destinations.
1834 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1835 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1836 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1837 if (IsMSVCCXX
|| IsCoreCLR
)
1838 UnwindDests
.back().first
->setIsEHFuncletEntry();
1840 UnwindDests
.back().first
->setIsEHScopeEntry();
1842 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1847 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1848 if (BPI
&& NewEHPadBB
)
1849 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1850 EHPadBB
= NewEHPadBB
;
1854 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1855 // Update successor info.
1856 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1857 auto UnwindDest
= I
.getUnwindDest();
1858 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1859 BranchProbability UnwindDestProb
=
1861 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1862 : BranchProbability::getZero();
1863 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1864 for (auto &UnwindDest
: UnwindDests
) {
1865 UnwindDest
.first
->setIsEHPad();
1866 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1868 FuncInfo
.MBB
->normalizeSuccProbs();
1870 // Create the terminator node.
1872 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1876 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1877 report_fatal_error("visitCatchSwitch not yet implemented!");
1880 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1881 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1882 auto &DL
= DAG
.getDataLayout();
1883 SDValue Chain
= getControlRoot();
1884 SmallVector
<ISD::OutputArg
, 8> Outs
;
1885 SmallVector
<SDValue
, 8> OutVals
;
1887 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1890 // %val = call <ty> @llvm.experimental.deoptimize()
1894 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1895 LowerDeoptimizingReturn();
1899 if (!FuncInfo
.CanLowerReturn
) {
1900 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1901 const Function
*F
= I
.getParent()->getParent();
1903 // Emit a store of the return value through the virtual register.
1904 // Leave Outs empty so that LowerReturn won't try to load return
1905 // registers the usual way.
1906 SmallVector
<EVT
, 1> PtrValueVTs
;
1907 ComputeValueVTs(TLI
, DL
,
1908 F
->getReturnType()->getPointerTo(
1909 DAG
.getDataLayout().getAllocaAddrSpace()),
1912 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1913 DemoteReg
, PtrValueVTs
[0]);
1914 SDValue RetOp
= getValue(I
.getOperand(0));
1916 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1917 SmallVector
<uint64_t, 4> Offsets
;
1918 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1920 unsigned NumValues
= ValueVTs
.size();
1922 SmallVector
<SDValue
, 4> Chains(NumValues
);
1923 Align BaseAlign
= DL
.getPrefTypeAlign(I
.getOperand(0)->getType());
1924 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1925 // An aggregate return value cannot wrap around the address space, so
1926 // offsets to its parts don't wrap either.
1927 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
,
1928 TypeSize::Fixed(Offsets
[i
]));
1930 SDValue Val
= RetOp
.getValue(RetOp
.getResNo() + i
);
1931 if (MemVTs
[i
] != ValueVTs
[i
])
1932 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1933 Chains
[i
] = DAG
.getStore(
1934 Chain
, getCurSDLoc(), Val
,
1935 // FIXME: better loc info would be nice.
1936 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()),
1937 commonAlignment(BaseAlign
, Offsets
[i
]));
1940 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1941 MVT::Other
, Chains
);
1942 } else if (I
.getNumOperands() != 0) {
1943 SmallVector
<EVT
, 4> ValueVTs
;
1944 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1945 unsigned NumValues
= ValueVTs
.size();
1947 SDValue RetOp
= getValue(I
.getOperand(0));
1949 const Function
*F
= I
.getParent()->getParent();
1951 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1952 I
.getOperand(0)->getType(), F
->getCallingConv(),
1953 /*IsVarArg*/ false, DL
);
1955 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1956 if (F
->getAttributes().hasRetAttr(Attribute::SExt
))
1957 ExtendKind
= ISD::SIGN_EXTEND
;
1958 else if (F
->getAttributes().hasRetAttr(Attribute::ZExt
))
1959 ExtendKind
= ISD::ZERO_EXTEND
;
1961 LLVMContext
&Context
= F
->getContext();
1962 bool RetInReg
= F
->getAttributes().hasRetAttr(Attribute::InReg
);
1964 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1965 EVT VT
= ValueVTs
[j
];
1967 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1968 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1970 CallingConv::ID CC
= F
->getCallingConv();
1972 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1973 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1974 SmallVector
<SDValue
, 4> Parts(NumParts
);
1975 getCopyToParts(DAG
, getCurSDLoc(),
1976 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1977 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1979 // 'inreg' on function refers to return value
1980 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1984 if (I
.getOperand(0)->getType()->isPointerTy()) {
1986 Flags
.setPointerAddrSpace(
1987 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1990 if (NeedsRegBlock
) {
1991 Flags
.setInConsecutiveRegs();
1992 if (j
== NumValues
- 1)
1993 Flags
.setInConsecutiveRegsLast();
1996 // Propagate extension type if any
1997 if (ExtendKind
== ISD::SIGN_EXTEND
)
1999 else if (ExtendKind
== ISD::ZERO_EXTEND
)
2002 for (unsigned i
= 0; i
< NumParts
; ++i
) {
2003 Outs
.push_back(ISD::OutputArg(Flags
,
2004 Parts
[i
].getValueType().getSimpleVT(),
2005 VT
, /*isfixed=*/true, 0, 0));
2006 OutVals
.push_back(Parts
[i
]);
2012 // Push in swifterror virtual register as the last element of Outs. This makes
2013 // sure swifterror virtual register will be returned in the swifterror
2014 // physical register.
2015 const Function
*F
= I
.getParent()->getParent();
2016 if (TLI
.supportSwiftError() &&
2017 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
2018 assert(SwiftError
.getFunctionArg() && "Need a swift error argument");
2019 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
2020 Flags
.setSwiftError();
2021 Outs
.push_back(ISD::OutputArg(
2022 Flags
, /*vt=*/TLI
.getPointerTy(DL
), /*argvt=*/EVT(TLI
.getPointerTy(DL
)),
2023 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2024 // Create SDNode for the swifterror virtual register.
2026 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(
2027 &I
, FuncInfo
.MBB
, SwiftError
.getFunctionArg()),
2028 EVT(TLI
.getPointerTy(DL
))));
2031 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
2032 CallingConv::ID CallConv
=
2033 DAG
.getMachineFunction().getFunction().getCallingConv();
2034 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
2035 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
2037 // Verify that the target's LowerReturn behaved as expected.
2038 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
2039 "LowerReturn didn't return a valid chain!");
2041 // Update the DAG with the new chain value resulting from return lowering.
2045 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2046 /// created for it, emit nodes to copy the value into the virtual
2048 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
2050 if (V
->getType()->isEmptyTy())
2053 DenseMap
<const Value
*, Register
>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
2054 if (VMI
!= FuncInfo
.ValueMap
.end()) {
2055 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
2056 CopyValueToVirtualRegister(V
, VMI
->second
);
2060 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2061 /// the current basic block, add it to ValueMap now so that we'll get a
2063 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
2064 // No need to export constants.
2065 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
2067 // Already exported?
2068 if (FuncInfo
.isExportedInst(V
)) return;
2070 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
2071 CopyValueToVirtualRegister(V
, Reg
);
2074 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
2075 const BasicBlock
*FromBB
) {
2076 // The operands of the setcc have to be in this block. We don't know
2077 // how to export them from some other block.
2078 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
2079 // Can export from current BB.
2080 if (VI
->getParent() == FromBB
)
2083 // Is already exported, noop.
2084 return FuncInfo
.isExportedInst(V
);
2087 // If this is an argument, we can export it if the BB is the entry block or
2088 // if it is already exported.
2089 if (isa
<Argument
>(V
)) {
2090 if (FromBB
->isEntryBlock())
2093 // Otherwise, can only export this if it is already exported.
2094 return FuncInfo
.isExportedInst(V
);
2097 // Otherwise, constants can always be exported.
2101 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2103 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
2104 const MachineBasicBlock
*Dst
) const {
2105 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2106 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
2107 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
2109 // If BPI is not available, set the default probability as 1 / N, where N is
2110 // the number of successors.
2111 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
2112 return BranchProbability(1, SuccSize
);
2114 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
2117 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
2118 MachineBasicBlock
*Dst
,
2119 BranchProbability Prob
) {
2121 Src
->addSuccessorWithoutProb(Dst
);
2123 if (Prob
.isUnknown())
2124 Prob
= getEdgeProbability(Src
, Dst
);
2125 Src
->addSuccessor(Dst
, Prob
);
2129 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2130 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2131 return I
->getParent() == BB
;
2135 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2136 /// This function emits a branch and is used at the leaves of an OR or an
2137 /// AND operator tree.
2139 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2140 MachineBasicBlock
*TBB
,
2141 MachineBasicBlock
*FBB
,
2142 MachineBasicBlock
*CurBB
,
2143 MachineBasicBlock
*SwitchBB
,
2144 BranchProbability TProb
,
2145 BranchProbability FProb
,
2147 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2149 // If the leaf of the tree is a comparison, merge the condition into
2151 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2152 // The operands of the cmp have to be in this block. We don't know
2153 // how to export them from some other block. If this is the first block
2154 // of the sequence, no exporting is needed.
2155 if (CurBB
== SwitchBB
||
2156 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2157 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2158 ISD::CondCode Condition
;
2159 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2160 ICmpInst::Predicate Pred
=
2161 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2162 Condition
= getICmpCondCode(Pred
);
2164 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2165 FCmpInst::Predicate Pred
=
2166 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2167 Condition
= getFCmpCondCode(Pred
);
2168 if (TM
.Options
.NoNaNsFPMath
)
2169 Condition
= getFCmpCodeWithoutNaN(Condition
);
2172 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2173 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2174 SL
->SwitchCases
.push_back(CB
);
2179 // Create a CaseBlock record representing this branch.
2180 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2181 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2182 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2183 SL
->SwitchCases
.push_back(CB
);
2186 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2187 MachineBasicBlock
*TBB
,
2188 MachineBasicBlock
*FBB
,
2189 MachineBasicBlock
*CurBB
,
2190 MachineBasicBlock
*SwitchBB
,
2191 Instruction::BinaryOps Opc
,
2192 BranchProbability TProb
,
2193 BranchProbability FProb
,
2195 // Skip over not part of the tree and remember to invert op and operands at
2198 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2199 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2200 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2205 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2206 const Value
*BOpOp0
, *BOpOp1
;
2207 // Compute the effective opcode for Cond, taking into account whether it needs
2208 // to be inverted, e.g.
2209 // and (not (or A, B)), C
2211 // and (and (not A, not B), C)
2212 Instruction::BinaryOps BOpc
= (Instruction::BinaryOps
)0;
2214 BOpc
= match(BOp
, m_LogicalAnd(m_Value(BOpOp0
), m_Value(BOpOp1
)))
2216 : (match(BOp
, m_LogicalOr(m_Value(BOpOp0
), m_Value(BOpOp1
)))
2218 : (Instruction::BinaryOps
)0);
2220 if (BOpc
== Instruction::And
)
2221 BOpc
= Instruction::Or
;
2222 else if (BOpc
== Instruction::Or
)
2223 BOpc
= Instruction::And
;
2227 // If this node is not part of the or/and tree, emit it as a branch.
2228 // Note that all nodes in the tree should have same opcode.
2229 bool BOpIsInOrAndTree
= BOpc
&& BOpc
== Opc
&& BOp
->hasOneUse();
2230 if (!BOpIsInOrAndTree
|| BOp
->getParent() != CurBB
->getBasicBlock() ||
2231 !InBlock(BOpOp0
, CurBB
->getBasicBlock()) ||
2232 !InBlock(BOpOp1
, CurBB
->getBasicBlock())) {
2233 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2234 TProb
, FProb
, InvertCond
);
2238 // Create TmpBB after CurBB.
2239 MachineFunction::iterator
BBI(CurBB
);
2240 MachineFunction
&MF
= DAG
.getMachineFunction();
2241 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2242 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2244 if (Opc
== Instruction::Or
) {
2245 // Codegen X | Y as:
2254 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2255 // The requirement is that
2256 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2257 // = TrueProb for original BB.
2258 // Assuming the original probabilities are A and B, one choice is to set
2259 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2260 // A/(1+B) and 2B/(1+B). This choice assumes that
2261 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2262 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2263 // TmpBB, but the math is more complicated.
2265 auto NewTrueProb
= TProb
/ 2;
2266 auto NewFalseProb
= TProb
/ 2 + FProb
;
2267 // Emit the LHS condition.
2268 FindMergedConditions(BOpOp0
, TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
, NewTrueProb
,
2269 NewFalseProb
, InvertCond
);
2271 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2272 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2273 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2274 // Emit the RHS condition into TmpBB.
2275 FindMergedConditions(BOpOp1
, TBB
, FBB
, TmpBB
, SwitchBB
, Opc
, Probs
[0],
2276 Probs
[1], InvertCond
);
2278 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2279 // Codegen X & Y as:
2287 // This requires creation of TmpBB after CurBB.
2289 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2290 // The requirement is that
2291 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2292 // = FalseProb for original BB.
2293 // Assuming the original probabilities are A and B, one choice is to set
2294 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2295 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2296 // TrueProb for BB1 * FalseProb for TmpBB.
2298 auto NewTrueProb
= TProb
+ FProb
/ 2;
2299 auto NewFalseProb
= FProb
/ 2;
2300 // Emit the LHS condition.
2301 FindMergedConditions(BOpOp0
, TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
, NewTrueProb
,
2302 NewFalseProb
, InvertCond
);
2304 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2305 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2306 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2307 // Emit the RHS condition into TmpBB.
2308 FindMergedConditions(BOpOp1
, TBB
, FBB
, TmpBB
, SwitchBB
, Opc
, Probs
[0],
2309 Probs
[1], InvertCond
);
2313 /// If the set of cases should be emitted as a series of branches, return true.
2314 /// If we should emit this as a bunch of and/or'd together conditions, return
2317 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2318 if (Cases
.size() != 2) return true;
2320 // If this is two comparisons of the same values or'd or and'd together, they
2321 // will get folded into a single comparison, so don't emit two blocks.
2322 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2323 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2324 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2325 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2329 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2330 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2331 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2332 Cases
[0].CC
== Cases
[1].CC
&&
2333 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2334 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2335 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2337 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2344 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2345 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2347 // Update machine-CFG edges.
2348 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2350 if (I
.isUnconditional()) {
2351 // Update machine-CFG edges.
2352 BrMBB
->addSuccessor(Succ0MBB
);
2354 // If this is not a fall-through branch or optimizations are switched off,
2356 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2357 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2358 MVT::Other
, getControlRoot(),
2359 DAG
.getBasicBlock(Succ0MBB
)));
2364 // If this condition is one of the special cases we handle, do special stuff
2366 const Value
*CondVal
= I
.getCondition();
2367 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2369 // If this is a series of conditions that are or'd or and'd together, emit
2370 // this as a sequence of branches instead of setcc's with and/or operations.
2371 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2372 // unpredictable branches, and vector extracts because those jumps are likely
2373 // expensive for any target), this should improve performance.
2374 // For example, instead of something like:
2386 const Instruction
*BOp
= dyn_cast
<Instruction
>(CondVal
);
2387 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
&&
2388 BOp
->hasOneUse() && !I
.hasMetadata(LLVMContext::MD_unpredictable
)) {
2390 const Value
*BOp0
, *BOp1
;
2391 Instruction::BinaryOps Opcode
= (Instruction::BinaryOps
)0;
2392 if (match(BOp
, m_LogicalAnd(m_Value(BOp0
), m_Value(BOp1
))))
2393 Opcode
= Instruction::And
;
2394 else if (match(BOp
, m_LogicalOr(m_Value(BOp0
), m_Value(BOp1
))))
2395 Opcode
= Instruction::Or
;
2397 if (Opcode
&& !(match(BOp0
, m_ExtractElt(m_Value(Vec
), m_Value())) &&
2398 match(BOp1
, m_ExtractElt(m_Specific(Vec
), m_Value())))) {
2399 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
, Opcode
,
2400 getEdgeProbability(BrMBB
, Succ0MBB
),
2401 getEdgeProbability(BrMBB
, Succ1MBB
),
2402 /*InvertCond=*/false);
2403 // If the compares in later blocks need to use values not currently
2404 // exported from this block, export them now. This block should always
2405 // be the first entry.
2406 assert(SL
->SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2408 // Allow some cases to be rejected.
2409 if (ShouldEmitAsBranches(SL
->SwitchCases
)) {
2410 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
) {
2411 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpLHS
);
2412 ExportFromCurrentBlock(SL
->SwitchCases
[i
].CmpRHS
);
2415 // Emit the branch for this block.
2416 visitSwitchCase(SL
->SwitchCases
[0], BrMBB
);
2417 SL
->SwitchCases
.erase(SL
->SwitchCases
.begin());
2421 // Okay, we decided not to do this, remove any inserted MBB's and clear
2423 for (unsigned i
= 1, e
= SL
->SwitchCases
.size(); i
!= e
; ++i
)
2424 FuncInfo
.MF
->erase(SL
->SwitchCases
[i
].ThisBB
);
2426 SL
->SwitchCases
.clear();
2430 // Create a CaseBlock record representing this branch.
2431 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2432 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2434 // Use visitSwitchCase to actually insert the fast branch sequence for this
2436 visitSwitchCase(CB
, BrMBB
);
2439 /// visitSwitchCase - Emits the necessary code to represent a single node in
2440 /// the binary search tree resulting from lowering a switch instruction.
2441 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2442 MachineBasicBlock
*SwitchBB
) {
2444 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2447 if (CB
.CC
== ISD::SETTRUE
) {
2448 // Branch or fall through to TrueBB.
2449 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2450 SwitchBB
->normalizeSuccProbs();
2451 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2452 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2453 DAG
.getBasicBlock(CB
.TrueBB
)));
2458 auto &TLI
= DAG
.getTargetLoweringInfo();
2459 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2461 // Build the setcc now.
2463 // Fold "(X == true)" to X and "(X == false)" to !X to
2464 // handle common cases produced by branch lowering.
2465 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2466 CB
.CC
== ISD::SETEQ
)
2468 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2469 CB
.CC
== ISD::SETEQ
) {
2470 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2471 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2473 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2475 // If a pointer's DAG type is larger than its memory type then the DAG
2476 // values are zero-extended. This breaks signed comparisons so truncate
2477 // back to the underlying type before doing the compare.
2478 if (CondLHS
.getValueType() != MemVT
) {
2479 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2480 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2482 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2485 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2487 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2488 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2490 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2491 EVT VT
= CmpOp
.getValueType();
2493 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2494 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2497 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2498 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2499 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2500 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2504 // Update successor info
2505 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2506 // TrueBB and FalseBB are always different unless the incoming IR is
2507 // degenerate. This only happens when running llc on weird IR.
2508 if (CB
.TrueBB
!= CB
.FalseBB
)
2509 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2510 SwitchBB
->normalizeSuccProbs();
2512 // If the lhs block is the next block, invert the condition so that we can
2513 // fall through to the lhs instead of the rhs block.
2514 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2515 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2516 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2517 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2520 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2521 MVT::Other
, getControlRoot(), Cond
,
2522 DAG
.getBasicBlock(CB
.TrueBB
));
2524 // Insert the false branch. Do this even if it's a fall through branch,
2525 // this makes it easier to do DAG optimizations which require inverting
2526 // the branch condition.
2527 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2528 DAG
.getBasicBlock(CB
.FalseBB
));
2530 DAG
.setRoot(BrCond
);
2533 /// visitJumpTable - Emit JumpTable node in the current MBB
2534 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable
&JT
) {
2535 // Emit the code for the jump table
2536 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2537 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2538 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2540 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2541 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2542 MVT::Other
, Index
.getValue(1),
2544 DAG
.setRoot(BrJumpTable
);
2547 /// visitJumpTableHeader - This function emits necessary code to produce index
2548 /// in the JumpTable from switch case.
2549 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable
&JT
,
2550 JumpTableHeader
&JTH
,
2551 MachineBasicBlock
*SwitchBB
) {
2552 SDLoc dl
= getCurSDLoc();
2554 // Subtract the lowest switch case value from the value being switched on.
2555 SDValue SwitchOp
= getValue(JTH
.SValue
);
2556 EVT VT
= SwitchOp
.getValueType();
2557 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2558 DAG
.getConstant(JTH
.First
, dl
, VT
));
2560 // The SDNode we just created, which holds the value being switched on minus
2561 // the smallest case value, needs to be copied to a virtual register so it
2562 // can be used as an index into the jump table in a subsequent basic block.
2563 // This value may be smaller or larger than the target's pointer type, and
2564 // therefore require extension or truncating.
2565 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2566 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2568 unsigned JumpTableReg
=
2569 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2570 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2571 JumpTableReg
, SwitchOp
);
2572 JT
.Reg
= JumpTableReg
;
2574 if (!JTH
.OmitRangeCheck
) {
2575 // Emit the range check for the jump table, and branch to the default block
2576 // for the switch statement if the value being switched on exceeds the
2577 // largest case in the switch.
2578 SDValue CMP
= DAG
.getSetCC(
2579 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2580 Sub
.getValueType()),
2581 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2583 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2584 MVT::Other
, CopyTo
, CMP
,
2585 DAG
.getBasicBlock(JT
.Default
));
2587 // Avoid emitting unnecessary branches to the next block.
2588 if (JT
.MBB
!= NextBlock(SwitchBB
))
2589 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2590 DAG
.getBasicBlock(JT
.MBB
));
2592 DAG
.setRoot(BrCond
);
2594 // Avoid emitting unnecessary branches to the next block.
2595 if (JT
.MBB
!= NextBlock(SwitchBB
))
2596 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2597 DAG
.getBasicBlock(JT
.MBB
)));
2599 DAG
.setRoot(CopyTo
);
2603 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2604 /// variable if there exists one.
2605 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2607 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2608 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2609 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2610 MachineFunction
&MF
= DAG
.getMachineFunction();
2611 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2612 MachineSDNode
*Node
=
2613 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2615 MachinePointerInfo
MPInfo(Global
);
2616 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2617 MachineMemOperand::MODereferenceable
;
2618 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2619 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlign(PtrTy
));
2620 DAG
.setNodeMemRefs(Node
, {MemRef
});
2622 if (PtrTy
!= PtrMemTy
)
2623 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2624 return SDValue(Node
, 0);
2627 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2628 /// tail spliced into a stack protector check success bb.
2630 /// For a high level explanation of how this fits into the stack protector
2631 /// generation see the comment on the declaration of class
2632 /// StackProtectorDescriptor.
2633 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2634 MachineBasicBlock
*ParentBB
) {
2636 // First create the loads to the guard/stack slot for the comparison.
2637 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2638 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2639 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2641 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2642 int FI
= MFI
.getStackProtectorIndex();
2645 SDLoc dl
= getCurSDLoc();
2646 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2647 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2648 Align Align
= DL
->getPrefTypeAlign(Type::getInt8PtrTy(M
.getContext()));
2650 // Generate code to load the content of the guard slot.
2651 SDValue GuardVal
= DAG
.getLoad(
2652 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2653 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2654 MachineMemOperand::MOVolatile
);
2656 if (TLI
.useStackGuardXorFP())
2657 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2659 // Retrieve guard check function, nullptr if instrumentation is inlined.
2660 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2661 // The target provides a guard check function to validate the guard value.
2662 // Generate a call to that function with the content of the guard slot as
2664 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2665 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2667 TargetLowering::ArgListTy Args
;
2668 TargetLowering::ArgListEntry Entry
;
2669 Entry
.Node
= GuardVal
;
2670 Entry
.Ty
= FnTy
->getParamType(0);
2671 if (GuardCheckFn
->hasParamAttribute(0, Attribute::AttrKind::InReg
))
2672 Entry
.IsInReg
= true;
2673 Args
.push_back(Entry
);
2675 TargetLowering::CallLoweringInfo
CLI(DAG
);
2676 CLI
.setDebugLoc(getCurSDLoc())
2677 .setChain(DAG
.getEntryNode())
2678 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2679 getValue(GuardCheckFn
), std::move(Args
));
2681 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2682 DAG
.setRoot(Result
.second
);
2686 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2687 // Otherwise, emit a volatile load to retrieve the stack guard value.
2688 SDValue Chain
= DAG
.getEntryNode();
2689 if (TLI
.useLoadStackGuardNode()) {
2690 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2692 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2693 SDValue GuardPtr
= getValue(IRGuard
);
2695 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2696 MachinePointerInfo(IRGuard
, 0), Align
,
2697 MachineMemOperand::MOVolatile
);
2700 // Perform the comparison via a getsetcc.
2701 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2703 Guard
.getValueType()),
2704 Guard
, GuardVal
, ISD::SETNE
);
2706 // If the guard/stackslot do not equal, branch to failure MBB.
2707 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2708 MVT::Other
, GuardVal
.getOperand(0),
2709 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2710 // Otherwise branch to success MBB.
2711 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2713 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2718 /// Codegen the failure basic block for a stack protector check.
2720 /// A failure stack protector machine basic block consists simply of a call to
2721 /// __stack_chk_fail().
2723 /// For a high level explanation of how this fits into the stack protector
2724 /// generation see the comment on the declaration of class
2725 /// StackProtectorDescriptor.
2727 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2728 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2729 TargetLowering::MakeLibCallOptions CallOptions
;
2730 CallOptions
.setDiscardResult(true);
2732 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2733 None
, CallOptions
, getCurSDLoc()).second
;
2734 // On PS4, the "return address" must still be within the calling function,
2735 // even if it's at the very end, so emit an explicit TRAP here.
2736 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2737 if (TM
.getTargetTriple().isPS4CPU())
2738 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2739 // WebAssembly needs an unreachable instruction after a non-returning call,
2740 // because the function return type can be different from __stack_chk_fail's
2741 // return type (void).
2742 if (TM
.getTargetTriple().isWasm())
2743 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2748 /// visitBitTestHeader - This function emits necessary code to produce value
2749 /// suitable for "bit tests"
2750 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2751 MachineBasicBlock
*SwitchBB
) {
2752 SDLoc dl
= getCurSDLoc();
2754 // Subtract the minimum value.
2755 SDValue SwitchOp
= getValue(B
.SValue
);
2756 EVT VT
= SwitchOp
.getValueType();
2758 DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
, DAG
.getConstant(B
.First
, dl
, VT
));
2760 // Determine the type of the test operands.
2761 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2762 bool UsePtrType
= false;
2763 if (!TLI
.isTypeLegal(VT
)) {
2766 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2767 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2768 // Switch table case range are encoded into series of masks.
2769 // Just use pointer type, it's guaranteed to fit.
2774 SDValue Sub
= RangeSub
;
2776 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2777 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2780 B
.RegVT
= VT
.getSimpleVT();
2781 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2782 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2784 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2786 if (!B
.OmitRangeCheck
)
2787 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2788 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2789 SwitchBB
->normalizeSuccProbs();
2791 SDValue Root
= CopyTo
;
2792 if (!B
.OmitRangeCheck
) {
2793 // Conditional branch to the default block.
2794 SDValue RangeCmp
= DAG
.getSetCC(dl
,
2795 TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2796 RangeSub
.getValueType()),
2797 RangeSub
, DAG
.getConstant(B
.Range
, dl
, RangeSub
.getValueType()),
2800 Root
= DAG
.getNode(ISD::BRCOND
, dl
, MVT::Other
, Root
, RangeCmp
,
2801 DAG
.getBasicBlock(B
.Default
));
2804 // Avoid emitting unnecessary branches to the next block.
2805 if (MBB
!= NextBlock(SwitchBB
))
2806 Root
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, Root
, DAG
.getBasicBlock(MBB
));
2811 /// visitBitTestCase - this function produces one "bit test"
2812 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2813 MachineBasicBlock
* NextMBB
,
2814 BranchProbability BranchProbToNext
,
2817 MachineBasicBlock
*SwitchBB
) {
2818 SDLoc dl
= getCurSDLoc();
2820 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2822 unsigned PopCount
= countPopulation(B
.Mask
);
2823 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2824 if (PopCount
== 1) {
2825 // Testing for a single bit; just compare the shift count with what it
2826 // would need to be to shift a 1 bit in that position.
2828 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2829 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2831 } else if (PopCount
== BB
.Range
) {
2832 // There is only one zero bit in the range, test for it directly.
2834 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2835 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2838 // Make desired shift
2839 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2840 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2842 // Emit bit tests and jumps
2843 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2844 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2846 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2847 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2850 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2851 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2852 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2853 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2854 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2855 // one as they are relative probabilities (and thus work more like weights),
2856 // and hence we need to normalize them to let the sum of them become one.
2857 SwitchBB
->normalizeSuccProbs();
2859 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2860 MVT::Other
, getControlRoot(),
2861 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2863 // Avoid emitting unnecessary branches to the next block.
2864 if (NextMBB
!= NextBlock(SwitchBB
))
2865 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2866 DAG
.getBasicBlock(NextMBB
));
2871 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2872 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2874 // Retrieve successors. Look through artificial IR level blocks like
2875 // catchswitch for successors.
2876 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2877 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2879 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2880 // have to do anything here to lower funclet bundles.
2881 assert(!I
.hasOperandBundlesOtherThan(
2882 {LLVMContext::OB_deopt
, LLVMContext::OB_gc_transition
,
2883 LLVMContext::OB_gc_live
, LLVMContext::OB_funclet
,
2884 LLVMContext::OB_cfguardtarget
,
2885 LLVMContext::OB_clang_arc_attachedcall
}) &&
2886 "Cannot lower invokes with arbitrary operand bundles yet!");
2888 const Value
*Callee(I
.getCalledOperand());
2889 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2890 if (isa
<InlineAsm
>(Callee
))
2891 visitInlineAsm(I
, EHPadBB
);
2892 else if (Fn
&& Fn
->isIntrinsic()) {
2893 switch (Fn
->getIntrinsicID()) {
2895 llvm_unreachable("Cannot invoke this intrinsic");
2896 case Intrinsic::donothing
:
2897 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2898 case Intrinsic::seh_try_begin
:
2899 case Intrinsic::seh_scope_begin
:
2900 case Intrinsic::seh_try_end
:
2901 case Intrinsic::seh_scope_end
:
2903 case Intrinsic::experimental_patchpoint_void
:
2904 case Intrinsic::experimental_patchpoint_i64
:
2905 visitPatchpoint(I
, EHPadBB
);
2907 case Intrinsic::experimental_gc_statepoint
:
2908 LowerStatepoint(cast
<GCStatepointInst
>(I
), EHPadBB
);
2910 case Intrinsic::wasm_rethrow
: {
2911 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2912 // special because it can be invoked, so we manually lower it to a DAG
2914 SmallVector
<SDValue
, 8> Ops
;
2915 Ops
.push_back(getRoot()); // inchain
2916 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2918 DAG
.getTargetConstant(Intrinsic::wasm_rethrow
, getCurSDLoc(),
2919 TLI
.getPointerTy(DAG
.getDataLayout())));
2920 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2921 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2925 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2926 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2927 // Eventually we will support lowering the @llvm.experimental.deoptimize
2928 // intrinsic, and right now there are no plans to support other intrinsics
2929 // with deopt state.
2930 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2932 LowerCallTo(I
, getValue(Callee
), false, false, EHPadBB
);
2935 // If the value of the invoke is used outside of its defining block, make it
2936 // available as a virtual register.
2937 // We already took care of the exported value for the statepoint instruction
2938 // during call to the LowerStatepoint.
2939 if (!isa
<GCStatepointInst
>(I
)) {
2940 CopyToExportRegsIfNeeded(&I
);
2943 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2944 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2945 BranchProbability EHPadBBProb
=
2946 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2947 : BranchProbability::getZero();
2948 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2950 // Update successor info.
2951 addSuccessorWithProb(InvokeMBB
, Return
);
2952 for (auto &UnwindDest
: UnwindDests
) {
2953 UnwindDest
.first
->setIsEHPad();
2954 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2956 InvokeMBB
->normalizeSuccProbs();
2958 // Drop into normal successor.
2959 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2960 DAG
.getBasicBlock(Return
)));
2963 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2964 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2966 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2967 // have to do anything here to lower funclet bundles.
2968 assert(!I
.hasOperandBundlesOtherThan(
2969 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2970 "Cannot lower callbrs with arbitrary operand bundles yet!");
2972 assert(I
.isInlineAsm() && "Only know how to handle inlineasm callbr");
2974 CopyToExportRegsIfNeeded(&I
);
2976 // Retrieve successors.
2977 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2979 // Update successor info.
2980 addSuccessorWithProb(CallBrMBB
, Return
, BranchProbability::getOne());
2981 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2982 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2983 addSuccessorWithProb(CallBrMBB
, Target
, BranchProbability::getZero());
2984 Target
->setIsInlineAsmBrIndirectTarget();
2986 CallBrMBB
->normalizeSuccProbs();
2988 // Drop into default successor.
2989 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2990 MVT::Other
, getControlRoot(),
2991 DAG
.getBasicBlock(Return
)));
2994 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2999 assert(FuncInfo
.MBB
->isEHPad() &&
3000 "Call to landingpad not in landing pad!");
3002 // If there aren't registers to copy the values into (e.g., during SjLj
3003 // exceptions), then don't bother to create these DAG nodes.
3004 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3005 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
3006 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
3007 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
3010 // If landingpad's return type is token type, we don't create DAG nodes
3011 // for its exception pointer and selector value. The extraction of exception
3012 // pointer or selector value from token type landingpads is not currently
3014 if (LP
.getType()->isTokenTy())
3017 SmallVector
<EVT
, 2> ValueVTs
;
3018 SDLoc dl
= getCurSDLoc();
3019 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
3020 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
3022 // Get the two live-in registers as SDValues. The physregs have already been
3023 // copied into virtual registers.
3025 if (FuncInfo
.ExceptionPointerVirtReg
) {
3026 Ops
[0] = DAG
.getZExtOrTrunc(
3027 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
3028 FuncInfo
.ExceptionPointerVirtReg
,
3029 TLI
.getPointerTy(DAG
.getDataLayout())),
3032 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
3034 Ops
[1] = DAG
.getZExtOrTrunc(
3035 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
3036 FuncInfo
.ExceptionSelectorVirtReg
,
3037 TLI
.getPointerTy(DAG
.getDataLayout())),
3041 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
3042 DAG
.getVTList(ValueVTs
), Ops
);
3046 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
3047 MachineBasicBlock
*Last
) {
3049 for (unsigned i
= 0, e
= SL
->JTCases
.size(); i
!= e
; ++i
)
3050 if (SL
->JTCases
[i
].first
.HeaderBB
== First
)
3051 SL
->JTCases
[i
].first
.HeaderBB
= Last
;
3053 // Update BitTestCases.
3054 for (unsigned i
= 0, e
= SL
->BitTestCases
.size(); i
!= e
; ++i
)
3055 if (SL
->BitTestCases
[i
].Parent
== First
)
3056 SL
->BitTestCases
[i
].Parent
= Last
;
3059 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
3060 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
3062 // Update machine-CFG edges with unique successors.
