[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob4286be5a155928963c292389366f2a16ee80c7f0
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/Optional.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/BlockFrequencyInfo.h"
28 #include "llvm/Analysis/BranchProbabilityInfo.h"
29 #include "llvm/Analysis/ConstantFolding.h"
30 #include "llvm/Analysis/EHPersonalities.h"
31 #include "llvm/Analysis/Loads.h"
32 #include "llvm/Analysis/MemoryLocation.h"
33 #include "llvm/Analysis/ProfileSummaryInfo.h"
34 #include "llvm/Analysis/TargetLibraryInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/CodeGen/Analysis.h"
38 #include "llvm/CodeGen/FunctionLoweringInfo.h"
39 #include "llvm/CodeGen/GCMetadata.h"
40 #include "llvm/CodeGen/MachineBasicBlock.h"
41 #include "llvm/CodeGen/MachineFrameInfo.h"
42 #include "llvm/CodeGen/MachineFunction.h"
43 #include "llvm/CodeGen/MachineInstr.h"
44 #include "llvm/CodeGen/MachineInstrBuilder.h"
45 #include "llvm/CodeGen/MachineJumpTableInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/RuntimeLibcalls.h"
51 #include "llvm/CodeGen/SelectionDAG.h"
52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
53 #include "llvm/CodeGen/StackMaps.h"
54 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
55 #include "llvm/CodeGen/TargetFrameLowering.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/CodeGen/WinEHFuncInfo.h"
61 #include "llvm/IR/Argument.h"
62 #include "llvm/IR/Attributes.h"
63 #include "llvm/IR/BasicBlock.h"
64 #include "llvm/IR/CFG.h"
65 #include "llvm/IR/CallingConv.h"
66 #include "llvm/IR/Constant.h"
67 #include "llvm/IR/ConstantRange.h"
68 #include "llvm/IR/Constants.h"
69 #include "llvm/IR/DataLayout.h"
70 #include "llvm/IR/DebugInfoMetadata.h"
71 #include "llvm/IR/DerivedTypes.h"
72 #include "llvm/IR/Function.h"
73 #include "llvm/IR/GetElementPtrTypeIterator.h"
74 #include "llvm/IR/InlineAsm.h"
75 #include "llvm/IR/InstrTypes.h"
76 #include "llvm/IR/Instructions.h"
77 #include "llvm/IR/IntrinsicInst.h"
78 #include "llvm/IR/Intrinsics.h"
79 #include "llvm/IR/IntrinsicsAArch64.h"
80 #include "llvm/IR/IntrinsicsWebAssembly.h"
81 #include "llvm/IR/LLVMContext.h"
82 #include "llvm/IR/Metadata.h"
83 #include "llvm/IR/Module.h"
84 #include "llvm/IR/Operator.h"
85 #include "llvm/IR/PatternMatch.h"
86 #include "llvm/IR/Statepoint.h"
87 #include "llvm/IR/Type.h"
88 #include "llvm/IR/User.h"
89 #include "llvm/IR/Value.h"
90 #include "llvm/MC/MCContext.h"
91 #include "llvm/MC/MCSymbol.h"
92 #include "llvm/Support/AtomicOrdering.h"
93 #include "llvm/Support/Casting.h"
94 #include "llvm/Support/CommandLine.h"
95 #include "llvm/Support/Compiler.h"
96 #include "llvm/Support/Debug.h"
97 #include "llvm/Support/MathExtras.h"
98 #include "llvm/Support/raw_ostream.h"
99 #include "llvm/Target/TargetIntrinsicInfo.h"
100 #include "llvm/Target/TargetMachine.h"
101 #include "llvm/Target/TargetOptions.h"
102 #include "llvm/Transforms/Utils/Local.h"
103 #include <cstddef>
104 #include <cstring>
105 #include <iterator>
106 #include <limits>
107 #include <numeric>
108 #include <tuple>
110 using namespace llvm;
111 using namespace PatternMatch;
112 using namespace SwitchCG;
114 #define DEBUG_TYPE "isel"
116 /// LimitFloatPrecision - Generate low-precision inline sequences for
117 /// some float libcalls (6, 8 or 12 bits).
118 static unsigned LimitFloatPrecision;
120 static cl::opt<bool>
121 InsertAssertAlign("insert-assert-align", cl::init(true),
122 cl::desc("Insert the experimental `assertalign` node."),
123 cl::ReallyHidden);
125 static cl::opt<unsigned, true>
126 LimitFPPrecision("limit-float-precision",
127 cl::desc("Generate low-precision inline sequences "
128 "for some float libcalls"),
129 cl::location(LimitFloatPrecision), cl::Hidden,
130 cl::init(0));
132 static cl::opt<unsigned> SwitchPeelThreshold(
133 "switch-peel-threshold", cl::Hidden, cl::init(66),
134 cl::desc("Set the case probability threshold for peeling the case from a "
135 "switch statement. A value greater than 100 will void this "
136 "optimization"));
138 // Limit the width of DAG chains. This is important in general to prevent
139 // DAG-based analysis from blowing up. For example, alias analysis and
140 // load clustering may not complete in reasonable time. It is difficult to
141 // recognize and avoid this situation within each individual analysis, and
142 // future analyses are likely to have the same behavior. Limiting DAG width is
143 // the safe approach and will be especially important with global DAGs.
145 // MaxParallelChains default is arbitrarily high to avoid affecting
146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
147 // sequence over this should have been converted to llvm.memcpy by the
148 // frontend. It is easy to induce this behavior with .ll code such as:
149 // %buffer = alloca [4096 x i8]
150 // %data = load [4096 x i8]* %argPtr
151 // store [4096 x i8] %data, [4096 x i8]* %buffer
152 static const unsigned MaxParallelChains = 64;
154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
155 const SDValue *Parts, unsigned NumParts,
156 MVT PartVT, EVT ValueVT, const Value *V,
157 Optional<CallingConv::ID> CC);
159 /// getCopyFromParts - Create a value that contains the specified legal parts
160 /// combined into the value they represent. If the parts combine to a type
161 /// larger than ValueVT then AssertOp can be used to specify whether the extra
162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
163 /// (ISD::AssertSext).
164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
165 const SDValue *Parts, unsigned NumParts,
166 MVT PartVT, EVT ValueVT, const Value *V,
167 Optional<CallingConv::ID> CC = None,
168 Optional<ISD::NodeType> AssertOp = None) {
169 // Let the target assemble the parts if it wants to
170 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
172 PartVT, ValueVT, CC))
173 return Val;
175 if (ValueVT.isVector())
176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
177 CC);
179 assert(NumParts > 0 && "No parts to assemble!");
180 SDValue Val = Parts[0];
182 if (NumParts > 1) {
183 // Assemble the value from multiple parts.
184 if (ValueVT.isInteger()) {
185 unsigned PartBits = PartVT.getSizeInBits();
186 unsigned ValueBits = ValueVT.getSizeInBits();
188 // Assemble the power of 2 part.
189 unsigned RoundParts =
190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
191 unsigned RoundBits = PartBits * RoundParts;
192 EVT RoundVT = RoundBits == ValueBits ?
193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
194 SDValue Lo, Hi;
196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
198 if (RoundParts > 2) {
199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
200 PartVT, HalfVT, V);
201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
202 RoundParts / 2, PartVT, HalfVT, V);
203 } else {
204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
208 if (DAG.getDataLayout().isBigEndian())
209 std::swap(Lo, Hi);
211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
213 if (RoundParts < NumParts) {
214 // Assemble the trailing non-power-of-2 part.
215 unsigned OddParts = NumParts - RoundParts;
216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
218 OddVT, V, CC);
220 // Combine the round and odd parts.
221 Lo = Val;
222 if (DAG.getDataLayout().isBigEndian())
223 std::swap(Lo, Hi);
224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
226 Hi =
227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
228 DAG.getConstant(Lo.getValueSizeInBits(), DL,
229 TLI.getPointerTy(DAG.getDataLayout())));
230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
233 } else if (PartVT.isFloatingPoint()) {
234 // FP split into multiple FP parts (for ppcf128)
235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
236 "Unexpected split");
237 SDValue Lo, Hi;
238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
241 std::swap(Lo, Hi);
242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
243 } else {
244 // FP split into integer parts (soft fp)
245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
246 !PartVT.isVector() && "Unexpected split");
247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
252 // There is now one part, held in Val. Correct it to match ValueVT.
253 // PartEVT is the type of the register class that holds the value.
254 // ValueVT is the type of the inline asm operation.
255 EVT PartEVT = Val.getValueType();
257 if (PartEVT == ValueVT)
258 return Val;
260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
261 ValueVT.bitsLT(PartEVT)) {
262 // For an FP value in an integer part, we need to truncate to the right
263 // width first.
264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
268 // Handle types that have the same size.
269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
272 // Handle types with different sizes.
273 if (PartEVT.isInteger() && ValueVT.isInteger()) {
274 if (ValueVT.bitsLT(PartEVT)) {
275 // For a truncate, see if we have any information to
276 // indicate whether the truncated bits will always be
277 // zero or sign-extension.
278 if (AssertOp.hasValue())
279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
280 DAG.getValueType(ValueVT));
281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
287 // FP_ROUND's are always exact here.
288 if (ValueVT.bitsLT(Val.getValueType()))
289 return DAG.getNode(
290 ISD::FP_ROUND, DL, ValueVT, Val,
291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
297 // then truncating.
298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
299 ValueVT.bitsLT(PartEVT)) {
300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
304 report_fatal_error("Unknown mismatch in getCopyFromParts!");
307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
308 const Twine &ErrMsg) {
309 const Instruction *I = dyn_cast_or_null<Instruction>(V);
310 if (!V)
311 return Ctx.emitError(ErrMsg);
313 const char *AsmError = ", possible invalid constraint for vector type";
314 if (const CallInst *CI = dyn_cast<CallInst>(I))
315 if (CI->isInlineAsm())
316 return Ctx.emitError(I, ErrMsg + AsmError);
318 return Ctx.emitError(I, ErrMsg);
321 /// getCopyFromPartsVector - Create a value that contains the specified legal
322 /// parts combined into the value they represent. If the parts combine to a
323 /// type larger than ValueVT then AssertOp can be used to specify whether the
324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
325 /// ValueVT (ISD::AssertSext).
326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
327 const SDValue *Parts, unsigned NumParts,
328 MVT PartVT, EVT ValueVT, const Value *V,
329 Optional<CallingConv::ID> CallConv) {
330 assert(ValueVT.isVector() && "Not a vector value");
331 assert(NumParts > 0 && "No parts to assemble!");
332 const bool IsABIRegCopy = CallConv.hasValue();
334 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
335 SDValue Val = Parts[0];
337 // Handle a multi-element vector.
338 if (NumParts > 1) {
339 EVT IntermediateVT;
340 MVT RegisterVT;
341 unsigned NumIntermediates;
342 unsigned NumRegs;
344 if (IsABIRegCopy) {
345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
347 NumIntermediates, RegisterVT);
348 } else {
349 NumRegs =
350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
351 NumIntermediates, RegisterVT);
354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
355 NumParts = NumRegs; // Silence a compiler warning.
356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
357 assert(RegisterVT.getSizeInBits() ==
358 Parts[0].getSimpleValueType().getSizeInBits() &&
359 "Part type sizes don't match!");
361 // Assemble the parts into intermediate operands.
362 SmallVector<SDValue, 8> Ops(NumIntermediates);
363 if (NumIntermediates == NumParts) {
364 // If the register was not expanded, truncate or copy the value,
365 // as appropriate.
366 for (unsigned i = 0; i != NumParts; ++i)
367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
368 PartVT, IntermediateVT, V, CallConv);
369 } else if (NumParts > 0) {
370 // If the intermediate type was expanded, build the intermediate
371 // operands from the parts.
372 assert(NumParts % NumIntermediates == 0 &&
373 "Must expand into a divisible number of parts!");
374 unsigned Factor = NumParts / NumIntermediates;
375 for (unsigned i = 0; i != NumIntermediates; ++i)
376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
377 PartVT, IntermediateVT, V, CallConv);
380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
381 // intermediate operands.
382 EVT BuiltVectorTy =
383 IntermediateVT.isVector()
384 ? EVT::getVectorVT(
385 *DAG.getContext(), IntermediateVT.getScalarType(),
386 IntermediateVT.getVectorElementCount() * NumParts)
387 : EVT::getVectorVT(*DAG.getContext(),
388 IntermediateVT.getScalarType(),
389 NumIntermediates);
390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
391 : ISD::BUILD_VECTOR,
392 DL, BuiltVectorTy, Ops);
395 // There is now one part, held in Val. Correct it to match ValueVT.
396 EVT PartEVT = Val.getValueType();
398 if (PartEVT == ValueVT)
399 return Val;
401 if (PartEVT.isVector()) {
402 // Vector/Vector bitcast.
403 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
404 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
406 // If the element type of the source/dest vectors are the same, but the
407 // parts vector has more elements than the value vector, then we have a
408 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
409 // elements we want.
410 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
411 assert((PartEVT.getVectorElementCount().getKnownMinValue() >
412 ValueVT.getVectorElementCount().getKnownMinValue()) &&
413 (PartEVT.getVectorElementCount().isScalable() ==
414 ValueVT.getVectorElementCount().isScalable()) &&
415 "Cannot narrow, it would be a lossy transformation");
416 PartEVT =
417 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
418 ValueVT.getVectorElementCount());
419 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
420 DAG.getVectorIdxConstant(0, DL));
421 if (PartEVT == ValueVT)
422 return Val;
425 // Promoted vector extract
426 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429 // Trivial bitcast if the types are the same size and the destination
430 // vector type is legal.
431 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
432 TLI.isTypeLegal(ValueVT))
433 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435 if (ValueVT.getVectorNumElements() != 1) {
436 // Certain ABIs require that vectors are passed as integers. For vectors
437 // are the same size, this is an obvious bitcast.
438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
440 } else if (ValueVT.bitsLT(PartEVT)) {
441 const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
442 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
443 // Drop the extra bits.
444 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
445 return DAG.getBitcast(ValueVT, Val);
448 diagnosePossiblyInvalidConstraint(
449 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
450 return DAG.getUNDEF(ValueVT);
453 // Handle cases such as i8 -> <1 x i1>
454 EVT ValueSVT = ValueVT.getVectorElementType();
455 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
456 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits())
457 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
458 else
459 Val = ValueVT.isFloatingPoint()
460 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
461 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
464 return DAG.getBuildVector(ValueVT, DL, Val);
467 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
468 SDValue Val, SDValue *Parts, unsigned NumParts,
469 MVT PartVT, const Value *V,
470 Optional<CallingConv::ID> CallConv);
472 /// getCopyToParts - Create a series of nodes that contain the specified value
473 /// split into legal parts. If the parts contain more bits than Val, then, for
474 /// integers, ExtendKind can be used to specify how to generate the extra bits.
475 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
476 SDValue *Parts, unsigned NumParts, MVT PartVT,
477 const Value *V,
478 Optional<CallingConv::ID> CallConv = None,
479 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
480 // Let the target split the parts if it wants to
481 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
482 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
483 CallConv))
484 return;
485 EVT ValueVT = Val.getValueType();
487 // Handle the vector case separately.
488 if (ValueVT.isVector())
489 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
490 CallConv);
492 unsigned PartBits = PartVT.getSizeInBits();
493 unsigned OrigNumParts = NumParts;
494 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
495 "Copying to an illegal type!");
497 if (NumParts == 0)
498 return;
500 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
501 EVT PartEVT = PartVT;
502 if (PartEVT == ValueVT) {
503 assert(NumParts == 1 && "No-op copy with multiple parts!");
504 Parts[0] = Val;
505 return;
508 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
509 // If the parts cover more bits than the value has, promote the value.
510 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
511 assert(NumParts == 1 && "Do not know what to promote to!");
512 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
513 } else {
514 if (ValueVT.isFloatingPoint()) {
515 // FP values need to be bitcast, then extended if they are being put
516 // into a larger container.
517 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
518 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
520 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
521 ValueVT.isInteger() &&
522 "Unknown mismatch!");
523 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
524 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
525 if (PartVT == MVT::x86mmx)
526 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528 } else if (PartBits == ValueVT.getSizeInBits()) {
529 // Different types of the same size.
530 assert(NumParts == 1 && PartEVT != ValueVT);
531 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
532 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
533 // If the parts cover less bits than value has, truncate the value.
534 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
535 ValueVT.isInteger() &&
536 "Unknown mismatch!");
537 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
538 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
539 if (PartVT == MVT::x86mmx)
540 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
543 // The value may have changed - recompute ValueVT.
544 ValueVT = Val.getValueType();
545 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
546 "Failed to tile the value with PartVT!");
548 if (NumParts == 1) {
549 if (PartEVT != ValueVT) {
550 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
551 "scalar-to-vector conversion failed");
552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
555 Parts[0] = Val;
556 return;
559 // Expand the value into multiple parts.
560 if (NumParts & (NumParts - 1)) {
561 // The number of parts is not a power of 2. Split off and copy the tail.
562 assert(PartVT.isInteger() && ValueVT.isInteger() &&
563 "Do not know what to expand to!");
564 unsigned RoundParts = 1 << Log2_32(NumParts);
565 unsigned RoundBits = RoundParts * PartBits;
566 unsigned OddParts = NumParts - RoundParts;
567 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
568 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
570 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
571 CallConv);
573 if (DAG.getDataLayout().isBigEndian())
574 // The odd parts were reversed by getCopyToParts - unreverse them.
575 std::reverse(Parts + RoundParts, Parts + NumParts);
577 NumParts = RoundParts;
578 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
579 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
582 // The number of parts is a power of 2. Repeatedly bisect the value using
583 // EXTRACT_ELEMENT.
584 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
585 EVT::getIntegerVT(*DAG.getContext(),
586 ValueVT.getSizeInBits()),
587 Val);
589 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
590 for (unsigned i = 0; i < NumParts; i += StepSize) {
591 unsigned ThisBits = StepSize * PartBits / 2;
592 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
593 SDValue &Part0 = Parts[i];
594 SDValue &Part1 = Parts[i+StepSize/2];
596 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
597 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
598 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
599 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
601 if (ThisBits == PartBits && ThisVT != PartVT) {
602 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
603 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
608 if (DAG.getDataLayout().isBigEndian())
609 std::reverse(Parts, Parts + OrigNumParts);
612 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
613 const SDLoc &DL, EVT PartVT) {
614 if (!PartVT.isVector())
615 return SDValue();
617 EVT ValueVT = Val.getValueType();
618 ElementCount PartNumElts = PartVT.getVectorElementCount();
619 ElementCount ValueNumElts = ValueVT.getVectorElementCount();
621 // We only support widening vectors with equivalent element types and
622 // fixed/scalable properties. If a target needs to widen a fixed-length type
623 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
624 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
625 PartNumElts.isScalable() != ValueNumElts.isScalable() ||
626 PartVT.getVectorElementType() != ValueVT.getVectorElementType())
627 return SDValue();
629 // Widening a scalable vector to another scalable vector is done by inserting
630 // the vector into a larger undef one.
631 if (PartNumElts.isScalable())
632 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
633 Val, DAG.getVectorIdxConstant(0, DL));
635 EVT ElementVT = PartVT.getVectorElementType();
636 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
637 // undef elements.
638 SmallVector<SDValue, 16> Ops;
639 DAG.ExtractVectorElements(Val, Ops);
640 SDValue EltUndef = DAG.getUNDEF(ElementVT);
641 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
643 // FIXME: Use CONCAT for 2x -> 4x.
644 return DAG.getBuildVector(PartVT, DL, Ops);
647 /// getCopyToPartsVector - Create a series of nodes that contain the specified
648 /// value split into legal parts.
649 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
650 SDValue Val, SDValue *Parts, unsigned NumParts,
651 MVT PartVT, const Value *V,
652 Optional<CallingConv::ID> CallConv) {
653 EVT ValueVT = Val.getValueType();
654 assert(ValueVT.isVector() && "Not a vector");
655 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
656 const bool IsABIRegCopy = CallConv.hasValue();
658 if (NumParts == 1) {
659 EVT PartEVT = PartVT;
660 if (PartEVT == ValueVT) {
661 // Nothing to do.
662 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
663 // Bitconvert vector->vector case.
664 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
665 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
666 Val = Widened;
667 } else if (PartVT.isVector() &&
668 PartEVT.getVectorElementType().bitsGE(
669 ValueVT.getVectorElementType()) &&
670 PartEVT.getVectorElementCount() ==
671 ValueVT.getVectorElementCount()) {
673 // Promoted vector extract
674 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
675 } else {
676 if (ValueVT.getVectorElementCount().isScalar()) {
677 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
678 DAG.getVectorIdxConstant(0, DL));
679 } else {
680 uint64_t ValueSize = ValueVT.getFixedSizeInBits();
681 assert(PartVT.getFixedSizeInBits() > ValueSize &&
682 "lossy conversion of vector to scalar type");
683 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
684 Val = DAG.getBitcast(IntermediateType, Val);
685 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
689 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
690 Parts[0] = Val;
691 return;
694 // Handle a multi-element vector.
695 EVT IntermediateVT;
696 MVT RegisterVT;
697 unsigned NumIntermediates;
698 unsigned NumRegs;
699 if (IsABIRegCopy) {
700 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
701 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
702 NumIntermediates, RegisterVT);
703 } else {
704 NumRegs =
705 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
706 NumIntermediates, RegisterVT);
709 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
710 NumParts = NumRegs; // Silence a compiler warning.
711 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
713 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
714 "Mixing scalable and fixed vectors when copying in parts");
716 Optional<ElementCount> DestEltCnt;
718 if (IntermediateVT.isVector())
719 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
720 else
721 DestEltCnt = ElementCount::getFixed(NumIntermediates);
723 EVT BuiltVectorTy = EVT::getVectorVT(
724 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue());
726 if (ValueVT == BuiltVectorTy) {
727 // Nothing to do.
728 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
729 // Bitconvert vector->vector case.
730 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
731 } else {
732 if (BuiltVectorTy.getVectorElementType().bitsGT(
733 ValueVT.getVectorElementType())) {
734 // Integer promotion.
735 ValueVT = EVT::getVectorVT(*DAG.getContext(),
736 BuiltVectorTy.getVectorElementType(),
737 ValueVT.getVectorElementCount());
738 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
741 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
742 Val = Widened;
746 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
748 // Split the vector into intermediate operands.
749 SmallVector<SDValue, 8> Ops(NumIntermediates);
750 for (unsigned i = 0; i != NumIntermediates; ++i) {
751 if (IntermediateVT.isVector()) {
752 // This does something sensible for scalable vectors - see the
753 // definition of EXTRACT_SUBVECTOR for further details.
754 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
755 Ops[i] =
756 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
757 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
758 } else {
759 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
760 DAG.getVectorIdxConstant(i, DL));
764 // Split the intermediate operands into legal parts.
765 if (NumParts == NumIntermediates) {
766 // If the register was not expanded, promote or copy the value,
767 // as appropriate.
768 for (unsigned i = 0; i != NumParts; ++i)
769 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
770 } else if (NumParts > 0) {
771 // If the intermediate type was expanded, split each the value into
772 // legal parts.
773 assert(NumIntermediates != 0 && "division by zero");
774 assert(NumParts % NumIntermediates == 0 &&
775 "Must expand into a divisible number of parts!");
776 unsigned Factor = NumParts / NumIntermediates;
777 for (unsigned i = 0; i != NumIntermediates; ++i)
778 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
779 CallConv);
783 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
784 EVT valuevt, Optional<CallingConv::ID> CC)
785 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
786 RegCount(1, regs.size()), CallConv(CC) {}
788 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
789 const DataLayout &DL, unsigned Reg, Type *Ty,
790 Optional<CallingConv::ID> CC) {
791 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
793 CallConv = CC;
795 for (EVT ValueVT : ValueVTs) {
796 unsigned NumRegs =
797 isABIMangled()
798 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
799 : TLI.getNumRegisters(Context, ValueVT);
800 MVT RegisterVT =
801 isABIMangled()
802 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
803 : TLI.getRegisterType(Context, ValueVT);
804 for (unsigned i = 0; i != NumRegs; ++i)
805 Regs.push_back(Reg + i);
806 RegVTs.push_back(RegisterVT);
807 RegCount.push_back(NumRegs);
808 Reg += NumRegs;
812 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
813 FunctionLoweringInfo &FuncInfo,
814 const SDLoc &dl, SDValue &Chain,
815 SDValue *Flag, const Value *V) const {
816 // A Value with type {} or [0 x %t] needs no registers.
817 if (ValueVTs.empty())
818 return SDValue();
820 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
822 // Assemble the legal parts into the final values.
823 SmallVector<SDValue, 4> Values(ValueVTs.size());
824 SmallVector<SDValue, 8> Parts;
825 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
826 // Copy the legal parts from the registers.
827 EVT ValueVT = ValueVTs[Value];
828 unsigned NumRegs = RegCount[Value];
829 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
830 *DAG.getContext(),
831 CallConv.getValue(), RegVTs[Value])
832 : RegVTs[Value];
834 Parts.resize(NumRegs);
835 for (unsigned i = 0; i != NumRegs; ++i) {
836 SDValue P;
837 if (!Flag) {
838 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
839 } else {
840 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
841 *Flag = P.getValue(2);
844 Chain = P.getValue(1);
845 Parts[i] = P;
847 // If the source register was virtual and if we know something about it,
848 // add an assert node.
849 if (!Register::isVirtualRegister(Regs[Part + i]) ||
850 !RegisterVT.isInteger())
851 continue;
853 const FunctionLoweringInfo::LiveOutInfo *LOI =
854 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
855 if (!LOI)
856 continue;
858 unsigned RegSize = RegisterVT.getScalarSizeInBits();
859 unsigned NumSignBits = LOI->NumSignBits;
860 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
862 if (NumZeroBits == RegSize) {
863 // The current value is a zero.
864 // Explicitly express that as it would be easier for
865 // optimizations to kick in.
866 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
867 continue;
870 // FIXME: We capture more information than the dag can represent. For
871 // now, just use the tightest assertzext/assertsext possible.