3063 SmallSet
<BasicBlock
*, 32> Done
;
3064 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
3065 BasicBlock
*BB
= I
.getSuccessor(i
);
3066 bool Inserted
= Done
.insert(BB
).second
;
3070 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
3071 addSuccessorWithProb(IndirectBrMBB
, Succ
);
3073 IndirectBrMBB
->normalizeSuccProbs();
3075 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
3076 MVT::Other
, getControlRoot(),
3077 getValue(I
.getAddress())));
3080 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
3081 if (!DAG
.getTarget().Options
.TrapUnreachable
)
3084 // We may be able to ignore unreachable behind a noreturn call.
3085 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
3086 const BasicBlock
&BB
= *I
.getParent();
3087 if (&I
!= &BB
.front()) {
3088 BasicBlock::const_iterator PredI
=
3089 std::prev(BasicBlock::const_iterator(&I
));
3090 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
3091 if (Call
->doesNotReturn())
3097 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
3100 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
3103 SDValue Op
= getValue(I
.getOperand(0));
3104 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
3106 setValue(&I
, UnNodeValue
);
3109 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
3111 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
3112 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
3113 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
3115 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
))
3116 Flags
.setExact(ExactOp
->isExact());
3117 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
3118 Flags
.copyFMF(*FPOp
);
3120 SDValue Op1
= getValue(I
.getOperand(0));
3121 SDValue Op2
= getValue(I
.getOperand(1));
3122 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
3124 setValue(&I
, BinNodeValue
);
3127 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
3128 SDValue Op1
= getValue(I
.getOperand(0));
3129 SDValue Op2
= getValue(I
.getOperand(1));
3131 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3132 Op1
.getValueType(), DAG
.getDataLayout());
3134 // Coerce the shift amount to the right type if we can.
3135 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3136 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3137 unsigned Op2Size
= Op2
.getValueSizeInBits();
3138 SDLoc DL
= getCurSDLoc();
3140 // If the operand is smaller than the shift count type, promote it.
3141 if (ShiftSize
> Op2Size
)
3142 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3144 // If the operand is larger than the shift count type but the shift
3145 // count type has enough bits to represent any shift value, truncate
3146 // it now. This is a common case and it exposes the truncate to
3147 // optimization early.
3148 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3149 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3150 // Otherwise we'll need to temporarily settle for some other convenient
3151 // type. Type legalization will make adjustments once the shiftee is split.
3153 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3160 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3162 if (const OverflowingBinaryOperator
*OFBinOp
=
3163 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3164 nuw
= OFBinOp
->hasNoUnsignedWrap();
3165 nsw
= OFBinOp
->hasNoSignedWrap();
3167 if (const PossiblyExactOperator
*ExactOp
=
3168 dyn_cast
<const PossiblyExactOperator
>(&I
))
3169 exact
= ExactOp
->isExact();
3172 Flags
.setExact(exact
);
3173 Flags
.setNoSignedWrap(nsw
);
3174 Flags
.setNoUnsignedWrap(nuw
);
3175 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3180 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3181 SDValue Op1
= getValue(I
.getOperand(0));
3182 SDValue Op2
= getValue(I
.getOperand(1));
3185 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3186 cast
<PossiblyExactOperator
>(&I
)->isExact());
3187 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3191 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3192 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3193 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3194 predicate
= IC
->getPredicate();
3195 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3196 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3197 SDValue Op1
= getValue(I
.getOperand(0));
3198 SDValue Op2
= getValue(I
.getOperand(1));
3199 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3201 auto &TLI
= DAG
.getTargetLoweringInfo();
3203 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3205 // If a pointer's DAG type is larger than its memory type then the DAG values
3206 // are zero-extended. This breaks signed comparisons so truncate back to the
3207 // underlying type before doing the compare.
3208 if (Op1
.getValueType() != MemVT
) {
3209 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3210 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3213 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3215 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3218 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3219 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3220 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3221 predicate
= FC
->getPredicate();
3222 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3223 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3224 SDValue Op1
= getValue(I
.getOperand(0));
3225 SDValue Op2
= getValue(I
.getOperand(1));
3227 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3228 auto *FPMO
= cast
<FPMathOperator
>(&I
);
3229 if (FPMO
->hasNoNaNs() || TM
.Options
.NoNaNsFPMath
)
3230 Condition
= getFCmpCodeWithoutNaN(Condition
);
3233 Flags
.copyFMF(*FPMO
);
3234 SelectionDAG::FlagInserter
FlagsInserter(DAG
, Flags
);
3236 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3238 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3241 // Check if the condition of the select has one use or two users that are both
3242 // selects with the same condition.
3243 static bool hasOnlySelectUsers(const Value
*Cond
) {
3244 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3245 return isa
<SelectInst
>(V
);
3249 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3250 SmallVector
<EVT
, 4> ValueVTs
;
3251 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3253 unsigned NumValues
= ValueVTs
.size();
3254 if (NumValues
== 0) return;
3256 SmallVector
<SDValue
, 4> Values(NumValues
);
3257 SDValue Cond
= getValue(I
.getOperand(0));
3258 SDValue LHSVal
= getValue(I
.getOperand(1));
3259 SDValue RHSVal
= getValue(I
.getOperand(2));
3260 SmallVector
<SDValue
, 1> BaseOps(1, Cond
);
3261 ISD::NodeType OpCode
=
3262 Cond
.getValueType().isVector() ? ISD::VSELECT
: ISD::SELECT
;
3264 bool IsUnaryAbs
= false;
3265 bool Negate
= false;
3268 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
3269 Flags
.copyFMF(*FPOp
);
3271 // Min/max matching is only viable if all output VTs are the same.
3272 if (is_splat(ValueVTs
)) {
3273 EVT VT
= ValueVTs
[0];
3274 LLVMContext
&Ctx
= *DAG
.getContext();
3275 auto &TLI
= DAG
.getTargetLoweringInfo();
3277 // We care about the legality of the operation after it has been type
3279 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
)
3280 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3282 // If the vselect is legal, assume we want to leave this as a vector setcc +
3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3284 // min/max is legal on the scalar type.
3285 bool UseScalarMinMax
= VT
.isVector() &&
3286 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3289 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3290 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3291 switch (SPR
.Flavor
) {
3292 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3293 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3294 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3295 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3297 switch (SPR
.NaNBehavior
) {
3298 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3299 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3300 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3301 case SPNB_RETURNS_ANY
: {
3302 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3304 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3305 Opc
= ISD::FMINIMUM
;
3306 else if (UseScalarMinMax
)
3307 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3308 ISD::FMINNUM
: ISD::FMINIMUM
;
3314 switch (SPR
.NaNBehavior
) {
3315 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3316 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3317 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3318 case SPNB_RETURNS_ANY
:
3320 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3322 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3323 Opc
= ISD::FMAXIMUM
;
3324 else if (UseScalarMinMax
)
3325 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3326 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3340 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3341 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3343 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3344 // If the underlying comparison instruction is used by any other
3345 // instruction, the consumed instructions won't be destroyed, so it is
3346 // not profitable to convert to a min/max.
3347 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3349 LHSVal
= getValue(LHS
);
3350 RHSVal
= getValue(RHS
);
3356 LHSVal
= getValue(LHS
);
3362 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3363 SDLoc dl
= getCurSDLoc();
3364 EVT VT
= LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
);
3366 DAG
.getNode(OpCode
, dl
, VT
, LHSVal
.getValue(LHSVal
.getResNo() + i
));
3368 Values
[i
] = DAG
.getNode(ISD::SUB
, dl
, VT
, DAG
.getConstant(0, dl
, VT
),
3372 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3373 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3374 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3375 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3376 Values
[i
] = DAG
.getNode(
3377 OpCode
, getCurSDLoc(),
3378 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
, Flags
);
3382 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3383 DAG
.getVTList(ValueVTs
), Values
));
3386 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3387 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3388 SDValue N
= getValue(I
.getOperand(0));
3389 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3391 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3394 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3395 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3396 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3397 SDValue N
= getValue(I
.getOperand(0));
3398 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3400 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3403 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3404 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3405 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3406 SDValue N
= getValue(I
.getOperand(0));
3407 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3409 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3412 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3413 // FPTrunc is never a no-op cast, no need to check
3414 SDValue N
= getValue(I
.getOperand(0));
3415 SDLoc dl
= getCurSDLoc();
3416 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3417 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3418 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3419 DAG
.getTargetConstant(
3420 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3423 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3424 // FPExt is never a no-op cast, no need to check
3425 SDValue N
= getValue(I
.getOperand(0));
3426 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3428 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3431 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3432 // FPToUI is never a no-op cast, no need to check
3433 SDValue N
= getValue(I
.getOperand(0));
3434 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3436 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3439 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3440 // FPToSI is never a no-op cast, no need to check
3441 SDValue N
= getValue(I
.getOperand(0));
3442 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3444 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3447 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3448 // UIToFP is never a no-op cast, no need to check
3449 SDValue N
= getValue(I
.getOperand(0));
3450 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3452 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3455 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3456 // SIToFP is never a no-op cast, no need to check
3457 SDValue N
= getValue(I
.getOperand(0));
3458 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3460 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3463 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3464 // What to do depends on the size of the integer and the size of the pointer.
3465 // We can either truncate, zero extend, or no-op, accordingly.
3466 SDValue N
= getValue(I
.getOperand(0));
3467 auto &TLI
= DAG
.getTargetLoweringInfo();
3468 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3471 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3472 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3473 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3477 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3478 // What to do depends on the size of the integer and the size of the pointer.
3479 // We can either truncate, zero extend, or no-op, accordingly.
3480 SDValue N
= getValue(I
.getOperand(0));
3481 auto &TLI
= DAG
.getTargetLoweringInfo();
3482 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3483 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3484 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3485 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3489 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3490 SDValue N
= getValue(I
.getOperand(0));
3491 SDLoc dl
= getCurSDLoc();
3492 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3495 // BitCast assures us that source and destination are the same size so this is
3496 // either a BITCAST or a no-op.
3497 if (DestVT
!= N
.getValueType())
3498 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3499 DestVT
, N
)); // convert types.
3500 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3501 // might fold any kind of constant expression to an integer constant and that
3502 // is not what we are looking for. Only recognize a bitcast of a genuine
3503 // constant integer as an opaque constant.
3504 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3505 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3508 setValue(&I
, N
); // noop cast.
3511 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3512 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3513 const Value
*SV
= I
.getOperand(0);
3514 SDValue N
= getValue(SV
);
3515 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3517 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3518 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3520 if (!TM
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3521 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3526 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3527 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3528 SDValue InVec
= getValue(I
.getOperand(0));
3529 SDValue InVal
= getValue(I
.getOperand(1));
3530 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3531 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3532 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3533 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3534 InVec
, InVal
, InIdx
));
3537 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3538 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3539 SDValue InVec
= getValue(I
.getOperand(0));
3540 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3541 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3542 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3543 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3547 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3548 SDValue Src1
= getValue(I
.getOperand(0));
3549 SDValue Src2
= getValue(I
.getOperand(1));
3551 if (auto *SVI
= dyn_cast
<ShuffleVectorInst
>(&I
))
3552 Mask
= SVI
->getShuffleMask();
3554 Mask
= cast
<ConstantExpr
>(I
).getShuffleMask();
3555 SDLoc DL
= getCurSDLoc();
3556 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3557 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3558 EVT SrcVT
= Src1
.getValueType();
3560 if (all_of(Mask
, [](int Elem
) { return Elem
== 0; }) &&
3561 VT
.isScalableVector()) {
3562 // Canonical splat form of first element of first input vector.
3564 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, SrcVT
.getScalarType(), Src1
,
3565 DAG
.getVectorIdxConstant(0, DL
));
3566 setValue(&I
, DAG
.getNode(ISD::SPLAT_VECTOR
, DL
, VT
, FirstElt
));
3570 // For now, we only handle splats for scalable vectors.
3571 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3572 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3573 assert(!VT
.isScalableVector() && "Unsupported scalable vector shuffle");
3575 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3576 unsigned MaskNumElts
= Mask
.size();
3578 if (SrcNumElts
== MaskNumElts
) {
3579 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3583 // Normalize the shuffle vector since mask and vector length don't match.
3584 if (SrcNumElts
< MaskNumElts
) {
3585 // Mask is longer than the source vectors. We can use concatenate vector to
3586 // make the mask and vectors lengths match.
3588 if (MaskNumElts
% SrcNumElts
== 0) {
3589 // Mask length is a multiple of the source vector length.
3590 // Check if the shuffle is some kind of concatenation of the input
3592 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3593 bool IsConcat
= true;
3594 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3595 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3599 // Ensure the indices in each SrcVT sized piece are sequential and that
3600 // the same source is used for the whole piece.
3601 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3602 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3603 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3607 // Remember which source this index came from.
3608 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3611 // The shuffle is concatenating multiple vectors together. Just emit
3612 // a CONCAT_VECTORS operation.
3614 SmallVector
<SDValue
, 8> ConcatOps
;
3615 for (auto Src
: ConcatSrcs
) {
3617 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3619 ConcatOps
.push_back(Src1
);
3621 ConcatOps
.push_back(Src2
);
3623 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3628 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3629 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3630 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3633 // Pad both vectors with undefs to make them the same length as the mask.
3634 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3636 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3637 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3641 Src1
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3642 Src2
= DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3644 // Readjust mask for new input vector length.
3645 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3646 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3648 if (Idx
>= (int)SrcNumElts
)
3649 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3653 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3655 // If the concatenated vector was padded, extract a subvector with the
3656 // correct number of elements.
3657 if (MaskNumElts
!= PaddedMaskNumElts
)
3658 Result
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3659 DAG
.getVectorIdxConstant(0, DL
));
3661 setValue(&I
, Result
);
3665 if (SrcNumElts
> MaskNumElts
) {
3666 // Analyze the access pattern of the vector to see if we can extract
3667 // two subvectors and do the shuffle.
3668 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3669 bool CanExtract
= true;
3670 for (int Idx
: Mask
) {
3675 if (Idx
>= (int)SrcNumElts
) {
3680 // If all the indices come from the same MaskNumElts sized portion of
3681 // the sources we can use extract. Also make sure the extract wouldn't
3682 // extract past the end of the source.
3683 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3684 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3685 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3687 // Make sure we always update StartIdx as we use it to track if all
3688 // elements are undef.
3689 StartIdx
[Input
] = NewStartIdx
;
3692 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3693 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3697 // Extract appropriate subvector and generate a vector shuffle
3698 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3699 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3700 if (StartIdx
[Input
] < 0)
3701 Src
= DAG
.getUNDEF(VT
);
3703 Src
= DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3704 DAG
.getVectorIdxConstant(StartIdx
[Input
], DL
));
3708 // Calculate new mask.
3709 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3710 for (int &Idx
: MappedOps
) {
3711 if (Idx
>= (int)SrcNumElts
)
3712 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3717 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3722 // We can't use either concat vectors or extract subvectors so fall back to
3723 // replacing the shuffle with extract and build vector.
3724 // to insert and build vector.
3725 EVT EltVT
= VT
.getVectorElementType();
3726 SmallVector
<SDValue
,8> Ops
;
3727 for (int Idx
: Mask
) {
3731 Res
= DAG
.getUNDEF(EltVT
);
3733 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3734 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3736 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Src
,
3737 DAG
.getVectorIdxConstant(Idx
, DL
));
3743 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3746 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3747 ArrayRef
<unsigned> Indices
;
3748 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3749 Indices
= IV
->getIndices();
3751 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3753 const Value
*Op0
= I
.getOperand(0);
3754 const Value
*Op1
= I
.getOperand(1);
3755 Type
*AggTy
= I
.getType();
3756 Type
*ValTy
= Op1
->getType();
3757 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3758 bool FromUndef
= isa
<UndefValue
>(Op1
);
3760 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3762 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3763 SmallVector
<EVT
, 4> AggValueVTs
;
3764 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3765 SmallVector
<EVT
, 4> ValValueVTs
;
3766 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3768 unsigned NumAggValues
= AggValueVTs
.size();
3769 unsigned NumValValues
= ValValueVTs
.size();
3770 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3772 // Ignore an insertvalue that produces an empty object
3773 if (!NumAggValues
) {
3774 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3778 SDValue Agg
= getValue(Op0
);
3780 // Copy the beginning value(s) from the original aggregate.
3781 for (; i
!= LinearIndex
; ++i
)
3782 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3783 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3784 // Copy values from the inserted value(s).
3786 SDValue Val
= getValue(Op1
);
3787 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3788 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3789 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3791 // Copy remaining value(s) from the original aggregate.
3792 for (; i
!= NumAggValues
; ++i
)
3793 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3794 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3796 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3797 DAG
.getVTList(AggValueVTs
), Values
));
3800 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3801 ArrayRef
<unsigned> Indices
;
3802 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3803 Indices
= EV
->getIndices();
3805 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3807 const Value
*Op0
= I
.getOperand(0);
3808 Type
*AggTy
= Op0
->getType();
3809 Type
*ValTy
= I
.getType();
3810 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3812 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3814 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3815 SmallVector
<EVT
, 4> ValValueVTs
;
3816 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3818 unsigned NumValValues
= ValValueVTs
.size();
3820 // Ignore a extractvalue that produces an empty object
3821 if (!NumValValues
) {
3822 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3826 SmallVector
<SDValue
, 4> Values(NumValValues
);
3828 SDValue Agg
= getValue(Op0
);
3829 // Copy out the selected value(s).
3830 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3831 Values
[i
- LinearIndex
] =
3833 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3834 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3836 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3837 DAG
.getVTList(ValValueVTs
), Values
));
3840 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3841 Value
*Op0
= I
.getOperand(0);
3842 // Note that the pointer operand may be a vector of pointers. Take the scalar
3843 // element which holds a pointer.
3844 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3845 SDValue N
= getValue(Op0
);
3846 SDLoc dl
= getCurSDLoc();
3847 auto &TLI
= DAG
.getTargetLoweringInfo();
3849 // Normalize Vector GEP - all scalar operands should be converted to the
3851 bool IsVectorGEP
= I
.getType()->isVectorTy();
3852 ElementCount VectorElementCount
=
3853 IsVectorGEP
? cast
<VectorType
>(I
.getType())->getElementCount()
3854 : ElementCount::getFixed(0);
3856 if (IsVectorGEP
&& !N
.getValueType().isVector()) {
3857 LLVMContext
&Context
= *DAG
.getContext();
3858 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorElementCount
);
3859 if (VectorElementCount
.isScalable())
3860 N
= DAG
.getSplatVector(VT
, dl
, N
);
3862 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3865 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3867 const Value
*Idx
= GTI
.getOperand();
3868 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3869 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3872 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3874 // In an inbounds GEP with an offset that is nonnegative even when
3875 // interpreted as signed, assume there is no unsigned overflow.
3877 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3878 Flags
.setNoUnsignedWrap(true);
3880 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3881 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3884 // IdxSize is the width of the arithmetic according to IR semantics.
3885 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3886 // (and fix up the result later).
3887 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3888 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3889 TypeSize ElementSize
= DL
->getTypeAllocSize(GTI
.getIndexedType());
3890 // We intentionally mask away the high bits here; ElementSize may not
3892 APInt
ElementMul(IdxSize
, ElementSize
.getKnownMinSize());
3893 bool ElementScalable
= ElementSize
.isScalable();
3895 // If this is a scalar constant or a splat vector of constants,
3896 // handle it quickly.
3897 const auto *C
= dyn_cast
<Constant
>(Idx
);
3898 if (C
&& isa
<VectorType
>(C
->getType()))
3899 C
= C
->getSplatValue();
3901 const auto *CI
= dyn_cast_or_null
<ConstantInt
>(C
);
3902 if (CI
&& CI
->isZero())
3904 if (CI
&& !ElementScalable
) {
3905 APInt Offs
= ElementMul
* CI
->getValue().sextOrTrunc(IdxSize
);
3906 LLVMContext
&Context
= *DAG
.getContext();
3909 OffsVal
= DAG
.getConstant(
3910 Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorElementCount
));
3912 OffsVal
= DAG
.getConstant(Offs
, dl
, IdxTy
);
3914 // In an inbounds GEP with an offset that is nonnegative even when
3915 // interpreted as signed, assume there is no unsigned overflow.
3917 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3918 Flags
.setNoUnsignedWrap(true);
3920 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3922 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3926 // N = N + Idx * ElementMul;
3927 SDValue IdxN
= getValue(Idx
);
3929 if (!IdxN
.getValueType().isVector() && IsVectorGEP
) {
3930 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(),
3931 VectorElementCount
);
3932 if (VectorElementCount
.isScalable())
3933 IdxN
= DAG
.getSplatVector(VT
, dl
, IdxN
);
3935 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3938 // If the index is smaller or larger than intptr_t, truncate or extend
3940 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3942 if (ElementScalable
) {
3943 EVT VScaleTy
= N
.getValueType().getScalarType();
3944 SDValue VScale
= DAG
.getNode(
3945 ISD::VSCALE
, dl
, VScaleTy
,
3946 DAG
.getConstant(ElementMul
.getZExtValue(), dl
, VScaleTy
));
3948 VScale
= DAG
.getSplatVector(N
.getValueType(), dl
, VScale
);
3949 IdxN
= DAG
.getNode(ISD::MUL
, dl
, N
.getValueType(), IdxN
, VScale
);
3951 // If this is a multiply by a power of two, turn it into a shl
3952 // immediately. This is a very common case.
3953 if (ElementMul
!= 1) {
3954 if (ElementMul
.isPowerOf2()) {
3955 unsigned Amt
= ElementMul
.logBase2();
3956 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3957 N
.getValueType(), IdxN
,
3958 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3960 SDValue Scale
= DAG
.getConstant(ElementMul
.getZExtValue(), dl
,
3961 IdxN
.getValueType());
3962 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3963 N
.getValueType(), IdxN
, Scale
);
3968 N
= DAG
.getNode(ISD::ADD
, dl
,
3969 N
.getValueType(), N
, IdxN
);
3973 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3974 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3976 PtrTy
= MVT::getVectorVT(PtrTy
, VectorElementCount
);
3977 PtrMemTy
= MVT::getVectorVT(PtrMemTy
, VectorElementCount
);
3980 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3981 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3986 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3987 // If this is a fixed sized alloca in the entry block of the function,
3988 // allocate it statically on the stack.
3989 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3990 return; // getValue will auto-populate this.
3992 SDLoc dl
= getCurSDLoc();
3993 Type
*Ty
= I
.getAllocatedType();
3994 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3995 auto &DL
= DAG
.getDataLayout();
3996 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3997 MaybeAlign Alignment
= std::max(DL
.getPrefTypeAlign(Ty
), I
.getAlign());
3999 SDValue AllocSize
= getValue(I
.getArraySize());
4001 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
4002 if (AllocSize
.getValueType() != IntPtr
)
4003 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
4005 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
4007 DAG
.getConstant(TySize
, dl
, IntPtr
));
4009 // Handle alignment. If the requested alignment is less than or equal to
4010 // the stack alignment, ignore it. If the size is greater than or equal to
4011 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4012 Align StackAlign
= DAG
.getSubtarget().getFrameLowering()->getStackAlign();
4013 if (*Alignment
<= StackAlign
)
4016 const uint64_t StackAlignMask
= StackAlign
.value() - 1U;
4017 // Round the size of the allocation up to the stack alignment size
4018 // by add SA-1 to the size. This doesn't overflow because we're computing
4019 // an address inside an alloca.
4021 Flags
.setNoUnsignedWrap(true);
4022 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
4023 DAG
.getConstant(StackAlignMask
, dl
, IntPtr
), Flags
);
4025 // Mask out the low bits for alignment purposes.
4026 AllocSize
= DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
4027 DAG
.getConstant(~StackAlignMask
, dl
, IntPtr
));
4030 getRoot(), AllocSize
,
4031 DAG
.getConstant(Alignment
? Alignment
->value() : 0, dl
, IntPtr
)};
4032 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
4033 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
4035 DAG
.setRoot(DSA
.getValue(1));
4037 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
4040 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
4042 return visitAtomicLoad(I
);
4044 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4045 const Value
*SV
= I
.getOperand(0);
4046 if (TLI
.supportSwiftError()) {
4047 // Swifterror values can come from either a function parameter with
4048 // swifterror attribute or an alloca with swifterror attribute.
4049 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
4050 if (Arg
->hasSwiftErrorAttr())
4051 return visitLoadFromSwiftError(I
);
4054 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
4055 if (Alloca
->isSwiftError())
4056 return visitLoadFromSwiftError(I
);
4060 SDValue Ptr
= getValue(SV
);
4062 Type
*Ty
= I
.getType();
4063 Align Alignment
= I
.getAlign();
4066 I
.getAAMetadata(AAInfo
);
4067 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4069 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4070 SmallVector
<uint64_t, 4> Offsets
;
4071 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
4072 unsigned NumValues
= ValueVTs
.size();
4076 bool isVolatile
= I
.isVolatile();
4079 bool ConstantMemory
= false;
4081 // Serialize volatile loads with other side effects.
4083 else if (NumValues
> MaxParallelChains
)
4084 Root
= getMemoryRoot();
4086 AA
->pointsToConstantMemory(MemoryLocation(
4088 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4090 // Do not serialize (non-volatile) loads of constant memory with anything.
4091 Root
= DAG
.getEntryNode();
4092 ConstantMemory
= true;
4094 // Do not serialize non-volatile loads against each other.
4095 Root
= DAG
.getRoot();
4098 SDLoc dl
= getCurSDLoc();
4101 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
4103 // An aggregate load cannot wrap around the address space, so offsets to its
4104 // parts don't wrap either.
4106 Flags
.setNoUnsignedWrap(true);
4108 SmallVector
<SDValue
, 4> Values(NumValues
);
4109 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4110 EVT PtrVT
= Ptr
.getValueType();
4112 MachineMemOperand::Flags MMOFlags
4113 = TLI
.getLoadMemOperandFlags(I
, DAG
.getDataLayout());
4115 unsigned ChainI
= 0;
4116 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4117 // Serializing loads here may result in excessive register pressure, and
4118 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4119 // could recover a bit by hoisting nodes upward in the chain by recognizing
4120 // they are side-effect free or do not alias. The optimizer should really
4121 // avoid this case by converting large object/array copies to llvm.memcpy
4122 // (MaxParallelChains should always remain as failsafe).
4123 if (ChainI
== MaxParallelChains
) {
4124 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
4125 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4126 makeArrayRef(Chains
.data(), ChainI
));
4130 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4132 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4135 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4136 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4137 MMOFlags
, AAInfo
, Ranges
);
4138 Chains
[ChainI
] = L
.getValue(1);
4140 if (MemVTs
[i
] != ValueVTs
[i
])
4141 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4146 if (!ConstantMemory
) {
4147 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4148 makeArrayRef(Chains
.data(), ChainI
));
4152 PendingLoads
.push_back(Chain
);
4155 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4156 DAG
.getVTList(ValueVTs
), Values
));
4159 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4160 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4161 "call visitStoreToSwiftError when backend supports swifterror");
4163 SmallVector
<EVT
, 4> ValueVTs
;
4164 SmallVector
<uint64_t, 4> Offsets
;
4165 const Value
*SrcV
= I
.getOperand(0);
4166 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4167 SrcV
->getType(), ValueVTs
, &Offsets
);
4168 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4169 "expect a single EVT for swifterror");
4171 SDValue Src
= getValue(SrcV
);
4172 // Create a virtual register, then update the virtual register.
4174 SwiftError
.getOrCreateVRegDefAt(&I
, FuncInfo
.MBB
, I
.getPointerOperand());
4175 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4176 // Chain can be getRoot or getControlRoot.
4177 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4178 SDValue(Src
.getNode(), Src
.getResNo()));
4179 DAG
.setRoot(CopyNode
);
4182 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4183 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4184 "call visitLoadFromSwiftError when backend supports swifterror");
4186 assert(!I
.isVolatile() &&
4187 !I
.hasMetadata(LLVMContext::MD_nontemporal
) &&
4188 !I
.hasMetadata(LLVMContext::MD_invariant_load
) &&
4189 "Support volatile, non temporal, invariant for load_from_swift_error");
4191 const Value
*SV
= I
.getOperand(0);
4192 Type
*Ty
= I
.getType();
4194 I
.getAAMetadata(AAInfo
);
4197 !AA
->pointsToConstantMemory(MemoryLocation(
4198 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4200 "load_from_swift_error should not be constant memory");
4202 SmallVector
<EVT
, 4> ValueVTs
;
4203 SmallVector
<uint64_t, 4> Offsets
;
4204 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4205 ValueVTs
, &Offsets
);
4206 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4207 "expect a single EVT for swifterror");
4209 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4210 SDValue L
= DAG
.getCopyFromReg(
4211 getRoot(), getCurSDLoc(),
4212 SwiftError
.getOrCreateVRegUseAt(&I
, FuncInfo
.MBB
, SV
), ValueVTs
[0]);
4217 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4219 return visitAtomicStore(I
);
4221 const Value
*SrcV
= I
.getOperand(0);
4222 const Value
*PtrV
= I
.getOperand(1);
4224 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4225 if (TLI
.supportSwiftError()) {
4226 // Swifterror values can come from either a function parameter with
4227 // swifterror attribute or an alloca with swifterror attribute.
4228 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4229 if (Arg
->hasSwiftErrorAttr())
4230 return visitStoreToSwiftError(I
);
4233 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4234 if (Alloca
->isSwiftError())
4235 return visitStoreToSwiftError(I
);
4239 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4240 SmallVector
<uint64_t, 4> Offsets
;
4241 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4242 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4243 unsigned NumValues
= ValueVTs
.size();
4247 // Get the lowered operands. Note that we do this after
4248 // checking if NumResults is zero, because with zero results
4249 // the operands won't have values in the map.
4250 SDValue Src
= getValue(SrcV
);
4251 SDValue Ptr
= getValue(PtrV
);
4253 SDValue Root
= I
.isVolatile() ? getRoot() : getMemoryRoot();
4254 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4255 SDLoc dl
= getCurSDLoc();
4256 Align Alignment
= I
.getAlign();
4258 I
.getAAMetadata(AAInfo
);
4260 auto MMOFlags
= TLI
.getStoreMemOperandFlags(I
, DAG
.getDataLayout());
4262 // An aggregate load cannot wrap around the address space, so offsets to its
4263 // parts don't wrap either.
4265 Flags
.setNoUnsignedWrap(true);
4267 unsigned ChainI
= 0;
4268 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4269 // See visitLoad comments.
4270 if (ChainI
== MaxParallelChains
) {
4271 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4272 makeArrayRef(Chains
.data(), ChainI
));
4277 DAG
.getMemBasePlusOffset(Ptr
, TypeSize::Fixed(Offsets
[i
]), dl
, Flags
);
4278 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4279 if (MemVTs
[i
] != ValueVTs
[i
])
4280 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4282 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4283 Alignment
, MMOFlags
, AAInfo
);
4284 Chains
[ChainI
] = St
;
4287 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4288 makeArrayRef(Chains
.data(), ChainI
));
4289 DAG
.setRoot(StoreNode
);
4292 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4293 bool IsCompressing
) {
4294 SDLoc sdl
= getCurSDLoc();
4296 auto getMaskedStoreOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4297 MaybeAlign
&Alignment
) {
4298 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4299 Src0
= I
.getArgOperand(0);
4300 Ptr
= I
.getArgOperand(1);
4301 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getMaybeAlignValue();
4302 Mask
= I
.getArgOperand(3);
4304 auto getCompressingStoreOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4305 MaybeAlign
&Alignment
) {
4306 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4307 Src0
= I
.getArgOperand(0);
4308 Ptr
= I
.getArgOperand(1);
4309 Mask
= I
.getArgOperand(2);
4313 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4314 MaybeAlign Alignment
;
4316 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4318 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4320 SDValue Ptr
= getValue(PtrOperand
);
4321 SDValue Src0
= getValue(Src0Operand
);
4322 SDValue Mask
= getValue(MaskOperand
);
4323 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
4325 EVT VT
= Src0
.getValueType();
4327 Alignment
= DAG
.getEVTAlign(VT
);
4330 I
.getAAMetadata(AAInfo
);
4332 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4333 MachinePointerInfo(PtrOperand
), MachineMemOperand::MOStore
,
4334 // TODO: Make MachineMemOperands aware of scalable
4336 VT
.getStoreSize().getKnownMinSize(), *Alignment
, AAInfo
);
4338 DAG
.getMaskedStore(getMemoryRoot(), sdl
, Src0
, Ptr
, Offset
, Mask
, VT
, MMO
,
4339 ISD::UNINDEXED
, false /* Truncating */, IsCompressing
);
4340 DAG
.setRoot(StoreNode
);
4341 setValue(&I
, StoreNode
);
4344 // Get a uniform base for the Gather/Scatter intrinsic.
4345 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4346 // We try to represent it as a base pointer + vector of indices.
4347 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4348 // The first operand of the GEP may be a single pointer or a vector of pointers
4350 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4352 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4353 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4355 // When the first GEP operand is a single pointer - it is the uniform base we
4356 // are looking for. If first operand of the GEP is a splat vector - we
4357 // extract the splat value and use it as a uniform base.
4358 // In all other cases the function returns 'false'.
4359 static bool getUniformBase(const Value
*Ptr
, SDValue
&Base
, SDValue
&Index
,
4360 ISD::MemIndexType
&IndexType
, SDValue
&Scale
,
4361 SelectionDAGBuilder
*SDB
, const BasicBlock
*CurBB
) {
4362 SelectionDAG
& DAG
= SDB
->DAG
;
4363 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4364 const DataLayout
&DL
= DAG
.getDataLayout();
4366 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4368 // Handle splat constant pointer.
4369 if (auto *C
= dyn_cast
<Constant
>(Ptr
)) {
4370 C
= C
->getSplatValue();
4374 Base
= SDB
->getValue(C
);
4376 ElementCount NumElts
= cast
<VectorType
>(Ptr
->getType())->getElementCount();
4377 EVT VT
= EVT::getVectorVT(*DAG
.getContext(), TLI
.getPointerTy(DL
), NumElts
);
4378 Index
= DAG
.getConstant(0, SDB
->getCurSDLoc(), VT
);
4379 IndexType
= ISD::SIGNED_SCALED
;
4380 Scale
= DAG
.getTargetConstant(1, SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4384 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4385 if (!GEP
|| GEP
->getParent() != CurBB
)
4388 if (GEP
->getNumOperands() != 2)
4391 const Value
*BasePtr
= GEP
->getPointerOperand();
4392 const Value
*IndexVal
= GEP
->getOperand(GEP
->getNumOperands() - 1);
4394 // Make sure the base is scalar and the index is a vector.
4395 if (BasePtr
->getType()->isVectorTy() || !IndexVal
->getType()->isVectorTy())
4398 Base
= SDB
->getValue(BasePtr
);
4399 Index
= SDB
->getValue(IndexVal
);
4400 IndexType
= ISD::SIGNED_SCALED
;
4401 Scale
= DAG
.getTargetConstant(
4402 DL
.getTypeAllocSize(GEP
->getResultElementType()),
4403 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4407 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4408 SDLoc sdl
= getCurSDLoc();
4410 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4411 const Value
*Ptr
= I
.getArgOperand(1);
4412 SDValue Src0
= getValue(I
.getArgOperand(0));
4413 SDValue Mask
= getValue(I
.getArgOperand(3));
4414 EVT VT
= Src0
.getValueType();
4415 Align Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))
4416 ->getMaybeAlignValue()
4417 .getValueOr(DAG
.getEVTAlign(VT
.getScalarType()));
4418 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4421 I
.getAAMetadata(AAInfo
);
4425 ISD::MemIndexType IndexType
;
4427 bool UniformBase
= getUniformBase(Ptr
, Base
, Index
, IndexType
, Scale
, this,
4430 unsigned AS
= Ptr
->getType()->getScalarType()->getPointerAddressSpace();
4431 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4432 MachinePointerInfo(AS
), MachineMemOperand::MOStore
,
4433 // TODO: Make MachineMemOperands aware of scalable
4435 MemoryLocation::UnknownSize
, Alignment
, AAInfo
);
4437 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4438 Index
= getValue(Ptr
);
4439 IndexType
= ISD::SIGNED_UNSCALED
;
4440 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4443 EVT IdxVT
= Index
.getValueType();
4444 EVT EltTy
= IdxVT
.getVectorElementType();
4445 if (TLI
.shouldExtendGSIndex(IdxVT
, EltTy
)) {
4446 EVT NewIdxVT
= IdxVT
.changeVectorElementType(EltTy
);
4447 Index
= DAG
.getNode(ISD::SIGN_EXTEND
, sdl
, NewIdxVT
, Index
);
4450 SDValue Ops
[] = { getMemoryRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4451 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4452 Ops
, MMO
, IndexType
, false);
4453 DAG
.setRoot(Scatter
);
4454 setValue(&I
, Scatter
);
4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4458 SDLoc sdl
= getCurSDLoc();
4460 auto getMaskedLoadOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4461 MaybeAlign
&Alignment
) {
4462 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4463 Ptr
= I
.getArgOperand(0);
4464 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getMaybeAlignValue();
4465 Mask
= I
.getArgOperand(2);
4466 Src0
= I
.getArgOperand(3);
4468 auto getExpandingLoadOps
= [&](Value
*&Ptr
, Value
*&Mask
, Value
*&Src0
,
4469 MaybeAlign
&Alignment
) {
4470 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4471 Ptr
= I
.getArgOperand(0);
4473 Mask
= I
.getArgOperand(1);
4474 Src0
= I
.getArgOperand(2);
4477 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4478 MaybeAlign Alignment
;
4480 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4482 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4484 SDValue Ptr
= getValue(PtrOperand
);
4485 SDValue Src0
= getValue(Src0Operand
);
4486 SDValue Mask
= getValue(MaskOperand
);
4487 SDValue Offset
= DAG
.getUNDEF(Ptr
.getValueType());
4489 EVT VT
= Src0
.getValueType();
4491 Alignment
= DAG
.getEVTAlign(VT
);
4494 I
.getAAMetadata(AAInfo
);
4495 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4497 // Do not serialize masked loads of constant memory with anything.
4499 if (VT
.isScalableVector())
4500 ML
= MemoryLocation::getAfter(PtrOperand
);
4502 ML
= MemoryLocation(PtrOperand
, LocationSize::precise(
4503 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4505 bool AddToChain
= !AA
|| !AA
->pointsToConstantMemory(ML
);
4507 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4509 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4510 MachinePointerInfo(PtrOperand
), MachineMemOperand::MOLoad
,
4511 // TODO: Make MachineMemOperands aware of scalable
4513 VT
.getStoreSize().getKnownMinSize(), *Alignment
, AAInfo
, Ranges
);
4516 DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Offset
, Mask
, Src0
, VT
, MMO
,
4517 ISD::UNINDEXED
, ISD::NON_EXTLOAD
, IsExpanding
);
4519 PendingLoads
.push_back(Load
.getValue(1));
4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4524 SDLoc sdl
= getCurSDLoc();
4526 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4527 const Value
*Ptr
= I
.getArgOperand(0);
4528 SDValue Src0
= getValue(I
.getArgOperand(3));
4529 SDValue Mask
= getValue(I
.getArgOperand(2));
4531 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4532 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4533 Align Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))
4534 ->getMaybeAlignValue()
4535 .getValueOr(DAG
.getEVTAlign(VT
.getScalarType()));
4538 I
.getAAMetadata(AAInfo
);
4539 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4541 SDValue Root
= DAG
.getRoot();
4544 ISD::MemIndexType IndexType
;
4546 bool UniformBase
= getUniformBase(Ptr
, Base
, Index
, IndexType
, Scale
, this,
4548 unsigned AS
= Ptr
->getType()->getScalarType()->getPointerAddressSpace();
4549 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4550 MachinePointerInfo(AS
), MachineMemOperand::MOLoad
,
4551 // TODO: Make MachineMemOperands aware of scalable
4553 MemoryLocation::UnknownSize
, Alignment
, AAInfo
, Ranges
);
4556 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4557 Index
= getValue(Ptr
);
4558 IndexType
= ISD::SIGNED_UNSCALED
;
4559 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4562 EVT IdxVT
= Index
.getValueType();
4563 EVT EltTy
= IdxVT
.getVectorElementType();
4564 if (TLI
.shouldExtendGSIndex(IdxVT
, EltTy
)) {
4565 EVT NewIdxVT
= IdxVT
.changeVectorElementType(EltTy
);
4566 Index
= DAG
.getNode(ISD::SIGN_EXTEND
, sdl
, NewIdxVT
, Index
);
4569 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4570 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4571 Ops
, MMO
, IndexType
, ISD::NON_EXTLOAD
);
4573 PendingLoads
.push_back(Gather
.getValue(1));
4574 setValue(&I
, Gather
);
4577 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4578 SDLoc dl
= getCurSDLoc();
4579 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4580 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4581 SyncScope::ID SSID
= I
.getSyncScopeID();
4583 SDValue InChain
= getRoot();
4585 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4586 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4588 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4589 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, DAG
.getDataLayout());
4591 MachineFunction
&MF
= DAG
.getMachineFunction();
4592 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4593 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4594 DAG
.getEVTAlign(MemVT
), AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4597 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4598 dl
, MemVT
, VTs
, InChain
,
4599 getValue(I
.getPointerOperand()),
4600 getValue(I
.getCompareOperand()),
4601 getValue(I
.getNewValOperand()), MMO
);
4603 SDValue OutChain
= L
.getValue(2);
4606 DAG
.setRoot(OutChain
);
4609 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4610 SDLoc dl
= getCurSDLoc();
4612 switch (I
.getOperation()) {
4613 default: llvm_unreachable("Unknown atomicrmw operation");
4614 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4615 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4616 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4617 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4618 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4619 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4620 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4621 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4622 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4623 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4624 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4625 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4626 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4628 AtomicOrdering Ordering
= I
.getOrdering();
4629 SyncScope::ID SSID
= I
.getSyncScopeID();
4631 SDValue InChain
= getRoot();
4633 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4634 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4635 auto Flags
= TLI
.getAtomicMemOperandFlags(I
, DAG
.getDataLayout());
4637 MachineFunction
&MF
= DAG
.getMachineFunction();
4638 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4639 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4640 DAG
.getEVTAlign(MemVT
), AAMDNodes(), nullptr, SSID
, Ordering
);
4643 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4644 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4647 SDValue OutChain
= L
.getValue(1);
4650 DAG
.setRoot(OutChain
);
4653 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4654 SDLoc dl
= getCurSDLoc();
4655 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4658 Ops
[1] = DAG
.getTargetConstant((unsigned)I
.getOrdering(), dl
,
4659 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4660 Ops
[2] = DAG
.getTargetConstant(I
.getSyncScopeID(), dl
,
4661 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4662 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4665 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4666 SDLoc dl
= getCurSDLoc();
4667 AtomicOrdering Order
= I
.getOrdering();
4668 SyncScope::ID SSID
= I
.getSyncScopeID();
4670 SDValue InChain
= getRoot();
4672 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4673 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4674 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4676 if (!TLI
.supportsUnalignedAtomics() &&
4677 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4678 report_fatal_error("Cannot generate unaligned atomic load");
4680 auto Flags
= TLI
.getLoadMemOperandFlags(I
, DAG
.getDataLayout());
4682 MachineMemOperand
*MMO
= DAG
.getMachineFunction().getMachineMemOperand(
4683 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4684 I
.getAlign(), AAMDNodes(), nullptr, SSID
, Order
);
4686 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4688 SDValue Ptr
= getValue(I
.getPointerOperand());
4690 if (TLI
.lowerAtomicLoadAsLoadSDNode(I
)) {
4691 // TODO: Once this is better exercised by tests, it should be merged with
4692 // the normal path for loads to prevent future divergence.
4693 SDValue L
= DAG
.getLoad(MemVT
, dl
, InChain
, Ptr
, MMO
);
4695 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4698 SDValue OutChain
= L
.getValue(1);
4699 if (!I
.isUnordered())
4700 DAG
.setRoot(OutChain
);
4702 PendingLoads
.push_back(OutChain
);
4706 SDValue L
= DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4709 SDValue OutChain
= L
.getValue(1);
4711 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4714 DAG
.setRoot(OutChain
);
4717 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4718 SDLoc dl
= getCurSDLoc();
4720 AtomicOrdering Ordering
= I
.getOrdering();
4721 SyncScope::ID SSID
= I
.getSyncScopeID();
4723 SDValue InChain
= getRoot();
4725 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4727 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4729 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4730 report_fatal_error("Cannot generate unaligned atomic store");
4732 auto Flags
= TLI
.getStoreMemOperandFlags(I
, DAG
.getDataLayout());
4734 MachineFunction
&MF
= DAG
.getMachineFunction();
4735 MachineMemOperand
*MMO
= MF
.getMachineMemOperand(
4736 MachinePointerInfo(I
.getPointerOperand()), Flags
, MemVT
.getStoreSize(),
4737 I
.getAlign(), AAMDNodes(), nullptr, SSID
, Ordering
);
4739 SDValue Val
= getValue(I
.getValueOperand());
4740 if (Val
.getValueType() != MemVT
)
4741 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4742 SDValue Ptr
= getValue(I
.getPointerOperand());
4744 if (TLI
.lowerAtomicStoreAsStoreSDNode(I
)) {
4745 // TODO: Once this is better exercised by tests, it should be merged with
4746 // the normal path for stores to prevent future divergence.
4747 SDValue S
= DAG
.getStore(InChain
, dl
, Val
, Ptr
, MMO
);
4751 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4755 DAG
.setRoot(OutChain
);
4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4761 unsigned Intrinsic
) {
4762 // Ignore the callsite's attributes. A specific call site may be marked with
4763 // readnone, but the lowering code will expect the chain based on the
4765 const Function
*F
= I
.getCalledFunction();
4766 bool HasChain
= !F
->doesNotAccessMemory();
4767 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4769 // Build the operand list.
4770 SmallVector
<SDValue
, 8> Ops
;
4771 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4773 // We don't need to serialize loads against other loads.
4774 Ops
.push_back(DAG
.getRoot());
4776 Ops
.push_back(getRoot());
4780 // Info is set by getTgtMemInstrinsic
4781 TargetLowering::IntrinsicInfo Info
;
4782 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4783 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4784 DAG
.getMachineFunction(),
4787 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4788 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4789 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4790 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4791 TLI
.getPointerTy(DAG
.getDataLayout())));
4793 // Add all operands of the call to the operand list.
4794 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4795 const Value
*Arg
= I
.getArgOperand(i
);
4796 if (!I
.paramHasAttr(i
, Attribute::ImmArg
)) {
4797 Ops
.push_back(getValue(Arg
));
4801 // Use TargetConstant instead of a regular constant for immarg.
4802 EVT VT
= TLI
.getValueType(*DL
, Arg
->getType(), true);
4803 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Arg
)) {
4804 assert(CI
->getBitWidth() <= 64 &&
4805 "large intrinsic immediates not handled");
4806 Ops
.push_back(DAG
.getTargetConstant(*CI
, SDLoc(), VT
));
4809 DAG
.getTargetConstantFP(*cast
<ConstantFP
>(Arg
), SDLoc(), VT
));
4813 SmallVector
<EVT
, 4> ValueVTs
;
4814 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4817 ValueVTs
.push_back(MVT::Other
);
4819 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4821 // Propagate fast-math-flags from IR to node(s).
4823 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
))
4824 Flags
.copyFMF(*FPMO
);
4825 SelectionDAG::FlagInserter
FlagsInserter(DAG
, Flags
);
4829 if (IsTgtIntrinsic
) {
4830 // This is target intrinsic that touches memory
4832 I
.getAAMetadata(AAInfo
);
4834 DAG
.getMemIntrinsicNode(Info
.opc
, getCurSDLoc(), VTs
, Ops
, Info
.memVT
,
4835 MachinePointerInfo(Info
.ptrVal
, Info
.offset
),
4836 Info
.align
, Info
.flags
, Info
.size
, AAInfo
);
4837 } else if (!HasChain
) {
4838 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4839 } else if (!I
.getType()->isVoidTy()) {
4840 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4842 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4846 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4848 PendingLoads
.push_back(Chain
);
4853 if (!I
.getType()->isVoidTy()) {
4854 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4855 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4856 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4858 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4860 MaybeAlign Alignment
= I
.getRetAlign();
4862 Alignment
= F
->getAttributes().getRetAlignment();
4863 // Insert `assertalign` node if there's an alignment.
4864 if (InsertAssertAlign
&& Alignment
) {
4866 DAG
.getAssertAlign(getCurSDLoc(), Result
, Alignment
.valueOrOne());
4869 setValue(&I
, Result
);
4873 /// GetSignificand - Get the significand and build it into a floating-point
4874 /// number with exponent of 1:
4876 /// Op = (Op & 0x007fffff) | 0x3f800000;
4878 /// where Op is the hexadecimal representation of floating point value.
4879 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4880 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4881 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4882 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4883 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4884 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4887 /// GetExponent - Get the exponent:
4889 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4891 /// where Op is the hexadecimal representation of floating point value.
4892 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4893 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4894 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4895 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4896 SDValue t1
= DAG
.getNode(
4897 ISD::SRL
, dl
, MVT::i32
, t0
,
4898 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4899 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4900 DAG
.getConstant(127, dl
, MVT::i32
));
4901 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4904 /// getF32Constant - Get 32-bit floating point constant.
4905 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4907 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4911 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4912 SelectionDAG
&DAG
) {
4913 // TODO: What fast-math-flags should be set on the floating-point nodes?
4915 // IntegerPartOfX = ((int32_t)(t0);
4916 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4918 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4919 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4920 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4922 // IntegerPartOfX <<= 23;
4923 IntegerPartOfX
= DAG
.getNode(
4924 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4925 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4926 DAG
.getDataLayout())));
4928 SDValue TwoToFractionalPartOfX
;
4929 if (LimitFloatPrecision
<= 6) {
4930 // For floating-point precision of 6:
4932 // TwoToFractionalPartOfX =
4934 // (0.735607626f + 0.252464424f * x) * x;
4936 // error 0.0144103317, which is 6 bits
4937 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4938 getF32Constant(DAG
, 0x3e814304, dl
));
4939 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4940 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4941 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4942 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4943 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4944 } else if (LimitFloatPrecision
<= 12) {
4945 // For floating-point precision of 12:
4947 // TwoToFractionalPartOfX =
4950 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4952 // error 0.000107046256, which is 13 to 14 bits
4953 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4954 getF32Constant(DAG
, 0x3da235e3, dl
));
4955 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4956 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4957 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4958 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4959 getF32Constant(DAG
, 0x3f324b07, dl
));
4960 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4961 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4962 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4963 } else { // LimitFloatPrecision <= 18
4964 // For floating-point precision of 18:
4966 // TwoToFractionalPartOfX =
4970 // (0.554906021e-1f +
4971 // (0.961591928e-2f +
4972 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4973 // error 2.47208000*10^(-7), which is better than 18 bits
4974 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4975 getF32Constant(DAG
, 0x3924b03e, dl
));
4976 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4977 getF32Constant(DAG
, 0x3ab24b87, dl
));
4978 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4979 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4980 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4981 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4982 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4983 getF32Constant(DAG
, 0x3d634a1d, dl
));
4984 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4985 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4986 getF32Constant(DAG
, 0x3e75fe14, dl
));
4987 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4988 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4989 getF32Constant(DAG
, 0x3f317234, dl
));
4990 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4991 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4992 getF32Constant(DAG
, 0x3f800000, dl
));
4995 // Add the exponent into the result in integer domain.
4996 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4997 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4998 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
5001 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5002 /// limited-precision mode.
5003 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5004 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5005 if (Op
.getValueType() == MVT::f32
&&
5006 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5008 // Put the exponent in the right bit position for later addition to the
5011 // t0 = Op * log2(e)
5013 // TODO: What fast-math-flags should be set here?
5014 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
5015 DAG
.getConstantFP(numbers::log2ef
, dl
, MVT::f32
));
5016 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5019 // No special expansion.
5020 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
, Flags
);
5023 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5024 /// limited-precision mode.
5025 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5026 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5027 // TODO: What fast-math-flags should be set on the floating-point nodes?
5029 if (Op
.getValueType() == MVT::f32
&&
5030 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5031 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5033 // Scale the exponent by log(2).
5034 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5035 SDValue LogOfExponent
=
5036 DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5037 DAG
.getConstantFP(numbers::ln2f
, dl
, MVT::f32
));
5039 // Get the significand and build it into a floating-point number with
5041 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5043 SDValue LogOfMantissa
;
5044 if (LimitFloatPrecision
<= 6) {
5045 // For floating-point precision of 6:
5049 // (1.4034025f - 0.23903021f * x) * x;
5051 // error 0.0034276066, which is better than 8 bits
5052 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5053 getF32Constant(DAG
, 0xbe74c456, dl
));
5054 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5055 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
5056 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5057 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5058 getF32Constant(DAG
, 0x3f949a29, dl
));
5059 } else if (LimitFloatPrecision
<= 12) {
5060 // For floating-point precision of 12:
5066 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5068 // error 0.000061011436, which is 14 bits
5069 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5070 getF32Constant(DAG
, 0xbd67b6d6, dl
));
5071 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5072 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
5073 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5074 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5075 getF32Constant(DAG
, 0x3fbc278b, dl
));
5076 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5077 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5078 getF32Constant(DAG
, 0x40348e95, dl
));
5079 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5080 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5081 getF32Constant(DAG
, 0x3fdef31a, dl
));
5082 } else { // LimitFloatPrecision <= 18
5083 // For floating-point precision of 18:
5091 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5093 // error 0.0000023660568, which is better than 18 bits
5094 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5095 getF32Constant(DAG
, 0xbc91e5ac, dl
));
5096 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5097 getF32Constant(DAG
, 0x3e4350aa, dl
));
5098 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5099 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5100 getF32Constant(DAG
, 0x3f60d3e3, dl
));
5101 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5102 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5103 getF32Constant(DAG
, 0x4011cdf0, dl
));
5104 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5105 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5106 getF32Constant(DAG
, 0x406cfd1c, dl
));
5107 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5108 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5109 getF32Constant(DAG
, 0x408797cb, dl
));
5110 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5111 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5112 getF32Constant(DAG
, 0x4006dcab, dl
));
5115 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
5118 // No special expansion.
5119 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
, Flags
);
5122 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5123 /// limited-precision mode.
5124 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5125 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5126 // TODO: What fast-math-flags should be set on the floating-point nodes?
5128 if (Op
.getValueType() == MVT::f32
&&
5129 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5130 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5132 // Get the exponent.
5133 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
5135 // Get the significand and build it into a floating-point number with
5137 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5139 // Different possible minimax approximations of significand in
5140 // floating-point for various degrees of accuracy over [1,2].
5141 SDValue Log2ofMantissa
;
5142 if (LimitFloatPrecision
<= 6) {
5143 // For floating-point precision of 6:
5145 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5147 // error 0.0049451742, which is more than 7 bits
5148 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5149 getF32Constant(DAG
, 0xbeb08fe0, dl
));
5150 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5151 getF32Constant(DAG
, 0x40019463, dl
));
5152 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5153 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5154 getF32Constant(DAG
, 0x3fd6633d, dl
));
5155 } else if (LimitFloatPrecision
<= 12) {
5156 // For floating-point precision of 12:
5162 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5164 // error 0.0000876136000, which is better than 13 bits
5165 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5166 getF32Constant(DAG
, 0xbda7262e, dl
));
5167 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5168 getF32Constant(DAG
, 0x3f25280b, dl
));
5169 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5170 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5171 getF32Constant(DAG
, 0x4007b923, dl
));
5172 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5173 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5174 getF32Constant(DAG
, 0x40823e2f, dl
));
5175 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5176 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5177 getF32Constant(DAG
, 0x4020d29c, dl
));
5178 } else { // LimitFloatPrecision <= 18
5179 // For floating-point precision of 18:
5188 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5190 // error 0.0000018516, which is better than 18 bits
5191 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5192 getF32Constant(DAG
, 0xbcd2769e, dl
));
5193 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5194 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5195 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5196 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5197 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5198 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5199 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5200 getF32Constant(DAG
, 0x40525723, dl
));
5201 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5202 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5203 getF32Constant(DAG
, 0x40aaf200, dl
));
5204 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5205 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5206 getF32Constant(DAG
, 0x40c39dad, dl
));
5207 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5208 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5209 getF32Constant(DAG
, 0x4042902c, dl
));
5212 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5215 // No special expansion.
5216 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
, Flags
);
5219 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5220 /// limited-precision mode.
5221 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5222 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5223 // TODO: What fast-math-flags should be set on the floating-point nodes?
5225 if (Op
.getValueType() == MVT::f32
&&
5226 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5227 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5229 // Scale the exponent by log10(2) [0.30102999f].
5230 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5231 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5232 getF32Constant(DAG
, 0x3e9a209a, dl
));
5234 // Get the significand and build it into a floating-point number with
5236 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5238 SDValue Log10ofMantissa
;
5239 if (LimitFloatPrecision
<= 6) {
5240 // For floating-point precision of 6:
5242 // Log10ofMantissa =
5244 // (0.60948995f - 0.10380950f * x) * x;
5246 // error 0.0014886165, which is 6 bits
5247 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5248 getF32Constant(DAG
, 0xbdd49a13, dl
));
5249 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5250 getF32Constant(DAG
, 0x3f1c0789, dl
));
5251 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5252 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5253 getF32Constant(DAG
, 0x3f011300, dl
));
5254 } else if (LimitFloatPrecision
<= 12) {
5255 // For floating-point precision of 12:
5257 // Log10ofMantissa =
5260 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5262 // error 0.00019228036, which is better than 12 bits
5263 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5264 getF32Constant(DAG
, 0x3d431f31, dl
));
5265 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5266 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5267 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5268 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5269 getF32Constant(DAG
, 0x3f6ae232, dl
));
5270 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5271 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5272 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5273 } else { // LimitFloatPrecision <= 18
5274 // For floating-point precision of 18:
5276 // Log10ofMantissa =
5281 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5283 // error 0.0000037995730, which is better than 18 bits
5284 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5285 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5286 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5287 getF32Constant(DAG
, 0x3e00685a, dl
));
5288 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5289 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5290 getF32Constant(DAG
, 0x3efb6798, dl
));
5291 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5292 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5293 getF32Constant(DAG
, 0x3f88d192, dl
));
5294 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5295 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5296 getF32Constant(DAG
, 0x3fc4316c, dl
));
5297 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5298 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5299 getF32Constant(DAG
, 0x3f57ce70, dl
));
5302 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5305 // No special expansion.
5306 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
, Flags
);
5309 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5310 /// limited-precision mode.
5311 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5312 const TargetLowering
&TLI
, SDNodeFlags Flags
) {
5313 if (Op
.getValueType() == MVT::f32
&&
5314 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5315 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5317 // No special expansion.
5318 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
, Flags
);
5321 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5322 /// limited-precision mode with x == 10.0f.
5323 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5324 SelectionDAG
&DAG
, const TargetLowering
&TLI
,
5325 SDNodeFlags Flags
) {
5326 bool IsExp10
= false;
5327 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5328 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5329 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5331 IsExp10
= LHSC
->isExactlyValue(Ten
);
5335 // TODO: What fast-math-flags should be set on the FMUL node?
5337 // Put the exponent in the right bit position for later addition to the
5340 // #define LOG2OF10 3.3219281f
5341 // t0 = Op * LOG2OF10;
5342 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5343 getF32Constant(DAG
, 0x40549a78, dl
));
5344 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5347 // No special expansion.
5348 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
, Flags
);
5351 /// ExpandPowI - Expand a llvm.powi intrinsic.
5352 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5353 SelectionDAG
&DAG
) {
5354 // If RHS is a constant, we can expand this out to a multiplication tree,
5355 // otherwise we end up lowering to a call to __powidf2 (for example). When
5356 // optimizing for size, we only want to do this if the expansion would produce
5357 // a small number of multiplies, otherwise we do the full expansion.
5358 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5359 // Get the exponent as a positive value.
5360 unsigned Val
= RHSC
->getSExtValue();
5361 if ((int)Val
< 0) Val
= -Val
;
5363 // powi(x, 0) -> 1.0
5365 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5367 bool OptForSize
= DAG
.shouldOptForSize();
5369 // If optimizing for size, don't insert too many multiplies.
5370 // This inserts up to 5 multiplies.
5371 countPopulation(Val
) + Log2_32(Val
) < 7) {
5372 // We use the simple binary decomposition method to generate the multiply
5373 // sequence. There are more optimal ways to do this (for example,
5374 // powi(x,15) generates one more multiply than it should), but this has
5375 // the benefit of being both really simple and much better than a libcall.
5376 SDValue Res
; // Logically starts equal to 1.0
5377 SDValue CurSquare
= LHS
;
5378 // TODO: Intrinsics should have fast-math-flags that propagate to these
5383 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5385 Res
= CurSquare
; // 1.0*CurSquare.
5388 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5389 CurSquare
, CurSquare
);
5393 // If the original was negative, invert the result, producing 1/(x*x*x).
5394 if (RHSC
->getSExtValue() < 0)
5395 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5396 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5401 // Otherwise, expand to a libcall.
5402 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5405 static SDValue
expandDivFix(unsigned Opcode
, const SDLoc
&DL
,
5406 SDValue LHS
, SDValue RHS
, SDValue Scale
,
5407 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5408 EVT VT
= LHS
.getValueType();
5409 bool Signed
= Opcode
== ISD::SDIVFIX
|| Opcode
== ISD::SDIVFIXSAT
;
5410 bool Saturating
= Opcode
== ISD::SDIVFIXSAT
|| Opcode
== ISD::UDIVFIXSAT
;
5411 LLVMContext
&Ctx
= *DAG
.getContext();
5413 // If the type is legal but the operation isn't, this node might survive all
5414 // the way to operation legalization. If we end up there and we do not have
5415 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5418 // Coax the legalizer into expanding the node during type legalization instead
5419 // by bumping the size by one bit. This will force it to Promote, enabling the
5420 // early expansion and avoiding the need to expand later.
5422 // We don't have to do this if Scale is 0; that can always be expanded, unless
5423 // it's a saturating signed operation. Those can experience true integer
5424 // division overflow, a case which we must avoid.
5426 // FIXME: We wouldn't have to do this (or any of the early
5427 // expansion/promotion) if it was possible to expand a libcall of an
5428 // illegal type during operation legalization. But it's not, so things
5430 unsigned ScaleInt
= cast
<ConstantSDNode
>(Scale
)->getZExtValue();
5431 if ((ScaleInt
> 0 || (Saturating
&& Signed
)) &&
5432 (TLI
.isTypeLegal(VT
) ||
5433 (VT
.isVector() && TLI
.isTypeLegal(VT
.getVectorElementType())))) {
5434 TargetLowering::LegalizeAction Action
= TLI
.getFixedPointOperationAction(
5435 Opcode
, VT
, ScaleInt
);
5436 if (Action
!= TargetLowering::Legal
&& Action
!= TargetLowering::Custom
) {
5438 if (VT
.isScalarInteger())
5439 PromVT
= EVT::getIntegerVT(Ctx
, VT
.getSizeInBits() + 1);
5440 else if (VT
.isVector()) {
5441 PromVT
= VT
.getVectorElementType();
5442 PromVT
= EVT::getIntegerVT(Ctx
, PromVT
.getSizeInBits() + 1);
5443 PromVT
= EVT::getVectorVT(Ctx
, PromVT
, VT
.getVectorElementCount());
5445 llvm_unreachable("Wrong VT for DIVFIX?");
5447 LHS
= DAG
.getSExtOrTrunc(LHS
, DL
, PromVT
);
5448 RHS
= DAG
.getSExtOrTrunc(RHS
, DL
, PromVT
);
5450 LHS
= DAG
.getZExtOrTrunc(LHS
, DL
, PromVT
);
5451 RHS
= DAG
.getZExtOrTrunc(RHS
, DL
, PromVT
);
5453 EVT ShiftTy
= TLI
.getShiftAmountTy(PromVT
, DAG
.getDataLayout());
5454 // For saturating operations, we need to shift up the LHS to get the
5455 // proper saturation width, and then shift down again afterwards.
5457 LHS
= DAG
.getNode(ISD::SHL
, DL
, PromVT
, LHS
,
5458 DAG
.getConstant(1, DL
, ShiftTy
));
5459 SDValue Res
= DAG
.getNode(Opcode
, DL
, PromVT
, LHS
, RHS
, Scale
);
5461 Res
= DAG
.getNode(Signed
? ISD::SRA
: ISD::SRL
, DL
, PromVT
, Res
,
5462 DAG
.getConstant(1, DL
, ShiftTy
));
5463 return DAG
.getZExtOrTrunc(Res
, DL
, VT
);
5467 return DAG
.getNode(Opcode
, DL
, VT
, LHS
, RHS
, Scale
);
5470 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5471 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5473 getUnderlyingArgRegs(SmallVectorImpl
<std::pair
<unsigned, TypeSize
>> &Regs
,
5475 switch (N
.getOpcode()) {
5476 case ISD::CopyFromReg
: {
5477 SDValue Op
= N
.getOperand(1);
5478 Regs
.emplace_back(cast
<RegisterSDNode
>(Op
)->getReg(),
5479 Op
.getValueType().getSizeInBits());
5483 case ISD::AssertZext
:
5484 case ISD::AssertSext
:
5486 getUnderlyingArgRegs(Regs
, N
.getOperand(0));
5488 case ISD::BUILD_PAIR
:
5489 case ISD::BUILD_VECTOR
:
5490 case ISD::CONCAT_VECTORS
:
5491 for (SDValue Op
: N
->op_values())
5492 getUnderlyingArgRegs(Regs
, Op
);
5499 /// If the DbgValueInst is a dbg_value of a function argument, create the
5500 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5501 /// instruction selection, they will be inserted to the entry BB.
5502 /// We don't currently support this for variadic dbg_values, as they shouldn't
5503 /// appear for function arguments or in the prologue.
5504 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5505 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5506 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5507 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5511 MachineFunction
&MF
= DAG
.getMachineFunction();
5512 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5514 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5515 // we've been asked to pursue.
5516 auto MakeVRegDbgValue
= [&](Register Reg
, DIExpression
*FragExpr
,
5518 if (Reg
.isVirtual() && TM
.Options
.ValueTrackingVariableLocations
) {
5519 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5520 // pointing at the VReg, which will be patched up later.
5521 auto &Inst
= TII
->get(TargetOpcode::DBG_INSTR_REF
);
5522 auto MIB
= BuildMI(MF
, DL
, Inst
);
5523 MIB
.addReg(Reg
, RegState::Debug
);
5525 MIB
.addMetadata(Variable
);
5526 auto *NewDIExpr
= FragExpr
;
5527 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5528 // the DIExpression.
5530 NewDIExpr
= DIExpression::prepend(FragExpr
, DIExpression::DerefBefore
);
5531 MIB
.addMetadata(NewDIExpr
);
5534 // Create a completely standard DBG_VALUE.
5535 auto &Inst
= TII
->get(TargetOpcode::DBG_VALUE
);
5536 return BuildMI(MF
, DL
, Inst
, Indirect
, Reg
, Variable
, FragExpr
);
5540 if (!IsDbgDeclare
) {
5541 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5542 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5544 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5545 if (!IsInEntryBlock
)
5548 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5549 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5550 // variable that also is a param.
5552 // Although, if we are at the top of the entry block already, we can still
5553 // emit using ArgDbgValue. This might catch some situations when the
5554 // dbg.value refers to an argument that isn't used in the entry block, so
5555 // any CopyToReg node would be optimized out and the only way to express
5556 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5557 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5558 // we should only emit as ArgDbgValue if the Variable is an argument to the
5559 // current function, and the dbg.value intrinsic is found in the entry
5561 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5562 !DL
->getInlinedAt();
5563 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5564 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5567 // Here we assume that a function argument on IR level only can be used to
5568 // describe one input parameter on source level. If we for example have
5569 // source code like this
5571 // struct A { long x, y; };
5572 // void foo(struct A a, long b) {
5580 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5582 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5583 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5584 // call void @llvm.dbg.value(metadata i32 %b, "b",
5586 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5589 // then the last dbg.value is describing a parameter "b" using a value that
5590 // is an argument. But since we already has used %a1 to describe a parameter
5591 // we should not handle that last dbg.value here (that would result in an
5592 // incorrect hoisting of the DBG_VALUE to the function entry).
5593 // Notice that we allow one dbg.value per IR level argument, to accommodate
5594 // for the situation with fragments above.
5595 if (VariableIsFunctionInputArg
) {
5596 unsigned ArgNo
= Arg
->getArgNo();
5597 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5598 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5599 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5601 FuncInfo
.DescribedArgs
.set(ArgNo
);
5605 bool IsIndirect
= false;
5606 Optional
<MachineOperand
> Op
;
5607 // Some arguments' frame index is recorded during argument lowering.
5608 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5609 if (FI
!= std::numeric_limits
<int>::max())
5610 Op
= MachineOperand::CreateFI(FI
);
5612 SmallVector
<std::pair
<unsigned, TypeSize
>, 8> ArgRegsAndSizes
;
5613 if (!Op
&& N
.getNode()) {
5614 getUnderlyingArgRegs(ArgRegsAndSizes
, N
);
5616 if (ArgRegsAndSizes
.size() == 1)
5617 Reg
= ArgRegsAndSizes
.front().first
;
5619 if (Reg
&& Reg
.isVirtual()) {
5620 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5621 Register PR
= RegInfo
.getLiveInPhysReg(Reg
);
5626 Op
= MachineOperand::CreateReg(Reg
, false);
5627 IsIndirect
= IsDbgDeclare
;
5631 if (!Op
&& N
.getNode()) {
5632 // Check if frame index is available.