872 bool isSExt;
873 EVT FromVT(MVT::Other);
874 if (NumZeroBits) {
875 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
876 isSExt = false;
877 } else if (NumSignBits > 1) {
878 FromVT =
879 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
880 isSExt = true;
881 } else {
882 continue;
884 // Add an assertion node.
885 assert(FromVT != MVT::Other);
886 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
887 RegisterVT, P, DAG.getValueType(FromVT));
890 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
891 RegisterVT, ValueVT, V, CallConv);
892 Part += NumRegs;
893 Parts.clear();
896 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
899 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
900 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
901 const Value *V,
902 ISD::NodeType PreferredExtendType) const {
903 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
904 ISD::NodeType ExtendKind = PreferredExtendType;
906 // Get the list of the values's legal parts.
907 unsigned NumRegs = Regs.size();
908 SmallVector<SDValue, 8> Parts(NumRegs);
909 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
910 unsigned NumParts = RegCount[Value];
912 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
913 *DAG.getContext(),
914 CallConv.getValue(), RegVTs[Value])
915 : RegVTs[Value];
917 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
918 ExtendKind = ISD::ZERO_EXTEND;
920 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
921 NumParts, RegisterVT, V, CallConv, ExtendKind);
922 Part += NumParts;
925 // Copy the parts into the registers.
926 SmallVector<SDValue, 8> Chains(NumRegs);
927 for (unsigned i = 0; i != NumRegs; ++i) {
928 SDValue Part;
929 if (!Flag) {
930 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
931 } else {
932 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
933 *Flag = Part.getValue(1);
936 Chains[i] = Part.getValue(0);
939 if (NumRegs == 1 || Flag)
940 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
941 // flagged to it. That is the CopyToReg nodes and the user are considered
942 // a single scheduling unit. If we create a TokenFactor and return it as
943 // chain, then the TokenFactor is both a predecessor (operand) of the
944 // user as well as a successor (the TF operands are flagged to the user).
945 // c1, f1 = CopyToReg
946 // c2, f2 = CopyToReg
947 // c3 = TokenFactor c1, c2
948 // ...
949 // = op c3, ..., f2
950 Chain = Chains[NumRegs-1];
951 else
952 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
955 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
956 unsigned MatchingIdx, const SDLoc &dl,
957 SelectionDAG &DAG,
958 std::vector<SDValue> &Ops) const {
959 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
961 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
962 if (HasMatching)
963 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
964 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
965 // Put the register class of the virtual registers in the flag word. That
966 // way, later passes can recompute register class constraints for inline
967 // assembly as well as normal instructions.
968 // Don't do this for tied operands that can use the regclass information
969 // from the def.
970 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
971 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
972 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
975 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
976 Ops.push_back(Res);
978 if (Code == InlineAsm::Kind_Clobber) {
979 // Clobbers should always have a 1:1 mapping with registers, and may
980 // reference registers that have illegal (e.g. vector) types. Hence, we
981 // shouldn't try to apply any sort of splitting logic to them.
982 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
983 "No 1:1 mapping from clobbers to regs?");
984 Register SP = TLI.getStackPointerRegisterToSaveRestore();
985 (void)SP;
986 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
987 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
988 assert(
989 (Regs[I] != SP ||
990 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
991 "If we clobbered the stack pointer, MFI should know about it.");
993 return;
996 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
997 MVT RegisterVT = RegVTs[Value];
998 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
999 RegisterVT);
1000 for (unsigned i = 0; i != NumRegs; ++i) {
1001 assert(Reg < Regs.size() && "Mismatch in # registers expected");
1002 unsigned TheReg = Regs[Reg++];
1003 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1008 SmallVector<std::pair<unsigned, TypeSize>, 4>
1009 RegsForValue::getRegsAndSizes() const {
1010 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1011 unsigned I = 0;
1012 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1013 unsigned RegCount = std::get<0>(CountAndVT);
1014 MVT RegisterVT = std::get<1>(CountAndVT);
1015 TypeSize RegisterSize = RegisterVT.getSizeInBits();
1016 for (unsigned E = I + RegCount; I != E; ++I)
1017 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1019 return OutVec;
1022 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1023 const TargetLibraryInfo *li) {
1024 AA = aa;
1025 GFI = gfi;
1026 LibInfo = li;
1027 DL = &DAG.getDataLayout();
1028 Context = DAG.getContext();
1029 LPadToCallSiteMap.clear();
1030 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1033 void SelectionDAGBuilder::clear() {
1034 NodeMap.clear();
1035 UnusedArgNodeMap.clear();
1036 PendingLoads.clear();
1037 PendingExports.clear();
1038 PendingConstrainedFP.clear();
1039 PendingConstrainedFPStrict.clear();
1040 CurInst = nullptr;
1041 HasTailCall = false;
1042 SDNodeOrder = LowestSDNodeOrder;
1043 StatepointLowering.clear();
1046 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1047 DanglingDebugInfoMap.clear();
1050 // Update DAG root to include dependencies on Pending chains.
1051 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1052 SDValue Root = DAG.getRoot();
1054 if (Pending.empty())
1055 return Root;
1057 // Add current root to PendingChains, unless we already indirectly
1058 // depend on it.
1059 if (Root.getOpcode() != ISD::EntryToken) {
1060 unsigned i = 0, e = Pending.size();
1061 for (; i != e; ++i) {
1062 assert(Pending[i].getNode()->getNumOperands() > 1);
1063 if (Pending[i].getNode()->getOperand(0) == Root)
1064 break; // Don't add the root if we already indirectly depend on it.
1067 if (i == e)
1068 Pending.push_back(Root);
1071 if (Pending.size() == 1)
1072 Root = Pending[0];
1073 else
1074 Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1076 DAG.setRoot(Root);
1077 Pending.clear();
1078 return Root;
1081 SDValue SelectionDAGBuilder::getMemoryRoot() {
1082 return updateRoot(PendingLoads);
1085 SDValue SelectionDAGBuilder::getRoot() {
1086 // Chain up all pending constrained intrinsics together with all
1087 // pending loads, by simply appending them to PendingLoads and
1088 // then calling getMemoryRoot().
1089 PendingLoads.reserve(PendingLoads.size() +
1090 PendingConstrainedFP.size() +
1091 PendingConstrainedFPStrict.size());
1092 PendingLoads.append(PendingConstrainedFP.begin(),
1093 PendingConstrainedFP.end());
1094 PendingLoads.append(PendingConstrainedFPStrict.begin(),
1095 PendingConstrainedFPStrict.end());
1096 PendingConstrainedFP.clear();
1097 PendingConstrainedFPStrict.clear();
1098 return getMemoryRoot();
1101 SDValue SelectionDAGBuilder::getControlRoot() {
1102 // We need to emit pending fpexcept.strict constrained intrinsics,
1103 // so append them to the PendingExports list.
1104 PendingExports.append(PendingConstrainedFPStrict.begin(),
1105 PendingConstrainedFPStrict.end());
1106 PendingConstrainedFPStrict.clear();
1107 return updateRoot(PendingExports);
1110 void SelectionDAGBuilder::visit(const Instruction &I) {
1111 // Set up outgoing PHI node register values before emitting the terminator.
1112 if (I.isTerminator()) {
1113 HandlePHINodesInSuccessorBlocks(I.getParent());
1116 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1117 if (!isa<DbgInfoIntrinsic>(I))
1118 ++SDNodeOrder;
1120 CurInst = &I;
1122 visit(I.getOpcode(), I);
1124 if (!I.isTerminator() && !HasTailCall &&
1125 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1126 CopyToExportRegsIfNeeded(&I);
1128 CurInst = nullptr;
1131 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1132 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1135 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1136 // Note: this doesn't use InstVisitor, because it has to work with
1137 // ConstantExpr's in addition to instructions.
1138 switch (Opcode) {
1139 default: llvm_unreachable("Unknown instruction type encountered!");
1140 // Build the switch statement using the Instruction.def file.
1141 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1142 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1143 #include "llvm/IR/Instruction.def"
1147 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1148 DebugLoc DL, unsigned Order) {
1149 // We treat variadic dbg_values differently at this stage.
1150 if (DI->hasArgList()) {
1151 // For variadic dbg_values we will now insert an undef.
1152 // FIXME: We can potentially recover these!
1153 SmallVector<SDDbgOperand, 2> Locs;
1154 for (const Value *V : DI->getValues()) {
1155 auto Undef = UndefValue::get(V->getType());
1156 Locs.push_back(SDDbgOperand::fromConst(Undef));
1158 SDDbgValue *SDV = DAG.getDbgValueList(
1159 DI->getVariable(), DI->getExpression(), Locs, {},
1160 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true);
1161 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1162 } else {
1163 // TODO: Dangling debug info will eventually either be resolved or produce
1164 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1165 // between the original dbg.value location and its resolved DBG_VALUE,
1166 // which we should ideally fill with an extra Undef DBG_VALUE.
1167 assert(DI->getNumVariableLocationOps() == 1 &&
1168 "DbgValueInst without an ArgList should have a single location "
1169 "operand.");
1170 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order);
1174 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1175 const DIExpression *Expr) {
1176 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1177 const DbgValueInst *DI = DDI.getDI();
1178 DIVariable *DanglingVariable = DI->getVariable();
1179 DIExpression *DanglingExpr = DI->getExpression();
1180 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1181 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1182 return true;
1184 return false;
1187 for (auto &DDIMI : DanglingDebugInfoMap) {
1188 DanglingDebugInfoVector &DDIV = DDIMI.second;
1190 // If debug info is to be dropped, run it through final checks to see
1191 // whether it can be salvaged.
1192 for (auto &DDI : DDIV)
1193 if (isMatchingDbgValue(DDI))
1194 salvageUnresolvedDbgValue(DDI);
1196 erase_if(DDIV, isMatchingDbgValue);
1200 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1201 // generate the debug data structures now that we've seen its definition.
1202 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1203 SDValue Val) {
1204 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1205 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1206 return;
1208 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1209 for (auto &DDI : DDIV) {
1210 const DbgValueInst *DI = DDI.getDI();
1211 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values");
1212 assert(DI && "Ill-formed DanglingDebugInfo");
1213 DebugLoc dl = DDI.getdl();
1214 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1215 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1216 DILocalVariable *Variable = DI->getVariable();
1217 DIExpression *Expr = DI->getExpression();
1218 assert(Variable->isValidLocationForIntrinsic(dl) &&
1219 "Expected inlined-at fields to agree");
1220 SDDbgValue *SDV;
1221 if (Val.getNode()) {
1222 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1223 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1224 // we couldn't resolve it directly when examining the DbgValue intrinsic
1225 // in the first place we should not be more successful here). Unless we
1226 // have some test case that prove this to be correct we should avoid
1227 // calling EmitFuncArgumentDbgValue here.
1228 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1229 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1230 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1231 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1232 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1233 // inserted after the definition of Val when emitting the instructions
1234 // after ISel. An alternative could be to teach
1235 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1236 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1237 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1238 << ValSDNodeOrder << "\n");
1239 SDV = getDbgValue(Val, Variable, Expr, dl,
1240 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1241 DAG.AddDbgValue(SDV, false);
1242 } else
1243 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1244 << "in EmitFuncArgumentDbgValue\n");
1245 } else {
1246 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1247 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1248 auto SDV =
1249 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1250 DAG.AddDbgValue(SDV, false);
1253 DDIV.clear();
1256 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1257 // TODO: For the variadic implementation, instead of only checking the fail
1258 // state of `handleDebugValue`, we need know specifically which values were
1259 // invalid, so that we attempt to salvage only those values when processing
1260 // a DIArgList.
1261 assert(!DDI.getDI()->hasArgList() &&
1262 "Not implemented for variadic dbg_values");
1263 Value *V = DDI.getDI()->getValue(0);
1264 DILocalVariable *Var = DDI.getDI()->getVariable();
1265 DIExpression *Expr = DDI.getDI()->getExpression();
1266 DebugLoc DL = DDI.getdl();
1267 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1268 unsigned SDOrder = DDI.getSDNodeOrder();
1269 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1270 // that DW_OP_stack_value is desired.
1271 assert(isa<DbgValueInst>(DDI.getDI()));
1272 bool StackValue = true;
1274 // Can this Value can be encoded without any further work?
1275 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false))
1276 return;
1278 // Attempt to salvage back through as many instructions as possible. Bail if
1279 // a non-instruction is seen, such as a constant expression or global
1280 // variable. FIXME: Further work could recover those too.
1281 while (isa<Instruction>(V)) {
1282 Instruction &VAsInst = *cast<Instruction>(V);
1283 // Temporary "0", awaiting real implementation.
1284 SmallVector<uint64_t, 16> Ops;
1285 SmallVector<Value *, 4> AdditionalValues;
1286 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1287 AdditionalValues);
1288 // If we cannot salvage any further, and haven't yet found a suitable debug
1289 // expression, bail out.
1290 if (!V)
1291 break;
1293 // TODO: If AdditionalValues isn't empty, then the salvage can only be
1294 // represented with a DBG_VALUE_LIST, so we give up. When we have support
1295 // here for variadic dbg_values, remove that condition.
1296 if (!AdditionalValues.empty())
1297 break;
1299 // New value and expr now represent this debuginfo.
1300 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1302 // Some kind of simplification occurred: check whether the operand of the
1303 // salvaged debug expression can be encoded in this DAG.
1304 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder,
1305 /*IsVariadic=*/false)) {
1306 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1307 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1308 return;
1312 // This was the final opportunity to salvage this debug information, and it
1313 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1314 // any earlier variable location.
1315 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType());
1316 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1317 DAG.AddDbgValue(SDV, false);
1319 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1320 << "\n");
1321 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1322 << "\n");
1325 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1326 DILocalVariable *Var,
1327 DIExpression *Expr, DebugLoc dl,
1328 DebugLoc InstDL, unsigned Order,
1329 bool IsVariadic) {
1330 if (Values.empty())
1331 return true;
1332 SmallVector<SDDbgOperand> LocationOps;
1333 SmallVector<SDNode *> Dependencies;
1334 for (const Value *V : Values) {
1335 // Constant value.
1336 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1337 isa<ConstantPointerNull>(V)) {
1338 LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1339 continue;
1342 // If the Value is a frame index, we can create a FrameIndex debug value
1343 // without relying on the DAG at all.
1344 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1345 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1346 if (SI != FuncInfo.StaticAllocaMap.end()) {
1347 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1348 continue;
1352 // Do not use getValue() in here; we don't want to generate code at
1353 // this point if it hasn't been done yet.
1354 SDValue N = NodeMap[V];
1355 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1356 N = UnusedArgNodeMap[V];
1357 if (N.getNode()) {
1358 // Only emit func arg dbg value for non-variadic dbg.values for now.
1359 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1360 return true;
1361 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1362 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1363 // describe stack slot locations.
1365 // Consider "int x = 0; int *px = &x;". There are two kinds of
1366 // interesting debug values here after optimization:
1368 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
1369 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1371 // Both describe the direct values of their associated variables.
1372 Dependencies.push_back(N.getNode());
1373 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1374 continue;
1376 LocationOps.emplace_back(
1377 SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1378 continue;
1381 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1382 // Special rules apply for the first dbg.values of parameter variables in a
1383 // function. Identify them by the fact they reference Argument Values, that
1384 // they're parameters, and they are parameters of the current function. We
1385 // need to let them dangle until they get an SDNode.
1386 bool IsParamOfFunc =
1387 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt();
1388 if (IsParamOfFunc)
1389 return false;
1391 // The value is not used in this block yet (or it would have an SDNode).
1392 // We still want the value to appear for the user if possible -- if it has
1393 // an associated VReg, we can refer to that instead.
1394 auto VMI = FuncInfo.ValueMap.find(V);
1395 if (VMI != FuncInfo.ValueMap.end()) {
1396 unsigned Reg = VMI->second;
1397 // If this is a PHI node, it may be split up into several MI PHI nodes
1398 // (in FunctionLoweringInfo::set).
1399 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1400 V->getType(), None);
1401 if (RFV.occupiesMultipleRegs()) {
1402 // FIXME: We could potentially support variadic dbg_values here.
1403 if (IsVariadic)
1404 return false;
1405 unsigned Offset = 0;
1406 unsigned BitsToDescribe = 0;
1407 if (auto VarSize = Var->getSizeInBits())
1408 BitsToDescribe = *VarSize;
1409 if (auto Fragment = Expr->getFragmentInfo())
1410 BitsToDescribe = Fragment->SizeInBits;
1411 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1412 // Bail out if all bits are described already.
1413 if (Offset >= BitsToDescribe)
1414 break;
1415 // TODO: handle scalable vectors.
1416 unsigned RegisterSize = RegAndSize.second;
1417 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1418 ? BitsToDescribe - Offset
1419 : RegisterSize;
1420 auto FragmentExpr = DIExpression::createFragmentExpression(
1421 Expr, Offset, FragmentSize);
1422 if (!FragmentExpr)
1423 continue;
1424 SDDbgValue *SDV = DAG.getVRegDbgValue(
1425 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder);
1426 DAG.AddDbgValue(SDV, false);
1427 Offset += RegisterSize;
1429 return true;
1431 // We can use simple vreg locations for variadic dbg_values as well.
1432 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1433 continue;
1435 // We failed to create a SDDbgOperand for V.
1436 return false;
1439 // We have created a SDDbgOperand for each Value in Values.
1440 // Should use Order instead of SDNodeOrder?
1441 assert(!LocationOps.empty());
1442 SDDbgValue *SDV =
1443 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1444 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic);
1445 DAG.AddDbgValue(SDV, /*isParameter=*/false);
1446 return true;
1449 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1450 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1451 for (auto &Pair : DanglingDebugInfoMap)
1452 for (auto &DDI : Pair.second)
1453 salvageUnresolvedDbgValue(DDI);
1454 clearDanglingDebugInfo();
1457 /// getCopyFromRegs - If there was virtual register allocated for the value V
1458 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1459 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1460 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1461 SDValue Result;
1463 if (It != FuncInfo.ValueMap.end()) {
1464 Register InReg = It->second;
1466 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1467 DAG.getDataLayout(), InReg, Ty,
1468 None); // This is not an ABI copy.
1469 SDValue Chain = DAG.getEntryNode();
1470 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1472 resolveDanglingDebugInfo(V, Result);
1475 return Result;
1478 /// getValue - Return an SDValue for the given Value.
1479 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1480 // If we already have an SDValue for this value, use it. It's important
1481 // to do this first, so that we don't create a CopyFromReg if we already
1482 // have a regular SDValue.
1483 SDValue &N = NodeMap[V];
1484 if (N.getNode()) return N;
1486 // If there's a virtual register allocated and initialized for this
1487 // value, use it.
1488 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1489 return copyFromReg;
1491 // Otherwise create a new SDValue and remember it.
1492 SDValue Val = getValueImpl(V);
1493 NodeMap[V] = Val;
1494 resolveDanglingDebugInfo(V, Val);
1495 return Val;
1498 /// getNonRegisterValue - Return an SDValue for the given Value, but
1499 /// don't look in FuncInfo.ValueMap for a virtual register.
1500 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1501 // If we already have an SDValue for this value, use it.
1502 SDValue &N = NodeMap[V];
1503 if (N.getNode()) {
1504 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1505 // Remove the debug location from the node as the node is about to be used
1506 // in a location which may differ from the original debug location. This
1507 // is relevant to Constant and ConstantFP nodes because they can appear
1508 // as constant expressions inside PHI nodes.
1509 N->setDebugLoc(DebugLoc());
1511 return N;
1514 // Otherwise create a new SDValue and remember it.
1515 SDValue Val = getValueImpl(V);
1516 NodeMap[V] = Val;
1517 resolveDanglingDebugInfo(V, Val);
1518 return Val;
1521 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1522 /// Create an SDValue for the given value.
1523 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1524 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1526 if (const Constant *C = dyn_cast<Constant>(V)) {
1527 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1529 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1530 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1532 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1533 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1535 if (isa<ConstantPointerNull>(C)) {
1536 unsigned AS = V->getType()->getPointerAddressSpace();
1537 return DAG.getConstant(0, getCurSDLoc(),
1538 TLI.getPointerTy(DAG.getDataLayout(), AS));
1541 if (match(C, m_VScale(DAG.getDataLayout())))
1542 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1544 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1545 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1547 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1548 return DAG.getUNDEF(VT);
1550 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1551 visit(CE->getOpcode(), *CE);
1552 SDValue N1 = NodeMap[V];
1553 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1554 return N1;
1557 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1558 SmallVector<SDValue, 4> Constants;
1559 for (const Use &U : C->operands()) {
1560 SDNode *Val = getValue(U).getNode();
1561 // If the operand is an empty aggregate, there are no values.
1562 if (!Val) continue;
1563 // Add each leaf value from the operand to the Constants list
1564 // to form a flattened list of all the values.
1565 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1566 Constants.push_back(SDValue(Val, i));
1569 return DAG.getMergeValues(Constants, getCurSDLoc());
1572 if (const ConstantDataSequential *CDS =
1573 dyn_cast<ConstantDataSequential>(C)) {
1574 SmallVector<SDValue, 4> Ops;
1575 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1576 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1577 // Add each leaf value from the operand to the Constants list
1578 // to form a flattened list of all the values.
1579 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1580 Ops.push_back(SDValue(Val, i));
1583 if (isa<ArrayType>(CDS->getType()))
1584 return DAG.getMergeValues(Ops, getCurSDLoc());
1585 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1588 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1589 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1590 "Unknown struct or array constant!");
1592 SmallVector<EVT, 4> ValueVTs;
1593 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1594 unsigned NumElts = ValueVTs.size();
1595 if (NumElts == 0)
1596 return SDValue(); // empty struct
1597 SmallVector<SDValue, 4> Constants(NumElts);
1598 for (unsigned i = 0; i != NumElts; ++i) {
1599 EVT EltVT = ValueVTs[i];
1600 if (isa<UndefValue>(C))
1601 Constants[i] = DAG.getUNDEF(EltVT);
1602 else if (EltVT.isFloatingPoint())
1603 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1604 else
1605 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1608 return DAG.getMergeValues(Constants, getCurSDLoc());
1611 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1612 return DAG.getBlockAddress(BA, VT);
1614 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1615 return getValue(Equiv->getGlobalValue());
1617 VectorType *VecTy = cast<VectorType>(V->getType());
1619 // Now that we know the number and type of the elements, get that number of
1620 // elements into the Ops array based on what kind of constant it is.
1621 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1622 SmallVector<SDValue, 16> Ops;
1623 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1624 for (unsigned i = 0; i != NumElements; ++i)
1625 Ops.push_back(getValue(CV->getOperand(i)));
1627 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1628 } else if (isa<ConstantAggregateZero>(C)) {
1629 EVT EltVT =
1630 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1632 SDValue Op;
1633 if (EltVT.isFloatingPoint())
1634 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1635 else
1636 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1638 if (isa<ScalableVectorType>(VecTy))
1639 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op);
1640 else {
1641 SmallVector<SDValue, 16> Ops;
1642 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op);
1643 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1646 llvm_unreachable("Unknown vector constant");
1649 // If this is a static alloca, generate it as the frameindex instead of
1650 // computation.
1651 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1652 DenseMap<const AllocaInst*, int>::iterator SI =
1653 FuncInfo.StaticAllocaMap.find(AI);
1654 if (SI != FuncInfo.StaticAllocaMap.end())
1655 return DAG.getFrameIndex(SI->second,
1656 TLI.getFrameIndexTy(DAG.getDataLayout()));
1659 // If this is an instruction which fast-isel has deferred, select it now.
1660 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1661 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1663 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1664 Inst->getType(), None);
1665 SDValue Chain = DAG.getEntryNode();
1666 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1669 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) {
1670 return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1672 llvm_unreachable("Can't get register for value!");
1675 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1676 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1677 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1678 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1679 bool IsSEH = isAsynchronousEHPersonality(Pers);
1680 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1681 if (!IsSEH)
1682 CatchPadMBB->setIsEHScopeEntry();
1683 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1684 if (IsMSVCCXX || IsCoreCLR)
1685 CatchPadMBB->setIsEHFuncletEntry();
1688 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1689 // Update machine-CFG edge.
1690 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1691 FuncInfo.MBB->addSuccessor(TargetMBB);
1692 TargetMBB->setIsEHCatchretTarget(true);
1693 DAG.getMachineFunction().setHasEHCatchret(true);
1695 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1696 bool IsSEH = isAsynchronousEHPersonality(Pers);
1697 if (IsSEH) {
1698 // If this is not a fall-through branch or optimizations are switched off,
1699 // emit the branch.
1700 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1701 TM.getOptLevel() == CodeGenOpt::None)
1702 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1703 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1704 return;
1707 // Figure out the funclet membership for the catchret's successor.
1708 // This will be used by the FuncletLayout pass to determine how to order the
1709 // BB's.
1710 // A 'catchret' returns to the outer scope's color.
1711 Value *ParentPad = I.getCatchSwitchParentPad();
1712 const BasicBlock *SuccessorColor;
1713 if (isa<ConstantTokenNone>(ParentPad))
1714 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1715 else
1716 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1717 assert(SuccessorColor && "No parent funclet for catchret!");
1718 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1719 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1721 // Create the terminator node.
1722 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1723 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1724 DAG.getBasicBlock(SuccessorColorMBB));
1725 DAG.setRoot(Ret);
1728 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1729 // Don't emit any special code for the cleanuppad instruction. It just marks
1730 // the start of an EH scope/funclet.
1731 FuncInfo.MBB->setIsEHScopeEntry();
1732 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1733 if (Pers != EHPersonality::Wasm_CXX) {
1734 FuncInfo.MBB->setIsEHFuncletEntry();
1735 FuncInfo.MBB->setIsCleanupFuncletEntry();
1739 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1740 // not match, it is OK to add only the first unwind destination catchpad to the
1741 // successors, because there will be at least one invoke instruction within the
1742 // catch scope that points to the next unwind destination, if one exists, so
1743 // CFGSort cannot mess up with BB sorting order.
1744 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1745 // call within them, and catchpads only consisting of 'catch (...)' have a
1746 // '__cxa_end_catch' call within them, both of which generate invokes in case
1747 // the next unwind destination exists, i.e., the next unwind destination is not
1748 // the caller.)