5633 SDValue LCandidate
= peekThroughBitcasts(N
);
5634 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5635 if (FrameIndexSDNode
*FINode
=
5636 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5637 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5641 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5642 auto splitMultiRegDbgValue
= [&](ArrayRef
<std::pair
<unsigned, TypeSize
>>
5644 unsigned Offset
= 0;
5645 for (auto RegAndSize
: SplitRegs
) {
5646 // If the expression is already a fragment, the current register
5647 // offset+size might extend beyond the fragment. In this case, only
5648 // the register bits that are inside the fragment are relevant.
5649 int RegFragmentSizeInBits
= RegAndSize
.second
;
5650 if (auto ExprFragmentInfo
= Expr
->getFragmentInfo()) {
5651 uint64_t ExprFragmentSizeInBits
= ExprFragmentInfo
->SizeInBits
;
5652 // The register is entirely outside the expression fragment,
5653 // so is irrelevant for debug info.
5654 if (Offset
>= ExprFragmentSizeInBits
)
5656 // The register is partially outside the expression fragment, only
5657 // the low bits within the fragment are relevant for debug info.
5658 if (Offset
+ RegFragmentSizeInBits
> ExprFragmentSizeInBits
) {
5659 RegFragmentSizeInBits
= ExprFragmentSizeInBits
- Offset
;
5663 auto FragmentExpr
= DIExpression::createFragmentExpression(
5664 Expr
, Offset
, RegFragmentSizeInBits
);
5665 Offset
+= RegAndSize
.second
;
5666 // If a valid fragment expression cannot be created, the variable's
5667 // correct value cannot be determined and so it is set as Undef.
5668 if (!FragmentExpr
) {
5669 SDDbgValue
*SDV
= DAG
.getConstantDbgValue(
5670 Variable
, Expr
, UndefValue::get(V
->getType()), DL
, SDNodeOrder
);
5671 DAG
.AddDbgValue(SDV
, false);
5674 MachineInstr
*NewMI
=
5675 MakeVRegDbgValue(RegAndSize
.first
, *FragmentExpr
, IsDbgDeclare
);
5676 FuncInfo
.ArgDbgValues
.push_back(NewMI
);
5680 // Check if ValueMap has reg number.
5681 DenseMap
<const Value
*, Register
>::const_iterator
5682 VMI
= FuncInfo
.ValueMap
.find(V
);
5683 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5684 const auto &TLI
= DAG
.getTargetLoweringInfo();
5685 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5686 V
->getType(), None
);
5687 if (RFV
.occupiesMultipleRegs()) {
5688 splitMultiRegDbgValue(RFV
.getRegsAndSizes());
5692 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5693 IsIndirect
= IsDbgDeclare
;
5694 } else if (ArgRegsAndSizes
.size() > 1) {
5695 // This was split due to the calling convention, and no virtual register
5696 // mapping exists for the value.
5697 splitMultiRegDbgValue(ArgRegsAndSizes
);
5705 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5706 "Expected inlined-at fields to agree");
5707 MachineInstr
*NewMI
= nullptr;
5710 NewMI
= MakeVRegDbgValue(Op
->getReg(), Expr
, IsIndirect
);
5712 NewMI
= BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), true, *Op
,
5715 FuncInfo
.ArgDbgValues
.push_back(NewMI
);
5719 /// Return the appropriate SDDbgValue based on N.
5720 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5721 DILocalVariable
*Variable
,
5724 unsigned DbgSDNodeOrder
) {
5725 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5726 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5727 // stack slot locations.
5729 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5730 // debug values here after optimization:
5732 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5733 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5735 // Both describe the direct values of their associated variables.
5736 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5737 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5739 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5740 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5743 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5744 switch (Intrinsic
) {
5745 case Intrinsic::smul_fix
:
5746 return ISD::SMULFIX
;
5747 case Intrinsic::umul_fix
:
5748 return ISD::UMULFIX
;
5749 case Intrinsic::smul_fix_sat
:
5750 return ISD::SMULFIXSAT
;
5751 case Intrinsic::umul_fix_sat
:
5752 return ISD::UMULFIXSAT
;
5753 case Intrinsic::sdiv_fix
:
5754 return ISD::SDIVFIX
;
5755 case Intrinsic::udiv_fix
:
5756 return ISD::UDIVFIX
;
5757 case Intrinsic::sdiv_fix_sat
:
5758 return ISD::SDIVFIXSAT
;
5759 case Intrinsic::udiv_fix_sat
:
5760 return ISD::UDIVFIXSAT
;
5762 llvm_unreachable("Unhandled fixed point intrinsic");
5766 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5767 const char *FunctionName
) {
5768 assert(FunctionName
&& "FunctionName must not be nullptr");
5769 SDValue Callee
= DAG
.getExternalSymbol(
5771 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5772 LowerCallTo(I
, Callee
, I
.isTailCall(), I
.isMustTailCall());
5775 /// Given a @llvm.call.preallocated.setup, return the corresponding
5776 /// preallocated call.
5777 static const CallBase
*FindPreallocatedCall(const Value
*PreallocatedSetup
) {
5778 assert(cast
<CallBase
>(PreallocatedSetup
)
5779 ->getCalledFunction()
5780 ->getIntrinsicID() == Intrinsic::call_preallocated_setup
&&
5781 "expected call_preallocated_setup Value");
5782 for (auto *U
: PreallocatedSetup
->users()) {
5783 auto *UseCall
= cast
<CallBase
>(U
);
5784 const Function
*Fn
= UseCall
->getCalledFunction();
5785 if (!Fn
|| Fn
->getIntrinsicID() != Intrinsic::call_preallocated_arg
) {
5789 llvm_unreachable("expected corresponding call to preallocated setup/arg");
5792 /// Lower the call to the specified intrinsic function.
5793 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5794 unsigned Intrinsic
) {
5795 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5796 SDLoc sdl
= getCurSDLoc();
5797 DebugLoc dl
= getCurDebugLoc();
5801 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&I
))
5802 Flags
.copyFMF(*FPOp
);
5804 switch (Intrinsic
) {
5806 // By default, turn this into a target intrinsic node.
5807 visitTargetIntrinsic(I
, Intrinsic
);
5809 case Intrinsic::vscale
: {
5810 match(&I
, m_VScale(DAG
.getDataLayout()));
5811 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5813 DAG
.getVScale(getCurSDLoc(), VT
, APInt(VT
.getSizeInBits(), 1)));
5816 case Intrinsic::vastart
: visitVAStart(I
); return;
5817 case Intrinsic::vaend
: visitVAEnd(I
); return;
5818 case Intrinsic::vacopy
: visitVACopy(I
); return;
5819 case Intrinsic::returnaddress
:
5820 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5821 TLI
.getPointerTy(DAG
.getDataLayout()),
5822 getValue(I
.getArgOperand(0))));
5824 case Intrinsic::addressofreturnaddress
:
5825 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5826 TLI
.getPointerTy(DAG
.getDataLayout())));
5828 case Intrinsic::sponentry
:
5829 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5830 TLI
.getFrameIndexTy(DAG
.getDataLayout())));
5832 case Intrinsic::frameaddress
:
5833 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5834 TLI
.getFrameIndexTy(DAG
.getDataLayout()),
5835 getValue(I
.getArgOperand(0))));
5837 case Intrinsic::read_volatile_register
:
5838 case Intrinsic::read_register
: {
5839 Value
*Reg
= I
.getArgOperand(0);
5840 SDValue Chain
= getRoot();
5842 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5843 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5844 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5845 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5847 DAG
.setRoot(Res
.getValue(1));
5850 case Intrinsic::write_register
: {
5851 Value
*Reg
= I
.getArgOperand(0);
5852 Value
*RegValue
= I
.getArgOperand(1);
5853 SDValue Chain
= getRoot();
5855 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5856 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5857 RegName
, getValue(RegValue
)));
5860 case Intrinsic::memcpy
: {
5861 const auto &MCI
= cast
<MemCpyInst
>(I
);
5862 SDValue Op1
= getValue(I
.getArgOperand(0));
5863 SDValue Op2
= getValue(I
.getArgOperand(1));
5864 SDValue Op3
= getValue(I
.getArgOperand(2));
5865 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5866 Align DstAlign
= MCI
.getDestAlign().valueOrOne();
5867 Align SrcAlign
= MCI
.getSourceAlign().valueOrOne();
5868 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5869 bool isVol
= MCI
.isVolatile();
5870 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5871 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5873 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5875 I
.getAAMetadata(AAInfo
);
5876 SDValue MC
= DAG
.getMemcpy(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
,
5877 /* AlwaysInline */ false, isTC
,
5878 MachinePointerInfo(I
.getArgOperand(0)),
5879 MachinePointerInfo(I
.getArgOperand(1)), AAInfo
);
5880 updateDAGForMaybeTailCall(MC
);
5883 case Intrinsic::memcpy_inline
: {
5884 const auto &MCI
= cast
<MemCpyInlineInst
>(I
);
5885 SDValue Dst
= getValue(I
.getArgOperand(0));
5886 SDValue Src
= getValue(I
.getArgOperand(1));
5887 SDValue Size
= getValue(I
.getArgOperand(2));
5888 assert(isa
<ConstantSDNode
>(Size
) && "memcpy_inline needs constant size");
5889 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5890 Align DstAlign
= MCI
.getDestAlign().valueOrOne();
5891 Align SrcAlign
= MCI
.getSourceAlign().valueOrOne();
5892 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5893 bool isVol
= MCI
.isVolatile();
5894 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5895 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5898 I
.getAAMetadata(AAInfo
);
5899 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Alignment
, isVol
,
5900 /* AlwaysInline */ true, isTC
,
5901 MachinePointerInfo(I
.getArgOperand(0)),
5902 MachinePointerInfo(I
.getArgOperand(1)), AAInfo
);
5903 updateDAGForMaybeTailCall(MC
);
5906 case Intrinsic::memset
: {
5907 const auto &MSI
= cast
<MemSetInst
>(I
);
5908 SDValue Op1
= getValue(I
.getArgOperand(0));
5909 SDValue Op2
= getValue(I
.getArgOperand(1));
5910 SDValue Op3
= getValue(I
.getArgOperand(2));
5911 // @llvm.memset defines 0 and 1 to both mean no alignment.
5912 Align Alignment
= MSI
.getDestAlign().valueOrOne();
5913 bool isVol
= MSI
.isVolatile();
5914 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5915 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5917 I
.getAAMetadata(AAInfo
);
5918 SDValue MS
= DAG
.getMemset(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
, isTC
,
5919 MachinePointerInfo(I
.getArgOperand(0)), AAInfo
);
5920 updateDAGForMaybeTailCall(MS
);
5923 case Intrinsic::memmove
: {
5924 const auto &MMI
= cast
<MemMoveInst
>(I
);
5925 SDValue Op1
= getValue(I
.getArgOperand(0));
5926 SDValue Op2
= getValue(I
.getArgOperand(1));
5927 SDValue Op3
= getValue(I
.getArgOperand(2));
5928 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5929 Align DstAlign
= MMI
.getDestAlign().valueOrOne();
5930 Align SrcAlign
= MMI
.getSourceAlign().valueOrOne();
5931 Align Alignment
= commonAlignment(DstAlign
, SrcAlign
);
5932 bool isVol
= MMI
.isVolatile();
5933 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5934 // FIXME: Support passing different dest/src alignments to the memmove DAG
5936 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
5938 I
.getAAMetadata(AAInfo
);
5939 SDValue MM
= DAG
.getMemmove(Root
, sdl
, Op1
, Op2
, Op3
, Alignment
, isVol
,
5940 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5941 MachinePointerInfo(I
.getArgOperand(1)), AAInfo
);
5942 updateDAGForMaybeTailCall(MM
);
5945 case Intrinsic::memcpy_element_unordered_atomic
: {
5946 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5947 SDValue Dst
= getValue(MI
.getRawDest());
5948 SDValue Src
= getValue(MI
.getRawSource());
5949 SDValue Length
= getValue(MI
.getLength());
5951 unsigned DstAlign
= MI
.getDestAlignment();
5952 unsigned SrcAlign
= MI
.getSourceAlignment();
5953 Type
*LengthTy
= MI
.getLength()->getType();
5954 unsigned ElemSz
= MI
.getElementSizeInBytes();
5955 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5956 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5957 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5958 MachinePointerInfo(MI
.getRawDest()),
5959 MachinePointerInfo(MI
.getRawSource()));
5960 updateDAGForMaybeTailCall(MC
);
5963 case Intrinsic::memmove_element_unordered_atomic
: {
5964 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5965 SDValue Dst
= getValue(MI
.getRawDest());
5966 SDValue Src
= getValue(MI
.getRawSource());
5967 SDValue Length
= getValue(MI
.getLength());
5969 unsigned DstAlign
= MI
.getDestAlignment();
5970 unsigned SrcAlign
= MI
.getSourceAlignment();
5971 Type
*LengthTy
= MI
.getLength()->getType();
5972 unsigned ElemSz
= MI
.getElementSizeInBytes();
5973 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5974 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5975 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5976 MachinePointerInfo(MI
.getRawDest()),
5977 MachinePointerInfo(MI
.getRawSource()));
5978 updateDAGForMaybeTailCall(MC
);
5981 case Intrinsic::memset_element_unordered_atomic
: {
5982 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5983 SDValue Dst
= getValue(MI
.getRawDest());
5984 SDValue Val
= getValue(MI
.getValue());
5985 SDValue Length
= getValue(MI
.getLength());
5987 unsigned DstAlign
= MI
.getDestAlignment();
5988 Type
*LengthTy
= MI
.getLength()->getType();
5989 unsigned ElemSz
= MI
.getElementSizeInBytes();
5990 bool isTC
= I
.isTailCall() && isInTailCallPosition(I
, DAG
.getTarget());
5991 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5992 LengthTy
, ElemSz
, isTC
,
5993 MachinePointerInfo(MI
.getRawDest()));
5994 updateDAGForMaybeTailCall(MC
);
5997 case Intrinsic::call_preallocated_setup
: {
5998 const CallBase
*PreallocatedCall
= FindPreallocatedCall(&I
);
5999 SDValue SrcValue
= DAG
.getSrcValue(PreallocatedCall
);
6000 SDValue Res
= DAG
.getNode(ISD::PREALLOCATED_SETUP
, sdl
, MVT::Other
,
6001 getRoot(), SrcValue
);
6006 case Intrinsic::call_preallocated_arg
: {
6007 const CallBase
*PreallocatedCall
= FindPreallocatedCall(I
.getOperand(0));
6008 SDValue SrcValue
= DAG
.getSrcValue(PreallocatedCall
);
6012 Ops
[2] = DAG
.getTargetConstant(*cast
<ConstantInt
>(I
.getArgOperand(1)), sdl
,
6013 MVT::i32
); // arg index
6014 SDValue Res
= DAG
.getNode(
6015 ISD::PREALLOCATED_ARG
, sdl
,
6016 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Ops
);
6018 DAG
.setRoot(Res
.getValue(1));
6021 case Intrinsic::dbg_addr
:
6022 case Intrinsic::dbg_declare
: {
6023 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6024 // they are non-variadic.
6025 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
6026 assert(!DI
.hasArgList() && "Only dbg.value should currently use DIArgList");
6027 DILocalVariable
*Variable
= DI
.getVariable();
6028 DIExpression
*Expression
= DI
.getExpression();
6029 dropDanglingDebugInfo(Variable
, Expression
);
6030 assert(Variable
&& "Missing variable");
6031 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6033 // Check if address has undef value.
6034 const Value
*Address
= DI
.getVariableLocationOp(0);
6035 if (!Address
|| isa
<UndefValue
>(Address
) ||
6036 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
6037 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6038 << " (bad/undef/unused-arg address)\n");
6042 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
6044 // Check if this variable can be described by a frame index, typically
6045 // either as a static alloca or a byval parameter.
6046 int FI
= std::numeric_limits
<int>::max();
6047 if (const auto *AI
=
6048 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
6049 if (AI
->isStaticAlloca()) {
6050 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
6051 if (I
!= FuncInfo
.StaticAllocaMap
.end())
6054 } else if (const auto *Arg
= dyn_cast
<Argument
>(
6055 Address
->stripInBoundsConstantOffsets())) {
6056 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
6059 // llvm.dbg.addr is control dependent and always generates indirect
6060 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6061 // the MachineFunction variable table.
6062 if (FI
!= std::numeric_limits
<int>::max()) {
6063 if (Intrinsic
== Intrinsic::dbg_addr
) {
6064 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
6065 Variable
, Expression
, FI
, getRoot().getNode(), /*IsIndirect*/ true,
6067 DAG
.AddDbgValue(SDV
, isParameter
);
6069 LLVM_DEBUG(dbgs() << "Skipping " << DI
6070 << " (variable info stashed in MF side table)\n");
6075 SDValue
&N
= NodeMap
[Address
];
6076 if (!N
.getNode() && isa
<Argument
>(Address
))
6077 // Check unused arguments map.
6078 N
= UnusedArgNodeMap
[Address
];
6081 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
6082 Address
= BCI
->getOperand(0);
6083 // Parameters are handled specially.
6084 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
6085 if (isParameter
&& FINode
) {
6086 // Byval parameter. We have a frame index at this point.
6088 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
6089 /*IsIndirect*/ true, dl
, SDNodeOrder
);
6090 } else if (isa
<Argument
>(Address
)) {
6091 // Address is an argument, so try to emit its dbg value using
6092 // virtual register info from the FuncInfo.ValueMap.
6093 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
6096 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
6097 true, dl
, SDNodeOrder
);
6099 DAG
.AddDbgValue(SDV
, isParameter
);
6101 // If Address is an argument then try to emit its dbg value using
6102 // virtual register info from the FuncInfo.ValueMap.
6103 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
6105 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6106 << " (could not emit func-arg dbg_value)\n");
6111 case Intrinsic::dbg_label
: {
6112 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
6113 DILabel
*Label
= DI
.getLabel();
6114 assert(Label
&& "Missing label");
6117 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
6118 DAG
.AddDbgLabel(SDV
);
6121 case Intrinsic::dbg_value
: {
6122 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
6123 assert(DI
.getVariable() && "Missing variable");
6125 DILocalVariable
*Variable
= DI
.getVariable();
6126 DIExpression
*Expression
= DI
.getExpression();
6127 dropDanglingDebugInfo(Variable
, Expression
);
6128 SmallVector
<Value
*, 4> Values(DI
.getValues());
6132 if (std::count(Values
.begin(), Values
.end(), nullptr))
6135 bool IsVariadic
= DI
.hasArgList();
6136 if (!handleDebugValue(Values
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
6137 SDNodeOrder
, IsVariadic
))
6138 addDanglingDebugInfo(&DI
, dl
, SDNodeOrder
);
6142 case Intrinsic::eh_typeid_for
: {
6143 // Find the type id for the given typeinfo.
6144 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
6145 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
6146 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
6151 case Intrinsic::eh_return_i32
:
6152 case Intrinsic::eh_return_i64
:
6153 DAG
.getMachineFunction().setCallsEHReturn(true);
6154 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
6157 getValue(I
.getArgOperand(0)),
6158 getValue(I
.getArgOperand(1))));
6160 case Intrinsic::eh_unwind_init
:
6161 DAG
.getMachineFunction().setCallsUnwindInit(true);
6163 case Intrinsic::eh_dwarf_cfa
:
6164 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
6165 TLI
.getPointerTy(DAG
.getDataLayout()),
6166 getValue(I
.getArgOperand(0))));
6168 case Intrinsic::eh_sjlj_callsite
: {
6169 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
6170 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
6171 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
6172 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
6174 MMI
.setCurrentCallSite(CI
->getZExtValue());
6177 case Intrinsic::eh_sjlj_functioncontext
: {
6178 // Get and store the index of the function context.
6179 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
6181 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
6182 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
6183 MFI
.setFunctionContextIndex(FI
);
6186 case Intrinsic::eh_sjlj_setjmp
: {
6189 Ops
[1] = getValue(I
.getArgOperand(0));
6190 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
6191 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
6192 setValue(&I
, Op
.getValue(0));
6193 DAG
.setRoot(Op
.getValue(1));
6196 case Intrinsic::eh_sjlj_longjmp
:
6197 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
6198 getRoot(), getValue(I
.getArgOperand(0))));
6200 case Intrinsic::eh_sjlj_setup_dispatch
:
6201 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
6204 case Intrinsic::masked_gather
:
6205 visitMaskedGather(I
);
6207 case Intrinsic::masked_load
:
6210 case Intrinsic::masked_scatter
:
6211 visitMaskedScatter(I
);
6213 case Intrinsic::masked_store
:
6214 visitMaskedStore(I
);
6216 case Intrinsic::masked_expandload
:
6217 visitMaskedLoad(I
, true /* IsExpanding */);
6219 case Intrinsic::masked_compressstore
:
6220 visitMaskedStore(I
, true /* IsCompressing */);
6222 case Intrinsic::powi
:
6223 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
6224 getValue(I
.getArgOperand(1)), DAG
));
6226 case Intrinsic::log
:
6227 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6229 case Intrinsic::log2
:
6231 expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6233 case Intrinsic::log10
:
6235 expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6237 case Intrinsic::exp
:
6238 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6240 case Intrinsic::exp2
:
6242 expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
, Flags
));
6244 case Intrinsic::pow
:
6245 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6246 getValue(I
.getArgOperand(1)), DAG
, TLI
, Flags
));
6248 case Intrinsic::sqrt
:
6249 case Intrinsic::fabs
:
6250 case Intrinsic::sin
:
6251 case Intrinsic::cos
:
6252 case Intrinsic::floor
:
6253 case Intrinsic::ceil
:
6254 case Intrinsic::trunc
:
6255 case Intrinsic::rint
:
6256 case Intrinsic::nearbyint
:
6257 case Intrinsic::round
:
6258 case Intrinsic::roundeven
:
6259 case Intrinsic::canonicalize
: {
6261 switch (Intrinsic
) {
6262 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6263 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6264 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6265 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6266 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6267 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6268 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6269 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6270 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6271 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6272 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6273 case Intrinsic::roundeven
: Opcode
= ISD::FROUNDEVEN
; break;
6274 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6277 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6278 getValue(I
.getArgOperand(0)).getValueType(),
6279 getValue(I
.getArgOperand(0)), Flags
));
6282 case Intrinsic::lround
:
6283 case Intrinsic::llround
:
6284 case Intrinsic::lrint
:
6285 case Intrinsic::llrint
: {
6287 switch (Intrinsic
) {
6288 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6289 case Intrinsic::lround
: Opcode
= ISD::LROUND
; break;
6290 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; break;
6291 case Intrinsic::lrint
: Opcode
= ISD::LRINT
; break;
6292 case Intrinsic::llrint
: Opcode
= ISD::LLRINT
; break;
6295 EVT RetVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6296 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6297 getValue(I
.getArgOperand(0))));
6300 case Intrinsic::minnum
:
6301 setValue(&I
, DAG
.getNode(ISD::FMINNUM
, sdl
,
6302 getValue(I
.getArgOperand(0)).getValueType(),
6303 getValue(I
.getArgOperand(0)),
6304 getValue(I
.getArgOperand(1)), Flags
));
6306 case Intrinsic::maxnum
:
6307 setValue(&I
, DAG
.getNode(ISD::FMAXNUM
, sdl
,
6308 getValue(I
.getArgOperand(0)).getValueType(),
6309 getValue(I
.getArgOperand(0)),
6310 getValue(I
.getArgOperand(1)), Flags
));
6312 case Intrinsic::minimum
:
6313 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6314 getValue(I
.getArgOperand(0)).getValueType(),
6315 getValue(I
.getArgOperand(0)),
6316 getValue(I
.getArgOperand(1)), Flags
));
6318 case Intrinsic::maximum
:
6319 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6320 getValue(I
.getArgOperand(0)).getValueType(),
6321 getValue(I
.getArgOperand(0)),
6322 getValue(I
.getArgOperand(1)), Flags
));
6324 case Intrinsic::copysign
:
6325 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6326 getValue(I
.getArgOperand(0)).getValueType(),
6327 getValue(I
.getArgOperand(0)),
6328 getValue(I
.getArgOperand(1)), Flags
));
6330 case Intrinsic::arithmetic_fence
: {
6331 setValue(&I
, DAG
.getNode(ISD::ARITH_FENCE
, sdl
,
6332 getValue(I
.getArgOperand(0)).getValueType(),
6333 getValue(I
.getArgOperand(0)), Flags
));
6336 case Intrinsic::fma
:
6337 setValue(&I
, DAG
.getNode(
6338 ISD::FMA
, sdl
, getValue(I
.getArgOperand(0)).getValueType(),
6339 getValue(I
.getArgOperand(0)), getValue(I
.getArgOperand(1)),
6340 getValue(I
.getArgOperand(2)), Flags
));
6342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6343 case Intrinsic::INTRINSIC:
6344 #include "llvm/IR/ConstrainedOps.def"
6345 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6347 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6348 #include "llvm/IR/VPIntrinsics.def"
6349 visitVectorPredicationIntrinsic(cast
<VPIntrinsic
>(I
));
6351 case Intrinsic::fmuladd
: {
6352 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6353 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6354 TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(), VT
)) {
6355 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6356 getValue(I
.getArgOperand(0)).getValueType(),
6357 getValue(I
.getArgOperand(0)),
6358 getValue(I
.getArgOperand(1)),
6359 getValue(I
.getArgOperand(2)), Flags
));
6361 // TODO: Intrinsic calls should have fast-math-flags.
6362 SDValue Mul
= DAG
.getNode(
6363 ISD::FMUL
, sdl
, getValue(I
.getArgOperand(0)).getValueType(),
6364 getValue(I
.getArgOperand(0)), getValue(I
.getArgOperand(1)), Flags
);
6365 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6366 getValue(I
.getArgOperand(0)).getValueType(),
6367 Mul
, getValue(I
.getArgOperand(2)), Flags
);
6372 case Intrinsic::convert_to_fp16
:
6373 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6374 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6375 getValue(I
.getArgOperand(0)),
6376 DAG
.getTargetConstant(0, sdl
,
6379 case Intrinsic::convert_from_fp16
:
6380 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6381 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6382 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6383 getValue(I
.getArgOperand(0)))));
6385 case Intrinsic::fptosi_sat
: {
6386 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6387 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT_SAT
, sdl
, VT
,
6388 getValue(I
.getArgOperand(0)),
6389 DAG
.getValueType(VT
.getScalarType())));
6392 case Intrinsic::fptoui_sat
: {
6393 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6394 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT_SAT
, sdl
, VT
,
6395 getValue(I
.getArgOperand(0)),
6396 DAG
.getValueType(VT
.getScalarType())));
6399 case Intrinsic::set_rounding
:
6400 Res
= DAG
.getNode(ISD::SET_ROUNDING
, sdl
, MVT::Other
,
6401 {getRoot(), getValue(I
.getArgOperand(0))});
6403 DAG
.setRoot(Res
.getValue(0));
6405 case Intrinsic::pcmarker
: {
6406 SDValue Tmp
= getValue(I
.getArgOperand(0));
6407 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6410 case Intrinsic::isnan
: {
6411 const DataLayout DLayout
= DAG
.getDataLayout();
6412 EVT DestVT
= TLI
.getValueType(DLayout
, I
.getType());
6413 EVT ArgVT
= TLI
.getValueType(DLayout
, I
.getArgOperand(0)->getType());
6414 MachineFunction
&MF
= DAG
.getMachineFunction();
6415 const Function
&F
= MF
.getFunction();
6416 SDValue Op
= getValue(I
.getArgOperand(0));
6418 Flags
.setNoFPExcept(
6419 !F
.getAttributes().hasFnAttr(llvm::Attribute::StrictFP
));
6421 // If ISD::ISNAN should be expanded, do it right now, because the expansion
6422 // can use illegal types. Making expansion early allows to legalize these
6423 // types prior to selection.
6424 if (!TLI
.isOperationLegalOrCustom(ISD::ISNAN
, ArgVT
)) {
6425 SDValue Result
= TLI
.expandISNAN(DestVT
, Op
, Flags
, sdl
, DAG
);
6426 setValue(&I
, Result
);
6430 SDValue V
= DAG
.getNode(ISD::ISNAN
, sdl
, DestVT
, Op
, Flags
);
6434 case Intrinsic::readcyclecounter
: {
6435 SDValue Op
= getRoot();
6436 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6437 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6439 DAG
.setRoot(Res
.getValue(1));
6442 case Intrinsic::bitreverse
:
6443 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6444 getValue(I
.getArgOperand(0)).getValueType(),
6445 getValue(I
.getArgOperand(0))));
6447 case Intrinsic::bswap
:
6448 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6449 getValue(I
.getArgOperand(0)).getValueType(),
6450 getValue(I
.getArgOperand(0))));
6452 case Intrinsic::cttz
: {
6453 SDValue Arg
= getValue(I
.getArgOperand(0));
6454 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6455 EVT Ty
= Arg
.getValueType();
6456 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6460 case Intrinsic::ctlz
: {
6461 SDValue Arg
= getValue(I
.getArgOperand(0));
6462 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6463 EVT Ty
= Arg
.getValueType();
6464 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6468 case Intrinsic::ctpop
: {
6469 SDValue Arg
= getValue(I
.getArgOperand(0));
6470 EVT Ty
= Arg
.getValueType();
6471 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6474 case Intrinsic::fshl
:
6475 case Intrinsic::fshr
: {
6476 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6477 SDValue X
= getValue(I
.getArgOperand(0));
6478 SDValue Y
= getValue(I
.getArgOperand(1));
6479 SDValue Z
= getValue(I
.getArgOperand(2));
6480 EVT VT
= X
.getValueType();
6483 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6484 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6486 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6487 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6491 case Intrinsic::sadd_sat
: {
6492 SDValue Op1
= getValue(I
.getArgOperand(0));
6493 SDValue Op2
= getValue(I
.getArgOperand(1));
6494 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6497 case Intrinsic::uadd_sat
: {
6498 SDValue Op1
= getValue(I
.getArgOperand(0));
6499 SDValue Op2
= getValue(I
.getArgOperand(1));
6500 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6503 case Intrinsic::ssub_sat
: {
6504 SDValue Op1
= getValue(I
.getArgOperand(0));
6505 SDValue Op2
= getValue(I
.getArgOperand(1));
6506 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6509 case Intrinsic::usub_sat
: {
6510 SDValue Op1
= getValue(I
.getArgOperand(0));
6511 SDValue Op2
= getValue(I
.getArgOperand(1));
6512 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6515 case Intrinsic::sshl_sat
: {
6516 SDValue Op1
= getValue(I
.getArgOperand(0));
6517 SDValue Op2
= getValue(I
.getArgOperand(1));
6518 setValue(&I
, DAG
.getNode(ISD::SSHLSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6521 case Intrinsic::ushl_sat
: {
6522 SDValue Op1
= getValue(I
.getArgOperand(0));
6523 SDValue Op2
= getValue(I
.getArgOperand(1));
6524 setValue(&I
, DAG
.getNode(ISD::USHLSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6527 case Intrinsic::smul_fix
:
6528 case Intrinsic::umul_fix
:
6529 case Intrinsic::smul_fix_sat
:
6530 case Intrinsic::umul_fix_sat
: {
6531 SDValue Op1
= getValue(I
.getArgOperand(0));
6532 SDValue Op2
= getValue(I
.getArgOperand(1));
6533 SDValue Op3
= getValue(I
.getArgOperand(2));
6534 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6535 Op1
.getValueType(), Op1
, Op2
, Op3
));
6538 case Intrinsic::sdiv_fix
:
6539 case Intrinsic::udiv_fix
:
6540 case Intrinsic::sdiv_fix_sat
:
6541 case Intrinsic::udiv_fix_sat
: {
6542 SDValue Op1
= getValue(I
.getArgOperand(0));
6543 SDValue Op2
= getValue(I
.getArgOperand(1));
6544 SDValue Op3
= getValue(I
.getArgOperand(2));
6545 setValue(&I
, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6546 Op1
, Op2
, Op3
, DAG
, TLI
));
6549 case Intrinsic::smax
: {
6550 SDValue Op1
= getValue(I
.getArgOperand(0));
6551 SDValue Op2
= getValue(I
.getArgOperand(1));
6552 setValue(&I
, DAG
.getNode(ISD::SMAX
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6555 case Intrinsic::smin
: {
6556 SDValue Op1
= getValue(I
.getArgOperand(0));
6557 SDValue Op2
= getValue(I
.getArgOperand(1));
6558 setValue(&I
, DAG
.getNode(ISD::SMIN
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6561 case Intrinsic::umax
: {
6562 SDValue Op1
= getValue(I
.getArgOperand(0));
6563 SDValue Op2
= getValue(I
.getArgOperand(1));
6564 setValue(&I
, DAG
.getNode(ISD::UMAX
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6567 case Intrinsic::umin
: {
6568 SDValue Op1
= getValue(I
.getArgOperand(0));
6569 SDValue Op2
= getValue(I
.getArgOperand(1));
6570 setValue(&I
, DAG
.getNode(ISD::UMIN
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6573 case Intrinsic::abs
: {
6574 // TODO: Preserve "int min is poison" arg in SDAG?
6575 SDValue Op1
= getValue(I
.getArgOperand(0));
6576 setValue(&I
, DAG
.getNode(ISD::ABS
, sdl
, Op1
.getValueType(), Op1
));
6579 case Intrinsic::stacksave
: {
6580 SDValue Op
= getRoot();
6581 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6582 Res
= DAG
.getNode(ISD::STACKSAVE
, sdl
, DAG
.getVTList(VT
, MVT::Other
), Op
);
6584 DAG
.setRoot(Res
.getValue(1));
6587 case Intrinsic::stackrestore
:
6588 Res
= getValue(I
.getArgOperand(0));
6589 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6591 case Intrinsic::get_dynamic_area_offset
: {
6592 SDValue Op
= getRoot();
6593 EVT PtrTy
= TLI
.getFrameIndexTy(DAG
.getDataLayout());
6594 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6595 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6597 if (PtrTy
.getFixedSizeInBits() < ResTy
.getFixedSizeInBits())
6598 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6600 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6606 case Intrinsic::stackguard
: {
6607 MachineFunction
&MF
= DAG
.getMachineFunction();
6608 const Module
&M
= *MF
.getFunction().getParent();
6609 SDValue Chain
= getRoot();
6610 if (TLI
.useLoadStackGuardNode()) {
6611 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6613 EVT PtrTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6614 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6615 Align Align
= DL
->getPrefTypeAlign(Global
->getType());
6616 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6617 MachinePointerInfo(Global
, 0), Align
,
6618 MachineMemOperand::MOVolatile
);
6620 if (TLI
.useStackGuardXorFP())
6621 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6626 case Intrinsic::stackprotector
: {
6627 // Emit code into the DAG to store the stack guard onto the stack.