1750 // Having at most one EH pad successor is also simpler and helps later
1751 // transformations.
1753 // For example,
1754 // current:
1755 // invoke void @foo to ... unwind label %catch.dispatch
1756 // catch.dispatch:
1757 // %0 = catchswitch within ... [label %catch.start] unwind label %next
1758 // catch.start:
1759 // ...
1760 // ... in this BB or some other child BB dominated by this BB there will be an
1761 // invoke that points to 'next' BB as an unwind destination
1763 // next: ; We don't need to add this to 'current' BB's successor
1764 // ...
1765 static void findWasmUnwindDestinations(
1766 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1767 BranchProbability Prob,
1768 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1769 &UnwindDests) {
1770 while (EHPadBB) {
1771 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1772 if (isa<CleanupPadInst>(Pad)) {
1773 // Stop on cleanup pads.
1774 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1775 UnwindDests.back().first->setIsEHScopeEntry();
1776 break;
1777 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1778 // Add the catchpad handlers to the possible destinations. We don't
1779 // continue to the unwind destination of the catchswitch for wasm.
1780 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1781 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1782 UnwindDests.back().first->setIsEHScopeEntry();
1784 break;
1785 } else {
1786 continue;
1791 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1792 /// many places it could ultimately go. In the IR, we have a single unwind
1793 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1794 /// This function skips over imaginary basic blocks that hold catchswitch
1795 /// instructions, and finds all the "real" machine
1796 /// basic block destinations. As those destinations may not be successors of
1797 /// EHPadBB, here we also calculate the edge probability to those destinations.
1798 /// The passed-in Prob is the edge probability to EHPadBB.
1799 static void findUnwindDestinations(
1800 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1801 BranchProbability Prob,
1802 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1803 &UnwindDests) {
1804 EHPersonality Personality =
1805 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1806 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1807 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1808 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1809 bool IsSEH = isAsynchronousEHPersonality(Personality);
1811 if (IsWasmCXX) {
1812 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1813 assert(UnwindDests.size() <= 1 &&
1814 "There should be at most one unwind destination for wasm");
1815 return;
1818 while (EHPadBB) {
1819 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1820 BasicBlock *NewEHPadBB = nullptr;
1821 if (isa<LandingPadInst>(Pad)) {
1822 // Stop on landingpads. They are not funclets.
1823 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1824 break;
1825 } else if (isa<CleanupPadInst>(Pad)) {
1826 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1827 // personalities.
1828 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1829 UnwindDests.back().first->setIsEHScopeEntry();
1830 UnwindDests.back().first->setIsEHFuncletEntry();
1831 break;
1832 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1833 // Add the catchpad handlers to the possible destinations.
1834 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1835 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1836 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1837 if (IsMSVCCXX || IsCoreCLR)
1838 UnwindDests.back().first->setIsEHFuncletEntry();
1839 if (!IsSEH)
1840 UnwindDests.back().first->setIsEHScopeEntry();
1842 NewEHPadBB = CatchSwitch->getUnwindDest();
1843 } else {
1844 continue;
1847 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1848 if (BPI && NewEHPadBB)
1849 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1850 EHPadBB = NewEHPadBB;
1854 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1855 // Update successor info.
1856 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1857 auto UnwindDest = I.getUnwindDest();
1858 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1859 BranchProbability UnwindDestProb =
1860 (BPI && UnwindDest)
1861 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1862 : BranchProbability::getZero();
1863 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1864 for (auto &UnwindDest : UnwindDests) {
1865 UnwindDest.first->setIsEHPad();
1866 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1868 FuncInfo.MBB->normalizeSuccProbs();
1870 // Create the terminator node.
1871 SDValue Ret =
1872 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1873 DAG.setRoot(Ret);
1876 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1877 report_fatal_error("visitCatchSwitch not yet implemented!");
1880 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1881 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1882 auto &DL = DAG.getDataLayout();
1883 SDValue Chain = getControlRoot();
1884 SmallVector<ISD::OutputArg, 8> Outs;
1885 SmallVector<SDValue, 8> OutVals;
1887 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1888 // lower
1890 // %val = call <ty> @llvm.experimental.deoptimize()
1891 // ret <ty> %val
1893 // differently.
1894 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1895 LowerDeoptimizingReturn();
1896 return;
1899 if (!FuncInfo.CanLowerReturn) {
1900 unsigned DemoteReg = FuncInfo.DemoteRegister;
1901 const Function *F = I.getParent()->getParent();
1903 // Emit a store of the return value through the virtual register.
1904 // Leave Outs empty so that LowerReturn won't try to load return
1905 // registers the usual way.
1906 SmallVector<EVT, 1> PtrValueVTs;
1907 ComputeValueVTs(TLI, DL,
1908 F->getReturnType()->getPointerTo(
1909 DAG.getDataLayout().getAllocaAddrSpace()),
1910 PtrValueVTs);
1912 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1913 DemoteReg, PtrValueVTs[0]);
1914 SDValue RetOp = getValue(I.getOperand(0));
1916 SmallVector<EVT, 4> ValueVTs, MemVTs;
1917 SmallVector<uint64_t, 4> Offsets;
1918 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1919 &Offsets);
1920 unsigned NumValues = ValueVTs.size();
1922 SmallVector<SDValue, 4> Chains(NumValues);
1923 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1924 for (unsigned i = 0; i != NumValues; ++i) {
1925 // An aggregate return value cannot wrap around the address space, so
1926 // offsets to its parts don't wrap either.
1927 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
1928 TypeSize::Fixed(Offsets[i]));
1930 SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1931 if (MemVTs[i] != ValueVTs[i])
1932 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1933 Chains[i] = DAG.getStore(
1934 Chain, getCurSDLoc(), Val,
1935 // FIXME: better loc info would be nice.
1936 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
1937 commonAlignment(BaseAlign, Offsets[i]));
1940 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1941 MVT::Other, Chains);
1942 } else if (I.getNumOperands() != 0) {
1943 SmallVector<EVT, 4> ValueVTs;
1944 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1945 unsigned NumValues = ValueVTs.size();
1946 if (NumValues) {
1947 SDValue RetOp = getValue(I.getOperand(0));
1949 const Function *F = I.getParent()->getParent();
1951 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1952 I.getOperand(0)->getType(), F->getCallingConv(),
1953 /*IsVarArg*/ false, DL);
1955 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1956 if (F->getAttributes().hasRetAttr(Attribute::SExt))
1957 ExtendKind = ISD::SIGN_EXTEND;
1958 else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
1959 ExtendKind = ISD::ZERO_EXTEND;
1961 LLVMContext &Context = F->getContext();
1962 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
1964 for (unsigned j = 0; j != NumValues; ++j) {
1965 EVT VT = ValueVTs[j];
1967 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1968 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1970 CallingConv::ID CC = F->getCallingConv();
1972 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1973 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1974 SmallVector<SDValue, 4> Parts(NumParts);
1975 getCopyToParts(DAG, getCurSDLoc(),
1976 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1977 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1979 // 'inreg' on function refers to return value
1980 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1981 if (RetInReg)
1982 Flags.setInReg();
1984 if (I.getOperand(0)->getType()->isPointerTy()) {
1985 Flags.setPointer();
1986 Flags.setPointerAddrSpace(
1987 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1990 if (NeedsRegBlock) {
1991 Flags.setInConsecutiveRegs();
1992 if (j == NumValues - 1)
1993 Flags.setInConsecutiveRegsLast();
1996 // Propagate extension type if any
1997 if (ExtendKind == ISD::SIGN_EXTEND)
1998 Flags.setSExt();
1999 else if (ExtendKind == ISD::ZERO_EXTEND)
2000 Flags.setZExt();
2002 for (unsigned i = 0; i < NumParts; ++i) {
2003 Outs.push_back(ISD::OutputArg(Flags,
2004 Parts[i].getValueType().getSimpleVT(),
2005 VT, /*isfixed=*/true, 0, 0));
2006 OutVals.push_back(Parts[i]);
2012 // Push in swifterror virtual register as the last element of Outs. This makes
2013 // sure swifterror virtual register will be returned in the swifterror
2014 // physical register.
2015 const Function *F = I.getParent()->getParent();
2016 if (TLI.supportSwiftError() &&
2017 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2018 assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2019 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2020 Flags.setSwiftError();
2021 Outs.push_back(ISD::OutputArg(
2022 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2023 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2024 // Create SDNode for the swifterror virtual register.
2025 OutVals.push_back(
2026 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2027 &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2028 EVT(TLI.getPointerTy(DL))));
2031 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2032 CallingConv::ID CallConv =
2033 DAG.getMachineFunction().getFunction().getCallingConv();
2034 Chain = DAG.getTargetLoweringInfo().LowerReturn(
2035 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2037 // Verify that the target's LowerReturn behaved as expected.
2038 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2039 "LowerReturn didn't return a valid chain!");
2041 // Update the DAG with the new chain value resulting from return lowering.
2042 DAG.setRoot(Chain);
2045 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2046 /// created for it, emit nodes to copy the value into the virtual
2047 /// registers.
2048 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2049 // Skip empty types
2050 if (V->getType()->isEmptyTy())
2051 return;
2053 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2054 if (VMI != FuncInfo.ValueMap.end()) {
2055 assert(!V->use_empty() && "Unused value assigned virtual registers!");
2056 CopyValueToVirtualRegister(V, VMI->second);
2060 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2061 /// the current basic block, add it to ValueMap now so that we'll get a
2062 /// CopyTo/FromReg.
2063 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2064 // No need to export constants.
2065 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2067 // Already exported?
2068 if (FuncInfo.isExportedInst(V)) return;
2070 unsigned Reg = FuncInfo.InitializeRegForValue(V);
2071 CopyValueToVirtualRegister(V, Reg);
2074 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2075 const BasicBlock *FromBB) {
2076 // The operands of the setcc have to be in this block. We don't know
2077 // how to export them from some other block.
2078 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2079 // Can export from current BB.
2080 if (VI->getParent() == FromBB)
2081 return true;
2083 // Is already exported, noop.
2084 return FuncInfo.isExportedInst(V);
2087 // If this is an argument, we can export it if the BB is the entry block or
2088 // if it is already exported.
2089 if (isa<Argument>(V)) {
2090 if (FromBB->isEntryBlock())
2091 return true;
2093 // Otherwise, can only export this if it is already exported.
2094 return FuncInfo.isExportedInst(V);
2097 // Otherwise, constants can always be exported.
2098 return true;
2101 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2102 BranchProbability
2103 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2104 const MachineBasicBlock *Dst) const {
2105 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2106 const BasicBlock *SrcBB = Src->getBasicBlock();
2107 const BasicBlock *DstBB = Dst->getBasicBlock();
2108 if (!BPI) {
2109 // If BPI is not available, set the default probability as 1 / N, where N is
2110 // the number of successors.
2111 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2112 return BranchProbability(1, SuccSize);
2114 return BPI->getEdgeProbability(SrcBB, DstBB);
2117 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2118 MachineBasicBlock *Dst,
2119 BranchProbability Prob) {
2120 if (!FuncInfo.BPI)
2121 Src->addSuccessorWithoutProb(Dst);
2122 else {
2123 if (Prob.isUnknown())
2124 Prob = getEdgeProbability(Src, Dst);
2125 Src->addSuccessor(Dst, Prob);
2129 static bool InBlock(const Value *V, const BasicBlock *BB) {
2130 if (const Instruction *I = dyn_cast<Instruction>(V))
2131 return I->getParent() == BB;
2132 return true;
2135 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2136 /// This function emits a branch and is used at the leaves of an OR or an
2137 /// AND operator tree.
2138 void
2139 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2140 MachineBasicBlock *TBB,
2141 MachineBasicBlock *FBB,
2142 MachineBasicBlock *CurBB,
2143 MachineBasicBlock *SwitchBB,
2144 BranchProbability TProb,
2145 BranchProbability FProb,
2146 bool InvertCond) {
2147 const BasicBlock *BB = CurBB->getBasicBlock();
2149 // If the leaf of the tree is a comparison, merge the condition into
2150 // the caseblock.
2151 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2152 // The operands of the cmp have to be in this block. We don't know
2153 // how to export them from some other block. If this is the first block
2154 // of the sequence, no exporting is needed.
2155 if (CurBB == SwitchBB ||
2156 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2157 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2158 ISD::CondCode Condition;
2159 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2160 ICmpInst::Predicate Pred =
2161 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2162 Condition = getICmpCondCode(Pred);
2163 } else {
2164 const FCmpInst *FC = cast<FCmpInst>(Cond);
2165 FCmpInst::Predicate Pred =
2166 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2167 Condition = getFCmpCondCode(Pred);
2168 if (TM.Options.NoNaNsFPMath)
2169 Condition = getFCmpCodeWithoutNaN(Condition);
2172 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2173 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2174 SL->SwitchCases.push_back(CB);
2175 return;
2179 // Create a CaseBlock record representing this branch.
2180 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2181 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2182 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2183 SL->SwitchCases.push_back(CB);
2186 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2187 MachineBasicBlock *TBB,
2188 MachineBasicBlock *FBB,
2189 MachineBasicBlock *CurBB,
2190 MachineBasicBlock *SwitchBB,
2191 Instruction::BinaryOps Opc,
2192 BranchProbability TProb,
2193 BranchProbability FProb,
2194 bool InvertCond) {
2195 // Skip over not part of the tree and remember to invert op and operands at
2196 // next level.
2197 Value *NotCond;
2198 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2199 InBlock(NotCond, CurBB->getBasicBlock())) {
2200 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2201 !InvertCond);
2202 return;
2205 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2206 const Value *BOpOp0, *BOpOp1;
2207 // Compute the effective opcode for Cond, taking into account whether it needs
2208 // to be inverted, e.g.
2209 // and (not (or A, B)), C
2210 // gets lowered as
2211 // and (and (not A, not B), C)
2212 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2213 if (BOp) {
2214 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2215 ? Instruction::And
2216 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2217 ? Instruction::Or
2218 : (Instruction::BinaryOps)0);
2219 if (InvertCond) {
2220 if (BOpc == Instruction::And)
2221 BOpc = Instruction::Or;
2222 else if (BOpc == Instruction::Or)
2223 BOpc = Instruction::And;
2227 // If this node is not part of the or/and tree, emit it as a branch.
2228 // Note that all nodes in the tree should have same opcode.
2229 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2230 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2231 !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2232 !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2233 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2234 TProb, FProb, InvertCond);
2235 return;
2238 // Create TmpBB after CurBB.
2239 MachineFunction::iterator BBI(CurBB);
2240 MachineFunction &MF = DAG.getMachineFunction();
2241 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2242 CurBB->getParent()->insert(++BBI, TmpBB);
2244 if (Opc == Instruction::Or) {
2245 // Codegen X | Y as:
2246 // BB1:
2247 // jmp_if_X TBB
2248 // jmp TmpBB
2249 // TmpBB:
2250 // jmp_if_Y TBB
2251 // jmp FBB
2254 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2255 // The requirement is that
2256 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2257 // = TrueProb for original BB.
2258 // Assuming the original probabilities are A and B, one choice is to set
2259 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2260 // A/(1+B) and 2B/(1+B). This choice assumes that
2261 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2262 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2263 // TmpBB, but the math is more complicated.
2265 auto NewTrueProb = TProb / 2;
2266 auto NewFalseProb = TProb / 2 + FProb;
2267 // Emit the LHS condition.
2268 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2269 NewFalseProb, InvertCond);
2271 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2272 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2273 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2274 // Emit the RHS condition into TmpBB.
2275 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2276 Probs[1], InvertCond);
2277 } else {
2278 assert(Opc == Instruction::And && "Unknown merge op!");
2279 // Codegen X & Y as:
2280 // BB1:
2281 // jmp_if_X TmpBB
2282 // jmp FBB
2283 // TmpBB:
2284 // jmp_if_Y TBB
2285 // jmp FBB
2287 // This requires creation of TmpBB after CurBB.
2289 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2290 // The requirement is that
2291 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2292 // = FalseProb for original BB.
2293 // Assuming the original probabilities are A and B, one choice is to set
2294 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2295 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2296 // TrueProb for BB1 * FalseProb for TmpBB.
2298 auto NewTrueProb = TProb + FProb / 2;
2299 auto NewFalseProb = FProb / 2;
2300 // Emit the LHS condition.
2301 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2302 NewFalseProb, InvertCond);
2304 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2305 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2306 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2307 // Emit the RHS condition into TmpBB.
2308 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2309 Probs[1], InvertCond);
2313 /// If the set of cases should be emitted as a series of branches, return true.
2314 /// If we should emit this as a bunch of and/or'd together conditions, return
2315 /// false.
2316 bool
2317 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2318 if (Cases.size() != 2) return true;
2320 // If this is two comparisons of the same values or'd or and'd together, they
2321 // will get folded into a single comparison, so don't emit two blocks.
2322 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2323 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2324 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2325 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2326 return false;
2329 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2330 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2331 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2332 Cases[0].CC == Cases[1].CC &&
2333 isa<Constant>(Cases[0].CmpRHS) &&
2334 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2335 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2336 return false;
2337 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2338 return false;
2341 return true;
2344 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2345 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2347 // Update machine-CFG edges.
2348 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2350 if (I.isUnconditional()) {
2351 // Update machine-CFG edges.
2352 BrMBB->addSuccessor(Succ0MBB);
2354 // If this is not a fall-through branch or optimizations are switched off,
2355 // emit the branch.
2356 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2357 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2358 MVT::Other, getControlRoot(),
2359 DAG.getBasicBlock(Succ0MBB)));
2361 return;
2364 // If this condition is one of the special cases we handle, do special stuff
2365 // now.
2366 const Value *CondVal = I.getCondition();
2367 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2369 // If this is a series of conditions that are or'd or and'd together, emit
2370 // this as a sequence of branches instead of setcc's with and/or operations.
2371 // As long as jumps are not expensive (exceptions for multi-use logic ops,
2372 // unpredictable branches, and vector extracts because those jumps are likely
2373 // expensive for any target), this should improve performance.
2374 // For example, instead of something like:
2375 // cmp A, B
2376 // C = seteq
2377 // cmp D, E
2378 // F = setle
2379 // or C, F
2380 // jnz foo
2381 // Emit:
2382 // cmp A, B
2383 // je foo
2384 // cmp D, E
2385 // jle foo
2386 const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2387 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2388 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2389 Value *Vec;
2390 const Value *BOp0, *BOp1;
2391 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2392 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2393 Opcode = Instruction::And;
2394 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2395 Opcode = Instruction::Or;
2397 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2398 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2399 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2400 getEdgeProbability(BrMBB, Succ0MBB),
2401 getEdgeProbability(BrMBB, Succ1MBB),
2402 /*InvertCond=*/false);
2403 // If the compares in later blocks need to use values not currently
2404 // exported from this block, export them now. This block should always
2405 // be the first entry.
2406 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2408 // Allow some cases to be rejected.
2409 if (ShouldEmitAsBranches(SL->SwitchCases)) {
2410 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2411 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2412 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2415 // Emit the branch for this block.
2416 visitSwitchCase(SL->SwitchCases[0], BrMBB);
2417 SL->SwitchCases.erase(SL->SwitchCases.begin());
2418 return;
2421 // Okay, we decided not to do this, remove any inserted MBB's and clear
2422 // SwitchCases.
2423 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2424 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2426 SL->SwitchCases.clear();
2430 // Create a CaseBlock record representing this branch.
2431 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2432 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2434 // Use visitSwitchCase to actually insert the fast branch sequence for this
2435 // cond branch.
2436 visitSwitchCase(CB, BrMBB);
2439 /// visitSwitchCase - Emits the necessary code to represent a single node in
2440 /// the binary search tree resulting from lowering a switch instruction.
2441 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2442 MachineBasicBlock *SwitchBB) {
2443 SDValue Cond;
2444 SDValue CondLHS = getValue(CB.CmpLHS);
2445 SDLoc dl = CB.DL;
2447 if (CB.CC == ISD::SETTRUE) {
2448 // Branch or fall through to TrueBB.
2449 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2450 SwitchBB->normalizeSuccProbs();
2451 if (CB.TrueBB != NextBlock(SwitchBB)) {
2452 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2453 DAG.getBasicBlock(CB.TrueBB)));
2455 return;
2458 auto &TLI = DAG.getTargetLoweringInfo();
2459 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2461 // Build the setcc now.
2462 if (!CB.CmpMHS) {
2463 // Fold "(X == true)" to X and "(X == false)" to !X to
2464 // handle common cases produced by branch lowering.
2465 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2466 CB.CC == ISD::SETEQ)
2467 Cond = CondLHS;
2468 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2469 CB.CC == ISD::SETEQ) {
2470 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2471 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2472 } else {
2473 SDValue CondRHS = getValue(CB.CmpRHS);
2475 // If a pointer's DAG type is larger than its memory type then the DAG
2476 // values are zero-extended. This breaks signed comparisons so truncate
2477 // back to the underlying type before doing the compare.
2478 if (CondLHS.getValueType() != MemVT) {
2479 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2480 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2482 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2484 } else {
2485 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2487 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2488 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2490 SDValue CmpOp = getValue(CB.CmpMHS);
2491 EVT VT = CmpOp.getValueType();
2493 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2494 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2495 ISD::SETLE);
2496 } else {
2497 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2498 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2499 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2500 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2504 // Update successor info
2505 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2506 // TrueBB and FalseBB are always different unless the incoming IR is
2507 // degenerate. This only happens when running llc on weird IR.
2508 if (CB.TrueBB != CB.FalseBB)
2509 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2510 SwitchBB->normalizeSuccProbs();
2512 // If the lhs block is the next block, invert the condition so that we can
2513 // fall through to the lhs instead of the rhs block.
2514 if (CB.TrueBB == NextBlock(SwitchBB)) {
2515 std::swap(CB.TrueBB, CB.FalseBB);
2516 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2517 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2520 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2521 MVT::Other, getControlRoot(), Cond,
2522 DAG.getBasicBlock(CB.TrueBB));
2524 // Insert the false branch. Do this even if it's a fall through branch,
2525 // this makes it easier to do DAG optimizations which require inverting
2526 // the branch condition.
2527 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2528 DAG.getBasicBlock(CB.FalseBB));
2530 DAG.setRoot(BrCond);
2533 /// visitJumpTable - Emit JumpTable node in the current MBB
2534 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2535 // Emit the code for the jump table
2536 assert(JT.Reg != -1U && "Should lower JT Header first!");
2537 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2538 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2539 JT.Reg, PTy);
2540 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2541 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2542 MVT::Other, Index.getValue(1),
2543 Table, Index);
2544 DAG.setRoot(BrJumpTable);
2547 /// visitJumpTableHeader - This function emits necessary code to produce index
2548 /// in the JumpTable from switch case.
2549 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2550 JumpTableHeader &JTH,
2551 MachineBasicBlock *SwitchBB) {
2552 SDLoc dl = getCurSDLoc();
2554 // Subtract the lowest switch case value from the value being switched on.
2555 SDValue SwitchOp = getValue(JTH.SValue);
2556 EVT VT = SwitchOp.getValueType();
2557 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2558 DAG.getConstant(JTH.First, dl, VT));
2560 // The SDNode we just created, which holds the value being switched on minus
2561 // the smallest case value, needs to be copied to a virtual register so it
2562 // can be used as an index into the jump table in a subsequent basic block.
2563 // This value may be smaller or larger than the target's pointer type, and
2564 // therefore require extension or truncating.
2565 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2566 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2568 unsigned JumpTableReg =
2569 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2570 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2571 JumpTableReg, SwitchOp);
2572 JT.Reg = JumpTableReg;
2574 if (!JTH.OmitRangeCheck) {
2575 // Emit the range check for the jump table, and branch to the default block
2576 // for the switch statement if the value being switched on exceeds the
2577 // largest case in the switch.
2578 SDValue CMP = DAG.getSetCC(
2579 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2580 Sub.getValueType()),
2581 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2583 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2584 MVT::Other, CopyTo, CMP,
2585 DAG.getBasicBlock(JT.Default));
2587 // Avoid emitting unnecessary branches to the next block.
2588 if (JT.MBB != NextBlock(SwitchBB))
2589 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2590 DAG.getBasicBlock(JT.MBB));
2592 DAG.setRoot(BrCond);
2593 } else {
2594 // Avoid emitting unnecessary branches to the next block.
2595 if (JT.MBB != NextBlock(SwitchBB))
2596 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2597 DAG.getBasicBlock(JT.MBB)));
2598 else
2599 DAG.setRoot(CopyTo);
2603 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2604 /// variable if there exists one.
2605 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2606 SDValue &Chain) {
2607 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2608 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2609 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2610 MachineFunction &MF = DAG.getMachineFunction();
2611 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2612 MachineSDNode *Node =
2613 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2614 if (Global) {
2615 MachinePointerInfo MPInfo(Global);
2616 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2617 MachineMemOperand::MODereferenceable;
2618 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2619 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2620 DAG.setNodeMemRefs(Node, {MemRef});
2622 if (PtrTy != PtrMemTy)
2623 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2624 return SDValue(Node, 0);
2627 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2628 /// tail spliced into a stack protector check success bb.
2630 /// For a high level explanation of how this fits into the stack protector
2631 /// generation see the comment on the declaration of class
2632 /// StackProtectorDescriptor.
2633 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2634 MachineBasicBlock *ParentBB) {
2636 // First create the loads to the guard/stack slot for the comparison.
2637 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2638 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2639 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2641 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2642 int FI = MFI.getStackProtectorIndex();
2644 SDValue Guard;
2645 SDLoc dl = getCurSDLoc();
2646 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2647 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2648 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2650 // Generate code to load the content of the guard slot.
2651 SDValue GuardVal = DAG.getLoad(
2652 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2653 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2654 MachineMemOperand::MOVolatile);
2656 if (TLI.useStackGuardXorFP())
2657 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2659 // Retrieve guard check function, nullptr if instrumentation is inlined.
2660 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2661 // The target provides a guard check function to validate the guard value.
2662 // Generate a call to that function with the content of the guard slot as
2663 // argument.