6628 MachineFunction
&MF
= DAG
.getMachineFunction();
6629 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6630 SDValue Src
, Chain
= getRoot();
6632 if (TLI
.useLoadStackGuardNode())
6633 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6635 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6637 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6639 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6640 MFI
.setStackProtectorIndex(FI
);
6641 EVT PtrTy
= TLI
.getFrameIndexTy(DAG
.getDataLayout());
6643 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6645 // Store the stack protector onto the stack.
6647 Chain
, sdl
, Src
, FIN
,
6648 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
),
6649 MaybeAlign(), MachineMemOperand::MOVolatile
);
6654 case Intrinsic::objectsize
:
6655 llvm_unreachable("llvm.objectsize.* should have been lowered already");
6657 case Intrinsic::is_constant
:
6658 llvm_unreachable("llvm.is.constant.* should have been lowered already");
6660 case Intrinsic::annotation
:
6661 case Intrinsic::ptr_annotation
:
6662 case Intrinsic::launder_invariant_group
:
6663 case Intrinsic::strip_invariant_group
:
6664 // Drop the intrinsic, but forward the value
6665 setValue(&I
, getValue(I
.getOperand(0)));
6668 case Intrinsic::assume
:
6669 case Intrinsic::experimental_noalias_scope_decl
:
6670 case Intrinsic::var_annotation
:
6671 case Intrinsic::sideeffect
:
6672 // Discard annotate attributes, noalias scope declarations, assumptions, and
6673 // artificial side-effects.
6676 case Intrinsic::codeview_annotation
: {
6677 // Emit a label associated with this metadata.
6678 MachineFunction
&MF
= DAG
.getMachineFunction();
6680 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6681 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6682 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6683 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6688 case Intrinsic::init_trampoline
: {
6689 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6693 Ops
[1] = getValue(I
.getArgOperand(0));
6694 Ops
[2] = getValue(I
.getArgOperand(1));
6695 Ops
[3] = getValue(I
.getArgOperand(2));
6696 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6697 Ops
[5] = DAG
.getSrcValue(F
);
6699 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6704 case Intrinsic::adjust_trampoline
:
6705 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6706 TLI
.getPointerTy(DAG
.getDataLayout()),
6707 getValue(I
.getArgOperand(0))));
6709 case Intrinsic::gcroot
: {
6710 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6711 "only valid in functions with gc specified, enforced by Verifier");
6712 assert(GFI
&& "implied by previous");
6713 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6714 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6716 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6717 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6720 case Intrinsic::gcread
:
6721 case Intrinsic::gcwrite
:
6722 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6723 case Intrinsic::flt_rounds
:
6724 Res
= DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, {MVT::i32
, MVT::Other
}, getRoot());
6726 DAG
.setRoot(Res
.getValue(1));
6729 case Intrinsic::expect
:
6730 // Just replace __builtin_expect(exp, c) with EXP.
6731 setValue(&I
, getValue(I
.getArgOperand(0)));
6734 case Intrinsic::ubsantrap
:
6735 case Intrinsic::debugtrap
:
6736 case Intrinsic::trap
: {
6737 StringRef TrapFuncName
=
6738 I
.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6739 if (TrapFuncName
.empty()) {
6740 switch (Intrinsic
) {
6741 case Intrinsic::trap
:
6742 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, sdl
, MVT::Other
, getRoot()));
6744 case Intrinsic::debugtrap
:
6745 DAG
.setRoot(DAG
.getNode(ISD::DEBUGTRAP
, sdl
, MVT::Other
, getRoot()));
6747 case Intrinsic::ubsantrap
:
6748 DAG
.setRoot(DAG
.getNode(
6749 ISD::UBSANTRAP
, sdl
, MVT::Other
, getRoot(),
6750 DAG
.getTargetConstant(
6751 cast
<ConstantInt
>(I
.getArgOperand(0))->getZExtValue(), sdl
,
6754 default: llvm_unreachable("unknown trap intrinsic");
6758 TargetLowering::ArgListTy Args
;
6759 if (Intrinsic
== Intrinsic::ubsantrap
) {
6760 Args
.push_back(TargetLoweringBase::ArgListEntry());
6761 Args
[0].Val
= I
.getArgOperand(0);
6762 Args
[0].Node
= getValue(Args
[0].Val
);
6763 Args
[0].Ty
= Args
[0].Val
->getType();
6766 TargetLowering::CallLoweringInfo
CLI(DAG
);
6767 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6768 CallingConv::C
, I
.getType(),
6769 DAG
.getExternalSymbol(TrapFuncName
.data(),
6770 TLI
.getPointerTy(DAG
.getDataLayout())),
6773 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6774 DAG
.setRoot(Result
.second
);
6778 case Intrinsic::uadd_with_overflow
:
6779 case Intrinsic::sadd_with_overflow
:
6780 case Intrinsic::usub_with_overflow
:
6781 case Intrinsic::ssub_with_overflow
:
6782 case Intrinsic::umul_with_overflow
:
6783 case Intrinsic::smul_with_overflow
: {
6785 switch (Intrinsic
) {
6786 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6787 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6788 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6789 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6790 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6791 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6792 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6794 SDValue Op1
= getValue(I
.getArgOperand(0));
6795 SDValue Op2
= getValue(I
.getArgOperand(1));
6797 EVT ResultVT
= Op1
.getValueType();
6798 EVT OverflowVT
= MVT::i1
;
6799 if (ResultVT
.isVector())
6800 OverflowVT
= EVT::getVectorVT(
6801 *Context
, OverflowVT
, ResultVT
.getVectorElementCount());
6803 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6804 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6807 case Intrinsic::prefetch
: {
6809 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6810 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6811 Ops
[0] = DAG
.getRoot();
6812 Ops
[1] = getValue(I
.getArgOperand(0));
6813 Ops
[2] = getValue(I
.getArgOperand(1));
6814 Ops
[3] = getValue(I
.getArgOperand(2));
6815 Ops
[4] = getValue(I
.getArgOperand(3));
6816 SDValue Result
= DAG
.getMemIntrinsicNode(
6817 ISD::PREFETCH
, sdl
, DAG
.getVTList(MVT::Other
), Ops
,
6818 EVT::getIntegerVT(*Context
, 8), MachinePointerInfo(I
.getArgOperand(0)),
6819 /* align */ None
, Flags
);
6821 // Chain the prefetch in parallell with any pending loads, to stay out of
6822 // the way of later optimizations.
6823 PendingLoads
.push_back(Result
);
6825 DAG
.setRoot(Result
);
6828 case Intrinsic::lifetime_start
:
6829 case Intrinsic::lifetime_end
: {
6830 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6831 // Stack coloring is not enabled in O0, discard region information.
6832 if (TM
.getOptLevel() == CodeGenOpt::None
)
6835 const int64_t ObjectSize
=
6836 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6837 Value
*const ObjectPtr
= I
.getArgOperand(1);
6838 SmallVector
<const Value
*, 4> Allocas
;
6839 getUnderlyingObjects(ObjectPtr
, Allocas
);
6841 for (const Value
*Alloca
: Allocas
) {
6842 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(Alloca
);
6844 // Could not find an Alloca.
6845 if (!LifetimeObject
)
6848 // First check that the Alloca is static, otherwise it won't have a
6849 // valid frame index.
6850 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6851 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6854 const int FrameIndex
= SI
->second
;
6856 if (GetPointerBaseWithConstantOffset(
6857 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6858 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6859 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6865 case Intrinsic::pseudoprobe
: {
6866 auto Guid
= cast
<ConstantInt
>(I
.getArgOperand(0))->getZExtValue();
6867 auto Index
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6868 auto Attr
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
6869 Res
= DAG
.getPseudoProbeNode(sdl
, getRoot(), Guid
, Index
, Attr
);
6873 case Intrinsic::invariant_start
:
6874 // Discard region information.
6875 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6877 case Intrinsic::invariant_end
:
6878 // Discard region information.
6880 case Intrinsic::clear_cache
:
6881 /// FunctionName may be null.
6882 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6883 lowerCallToExternalSymbol(I
, FunctionName
);
6885 case Intrinsic::donothing
:
6886 case Intrinsic::seh_try_begin
:
6887 case Intrinsic::seh_scope_begin
:
6888 case Intrinsic::seh_try_end
:
6889 case Intrinsic::seh_scope_end
:
6892 case Intrinsic::experimental_stackmap
:
6895 case Intrinsic::experimental_patchpoint_void
:
6896 case Intrinsic::experimental_patchpoint_i64
:
6899 case Intrinsic::experimental_gc_statepoint
:
6900 LowerStatepoint(cast
<GCStatepointInst
>(I
));
6902 case Intrinsic::experimental_gc_result
:
6903 visitGCResult(cast
<GCResultInst
>(I
));
6905 case Intrinsic::experimental_gc_relocate
:
6906 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6908 case Intrinsic::instrprof_increment
:
6909 llvm_unreachable("instrprof failed to lower an increment");
6910 case Intrinsic::instrprof_value_profile
:
6911 llvm_unreachable("instrprof failed to lower a value profiling call");
6912 case Intrinsic::localescape
: {
6913 MachineFunction
&MF
= DAG
.getMachineFunction();
6914 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6916 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6917 // is the same on all targets.
6918 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6919 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6920 if (isa
<ConstantPointerNull
>(Arg
))
6921 continue; // Skip null pointers. They represent a hole in index space.
6922 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6923 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6924 "can only escape static allocas");
6925 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6926 MCSymbol
*FrameAllocSym
=
6927 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6928 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6929 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6930 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6931 .addSym(FrameAllocSym
)
6938 case Intrinsic::localrecover
: {
6939 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6940 MachineFunction
&MF
= DAG
.getMachineFunction();
6942 // Get the symbol that defines the frame offset.
6943 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6944 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6946 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6947 MCSymbol
*FrameAllocSym
=
6948 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6949 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6951 Value
*FP
= I
.getArgOperand(1);
6952 SDValue FPVal
= getValue(FP
);
6953 EVT PtrVT
= FPVal
.getValueType();
6955 // Create a MCSymbol for the label to avoid any target lowering
6956 // that would make this PC relative.
6957 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6959 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6961 // Add the offset to the FP.
6962 SDValue Add
= DAG
.getMemBasePlusOffset(FPVal
, OffsetVal
, sdl
);
6968 case Intrinsic::eh_exceptionpointer
:
6969 case Intrinsic::eh_exceptioncode
: {
6970 // Get the exception pointer vreg, copy from it, and resize it to fit.
6971 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6972 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6973 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6974 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6976 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6977 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6978 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6982 case Intrinsic::xray_customevent
: {
6983 // Here we want to make sure that the intrinsic behaves as if it has a
6984 // specific calling convention, and only for x86_64.
6985 // FIXME: Support other platforms later.
6986 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6987 if (Triple
.getArch() != Triple::x86_64
)
6990 SDLoc DL
= getCurSDLoc();
6991 SmallVector
<SDValue
, 8> Ops
;
6993 // We want to say that we always want the arguments in registers.
6994 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6995 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6996 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6997 SDValue Chain
= getRoot();
6998 Ops
.push_back(LogEntryVal
);
6999 Ops
.push_back(StrSizeVal
);
7000 Ops
.push_back(Chain
);
7002 // We need to enforce the calling convention for the callsite, so that
7003 // argument ordering is enforced correctly, and that register allocation can
7004 // see that some registers may be assumed clobbered and have to preserve
7005 // them across calls to the intrinsic.
7006 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
7008 SDValue patchableNode
= SDValue(MN
, 0);
7009 DAG
.setRoot(patchableNode
);
7010 setValue(&I
, patchableNode
);
7013 case Intrinsic::xray_typedevent
: {
7014 // Here we want to make sure that the intrinsic behaves as if it has a
7015 // specific calling convention, and only for x86_64.
7016 // FIXME: Support other platforms later.
7017 const auto &Triple
= DAG
.getTarget().getTargetTriple();
7018 if (Triple
.getArch() != Triple::x86_64
)
7021 SDLoc DL
= getCurSDLoc();
7022 SmallVector
<SDValue
, 8> Ops
;
7024 // We want to say that we always want the arguments in registers.
7025 // It's unclear to me how manipulating the selection DAG here forces callers
7026 // to provide arguments in registers instead of on the stack.
7027 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
7028 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
7029 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
7030 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
7031 SDValue Chain
= getRoot();
7032 Ops
.push_back(LogTypeId
);
7033 Ops
.push_back(LogEntryVal
);
7034 Ops
.push_back(StrSizeVal
);
7035 Ops
.push_back(Chain
);
7037 // We need to enforce the calling convention for the callsite, so that
7038 // argument ordering is enforced correctly, and that register allocation can
7039 // see that some registers may be assumed clobbered and have to preserve
7040 // them across calls to the intrinsic.
7041 MachineSDNode
*MN
= DAG
.getMachineNode(
7042 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
7043 SDValue patchableNode
= SDValue(MN
, 0);
7044 DAG
.setRoot(patchableNode
);
7045 setValue(&I
, patchableNode
);
7048 case Intrinsic::experimental_deoptimize
:
7049 LowerDeoptimizeCall(&I
);
7051 case Intrinsic::experimental_stepvector
:
7054 case Intrinsic::vector_reduce_fadd
:
7055 case Intrinsic::vector_reduce_fmul
:
7056 case Intrinsic::vector_reduce_add
:
7057 case Intrinsic::vector_reduce_mul
:
7058 case Intrinsic::vector_reduce_and
:
7059 case Intrinsic::vector_reduce_or
:
7060 case Intrinsic::vector_reduce_xor
:
7061 case Intrinsic::vector_reduce_smax
:
7062 case Intrinsic::vector_reduce_smin
:
7063 case Intrinsic::vector_reduce_umax
:
7064 case Intrinsic::vector_reduce_umin
:
7065 case Intrinsic::vector_reduce_fmax
:
7066 case Intrinsic::vector_reduce_fmin
:
7067 visitVectorReduce(I
, Intrinsic
);
7070 case Intrinsic::icall_branch_funnel
: {
7071 SmallVector
<SDValue
, 16> Ops
;
7072 Ops
.push_back(getValue(I
.getArgOperand(0)));
7075 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
7076 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
7079 "llvm.icall.branch.funnel operand must be a GlobalValue");
7080 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
7082 struct BranchFunnelTarget
{
7086 SmallVector
<BranchFunnelTarget
, 8> Targets
;
7088 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
7089 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
7090 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
7091 if (ElemBase
!= Base
)
7092 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7093 "to the same GlobalValue");
7095 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
7096 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
7099 "llvm.icall.branch.funnel operand must be a GlobalValue");
7100 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
7101 GA
->getGlobal(), getCurSDLoc(),
7102 Val
.getValueType(), GA
->getOffset())});
7105 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
7106 return T1
.Offset
< T2
.Offset
;
7109 for (auto &T
: Targets
) {
7110 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
7111 Ops
.push_back(T
.Target
);
7114 Ops
.push_back(DAG
.getRoot()); // Chain
7115 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
7116 getCurSDLoc(), MVT::Other
, Ops
),
7124 case Intrinsic::wasm_landingpad_index
:
7125 // Information this intrinsic contained has been transferred to
7126 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7130 case Intrinsic::aarch64_settag
:
7131 case Intrinsic::aarch64_settag_zero
: {
7132 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7133 bool ZeroMemory
= Intrinsic
== Intrinsic::aarch64_settag_zero
;
7134 SDValue Val
= TSI
.EmitTargetCodeForSetTag(
7135 DAG
, getCurSDLoc(), getRoot(), getValue(I
.getArgOperand(0)),
7136 getValue(I
.getArgOperand(1)), MachinePointerInfo(I
.getArgOperand(0)),
7142 case Intrinsic::ptrmask
: {
7143 SDValue Ptr
= getValue(I
.getOperand(0));
7144 SDValue Const
= getValue(I
.getOperand(1));
7146 EVT PtrVT
= Ptr
.getValueType();
7147 setValue(&I
, DAG
.getNode(ISD::AND
, getCurSDLoc(), PtrVT
, Ptr
,
7148 DAG
.getZExtOrTrunc(Const
, getCurSDLoc(), PtrVT
)));
7151 case Intrinsic::get_active_lane_mask
: {
7152 auto DL
= getCurSDLoc();
7153 SDValue Index
= getValue(I
.getOperand(0));
7154 SDValue TripCount
= getValue(I
.getOperand(1));
7155 Type
*ElementTy
= I
.getOperand(0)->getType();
7156 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
7157 unsigned VecWidth
= VT
.getVectorNumElements();
7159 SmallVector
<SDValue
, 16> OpsTripCount
;
7160 SmallVector
<SDValue
, 16> OpsIndex
;
7161 SmallVector
<SDValue
, 16> OpsStepConstants
;
7162 for (unsigned i
= 0; i
< VecWidth
; i
++) {
7163 OpsTripCount
.push_back(TripCount
);
7164 OpsIndex
.push_back(Index
);
7165 OpsStepConstants
.push_back(
7166 DAG
.getConstant(i
, DL
, EVT::getEVT(ElementTy
)));
7169 EVT CCVT
= EVT::getVectorVT(I
.getContext(), MVT::i1
, VecWidth
);
7171 auto VecTy
= EVT::getEVT(FixedVectorType::get(ElementTy
, VecWidth
));
7172 SDValue VectorIndex
= DAG
.getBuildVector(VecTy
, DL
, OpsIndex
);
7173 SDValue VectorStep
= DAG
.getBuildVector(VecTy
, DL
, OpsStepConstants
);
7174 SDValue VectorInduction
= DAG
.getNode(
7175 ISD::UADDO
, DL
, DAG
.getVTList(VecTy
, CCVT
), VectorIndex
, VectorStep
);
7176 SDValue VectorTripCount
= DAG
.getBuildVector(VecTy
, DL
, OpsTripCount
);
7177 SDValue SetCC
= DAG
.getSetCC(DL
, CCVT
, VectorInduction
.getValue(0),
7178 VectorTripCount
, ISD::CondCode::SETULT
);
7179 setValue(&I
, DAG
.getNode(ISD::AND
, DL
, CCVT
,
7180 DAG
.getNOT(DL
, VectorInduction
.getValue(1), CCVT
),
7184 case Intrinsic::experimental_vector_insert
: {
7185 auto DL
= getCurSDLoc();
7187 SDValue Vec
= getValue(I
.getOperand(0));
7188 SDValue SubVec
= getValue(I
.getOperand(1));
7189 SDValue Index
= getValue(I
.getOperand(2));
7191 // The intrinsic's index type is i64, but the SDNode requires an index type
7192 // suitable for the target. Convert the index as required.
7193 MVT VectorIdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
7194 if (Index
.getValueType() != VectorIdxTy
)
7195 Index
= DAG
.getVectorIdxConstant(
7196 cast
<ConstantSDNode
>(Index
)->getZExtValue(), DL
);
7198 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
7199 setValue(&I
, DAG
.getNode(ISD::INSERT_SUBVECTOR
, DL
, ResultVT
, Vec
, SubVec
,
7203 case Intrinsic::experimental_vector_extract
: {
7204 auto DL
= getCurSDLoc();
7206 SDValue Vec
= getValue(I
.getOperand(0));
7207 SDValue Index
= getValue(I
.getOperand(1));
7208 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
7210 // The intrinsic's index type is i64, but the SDNode requires an index type
7211 // suitable for the target. Convert the index as required.
7212 MVT VectorIdxTy
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
7213 if (Index
.getValueType() != VectorIdxTy
)
7214 Index
= DAG
.getVectorIdxConstant(
7215 cast
<ConstantSDNode
>(Index
)->getZExtValue(), DL
);
7217 setValue(&I
, DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, ResultVT
, Vec
, Index
));
7220 case Intrinsic::experimental_vector_reverse
:
7221 visitVectorReverse(I
);
7223 case Intrinsic::experimental_vector_splice
:
7224 visitVectorSplice(I
);
7229 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7230 const ConstrainedFPIntrinsic
&FPI
) {
7231 SDLoc sdl
= getCurSDLoc();
7233 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7234 SmallVector
<EVT
, 4> ValueVTs
;
7235 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
7236 ValueVTs
.push_back(MVT::Other
); // Out chain
7238 // We do not need to serialize constrained FP intrinsics against
7239 // each other or against (nonvolatile) loads, so they can be
7240 // chained like loads.
7241 SDValue Chain
= DAG
.getRoot();
7242 SmallVector
<SDValue
, 4> Opers
;
7243 Opers
.push_back(Chain
);
7244 if (FPI
.isUnaryOp()) {
7245 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
7246 } else if (FPI
.isTernaryOp()) {
7247 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
7248 Opers
.push_back(getValue(FPI
.getArgOperand(1)));
7249 Opers
.push_back(getValue(FPI
.getArgOperand(2)));
7251 Opers
.push_back(getValue(FPI
.getArgOperand(0)));
7252 Opers
.push_back(getValue(FPI
.getArgOperand(1)));
7255 auto pushOutChain
= [this](SDValue Result
, fp::ExceptionBehavior EB
) {
7256 assert(Result
.getNode()->getNumValues() == 2);
7258 // Push node to the appropriate list so that future instructions can be
7259 // chained up correctly.
7260 SDValue OutChain
= Result
.getValue(1);
7262 case fp::ExceptionBehavior::ebIgnore
:
7263 // The only reason why ebIgnore nodes still need to be chained is that
7264 // they might depend on the current rounding mode, and therefore must
7265 // not be moved across instruction that may change that mode.
7267 case fp::ExceptionBehavior::ebMayTrap
:
7268 // These must not be moved across calls or instructions that may change
7269 // floating-point exception masks.
7270 PendingConstrainedFP
.push_back(OutChain
);
7272 case fp::ExceptionBehavior::ebStrict
:
7273 // These must not be moved across calls or instructions that may change
7274 // floating-point exception masks or read floating-point exception flags.
7275 // In addition, they cannot be optimized out even if unused.
7276 PendingConstrainedFPStrict
.push_back(OutChain
);
7281 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
7282 fp::ExceptionBehavior EB
= FPI
.getExceptionBehavior().getValue();
7285 if (EB
== fp::ExceptionBehavior::ebIgnore
)
7286 Flags
.setNoFPExcept(true);
7288 if (auto *FPOp
= dyn_cast
<FPMathOperator
>(&FPI
))
7289 Flags
.copyFMF(*FPOp
);
7292 switch (FPI
.getIntrinsicID()) {
7293 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7294 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
7295 case Intrinsic::INTRINSIC: \
7296 Opcode = ISD::STRICT_##DAGN; \
7298 #include "llvm/IR/ConstrainedOps.def"
7299 case Intrinsic::experimental_constrained_fmuladd
: {
7300 Opcode
= ISD::STRICT_FMA
;
7301 // Break fmuladd into fmul and fadd.
7302 if (TM
.Options
.AllowFPOpFusion
== FPOpFusion::Strict
||
7303 !TLI
.isFMAFasterThanFMulAndFAdd(DAG
.getMachineFunction(),
7306 SDValue Mul
= DAG
.getNode(ISD::STRICT_FMUL
, sdl
, VTs
, Opers
, Flags
);
7307 pushOutChain(Mul
, EB
);
7308 Opcode
= ISD::STRICT_FADD
;
7310 Opers
.push_back(Mul
.getValue(1));
7311 Opers
.push_back(Mul
.getValue(0));
7312 Opers
.push_back(getValue(FPI
.getArgOperand(2)));
7318 // A few strict DAG nodes carry additional operands that are not
7319 // set up by the default code above.
7322 case ISD::STRICT_FP_ROUND
:
7324 DAG
.getTargetConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout())));
7326 case ISD::STRICT_FSETCC
:
7327 case ISD::STRICT_FSETCCS
: {
7328 auto *FPCmp
= dyn_cast
<ConstrainedFPCmpIntrinsic
>(&FPI
);
7329 ISD::CondCode Condition
= getFCmpCondCode(FPCmp
->getPredicate());
7330 if (TM
.Options
.NoNaNsFPMath
)
7331 Condition
= getFCmpCodeWithoutNaN(Condition
);
7332 Opers
.push_back(DAG
.getCondCode(Condition
));
7337 SDValue Result
= DAG
.getNode(Opcode
, sdl
, VTs
, Opers
, Flags
);
7338 pushOutChain(Result
, EB
);
7340 SDValue FPResult
= Result
.getValue(0);
7341 setValue(&FPI
, FPResult
);
7344 static unsigned getISDForVPIntrinsic(const VPIntrinsic
&VPIntrin
) {
7345 Optional
<unsigned> ResOPC
;
7346 switch (VPIntrin
.getIntrinsicID()) {
7347 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7348 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7349 #define END_REGISTER_VP_INTRINSIC(...) break;
7350 #include "llvm/IR/VPIntrinsics.def"
7353 if (!ResOPC
.hasValue())
7355 "Inconsistency: no SDNode available for this VPIntrinsic!");
7357 if (*ResOPC
== ISD::VP_REDUCE_SEQ_FADD
||
7358 *ResOPC
== ISD::VP_REDUCE_SEQ_FMUL
) {
7359 if (VPIntrin
.getFastMathFlags().allowReassoc())
7360 return *ResOPC
== ISD::VP_REDUCE_SEQ_FADD
? ISD::VP_REDUCE_FADD
7361 : ISD::VP_REDUCE_FMUL
;
7364 return ResOPC
.getValue();
7367 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7368 const VPIntrinsic
&VPIntrin
) {
7369 SDLoc DL
= getCurSDLoc();
7370 unsigned Opcode
= getISDForVPIntrinsic(VPIntrin
);
7372 SmallVector
<EVT
, 4> ValueVTs
;
7373 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7374 ComputeValueVTs(TLI
, DAG
.getDataLayout(), VPIntrin
.getType(), ValueVTs
);
7375 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
7378 VPIntrinsic::getVectorLengthParamPos(VPIntrin
.getIntrinsicID());
7380 MVT EVLParamVT
= TLI
.getVPExplicitVectorLengthTy();
7381 assert(EVLParamVT
.isScalarInteger() && EVLParamVT
.bitsGE(MVT::i32
) &&
7382 "Unexpected target EVL type");
7384 // Request operands.
7385 SmallVector
<SDValue
, 7> OpValues
;
7386 for (unsigned I
= 0; I
< VPIntrin
.getNumArgOperands(); ++I
) {
7387 auto Op
= getValue(VPIntrin
.getArgOperand(I
));
7388 if (I
== EVLParamPos
)
7389 Op
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, EVLParamVT
, Op
);
7390 OpValues
.push_back(Op
);
7393 SDValue Result
= DAG
.getNode(Opcode
, DL
, VTs
, OpValues
);
7394 setValue(&VPIntrin
, Result
);
7397 SDValue
SelectionDAGBuilder::lowerStartEH(SDValue Chain
,
7398 const BasicBlock
*EHPadBB
,
7399 MCSymbol
*&BeginLabel
) {
7400 MachineFunction
&MF
= DAG
.getMachineFunction();
7401 MachineModuleInfo
&MMI
= MF
.getMMI();
7403 // Insert a label before the invoke call to mark the try range. This can be
7404 // used to detect deletion of the invoke via the MachineModuleInfo.
7405 BeginLabel
= MMI
.getContext().createTempSymbol();
7407 // For SjLj, keep track of which landing pads go with which invokes
7408 // so as to maintain the ordering of pads in the LSDA.
7409 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
7410 if (CallSiteIndex
) {
7411 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
7412 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
7414 // Now that the call site is handled, stop tracking it.
7415 MMI
.setCurrentCallSite(0);
7418 return DAG
.getEHLabel(getCurSDLoc(), Chain
, BeginLabel
);
7421 SDValue
SelectionDAGBuilder::lowerEndEH(SDValue Chain
, const InvokeInst
*II
,
7422 const BasicBlock
*EHPadBB
,
7423 MCSymbol
*BeginLabel
) {
7424 assert(BeginLabel
&& "BeginLabel should've been set");
7426 MachineFunction
&MF
= DAG
.getMachineFunction();
7427 MachineModuleInfo
&MMI
= MF
.getMMI();
7429 // Insert a label at the end of the invoke call to mark the try range. This
7430 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7431 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7432 Chain
= DAG
.getEHLabel(getCurSDLoc(), Chain
, EndLabel
);
7434 // Inform MachineModuleInfo of range.
7435 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7436 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7437 // actually use outlined funclets and their LSDA info style.
7438 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7439 assert(II
&& "II should've been set");
7440 WinEHFuncInfo
*EHInfo
= MF
.getWinEHFuncInfo();
7441 EHInfo
->addIPToStateRange(II
, BeginLabel
, EndLabel
);
7442 } else if (!isScopedEHPersonality(Pers
)) {
7444 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7450 std::pair
<SDValue
, SDValue
>
7451 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
7452 const BasicBlock
*EHPadBB
) {
7453 MCSymbol
*BeginLabel
= nullptr;
7456 // Both PendingLoads and PendingExports must be flushed here;
7457 // this call might not return.
7459 DAG
.setRoot(lowerStartEH(getControlRoot(), EHPadBB
, BeginLabel
));
7460 CLI
.setChain(getRoot());
7463 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7464 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
7466 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
7467 "Non-null chain expected with non-tail call!");
7468 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
7469 "Null value expected with tail call!");
7471 if (!Result
.second
.getNode()) {
7472 // As a special case, a null chain means that a tail call has been emitted
7473 // and the DAG root is already updated.
7476 // Since there's no actual continuation from this block, nothing can be
7477 // relying on us setting vregs for them.
7478 PendingExports
.clear();
7480 DAG
.setRoot(Result
.second
);
7484 DAG
.setRoot(lowerEndEH(getRoot(), cast_or_null
<InvokeInst
>(CLI
.CB
), EHPadBB
,
7491 void SelectionDAGBuilder::LowerCallTo(const CallBase
&CB
, SDValue Callee
,
7493 bool isMustTailCall
,
7494 const BasicBlock
*EHPadBB
) {
7495 auto &DL
= DAG
.getDataLayout();
7496 FunctionType
*FTy
= CB
.getFunctionType();
7497 Type
*RetTy
= CB
.getType();
7499 TargetLowering::ArgListTy Args
;
7500 Args
.reserve(CB
.arg_size());
7502 const Value
*SwiftErrorVal
= nullptr;
7503 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7506 // Avoid emitting tail calls in functions with the disable-tail-calls
7508 auto *Caller
= CB
.getParent()->getParent();
7509 if (Caller
->getFnAttribute("disable-tail-calls").getValueAsString() ==
7510 "true" && !isMustTailCall
)
7513 // We can't tail call inside a function with a swifterror argument. Lowering
7514 // does not support this yet. It would have to move into the swifterror
7515 // register before the call.
7516 if (TLI
.supportSwiftError() &&
7517 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7521 for (auto I
= CB
.arg_begin(), E
= CB
.arg_end(); I
!= E
; ++I
) {
7522 TargetLowering::ArgListEntry Entry
;
7523 const Value
*V
= *I
;
7526 if (V
->getType()->isEmptyTy())
7529 SDValue ArgNode
= getValue(V
);
7530 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7532 Entry
.setAttributes(&CB
, I
- CB
.arg_begin());
7534 // Use swifterror virtual register as input to the call.
7535 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7537 // We find the virtual register for the actual swifterror argument.
7538 // Instead of using the Value, we use the virtual register instead.
7540 DAG
.getRegister(SwiftError
.getOrCreateVRegUseAt(&CB
, FuncInfo
.MBB
, V
),
7541 EVT(TLI
.getPointerTy(DL
)));
7544 Args
.push_back(Entry
);
7546 // If we have an explicit sret argument that is an Instruction, (i.e., it
7547 // might point to function-local memory), we can't meaningfully tail-call.
7548 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7552 // If call site has a cfguardtarget operand bundle, create and add an
7553 // additional ArgListEntry.
7554 if (auto Bundle
= CB
.getOperandBundle(LLVMContext::OB_cfguardtarget
)) {
7555 TargetLowering::ArgListEntry Entry
;
7556 Value
*V
= Bundle
->Inputs
[0];
7557 SDValue ArgNode
= getValue(V
);
7558 Entry
.Node
= ArgNode
;
7559 Entry
.Ty
= V
->getType();
7560 Entry
.IsCFGuardTarget
= true;
7561 Args
.push_back(Entry
);
7564 // Check if target-independent constraints permit a tail call here.
7565 // Target-dependent constraints are checked within TLI->LowerCallTo.
7566 if (isTailCall
&& !isInTailCallPosition(CB
, DAG
.getTarget()))
7569 // Disable tail calls if there is an swifterror argument. Targets have not
7570 // been updated to support tail calls.
7571 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7574 TargetLowering::CallLoweringInfo
CLI(DAG
);
7575 CLI
.setDebugLoc(getCurSDLoc())
7576 .setChain(getRoot())
7577 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CB
)
7578 .setTailCall(isTailCall
)
7579 .setConvergent(CB
.isConvergent())
7581 CB
.countOperandBundlesOfType(LLVMContext::OB_preallocated
) != 0);
7582 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7584 if (Result
.first
.getNode()) {
7585 Result
.first
= lowerRangeToAssertZExt(DAG
, CB
, Result
.first
);
7586 setValue(&CB
, Result
.first
);
7589 // The last element of CLI.InVals has the SDValue for swifterror return.
7590 // Here we copy it to a virtual register and update SwiftErrorMap for
7592 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7593 // Get the last element of InVals.
7594 SDValue Src
= CLI
.InVals
.back();
7596 SwiftError
.getOrCreateVRegDefAt(&CB
, FuncInfo
.MBB
, SwiftErrorVal
);
7597 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7598 DAG
.setRoot(CopyNode
);
7602 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7603 SelectionDAGBuilder
&Builder
) {
7604 // Check to see if this load can be trivially constant folded, e.g. if the
7605 // input is from a string literal.
7606 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7607 // Cast pointer to the type we really want to load.
7609 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7610 if (LoadVT
.isVector())
7611 LoadTy
= FixedVectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7613 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7614 PointerType::getUnqual(LoadTy
));
7616 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7617 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7618 return Builder
.getValue(LoadCst
);
7621 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7622 // still constant memory, the input chain can be the entry node.
7624 bool ConstantMemory
= false;
7626 // Do not serialize (non-volatile) loads of constant memory with anything.
7627 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7628 Root
= Builder
.DAG
.getEntryNode();
7629 ConstantMemory
= true;
7631 // Do not serialize non-volatile loads against each other.
7632 Root
= Builder
.DAG
.getRoot();
7635 SDValue Ptr
= Builder
.getValue(PtrVal
);
7637 Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
, Ptr
,
7638 MachinePointerInfo(PtrVal
), Align(1));
7640 if (!ConstantMemory
)
7641 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7645 /// Record the value for an instruction that produces an integer result,
7646 /// converting the type where necessary.
7647 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7650 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7653 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7655 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7656 setValue(&I
, Value
);
7659 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7660 /// true and lower it. Otherwise return false, and it will be lowered like a
7662 /// The caller already checked that \p I calls the appropriate LibFunc with a
7663 /// correct prototype.
7664 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst
&I
) {
7665 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7666 const Value
*Size
= I
.getArgOperand(2);
7667 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7668 if (CSize
&& CSize
->getZExtValue() == 0) {
7669 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7671 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7675 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7676 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7677 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7678 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7679 if (Res
.first
.getNode()) {
7680 processIntegerCallValue(I
, Res
.first
, true);
7681 PendingLoads
.push_back(Res
.second
);
7685 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7686 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7687 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7690 // If the target has a fast compare for the given size, it will return a
7691 // preferred load type for that size. Require that the load VT is legal and
7692 // that the target supports unaligned loads of that type. Otherwise, return
7694 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7695 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7696 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7697 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7698 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7699 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7700 // TODO: Check alignment of src and dest ptrs.
7701 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7702 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7703 if (!TLI
.isTypeLegal(LVT
) ||
7704 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7705 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7706 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7712 // This turns into unaligned loads. We only do this if the target natively
7713 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7714 // we'll only produce a small number of byte loads.
7716 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7717 switch (NumBitsToCompare
) {
7729 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7733 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7736 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7737 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7739 // Bitcast to a wide integer type if the loads are vectors.
7740 if (LoadVT
.isVector()) {
7741 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7742 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7743 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7746 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7747 processIntegerCallValue(I
, Cmp
, false);
7751 /// See if we can lower a memchr call into an optimized form. If so, return
7752 /// true and lower it. Otherwise return false, and it will be lowered like a
7754 /// The caller already checked that \p I calls the appropriate LibFunc with a
7755 /// correct prototype.
7756 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7757 const Value
*Src
= I
.getArgOperand(0);
7758 const Value
*Char
= I
.getArgOperand(1);
7759 const Value
*Length
= I
.getArgOperand(2);
7761 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7762 std::pair
<SDValue
, SDValue
> Res
=
7763 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7764 getValue(Src
), getValue(Char
), getValue(Length
),
7765 MachinePointerInfo(Src
));
7766 if (Res
.first
.getNode()) {
7767 setValue(&I
, Res
.first
);
7768 PendingLoads
.push_back(Res
.second
);
7775 /// See if we can lower a mempcpy call into an optimized form. If so, return
7776 /// true and lower it. Otherwise return false, and it will be lowered like a
7778 /// The caller already checked that \p I calls the appropriate LibFunc with a
7779 /// correct prototype.
7780 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7781 SDValue Dst
= getValue(I
.getArgOperand(0));
7782 SDValue Src
= getValue(I
.getArgOperand(1));
7783 SDValue Size
= getValue(I
.getArgOperand(2));
7785 Align DstAlign
= DAG
.InferPtrAlign(Dst
).valueOrOne();
7786 Align SrcAlign
= DAG
.InferPtrAlign(Src
).valueOrOne();
7787 // DAG::getMemcpy needs Alignment to be defined.
7788 Align Alignment
= std::min(DstAlign
, SrcAlign
);
7791 SDLoc sdl
= getCurSDLoc();
7793 // In the mempcpy context we need to pass in a false value for isTailCall
7794 // because the return pointer needs to be adjusted by the size of
7795 // the copied memory.
7796 SDValue Root
= isVol
? getRoot() : getMemoryRoot();
7798 I
.getAAMetadata(AAInfo
);
7799 SDValue MC
= DAG
.getMemcpy(Root
, sdl
, Dst
, Src
, Size
, Alignment
, isVol
, false,
7800 /*isTailCall=*/false,
7801 MachinePointerInfo(I
.getArgOperand(0)),
7802 MachinePointerInfo(I
.getArgOperand(1)), AAInfo
);
7803 assert(MC
.getNode() != nullptr &&
7804 "** memcpy should not be lowered as TailCall in mempcpy context **");
7807 // Check if Size needs to be truncated or extended.
7808 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7810 // Adjust return pointer to point just past the last dst byte.
7811 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7813 setValue(&I
, DstPlusSize
);
7817 /// See if we can lower a strcpy call into an optimized form. If so, return
7818 /// true and lower it, otherwise return false and it will be lowered like a
7820 /// The caller already checked that \p I calls the appropriate LibFunc with a
7821 /// correct prototype.
7822 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7823 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7825 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7826 std::pair
<SDValue
, SDValue
> Res
=
7827 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7828 getValue(Arg0
), getValue(Arg1
),
7829 MachinePointerInfo(Arg0
),
7830 MachinePointerInfo(Arg1
), isStpcpy
);
7831 if (Res
.first
.getNode()) {
7832 setValue(&I
, Res
.first
);
7833 DAG
.setRoot(Res
.second
);
7840 /// See if we can lower a strcmp call into an optimized form. If so, return
7841 /// true and lower it, otherwise return false and it will be lowered like a
7843 /// The caller already checked that \p I calls the appropriate LibFunc with a
7844 /// correct prototype.
7845 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7846 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7848 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7849 std::pair
<SDValue
, SDValue
> Res
=
7850 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7851 getValue(Arg0
), getValue(Arg1
),
7852 MachinePointerInfo(Arg0
),
7853 MachinePointerInfo(Arg1
));
7854 if (Res
.first
.getNode()) {
7855 processIntegerCallValue(I
, Res
.first
, true);
7856 PendingLoads
.push_back(Res
.second
);
7863 /// See if we can lower a strlen call into an optimized form. If so, return
7864 /// true and lower it, otherwise return false and it will be lowered like a
7866 /// The caller already checked that \p I calls the appropriate LibFunc with a
7867 /// correct prototype.
7868 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7869 const Value
*Arg0
= I
.getArgOperand(0);
7871 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7872 std::pair
<SDValue
, SDValue
> Res
=
7873 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7874 getValue(Arg0
), MachinePointerInfo(Arg0
));
7875 if (Res
.first
.getNode()) {
7876 processIntegerCallValue(I
, Res
.first
, false);
7877 PendingLoads
.push_back(Res
.second
);
7884 /// See if we can lower a strnlen call into an optimized form. If so, return
7885 /// true and lower it, otherwise return false and it will be lowered like a
7887 /// The caller already checked that \p I calls the appropriate LibFunc with a
7888 /// correct prototype.
7889 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7890 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7892 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7893 std::pair
<SDValue
, SDValue
> Res
=
7894 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7895 getValue(Arg0
), getValue(Arg1
),
7896 MachinePointerInfo(Arg0
));
7897 if (Res
.first
.getNode()) {
7898 processIntegerCallValue(I
, Res
.first
, false);
7899 PendingLoads
.push_back(Res
.second
);
7906 /// See if we can lower a unary floating-point operation into an SDNode with
7907 /// the specified Opcode. If so, return true and lower it, otherwise return
7908 /// false and it will be lowered like a normal call.
7909 /// The caller already checked that \p I calls the appropriate LibFunc with a
7910 /// correct prototype.
7911 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7913 // We already checked this call's prototype; verify it doesn't modify errno.
7914 if (!I
.onlyReadsMemory())
7918 Flags
.copyFMF(cast
<FPMathOperator
>(I
));
7920 SDValue Tmp
= getValue(I
.getArgOperand(0));
7922 DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
, Flags
));
7926 /// See if we can lower a binary floating-point operation into an SDNode with
7927 /// the specified Opcode. If so, return true and lower it. Otherwise return
7928 /// false, and it will be lowered like a normal call.
7929 /// The caller already checked that \p I calls the appropriate LibFunc with a
7930 /// correct prototype.
7931 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7933 // We already checked this call's prototype; verify it doesn't modify errno.
7934 if (!I
.onlyReadsMemory())
7938 Flags
.copyFMF(cast
<FPMathOperator
>(I
));
7940 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7941 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7942 EVT VT
= Tmp0
.getValueType();
7943 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
, Flags
));
7947 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7948 // Handle inline assembly differently.
7949 if (I
.isInlineAsm()) {
7954 if (Function
*F
= I
.getCalledFunction()) {
7955 if (F
->isDeclaration()) {
7956 // Is this an LLVM intrinsic or a target-specific intrinsic?
7957 unsigned IID
= F
->getIntrinsicID();
7959 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7960 IID
= II
->getIntrinsicID(F
);
7963 visitIntrinsicCall(I
, IID
);
7968 // Check for well-known libc/libm calls. If the function is internal, it
7969 // can't be a library call. Don't do the check if marked as nobuiltin for
7970 // some reason or the call site requires strict floating point semantics.
7972 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7973 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7974 LibInfo
->hasOptimizedCodeGen(Func
)) {
7978 if (visitMemCmpBCmpCall(I
))
7981 case LibFunc_copysign
:
7982 case LibFunc_copysignf
:
7983 case LibFunc_copysignl
:
7984 // We already checked this call's prototype; verify it doesn't modify
7986 if (I
.onlyReadsMemory()) {
7987 SDValue LHS
= getValue(I
.getArgOperand(0));
7988 SDValue RHS
= getValue(I
.getArgOperand(1));
7989 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7990 LHS
.getValueType(), LHS
, RHS
));
7997 if (visitUnaryFloatCall(I
, ISD::FABS
))
8003 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
8009 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
8015 if (visitUnaryFloatCall(I
, ISD::FSIN
))
8021 if (visitUnaryFloatCall(I
, ISD::FCOS
))
8027 case LibFunc_sqrt_finite
:
8028 case LibFunc_sqrtf_finite
:
8029 case LibFunc_sqrtl_finite
:
8030 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
8034 case LibFunc_floorf
:
8035 case LibFunc_floorl
:
8036 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
8039 case LibFunc_nearbyint
:
8040 case LibFunc_nearbyintf
:
8041 case LibFunc_nearbyintl
:
8042 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
8048 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
8054 if (visitUnaryFloatCall(I
, ISD::FRINT
))
8058 case LibFunc_roundf
:
8059 case LibFunc_roundl
:
8060 if (visitUnaryFloatCall(I
, ISD::FROUND
))
8064 case LibFunc_truncf
:
8065 case LibFunc_truncl
:
8066 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
8072 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
8078 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
8081 case LibFunc_memcmp
:
8082 if (visitMemCmpBCmpCall(I
))
8085 case LibFunc_mempcpy
:
8086 if (visitMemPCpyCall(I
))
8089 case LibFunc_memchr
:
8090 if (visitMemChrCall(I
))
8093 case LibFunc_strcpy
:
8094 if (visitStrCpyCall(I
, false))
8097 case LibFunc_stpcpy
:
8098 if (visitStrCpyCall(I
, true))
8101 case LibFunc_strcmp
:
8102 if (visitStrCmpCall(I
))
8105 case LibFunc_strlen
:
8106 if (visitStrLenCall(I
))
8109 case LibFunc_strnlen
:
8110 if (visitStrNLenCall(I
))
8117 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8118 // have to do anything here to lower funclet bundles.
8119 // CFGuardTarget bundles are lowered in LowerCallTo.
8120 assert(!I
.hasOperandBundlesOtherThan(
8121 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
,
8122 LLVMContext::OB_cfguardtarget
, LLVMContext::OB_preallocated
,
8123 LLVMContext::OB_clang_arc_attachedcall
}) &&
8124 "Cannot lower calls with arbitrary operand bundles!");
8126 SDValue Callee
= getValue(I
.getCalledOperand());
8128 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
8129 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
8131 // Check if we can potentially perform a tail call. More detailed checking
8132 // is be done within LowerCallTo, after more information about the call is
8134 LowerCallTo(I
, Callee
, I
.isTailCall(), I
.isMustTailCall());
8139 /// AsmOperandInfo - This contains information for each constraint that we are
8141 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
8143 /// CallOperand - If this is the result output operand or a clobber
8144 /// this is null, otherwise it is the incoming operand to the CallInst.
8145 /// This gets modified as the asm is processed.
8146 SDValue CallOperand
;
8148 /// AssignedRegs - If this is a register or register class operand, this
8149 /// contains the set of register corresponding to the operand.
8150 RegsForValue AssignedRegs
;
8152 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
8153 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
8156 /// Whether or not this operand accesses memory
8157 bool hasMemory(const TargetLowering
&TLI
) const {
8158 // Indirect operand accesses access memory.
8162 for (const auto &Code
: Codes
)
8163 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
8169 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8170 /// corresponds to. If there is no Value* for this operand, it returns
8172 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
8173 const DataLayout
&DL
) const {
8174 if (!CallOperandVal
) return MVT::Other
;
8176 if (isa
<BasicBlock
>(CallOperandVal
))
8177 return TLI
.getProgramPointerTy(DL
);
8179 llvm::Type
*OpTy
= CallOperandVal
->getType();
8181 // FIXME: code duplicated from TargetLowering::ParseConstraints().
8182 // If this is an indirect operand, the operand is a pointer to the
8185 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
8187 report_fatal_error("Indirect operand for inline asm not a pointer!");
8188 OpTy
= PtrTy
->getElementType();
8191 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8192 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
8193 if (STy
->getNumElements() == 1)
8194 OpTy
= STy
->getElementType(0);
8196 // If OpTy is not a single value, it may be a struct/union that we
8197 // can tile with integers.
8198 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
8199 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
8208 OpTy
= IntegerType::get(Context
, BitSize
);
8213 return TLI
.getAsmOperandValueType(DL
, OpTy
, true);
8218 } // end anonymous namespace
8220 /// Make sure that the output operand \p OpInfo and its corresponding input
8221 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8223 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
8224 SDISelAsmOperandInfo
&MatchingOpInfo
,
8225 SelectionDAG
&DAG
) {
8226 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
8229 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
8230 const auto &TLI
= DAG
.getTargetLoweringInfo();
8232 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
8233 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
8234 OpInfo
.ConstraintVT
);
8235 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
8236 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
8237 MatchingOpInfo
.ConstraintVT
);
8238 if ((OpInfo
.ConstraintVT
.isInteger() !=
8239 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
8240 (MatchRC
.second
!= InputRC
.second
)) {
8241 // FIXME: error out in a more elegant fashion
8242 report_fatal_error("Unsupported asm: input constraint"
8243 " with a matching output constraint of"
8244 " incompatible type!");
8246 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
8249 /// Get a direct memory input to behave well as an indirect operand.
8250 /// This may introduce stores, hence the need for a \p Chain.
8251 /// \return The (possibly updated) chain.
8252 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
8253 SDISelAsmOperandInfo
&OpInfo
,
8254 SelectionDAG
&DAG
) {
8255 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8257 // If we don't have an indirect input, put it in the constpool if we can,
8258 // otherwise spill it to a stack slot.
8259 // TODO: This isn't quite right. We need to handle these according to
8260 // the addressing mode that the constraint wants. Also, this may take
8261 // an additional register for the computation and we don't want that
8264 // If the operand is a float, integer, or vector constant, spill to a
8265 // constant pool entry to get its address.
8266 const Value
*OpVal
= OpInfo
.CallOperandVal
;
8267 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
8268 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
8269 OpInfo
.CallOperand
= DAG
.getConstantPool(
8270 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
8274 // Otherwise, create a stack slot and emit a store to it before the asm.
8275 Type
*Ty
= OpVal
->getType();
8276 auto &DL
= DAG
.getDataLayout();
8277 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
8278 MachineFunction
&MF
= DAG
.getMachineFunction();
8279 int SSFI
= MF
.getFrameInfo().CreateStackObject(
8280 TySize
, DL
.getPrefTypeAlign(Ty
), false);
8281 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
8282 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
8283 MachinePointerInfo::getFixedStack(MF
, SSFI
),
8284 TLI
.getMemValueType(DL
, Ty
));
8285 OpInfo
.CallOperand
= StackSlot
;
8290 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8291 /// specified operand. We prefer to assign virtual registers, to allow the
8292 /// register allocator to handle the assignment process. However, if the asm
8293 /// uses features that we can't model on machineinstrs, we have SDISel do the
8294 /// allocation. This produces generally horrible, but correct, code.
8296 /// OpInfo describes the operand
8297 /// RefOpInfo describes the matching operand if any, the operand otherwise
8298 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
8299 SDISelAsmOperandInfo
&OpInfo
,
8300 SDISelAsmOperandInfo
&RefOpInfo
) {
8301 LLVMContext
&Context
= *DAG
.getContext();
8302 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8304 MachineFunction
&MF
= DAG
.getMachineFunction();
8305 SmallVector
<unsigned, 4> Regs
;
8306 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8308 // No work to do for memory operations.
8309 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
8312 // If this is a constraint for a single physreg, or a constraint for a
8313 // register class, find it.
8314 unsigned AssignedReg
;
8315 const TargetRegisterClass
*RC
;
8316 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
8317 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
8318 // RC is unset only on failure. Return immediately.
8322 // Get the actual register value type. This is important, because the user
8323 // may have asked for (e.g.) the AX register in i32 type. We need to
8324 // remember that AX is actually i16 to get the right extension.
8325 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
8327 if (OpInfo
.ConstraintVT
!= MVT::Other
&& RegVT
!= MVT::Untyped
) {
8328 // If this is an FP operand in an integer register (or visa versa), or more
8329 // generally if the operand value disagrees with the register class we plan
8330 // to stick it in, fix the operand type.
8332 // If this is an input value, the bitcast to the new type is done now.
8333 // Bitcast for output value is done at the end of visitInlineAsm().
8334 if ((OpInfo
.Type
== InlineAsm::isOutput
||
8335 OpInfo
.Type
== InlineAsm::isInput
) &&
8336 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
8337 // Try to convert to the first EVT that the reg class contains. If the
8338 // types are identical size, use a bitcast to convert (e.g. two differing
8339 // vector types). Note: output bitcast is done at the end of
8340 // visitInlineAsm().
8341 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
8342 // Exclude indirect inputs while they are unsupported because the code
8343 // to perform the load is missing and thus OpInfo.CallOperand still
8344 // refers to the input address rather than the pointed-to value.
8345 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
8346 OpInfo
.CallOperand
=
8347 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
8348 OpInfo
.ConstraintVT
= RegVT
;
8349 // If the operand is an FP value and we want it in integer registers,
8350 // use the corresponding integer type. This turns an f64 value into
8351 // i64, which can be passed with two i32 values on a 32-bit machine.
8352 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
8353 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
8354 if (OpInfo
.Type
== InlineAsm::isInput
)
8355 OpInfo
.CallOperand
=
8356 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
8357 OpInfo
.ConstraintVT
= VT
;
8362 // No need to allocate a matching input constraint since the constraint it's
8363 // matching to has already been allocated.
8364 if (OpInfo
.isMatchingInputConstraint())
8367 EVT ValueVT
= OpInfo
.ConstraintVT
;
8368 if (OpInfo
.ConstraintVT
== MVT::Other
)
8371 // Initialize NumRegs.
8372 unsigned NumRegs
= 1;
8373 if (OpInfo
.ConstraintVT
!= MVT::Other
)
8374 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
, RegVT
);
8376 // If this is a constraint for a specific physical register, like {r17},
8379 // If this associated to a specific register, initialize iterator to correct
8380 // place. If virtual, make sure we have enough registers
8382 // Initialize iterator if necessary
8383 TargetRegisterClass::iterator I
= RC
->begin();
8384 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
8386 // Do not check for single registers.
8388 for (; *I
!= AssignedReg
; ++I
)
8389 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
8392 for (; NumRegs
; --NumRegs
, ++I
) {
8393 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
8394 Register R
= AssignedReg
? Register(*I
) : RegInfo
.createVirtualRegister(RC
);
8398 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
8402 findMatchingInlineAsmOperand(unsigned OperandNo
,
8403 const std::vector
<SDValue
> &AsmNodeOperands
) {
8404 // Scan until we find the definition we already emitted of this operand.
8405 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
8406 for (; OperandNo
; --OperandNo
) {
8407 // Advance to the next operand.
8409 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8410 assert((InlineAsm::isRegDefKind(OpFlag
) ||
8411 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
8412 InlineAsm::isMemKind(OpFlag
)) &&
8413 "Skipped past definitions?");
8414 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
8425 explicit ExtraFlags(const CallBase
&Call
) {
8426 const InlineAsm
*IA
= cast
<InlineAsm
>(Call
.getCalledOperand());
8427 if (IA
->hasSideEffects())
8428 Flags
|= InlineAsm::Extra_HasSideEffects
;
8429 if (IA
->isAlignStack())
8430 Flags
|= InlineAsm::Extra_IsAlignStack
;
8431 if (Call
.isConvergent())
8432 Flags
|= InlineAsm::Extra_IsConvergent
;
8433 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
8436 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
8437 // Ideally, we would only check against memory constraints. However, the
8438 // meaning of an Other constraint can be target-specific and we can't easily
8439 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8440 // for Other constraints as well.
8441 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8442 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8443 if (OpInfo
.Type
== InlineAsm::isInput
)
8444 Flags
|= InlineAsm::Extra_MayLoad
;
8445 else if (OpInfo
.Type
== InlineAsm::isOutput
)
8446 Flags
|= InlineAsm::Extra_MayStore
;
8447 else if (OpInfo
.Type
== InlineAsm::isClobber
)
8448 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
8452 unsigned get() const { return Flags
; }
8455 } // end anonymous namespace
8457 /// visitInlineAsm - Handle a call to an InlineAsm object.
8458 void SelectionDAGBuilder::visitInlineAsm(const CallBase
&Call
,
8459 const BasicBlock
*EHPadBB
) {
8460 const InlineAsm
*IA
= cast
<InlineAsm
>(Call
.getCalledOperand());
8462 /// ConstraintOperands - Information about all of the constraints.
8463 SmallVector
<SDISelAsmOperandInfo
, 16> ConstraintOperands
;
8465 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8466 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
8467 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), Call
);
8469 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8470 // AsmDialect, MayLoad, MayStore).
8471 bool HasSideEffect
= IA
->hasSideEffects();
8472 ExtraFlags
ExtraInfo(Call
);
8474 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
8475 unsigned ResNo
= 0; // ResNo - The result number of the next output.
8476 unsigned NumMatchingOps
= 0;
8477 for (auto &T
: TargetConstraints
) {
8478 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
8479 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
8481 // Compute the value type for each operand.
8482 if (OpInfo
.Type
== InlineAsm::isInput
||
8483 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
8484 OpInfo
.CallOperandVal
= Call
.getArgOperand(ArgNo
++);
8486 // Process the call argument. BasicBlocks are labels, currently appearing
8488 if (isa
<CallBrInst
>(Call
) &&
8489 ArgNo
- 1 >= (cast
<CallBrInst
>(&Call
)->getNumArgOperands() -
8490 cast
<CallBrInst
>(&Call
)->getNumIndirectDests() -
8492 (NumMatchingOps
== 0 ||
8493 ArgNo
- 1 < (cast
<CallBrInst
>(&Call
)->getNumArgOperands() -
8495 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8496 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8497 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8498 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8499 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8501 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8504 EVT VT
= OpInfo
.getCallOperandValEVT(*DAG
.getContext(), TLI
,
8505 DAG
.getDataLayout());
8506 OpInfo
.ConstraintVT
= VT
.isSimple() ? VT
.getSimpleVT() : MVT::Other
;
8507 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8508 // The return value of the call is this value. As such, there is no
8509 // corresponding argument.
8510 assert(!Call
.getType()->isVoidTy() && "Bad inline asm!");
8511 if (StructType
*STy
= dyn_cast
<StructType
>(Call
.getType())) {
8512 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8513 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8515 assert(ResNo
== 0 && "Asm only has one result!");
8516 OpInfo
.ConstraintVT
= TLI
.getAsmOperandValueType(
8517 DAG
.getDataLayout(), Call
.getType()).getSimpleVT();
8521 OpInfo
.ConstraintVT
= MVT::Other
;
8524 if (OpInfo
.hasMatchingInput())
8528 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8530 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8531 // FIXME: Could we compute this on OpInfo rather than T?
8533 // Compute the constraint code and ConstraintType to use.
8534 TLI
.ComputeConstraintToUse(T
, SDValue());
8536 if (T
.ConstraintType
== TargetLowering::C_Immediate
&&
8537 OpInfo
.CallOperand
&& !isa
<ConstantSDNode
>(OpInfo
.CallOperand
))
8538 // We've delayed emitting a diagnostic like the "n" constraint because
8539 // inlining could cause an integer showing up.
8540 return emitInlineAsmError(Call
, "constraint '" + Twine(T
.ConstraintCode
) +
8541 "' expects an integer constant "
8544 ExtraInfo
.update(T
);
8547 // We won't need to flush pending loads if this asm doesn't touch
8548 // memory and is nonvolatile.
8549 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8551 bool EmitEHLabels
= isa
<InvokeInst
>(Call
) && IA
->canThrow();
8553 assert(EHPadBB
&& "InvokeInst must have an EHPadBB");
8555 bool IsCallBr
= isa
<CallBrInst
>(Call
);
8557 if (IsCallBr
|| EmitEHLabels
) {
8558 // If this is a callbr or invoke we need to flush pending exports since
8559 // inlineasm_br and invoke are terminators.
8560 // We need to do this before nodes are glued to the inlineasm_br node.
8561 Chain
= getControlRoot();
8564 MCSymbol
*BeginLabel
= nullptr;
8566 Chain
= lowerStartEH(Chain
, EHPadBB
, BeginLabel
);
8569 // Second pass over the constraints: compute which constraint option to use.
8570 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8571 // If this is an output operand with a matching input operand, look up the
8572 // matching input. If their types mismatch, e.g. one is an integer, the
8573 // other is floating point, or their sizes are different, flag it as an
8575 if (OpInfo
.hasMatchingInput()) {
8576 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8577 patchMatchingInput(OpInfo
, Input
, DAG
);
8580 // Compute the constraint code and ConstraintType to use.
8581 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8583 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8584 OpInfo
.Type
== InlineAsm::isClobber
)
8587 // If this is a memory input, and if the operand is not indirect, do what we
8588 // need to provide an address for the memory input.
8589 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8590 !OpInfo
.isIndirect
) {
8591 assert((OpInfo
.isMultipleAlternative
||
8592 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8593 "Can only indirectify direct input operands!");
8595 // Memory operands really want the address of the value.
8596 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8598 // There is no longer a Value* corresponding to this operand.
8599 OpInfo
.CallOperandVal
= nullptr;
8601 // It is now an indirect operand.
8602 OpInfo
.isIndirect
= true;
8607 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8608 std::vector
<SDValue
> AsmNodeOperands
;
8609 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8610 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8611 IA
->getAsmString().c_str(), TLI
.getProgramPointerTy(DAG
.getDataLayout())));
8613 // If we have a !srcloc metadata node associated with it, we want to attach
8614 // this to the ultimately generated inline asm machineinstr. To do this, we
8615 // pass in the third operand as this (potentially null) inline asm MDNode.
8616 const MDNode
*SrcLoc
= Call
.getMetadata("srcloc");
8617 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8619 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8620 // bits as operand 3.
8621 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8622 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8624 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8625 // this, assign virtual and physical registers for inputs and otput.
8626 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8627 // Assign Registers.
8628 SDISelAsmOperandInfo
&RefOpInfo
=
8629 OpInfo
.isMatchingInputConstraint()
8630 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8632 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8634 auto DetectWriteToReservedRegister
= [&]() {
8635 const MachineFunction
&MF
= DAG
.getMachineFunction();
8636 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8637 for (unsigned Reg
: OpInfo
.AssignedRegs
.Regs
) {
8638 if (Register::isPhysicalRegister(Reg
) &&
8639 TRI
.isInlineAsmReadOnlyReg(MF
, Reg
)) {
8640 const char *RegName
= TRI
.getName(Reg
);
8641 emitInlineAsmError(Call
, "write to reserved register '" +
8642 Twine(RegName
) + "'");
8649 switch (OpInfo
.Type
) {
8650 case InlineAsm::isOutput
:
8651 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8652 unsigned ConstraintID
=
8653 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8654 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8655 "Failed to convert memory constraint code to constraint id.");
8657 // Add information to the INLINEASM node to know about this output.
8658 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8659 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8660 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8662 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8664 // Otherwise, this outputs to a register (directly for C_Register /
8665 // C_RegisterClass, and a target-defined fashion for
8666 // C_Immediate/C_Other). Find a register that we can use.
8667 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8669 Call
, "couldn't allocate output register for constraint '" +
8670 Twine(OpInfo
.ConstraintCode
) + "'");
8674 if (DetectWriteToReservedRegister())
8677 // Add information to the INLINEASM node to know that this register is
8679 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8680 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8681 : InlineAsm::Kind_RegDef
,
8682 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8686 case InlineAsm::isInput
: {
8687 SDValue InOperandVal
= OpInfo
.CallOperand
;
8689 if (OpInfo
.isMatchingInputConstraint()) {
8690 // If this is required to match an output register we have already set,
8691 // just use its register.
8692 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8695 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8696 if (InlineAsm::isRegDefKind(OpFlag
) ||
8697 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8698 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8699 if (OpInfo
.isIndirect
) {
8700 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8701 emitInlineAsmError(Call
, "inline asm not supported yet: "
8702 "don't know how to handle tied "
8703 "indirect register inputs");
8707 SmallVector
<unsigned, 4> Regs
;
8708 MachineFunction
&MF
= DAG
.getMachineFunction();
8709 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
8710 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
8711 auto *R
= cast
<RegisterSDNode
>(AsmNodeOperands
[CurOp
+1]);
8712 Register TiedReg
= R
->getReg();
8713 MVT RegVT
= R
->getSimpleValueType(0);
8714 const TargetRegisterClass
*RC
= TiedReg
.isVirtual() ?
8715 MRI
.getRegClass(TiedReg
) : TRI
.getMinimalPhysRegClass(TiedReg
);
8716 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8717 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8718 Regs
.push_back(MRI
.createVirtualRegister(RC
));
8720 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8722 SDLoc dl
= getCurSDLoc();
8723 // Use the produced MatchedRegs object to
8724 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
, &Call
);
8725 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8726 true, OpInfo
.getMatchedOperand(), dl
,
8727 DAG
, AsmNodeOperands
);
8731 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8732 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8733 "Unexpected number of operands");
8734 // Add information to the INLINEASM node to know about this input.
8735 // See InlineAsm.h isUseOperandTiedToDef.
8736 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8737 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8738 OpInfo
.getMatchedOperand());
8739 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8740 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8741 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8745 // Treat indirect 'X' constraint as memory.
8746 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8748 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8750 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
||
8751 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8752 std::vector
<SDValue
> Ops
;
8753 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8756 if (OpInfo
.ConstraintType
== TargetLowering::C_Immediate
)
8757 if (isa
<ConstantSDNode
>(InOperandVal
)) {
8758 emitInlineAsmError(Call
, "value out of range for constraint '" +
8759 Twine(OpInfo
.ConstraintCode
) + "'");
8763 emitInlineAsmError(Call
,
8764 "invalid operand for inline asm constraint '" +
8765 Twine(OpInfo
.ConstraintCode
) + "'");
8769 // Add information to the INLINEASM node to know about this input.
8770 unsigned ResOpType
=
8771 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8772 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8773 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8774 llvm::append_range(AsmNodeOperands
, Ops
);
8778 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8779 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8780 assert(InOperandVal
.getValueType() ==
8781 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8782 "Memory operands expect pointer values");
8784 unsigned ConstraintID
=
8785 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8786 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8787 "Failed to convert memory constraint code to constraint id.");
8789 // Add information to the INLINEASM node to know about this input.
8790 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8791 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8792 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8795 AsmNodeOperands
.push_back(InOperandVal
);
8799 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8800 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
8801 "Unknown constraint type!");
8803 // TODO: Support this.
8804 if (OpInfo
.isIndirect
) {
8806 Call
, "Don't know how to handle indirect register inputs yet "
8807 "for constraint '" +
8808 Twine(OpInfo
.ConstraintCode
) + "'");
8812 // Copy the input into the appropriate registers.
8813 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8814 emitInlineAsmError(Call
,
8815 "couldn't allocate input reg for constraint '" +
8816 Twine(OpInfo
.ConstraintCode
) + "'");
8820 if (DetectWriteToReservedRegister())
8823 SDLoc dl
= getCurSDLoc();
8825 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8828 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8829 dl
, DAG
, AsmNodeOperands
);
8832 case InlineAsm::isClobber
:
8833 // Add the clobbered value to the operand list, so that the register
8834 // allocator is aware that the physreg got clobbered.
8835 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8836 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8837 false, 0, getCurSDLoc(), DAG
,
8843 // Finish up input operands. Set the input chain and add the flag last.
8844 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8845 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8847 unsigned ISDOpc
= IsCallBr
? ISD::INLINEASM_BR
: ISD::INLINEASM
;
8848 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8849 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8850 Flag
= Chain
.getValue(1);
8852 // Do additional work to generate outputs.
8854 SmallVector
<EVT
, 1> ResultVTs
;
8855 SmallVector
<SDValue
, 1> ResultValues
;
8856 SmallVector
<SDValue
, 8> OutChains
;
8858 llvm::Type
*CallResultType
= Call
.getType();
8859 ArrayRef
<Type
*> ResultTypes
;
8860 if (StructType
*StructResult
= dyn_cast
<StructType
>(CallResultType
))
8861 ResultTypes
= StructResult
->elements();
8862 else if (!CallResultType
->isVoidTy())
8863 ResultTypes
= makeArrayRef(CallResultType
);
8865 auto CurResultType
= ResultTypes
.begin();
8866 auto handleRegAssign
= [&](SDValue V
) {
8867 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8868 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8869 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8871 // If the type of the inline asm call site return value is different but has
8872 // same size as the type of the asm output bitcast it. One example of this
8873 // is for vectors with different width / number of elements. This can
8874 // happen for register classes that can contain multiple different value
8875 // types. The preg or vreg allocated may not have the same VT as was
8878 // This can also happen for a return value that disagrees with the register
8879 // class it is put in, eg. a double in a general-purpose register on a
8881 if (ResultVT
!= V
.getValueType() &&
8882 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8883 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8884 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8885 V
.getValueType().isInteger()) {
8886 // If a result value was tied to an input value, the computed result
8887 // may have a wider width than the expected result. Extract the
8888 // relevant portion.
8889 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8891 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8892 ResultVTs
.push_back(ResultVT
);
8893 ResultValues
.push_back(V
);
8896 // Deal with output operands.
8897 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8898 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8900 // Skip trivial output operands.
8901 if (OpInfo
.AssignedRegs
.Regs
.empty())
8904 switch (OpInfo
.ConstraintType
) {
8905 case TargetLowering::C_Register
:
8906 case TargetLowering::C_RegisterClass
:
8907 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(),
8908 Chain
, &Flag
, &Call
);
8910 case TargetLowering::C_Immediate
:
8911 case TargetLowering::C_Other
:
8912 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8915 case TargetLowering::C_Memory
:
8916 break; // Already handled.
8917 case TargetLowering::C_Unknown
:
8918 assert(false && "Unexpected unknown constraint");
8921 // Indirect output manifest as stores. Record output chains.