2664 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2665 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2667 TargetLowering::ArgListTy Args;
2668 TargetLowering::ArgListEntry Entry;
2669 Entry.Node = GuardVal;
2670 Entry.Ty = FnTy->getParamType(0);
2671 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2672 Entry.IsInReg = true;
2673 Args.push_back(Entry);
2675 TargetLowering::CallLoweringInfo CLI(DAG);
2676 CLI.setDebugLoc(getCurSDLoc())
2677 .setChain(DAG.getEntryNode())
2678 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2679 getValue(GuardCheckFn), std::move(Args));
2681 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2682 DAG.setRoot(Result.second);
2683 return;
2686 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2687 // Otherwise, emit a volatile load to retrieve the stack guard value.
2688 SDValue Chain = DAG.getEntryNode();
2689 if (TLI.useLoadStackGuardNode()) {
2690 Guard = getLoadStackGuard(DAG, dl, Chain);
2691 } else {
2692 const Value *IRGuard = TLI.getSDagStackGuard(M);
2693 SDValue GuardPtr = getValue(IRGuard);
2695 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2696 MachinePointerInfo(IRGuard, 0), Align,
2697 MachineMemOperand::MOVolatile);
2700 // Perform the comparison via a getsetcc.
2701 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2702 *DAG.getContext(),
2703 Guard.getValueType()),
2704 Guard, GuardVal, ISD::SETNE);
2706 // If the guard/stackslot do not equal, branch to failure MBB.
2707 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2708 MVT::Other, GuardVal.getOperand(0),
2709 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2710 // Otherwise branch to success MBB.
2711 SDValue Br = DAG.getNode(ISD::BR, dl,
2712 MVT::Other, BrCond,
2713 DAG.getBasicBlock(SPD.getSuccessMBB()));
2715 DAG.setRoot(Br);
2718 /// Codegen the failure basic block for a stack protector check.
2720 /// A failure stack protector machine basic block consists simply of a call to
2721 /// __stack_chk_fail().
2723 /// For a high level explanation of how this fits into the stack protector
2724 /// generation see the comment on the declaration of class
2725 /// StackProtectorDescriptor.
2726 void
2727 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2728 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2729 TargetLowering::MakeLibCallOptions CallOptions;
2730 CallOptions.setDiscardResult(true);
2731 SDValue Chain =
2732 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2733 None, CallOptions, getCurSDLoc()).second;
2734 // On PS4, the "return address" must still be within the calling function,
2735 // even if it's at the very end, so emit an explicit TRAP here.
2736 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2737 if (TM.getTargetTriple().isPS4CPU())
2738 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2739 // WebAssembly needs an unreachable instruction after a non-returning call,
2740 // because the function return type can be different from __stack_chk_fail's
2741 // return type (void).
2742 if (TM.getTargetTriple().isWasm())
2743 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2745 DAG.setRoot(Chain);
2748 /// visitBitTestHeader - This function emits necessary code to produce value
2749 /// suitable for "bit tests"
2750 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2751 MachineBasicBlock *SwitchBB) {
2752 SDLoc dl = getCurSDLoc();
2754 // Subtract the minimum value.
2755 SDValue SwitchOp = getValue(B.SValue);
2756 EVT VT = SwitchOp.getValueType();
2757 SDValue RangeSub =
2758 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2760 // Determine the type of the test operands.
2761 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2762 bool UsePtrType = false;
2763 if (!TLI.isTypeLegal(VT)) {
2764 UsePtrType = true;
2765 } else {
2766 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2767 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2768 // Switch table case range are encoded into series of masks.
2769 // Just use pointer type, it's guaranteed to fit.
2770 UsePtrType = true;
2771 break;
2774 SDValue Sub = RangeSub;
2775 if (UsePtrType) {
2776 VT = TLI.getPointerTy(DAG.getDataLayout());
2777 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2780 B.RegVT = VT.getSimpleVT();
2781 B.Reg = FuncInfo.CreateReg(B.RegVT);
2782 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2784 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2786 if (!B.OmitRangeCheck)
2787 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2788 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2789 SwitchBB->normalizeSuccProbs();
2791 SDValue Root = CopyTo;
2792 if (!B.OmitRangeCheck) {
2793 // Conditional branch to the default block.
2794 SDValue RangeCmp = DAG.getSetCC(dl,
2795 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2796 RangeSub.getValueType()),
2797 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2798 ISD::SETUGT);
2800 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2801 DAG.getBasicBlock(B.Default));
2804 // Avoid emitting unnecessary branches to the next block.
2805 if (MBB != NextBlock(SwitchBB))
2806 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2808 DAG.setRoot(Root);
2811 /// visitBitTestCase - this function produces one "bit test"
2812 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2813 MachineBasicBlock* NextMBB,
2814 BranchProbability BranchProbToNext,
2815 unsigned Reg,
2816 BitTestCase &B,
2817 MachineBasicBlock *SwitchBB) {
2818 SDLoc dl = getCurSDLoc();
2819 MVT VT = BB.RegVT;
2820 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2821 SDValue Cmp;
2822 unsigned PopCount = countPopulation(B.Mask);
2823 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2824 if (PopCount == 1) {
2825 // Testing for a single bit; just compare the shift count with what it
2826 // would need to be to shift a 1 bit in that position.
2827 Cmp = DAG.getSetCC(
2828 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2829 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2830 ISD::SETEQ);
2831 } else if (PopCount == BB.Range) {
2832 // There is only one zero bit in the range, test for it directly.
2833 Cmp = DAG.getSetCC(
2834 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2835 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2836 ISD::SETNE);
2837 } else {
2838 // Make desired shift
2839 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2840 DAG.getConstant(1, dl, VT), ShiftOp);
2842 // Emit bit tests and jumps
2843 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2844 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2845 Cmp = DAG.getSetCC(
2846 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2847 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2850 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2851 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2852 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2853 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2854 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2855 // one as they are relative probabilities (and thus work more like weights),
2856 // and hence we need to normalize them to let the sum of them become one.
2857 SwitchBB->normalizeSuccProbs();
2859 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2860 MVT::Other, getControlRoot(),
2861 Cmp, DAG.getBasicBlock(B.TargetBB));
2863 // Avoid emitting unnecessary branches to the next block.
2864 if (NextMBB != NextBlock(SwitchBB))
2865 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2866 DAG.getBasicBlock(NextMBB));
2868 DAG.setRoot(BrAnd);
2871 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2872 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2874 // Retrieve successors. Look through artificial IR level blocks like
2875 // catchswitch for successors.
2876 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2877 const BasicBlock *EHPadBB = I.getSuccessor(1);
2879 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2880 // have to do anything here to lower funclet bundles.
2881 assert(!I.hasOperandBundlesOtherThan(
2882 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2883 LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2884 LLVMContext::OB_cfguardtarget,
2885 LLVMContext::OB_clang_arc_attachedcall}) &&
2886 "Cannot lower invokes with arbitrary operand bundles yet!");
2888 const Value *Callee(I.getCalledOperand());
2889 const Function *Fn = dyn_cast<Function>(Callee);
2890 if (isa<InlineAsm>(Callee))
2891 visitInlineAsm(I, EHPadBB);
2892 else if (Fn && Fn->isIntrinsic()) {
2893 switch (Fn->getIntrinsicID()) {
2894 default:
2895 llvm_unreachable("Cannot invoke this intrinsic");
2896 case Intrinsic::donothing:
2897 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2898 case Intrinsic::seh_try_begin:
2899 case Intrinsic::seh_scope_begin:
2900 case Intrinsic::seh_try_end:
2901 case Intrinsic::seh_scope_end:
2902 break;
2903 case Intrinsic::experimental_patchpoint_void:
2904 case Intrinsic::experimental_patchpoint_i64:
2905 visitPatchpoint(I, EHPadBB);
2906 break;
2907 case Intrinsic::experimental_gc_statepoint:
2908 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2909 break;
2910 case Intrinsic::wasm_rethrow: {
2911 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2912 // special because it can be invoked, so we manually lower it to a DAG
2913 // node here.
2914 SmallVector<SDValue, 8> Ops;
2915 Ops.push_back(getRoot()); // inchain
2916 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2917 Ops.push_back(
2918 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2919 TLI.getPointerTy(DAG.getDataLayout())));
2920 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2921 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2922 break;
2925 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2926 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2927 // Eventually we will support lowering the @llvm.experimental.deoptimize
2928 // intrinsic, and right now there are no plans to support other intrinsics
2929 // with deopt state.
2930 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2931 } else {
2932 LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
2935 // If the value of the invoke is used outside of its defining block, make it
2936 // available as a virtual register.
2937 // We already took care of the exported value for the statepoint instruction
2938 // during call to the LowerStatepoint.
2939 if (!isa<GCStatepointInst>(I)) {
2940 CopyToExportRegsIfNeeded(&I);
2943 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2944 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2945 BranchProbability EHPadBBProb =
2946 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2947 : BranchProbability::getZero();
2948 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2950 // Update successor info.
2951 addSuccessorWithProb(InvokeMBB, Return);
2952 for (auto &UnwindDest : UnwindDests) {
2953 UnwindDest.first->setIsEHPad();
2954 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2956 InvokeMBB->normalizeSuccProbs();
2958 // Drop into normal successor.
2959 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2960 DAG.getBasicBlock(Return)));
2963 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2964 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2966 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2967 // have to do anything here to lower funclet bundles.
2968 assert(!I.hasOperandBundlesOtherThan(
2969 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2970 "Cannot lower callbrs with arbitrary operand bundles yet!");
2972 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
2973 visitInlineAsm(I);
2974 CopyToExportRegsIfNeeded(&I);
2976 // Retrieve successors.
2977 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2979 // Update successor info.
2980 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
2981 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2982 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2983 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
2984 Target->setIsInlineAsmBrIndirectTarget();
2986 CallBrMBB->normalizeSuccProbs();
2988 // Drop into default successor.
2989 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2990 MVT::Other, getControlRoot(),
2991 DAG.getBasicBlock(Return)));
2994 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2995 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2998 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2999 assert(FuncInfo.MBB->isEHPad() &&
3000 "Call to landingpad not in landing pad!");
3002 // If there aren't registers to copy the values into (e.g., during SjLj
3003 // exceptions), then don't bother to create these DAG nodes.
3004 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3005 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3006 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3007 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3008 return;
3010 // If landingpad's return type is token type, we don't create DAG nodes
3011 // for its exception pointer and selector value. The extraction of exception
3012 // pointer or selector value from token type landingpads is not currently
3013 // supported.
3014 if (LP.getType()->isTokenTy())
3015 return;
3017 SmallVector<EVT, 2> ValueVTs;
3018 SDLoc dl = getCurSDLoc();
3019 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3020 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3022 // Get the two live-in registers as SDValues. The physregs have already been
3023 // copied into virtual registers.
3024 SDValue Ops[2];
3025 if (FuncInfo.ExceptionPointerVirtReg) {
3026 Ops[0] = DAG.getZExtOrTrunc(
3027 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3028 FuncInfo.ExceptionPointerVirtReg,
3029 TLI.getPointerTy(DAG.getDataLayout())),
3030 dl, ValueVTs[0]);
3031 } else {
3032 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3034 Ops[1] = DAG.getZExtOrTrunc(
3035 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3036 FuncInfo.ExceptionSelectorVirtReg,
3037 TLI.getPointerTy(DAG.getDataLayout())),
3038 dl, ValueVTs[1]);
3040 // Merge into one.
3041 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3042 DAG.getVTList(ValueVTs), Ops);
3043 setValue(&LP, Res);
3046 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3047 MachineBasicBlock *Last) {
3048 // Update JTCases.
3049 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
3050 if (SL->JTCases[i].first.HeaderBB == First)
3051 SL->JTCases[i].first.HeaderBB = Last;
3053 // Update BitTestCases.
3054 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
3055 if (SL->BitTestCases[i].Parent == First)
3056 SL->BitTestCases[i].Parent = Last;
3059 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3060 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3062 // Update machine-CFG edges with unique successors.
3063 SmallSet<BasicBlock*, 32> Done;
3064 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3065 BasicBlock *BB = I.getSuccessor(i);
3066 bool Inserted = Done.insert(BB).second;
3067 if (!Inserted)
3068 continue;
3070 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3071 addSuccessorWithProb(IndirectBrMBB, Succ);
3073 IndirectBrMBB->normalizeSuccProbs();
3075 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3076 MVT::Other, getControlRoot(),
3077 getValue(I.getAddress())));
3080 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3081 if (!DAG.getTarget().Options.TrapUnreachable)
3082 return;
3084 // We may be able to ignore unreachable behind a noreturn call.
3085 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3086 const BasicBlock &BB = *I.getParent();
3087 if (&I != &BB.front()) {
3088 BasicBlock::const_iterator PredI =
3089 std::prev(BasicBlock::const_iterator(&I));
3090 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3091 if (Call->doesNotReturn())
3092 return;
3097 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3100 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3101 SDNodeFlags Flags;
3103 SDValue Op = getValue(I.getOperand(0));
3104 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3105 Op, Flags);
3106 setValue(&I, UnNodeValue);
3109 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3110 SDNodeFlags Flags;
3111 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3112 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3113 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3115 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3116 Flags.setExact(ExactOp->isExact());
3117 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3118 Flags.copyFMF(*FPOp);
3120 SDValue Op1 = getValue(I.getOperand(0));
3121 SDValue Op2 = getValue(I.getOperand(1));
3122 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3123 Op1, Op2, Flags);
3124 setValue(&I, BinNodeValue);
3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3128 SDValue Op1 = getValue(I.getOperand(0));
3129 SDValue Op2 = getValue(I.getOperand(1));
3131 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3132 Op1.getValueType(), DAG.getDataLayout());
3134 // Coerce the shift amount to the right type if we can.
3135 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3136 unsigned ShiftSize = ShiftTy.getSizeInBits();
3137 unsigned Op2Size = Op2.getValueSizeInBits();
3138 SDLoc DL = getCurSDLoc();
3140 // If the operand is smaller than the shift count type, promote it.
3141 if (ShiftSize > Op2Size)
3142 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3144 // If the operand is larger than the shift count type but the shift
3145 // count type has enough bits to represent any shift value, truncate
3146 // it now. This is a common case and it exposes the truncate to
3147 // optimization early.
3148 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3149 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3150 // Otherwise we'll need to temporarily settle for some other convenient
3151 // type. Type legalization will make adjustments once the shiftee is split.
3152 else
3153 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3156 bool nuw = false;
3157 bool nsw = false;
3158 bool exact = false;
3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3162 if (const OverflowingBinaryOperator *OFBinOp =
3163 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3164 nuw = OFBinOp->hasNoUnsignedWrap();
3165 nsw = OFBinOp->hasNoSignedWrap();
3167 if (const PossiblyExactOperator *ExactOp =
3168 dyn_cast<const PossiblyExactOperator>(&I))
3169 exact = ExactOp->isExact();
3171 SDNodeFlags Flags;
3172 Flags.setExact(exact);
3173 Flags.setNoSignedWrap(nsw);
3174 Flags.setNoUnsignedWrap(nuw);
3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3176 Flags);
3177 setValue(&I, Res);
3180 void SelectionDAGBuilder::visitSDiv(const User &I) {
3181 SDValue Op1 = getValue(I.getOperand(0));
3182 SDValue Op2 = getValue(I.getOperand(1));
3184 SDNodeFlags Flags;
3185 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3186 cast<PossiblyExactOperator>(&I)->isExact());
3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3188 Op2, Flags));
3191 void SelectionDAGBuilder::visitICmp(const User &I) {
3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3194 predicate = IC->getPredicate();
3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3196 predicate = ICmpInst::Predicate(IC->getPredicate());
3197 SDValue Op1 = getValue(I.getOperand(0));
3198 SDValue Op2 = getValue(I.getOperand(1));
3199 ISD::CondCode Opcode = getICmpCondCode(predicate);
3201 auto &TLI = DAG.getTargetLoweringInfo();
3202 EVT MemVT =
3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3205 // If a pointer's DAG type is larger than its memory type then the DAG values
3206 // are zero-extended. This breaks signed comparisons so truncate back to the
3207 // underlying type before doing the compare.
3208 if (Op1.getValueType() != MemVT) {
3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3214 I.getType());
3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3218 void SelectionDAGBuilder::visitFCmp(const User &I) {
3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3221 predicate = FC->getPredicate();
3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3223 predicate = FCmpInst::Predicate(FC->getPredicate());
3224 SDValue Op1 = getValue(I.getOperand(0));
3225 SDValue Op2 = getValue(I.getOperand(1));
3227 ISD::CondCode Condition = getFCmpCondCode(predicate);
3228 auto *FPMO = cast<FPMathOperator>(&I);
3229 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3230 Condition = getFCmpCodeWithoutNaN(Condition);
3232 SDNodeFlags Flags;
3233 Flags.copyFMF(*FPMO);
3234 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3236 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3237 I.getType());
3238 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3241 // Check if the condition of the select has one use or two users that are both
3242 // selects with the same condition.
3243 static bool hasOnlySelectUsers(const Value *Cond) {
3244 return llvm::all_of(Cond->users(), [](const Value *V) {
3245 return isa<SelectInst>(V);
3249 void SelectionDAGBuilder::visitSelect(const User &I) {
3250 SmallVector<EVT, 4> ValueVTs;
3251 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3252 ValueVTs);
3253 unsigned NumValues = ValueVTs.size();
3254 if (NumValues == 0) return;
3256 SmallVector<SDValue, 4> Values(NumValues);
3257 SDValue Cond = getValue(I.getOperand(0));
3258 SDValue LHSVal = getValue(I.getOperand(1));
3259 SDValue RHSVal = getValue(I.getOperand(2));
3260 SmallVector<SDValue, 1> BaseOps(1, Cond);
3261 ISD::NodeType OpCode =
3262 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3264 bool IsUnaryAbs = false;
3265 bool Negate = false;
3267 SDNodeFlags Flags;
3268 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3269 Flags.copyFMF(*FPOp);
3271 // Min/max matching is only viable if all output VTs are the same.
3272 if (is_splat(ValueVTs)) {
3273 EVT VT = ValueVTs[0];
3274 LLVMContext &Ctx = *DAG.getContext();
3275 auto &TLI = DAG.getTargetLoweringInfo();
3277 // We care about the legality of the operation after it has been type
3278 // legalized.
3279 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3280 VT = TLI.getTypeToTransformTo(Ctx, VT);
3282 // If the vselect is legal, assume we want to leave this as a vector setcc +
3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3284 // min/max is legal on the scalar type.
3285 bool UseScalarMinMax = VT.isVector() &&
3286 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3288 Value *LHS, *RHS;
3289 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3290 ISD::NodeType Opc = ISD::DELETED_NODE;
3291 switch (SPR.Flavor) {
3292 case SPF_UMAX: Opc = ISD::UMAX; break;
3293 case SPF_UMIN: Opc = ISD::UMIN; break;
3294 case SPF_SMAX: Opc = ISD::SMAX; break;
3295 case SPF_SMIN: Opc = ISD::SMIN; break;
3296 case SPF_FMINNUM:
3297 switch (SPR.NaNBehavior) {
3298 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3299 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3300 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3301 case SPNB_RETURNS_ANY: {
3302 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3303 Opc = ISD::FMINNUM;
3304 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3305 Opc = ISD::FMINIMUM;
3306 else if (UseScalarMinMax)
3307 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3308 ISD::FMINNUM : ISD::FMINIMUM;
3309 break;
3312 break;
3313 case SPF_FMAXNUM:
3314 switch (SPR.NaNBehavior) {
3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3316 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3318 case SPNB_RETURNS_ANY:
3320 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3321 Opc = ISD::FMAXNUM;
3322 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3323 Opc = ISD::FMAXIMUM;
3324 else if (UseScalarMinMax)
3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3326 ISD::FMAXNUM : ISD::FMAXIMUM;
3327 break;
3329 break;
3330 case SPF_NABS:
3331 Negate = true;
3332 LLVM_FALLTHROUGH;
3333 case SPF_ABS:
3334 IsUnaryAbs = true;
3335 Opc = ISD::ABS;
3336 break;
3337 default: break;
3340 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3341 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3342 (UseScalarMinMax &&
3343 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3344 // If the underlying comparison instruction is used by any other
3345 // instruction, the consumed instructions won't be destroyed, so it is
3346 // not profitable to convert to a min/max.
3347 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3348 OpCode = Opc;
3349 LHSVal = getValue(LHS);
3350 RHSVal = getValue(RHS);
3351 BaseOps.clear();
3354 if (IsUnaryAbs) {
3355 OpCode = Opc;
3356 LHSVal = getValue(LHS);
3357 BaseOps.clear();
3361 if (IsUnaryAbs) {
3362 for (unsigned i = 0; i != NumValues; ++i) {
3363 SDLoc dl = getCurSDLoc();
3364 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3365 Values[i] =
3366 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3367 if (Negate)
3368 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT),
3369 Values[i]);
3371 } else {
3372 for (unsigned i = 0; i != NumValues; ++i) {
3373 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3374 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3375 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3376 Values[i] = DAG.getNode(
3377 OpCode, getCurSDLoc(),
3378 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3382 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3383 DAG.getVTList(ValueVTs), Values));
3386 void SelectionDAGBuilder::visitTrunc(const User &I) {
3387 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3388 SDValue N = getValue(I.getOperand(0));
3389 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3390 I.getType());
3391 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3394 void SelectionDAGBuilder::visitZExt(const User &I) {
3395 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3396 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3397 SDValue N = getValue(I.getOperand(0));
3398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3399 I.getType());
3400 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3403 void SelectionDAGBuilder::visitSExt(const User &I) {
3404 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3405 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3406 SDValue N = getValue(I.getOperand(0));
3407 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3408 I.getType());
3409 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3412 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3413 // FPTrunc is never a no-op cast, no need to check
3414 SDValue N = getValue(I.getOperand(0));
3415 SDLoc dl = getCurSDLoc();
3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3417 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3418 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3419 DAG.getTargetConstant(
3420 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3423 void SelectionDAGBuilder::visitFPExt(const User &I) {
3424 // FPExt is never a no-op cast, no need to check
3425 SDValue N = getValue(I.getOperand(0));
3426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3427 I.getType());
3428 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3431 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3432 // FPToUI is never a no-op cast, no need to check
3433 SDValue N = getValue(I.getOperand(0));
3434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3435 I.getType());
3436 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3439 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3440 // FPToSI is never a no-op cast, no need to check
3441 SDValue N = getValue(I.getOperand(0));
3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443 I.getType());
3444 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3447 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3448 // UIToFP is never a no-op cast, no need to check
3449 SDValue N = getValue(I.getOperand(0));
3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451 I.getType());
3452 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3455 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3456 // SIToFP is never a no-op cast, no need to check
3457 SDValue N = getValue(I.getOperand(0));
3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459 I.getType());
3460 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3463 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3464 // What to do depends on the size of the integer and the size of the pointer.
3465 // We can either truncate, zero extend, or no-op, accordingly.
3466 SDValue N = getValue(I.getOperand(0));
3467 auto &TLI = DAG.getTargetLoweringInfo();
3468 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3469 I.getType());
3470 EVT PtrMemVT =
3471 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3472 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3473 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3474 setValue(&I, N);
3477 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3478 // What to do depends on the size of the integer and the size of the pointer.
3479 // We can either truncate, zero extend, or no-op, accordingly.
3480 SDValue N = getValue(I.getOperand(0));
3481 auto &TLI = DAG.getTargetLoweringInfo();
3482 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3483 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3484 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3485 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3486 setValue(&I, N);
3489 void SelectionDAGBuilder::visitBitCast(const User &I) {
3490 SDValue N = getValue(I.getOperand(0));
3491 SDLoc dl = getCurSDLoc();
3492 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3493 I.getType());
3495 // BitCast assures us that source and destination are the same size so this is
3496 // either a BITCAST or a no-op.
3497 if (DestVT != N.getValueType())
3498 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3499 DestVT, N)); // convert types.
3500 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3501 // might fold any kind of constant expression to an integer constant and that
3502 // is not what we are looking for. Only recognize a bitcast of a genuine
3503 // constant integer as an opaque constant.
3504 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3505 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3506 /*isOpaque*/true));
3507 else
3508 setValue(&I, N); // noop cast.
3511 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3513 const Value *SV = I.getOperand(0);
3514 SDValue N = getValue(SV);
3515 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3517 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3518 unsigned DestAS = I.getType()->getPointerAddressSpace();
3520 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3521 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3523 setValue(&I, N);
3526 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3527 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3528 SDValue InVec = getValue(I.getOperand(0));
3529 SDValue InVal = getValue(I.getOperand(1));
3530 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3531 TLI.getVectorIdxTy(DAG.getDataLayout()));
3532 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3533 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3534 InVec, InVal, InIdx));
3537 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3538 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3539 SDValue InVec = getValue(I.getOperand(0));
3540 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3541 TLI.getVectorIdxTy(DAG.getDataLayout()));
3542 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3543 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3544 InVec, InIdx));
3547 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3548 SDValue Src1 = getValue(I.getOperand(0));
3549 SDValue Src2 = getValue(I.getOperand(1));
3550 ArrayRef<int> Mask;
3551 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3552 Mask = SVI->getShuffleMask();
3553 else
3554 Mask = cast<ConstantExpr>(I).getShuffleMask();
3555 SDLoc DL = getCurSDLoc();
3556 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3557 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3558 EVT SrcVT = Src1.getValueType();
3560 if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3561 VT.isScalableVector()) {
3562 // Canonical splat form of first element of first input vector.
3563 SDValue FirstElt =
3564 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3565 DAG.getVectorIdxConstant(0, DL));
3566 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3567 return;
3570 // For now, we only handle splats for scalable vectors.
3571 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3572 // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3573 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3575 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3576 unsigned MaskNumElts = Mask.size();
3578 if (SrcNumElts == MaskNumElts) {
3579 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3580 return;
3583 // Normalize the shuffle vector since mask and vector length don't match.
3584 if (SrcNumElts < MaskNumElts) {
3585 // Mask is longer than the source vectors. We can use concatenate vector to
3586 // make the mask and vectors lengths match.
3588 if (MaskNumElts % SrcNumElts == 0) {
3589 // Mask length is a multiple of the source vector length.