8922 if (OpInfo
.isIndirect
) {
8923 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8924 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8925 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8926 MachinePointerInfo(Ptr
));
8927 OutChains
.push_back(Store
);
8929 // generate CopyFromRegs to associated registers.
8930 assert(!Call
.getType()->isVoidTy() && "Bad inline asm!");
8931 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8932 for (const SDValue
&V
: Val
->op_values())
8935 handleRegAssign(Val
);
8941 if (!ResultValues
.empty()) {
8942 assert(CurResultType
== ResultTypes
.end() &&
8943 "Mismatch in number of ResultTypes");
8944 assert(ResultValues
.size() == ResultTypes
.size() &&
8945 "Mismatch in number of output operands in asm result");
8947 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8948 DAG
.getVTList(ResultVTs
), ResultValues
);
8952 // Collect store chains.
8953 if (!OutChains
.empty())
8954 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8957 Chain
= lowerEndEH(Chain
, cast
<InvokeInst
>(&Call
), EHPadBB
, BeginLabel
);
8960 // Only Update Root if inline assembly has a memory effect.
8961 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty() || IsCallBr
||
8966 void SelectionDAGBuilder::emitInlineAsmError(const CallBase
&Call
,
8967 const Twine
&Message
) {
8968 LLVMContext
&Ctx
= *DAG
.getContext();
8969 Ctx
.emitError(&Call
, Message
);
8971 // Make sure we leave the DAG in a valid state
8972 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8973 SmallVector
<EVT
, 1> ValueVTs
;
8974 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Call
.getType(), ValueVTs
);
8976 if (ValueVTs
.empty())
8979 SmallVector
<SDValue
, 1> Ops
;
8980 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8981 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8983 setValue(&Call
, DAG
.getMergeValues(Ops
, getCurSDLoc()));
8986 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8987 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8988 MVT::Other
, getRoot(),
8989 getValue(I
.getArgOperand(0)),
8990 DAG
.getSrcValue(I
.getArgOperand(0))));
8993 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8994 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8995 const DataLayout
&DL
= DAG
.getDataLayout();
8996 SDValue V
= DAG
.getVAArg(
8997 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8998 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8999 DL
.getABITypeAlign(I
.getType()).value());
9000 DAG
.setRoot(V
.getValue(1));
9002 if (I
.getType()->isPointerTy())
9003 V
= DAG
.getPtrExtOrTrunc(
9004 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
9008 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
9009 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
9010 MVT::Other
, getRoot(),
9011 getValue(I
.getArgOperand(0)),
9012 DAG
.getSrcValue(I
.getArgOperand(0))));
9015 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
9016 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
9017 MVT::Other
, getRoot(),
9018 getValue(I
.getArgOperand(0)),
9019 getValue(I
.getArgOperand(1)),
9020 DAG
.getSrcValue(I
.getArgOperand(0)),
9021 DAG
.getSrcValue(I
.getArgOperand(1))));
9024 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
9025 const Instruction
&I
,
9027 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
9031 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
9032 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
9035 APInt Lo
= CR
.getUnsignedMin();
9036 if (!Lo
.isMinValue())
9039 APInt Hi
= CR
.getUnsignedMax();
9040 unsigned Bits
= std::max(Hi
.getActiveBits(),
9041 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
9043 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
9045 SDLoc SL
= getCurSDLoc();
9047 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
9048 DAG
.getValueType(SmallVT
));
9049 unsigned NumVals
= Op
.getNode()->getNumValues();
9053 SmallVector
<SDValue
, 4> Ops
;
9055 Ops
.push_back(ZExt
);
9056 for (unsigned I
= 1; I
!= NumVals
; ++I
)
9057 Ops
.push_back(Op
.getValue(I
));
9059 return DAG
.getMergeValues(Ops
, SL
);
9062 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9063 /// the call being lowered.
9065 /// This is a helper for lowering intrinsics that follow a target calling
9066 /// convention or require stack pointer adjustment. Only a subset of the
9067 /// intrinsic's operands need to participate in the calling convention.
9068 void SelectionDAGBuilder::populateCallLoweringInfo(
9069 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
9070 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
9071 bool IsPatchPoint
) {
9072 TargetLowering::ArgListTy Args
;
9073 Args
.reserve(NumArgs
);
9075 // Populate the argument list.
9076 // Attributes for args start at offset 1, after the return attribute.
9077 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
9078 ArgI
!= ArgE
; ++ArgI
) {
9079 const Value
*V
= Call
->getOperand(ArgI
);
9081 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9083 TargetLowering::ArgListEntry Entry
;
9084 Entry
.Node
= getValue(V
);
9085 Entry
.Ty
= V
->getType();
9086 Entry
.setAttributes(Call
, ArgI
);
9087 Args
.push_back(Entry
);
9090 CLI
.setDebugLoc(getCurSDLoc())
9091 .setChain(getRoot())
9092 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
9093 .setDiscardResult(Call
->use_empty())
9094 .setIsPatchPoint(IsPatchPoint
)
9096 Call
->countOperandBundlesOfType(LLVMContext::OB_preallocated
) != 0);
9099 /// Add a stack map intrinsic call's live variable operands to a stackmap
9100 /// or patchpoint target node's operand list.
9102 /// Constants are converted to TargetConstants purely as an optimization to
9103 /// avoid constant materialization and register allocation.
9105 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9106 /// generate addess computation nodes, and so FinalizeISel can convert the
9107 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9108 /// address materialization and register allocation, but may also be required
9109 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9110 /// alloca in the entry block, then the runtime may assume that the alloca's
9111 /// StackMap location can be read immediately after compilation and that the
9112 /// location is valid at any point during execution (this is similar to the
9113 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9114 /// only available in a register, then the runtime would need to trap when
9115 /// execution reaches the StackMap in order to read the alloca's location.
9116 static void addStackMapLiveVars(const CallBase
&Call
, unsigned StartIdx
,
9117 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
9118 SelectionDAGBuilder
&Builder
) {
9119 for (unsigned i
= StartIdx
, e
= Call
.arg_size(); i
!= e
; ++i
) {
9120 SDValue OpVal
= Builder
.getValue(Call
.getArgOperand(i
));
9121 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
9123 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
9125 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
9126 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
9127 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
9128 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
9129 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
9131 Ops
.push_back(OpVal
);
9135 /// Lower llvm.experimental.stackmap directly to its target opcode.
9136 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
9137 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9138 // [live variables...])
9140 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
9142 SDValue Chain
, InFlag
, Callee
, NullPtr
;
9143 SmallVector
<SDValue
, 32> Ops
;
9145 SDLoc DL
= getCurSDLoc();
9146 Callee
= getValue(CI
.getCalledOperand());
9147 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
9149 // The stackmap intrinsic only records the live variables (the arguments
9150 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9151 // intrinsic, this won't be lowered to a function call. This means we don't
9152 // have to worry about calling conventions and target specific lowering code.
9153 // Instead we perform the call lowering right here.
9155 // chain, flag = CALLSEQ_START(chain, 0, 0)
9156 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9157 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9159 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
9160 InFlag
= Chain
.getValue(1);
9162 // Add the <id> and <numBytes> constants.
9163 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
9164 Ops
.push_back(DAG
.getTargetConstant(
9165 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
9166 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
9167 Ops
.push_back(DAG
.getTargetConstant(
9168 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
9171 // Push live variables for the stack map.
9172 addStackMapLiveVars(CI
, 2, DL
, Ops
, *this);
9174 // We are not pushing any register mask info here on the operands list,
9175 // because the stackmap doesn't clobber anything.
9177 // Push the chain and the glue flag.
9178 Ops
.push_back(Chain
);
9179 Ops
.push_back(InFlag
);
9181 // Create the STACKMAP node.
9182 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
9183 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
9184 Chain
= SDValue(SM
, 0);
9185 InFlag
= Chain
.getValue(1);
9187 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
9189 // Stackmaps don't generate values, so nothing goes into the NodeMap.
9191 // Set the root to the target-lowered call chain.
9194 // Inform the Frame Information that we have a stackmap in this function.
9195 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
9198 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9199 void SelectionDAGBuilder::visitPatchpoint(const CallBase
&CB
,
9200 const BasicBlock
*EHPadBB
) {
9201 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9206 // [live variables...])
9208 CallingConv::ID CC
= CB
.getCallingConv();
9209 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
9210 bool HasDef
= !CB
.getType()->isVoidTy();
9211 SDLoc dl
= getCurSDLoc();
9212 SDValue Callee
= getValue(CB
.getArgOperand(PatchPointOpers::TargetPos
));
9214 // Handle immediate and symbolic callees.
9215 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
9216 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
9218 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
9219 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
9220 SDLoc(SymbolicCallee
),
9221 SymbolicCallee
->getValueType(0));
9223 // Get the real number of arguments participating in the call <numArgs>
9224 SDValue NArgVal
= getValue(CB
.getArgOperand(PatchPointOpers::NArgPos
));
9225 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
9227 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9228 // Intrinsics include all meta-operands up to but not including CC.
9229 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
9230 assert(CB
.arg_size() >= NumMetaOpers
+ NumArgs
&&
9231 "Not enough arguments provided to the patchpoint intrinsic");
9233 // For AnyRegCC the arguments are lowered later on manually.
9234 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
9236 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CB
.getType();
9238 TargetLowering::CallLoweringInfo
CLI(DAG
);
9239 populateCallLoweringInfo(CLI
, &CB
, NumMetaOpers
, NumCallArgs
, Callee
,
9241 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
9243 SDNode
*CallEnd
= Result
.second
.getNode();
9244 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
9245 CallEnd
= CallEnd
->getOperand(0).getNode();
9247 /// Get a call instruction from the call sequence chain.
9248 /// Tail calls are not allowed.
9249 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
9250 "Expected a callseq node.");
9251 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
9252 bool HasGlue
= Call
->getGluedNode();
9254 // Replace the target specific call node with the patchable intrinsic.
9255 SmallVector
<SDValue
, 8> Ops
;
9257 // Add the <id> and <numBytes> constants.
9258 SDValue IDVal
= getValue(CB
.getArgOperand(PatchPointOpers::IDPos
));
9259 Ops
.push_back(DAG
.getTargetConstant(
9260 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
9261 SDValue NBytesVal
= getValue(CB
.getArgOperand(PatchPointOpers::NBytesPos
));
9262 Ops
.push_back(DAG
.getTargetConstant(
9263 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
9267 Ops
.push_back(Callee
);
9269 // Adjust <numArgs> to account for any arguments that have been passed on the
9271 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9272 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
9273 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
9274 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
9276 // Add the calling convention
9277 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
9279 // Add the arguments we omitted previously. The register allocator should
9280 // place these in any free register.
9282 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
9283 Ops
.push_back(getValue(CB
.getArgOperand(i
)));
9285 // Push the arguments from the call instruction up to the register mask.
9286 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
9287 Ops
.append(Call
->op_begin() + 2, e
);
9289 // Push live variables for the stack map.
9290 addStackMapLiveVars(CB
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
9292 // Push the register mask info.
9294 Ops
.push_back(*(Call
->op_end()-2));
9296 Ops
.push_back(*(Call
->op_end()-1));
9298 // Push the chain (this is originally the first operand of the call, but
9299 // becomes now the last or second to last operand).
9300 Ops
.push_back(*(Call
->op_begin()));
9302 // Push the glue flag (last operand).
9304 Ops
.push_back(*(Call
->op_end()-1));
9307 if (IsAnyRegCC
&& HasDef
) {
9308 // Create the return types based on the intrinsic definition
9309 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9310 SmallVector
<EVT
, 3> ValueVTs
;
9311 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CB
.getType(), ValueVTs
);
9312 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
9314 // There is always a chain and a glue type at the end
9315 ValueVTs
.push_back(MVT::Other
);
9316 ValueVTs
.push_back(MVT::Glue
);
9317 NodeTys
= DAG
.getVTList(ValueVTs
);
9319 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
9321 // Replace the target specific call node with a PATCHPOINT node.
9322 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
9325 // Update the NodeMap.
9328 setValue(&CB
, SDValue(MN
, 0));
9330 setValue(&CB
, Result
.first
);
9333 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9334 // call sequence. Furthermore the location of the chain and glue can change
9335 // when the AnyReg calling convention is used and the intrinsic returns a
9337 if (IsAnyRegCC
&& HasDef
) {
9338 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
9339 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
9340 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
9342 DAG
.ReplaceAllUsesWith(Call
, MN
);
9343 DAG
.DeleteNode(Call
);
9345 // Inform the Frame Information that we have a patchpoint in this function.
9346 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
9349 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
9350 unsigned Intrinsic
) {
9351 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9352 SDValue Op1
= getValue(I
.getArgOperand(0));
9354 if (I
.getNumArgOperands() > 1)
9355 Op2
= getValue(I
.getArgOperand(1));
9356 SDLoc dl
= getCurSDLoc();
9357 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
9359 SDNodeFlags SDFlags
;
9360 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
))
9361 SDFlags
.copyFMF(*FPMO
);
9363 switch (Intrinsic
) {
9364 case Intrinsic::vector_reduce_fadd
:
9365 if (SDFlags
.hasAllowReassociation())
9366 Res
= DAG
.getNode(ISD::FADD
, dl
, VT
, Op1
,
9367 DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
, SDFlags
),
9370 Res
= DAG
.getNode(ISD::VECREDUCE_SEQ_FADD
, dl
, VT
, Op1
, Op2
, SDFlags
);
9372 case Intrinsic::vector_reduce_fmul
:
9373 if (SDFlags
.hasAllowReassociation())
9374 Res
= DAG
.getNode(ISD::FMUL
, dl
, VT
, Op1
,
9375 DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
, SDFlags
),
9378 Res
= DAG
.getNode(ISD::VECREDUCE_SEQ_FMUL
, dl
, VT
, Op1
, Op2
, SDFlags
);
9380 case Intrinsic::vector_reduce_add
:
9381 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
9383 case Intrinsic::vector_reduce_mul
:
9384 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
9386 case Intrinsic::vector_reduce_and
:
9387 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
9389 case Intrinsic::vector_reduce_or
:
9390 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
9392 case Intrinsic::vector_reduce_xor
:
9393 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
9395 case Intrinsic::vector_reduce_smax
:
9396 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
9398 case Intrinsic::vector_reduce_smin
:
9399 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
9401 case Intrinsic::vector_reduce_umax
:
9402 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
9404 case Intrinsic::vector_reduce_umin
:
9405 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
9407 case Intrinsic::vector_reduce_fmax
:
9408 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
, SDFlags
);
9410 case Intrinsic::vector_reduce_fmin
:
9411 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
, SDFlags
);
9414 llvm_unreachable("Unhandled vector reduce intrinsic");
9419 /// Returns an AttributeList representing the attributes applied to the return
9420 /// value of the given call.
9421 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
9422 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
9424 Attrs
.push_back(Attribute::SExt
);
9426 Attrs
.push_back(Attribute::ZExt
);
9428 Attrs
.push_back(Attribute::InReg
);
9430 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
9434 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9435 /// implementation, which just calls LowerCall.
9436 /// FIXME: When all targets are
9437 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9438 std::pair
<SDValue
, SDValue
>
9439 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
9440 // Handle the incoming return values from the call.
9442 Type
*OrigRetTy
= CLI
.RetTy
;
9443 SmallVector
<EVT
, 4> RetTys
;
9444 SmallVector
<uint64_t, 4> Offsets
;
9445 auto &DL
= CLI
.DAG
.getDataLayout();
9446 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
9448 if (CLI
.IsPostTypeLegalization
) {
9449 // If we are lowering a libcall after legalization, split the return type.
9450 SmallVector
<EVT
, 4> OldRetTys
;
9451 SmallVector
<uint64_t, 4> OldOffsets
;
9452 RetTys
.swap(OldRetTys
);
9453 Offsets
.swap(OldOffsets
);
9455 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
9456 EVT RetVT
= OldRetTys
[i
];
9457 uint64_t Offset
= OldOffsets
[i
];
9458 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
9459 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
9460 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
9461 RetTys
.append(NumRegs
, RegisterVT
);
9462 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
9463 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
9467 SmallVector
<ISD::OutputArg
, 4> Outs
;
9468 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
9470 bool CanLowerReturn
=
9471 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
9472 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
9474 SDValue DemoteStackSlot
;
9475 int DemoteStackIdx
= -100;
9476 if (!CanLowerReturn
) {
9477 // FIXME: equivalent assert?
9478 // assert(!CS.hasInAllocaArgument() &&
9479 // "sret demotion is incompatible with inalloca");
9480 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
9481 Align Alignment
= DL
.getPrefTypeAlign(CLI
.RetTy
);
9482 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
9484 MF
.getFrameInfo().CreateStackObject(TySize
, Alignment
, false);
9485 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
9486 DL
.getAllocaAddrSpace());
9488 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
9490 Entry
.Node
= DemoteStackSlot
;
9491 Entry
.Ty
= StackSlotPtrType
;
9492 Entry
.IsSExt
= false;
9493 Entry
.IsZExt
= false;
9494 Entry
.IsInReg
= false;
9495 Entry
.IsSRet
= true;
9496 Entry
.IsNest
= false;
9497 Entry
.IsByVal
= false;
9498 Entry
.IsByRef
= false;
9499 Entry
.IsReturned
= false;
9500 Entry
.IsSwiftSelf
= false;
9501 Entry
.IsSwiftAsync
= false;
9502 Entry
.IsSwiftError
= false;
9503 Entry
.IsCFGuardTarget
= false;
9504 Entry
.Alignment
= Alignment
;
9505 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
9506 CLI
.NumFixedArgs
+= 1;
9507 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
9509 // sret demotion isn't compatible with tail-calls, since the sret argument
9510 // points into the callers stack frame.
9511 CLI
.IsTailCall
= false;
9513 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9514 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
, DL
);
9515 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9516 ISD::ArgFlagsTy Flags
;
9517 if (NeedsRegBlock
) {
9518 Flags
.setInConsecutiveRegs();
9519 if (I
== RetTys
.size() - 1)
9520 Flags
.setInConsecutiveRegsLast();
9523 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9525 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9527 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9528 ISD::InputArg MyFlags
;
9529 MyFlags
.Flags
= Flags
;
9530 MyFlags
.VT
= RegisterVT
;
9532 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
9533 if (CLI
.RetTy
->isPointerTy()) {
9534 MyFlags
.Flags
.setPointer();
9535 MyFlags
.Flags
.setPointerAddrSpace(
9536 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
9539 MyFlags
.Flags
.setSExt();
9541 MyFlags
.Flags
.setZExt();
9543 MyFlags
.Flags
.setInReg();
9544 CLI
.Ins
.push_back(MyFlags
);
9549 // We push in swifterror return as the last element of CLI.Ins.
9550 ArgListTy
&Args
= CLI
.getArgs();
9551 if (supportSwiftError()) {
9552 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9553 if (Args
[i
].IsSwiftError
) {
9554 ISD::InputArg MyFlags
;
9555 MyFlags
.VT
= getPointerTy(DL
);
9556 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9557 MyFlags
.Flags
.setSwiftError();
9558 CLI
.Ins
.push_back(MyFlags
);
9563 // Handle all of the outgoing arguments.
9565 CLI
.OutVals
.clear();
9566 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9567 SmallVector
<EVT
, 4> ValueVTs
;
9568 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9569 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9570 Type
*FinalType
= Args
[i
].Ty
;
9571 if (Args
[i
].IsByVal
)
9572 FinalType
= Args
[i
].IndirectType
;
9573 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9574 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
, DL
);
9575 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9577 EVT VT
= ValueVTs
[Value
];
9578 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9579 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9580 Args
[i
].Node
.getResNo() + Value
);
9581 ISD::ArgFlagsTy Flags
;
9583 // Certain targets (such as MIPS), may have a different ABI alignment
9584 // for a type depending on the context. Give the target a chance to
9585 // specify the alignment it wants.
9586 const Align
OriginalAlignment(getABIAlignmentForCallingConv(ArgTy
, DL
));
9587 Flags
.setOrigAlign(OriginalAlignment
);
9589 if (Args
[i
].Ty
->isPointerTy()) {
9591 Flags
.setPointerAddrSpace(
9592 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9598 if (Args
[i
].IsInReg
) {
9599 // If we are using vectorcall calling convention, a structure that is
9600 // passed InReg - is surely an HVA
9601 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9602 isa
<StructType
>(FinalType
)) {
9603 // The first value of a structure is marked
9605 Flags
.setHvaStart();
9613 if (Args
[i
].IsSwiftSelf
)
9614 Flags
.setSwiftSelf();
9615 if (Args
[i
].IsSwiftAsync
)
9616 Flags
.setSwiftAsync();
9617 if (Args
[i
].IsSwiftError
)
9618 Flags
.setSwiftError();
9619 if (Args
[i
].IsCFGuardTarget
)
9620 Flags
.setCFGuardTarget();
9621 if (Args
[i
].IsByVal
)
9623 if (Args
[i
].IsByRef
)
9625 if (Args
[i
].IsPreallocated
) {
9626 Flags
.setPreallocated();
9627 // Set the byval flag for CCAssignFn callbacks that don't know about
9628 // preallocated. This way we can know how many bytes we should've
9629 // allocated and how many bytes a callee cleanup function will pop. If
9630 // we port preallocated to more targets, we'll have to add custom
9631 // preallocated handling in the various CC lowering callbacks.
9634 if (Args
[i
].IsInAlloca
) {
9635 Flags
.setInAlloca();
9636 // Set the byval flag for CCAssignFn callbacks that don't know about
9637 // inalloca. This way we can know how many bytes we should've allocated
9638 // and how many bytes a callee cleanup function will pop. If we port
9639 // inalloca to more targets, we'll have to add custom inalloca handling
9640 // in the various CC lowering callbacks.
9644 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
|| Args
[i
].IsPreallocated
) {
9645 unsigned FrameSize
= DL
.getTypeAllocSize(Args
[i
].IndirectType
);
9646 Flags
.setByValSize(FrameSize
);
9648 // info is not there but there are cases it cannot get right.
9649 if (auto MA
= Args
[i
].Alignment
)
9652 MemAlign
= Align(getByValTypeAlignment(Args
[i
].IndirectType
, DL
));
9653 } else if (auto MA
= Args
[i
].Alignment
) {
9656 MemAlign
= OriginalAlignment
;
9658 Flags
.setMemAlign(MemAlign
);
9662 Flags
.setInConsecutiveRegs();
9664 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9666 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9668 SmallVector
<SDValue
, 4> Parts(NumParts
);
9669 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9672 ExtendKind
= ISD::SIGN_EXTEND
;
9673 else if (Args
[i
].IsZExt
)
9674 ExtendKind
= ISD::ZERO_EXTEND
;
9676 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9678 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9680 assert((CLI
.RetTy
== Args
[i
].Ty
||
9681 (CLI
.RetTy
->isPointerTy() && Args
[i
].Ty
->isPointerTy() &&
9682 CLI
.RetTy
->getPointerAddressSpace() ==
9683 Args
[i
].Ty
->getPointerAddressSpace())) &&
9684 RetTys
.size() == NumValues
&& "unexpected use of 'returned'");
9685 // Before passing 'returned' to the target lowering code, ensure that
9686 // either the register MVT and the actual EVT are the same size or that
9687 // the return value and argument are extended in the same way; in these
9688 // cases it's safe to pass the argument register value unchanged as the
9689 // return register value (although it's at the target's option whether
9691 // TODO: allow code generation to take advantage of partially preserved
9692 // registers rather than clobbering the entire register when the
9693 // parameter extension method is not compatible with the return
9695 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9696 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9697 CLI
.RetZExt
== Args
[i
].IsZExt
))
9698 Flags
.setReturned();
9701 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
, CLI
.CB
,
9702 CLI
.CallConv
, ExtendKind
);
9704 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9705 // if it isn't first piece, alignment must be 1
9706 // For scalable vectors the scalable part is currently handled
9707 // by individual targets, so we just use the known minimum size here.
9708 ISD::OutputArg
MyFlags(
9709 Flags
, Parts
[j
].getValueType().getSimpleVT(), VT
,
9710 i
< CLI
.NumFixedArgs
, i
,
9711 j
* Parts
[j
].getValueType().getStoreSize().getKnownMinSize());
9712 if (NumParts
> 1 && j
== 0)
9713 MyFlags
.Flags
.setSplit();
9715 MyFlags
.Flags
.setOrigAlign(Align(1));
9716 if (j
== NumParts
- 1)
9717 MyFlags
.Flags
.setSplitEnd();
9720 CLI
.Outs
.push_back(MyFlags
);
9721 CLI
.OutVals
.push_back(Parts
[j
]);
9724 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9725 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9729 SmallVector
<SDValue
, 4> InVals
;
9730 CLI
.Chain
= LowerCall(CLI
, InVals
);
9732 // Update CLI.InVals to use outside of this function.
9733 CLI
.InVals
= InVals
;
9735 // Verify that the target's LowerCall behaved as expected.
9736 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9737 "LowerCall didn't return a valid chain!");
9738 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9739 "LowerCall emitted a return value for a tail call!");
9740 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9741 "LowerCall didn't emit the correct number of values!");
9743 // For a tail call, the return value is merely live-out and there aren't
9744 // any nodes in the DAG representing it. Return a special value to
9745 // indicate that a tail call has been emitted and no more Instructions
9746 // should be processed in the current block.
9747 if (CLI
.IsTailCall
) {
9748 CLI
.DAG
.setRoot(CLI
.Chain
);
9749 return std::make_pair(SDValue(), SDValue());
9753 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9754 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9755 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9756 "LowerCall emitted a value with the wrong type!");
9760 SmallVector
<SDValue
, 4> ReturnValues
;
9761 if (!CanLowerReturn
) {
9762 // The instruction result is the result of loading from the
9763 // hidden sret parameter.
9764 SmallVector
<EVT
, 1> PVTs
;
9765 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9767 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9768 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9769 EVT PtrVT
= PVTs
[0];
9771 unsigned NumValues
= RetTys
.size();
9772 ReturnValues
.resize(NumValues
);
9773 SmallVector
<SDValue
, 4> Chains(NumValues
);
9775 // An aggregate return value cannot wrap around the address space, so
9776 // offsets to its parts don't wrap either.
9778 Flags
.setNoUnsignedWrap(true);
9780 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
9781 Align HiddenSRetAlign
= MF
.getFrameInfo().getObjectAlign(DemoteStackIdx
);
9782 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9783 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9784 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9786 SDValue L
= CLI
.DAG
.getLoad(
9787 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9788 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9789 DemoteStackIdx
, Offsets
[i
]),
9791 ReturnValues
[i
] = L
;
9792 Chains
[i
] = L
.getValue(1);
9795 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9797 // Collect the legal value parts into potentially illegal values
9798 // that correspond to the original function's return values.
9799 Optional
<ISD::NodeType
> AssertOp
;
9801 AssertOp
= ISD::AssertSext
;
9802 else if (CLI
.RetZExt
)
9803 AssertOp
= ISD::AssertZext
;
9804 unsigned CurReg
= 0;
9805 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9807 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9809 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9812 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9813 NumRegs
, RegisterVT
, VT
, nullptr,
9814 CLI
.CallConv
, AssertOp
));
9818 // For a function returning void, there is no return value. We can't create
9819 // such a node, so we just return a null return value in that case. In
9820 // that case, nothing will actually look at the value.
9821 if (ReturnValues
.empty())
9822 return std::make_pair(SDValue(), CLI
.Chain
);
9825 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9826 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9827 return std::make_pair(Res
, CLI
.Chain
);
9830 /// Places new result values for the node in Results (their number
9831 /// and types must exactly match those of the original return values of
9832 /// the node), or leaves Results empty, which indicates that the node is not
9833 /// to be custom lowered after all.
9834 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9835 SmallVectorImpl
<SDValue
> &Results
,
9836 SelectionDAG
&DAG
) const {
9837 SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
);
9842 // If the original node has one result, take the return value from
9843 // LowerOperation as is. It might not be result number 0.
9844 if (N
->getNumValues() == 1) {
9845 Results
.push_back(Res
);
9849 // If the original node has multiple results, then the return node should
9850 // have the same number of results.
9851 assert((N
->getNumValues() == Res
->getNumValues()) &&
9852 "Lowering returned the wrong number of results!");
9854 // Places new result values base on N result number.
9855 for (unsigned I
= 0, E
= N
->getNumValues(); I
!= E
; ++I
)
9856 Results
.push_back(Res
.getValue(I
));
9859 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9860 llvm_unreachable("LowerOperation not implemented for this target!");
9864 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9865 SDValue Op
= getNonRegisterValue(V
);
9866 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9867 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9868 "Copy from a reg to the same reg!");
9869 assert(!Register::isPhysicalRegister(Reg
) && "Is a physreg");
9871 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9872 // If this is an InlineAsm we have to match the registers required, not the
9873 // notional registers required by the type.
9875 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9876 None
); // This is not an ABI copy.
9877 SDValue Chain
= DAG
.getEntryNode();
9879 ISD::NodeType ExtendType
= ISD::ANY_EXTEND
;
9880 auto PreferredExtendIt
= FuncInfo
.PreferredExtendType
.find(V
);
9881 if (PreferredExtendIt
!= FuncInfo
.PreferredExtendType
.end())
9882 ExtendType
= PreferredExtendIt
->second
;
9883 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9884 PendingExports
.push_back(Chain
);
9887 #include "llvm/CodeGen/SelectionDAGISel.h"
9889 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9890 /// entry block, return true. This includes arguments used by switches, since
9891 /// the switch may expand into multiple basic blocks.
9892 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9893 // With FastISel active, we may be splitting blocks, so force creation
9894 // of virtual registers for all non-dead arguments.
9896 return A
->use_empty();
9898 const BasicBlock
&Entry
= A
->getParent()->front();
9899 for (const User
*U
: A
->users())
9900 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9901 return false; // Use not in entry block.
9906 using ArgCopyElisionMapTy
=
9907 DenseMap
<const Argument
*,
9908 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9910 /// Scan the entry block of the function in FuncInfo for arguments that look
9911 /// like copies into a local alloca. Record any copied arguments in
9912 /// ArgCopyElisionCandidates.
9914 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9915 FunctionLoweringInfo
*FuncInfo
,
9916 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9917 // Record the state of every static alloca used in the entry block. Argument
9918 // allocas are all used in the entry block, so we need approximately as many
9919 // entries as we have arguments.
9920 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9921 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9922 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9923 StaticAllocas
.reserve(NumArgs
* 2);
9925 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9928 V
= V
->stripPointerCasts();
9929 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9930 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9932 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9933 return &Iter
.first
->second
;
9936 // Look for stores of arguments to static allocas. Look through bitcasts and
9937 // GEPs to handle type coercions, as long as the alloca is fully initialized
9938 // by the store. Any non-store use of an alloca escapes it and any subsequent
9939 // unanalyzed store might write it.
9940 // FIXME: Handle structs initialized with multiple stores.
9941 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9942 // Look for stores, and handle non-store uses conservatively.
9943 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9945 // We will look through cast uses, so ignore them completely.
9948 // Ignore debug info and pseudo op intrinsics, they don't escape or store
9950 if (I
.isDebugOrPseudoInst())
9952 // This is an unknown instruction. Assume it escapes or writes to all
9953 // static alloca operands.
9954 for (const Use
&U
: I
.operands()) {
9955 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9956 *Info
= StaticAllocaInfo::Clobbered
;
9961 // If the stored value is a static alloca, mark it as escaped.
9962 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9963 *Info
= StaticAllocaInfo::Clobbered
;
9965 // Check if the destination is a static alloca.
9966 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9967 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9970 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9972 // Skip allocas that have been initialized or clobbered.
9973 if (*Info
!= StaticAllocaInfo::Unknown
)
9976 // Check if the stored value is an argument, and that this store fully
9977 // initializes the alloca.
9978 // If the argument type has padding bits we can't directly forward a pointer
9979 // as the upper bits may contain garbage.
9980 // Don't elide copies from the same argument twice.
9981 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9982 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9983 if (!Arg
|| Arg
->hasPassPointeeByValueCopyAttr() ||
9984 Arg
->getType()->isEmptyTy() ||
9985 DL
.getTypeStoreSize(Arg
->getType()) !=
9986 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9987 !DL
.typeSizeEqualsStoreSize(Arg
->getType()) ||
9988 ArgCopyElisionCandidates
.count(Arg
)) {
9989 *Info
= StaticAllocaInfo::Clobbered
;
9993 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9996 // Mark this alloca and store for argument copy elision.
9997 *Info
= StaticAllocaInfo::Elidable
;
9998 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
10000 // Stop scanning if we've seen all arguments. This will happen early in -O0
10001 // builds, which is useful, because -O0 builds have large entry blocks and
10003 if (ArgCopyElisionCandidates
.size() == NumArgs
)
10008 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10009 /// ArgVal is a load from a suitable fixed stack object.
10010 static void tryToElideArgumentCopy(
10011 FunctionLoweringInfo
&FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
10012 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
10013 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
10014 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
10015 SDValue ArgVal
, bool &ArgHasUses
) {
10016 // Check if this is a load from a fixed stack object.
10017 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
10020 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
10024 // Check that the fixed stack object is the right size and alignment.
10025 // Look at the alignment that the user wrote on the alloca instead of looking
10026 // at the stack object.
10027 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
10028 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
10029 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
10030 int FixedIndex
= FINode
->getIndex();
10031 int &AllocaIndex
= FuncInfo
.StaticAllocaMap
[AI
];
10032 int OldIndex
= AllocaIndex
;
10033 MachineFrameInfo
&MFI
= FuncInfo
.MF
->getFrameInfo();
10034 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
10036 dbgs() << " argument copy elision failed due to bad fixed stack "
10040 Align RequiredAlignment
= AI
->getAlign();
10041 if (MFI
.getObjectAlign(FixedIndex
) < RequiredAlignment
) {
10042 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
10043 "greater than stack argument alignment ("
10044 << DebugStr(RequiredAlignment
) << " vs "
10045 << DebugStr(MFI
.getObjectAlign(FixedIndex
)) << ")\n");
10049 // Perform the elision. Delete the old stack object and replace its only use
10050 // in the variable info map. Mark the stack object as mutable.
10052 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
10053 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
10056 MFI
.RemoveStackObject(OldIndex
);
10057 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
10058 AllocaIndex
= FixedIndex
;
10059 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
10060 Chains
.push_back(ArgVal
.getValue(1));
10062 // Avoid emitting code for the store implementing the copy.
10063 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
10064 ElidedArgCopyInstrs
.insert(SI
);
10066 // Check for uses of the argument again so that we can avoid exporting ArgVal
10067 // if it is't used by anything other than the store.
10068 for (const Value
*U
: Arg
.users()) {
10076 void SelectionDAGISel::LowerArguments(const Function
&F
) {
10077 SelectionDAG
&DAG
= SDB
->DAG
;
10078 SDLoc dl
= SDB
->getCurSDLoc();
10079 const DataLayout
&DL
= DAG
.getDataLayout();
10080 SmallVector
<ISD::InputArg
, 16> Ins
;
10082 // In Naked functions we aren't going to save any registers.
10083 if (F
.hasFnAttribute(Attribute::Naked
))
10086 if (!FuncInfo
->CanLowerReturn
) {
10087 // Put in an sret pointer parameter before all the other parameters.
10088 SmallVector
<EVT
, 1> ValueVTs
;
10089 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
10090 F
.getReturnType()->getPointerTo(
10091 DAG
.getDataLayout().getAllocaAddrSpace()),
10094 // NOTE: Assuming that a pointer will never break down to more than one VT
10095 // or one register.
10096 ISD::ArgFlagsTy Flags
;
10098 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
10099 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
10100 ISD::InputArg::NoArgIndex
, 0);
10101 Ins
.push_back(RetArg
);
10104 // Look for stores of arguments to static allocas. Mark such arguments with a
10105 // flag to ask the target to give us the memory location of that argument if
10107 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
10108 findArgumentCopyElisionCandidates(DL
, FuncInfo
.get(),
10109 ArgCopyElisionCandidates
);
10111 // Set up the incoming argument description vector.
10112 for (const Argument
&Arg
: F
.args()) {
10113 unsigned ArgNo
= Arg
.getArgNo();
10114 SmallVector
<EVT
, 4> ValueVTs
;
10115 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
10116 bool isArgValueUsed
= !Arg
.use_empty();
10117 unsigned PartBase
= 0;
10118 Type
*FinalType
= Arg
.getType();
10119 if (Arg
.hasAttribute(Attribute::ByVal
))
10120 FinalType
= Arg
.getParamByValType();
10121 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
10122 FinalType
, F
.getCallingConv(), F
.isVarArg(), DL
);
10123 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
10124 Value
!= NumValues
; ++Value
) {
10125 EVT VT
= ValueVTs
[Value
];
10126 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
10127 ISD::ArgFlagsTy Flags
;
10130 if (Arg
.getType()->isPointerTy()) {
10131 Flags
.setPointer();
10132 Flags
.setPointerAddrSpace(
10133 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
10135 if (Arg
.hasAttribute(Attribute::ZExt
))
10137 if (Arg
.hasAttribute(Attribute::SExt
))
10139 if (Arg
.hasAttribute(Attribute::InReg
)) {
10140 // If we are using vectorcall calling convention, a structure that is
10141 // passed InReg - is surely an HVA
10142 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
10143 isa
<StructType
>(Arg
.getType())) {
10144 // The first value of a structure is marked
10146 Flags
.setHvaStart();
10152 if (Arg
.hasAttribute(Attribute::StructRet
))
10154 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
10155 Flags
.setSwiftSelf();
10156 if (Arg
.hasAttribute(Attribute::SwiftAsync
))
10157 Flags
.setSwiftAsync();
10158 if (Arg
.hasAttribute(Attribute::SwiftError
))
10159 Flags
.setSwiftError();
10160 if (Arg
.hasAttribute(Attribute::ByVal
))
10162 if (Arg
.hasAttribute(Attribute::ByRef
))
10164 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
10165 Flags
.setInAlloca();
10166 // Set the byval flag for CCAssignFn callbacks that don't know about
10167 // inalloca. This way we can know how many bytes we should've allocated
10168 // and how many bytes a callee cleanup function will pop. If we port
10169 // inalloca to more targets, we'll have to add custom inalloca handling
10170 // in the various CC lowering callbacks.
10173 if (Arg
.hasAttribute(Attribute::Preallocated
)) {
10174 Flags
.setPreallocated();
10175 // Set the byval flag for CCAssignFn callbacks that don't know about
10176 // preallocated. This way we can know how many bytes we should've
10177 // allocated and how many bytes a callee cleanup function will pop. If
10178 // we port preallocated to more targets, we'll have to add custom
10179 // preallocated handling in the various CC lowering callbacks.
10183 // Certain targets (such as MIPS), may have a different ABI alignment
10184 // for a type depending on the context. Give the target a chance to
10185 // specify the alignment it wants.
10186 const Align
OriginalAlignment(
10187 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
));
10188 Flags
.setOrigAlign(OriginalAlignment
);
10191 Type
*ArgMemTy
= nullptr;
10192 if (Flags
.isByVal() || Flags
.isInAlloca() || Flags
.isPreallocated() ||
10195 ArgMemTy
= Arg
.getPointeeInMemoryValueType();
10197 uint64_t MemSize
= DL
.getTypeAllocSize(ArgMemTy
);
10199 // For in-memory arguments, size and alignment should be passed from FE.
10200 // BE will guess if this info is not there but there are cases it cannot
10202 if (auto ParamAlign
= Arg
.getParamStackAlign())
10203 MemAlign
= *ParamAlign
;
10204 else if ((ParamAlign
= Arg
.getParamAlign()))
10205 MemAlign
= *ParamAlign
;
10207 MemAlign
= Align(TLI
->getByValTypeAlignment(ArgMemTy
, DL
));
10208 if (Flags
.isByRef())
10209 Flags
.setByRefSize(MemSize
);
10211 Flags
.setByValSize(MemSize
);
10212 } else if (auto ParamAlign
= Arg
.getParamStackAlign()) {
10213 MemAlign
= *ParamAlign
;
10215 MemAlign
= OriginalAlignment
;
10217 Flags
.setMemAlign(MemAlign
);
10219 if (Arg
.hasAttribute(Attribute::Nest
))
10222 Flags
.setInConsecutiveRegs();
10223 if (ArgCopyElisionCandidates
.count(&Arg
))
10224 Flags
.setCopyElisionCandidate();
10225 if (Arg
.hasAttribute(Attribute::Returned
))
10226 Flags
.setReturned();
10228 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
10229 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
10230 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
10231 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
10232 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
10233 // For scalable vectors, use the minimum size; individual targets
10234 // are responsible for handling scalable vector arguments and
10236 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
10237 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize().getKnownMinSize());
10238 if (NumRegs
> 1 && i
== 0)
10239 MyFlags
.Flags
.setSplit();
10240 // if it isn't first piece, alignment must be 1
10242 MyFlags
.Flags
.setOrigAlign(Align(1));
10243 if (i
== NumRegs
- 1)
10244 MyFlags
.Flags
.setSplitEnd();
10246 Ins
.push_back(MyFlags
);
10248 if (NeedsRegBlock
&& Value
== NumValues
- 1)
10249 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
10250 PartBase
+= VT
.getStoreSize().getKnownMinSize();
10254 // Call the target to set up the argument values.
10255 SmallVector
<SDValue
, 8> InVals
;
10256 SDValue NewRoot
= TLI
->LowerFormalArguments(
10257 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
10259 // Verify that the target's LowerFormalArguments behaved as expected.
10260 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
10261 "LowerFormalArguments didn't return a valid chain!");
10262 assert(InVals
.size() == Ins
.size() &&
10263 "LowerFormalArguments didn't emit the correct number of values!");
10265 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
10266 assert(InVals
[i
].getNode() &&
10267 "LowerFormalArguments emitted a null value!");
10268 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
10269 "LowerFormalArguments emitted a value with the wrong type!");
10273 // Update the DAG with the new chain value resulting from argument lowering.
10274 DAG
.setRoot(NewRoot
);
10276 // Set up the argument values.
10278 if (!FuncInfo
->CanLowerReturn
) {
10279 // Create a virtual register for the sret pointer, and put in a copy
10280 // from the sret argument into it.
10281 SmallVector
<EVT
, 1> ValueVTs
;
10282 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
10283 F
.getReturnType()->getPointerTo(
10284 DAG
.getDataLayout().getAllocaAddrSpace()),
10286 MVT VT
= ValueVTs
[0].getSimpleVT();
10287 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
10288 Optional
<ISD::NodeType
> AssertOp
= None
;
10289 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
10290 nullptr, F
.getCallingConv(), AssertOp
);
10292 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
10293 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
10295 RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
10296 FuncInfo
->DemoteRegister
= SRetReg
;
10298 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
10299 DAG
.setRoot(NewRoot
);
10301 // i indexes lowered arguments. Bump it past the hidden sret argument.
10305 SmallVector
<SDValue
, 4> Chains
;
10306 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
10307 for (const Argument
&Arg
: F
.args()) {
10308 SmallVector
<SDValue
, 4> ArgValues
;
10309 SmallVector
<EVT
, 4> ValueVTs
;
10310 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
10311 unsigned NumValues
= ValueVTs
.size();
10312 if (NumValues
== 0)
10315 bool ArgHasUses
= !Arg
.use_empty();
10317 // Elide the copying store if the target loaded this argument from a
10318 // suitable fixed stack object.
10319 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
10320 tryToElideArgumentCopy(*FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
10321 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
10322 InVals
[i
], ArgHasUses
);
10325 // If this argument is unused then remember its value. It is used to generate
10326 // debugging information.
10327 bool isSwiftErrorArg
=
10328 TLI
->supportSwiftError() &&
10329 Arg
.hasAttribute(Attribute::SwiftError
);
10330 if (!ArgHasUses
&& !isSwiftErrorArg
) {
10331 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
10333 // Also remember any frame index for use in FastISel.
10334 if (FrameIndexSDNode
*FI
=
10335 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
10336 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
10339 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
10340 EVT VT
= ValueVTs
[Val
];
10341 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
10342 F
.getCallingConv(), VT
);
10343 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
10344 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
10346 // Even an apparent 'unused' swifterror argument needs to be returned. So
10347 // we do generate a copy for it that can be used on return from the
10349 if (ArgHasUses
|| isSwiftErrorArg
) {
10350 Optional
<ISD::NodeType
> AssertOp
;
10351 if (Arg
.hasAttribute(Attribute::SExt
))
10352 AssertOp
= ISD::AssertSext
;
10353 else if (Arg
.hasAttribute(Attribute::ZExt
))
10354 AssertOp
= ISD::AssertZext
;
10356 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
10357 PartVT
, VT
, nullptr,
10358 F
.getCallingConv(), AssertOp
));
10364 // We don't need to do anything else for unused arguments.
10365 if (ArgValues
.empty())
10368 // Note down frame index.
10369 if (FrameIndexSDNode
*FI
=
10370 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
10371 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
10373 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
10374 SDB
->getCurSDLoc());
10376 SDB
->setValue(&Arg
, Res
);
10377 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
10378 // We want to associate the argument with the frame index, among
10379 // involved operands, that correspond to the lowest address. The
10380 // getCopyFromParts function, called earlier, is swapping the order of
10381 // the operands to BUILD_PAIR depending on endianness. The result of
10382 // that swapping is that the least significant bits of the argument will
10383 // be in the first operand of the BUILD_PAIR node, and the most
10384 // significant bits will be in the second operand.
10385 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
10386 if (LoadSDNode
*LNode
=
10387 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
10388 if (FrameIndexSDNode
*FI
=
10389 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
10390 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
10393 // Analyses past this point are naive and don't expect an assertion.
10394 if (Res
.getOpcode() == ISD::AssertZext
)
10395 Res
= Res
.getOperand(0);
10397 // Update the SwiftErrorVRegDefMap.
10398 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
10399 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
10400 if (Register::isVirtualRegister(Reg
))
10401 SwiftError
->setCurrentVReg(FuncInfo
->MBB
, SwiftError
->getFunctionArg(),
10405 // If this argument is live outside of the entry block, insert a copy from
10406 // wherever we got it to the vreg that other BB's will reference it as.
10407 if (Res
.getOpcode() == ISD::CopyFromReg
) {
10408 // If we can, though, try to skip creating an unnecessary vreg.
10409 // FIXME: This isn't very clean... it would be nice to make this more
10411 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
10412 if (Register::isVirtualRegister(Reg
)) {
10413 FuncInfo
->ValueMap
[&Arg
] = Reg
;
10417 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
10418 FuncInfo
->InitializeRegForValue(&Arg
);
10419 SDB
->CopyToExportRegsIfNeeded(&Arg
);
10423 if (!Chains
.empty()) {
10424 Chains
.push_back(NewRoot
);
10425 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
10428 DAG
.setRoot(NewRoot
);
10430 assert(i
== InVals
.size() && "Argument register count mismatch!");
10432 // If any argument copy elisions occurred and we have debug info, update the
10433 // stale frame indices used in the dbg.declare variable info table.
10434 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
10435 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
10436 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
10437 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
10438 if (I
!= ArgCopyElisionFrameIndexMap
.end())
10439 VI
.Slot
= I
->second
;
10443 // Finally, if the target has anything special to do, allow it to do so.
10444 emitFunctionEntryCode();
10447 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
10448 /// ensure constants are generated when needed. Remember the virtual registers
10449 /// that need to be added to the Machine PHI nodes as input. We cannot just
10450 /// directly add them, because expansion might result in multiple MBB's for one
10451 /// BB. As such, the start of the BB might correspond to a different MBB than
10454 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
10455 const Instruction
*TI
= LLVMBB
->getTerminator();
10457 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
10459 // Check PHI nodes in successors that expect a value to be available from this
10461 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
10462 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
10463 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
10464 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
10466 // If this terminator has multiple identical successors (common for
10467 // switches), only handle each succ once.
10468 if (!SuccsHandled
.insert(SuccMBB
).second
)
10471 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
10473 // At this point we know that there is a 1-1 correspondence between LLVM PHI
10474 // nodes and Machine PHI nodes, but the incoming operands have not been
10476 for (const PHINode
&PN
: SuccBB
->phis()) {
10477 // Ignore dead phi's.
10478 if (PN
.use_empty())
10481 // Skip empty types
10482 if (PN
.getType()->isEmptyTy())
10486 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
10488 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
10489 unsigned &RegOut
= ConstantsOut
[C
];
10491 RegOut
= FuncInfo
.CreateRegs(C
);
10492 CopyValueToVirtualRegister(C
, RegOut
);
10496 DenseMap
<const Value
*, Register
>::iterator I
=
10497 FuncInfo
.ValueMap
.find(PHIOp
);
10498 if (I
!= FuncInfo
.ValueMap
.end())
10501 assert(isa
<AllocaInst
>(PHIOp
) &&
10502 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
10503 "Didn't codegen value into a register!??");
10504 Reg
= FuncInfo
.CreateRegs(PHIOp
);
10505 CopyValueToVirtualRegister(PHIOp
, Reg
);
10509 // Remember that this register needs to added to the machine PHI node as
10510 // the input for this MBB.
10511 SmallVector
<EVT
, 4> ValueVTs
;
10512 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10513 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
10514 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
10515 EVT VT
= ValueVTs
[vti
];
10516 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
10517 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
10518 FuncInfo
.PHINodesToUpdate
.push_back(
10519 std::make_pair(&*MBBI
++, Reg
+ i
));
10520 Reg
+= NumRegisters
;
10525 ConstantsOut
.clear();
10528 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10530 MachineBasicBlock
*
10531 SelectionDAGBuilder::StackProtectorDescriptor::
10532 AddSuccessorMBB(const BasicBlock
*BB
,
10533 MachineBasicBlock
*ParentMBB
,
10535 MachineBasicBlock
*SuccMBB
) {
10536 // If SuccBB has not been created yet, create it.
10538 MachineFunction
*MF
= ParentMBB
->getParent();
10539 MachineFunction::iterator
BBI(ParentMBB
);
10540 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
10541 MF
->insert(++BBI
, SuccMBB
);
10543 // Add it as a successor of ParentMBB.
10544 ParentMBB
->addSuccessor(
10545 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
10549 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
10550 MachineFunction::iterator
I(MBB
);
10551 if (++I
== FuncInfo
.MF
->end())
10556 /// During lowering new call nodes can be created (such as memset, etc.).
10557 /// Those will become new roots of the current DAG, but complications arise
10558 /// when they are tail calls. In such cases, the call lowering will update
10559 /// the root, but the builder still needs to know that a tail call has been
10560 /// lowered in order to avoid generating an additional return.
10561 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
10562 // If the node is null, we do have a tail call.
10563 if (MaybeTC
.getNode() != nullptr)
10564 DAG
.setRoot(MaybeTC
);
10566 HasTailCall
= true;
10569 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
10570 MachineBasicBlock
*SwitchMBB
,
10571 MachineBasicBlock
*DefaultMBB
) {
10572 MachineFunction
*CurMF
= FuncInfo
.MF
;
10573 MachineBasicBlock
*NextMBB
= nullptr;
10574 MachineFunction::iterator
BBI(W
.MBB
);
10575 if (++BBI
!= FuncInfo
.MF
->end())
10578 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
10580 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10582 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
10583 // If any two of the cases has the same destination, and if one value
10584 // is the same as the other, but has one bit unset that the other has set,
10585 // use bit manipulation to do two compares at once. For example:
10586 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10587 // TODO: This could be extended to merge any 2 cases in switches with 3
10589 // TODO: Handle cases where W.CaseBB != SwitchBB.
10590 CaseCluster
&Small
= *W
.FirstCluster
;
10591 CaseCluster
&Big
= *W
.LastCluster
;
10593 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
10594 Small
.MBB
== Big
.MBB
) {
10595 const APInt
&SmallValue
= Small
.Low
->getValue();
10596 const APInt
&BigValue
= Big
.Low
->getValue();
10598 // Check that there is only one bit different.
10599 APInt CommonBit
= BigValue
^ SmallValue
;
10600 if (CommonBit
.isPowerOf2()) {
10601 SDValue CondLHS
= getValue(Cond
);
10602 EVT VT
= CondLHS
.getValueType();
10603 SDLoc DL
= getCurSDLoc();
10605 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
10606 DAG
.getConstant(CommonBit
, DL
, VT
));
10607 SDValue Cond
= DAG
.getSetCC(
10608 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
10611 // Update successor info.
10612 // Both Small and Big will jump to Small.BB, so we sum up the
10614 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
10616 addSuccessorWithProb(
10617 SwitchMBB
, DefaultMBB
,
10618 // The default destination is the first successor in IR.
10619 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10621 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10623 // Insert the true branch.
10625 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10626 DAG
.getBasicBlock(Small
.MBB
));
10627 // Insert the false branch.
10628 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10629 DAG
.getBasicBlock(DefaultMBB
));
10631 DAG
.setRoot(BrCond
);
10637 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10638 // Here, we order cases by probability so the most likely case will be
10639 // checked first. However, two clusters can have the same probability in
10640 // which case their relative ordering is non-deterministic. So we use Low
10641 // as a tie-breaker as clusters are guaranteed to never overlap.
10642 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10643 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10644 return a
.Prob
!= b
.Prob
?
10646 a
.Low
->getValue().slt(b
.Low
->getValue());
10649 // Rearrange the case blocks so that the last one falls through if possible
10650 // without changing the order of probabilities.
10651 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10653 if (I
->Prob
> W
.LastCluster
->Prob
)
10655 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10656 std::swap(*I
, *W
.LastCluster
);
10662 // Compute total probability.
10663 BranchProbability DefaultProb
= W
.DefaultProb
;
10664 BranchProbability UnhandledProbs
= DefaultProb
;
10665 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10666 UnhandledProbs
+= I
->Prob
;
10668 MachineBasicBlock
*CurMBB
= W
.MBB
;
10669 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10670 bool FallthroughUnreachable
= false;
10671 MachineBasicBlock
*Fallthrough
;
10672 if (I
== W
.LastCluster
) {
10673 // For the last cluster, fall through to the default destination.
10674 Fallthrough
= DefaultMBB
;
10675 FallthroughUnreachable
= isa
<UnreachableInst
>(
10676 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10678 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10679 CurMF
->insert(BBI
, Fallthrough
);
10680 // Put Cond in a virtual register to make it available from the new blocks.
10681 ExportFromCurrentBlock(Cond
);
10683 UnhandledProbs
-= I
->Prob
;
10686 case CC_JumpTable
: {
10687 // FIXME: Optimize away range check based on pivot comparisons.
10688 JumpTableHeader
*JTH
= &SL
->JTCases
[I
->JTCasesIndex
].first
;
10689 SwitchCG::JumpTable
*JT
= &SL
->JTCases
[I
->JTCasesIndex
].second
;
10691 // The jump block hasn't been inserted yet; insert it here.
10692 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10693 CurMF
->insert(BBI
, JumpMBB
);
10695 auto JumpProb
= I
->Prob
;
10696 auto FallthroughProb
= UnhandledProbs
;
10698 // If the default statement is a target of the jump table, we evenly
10699 // distribute the default probability to successors of CurMBB. Also
10700 // update the probability on the edge from JumpMBB to Fallthrough.
10701 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10702 SE
= JumpMBB
->succ_end();
10704 if (*SI
== DefaultMBB
) {
10705 JumpProb
+= DefaultProb
/ 2;
10706 FallthroughProb
-= DefaultProb
/ 2;
10707 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10708 JumpMBB
->normalizeSuccProbs();
10713 if (FallthroughUnreachable
) {
10714 // Skip the range check if the fallthrough block is unreachable.
10715 JTH
->OmitRangeCheck
= true;
10718 if (!JTH
->OmitRangeCheck
)
10719 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10720 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10721 CurMBB
->normalizeSuccProbs();
10723 // The jump table header will be inserted in our current block, do the
10724 // range check, and fall through to our fallthrough block.
10725 JTH
->HeaderBB
= CurMBB
;
10726 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10728 // If we're in the right place, emit the jump table header right now.
10729 if (CurMBB
== SwitchMBB
) {
10730 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10731 JTH
->Emitted
= true;
10735 case CC_BitTests
: {
10736 // FIXME: Optimize away range check based on pivot comparisons.
10737 BitTestBlock
*BTB
= &SL
->BitTestCases
[I
->BTCasesIndex
];
10739 // The bit test blocks haven't been inserted yet; insert them here.
10740 for (BitTestCase
&BTC
: BTB
->Cases
)
10741 CurMF
->insert(BBI
, BTC
.ThisBB
);
10743 // Fill in fields of the BitTestBlock.
10744 BTB
->Parent
= CurMBB
;
10745 BTB
->Default
= Fallthrough
;
10747 BTB
->DefaultProb
= UnhandledProbs
;
10748 // If the cases in bit test don't form a contiguous range, we evenly
10749 // distribute the probability on the edge to Fallthrough to two
10750 // successors of CurMBB.
10751 if (!BTB
->ContiguousRange
) {
10752 BTB
->Prob
+= DefaultProb
/ 2;
10753 BTB
->DefaultProb
-= DefaultProb
/ 2;
10756 if (FallthroughUnreachable
) {
10757 // Skip the range check if the fallthrough block is unreachable.
10758 BTB
->OmitRangeCheck
= true;
10761 // If we're in the right place, emit the bit test header right now.
10762 if (CurMBB
== SwitchMBB
) {
10763 visitBitTestHeader(*BTB
, SwitchMBB
);
10764 BTB
->Emitted
= true;
10769 const Value
*RHS
, *LHS
, *MHS
;
10771 if (I
->Low
== I
->High
) {
10772 // Check Cond == I->Low.
10778 // Check I->Low <= Cond <= I->High.
10785 // If Fallthrough is unreachable, fold away the comparison.
10786 if (FallthroughUnreachable
)
10789 // The false probability is the sum of all unhandled cases.
10790 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10791 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10793 if (CurMBB
== SwitchMBB
)
10794 visitSwitchCase(CB
, SwitchMBB
);
10796 SL
->SwitchCases
.push_back(CB
);
10801 CurMBB
= Fallthrough
;
10805 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10806 CaseClusterIt First
,
10807 CaseClusterIt Last
) {
10808 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10809 if (X
.Prob
!= CC
.Prob
)
10810 return X
.Prob
> CC
.Prob
;
10812 // Ties are broken by comparing the case value.
10813 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10817 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10818 const SwitchWorkListItem
&W
,
10820 MachineBasicBlock
*SwitchMBB
) {
10821 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10822 "Clusters not sorted?");
10824 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10826 // Balance the tree based on branch probabilities to create a near-optimal (in
10827 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10828 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10829 CaseClusterIt LastLeft
= W
.FirstCluster
;
10830 CaseClusterIt FirstRight
= W
.LastCluster
;
10831 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10832 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10834 // Move LastLeft and FirstRight towards each other from opposite directions to
10835 // find a partitioning of the clusters which balances the probability on both
10836 // sides. If LeftProb and RightProb are equal, alternate which side is
10837 // taken to ensure 0-probability nodes are distributed evenly.
10839 while (LastLeft
+ 1 < FirstRight
) {
10840 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10841 LeftProb
+= (++LastLeft
)->Prob
;
10843 RightProb
+= (--FirstRight
)->Prob
;
10848 // Our binary search tree differs from a typical BST in that ours can have up
10849 // to three values in each leaf. The pivot selection above doesn't take that
10850 // into account, which means the tree might require more nodes and be less
10851 // efficient. We compensate for this here.
10853 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10854 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10856 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10857 // If one side has less than 3 clusters, and the other has more than 3,
10858 // consider taking a cluster from the other side.
10860 if (NumLeft
< NumRight
) {
10861 // Consider moving the first cluster on the right to the left side.
10862 CaseCluster
&CC
= *FirstRight
;
10863 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10864 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10865 if (LeftSideRank
<= RightSideRank
) {
10866 // Moving the cluster to the left does not demote it.
10872 assert(NumRight
< NumLeft
);
10873 // Consider moving the last element on the left to the right side.
10874 CaseCluster
&CC
= *LastLeft
;
10875 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10876 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10877 if (RightSideRank
<= LeftSideRank
) {
10878 // Moving the cluster to the right does not demot it.
10888 assert(LastLeft
+ 1 == FirstRight
);
10889 assert(LastLeft
>= W
.FirstCluster
);
10890 assert(FirstRight
<= W
.LastCluster
);
10892 // Use the first element on the right as pivot since we will make less-than
10893 // comparisons against it.
10894 CaseClusterIt PivotCluster
= FirstRight
;
10895 assert(PivotCluster
> W
.FirstCluster
);
10896 assert(PivotCluster
<= W
.LastCluster
);
10898 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10899 CaseClusterIt LastRight
= W
.LastCluster
;
10901 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10903 // New blocks will be inserted immediately after the current one.
10904 MachineFunction::iterator
BBI(W
.MBB
);
10907 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10908 // we can branch to its destination directly if it's squeezed exactly in
10909 // between the known lower bound and Pivot - 1.
10910 MachineBasicBlock
*LeftMBB
;
10911 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10912 FirstLeft
->Low
== W
.GE
&&
10913 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10914 LeftMBB
= FirstLeft
->MBB
;
10916 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10917 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10918 WorkList
.push_back(
10919 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10920 // Put Cond in a virtual register to make it available from the new blocks.
10921 ExportFromCurrentBlock(Cond
);
10924 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10925 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10926 // directly if RHS.High equals the current upper bound.
10927 MachineBasicBlock
*RightMBB
;
10928 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10929 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10930 RightMBB
= FirstRight
->MBB
;
10932 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10933 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10934 WorkList
.push_back(
10935 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10936 // Put Cond in a virtual register to make it available from the new blocks.
10937 ExportFromCurrentBlock(Cond
);
10940 // Create the CaseBlock record that will be used to lower the branch.
10941 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10942 getCurSDLoc(), LeftProb
, RightProb
);
10944 if (W
.MBB
== SwitchMBB
)
10945 visitSwitchCase(CB
, SwitchMBB
);
10947 SL
->SwitchCases
.push_back(CB
);
10950 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10951 // from the swith statement.
10952 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10953 BranchProbability PeeledCaseProb
) {
10954 if (PeeledCaseProb
== BranchProbability::getOne())
10955 return BranchProbability::getZero();
10956 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10958 uint32_t Numerator
= CaseProb
.getNumerator();
10959 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10960 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10963 // Try to peel the top probability case if it exceeds the threshold.
10964 // Return current MachineBasicBlock for the switch statement if the peeling
10966 // If the peeling is performed, return the newly created MachineBasicBlock
10967 // for the peeled switch statement. Also update Clusters to remove the peeled
10968 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10969 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10970 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10971 BranchProbability
&PeeledCaseProb
) {
10972 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10973 // Don't perform if there is only one cluster or optimizing for size.
10974 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10975 TM
.getOptLevel() == CodeGenOpt::None
||
10976 SwitchMBB
->getParent()->getFunction().hasMinSize())
10979 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10980 unsigned PeeledCaseIndex
= 0;
10981 bool SwitchPeeled
= false;
10982 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10983 CaseCluster
&CC
= Clusters
[Index
];
10984 if (CC
.Prob
< TopCaseProb
)
10986 TopCaseProb
= CC
.Prob
;
10987 PeeledCaseIndex
= Index
;
10988 SwitchPeeled
= true;
10993 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10994 << TopCaseProb
<< "\n");
10996 // Record the MBB for the peeled switch statement.
10997 MachineFunction::iterator
BBI(SwitchMBB
);
10999 MachineBasicBlock
*PeeledSwitchMBB
=
11000 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
11001 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
11003 ExportFromCurrentBlock(SI
.getCondition());
11004 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
11005 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
11006 nullptr, nullptr, TopCaseProb
.getCompl()};
11007 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
11009 Clusters
.erase(PeeledCaseIt
);
11010 for (CaseCluster
&CC
: Clusters
) {
11012 dbgs() << "Scale the probablity for one cluster, before scaling: "
11013 << CC
.Prob
<< "\n");
11014 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
11015 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
11017 PeeledCaseProb
= TopCaseProb
;
11018 return PeeledSwitchMBB
;
11021 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
11022 // Extract cases from the switch.
11023 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
11024 CaseClusterVector Clusters
;
11025 Clusters
.reserve(SI
.getNumCases());
11026 for (auto I
: SI
.cases()) {
11027 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
11028 const ConstantInt
*CaseVal
= I
.getCaseValue();
11029 BranchProbability Prob
=
11030 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
11031 : BranchProbability(1, SI
.getNumCases() + 1);
11032 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
11035 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
11037 // Cluster adjacent cases with the same destination. We do this at all
11038 // optimization levels because it's cheap to do and will make codegen faster
11039 // if there are many clusters.
11040 sortAndRangeify(Clusters
);
11042 // The branch probablity of the peeled case.
11043 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
11044 MachineBasicBlock
*PeeledSwitchMBB
=
11045 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
11047 // If there is only the default destination, jump there directly.
11048 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
11049 if (Clusters
.empty()) {
11050 assert(PeeledSwitchMBB
== SwitchMBB
);
11051 SwitchMBB
->addSuccessor(DefaultMBB
);
11052 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
11053 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
11054 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
11059 SL
->findJumpTables(Clusters
, &SI
, DefaultMBB
, DAG
.getPSI(), DAG
.getBFI());
11060 SL
->findBitTestClusters(Clusters
, &SI
);
11063 dbgs() << "Case clusters: ";
11064 for (const CaseCluster
&C
: Clusters
) {
11065 if (C
.Kind
== CC_JumpTable
)
11067 if (C
.Kind
== CC_BitTests
)
11070 C
.Low
->getValue().print(dbgs(), true);
11071 if (C
.Low
!= C
.High
) {
11073 C
.High
->getValue().print(dbgs(), true);
11080 assert(!Clusters
.empty());
11081 SwitchWorkList WorkList
;
11082 CaseClusterIt First
= Clusters
.begin();
11083 CaseClusterIt Last
= Clusters
.end() - 1;
11084 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
11085 // Scale the branchprobability for DefaultMBB if the peel occurs and
11086 // DefaultMBB is not replaced.
11087 if (PeeledCaseProb
!= BranchProbability::getZero() &&
11088 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
11089 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
11090 WorkList
.push_back(
11091 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
11093 while (!WorkList
.empty()) {
11094 SwitchWorkListItem W
= WorkList
.pop_back_val();
11095 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
11097 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
11098 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
11099 // For optimized builds, lower large range as a balanced binary tree.
11100 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
11104 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);
11108 void SelectionDAGBuilder::visitStepVector(const CallInst
&I
) {
11109 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11110 auto DL
= getCurSDLoc();
11111 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
11112 setValue(&I
, DAG
.getStepVector(DL
, ResultVT
));
11115 void SelectionDAGBuilder::visitVectorReverse(const CallInst
&I
) {
11116 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11117 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
11119 SDLoc DL
= getCurSDLoc();
11120 SDValue V
= getValue(I
.getOperand(0));
11121 assert(VT
== V
.getValueType() && "Malformed vector.reverse!");
11123 if (VT
.isScalableVector()) {
11124 setValue(&I
, DAG
.getNode(ISD::VECTOR_REVERSE
, DL
, VT
, V
));
11128 // Use VECTOR_SHUFFLE for the fixed-length vector
11129 // to maintain existing behavior.
11130 SmallVector
<int, 8> Mask
;
11131 unsigned NumElts
= VT
.getVectorMinNumElements();
11132 for (unsigned i
= 0; i
!= NumElts
; ++i
)
11133 Mask
.push_back(NumElts
- 1 - i
);
11135 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, V
, DAG
.getUNDEF(VT
), Mask
));
11138 void SelectionDAGBuilder::visitFreeze(const FreezeInst
&I
) {
11139 SmallVector
<EVT
, 4> ValueVTs
;
11140 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
11142 unsigned NumValues
= ValueVTs
.size();
11143 if (NumValues
== 0) return;
11145 SmallVector
<SDValue
, 4> Values(NumValues
);
11146 SDValue Op
= getValue(I
.getOperand(0));
11148 for (unsigned i
= 0; i
!= NumValues
; ++i
)
11149 Values
[i
] = DAG
.getNode(ISD::FREEZE
, getCurSDLoc(), ValueVTs
[i
],
11150 SDValue(Op
.getNode(), Op
.getResNo() + i
));
11152 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
11153 DAG
.getVTList(ValueVTs
), Values
));
11156 void SelectionDAGBuilder::visitVectorSplice(const CallInst
&I
) {
11157 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
11158 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
11160 SDLoc DL
= getCurSDLoc();
11161 SDValue V1
= getValue(I
.getOperand(0));
11162 SDValue V2
= getValue(I
.getOperand(1));
11163 int64_t Imm
= cast
<ConstantInt
>(I
.getOperand(2))->getSExtValue();
11165 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11166 if (VT
.isScalableVector()) {
11167 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
11168 setValue(&I
, DAG
.getNode(ISD::VECTOR_SPLICE
, DL
, VT
, V1
, V2
,
11169 DAG
.getConstant(Imm
, DL
, IdxVT
)));
11173 unsigned NumElts
= VT
.getVectorNumElements();
11175 if ((-Imm
> NumElts
) || (Imm
>= NumElts
)) {
11176 // Result is undefined if immediate is out-of-bounds.
11177 setValue(&I
, DAG
.getUNDEF(VT
));
11181 uint64_t Idx
= (NumElts
+ Imm
) % NumElts
;
11183 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11184 SmallVector
<int, 8> Mask
;
11185 for (unsigned i
= 0; i
< NumElts
; ++i
)
11186 Mask
.push_back(Idx
+ i
);
11187 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, V1
, V2
, Mask
));