3590 // Check if the shuffle is some kind of concatenation of the input
3591 // vectors.
3592 unsigned NumConcat = MaskNumElts / SrcNumElts;
3593 bool IsConcat = true;
3594 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3595 for (unsigned i = 0; i != MaskNumElts; ++i) {
3596 int Idx = Mask[i];
3597 if (Idx < 0)
3598 continue;
3599 // Ensure the indices in each SrcVT sized piece are sequential and that
3600 // the same source is used for the whole piece.
3601 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3602 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3603 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3604 IsConcat = false;
3605 break;
3607 // Remember which source this index came from.
3608 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3611 // The shuffle is concatenating multiple vectors together. Just emit
3612 // a CONCAT_VECTORS operation.
3613 if (IsConcat) {
3614 SmallVector<SDValue, 8> ConcatOps;
3615 for (auto Src : ConcatSrcs) {
3616 if (Src < 0)
3617 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3618 else if (Src == 0)
3619 ConcatOps.push_back(Src1);
3620 else
3621 ConcatOps.push_back(Src2);
3623 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3624 return;
3628 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3629 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3630 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3631 PaddedMaskNumElts);
3633 // Pad both vectors with undefs to make them the same length as the mask.
3634 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3636 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3637 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3638 MOps1[0] = Src1;
3639 MOps2[0] = Src2;
3641 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3642 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3644 // Readjust mask for new input vector length.
3645 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3646 for (unsigned i = 0; i != MaskNumElts; ++i) {
3647 int Idx = Mask[i];
3648 if (Idx >= (int)SrcNumElts)
3649 Idx -= SrcNumElts - PaddedMaskNumElts;
3650 MappedOps[i] = Idx;
3653 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3655 // If the concatenated vector was padded, extract a subvector with the
3656 // correct number of elements.
3657 if (MaskNumElts != PaddedMaskNumElts)
3658 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3659 DAG.getVectorIdxConstant(0, DL));
3661 setValue(&I, Result);
3662 return;
3665 if (SrcNumElts > MaskNumElts) {
3666 // Analyze the access pattern of the vector to see if we can extract
3667 // two subvectors and do the shuffle.
3668 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3669 bool CanExtract = true;
3670 for (int Idx : Mask) {
3671 unsigned Input = 0;
3672 if (Idx < 0)
3673 continue;
3675 if (Idx >= (int)SrcNumElts) {
3676 Input = 1;
3677 Idx -= SrcNumElts;
3680 // If all the indices come from the same MaskNumElts sized portion of
3681 // the sources we can use extract. Also make sure the extract wouldn't
3682 // extract past the end of the source.
3683 int NewStartIdx = alignDown(Idx, MaskNumElts);
3684 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3685 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3686 CanExtract = false;
3687 // Make sure we always update StartIdx as we use it to track if all
3688 // elements are undef.
3689 StartIdx[Input] = NewStartIdx;
3692 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3693 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3694 return;
3696 if (CanExtract) {
3697 // Extract appropriate subvector and generate a vector shuffle
3698 for (unsigned Input = 0; Input < 2; ++Input) {
3699 SDValue &Src = Input == 0 ? Src1 : Src2;
3700 if (StartIdx[Input] < 0)
3701 Src = DAG.getUNDEF(VT);
3702 else {
3703 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3704 DAG.getVectorIdxConstant(StartIdx[Input], DL));
3708 // Calculate new mask.
3709 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3710 for (int &Idx : MappedOps) {
3711 if (Idx >= (int)SrcNumElts)
3712 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3713 else if (Idx >= 0)
3714 Idx -= StartIdx[0];
3717 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3718 return;
3722 // We can't use either concat vectors or extract subvectors so fall back to
3723 // replacing the shuffle with extract and build vector.
3724 // to insert and build vector.
3725 EVT EltVT = VT.getVectorElementType();
3726 SmallVector<SDValue,8> Ops;
3727 for (int Idx : Mask) {
3728 SDValue Res;
3730 if (Idx < 0) {
3731 Res = DAG.getUNDEF(EltVT);
3732 } else {
3733 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3734 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3736 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3737 DAG.getVectorIdxConstant(Idx, DL));
3740 Ops.push_back(Res);
3743 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3746 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3747 ArrayRef<unsigned> Indices;
3748 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3749 Indices = IV->getIndices();
3750 else
3751 Indices = cast<ConstantExpr>(&I)->getIndices();
3753 const Value *Op0 = I.getOperand(0);
3754 const Value *Op1 = I.getOperand(1);
3755 Type *AggTy = I.getType();
3756 Type *ValTy = Op1->getType();
3757 bool IntoUndef = isa<UndefValue>(Op0);
3758 bool FromUndef = isa<UndefValue>(Op1);
3760 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3762 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3763 SmallVector<EVT, 4> AggValueVTs;
3764 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3765 SmallVector<EVT, 4> ValValueVTs;
3766 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3768 unsigned NumAggValues = AggValueVTs.size();
3769 unsigned NumValValues = ValValueVTs.size();
3770 SmallVector<SDValue, 4> Values(NumAggValues);
3772 // Ignore an insertvalue that produces an empty object
3773 if (!NumAggValues) {
3774 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3775 return;
3778 SDValue Agg = getValue(Op0);
3779 unsigned i = 0;
3780 // Copy the beginning value(s) from the original aggregate.
3781 for (; i != LinearIndex; ++i)
3782 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3783 SDValue(Agg.getNode(), Agg.getResNo() + i);
3784 // Copy values from the inserted value(s).
3785 if (NumValValues) {
3786 SDValue Val = getValue(Op1);
3787 for (; i != LinearIndex + NumValValues; ++i)
3788 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3789 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3791 // Copy remaining value(s) from the original aggregate.
3792 for (; i != NumAggValues; ++i)
3793 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3794 SDValue(Agg.getNode(), Agg.getResNo() + i);
3796 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3797 DAG.getVTList(AggValueVTs), Values));
3800 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3801 ArrayRef<unsigned> Indices;
3802 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3803 Indices = EV->getIndices();
3804 else
3805 Indices = cast<ConstantExpr>(&I)->getIndices();
3807 const Value *Op0 = I.getOperand(0);
3808 Type *AggTy = Op0->getType();
3809 Type *ValTy = I.getType();
3810 bool OutOfUndef = isa<UndefValue>(Op0);
3812 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3814 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3815 SmallVector<EVT, 4> ValValueVTs;
3816 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3818 unsigned NumValValues = ValValueVTs.size();
3820 // Ignore a extractvalue that produces an empty object
3821 if (!NumValValues) {
3822 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3823 return;
3826 SmallVector<SDValue, 4> Values(NumValValues);
3828 SDValue Agg = getValue(Op0);
3829 // Copy out the selected value(s).
3830 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3831 Values[i - LinearIndex] =
3832 OutOfUndef ?
3833 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3834 SDValue(Agg.getNode(), Agg.getResNo() + i);
3836 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3837 DAG.getVTList(ValValueVTs), Values));
3840 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3841 Value *Op0 = I.getOperand(0);
3842 // Note that the pointer operand may be a vector of pointers. Take the scalar
3843 // element which holds a pointer.
3844 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3845 SDValue N = getValue(Op0);
3846 SDLoc dl = getCurSDLoc();
3847 auto &TLI = DAG.getTargetLoweringInfo();
3849 // Normalize Vector GEP - all scalar operands should be converted to the
3850 // splat vector.
3851 bool IsVectorGEP = I.getType()->isVectorTy();
3852 ElementCount VectorElementCount =
3853 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3854 : ElementCount::getFixed(0);
3856 if (IsVectorGEP && !N.getValueType().isVector()) {
3857 LLVMContext &Context = *DAG.getContext();
3858 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3859 if (VectorElementCount.isScalable())
3860 N = DAG.getSplatVector(VT, dl, N);
3861 else
3862 N = DAG.getSplatBuildVector(VT, dl, N);
3865 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3866 GTI != E; ++GTI) {
3867 const Value *Idx = GTI.getOperand();
3868 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3869 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3870 if (Field) {
3871 // N = N + Offset
3872 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3874 // In an inbounds GEP with an offset that is nonnegative even when
3875 // interpreted as signed, assume there is no unsigned overflow.
3876 SDNodeFlags Flags;
3877 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3878 Flags.setNoUnsignedWrap(true);
3880 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3881 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3883 } else {
3884 // IdxSize is the width of the arithmetic according to IR semantics.
3885 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3886 // (and fix up the result later).
3887 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3888 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3889 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
3890 // We intentionally mask away the high bits here; ElementSize may not
3891 // fit in IdxTy.
3892 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize());
3893 bool ElementScalable = ElementSize.isScalable();
3895 // If this is a scalar constant or a splat vector of constants,
3896 // handle it quickly.
3897 const auto *C = dyn_cast<Constant>(Idx);
3898 if (C && isa<VectorType>(C->getType()))
3899 C = C->getSplatValue();
3901 const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3902 if (CI && CI->isZero())
3903 continue;
3904 if (CI && !ElementScalable) {
3905 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3906 LLVMContext &Context = *DAG.getContext();
3907 SDValue OffsVal;
3908 if (IsVectorGEP)
3909 OffsVal = DAG.getConstant(
3910 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3911 else
3912 OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3914 // In an inbounds GEP with an offset that is nonnegative even when
3915 // interpreted as signed, assume there is no unsigned overflow.
3916 SDNodeFlags Flags;
3917 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3918 Flags.setNoUnsignedWrap(true);
3920 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3922 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3923 continue;
3926 // N = N + Idx * ElementMul;
3927 SDValue IdxN = getValue(Idx);
3929 if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3930 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3931 VectorElementCount);
3932 if (VectorElementCount.isScalable())
3933 IdxN = DAG.getSplatVector(VT, dl, IdxN);
3934 else
3935 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3938 // If the index is smaller or larger than intptr_t, truncate or extend
3939 // it.
3940 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3942 if (ElementScalable) {
3943 EVT VScaleTy = N.getValueType().getScalarType();
3944 SDValue VScale = DAG.getNode(
3945 ISD::VSCALE, dl, VScaleTy,
3946 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3947 if (IsVectorGEP)
3948 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
3949 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
3950 } else {
3951 // If this is a multiply by a power of two, turn it into a shl
3952 // immediately. This is a very common case.
3953 if (ElementMul != 1) {
3954 if (ElementMul.isPowerOf2()) {
3955 unsigned Amt = ElementMul.logBase2();
3956 IdxN = DAG.getNode(ISD::SHL, dl,
3957 N.getValueType(), IdxN,
3958 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3959 } else {
3960 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
3961 IdxN.getValueType());
3962 IdxN = DAG.getNode(ISD::MUL, dl,
3963 N.getValueType(), IdxN, Scale);
3968 N = DAG.getNode(ISD::ADD, dl,
3969 N.getValueType(), N, IdxN);
3973 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3974 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3975 if (IsVectorGEP) {
3976 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
3977 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
3980 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3981 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3983 setValue(&I, N);
3986 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3987 // If this is a fixed sized alloca in the entry block of the function,
3988 // allocate it statically on the stack.
3989 if (FuncInfo.StaticAllocaMap.count(&I))
3990 return; // getValue will auto-populate this.
3992 SDLoc dl = getCurSDLoc();
3993 Type *Ty = I.getAllocatedType();
3994 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3995 auto &DL = DAG.getDataLayout();
3996 uint64_t TySize = DL.getTypeAllocSize(Ty);
3997 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
3999 SDValue AllocSize = getValue(I.getArraySize());
4001 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
4002 if (AllocSize.getValueType() != IntPtr)
4003 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4005 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
4006 AllocSize,
4007 DAG.getConstant(TySize, dl, IntPtr));
4009 // Handle alignment. If the requested alignment is less than or equal to
4010 // the stack alignment, ignore it. If the size is greater than or equal to
4011 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4012 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4013 if (*Alignment <= StackAlign)
4014 Alignment = None;
4016 const uint64_t StackAlignMask = StackAlign.value() - 1U;
4017 // Round the size of the allocation up to the stack alignment size
4018 // by add SA-1 to the size. This doesn't overflow because we're computing
4019 // an address inside an alloca.
4020 SDNodeFlags Flags;
4021 Flags.setNoUnsignedWrap(true);
4022 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4023 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4025 // Mask out the low bits for alignment purposes.
4026 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4027 DAG.getConstant(~StackAlignMask, dl, IntPtr));
4029 SDValue Ops[] = {
4030 getRoot(), AllocSize,
4031 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4032 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4033 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4034 setValue(&I, DSA);
4035 DAG.setRoot(DSA.getValue(1));
4037 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4040 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4041 if (I.isAtomic())
4042 return visitAtomicLoad(I);
4044 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4045 const Value *SV = I.getOperand(0);
4046 if (TLI.supportSwiftError()) {
4047 // Swifterror values can come from either a function parameter with
4048 // swifterror attribute or an alloca with swifterror attribute.
4049 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4050 if (Arg->hasSwiftErrorAttr())
4051 return visitLoadFromSwiftError(I);
4054 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4055 if (Alloca->isSwiftError())
4056 return visitLoadFromSwiftError(I);
4060 SDValue Ptr = getValue(SV);
4062 Type *Ty = I.getType();
4063 Align Alignment = I.getAlign();
4065 AAMDNodes AAInfo;
4066 I.getAAMetadata(AAInfo);
4067 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4069 SmallVector<EVT, 4> ValueVTs, MemVTs;
4070 SmallVector<uint64_t, 4> Offsets;
4071 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4072 unsigned NumValues = ValueVTs.size();
4073 if (NumValues == 0)
4074 return;
4076 bool isVolatile = I.isVolatile();
4078 SDValue Root;
4079 bool ConstantMemory = false;
4080 if (isVolatile)
4081 // Serialize volatile loads with other side effects.
4082 Root = getRoot();
4083 else if (NumValues > MaxParallelChains)
4084 Root = getMemoryRoot();
4085 else if (AA &&
4086 AA->pointsToConstantMemory(MemoryLocation(
4088 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4089 AAInfo))) {
4090 // Do not serialize (non-volatile) loads of constant memory with anything.
4091 Root = DAG.getEntryNode();
4092 ConstantMemory = true;
4093 } else {
4094 // Do not serialize non-volatile loads against each other.
4095 Root = DAG.getRoot();
4098 SDLoc dl = getCurSDLoc();
4100 if (isVolatile)
4101 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4103 // An aggregate load cannot wrap around the address space, so offsets to its
4104 // parts don't wrap either.
4105 SDNodeFlags Flags;
4106 Flags.setNoUnsignedWrap(true);
4108 SmallVector<SDValue, 4> Values(NumValues);
4109 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4110 EVT PtrVT = Ptr.getValueType();
4112 MachineMemOperand::Flags MMOFlags
4113 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4115 unsigned ChainI = 0;
4116 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4117 // Serializing loads here may result in excessive register pressure, and
4118 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4119 // could recover a bit by hoisting nodes upward in the chain by recognizing
4120 // they are side-effect free or do not alias. The optimizer should really
4121 // avoid this case by converting large object/array copies to llvm.memcpy
4122 // (MaxParallelChains should always remain as failsafe).
4123 if (ChainI == MaxParallelChains) {
4124 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4125 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4126 makeArrayRef(Chains.data(), ChainI));
4127 Root = Chain;
4128 ChainI = 0;
4130 SDValue A = DAG.getNode(ISD::ADD, dl,
4131 PtrVT, Ptr,
4132 DAG.getConstant(Offsets[i], dl, PtrVT),
4133 Flags);
4135 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4136 MachinePointerInfo(SV, Offsets[i]), Alignment,
4137 MMOFlags, AAInfo, Ranges);
4138 Chains[ChainI] = L.getValue(1);
4140 if (MemVTs[i] != ValueVTs[i])
4141 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4143 Values[i] = L;
4146 if (!ConstantMemory) {
4147 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4148 makeArrayRef(Chains.data(), ChainI));
4149 if (isVolatile)
4150 DAG.setRoot(Chain);
4151 else
4152 PendingLoads.push_back(Chain);
4155 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4156 DAG.getVTList(ValueVTs), Values));
4159 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4160 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4161 "call visitStoreToSwiftError when backend supports swifterror");
4163 SmallVector<EVT, 4> ValueVTs;
4164 SmallVector<uint64_t, 4> Offsets;
4165 const Value *SrcV = I.getOperand(0);
4166 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4167 SrcV->getType(), ValueVTs, &Offsets);
4168 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4169 "expect a single EVT for swifterror");
4171 SDValue Src = getValue(SrcV);
4172 // Create a virtual register, then update the virtual register.
4173 Register VReg =
4174 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4175 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4176 // Chain can be getRoot or getControlRoot.
4177 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4178 SDValue(Src.getNode(), Src.getResNo()));
4179 DAG.setRoot(CopyNode);
4182 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4183 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4184 "call visitLoadFromSwiftError when backend supports swifterror");
4186 assert(!I.isVolatile() &&
4187 !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4188 !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4189 "Support volatile, non temporal, invariant for load_from_swift_error");
4191 const Value *SV = I.getOperand(0);
4192 Type *Ty = I.getType();
4193 AAMDNodes AAInfo;
4194 I.getAAMetadata(AAInfo);
4195 assert(
4196 (!AA ||
4197 !AA->pointsToConstantMemory(MemoryLocation(
4198 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4199 AAInfo))) &&
4200 "load_from_swift_error should not be constant memory");
4202 SmallVector<EVT, 4> ValueVTs;
4203 SmallVector<uint64_t, 4> Offsets;
4204 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4205 ValueVTs, &Offsets);
4206 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4207 "expect a single EVT for swifterror");
4209 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4210 SDValue L = DAG.getCopyFromReg(
4211 getRoot(), getCurSDLoc(),
4212 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4214 setValue(&I, L);
4217 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4218 if (I.isAtomic())
4219 return visitAtomicStore(I);
4221 const Value *SrcV = I.getOperand(0);
4222 const Value *PtrV = I.getOperand(1);
4224 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4225 if (TLI.supportSwiftError()) {
4226 // Swifterror values can come from either a function parameter with
4227 // swifterror attribute or an alloca with swifterror attribute.
4228 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4229 if (Arg->hasSwiftErrorAttr())
4230 return visitStoreToSwiftError(I);
4233 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4234 if (Alloca->isSwiftError())
4235 return visitStoreToSwiftError(I);
4239 SmallVector<EVT, 4> ValueVTs, MemVTs;
4240 SmallVector<uint64_t, 4> Offsets;
4241 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4242 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4243 unsigned NumValues = ValueVTs.size();
4244 if (NumValues == 0)
4245 return;
4247 // Get the lowered operands. Note that we do this after
4248 // checking if NumResults is zero, because with zero results
4249 // the operands won't have values in the map.
4250 SDValue Src = getValue(SrcV);
4251 SDValue Ptr = getValue(PtrV);
4253 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4254 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4255 SDLoc dl = getCurSDLoc();
4256 Align Alignment = I.getAlign();
4257 AAMDNodes AAInfo;
4258 I.getAAMetadata(AAInfo);
4260 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4262 // An aggregate load cannot wrap around the address space, so offsets to its
4263 // parts don't wrap either.
4264 SDNodeFlags Flags;
4265 Flags.setNoUnsignedWrap(true);
4267 unsigned ChainI = 0;
4268 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4269 // See visitLoad comments.
4270 if (ChainI == MaxParallelChains) {
4271 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4272 makeArrayRef(Chains.data(), ChainI));
4273 Root = Chain;
4274 ChainI = 0;
4276 SDValue Add =
4277 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4278 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4279 if (MemVTs[i] != ValueVTs[i])
4280 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4281 SDValue St =
4282 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4283 Alignment, MMOFlags, AAInfo);
4284 Chains[ChainI] = St;
4287 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4288 makeArrayRef(Chains.data(), ChainI));
4289 DAG.setRoot(StoreNode);
4292 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4293 bool IsCompressing) {
4294 SDLoc sdl = getCurSDLoc();
4296 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4297 MaybeAlign &Alignment) {
4298 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4299 Src0 = I.getArgOperand(0);
4300 Ptr = I.getArgOperand(1);
4301 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4302 Mask = I.getArgOperand(3);
4304 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4305 MaybeAlign &Alignment) {
4306 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4307 Src0 = I.getArgOperand(0);
4308 Ptr = I.getArgOperand(1);
4309 Mask = I.getArgOperand(2);
4310 Alignment = None;
4313 Value *PtrOperand, *MaskOperand, *Src0Operand;
4314 MaybeAlign Alignment;
4315 if (IsCompressing)
4316 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4317 else
4318 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4320 SDValue Ptr = getValue(PtrOperand);
4321 SDValue Src0 = getValue(Src0Operand);
4322 SDValue Mask = getValue(MaskOperand);
4323 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4325 EVT VT = Src0.getValueType();
4326 if (!Alignment)
4327 Alignment = DAG.getEVTAlign(VT);
4329 AAMDNodes AAInfo;
4330 I.getAAMetadata(AAInfo);
4332 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4333 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4334 // TODO: Make MachineMemOperands aware of scalable
4335 // vectors.
4336 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo);
4337 SDValue StoreNode =
4338 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4339 ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4340 DAG.setRoot(StoreNode);
4341 setValue(&I, StoreNode);
4344 // Get a uniform base for the Gather/Scatter intrinsic.
4345 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4346 // We try to represent it as a base pointer + vector of indices.
4347 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4348 // The first operand of the GEP may be a single pointer or a vector of pointers
4349 // Example:
4350 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4351 // or
4352 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4353 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4355 // When the first GEP operand is a single pointer - it is the uniform base we
4356 // are looking for. If first operand of the GEP is a splat vector - we
4357 // extract the splat value and use it as a uniform base.
4358 // In all other cases the function returns 'false'.
4359 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4360 ISD::MemIndexType &IndexType, SDValue &Scale,
4361 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) {
4362 SelectionDAG& DAG = SDB->DAG;
4363 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4364 const DataLayout &DL = DAG.getDataLayout();
4366 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4368 // Handle splat constant pointer.
4369 if (auto *C = dyn_cast<Constant>(Ptr)) {
4370 C = C->getSplatValue();
4371 if (!C)
4372 return false;
4374 Base = SDB->getValue(C);
4376 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4377 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4378 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4379 IndexType = ISD::SIGNED_SCALED;
4380 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4381 return true;
4384 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4385 if (!GEP || GEP->getParent() != CurBB)
4386 return false;
4388 if (GEP->getNumOperands() != 2)
4389 return false;
4391 const Value *BasePtr = GEP->getPointerOperand();
4392 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4394 // Make sure the base is scalar and the index is a vector.
4395 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4396 return false;
4398 Base = SDB->getValue(BasePtr);
4399 Index = SDB->getValue(IndexVal);
4400 IndexType = ISD::SIGNED_SCALED;
4401 Scale = DAG.getTargetConstant(
4402 DL.getTypeAllocSize(GEP->getResultElementType()),
4403 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4404 return true;
4407 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4408 SDLoc sdl = getCurSDLoc();
4410 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4411 const Value *Ptr = I.getArgOperand(1);
4412 SDValue Src0 = getValue(I.getArgOperand(0));
4413 SDValue Mask = getValue(I.getArgOperand(3));
4414 EVT VT = Src0.getValueType();
4415 Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4416 ->getMaybeAlignValue()
4417 .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4418 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4420 AAMDNodes AAInfo;
4421 I.getAAMetadata(AAInfo);
4423 SDValue Base;
4424 SDValue Index;
4425 ISD::MemIndexType IndexType;
4426 SDValue Scale;
4427 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4428 I.getParent());
4430 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4431 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4432 MachinePointerInfo(AS), MachineMemOperand::MOStore,
4433 // TODO: Make MachineMemOperands aware of scalable
4434 // vectors.
4435 MemoryLocation::UnknownSize, Alignment, AAInfo);
4436 if (!UniformBase) {
4437 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4438 Index = getValue(Ptr);
4439 IndexType = ISD::SIGNED_UNSCALED;
4440 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4443 EVT IdxVT = Index.getValueType();
4444 EVT EltTy = IdxVT.getVectorElementType();
4445 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4446 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4447 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4450 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4451 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4452 Ops, MMO, IndexType, false);
4453 DAG.setRoot(Scatter);
4454 setValue(&I, Scatter);
4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4458 SDLoc sdl = getCurSDLoc();
4460 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4461 MaybeAlign &Alignment) {
4462 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4463 Ptr = I.getArgOperand(0);
4464 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4465 Mask = I.getArgOperand(2);
4466 Src0 = I.getArgOperand(3);
4468 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4469 MaybeAlign &Alignment) {
4470 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4471 Ptr = I.getArgOperand(0);
4472 Alignment = None;
4473 Mask = I.getArgOperand(1);
4474 Src0 = I.getArgOperand(2);
4477 Value *PtrOperand, *MaskOperand, *Src0Operand;
4478 MaybeAlign Alignment;
4479 if (IsExpanding)
4480 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4481 else
4482 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4484 SDValue Ptr = getValue(PtrOperand);
4485 SDValue Src0 = getValue(Src0Operand);
4486 SDValue Mask = getValue(MaskOperand);
4487 SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4489 EVT VT = Src0.getValueType();
4490 if (!Alignment)
4491 Alignment = DAG.getEVTAlign(VT);
4493 AAMDNodes AAInfo;
4494 I.getAAMetadata(AAInfo);
4495 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4497 // Do not serialize masked loads of constant memory with anything.
4498 MemoryLocation ML;
4499 if (VT.isScalableVector())
4500 ML = MemoryLocation::getAfter(PtrOperand);
4501 else
4502 ML = MemoryLocation(PtrOperand, LocationSize::precise(
4503 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4504 AAInfo);
4505 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4507 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4509 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4510 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4511 // TODO: Make MachineMemOperands aware of scalable
4512 // vectors.
4513 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges);
4515 SDValue Load =
4516 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4517 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4518 if (AddToChain)
4519 PendingLoads.push_back(Load.getValue(1));
4520 setValue(&I, Load);
4523 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4524 SDLoc sdl = getCurSDLoc();
4526 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4527 const Value *Ptr = I.getArgOperand(0);
4528 SDValue Src0 = getValue(I.getArgOperand(3));
4529 SDValue Mask = getValue(I.getArgOperand(2));
4531 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4532 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4533 Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4534 ->getMaybeAlignValue()
4535 .getValueOr(DAG.getEVTAlign(VT.getScalarType()));
4537 AAMDNodes AAInfo;
4538 I.getAAMetadata(AAInfo);
4539 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4541 SDValue Root = DAG.getRoot();
4542 SDValue Base;
4543 SDValue Index;
4544 ISD::MemIndexType IndexType;
4545 SDValue Scale;
4546 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4547 I.getParent());
4548 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4549 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4550 MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4551 // TODO: Make MachineMemOperands aware of scalable
4552 // vectors.
4553 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges);
4555 if (!UniformBase) {
4556 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4557 Index = getValue(Ptr);
4558 IndexType = ISD::SIGNED_UNSCALED;
4559 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4562 EVT IdxVT = Index.getValueType();
4563 EVT EltTy = IdxVT.getVectorElementType();
4564 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4565 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4566 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4569 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4570 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4571 Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4573 PendingLoads.push_back(Gather.getValue(1));
4574 setValue(&I, Gather);
4577 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4578 SDLoc dl = getCurSDLoc();
4579 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4580 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4581 SyncScope::ID SSID = I.getSyncScopeID();
4583 SDValue InChain = getRoot();
4585 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4586 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4588 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4589 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4591 MachineFunction &MF = DAG.getMachineFunction();
4592 MachineMemOperand *MMO = MF.getMachineMemOperand(
4593 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4594 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4595 FailureOrdering);
4597 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4598 dl, MemVT, VTs, InChain,
4599 getValue(I.getPointerOperand()),
4600 getValue(I.getCompareOperand()),
4601 getValue(I.getNewValOperand()), MMO);
4603 SDValue OutChain = L.getValue(2);
4605 setValue(&I, L);
4606 DAG.setRoot(OutChain);
4609 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4610 SDLoc dl = getCurSDLoc();
4611 ISD::NodeType NT;
4612 switch (I.getOperation()) {
4613 default: llvm_unreachable("Unknown atomicrmw operation");
4614 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4615 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4616 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4617 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4618 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4619 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4620 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4621 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4622 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4623 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4624 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4625 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4626 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4628 AtomicOrdering Ordering = I.getOrdering();
4629 SyncScope::ID SSID = I.getSyncScopeID();
4631 SDValue InChain = getRoot();
4633 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4634 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4637 MachineFunction &MF = DAG.getMachineFunction();
4638 MachineMemOperand *MMO = MF.getMachineMemOperand(
4639 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4640 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4642 SDValue L =
4643 DAG.getAtomic(NT, dl, MemVT, InChain,
4644 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4645 MMO);
4647 SDValue OutChain = L.getValue(1);
4649 setValue(&I, L);
4650 DAG.setRoot(OutChain);
4653 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4654 SDLoc dl = getCurSDLoc();
4655 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656 SDValue Ops[3];
4657 Ops[0] = getRoot();
4658 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4659 TLI.getFenceOperandTy(DAG.getDataLayout()));
4660 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4661 TLI.getFenceOperandTy(DAG.getDataLayout()));
4662 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4665 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4666 SDLoc dl = getCurSDLoc();
4667 AtomicOrdering Order = I.getOrdering();
4668 SyncScope::ID SSID = I.getSyncScopeID();
4670 SDValue InChain = getRoot();
4672 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4673 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4674 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4676 if (!TLI.supportsUnalignedAtomics() &&
4677 I.getAlignment() < MemVT.getSizeInBits() / 8)
4678 report_fatal_error("Cannot generate unaligned atomic load");
4680 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout());
4682 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4683 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4684 I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4686 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4688 SDValue Ptr = getValue(I.getPointerOperand());
4690 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4691 // TODO: Once this is better exercised by tests, it should be merged with
4692 // the normal path for loads to prevent future divergence.
4693 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4694 if (MemVT != VT)
4695 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4697 setValue(&I, L);
4698 SDValue OutChain = L.getValue(1);
4699 if (!I.isUnordered())
4700 DAG.setRoot(OutChain);
4701 else
4702 PendingLoads.push_back(OutChain);
4703 return;
4706 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4707 Ptr, MMO);
4709 SDValue OutChain = L.getValue(1);
4710 if (MemVT != VT)
4711 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4713 setValue(&I, L);
4714 DAG.setRoot(OutChain);
4717 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4718 SDLoc dl = getCurSDLoc();
4720 AtomicOrdering Ordering = I.getOrdering();
4721 SyncScope::ID SSID = I.getSyncScopeID();
4723 SDValue InChain = getRoot();
4725 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4726 EVT MemVT =
4727 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4729 if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4730 report_fatal_error("Cannot generate unaligned atomic store");
4732 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4734 MachineFunction &MF = DAG.getMachineFunction();
4735 MachineMemOperand *MMO = MF.getMachineMemOperand(
4736 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4737 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4739 SDValue Val = getValue(I.getValueOperand());
4740 if (Val.getValueType() != MemVT)
4741 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4742 SDValue Ptr = getValue(I.getPointerOperand());
4744 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4745 // TODO: Once this is better exercised by tests, it should be merged with
4746 // the normal path for stores to prevent future divergence.
4747 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4748 DAG.setRoot(S);
4749 return;
4751 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4752 Ptr, Val, MMO);
4755 DAG.setRoot(OutChain);
4758 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4759 /// node.
4760 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4761 unsigned Intrinsic) {
4762 // Ignore the callsite's attributes. A specific call site may be marked with
4763 // readnone, but the lowering code will expect the chain based on the
4764 // definition.
4765 const Function *F = I.getCalledFunction();
4766 bool HasChain = !F->doesNotAccessMemory();
4767 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4769 // Build the operand list.
4770 SmallVector<SDValue, 8> Ops;
4771 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4772 if (OnlyLoad) {
4773 // We don't need to serialize loads against other loads.
4774 Ops.push_back(DAG.getRoot());
4775 } else {
4776 Ops.push_back(getRoot());
4780 // Info is set by getTgtMemInstrinsic
4781 TargetLowering::IntrinsicInfo Info;
4782 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4783 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4784 DAG.getMachineFunction(),
4785 Intrinsic);
4787 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4788 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4789 Info.opc == ISD::INTRINSIC_W_CHAIN)
4790 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4791 TLI.getPointerTy(DAG.getDataLayout())));
4793 // Add all operands of the call to the operand list.
4794 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4795 const Value *Arg = I.getArgOperand(i);
4796 if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4797 Ops.push_back(getValue(Arg));
4798 continue;
4801 // Use TargetConstant instead of a regular constant for immarg.
4802 EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4803 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4804 assert(CI->getBitWidth() <= 64 &&
4805 "large intrinsic immediates not handled");
4806 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4807 } else {
4808 Ops.push_back(
4809 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4813 SmallVector<EVT, 4> ValueVTs;
4814 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4816 if (HasChain)
4817 ValueVTs.push_back(MVT::Other);
4819 SDVTList VTs = DAG.getVTList(ValueVTs);
4821 // Propagate fast-math-flags from IR to node(s).
4822 SDNodeFlags Flags;
4823 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4824 Flags.copyFMF(*FPMO);
4825 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4827 // Create the node.
4828 SDValue Result;
4829 if (IsTgtIntrinsic) {
4830 // This is target intrinsic that touches memory
4831 AAMDNodes AAInfo;
4832 I.getAAMetadata(AAInfo);
4833 Result =
4834 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4835 MachinePointerInfo(Info.ptrVal, Info.offset),
4836 Info.align, Info.flags, Info.size, AAInfo);
4837 } else if (!HasChain) {
4838 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4839 } else if (!I.getType()->isVoidTy()) {
4840 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4841 } else {
4842 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4845 if (HasChain) {
4846 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4847 if (OnlyLoad)
4848 PendingLoads.push_back(Chain);
4849 else
4850 DAG.setRoot(Chain);
4853 if (!I.getType()->isVoidTy()) {
4854 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4855 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4856 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4857 } else
4858 Result = lowerRangeToAssertZExt(DAG, I, Result);
4860 MaybeAlign Alignment = I.getRetAlign();
4861 if (!Alignment)
4862 Alignment = F->getAttributes().getRetAlignment();
4863 // Insert `assertalign` node if there's an alignment.
4864 if (InsertAssertAlign && Alignment) {
4865 Result =
4866 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4869 setValue(&I, Result);
4873 /// GetSignificand - Get the significand and build it into a floating-point
4874 /// number with exponent of 1:
4876 /// Op = (Op & 0x007fffff) | 0x3f800000;
4878 /// where Op is the hexadecimal representation of floating point value.
4879 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4880 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4881 DAG.getConstant(0x007fffff, dl, MVT::i32));
4882 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4883 DAG.getConstant(0x3f800000, dl, MVT::i32));
4884 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4887 /// GetExponent - Get the exponent:
4889 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4891 /// where Op is the hexadecimal representation of floating point value.
4892 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4893 const TargetLowering &TLI, const SDLoc &dl) {
4894 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4895 DAG.getConstant(0x7f800000, dl, MVT::i32));
4896 SDValue t1 = DAG.getNode(
4897 ISD::SRL, dl, MVT::i32, t0,
4898 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4899 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4900 DAG.getConstant(127, dl, MVT::i32));
4901 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4904 /// getF32Constant - Get 32-bit floating point constant.
4905 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4906 const SDLoc &dl) {
4907 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4908 MVT::f32);
4911 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4912 SelectionDAG &DAG) {
4913 // TODO: What fast-math-flags should be set on the floating-point nodes?
4915 // IntegerPartOfX = ((int32_t)(t0);
4916 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4918 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4919 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4920 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4922 // IntegerPartOfX <<= 23;
4923 IntegerPartOfX = DAG.getNode(
4924 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4925 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4926 DAG.getDataLayout())));
4928 SDValue TwoToFractionalPartOfX;
4929 if (LimitFloatPrecision <= 6) {
4930 // For floating-point precision of 6:
4932 // TwoToFractionalPartOfX =
4933 // 0.997535578f +
4934 // (0.735607626f + 0.252464424f * x) * x;
4936 // error 0.0144103317, which is 6 bits
4937 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4938 getF32Constant(DAG, 0x3e814304, dl));
4939 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4940 getF32Constant(DAG, 0x3f3c50c8, dl));
4941 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4942 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4943 getF32Constant(DAG, 0x3f7f5e7e, dl));
4944 } else if (LimitFloatPrecision <= 12) {
4945 // For floating-point precision of 12:
4947 // TwoToFractionalPartOfX =
4948 // 0.999892986f +
4949 // (0.696457318f +
4950 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4952 // error 0.000107046256, which is 13 to 14 bits
4953 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4954 getF32Constant(DAG, 0x3da235e3, dl));
4955 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4956 getF32Constant(DAG, 0x3e65b8f3, dl));
4957 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4958 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4959 getF32Constant(DAG, 0x3f324b07, dl));
4960 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4961 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4962 getF32Constant(DAG, 0x3f7ff8fd, dl));
4963 } else { // LimitFloatPrecision <= 18
4964 // For floating-point precision of 18:
4966 // TwoToFractionalPartOfX =
4967 // 0.999999982f +
4968 // (0.693148872f +
4969 // (0.240227044f +
4970 // (0.554906021e-1f +
4971 // (0.961591928e-2f +
4972 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4973 // error 2.47208000*10^(-7), which is better than 18 bits
4974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4975 getF32Constant(DAG, 0x3924b03e, dl));
4976 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4977 getF32Constant(DAG, 0x3ab24b87, dl));
4978 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4979 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4980 getF32Constant(DAG, 0x3c1d8c17, dl));
4981 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4982 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4983 getF32Constant(DAG, 0x3d634a1d, dl));
4984 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4985 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4986 getF32Constant(DAG, 0x3e75fe14, dl));
4987 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4988 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4989 getF32Constant(DAG, 0x3f317234, dl));
4990 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4991 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4992 getF32Constant(DAG, 0x3f800000, dl));
4995 // Add the exponent into the result in integer domain.
4996 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4997 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4998 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5001 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5002 /// limited-precision mode.
5003 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5004 const TargetLowering &TLI, SDNodeFlags Flags) {
5005 if (Op.getValueType() == MVT::f32 &&
5006 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5008 // Put the exponent in the right bit position for later addition to the
5009 // final result:
5011 // t0 = Op * log2(e)
5013 // TODO: What fast-math-flags should be set here?
5014 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5015 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5016 return getLimitedPrecisionExp2(t0, dl, DAG);
5019 // No special expansion.
5020 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5023 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5024 /// limited-precision mode.
5025 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5026 const TargetLowering &TLI, SDNodeFlags Flags) {
5027 // TODO: What fast-math-flags should be set on the floating-point nodes?
5029 if (Op.getValueType() == MVT::f32 &&
5030 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5031 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5033 // Scale the exponent by log(2).
5034 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5035 SDValue LogOfExponent =
5036 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5037 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5039 // Get the significand and build it into a floating-point number with
5040 // exponent of 1.
5041 SDValue X = GetSignificand(DAG, Op1, dl);
5043 SDValue LogOfMantissa;
5044 if (LimitFloatPrecision <= 6) {
5045 // For floating-point precision of 6:
5047 // LogofMantissa =
5048 // -1.1609546f +
5049 // (1.4034025f - 0.23903021f * x) * x;
5051 // error 0.0034276066, which is better than 8 bits
5052 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5053 getF32Constant(DAG, 0xbe74c456, dl));
5054 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5055 getF32Constant(DAG, 0x3fb3a2b1, dl));
5056 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5057 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5058 getF32Constant(DAG, 0x3f949a29, dl));
5059 } else if (LimitFloatPrecision <= 12) {
5060 // For floating-point precision of 12:
5062 // LogOfMantissa =
5063 // -1.7417939f +
5064 // (2.8212026f +
5065 // (-1.4699568f +
5066 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5068 // error 0.000061011436, which is 14 bits
5069 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5070 getF32Constant(DAG, 0xbd67b6d6, dl));
5071 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5072 getF32Constant(DAG, 0x3ee4f4b8, dl));
5073 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5074 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5075 getF32Constant(DAG, 0x3fbc278b, dl));
5076 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5077 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5078 getF32Constant(DAG, 0x40348e95, dl));
5079 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5080 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5081 getF32Constant(DAG, 0x3fdef31a, dl));
5082 } else { // LimitFloatPrecision <= 18
5083 // For floating-point precision of 18:
5085 // LogOfMantissa =
5086 // -2.1072184f +
5087 // (4.2372794f +
5088 // (-3.7029485f +
5089 // (2.2781945f +
5090 // (-0.87823314f +
5091 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5093 // error 0.0000023660568, which is better than 18 bits
5094 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5095 getF32Constant(DAG, 0xbc91e5ac, dl));
5096 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5097 getF32Constant(DAG, 0x3e4350aa, dl));
5098 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5099 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5100 getF32Constant(DAG, 0x3f60d3e3, dl));
5101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5102 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5103 getF32Constant(DAG, 0x4011cdf0, dl));
5104 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5105 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5106 getF32Constant(DAG, 0x406cfd1c, dl));
5107 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5108 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5109 getF32Constant(DAG, 0x408797cb, dl));
5110 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5111 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5112 getF32Constant(DAG, 0x4006dcab, dl));
5115 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5118 // No special expansion.
5119 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5122 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5123 /// limited-precision mode.
5124 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5125 const TargetLowering &TLI, SDNodeFlags Flags) {
5126 // TODO: What fast-math-flags should be set on the floating-point nodes?
5128 if (Op.getValueType() == MVT::f32 &&
5129 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5130 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5132 // Get the exponent.
5133 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5135 // Get the significand and build it into a floating-point number with
5136 // exponent of 1.
5137 SDValue X = GetSignificand(DAG, Op1, dl);
5139 // Different possible minimax approximations of significand in
5140 // floating-point for various degrees of accuracy over [1,2].
5141 SDValue Log2ofMantissa;
5142 if (LimitFloatPrecision <= 6) {
5143 // For floating-point precision of 6:
5145 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5147 // error 0.0049451742, which is more than 7 bits
5148 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5149 getF32Constant(DAG, 0xbeb08fe0, dl));
5150 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5151 getF32Constant(DAG, 0x40019463, dl));
5152 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5153 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5154 getF32Constant(DAG, 0x3fd6633d, dl));
5155 } else if (LimitFloatPrecision <= 12) {
5156 // For floating-point precision of 12:
5158 // Log2ofMantissa =
5159 // -2.51285454f +
5160 // (4.07009056f +
5161 // (-2.12067489f +
5162 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5164 // error 0.0000876136000, which is better than 13 bits
5165 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5166 getF32Constant(DAG, 0xbda7262e, dl));
5167 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5168 getF32Constant(DAG, 0x3f25280b, dl));
5169 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5170 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5171 getF32Constant(DAG, 0x4007b923, dl));
5172 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5173 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5174 getF32Constant(DAG, 0x40823e2f, dl));
5175 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5176 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5177 getF32Constant(DAG, 0x4020d29c, dl));
5178 } else { // LimitFloatPrecision <= 18
5179 // For floating-point precision of 18:
5181 // Log2ofMantissa =
5182 // -3.0400495f +
5183 // (6.1129976f +
5184 // (-5.3420409f +
5185 // (3.2865683f +
5186 // (-1.2669343f +
5187 // (0.27515199f -
5188 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5190 // error 0.0000018516, which is better than 18 bits
5191 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5192 getF32Constant(DAG, 0xbcd2769e, dl));
5193 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5194 getF32Constant(DAG, 0x3e8ce0b9, dl));
5195 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5196 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5197 getF32Constant(DAG, 0x3fa22ae7, dl));
5198 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5199 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5200 getF32Constant(DAG, 0x40525723, dl));
5201 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5202 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5203 getF32Constant(DAG, 0x40aaf200, dl));
5204 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5205 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5206 getF32Constant(DAG, 0x40c39dad, dl));
5207 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5208 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5209 getF32Constant(DAG, 0x4042902c, dl));
5212 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5215 // No special expansion.
5216 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5219 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5220 /// limited-precision mode.
5221 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5222 const TargetLowering &TLI, SDNodeFlags Flags) {
5223 // TODO: What fast-math-flags should be set on the floating-point nodes?
5225 if (Op.getValueType() == MVT::f32 &&
5226 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5227 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5229 // Scale the exponent by log10(2) [0.30102999f].
5230 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5231 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5232 getF32Constant(DAG, 0x3e9a209a, dl));
5234 // Get the significand and build it into a floating-point number with
5235 // exponent of 1.
5236 SDValue X = GetSignificand(DAG, Op1, dl);
5238 SDValue Log10ofMantissa;
5239 if (LimitFloatPrecision <= 6) {
5240 // For floating-point precision of 6:
5242 // Log10ofMantissa =
5243 // -0.50419619f +
5244 // (0.60948995f - 0.10380950f * x) * x;
5246 // error 0.0014886165, which is 6 bits
5247 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5248 getF32Constant(DAG, 0xbdd49a13, dl));
5249 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5250 getF32Constant(DAG, 0x3f1c0789, dl));
5251 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5252 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5253 getF32Constant(DAG, 0x3f011300, dl));
5254 } else if (LimitFloatPrecision <= 12) {
5255 // For floating-point precision of 12:
5257 // Log10ofMantissa =
5258 // -0.64831180f +
5259 // (0.91751397f +
5260 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5262 // error 0.00019228036, which is better than 12 bits
5263 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5264 getF32Constant(DAG, 0x3d431f31, dl));
5265 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5266 getF32Constant(DAG, 0x3ea21fb2, dl));
5267 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5268 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5269 getF32Constant(DAG, 0x3f6ae232, dl));
5270 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5271 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5272 getF32Constant(DAG, 0x3f25f7c3, dl));
5273 } else { // LimitFloatPrecision <= 18
5274 // For floating-point precision of 18:
5276 // Log10ofMantissa =
5277 // -0.84299375f +
5278 // (1.5327582f +
5279 // (-1.0688956f +
5280 // (0.49102474f +
5281 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5283 // error 0.0000037995730, which is better than 18 bits
5284 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5285 getF32Constant(DAG, 0x3c5d51ce, dl));
5286 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5287 getF32Constant(DAG, 0x3e00685a, dl));
5288 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5289 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5290 getF32Constant(DAG, 0x3efb6798, dl));
5291 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5292 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5293 getF32Constant(DAG, 0x3f88d192, dl));
5294 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5295 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5296 getF32Constant(DAG, 0x3fc4316c, dl));
5297 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5298 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5299 getF32Constant(DAG, 0x3f57ce70, dl));
5302 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5305 // No special expansion.
5306 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5309 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5310 /// limited-precision mode.
5311 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5312 const TargetLowering &TLI, SDNodeFlags Flags) {
5313 if (Op.getValueType() == MVT::f32 &&
5314 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5315 return getLimitedPrecisionExp2(Op, dl, DAG);
5317 // No special expansion.
5318 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5321 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5322 /// limited-precision mode with x == 10.0f.
5323 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5324 SelectionDAG &DAG, const TargetLowering &TLI,
5325 SDNodeFlags Flags) {
5326 bool IsExp10 = false;
5327 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5328 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5329 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5330 APFloat Ten(10.0f);
5331 IsExp10 = LHSC->isExactlyValue(Ten);
5335 // TODO: What fast-math-flags should be set on the FMUL node?
5336 if (IsExp10) {
5337 // Put the exponent in the right bit position for later addition to the
5338 // final result:
5340 // #define LOG2OF10 3.3219281f
5341 // t0 = Op * LOG2OF10;
5342 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5343 getF32Constant(DAG, 0x40549a78, dl));
5344 return getLimitedPrecisionExp2(t0, dl, DAG);
5347 // No special expansion.
5348 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5351 /// ExpandPowI - Expand a llvm.powi intrinsic.
5352 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5353 SelectionDAG &DAG) {
5354 // If RHS is a constant, we can expand this out to a multiplication tree,
5355 // otherwise we end up lowering to a call to __powidf2 (for example). When
5356 // optimizing for size, we only want to do this if the expansion would produce
5357 // a small number of multiplies, otherwise we do the full expansion.
5358 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5359 // Get the exponent as a positive value.
5360 unsigned Val = RHSC->getSExtValue();
5361 if ((int)Val < 0) Val = -Val;
5363 // powi(x, 0) -> 1.0
5364 if (Val == 0)
5365 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5367 bool OptForSize = DAG.shouldOptForSize();
5368 if (!OptForSize ||
5369 // If optimizing for size, don't insert too many multiplies.
5370 // This inserts up to 5 multiplies.
5371 countPopulation(Val) + Log2_32(Val) < 7) {
5372 // We use the simple binary decomposition method to generate the multiply
5373 // sequence. There are more optimal ways to do this (for example,
5374 // powi(x,15) generates one more multiply than it should), but this has
5375 // the benefit of being both really simple and much better than a libcall.
5376 SDValue Res; // Logically starts equal to 1.0
5377 SDValue CurSquare = LHS;
5378 // TODO: Intrinsics should have fast-math-flags that propagate to these
5379 // nodes.
5380 while (Val) {
5381 if (Val & 1) {
5382 if (Res.getNode())
5383 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5384 else
5385 Res = CurSquare; // 1.0*CurSquare.
5388 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5389 CurSquare, CurSquare);
5390 Val >>= 1;
5393 // If the original was negative, invert the result, producing 1/(x*x*x).
5394 if (RHSC->getSExtValue() < 0)
5395 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5396 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5397 return Res;
5401 // Otherwise, expand to a libcall.
5402 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5405 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5406 SDValue LHS, SDValue RHS, SDValue Scale,
5407 SelectionDAG &DAG, const TargetLowering &TLI) {
5408 EVT VT = LHS.getValueType();
5409 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5410 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5411 LLVMContext &Ctx = *DAG.getContext();
5413 // If the type is legal but the operation isn't, this node might survive all
5414 // the way to operation legalization. If we end up there and we do not have
5415 // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5416 // node.
5418 // Coax the legalizer into expanding the node during type legalization instead
5419 // by bumping the size by one bit. This will force it to Promote, enabling the
5420 // early expansion and avoiding the need to expand later.
5422 // We don't have to do this if Scale is 0; that can always be expanded, unless
5423 // it's a saturating signed operation. Those can experience true integer
5424 // division overflow, a case which we must avoid.
5426 // FIXME: We wouldn't have to do this (or any of the early
5427 // expansion/promotion) if it was possible to expand a libcall of an
5428 // illegal type during operation legalization. But it's not, so things
5429 // get a bit hacky.
5430 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5431 if ((ScaleInt > 0 || (Saturating && Signed)) &&
5432 (TLI.isTypeLegal(VT) ||
5433 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5434 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5435 Opcode, VT, ScaleInt);
5436 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5437 EVT PromVT;
5438 if (VT.isScalarInteger())
5439 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5440 else if (VT.isVector()) {
5441 PromVT = VT.getVectorElementType();
5442 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5443 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5444 } else
5445 llvm_unreachable("Wrong VT for DIVFIX?");
5446 if (Signed) {
5447 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5448 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5449 } else {
5450 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5451 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5453 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5454 // For saturating operations, we need to shift up the LHS to get the
5455 // proper saturation width, and then shift down again afterwards.
5456 if (Saturating)
5457 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5458 DAG.getConstant(1, DL, ShiftTy));
5459 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5460 if (Saturating)
5461 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5462 DAG.getConstant(1, DL, ShiftTy));
5463 return DAG.getZExtOrTrunc(Res, DL, VT);
5467 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5470 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5471 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5472 static void
5473 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5474 const SDValue &N) {
5475 switch (N.getOpcode()) {
5476 case ISD::CopyFromReg: {
5477 SDValue Op = N.getOperand(1);
5478 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5479 Op.getValueType().getSizeInBits());
5480 return;
5482 case ISD::BITCAST:
5483 case ISD::AssertZext:
5484 case ISD::AssertSext:
5485 case ISD::TRUNCATE:
5486 getUnderlyingArgRegs(Regs, N.getOperand(0));
5487 return;
5488 case ISD::BUILD_PAIR:
5489 case ISD::BUILD_VECTOR:
5490 case ISD::CONCAT_VECTORS:
5491 for (SDValue Op : N->op_values())
5492 getUnderlyingArgRegs(Regs, Op);
5493 return;
5494 default:
5495 return;
5499 /// If the DbgValueInst is a dbg_value of a function argument, create the
5500 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5501 /// instruction selection, they will be inserted to the entry BB.
5502 /// We don't currently support this for variadic dbg_values, as they shouldn't
5503 /// appear for function arguments or in the prologue.
5504 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5505 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5506 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5507 const Argument *Arg = dyn_cast<Argument>(V);
5508 if (!Arg)
5509 return false;
5511 MachineFunction &MF = DAG.getMachineFunction();
5512 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5514 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5515 // we've been asked to pursue.
5516 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5517 bool Indirect) {
5518 if (Reg.isVirtual() && TM.Options.ValueTrackingVariableLocations) {
5519 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5520 // pointing at the VReg, which will be patched up later.
5521 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5522 auto MIB = BuildMI(MF, DL, Inst);
5523 MIB.addReg(Reg, RegState::Debug);
5524 MIB.addImm(0);
5525 MIB.addMetadata(Variable);
5526 auto *NewDIExpr = FragExpr;
5527 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5528 // the DIExpression.
5529 if (Indirect)
5530 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5531 MIB.addMetadata(NewDIExpr);
5532 return MIB;
5533 } else {
5534 // Create a completely standard DBG_VALUE.
5535 auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5536 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5540 if (!IsDbgDeclare) {
5541 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5542 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5543 // the entry block.
5544 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5545 if (!IsInEntryBlock)
5546 return false;
5548 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5549 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5550 // variable that also is a param.
5552 // Although, if we are at the top of the entry block already, we can still
5553 // emit using ArgDbgValue. This might catch some situations when the
5554 // dbg.value refers to an argument that isn't used in the entry block, so
5555 // any CopyToReg node would be optimized out and the only way to express
5556 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5557 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5558 // we should only emit as ArgDbgValue if the Variable is an argument to the
5559 // current function, and the dbg.value intrinsic is found in the entry
5560 // block.
5561 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5562 !DL->getInlinedAt();
5563 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5564 if (!IsInPrologue && !VariableIsFunctionInputArg)
5565 return false;
5567 // Here we assume that a function argument on IR level only can be used to
5568 // describe one input parameter on source level. If we for example have
5569 // source code like this
5571 // struct A { long x, y; };
5572 // void foo(struct A a, long b) {
5573 // ...
5574 // b = a.x;
5575 // ...
5576 // }
5578 // and IR like this
5580 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5581 // entry:
5582 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5583 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5584 // call void @llvm.dbg.value(metadata i32 %b, "b",
5585 // ...
5586 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5587 // ...
5589 // then the last dbg.value is describing a parameter "b" using a value that
5590 // is an argument. But since we already has used %a1 to describe a parameter
5591 // we should not handle that last dbg.value here (that would result in an
5592 // incorrect hoisting of the DBG_VALUE to the function entry).
5593 // Notice that we allow one dbg.value per IR level argument, to accommodate
5594 // for the situation with fragments above.
5595 if (VariableIsFunctionInputArg) {
5596 unsigned ArgNo = Arg->getArgNo();
5597 if (ArgNo >= FuncInfo.DescribedArgs.size())
5598 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5599 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5600 return false;
5601 FuncInfo.DescribedArgs.set(ArgNo);
5605 bool IsIndirect = false;
5606 Optional<MachineOperand> Op;
5607 // Some arguments' frame index is recorded during argument lowering.
5608 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5609 if (FI != std::numeric_limits<int>::max())
5610 Op = MachineOperand::CreateFI(FI);
5612 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5613 if (!Op && N.getNode()) {
5614 getUnderlyingArgRegs(ArgRegsAndSizes, N);
5615 Register Reg;
5616 if (ArgRegsAndSizes.size() == 1)
5617 Reg = ArgRegsAndSizes.front().first;
5619 if (Reg && Reg.isVirtual()) {
5620 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5621 Register PR = RegInfo.getLiveInPhysReg(Reg);
5622 if (PR)
5623 Reg = PR;
5625 if (Reg) {
5626 Op = MachineOperand::CreateReg(Reg, false);
5627 IsIndirect = IsDbgDeclare;
5631 if (!Op && N.getNode()) {
5632 // Check if frame index is available.
5633 SDValue LCandidate = peekThroughBitcasts(N);
5634 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5635 if (FrameIndexSDNode *FINode =
5636 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5637 Op = MachineOperand::CreateFI(FINode->getIndex());
5640 if (!Op) {
5641 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5642 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5643 SplitRegs) {
5644 unsigned Offset = 0;
5645 for (auto RegAndSize : SplitRegs) {
5646 // If the expression is already a fragment, the current register
5647 // offset+size might extend beyond the fragment. In this case, only
5648 // the register bits that are inside the fragment are relevant.
5649 int RegFragmentSizeInBits = RegAndSize.second;
5650 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5651 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5652 // The register is entirely outside the expression fragment,
5653 // so is irrelevant for debug info.
5654 if (Offset >= ExprFragmentSizeInBits)
5655 break;
5656 // The register is partially outside the expression fragment, only
5657 // the low bits within the fragment are relevant for debug info.
5658 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5659 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5663 auto FragmentExpr = DIExpression::createFragmentExpression(
5664 Expr, Offset, RegFragmentSizeInBits);
5665 Offset += RegAndSize.second;
5666 // If a valid fragment expression cannot be created, the variable's
5667 // correct value cannot be determined and so it is set as Undef.
5668 if (!FragmentExpr) {
5669 SDDbgValue *SDV = DAG.getConstantDbgValue(
5670 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5671 DAG.AddDbgValue(SDV, false);
5672 continue;
5674 MachineInstr *NewMI =
5675 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, IsDbgDeclare);
5676 FuncInfo.ArgDbgValues.push_back(NewMI);
5680 // Check if ValueMap has reg number.
5681 DenseMap<const Value *, Register>::const_iterator
5682 VMI = FuncInfo.ValueMap.find(V);
5683 if (VMI != FuncInfo.ValueMap.end()) {
5684 const auto &TLI = DAG.getTargetLoweringInfo();
5685 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5686 V->getType(), None);
5687 if (RFV.occupiesMultipleRegs()) {
5688 splitMultiRegDbgValue(RFV.getRegsAndSizes());
5689 return true;
5692 Op = MachineOperand::CreateReg(VMI->second, false);
5693 IsIndirect = IsDbgDeclare;
5694 } else if (ArgRegsAndSizes.size() > 1) {
5695 // This was split due to the calling convention, and no virtual register
5696 // mapping exists for the value.
5697 splitMultiRegDbgValue(ArgRegsAndSizes);
5698 return true;
5702 if (!Op)
5703 return false;
5705 assert(Variable->isValidLocationForIntrinsic(DL) &&
5706 "Expected inlined-at fields to agree");
5707 MachineInstr *NewMI = nullptr;
5709 if (Op->isReg())
5710 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5711 else
5712 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5713 Variable, Expr);
5715 FuncInfo.ArgDbgValues.push_back(NewMI);
5716 return true;
5719 /// Return the appropriate SDDbgValue based on N.
5720 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5721 DILocalVariable *Variable,
5722 DIExpression *Expr,
5723 const DebugLoc &dl,
5724 unsigned DbgSDNodeOrder) {
5725 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5726 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5727 // stack slot locations.
5729 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5730 // debug values here after optimization:
5732 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5733 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5735 // Both describe the direct values of their associated variables.
5736 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5737 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5739 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5740 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5743 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5744 switch (Intrinsic) {
5745 case Intrinsic::smul_fix:
5746 return ISD::SMULFIX;
5747 case Intrinsic::umul_fix:
5748 return ISD::UMULFIX;
5749 case Intrinsic::smul_fix_sat:
5750 return ISD::SMULFIXSAT;
5751 case Intrinsic::umul_fix_sat:
5752 return ISD::UMULFIXSAT;
5753 case Intrinsic::sdiv_fix:
5754 return ISD::SDIVFIX;
5755 case Intrinsic::udiv_fix:
5756 return ISD::UDIVFIX;
5757 case Intrinsic::sdiv_fix_sat:
5758 return ISD::SDIVFIXSAT;
5759 case Intrinsic::udiv_fix_sat:
5760 return ISD::UDIVFIXSAT;
5761 default:
5762 llvm_unreachable("Unhandled fixed point intrinsic");
5766 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5767 const char *FunctionName) {
5768 assert(FunctionName && "FunctionName must not be nullptr");
5769 SDValue Callee = DAG.getExternalSymbol(
5770 FunctionName,
5771 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5772 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5775 /// Given a @llvm.call.preallocated.setup, return the corresponding
5776 /// preallocated call.
5777 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5778 assert(cast<CallBase>(PreallocatedSetup)
5779 ->getCalledFunction()
5780 ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5781 "expected call_preallocated_setup Value");
5782 for (auto *U : PreallocatedSetup->users()) {
5783 auto *UseCall = cast<CallBase>(U);
5784 const Function *Fn = UseCall->getCalledFunction();
5785 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5786 return UseCall;
5789 llvm_unreachable("expected corresponding call to preallocated setup/arg");
5792 /// Lower the call to the specified intrinsic function.
5793 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5794 unsigned Intrinsic) {
5795 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5796 SDLoc sdl = getCurSDLoc();
5797 DebugLoc dl = getCurDebugLoc();
5798 SDValue Res;
5800 SDNodeFlags Flags;
5801 if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5802 Flags.copyFMF(*FPOp);
5804 switch (Intrinsic) {
5805 default:
5806 // By default, turn this into a target intrinsic node.
5807 visitTargetIntrinsic(I, Intrinsic);
5808 return;
5809 case Intrinsic::vscale: {
5810 match(&I, m_VScale(DAG.getDataLayout()));
5811 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5812 setValue(&I,
5813 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)));
5814 return;
5816 case Intrinsic::vastart: visitVAStart(I); return;
5817 case Intrinsic::vaend: visitVAEnd(I); return;
5818 case Intrinsic::vacopy: visitVACopy(I); return;
5819 case Intrinsic::returnaddress:
5820 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5821 TLI.getPointerTy(DAG.getDataLayout()),
5822 getValue(I.getArgOperand(0))));
5823 return;
5824 case Intrinsic::addressofreturnaddress:
5825 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5826 TLI.getPointerTy(DAG.getDataLayout())));
5827 return;
5828 case Intrinsic::sponentry:
5829 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5830 TLI.getFrameIndexTy(DAG.getDataLayout())));
5831 return;
5832 case Intrinsic::frameaddress:
5833 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5834 TLI.getFrameIndexTy(DAG.getDataLayout()),
5835 getValue(I.getArgOperand(0))));
5836 return;
5837 case Intrinsic::read_volatile_register:
5838 case Intrinsic::read_register: {
5839 Value *Reg = I.getArgOperand(0);
5840 SDValue Chain = getRoot();
5841 SDValue RegName =
5842 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5843 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5844 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5845 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5846 setValue(&I, Res);
5847 DAG.setRoot(Res.getValue(1));
5848 return;
5850 case Intrinsic::write_register: {
5851 Value *Reg = I.getArgOperand(0);
5852 Value *RegValue = I.getArgOperand(1);
5853 SDValue Chain = getRoot();
5854 SDValue RegName =
5855 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5856 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5857 RegName, getValue(RegValue)));
5858 return;
5860 case Intrinsic::memcpy: {
5861 const auto &MCI = cast<MemCpyInst>(I);
5862 SDValue Op1 = getValue(I.getArgOperand(0));
5863 SDValue Op2 = getValue(I.getArgOperand(1));
5864 SDValue Op3 = getValue(I.getArgOperand(2));
5865 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5866 Align DstAlign = MCI.getDestAlign().valueOrOne();
5867 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5868 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5869 bool isVol = MCI.isVolatile();
5870 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5871 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5872 // node.
5873 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5874 AAMDNodes AAInfo;
5875 I.getAAMetadata(AAInfo);
5876 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5877 /* AlwaysInline */ false, isTC,
5878 MachinePointerInfo(I.getArgOperand(0)),
5879 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5880 updateDAGForMaybeTailCall(MC);
5881 return;
5883 case Intrinsic::memcpy_inline: {
5884 const auto &MCI = cast<MemCpyInlineInst>(I);
5885 SDValue Dst = getValue(I.getArgOperand(0));
5886 SDValue Src = getValue(I.getArgOperand(1));
5887 SDValue Size = getValue(I.getArgOperand(2));
5888 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5889 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5890 Align DstAlign = MCI.getDestAlign().valueOrOne();
5891 Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5892 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5893 bool isVol = MCI.isVolatile();
5894 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5895 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5896 // node.
5897 AAMDNodes AAInfo;
5898 I.getAAMetadata(AAInfo);
5899 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5900 /* AlwaysInline */ true, isTC,
5901 MachinePointerInfo(I.getArgOperand(0)),
5902 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5903 updateDAGForMaybeTailCall(MC);
5904 return;
5906 case Intrinsic::memset: {
5907 const auto &MSI = cast<MemSetInst>(I);
5908 SDValue Op1 = getValue(I.getArgOperand(0));
5909 SDValue Op2 = getValue(I.getArgOperand(1));
5910 SDValue Op3 = getValue(I.getArgOperand(2));
5911 // @llvm.memset defines 0 and 1 to both mean no alignment.
5912 Align Alignment = MSI.getDestAlign().valueOrOne();
5913 bool isVol = MSI.isVolatile();
5914 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5915 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5916 AAMDNodes AAInfo;
5917 I.getAAMetadata(AAInfo);
5918 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC,
5919 MachinePointerInfo(I.getArgOperand(0)), AAInfo);
5920 updateDAGForMaybeTailCall(MS);
5921 return;
5923 case Intrinsic::memmove: {
5924 const auto &MMI = cast<MemMoveInst>(I);
5925 SDValue Op1 = getValue(I.getArgOperand(0));
5926 SDValue Op2 = getValue(I.getArgOperand(1));
5927 SDValue Op3 = getValue(I.getArgOperand(2));
5928 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5929 Align DstAlign = MMI.getDestAlign().valueOrOne();
5930 Align SrcAlign = MMI.getSourceAlign().valueOrOne();
5931 Align Alignment = commonAlignment(DstAlign, SrcAlign);
5932 bool isVol = MMI.isVolatile();
5933 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5934 // FIXME: Support passing different dest/src alignments to the memmove DAG
5935 // node.
5936 SDValue Root = isVol ? getRoot() : getMemoryRoot();
5937 AAMDNodes AAInfo;
5938 I.getAAMetadata(AAInfo);
5939 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5940 isTC, MachinePointerInfo(I.getArgOperand(0)),
5941 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
5942 updateDAGForMaybeTailCall(MM);
5943 return;
5945 case Intrinsic::memcpy_element_unordered_atomic: {
5946 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5947 SDValue Dst = getValue(MI.getRawDest());
5948 SDValue Src = getValue(MI.getRawSource());
5949 SDValue Length = getValue(MI.getLength());
5951 unsigned DstAlign = MI.getDestAlignment();
5952 unsigned SrcAlign = MI.getSourceAlignment();
5953 Type *LengthTy = MI.getLength()->getType();
5954 unsigned ElemSz = MI.getElementSizeInBytes();
5955 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5956 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5957 SrcAlign, Length, LengthTy, ElemSz, isTC,
5958 MachinePointerInfo(MI.getRawDest()),
5959 MachinePointerInfo(MI.getRawSource()));
5960 updateDAGForMaybeTailCall(MC);
5961 return;
5963 case Intrinsic::memmove_element_unordered_atomic: {
5964 auto &MI = cast<AtomicMemMoveInst>(I);
5965 SDValue Dst = getValue(MI.getRawDest());
5966 SDValue Src = getValue(MI.getRawSource());
5967 SDValue Length = getValue(MI.getLength());
5969 unsigned DstAlign = MI.getDestAlignment();
5970 unsigned SrcAlign = MI.getSourceAlignment();
5971 Type *LengthTy = MI.getLength()->getType();
5972 unsigned ElemSz = MI.getElementSizeInBytes();
5973 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5974 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5975 SrcAlign, Length, LengthTy, ElemSz, isTC,
5976 MachinePointerInfo(MI.getRawDest()),
5977 MachinePointerInfo(MI.getRawSource()));
5978 updateDAGForMaybeTailCall(MC);
5979 return;
5981 case Intrinsic::memset_element_unordered_atomic: {
5982 auto &MI = cast<AtomicMemSetInst>(I);
5983 SDValue Dst = getValue(MI.getRawDest());
5984 SDValue Val = getValue(MI.getValue());
5985 SDValue Length = getValue(MI.getLength());
5987 unsigned DstAlign = MI.getDestAlignment();
5988 Type *LengthTy = MI.getLength()->getType();
5989 unsigned ElemSz = MI.getElementSizeInBytes();
5990 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5991 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5992 LengthTy, ElemSz, isTC,
5993 MachinePointerInfo(MI.getRawDest()));
5994 updateDAGForMaybeTailCall(MC);
5995 return;
5997 case Intrinsic::call_preallocated_setup: {
5998 const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
5999 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6000 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6001 getRoot(), SrcValue);
6002 setValue(&I, Res);
6003 DAG.setRoot(Res);
6004 return;
6006 case Intrinsic::call_preallocated_arg: {
6007 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6008 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6009 SDValue Ops[3];
6010 Ops[0] = getRoot();
6011 Ops[1] = SrcValue;
6012 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6013 MVT::i32); // arg index
6014 SDValue Res = DAG.getNode(
6015 ISD::PREALLOCATED_ARG, sdl,
6016 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6017 setValue(&I, Res);
6018 DAG.setRoot(Res.getValue(1));
6019 return;
6021 case Intrinsic::dbg_addr:
6022 case Intrinsic::dbg_declare: {
6023 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6024 // they are non-variadic.
6025 const auto &DI = cast<DbgVariableIntrinsic>(I);
6026 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6027 DILocalVariable *Variable = DI.getVariable();
6028 DIExpression *Expression = DI.getExpression();
6029 dropDanglingDebugInfo(Variable, Expression);
6030 assert(Variable && "Missing variable");
6031 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6032 << "\n");
6033 // Check if address has undef value.
6034 const Value *Address = DI.getVariableLocationOp(0);
6035 if (!Address || isa<UndefValue>(Address) ||
6036 (Address->use_empty() && !isa<Argument>(Address))) {
6037 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6038 << " (bad/undef/unused-arg address)\n");
6039 return;
6042 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6044 // Check if this variable can be described by a frame index, typically
6045 // either as a static alloca or a byval parameter.
6046 int FI = std::numeric_limits<int>::max();
6047 if (const auto *AI =
6048 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6049 if (AI->isStaticAlloca()) {
6050 auto I = FuncInfo.StaticAllocaMap.find(AI);
6051 if (I != FuncInfo.StaticAllocaMap.end())
6052 FI = I->second;
6054 } else if (const auto *Arg = dyn_cast<Argument>(
6055 Address->stripInBoundsConstantOffsets())) {
6056 FI = FuncInfo.getArgumentFrameIndex(Arg);
6059 // llvm.dbg.addr is control dependent and always generates indirect
6060 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6061 // the MachineFunction variable table.
6062 if (FI != std::numeric_limits<int>::max()) {
6063 if (Intrinsic == Intrinsic::dbg_addr) {
6064 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6065 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6066 dl, SDNodeOrder);
6067 DAG.AddDbgValue(SDV, isParameter);
6068 } else {
6069 LLVM_DEBUG(dbgs() << "Skipping " << DI
6070 << " (variable info stashed in MF side table)\n");
6072 return;
6075 SDValue &N = NodeMap[Address];
6076 if (!N.getNode() && isa<Argument>(Address))
6077 // Check unused arguments map.
6078 N = UnusedArgNodeMap[Address];
6079 SDDbgValue *SDV;
6080 if (N.getNode()) {
6081 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6082 Address = BCI->getOperand(0);
6083 // Parameters are handled specially.
6084 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6085 if (isParameter && FINode) {
6086 // Byval parameter. We have a frame index at this point.
6087 SDV =
6088 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6089 /*IsIndirect*/ true, dl, SDNodeOrder);
6090 } else if (isa<Argument>(Address)) {
6091 // Address is an argument, so try to emit its dbg value using
6092 // virtual register info from the FuncInfo.ValueMap.
6093 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
6094 return;
6095 } else {
6096 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6097 true, dl, SDNodeOrder);
6099 DAG.AddDbgValue(SDV, isParameter);
6100 } else {
6101 // If Address is an argument then try to emit its dbg value using
6102 // virtual register info from the FuncInfo.ValueMap.
6103 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
6104 N)) {
6105 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6106 << " (could not emit func-arg dbg_value)\n");
6109 return;
6111 case Intrinsic::dbg_label: {
6112 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6113 DILabel *Label = DI.getLabel();
6114 assert(Label && "Missing label");
6116 SDDbgLabel *SDV;
6117 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6118 DAG.AddDbgLabel(SDV);
6119 return;
6121 case Intrinsic::dbg_value: {
6122 const DbgValueInst &DI = cast<DbgValueInst>(I);
6123 assert(DI.getVariable() && "Missing variable");
6125 DILocalVariable *Variable = DI.getVariable();
6126 DIExpression *Expression = DI.getExpression();
6127 dropDanglingDebugInfo(Variable, Expression);
6128 SmallVector<Value *, 4> Values(DI.getValues());
6129 if (Values.empty())
6130 return;
6132 if (std::count(Values.begin(), Values.end(), nullptr))
6133 return;
6135 bool IsVariadic = DI.hasArgList();
6136 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(),
6137 SDNodeOrder, IsVariadic))
6138 addDanglingDebugInfo(&DI, dl, SDNodeOrder);
6139 return;
6142 case Intrinsic::eh_typeid_for: {
6143 // Find the type id for the given typeinfo.
6144 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6145 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6146 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6147 setValue(&I, Res);
6148 return;
6151 case Intrinsic::eh_return_i32:
6152 case Intrinsic::eh_return_i64:
6153 DAG.getMachineFunction().setCallsEHReturn(true);
6154 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6155 MVT::Other,
6156 getControlRoot(),
6157 getValue(I.getArgOperand(0)),
6158 getValue(I.getArgOperand(1))));
6159 return;
6160 case Intrinsic::eh_unwind_init:
6161 DAG.getMachineFunction().setCallsUnwindInit(true);
6162 return;
6163 case Intrinsic::eh_dwarf_cfa:
6164 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6165 TLI.getPointerTy(DAG.getDataLayout()),
6166 getValue(I.getArgOperand(0))));
6167 return;
6168 case Intrinsic::eh_sjlj_callsite: {
6169 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6170 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6171 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6172 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6174 MMI.setCurrentCallSite(CI->getZExtValue());
6175 return;
6177 case Intrinsic::eh_sjlj_functioncontext: {
6178 // Get and store the index of the function context.
6179 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6180 AllocaInst *FnCtx =
6181 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6182 int FI = FuncInfo.StaticAllocaMap[FnCtx];
6183 MFI.setFunctionContextIndex(FI);
6184 return;
6186 case Intrinsic::eh_sjlj_setjmp: {
6187 SDValue Ops[2];
6188 Ops[0] = getRoot();
6189 Ops[1] = getValue(I.getArgOperand(0));
6190 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6191 DAG.getVTList(MVT::i32, MVT::Other), Ops);
6192 setValue(&I, Op.getValue(0));
6193 DAG.setRoot(Op.getValue(1));
6194 return;
6196 case Intrinsic::eh_sjlj_longjmp:
6197 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6198 getRoot(), getValue(I.getArgOperand(0))));
6199 return;
6200 case Intrinsic::eh_sjlj_setup_dispatch:
6201 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6202 getRoot()));
6203 return;
6204 case Intrinsic::masked_gather:
6205 visitMaskedGather(I);
6206 return;
6207 case Intrinsic::masked_load:
6208 visitMaskedLoad(I);
6209 return;
6210 case Intrinsic::masked_scatter:
6211 visitMaskedScatter(I);
6212 return;
6213 case Intrinsic::masked_store:
6214 visitMaskedStore(I);
6215 return;
6216 case Intrinsic::masked_expandload:
6217 visitMaskedLoad(I, true /* IsExpanding */);
6218 return;
6219 case Intrinsic::masked_compressstore:
6220 visitMaskedStore(I, true /* IsCompressing */);
6221 return;
6222 case Intrinsic::powi:
6223 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6224 getValue(I.getArgOperand(1)), DAG));
6225 return;
6226 case Intrinsic::log:
6227 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6228 return;
6229 case Intrinsic::log2:
6230 setValue(&I,
6231 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6232 return;
6233 case Intrinsic::log10:
6234 setValue(&I,
6235 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6236 return;
6237 case Intrinsic::exp:
6238 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6239 return;
6240 case Intrinsic::exp2:
6241 setValue(&I,
6242 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6243 return;
6244 case Intrinsic::pow:
6245 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6246 getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6247 return;
6248 case Intrinsic::sqrt:
6249 case Intrinsic::fabs:
6250 case Intrinsic::sin:
6251 case Intrinsic::cos:
6252 case Intrinsic::floor:
6253 case Intrinsic::ceil:
6254 case Intrinsic::trunc:
6255 case Intrinsic::rint:
6256 case Intrinsic::nearbyint:
6257 case Intrinsic::round:
6258 case Intrinsic::roundeven:
6259 case Intrinsic::canonicalize: {
6260 unsigned Opcode;
6261 switch (Intrinsic) {
6262 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6263 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6264 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6265 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6266 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6267 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6268 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6269 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6270 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6271 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6272 case Intrinsic::round: Opcode = ISD::FROUND; break;
6273 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6274 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6277 setValue(&I, DAG.getNode(Opcode, sdl,
6278 getValue(I.getArgOperand(0)).getValueType(),
6279 getValue(I.getArgOperand(0)), Flags));
6280 return;
6282 case Intrinsic::lround:
6283 case Intrinsic::llround:
6284 case Intrinsic::lrint:
6285 case Intrinsic::llrint: {
6286 unsigned Opcode;
6287 switch (Intrinsic) {
6288 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6289 case Intrinsic::lround: Opcode = ISD::LROUND; break;
6290 case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6291 case Intrinsic::lrint: Opcode = ISD::LRINT; break;
6292 case Intrinsic::llrint: Opcode = ISD::LLRINT; break;
6295 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6296 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6297 getValue(I.getArgOperand(0))));
6298 return;
6300 case Intrinsic::minnum:
6301 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6302 getValue(I.getArgOperand(0)).getValueType(),
6303 getValue(I.getArgOperand(0)),
6304 getValue(I.getArgOperand(1)), Flags));
6305 return;
6306 case Intrinsic::maxnum:
6307 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6308 getValue(I.getArgOperand(0)).getValueType(),
6309 getValue(I.getArgOperand(0)),
6310 getValue(I.getArgOperand(1)), Flags));
6311 return;
6312 case Intrinsic::minimum:
6313 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6314 getValue(I.getArgOperand(0)).getValueType(),
6315 getValue(I.getArgOperand(0)),
6316 getValue(I.getArgOperand(1)), Flags));
6317 return;
6318 case Intrinsic::maximum:
6319 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6320 getValue(I.getArgOperand(0)).getValueType(),
6321 getValue(I.getArgOperand(0)),
6322 getValue(I.getArgOperand(1)), Flags));
6323 return;
6324 case Intrinsic::copysign:
6325 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6326 getValue(I.getArgOperand(0)).getValueType(),
6327 getValue(I.getArgOperand(0)),
6328 getValue(I.getArgOperand(1)), Flags));
6329 return;
6330 case Intrinsic::arithmetic_fence: {
6331 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6332 getValue(I.getArgOperand(0)).getValueType(),
6333 getValue(I.getArgOperand(0)), Flags));
6334 return;
6336 case Intrinsic::fma:
6337 setValue(&I, DAG.getNode(
6338 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6339 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6340 getValue(I.getArgOperand(2)), Flags));
6341 return;
6342 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
6343 case Intrinsic::INTRINSIC:
6344 #include "llvm/IR/ConstrainedOps.def"
6345 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6346 return;
6347 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6348 #include "llvm/IR/VPIntrinsics.def"
6349 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6350 return;
6351 case Intrinsic::fmuladd: {
6352 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6353 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6354 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6355 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6356 getValue(I.getArgOperand(0)).getValueType(),
6357 getValue(I.getArgOperand(0)),
6358 getValue(I.getArgOperand(1)),
6359 getValue(I.getArgOperand(2)), Flags));
6360 } else {
6361 // TODO: Intrinsic calls should have fast-math-flags.
6362 SDValue Mul = DAG.getNode(
6363 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6364 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6365 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6366 getValue(I.getArgOperand(0)).getValueType(),
6367 Mul, getValue(I.getArgOperand(2)), Flags);
6368 setValue(&I, Add);
6370 return;
6372 case Intrinsic::convert_to_fp16:
6373 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6374 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6375 getValue(I.getArgOperand(0)),
6376 DAG.getTargetConstant(0, sdl,
6377 MVT::i32))));
6378 return;
6379 case Intrinsic::convert_from_fp16:
6380 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6381 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6382 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6383 getValue(I.getArgOperand(0)))));
6384 return;
6385 case Intrinsic::fptosi_sat: {
6386 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6387 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6388 getValue(I.getArgOperand(0)),
6389 DAG.getValueType(VT.getScalarType())));
6390 return;
6392 case Intrinsic::fptoui_sat: {
6393 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6394 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6395 getValue(I.getArgOperand(0)),
6396 DAG.getValueType(VT.getScalarType())));
6397 return;
6399 case Intrinsic::set_rounding:
6400 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6401 {getRoot(), getValue(I.getArgOperand(0))});
6402 setValue(&I, Res);
6403 DAG.setRoot(Res.getValue(0));
6404 return;
6405 case Intrinsic::pcmarker: {
6406 SDValue Tmp = getValue(I.getArgOperand(0));
6407 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6408 return;
6410 case Intrinsic::isnan: {
6411 const DataLayout DLayout = DAG.getDataLayout();
6412 EVT DestVT = TLI.getValueType(DLayout, I.getType());
6413 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6414 MachineFunction &MF = DAG.getMachineFunction();
6415 const Function &F = MF.getFunction();
6416 SDValue Op = getValue(I.getArgOperand(0));
6417 SDNodeFlags Flags;
6418 Flags.setNoFPExcept(
6419 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6421 // If ISD::ISNAN should be expanded, do it right now, because the expansion
6422 // can use illegal types. Making expansion early allows to legalize these
6423 // types prior to selection.
6424 if (!TLI.isOperationLegalOrCustom(ISD::ISNAN, ArgVT)) {
6425 SDValue Result = TLI.expandISNAN(DestVT, Op, Flags, sdl, DAG);
6426 setValue(&I, Result);
6427 return;
6430 SDValue V = DAG.getNode(ISD::ISNAN, sdl, DestVT, Op, Flags);
6431 setValue(&I, V);
6432 return;
6434 case Intrinsic::readcyclecounter: {
6435 SDValue Op = getRoot();
6436 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6437 DAG.getVTList(MVT::i64, MVT::Other), Op);
6438 setValue(&I, Res);
6439 DAG.setRoot(Res.getValue(1));
6440 return;
6442 case Intrinsic::bitreverse:
6443 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6444 getValue(I.getArgOperand(0)).getValueType(),
6445 getValue(I.getArgOperand(0))));
6446 return;
6447 case Intrinsic::bswap:
6448 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6449 getValue(I.getArgOperand(0)).getValueType(),
6450 getValue(I.getArgOperand(0))));
6451 return;
6452 case Intrinsic::cttz: {
6453 SDValue Arg = getValue(I.getArgOperand(0));
6454 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6455 EVT Ty = Arg.getValueType();
6456 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6457 sdl, Ty, Arg));
6458 return;
6460 case Intrinsic::ctlz: {
6461 SDValue Arg = getValue(I.getArgOperand(0));
6462 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6463 EVT Ty = Arg.getValueType();
6464 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6465 sdl, Ty, Arg));
6466 return;
6468 case Intrinsic::ctpop: {
6469 SDValue Arg = getValue(I.getArgOperand(0));
6470 EVT Ty = Arg.getValueType();
6471 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6472 return;
6474 case Intrinsic::fshl:
6475 case Intrinsic::fshr: {
6476 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6477 SDValue X = getValue(I.getArgOperand(0));
6478 SDValue Y = getValue(I.getArgOperand(1));
6479 SDValue Z = getValue(I.getArgOperand(2));
6480 EVT VT = X.getValueType();
6482 if (X == Y) {
6483 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6484 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6485 } else {
6486 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6487 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6489 return;
6491 case Intrinsic::sadd_sat: {
6492 SDValue Op1 = getValue(I.getArgOperand(0));
6493 SDValue Op2 = getValue(I.getArgOperand(1));
6494 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6495 return;
6497 case Intrinsic::uadd_sat: {
6498 SDValue Op1 = getValue(I.getArgOperand(0));
6499 SDValue Op2 = getValue(I.getArgOperand(1));
6500 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6501 return;
6503 case Intrinsic::ssub_sat: {
6504 SDValue Op1 = getValue(I.getArgOperand(0));
6505 SDValue Op2 = getValue(I.getArgOperand(1));
6506 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6507 return;
6509 case Intrinsic::usub_sat: {
6510 SDValue Op1 = getValue(I.getArgOperand(0));
6511 SDValue Op2 = getValue(I.getArgOperand(1));
6512 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6513 return;
6515 case Intrinsic::sshl_sat: {
6516 SDValue Op1 = getValue(I.getArgOperand(0));
6517 SDValue Op2 = getValue(I.getArgOperand(1));
6518 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6519 return;
6521 case Intrinsic::ushl_sat: {
6522 SDValue Op1 = getValue(I.getArgOperand(0));
6523 SDValue Op2 = getValue(I.getArgOperand(1));
6524 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6525 return;
6527 case Intrinsic::smul_fix:
6528 case Intrinsic::umul_fix:
6529 case Intrinsic::smul_fix_sat:
6530 case Intrinsic::umul_fix_sat: {
6531 SDValue Op1 = getValue(I.getArgOperand(0));
6532 SDValue Op2 = getValue(I.getArgOperand(1));
6533 SDValue Op3 = getValue(I.getArgOperand(2));
6534 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6535 Op1.getValueType(), Op1, Op2, Op3));
6536 return;
6538 case Intrinsic::sdiv_fix:
6539 case Intrinsic::udiv_fix:
6540 case Intrinsic::sdiv_fix_sat:
6541 case Intrinsic::udiv_fix_sat: {
6542 SDValue Op1 = getValue(I.getArgOperand(0));
6543 SDValue Op2 = getValue(I.getArgOperand(1));
6544 SDValue Op3 = getValue(I.getArgOperand(2));
6545 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6546 Op1, Op2, Op3, DAG, TLI));
6547 return;
6549 case Intrinsic::smax: {
6550 SDValue Op1 = getValue(I.getArgOperand(0));
6551 SDValue Op2 = getValue(I.getArgOperand(1));
6552 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6553 return;
6555 case Intrinsic::smin: {
6556 SDValue Op1 = getValue(I.getArgOperand(0));
6557 SDValue Op2 = getValue(I.getArgOperand(1));
6558 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6559 return;
6561 case Intrinsic::umax: {
6562 SDValue Op1 = getValue(I.getArgOperand(0));
6563 SDValue Op2 = getValue(I.getArgOperand(1));
6564 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6565 return;
6567 case Intrinsic::umin: {
6568 SDValue Op1 = getValue(I.getArgOperand(0));
6569 SDValue Op2 = getValue(I.getArgOperand(1));
6570 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6571 return;
6573 case Intrinsic::abs: {
6574 // TODO: Preserve "int min is poison" arg in SDAG?
6575 SDValue Op1 = getValue(I.getArgOperand(0));
6576 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6577 return;
6579 case Intrinsic::stacksave: {
6580 SDValue Op = getRoot();
6581 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6582 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6583 setValue(&I, Res);
6584 DAG.setRoot(Res.getValue(1));
6585 return;
6587 case Intrinsic::stackrestore:
6588 Res = getValue(I.getArgOperand(0));
6589 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6590 return;
6591 case Intrinsic::get_dynamic_area_offset: {
6592 SDValue Op = getRoot();
6593 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6594 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6595 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6596 // target.
6597 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6598 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6599 " intrinsic!");
6600 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6601 Op);
6602 DAG.setRoot(Op);
6603 setValue(&I, Res);
6604 return;
6606 case Intrinsic::stackguard: {
6607 MachineFunction &MF = DAG.getMachineFunction();
6608 const Module &M = *MF.getFunction().getParent();
6609 SDValue Chain = getRoot();
6610 if (TLI.useLoadStackGuardNode()) {
6611 Res = getLoadStackGuard(DAG, sdl, Chain);
6612 } else {
6613 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6614 const Value *Global = TLI.getSDagStackGuard(M);
6615 Align Align = DL->getPrefTypeAlign(Global->getType());
6616 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6617 MachinePointerInfo(Global, 0), Align,
6618 MachineMemOperand::MOVolatile);
6620 if (TLI.useStackGuardXorFP())
6621 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6622 DAG.setRoot(Chain);
6623 setValue(&I, Res);
6624 return;
6626 case Intrinsic::stackprotector: {
6627 // Emit code into the DAG to store the stack guard onto the stack.
6628 MachineFunction &MF = DAG.getMachineFunction();
6629 MachineFrameInfo &MFI = MF.getFrameInfo();
6630 SDValue Src, Chain = getRoot();
6632 if (TLI.useLoadStackGuardNode())
6633 Src = getLoadStackGuard(DAG, sdl, Chain);
6634 else
6635 Src = getValue(I.getArgOperand(0)); // The guard's value.
6637 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6639 int FI = FuncInfo.StaticAllocaMap[Slot];
6640 MFI.setStackProtectorIndex(FI);
6641 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6643 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6645 // Store the stack protector onto the stack.
6646 Res = DAG.getStore(
6647 Chain, sdl, Src, FIN,
6648 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6649 MaybeAlign(), MachineMemOperand::MOVolatile);
6650 setValue(&I, Res);
6651 DAG.setRoot(Res);
6652 return;
6654 case Intrinsic::objectsize:
6655 llvm_unreachable("llvm.objectsize.* should have been lowered already");
6657 case Intrinsic::is_constant:
6658 llvm_unreachable("llvm.is.constant.* should have been lowered already");
6660 case Intrinsic::annotation:
6661 case Intrinsic::ptr_annotation:
6662 case Intrinsic::launder_invariant_group:
6663 case Intrinsic::strip_invariant_group:
6664 // Drop the intrinsic, but forward the value
6665 setValue(&I, getValue(I.getOperand(0)));
6666 return;
6668 case Intrinsic::assume:
6669 case Intrinsic::experimental_noalias_scope_decl:
6670 case Intrinsic::var_annotation:
6671 case Intrinsic::sideeffect:
6672 // Discard annotate attributes, noalias scope declarations, assumptions, and
6673 // artificial side-effects.
6674 return;
6676 case Intrinsic::codeview_annotation: {
6677 // Emit a label associated with this metadata.
6678 MachineFunction &MF = DAG.getMachineFunction();
6679 MCSymbol *Label =
6680 MF.getMMI().getContext().createTempSymbol("annotation", true);
6681 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6682 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6683 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6684 DAG.setRoot(Res);
6685 return;
6688 case Intrinsic::init_trampoline: {
6689 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6691 SDValue Ops[6];
6692 Ops[0] = getRoot();
6693 Ops[1] = getValue(I.getArgOperand(0));
6694 Ops[2] = getValue(I.getArgOperand(1));
6695 Ops[3] = getValue(I.getArgOperand(2));
6696 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6697 Ops[5] = DAG.getSrcValue(F);
6699 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6701 DAG.setRoot(Res);
6702 return;
6704 case Intrinsic::adjust_trampoline:
6705 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6706 TLI.getPointerTy(DAG.getDataLayout()),
6707 getValue(I.getArgOperand(0))));
6708 return;
6709 case Intrinsic::gcroot: {
6710 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6711 "only valid in functions with gc specified, enforced by Verifier");
6712 assert(GFI && "implied by previous");
6713 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6714 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6716 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6717 GFI->addStackRoot(FI->getIndex(), TypeMap);
6718 return;
6720 case Intrinsic::gcread:
6721 case Intrinsic::gcwrite:
6722 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6723 case Intrinsic::flt_rounds:
6724 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot());
6725 setValue(&I, Res);
6726 DAG.setRoot(Res.getValue(1));
6727 return;
6729 case Intrinsic::expect:
6730 // Just replace __builtin_expect(exp, c) with EXP.
6731 setValue(&I, getValue(I.getArgOperand(0)));
6732 return;
6734 case Intrinsic::ubsantrap:
6735 case Intrinsic::debugtrap:
6736 case Intrinsic::trap: {
6737 StringRef TrapFuncName =
6738 I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6739 if (TrapFuncName.empty()) {
6740 switch (Intrinsic) {
6741 case Intrinsic::trap:
6742 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6743 break;
6744 case Intrinsic::debugtrap:
6745 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6746 break;
6747 case Intrinsic::ubsantrap:
6748 DAG.setRoot(DAG.getNode(
6749 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6750 DAG.getTargetConstant(
6751 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6752 MVT::i32)));
6753 break;
6754 default: llvm_unreachable("unknown trap intrinsic");
6756 return;
6758 TargetLowering::ArgListTy Args;
6759 if (Intrinsic == Intrinsic::ubsantrap) {
6760 Args.push_back(TargetLoweringBase::ArgListEntry());
6761 Args[0].Val = I.getArgOperand(0);
6762 Args[0].Node = getValue(Args[0].Val);
6763 Args[0].Ty = Args[0].Val->getType();
6766 TargetLowering::CallLoweringInfo CLI(DAG);
6767 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6768 CallingConv::C, I.getType(),
6769 DAG.getExternalSymbol(TrapFuncName.data(),
6770 TLI.getPointerTy(DAG.getDataLayout())),
6771 std::move(Args));
6773 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6774 DAG.setRoot(Result.second);
6775 return;
6778 case Intrinsic::uadd_with_overflow:
6779 case Intrinsic::sadd_with_overflow:
6780 case Intrinsic::usub_with_overflow:
6781 case Intrinsic::ssub_with_overflow:
6782 case Intrinsic::umul_with_overflow:
6783 case Intrinsic::smul_with_overflow: {
6784 ISD::NodeType Op;
6785 switch (Intrinsic) {
6786 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6787 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6788 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6789 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6790 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6791 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6792 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6794 SDValue Op1 = getValue(I.getArgOperand(0));
6795 SDValue Op2 = getValue(I.getArgOperand(1));
6797 EVT ResultVT = Op1.getValueType();
6798 EVT OverflowVT = MVT::i1;
6799 if (ResultVT.isVector())
6800 OverflowVT = EVT::getVectorVT(
6801 *Context, OverflowVT, ResultVT.getVectorElementCount());
6803 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6804 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6805 return;
6807 case Intrinsic::prefetch: {
6808 SDValue Ops[5];
6809 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6810 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6811 Ops[0] = DAG.getRoot();
6812 Ops[1] = getValue(I.getArgOperand(0));
6813 Ops[2] = getValue(I.getArgOperand(1));
6814 Ops[3] = getValue(I.getArgOperand(2));
6815 Ops[4] = getValue(I.getArgOperand(3));
6816 SDValue Result = DAG.getMemIntrinsicNode(
6817 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6818 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6819 /* align */ None, Flags);
6821 // Chain the prefetch in parallell with any pending loads, to stay out of
6822 // the way of later optimizations.
6823 PendingLoads.push_back(Result);
6824 Result = getRoot();
6825 DAG.setRoot(Result);
6826 return;
6828 case Intrinsic::lifetime_start:
6829 case Intrinsic::lifetime_end: {
6830 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6831 // Stack coloring is not enabled in O0, discard region information.
6832 if (TM.getOptLevel() == CodeGenOpt::None)
6833 return;
6835 const int64_t ObjectSize =
6836 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6837 Value *const ObjectPtr = I.getArgOperand(1);
6838 SmallVector<const Value *, 4> Allocas;
6839 getUnderlyingObjects(ObjectPtr, Allocas);
6841 for (const Value *Alloca : Allocas) {
6842 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6844 // Could not find an Alloca.
6845 if (!LifetimeObject)
6846 continue;
6848 // First check that the Alloca is static, otherwise it won't have a
6849 // valid frame index.
6850 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6851 if (SI == FuncInfo.StaticAllocaMap.end())
6852 return;
6854 const int FrameIndex = SI->second;
6855 int64_t Offset;
6856 if (GetPointerBaseWithConstantOffset(
6857 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6858 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6859 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6860 Offset);
6861 DAG.setRoot(Res);
6863 return;
6865 case Intrinsic::pseudoprobe: {
6866 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6867 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6868 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6869 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6870 DAG.setRoot(Res);
6871 return;
6873 case Intrinsic::invariant_start:
6874 // Discard region information.
6875 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6876 return;
6877 case Intrinsic::invariant_end:
6878 // Discard region information.
6879 return;
6880 case Intrinsic::clear_cache:
6881 /// FunctionName may be null.
6882 if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6883 lowerCallToExternalSymbol(I, FunctionName);
6884 return;
6885 case Intrinsic::donothing:
6886 case Intrinsic::seh_try_begin:
6887 case Intrinsic::seh_scope_begin:
6888 case Intrinsic::seh_try_end:
6889 case Intrinsic::seh_scope_end:
6890 // ignore
6891 return;
6892 case Intrinsic::experimental_stackmap:
6893 visitStackmap(I);
6894 return;
6895 case Intrinsic::experimental_patchpoint_void:
6896 case Intrinsic::experimental_patchpoint_i64:
6897 visitPatchpoint(I);
6898 return;
6899 case Intrinsic::experimental_gc_statepoint:
6900 LowerStatepoint(cast<GCStatepointInst>(I));
6901 return;
6902 case Intrinsic::experimental_gc_result:
6903 visitGCResult(cast<GCResultInst>(I));
6904 return;
6905 case Intrinsic::experimental_gc_relocate:
6906 visitGCRelocate(cast<GCRelocateInst>(I));
6907 return;
6908 case Intrinsic::instrprof_increment:
6909 llvm_unreachable("instrprof failed to lower an increment");
6910 case Intrinsic::instrprof_value_profile:
6911 llvm_unreachable("instrprof failed to lower a value profiling call");
6912 case Intrinsic::localescape: {
6913 MachineFunction &MF = DAG.getMachineFunction();
6914 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6916 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6917 // is the same on all targets.
6918 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6919 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6920 if (isa<ConstantPointerNull>(Arg))
6921 continue; // Skip null pointers. They represent a hole in index space.
6922 AllocaInst *Slot = cast<AllocaInst>(Arg);
6923 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6924 "can only escape static allocas");
6925 int FI = FuncInfo.StaticAllocaMap[Slot];
6926 MCSymbol *FrameAllocSym =
6927 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6928 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6929 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6930 TII->get(TargetOpcode::LOCAL_ESCAPE))
6931 .addSym(FrameAllocSym)
6932 .addFrameIndex(FI);
6935 return;
6938 case Intrinsic::localrecover: {
6939 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6940 MachineFunction &MF = DAG.getMachineFunction();
6942 // Get the symbol that defines the frame offset.
6943 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6944 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6945 unsigned IdxVal =
6946 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6947 MCSymbol *FrameAllocSym =
6948 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6949 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6951 Value *FP = I.getArgOperand(1);
6952 SDValue FPVal = getValue(FP);
6953 EVT PtrVT = FPVal.getValueType();
6955 // Create a MCSymbol for the label to avoid any target lowering
6956 // that would make this PC relative.
6957 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6958 SDValue OffsetVal =
6959 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6961 // Add the offset to the FP.
6962 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6963 setValue(&I, Add);
6965 return;
6968 case Intrinsic::eh_exceptionpointer:
6969 case Intrinsic::eh_exceptioncode: {
6970 // Get the exception pointer vreg, copy from it, and resize it to fit.
6971 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6972 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6973 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6974 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6975 SDValue N =
6976 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6977 if (Intrinsic == Intrinsic::eh_exceptioncode)
6978 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6979 setValue(&I, N);
6980 return;
6982 case Intrinsic::xray_customevent: {
6983 // Here we want to make sure that the intrinsic behaves as if it has a
6984 // specific calling convention, and only for x86_64.
6985 // FIXME: Support other platforms later.
6986 const auto &Triple = DAG.getTarget().getTargetTriple();
6987 if (Triple.getArch() != Triple::x86_64)
6988 return;
6990 SDLoc DL = getCurSDLoc();
6991 SmallVector<SDValue, 8> Ops;
6993 // We want to say that we always want the arguments in registers.
6994 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6995 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6996 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6997 SDValue Chain = getRoot();
6998 Ops.push_back(LogEntryVal);
6999 Ops.push_back(StrSizeVal);
7000 Ops.push_back(Chain);
7002 // We need to enforce the calling convention for the callsite, so that
7003 // argument ordering is enforced correctly, and that register allocation can
7004 // see that some registers may be assumed clobbered and have to preserve
7005 // them across calls to the intrinsic.
7006 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7007 DL, NodeTys, Ops);
7008 SDValue patchableNode = SDValue(MN, 0);
7009 DAG.setRoot(patchableNode);
7010 setValue(&I, patchableNode);
7011 return;
7013 case Intrinsic::xray_typedevent: {
7014 // Here we want to make sure that the intrinsic behaves as if it has a
7015 // specific calling convention, and only for x86_64.
7016 // FIXME: Support other platforms later.
7017 const auto &Triple = DAG.getTarget().getTargetTriple();
7018 if (Triple.getArch() != Triple::x86_64)
7019 return;
7021 SDLoc DL = getCurSDLoc();
7022 SmallVector<SDValue, 8> Ops;
7024 // We want to say that we always want the arguments in registers.
7025 // It's unclear to me how manipulating the selection DAG here forces callers
7026 // to provide arguments in registers instead of on the stack.
7027 SDValue LogTypeId = getValue(I.getArgOperand(0));
7028 SDValue LogEntryVal = getValue(I.getArgOperand(1));
7029 SDValue StrSizeVal = getValue(I.getArgOperand(2));
7030 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7031 SDValue Chain = getRoot();
7032 Ops.push_back(LogTypeId);
7033 Ops.push_back(LogEntryVal);
7034 Ops.push_back(StrSizeVal);
7035 Ops.push_back(Chain);
7037 // We need to enforce the calling convention for the callsite, so that
7038 // argument ordering is enforced correctly, and that register allocation can
7039 // see that some registers may be assumed clobbered and have to preserve
7040 // them across calls to the intrinsic.
7041 MachineSDNode *MN = DAG.getMachineNode(
7042 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
7043 SDValue patchableNode = SDValue(MN, 0);
7044 DAG.setRoot(patchableNode);
7045 setValue(&I, patchableNode);
7046 return;
7048 case Intrinsic::experimental_deoptimize:
7049 LowerDeoptimizeCall(&I);
7050 return;
7051 case Intrinsic::experimental_stepvector:
7052 visitStepVector(I);
7053 return;
7054 case Intrinsic::vector_reduce_fadd:
7055 case Intrinsic::vector_reduce_fmul:
7056 case Intrinsic::vector_reduce_add:
7057 case Intrinsic::vector_reduce_mul:
7058 case Intrinsic::vector_reduce_and:
7059 case Intrinsic::vector_reduce_or:
7060 case Intrinsic::vector_reduce_xor:
7061 case Intrinsic::vector_reduce_smax:
7062 case Intrinsic::vector_reduce_smin:
7063 case Intrinsic::vector_reduce_umax:
7064 case Intrinsic::vector_reduce_umin:
7065 case Intrinsic::vector_reduce_fmax:
7066 case Intrinsic::vector_reduce_fmin:
7067 visitVectorReduce(I, Intrinsic);
7068 return;
7070 case Intrinsic::icall_branch_funnel: {
7071 SmallVector<SDValue, 16> Ops;
7072 Ops.push_back(getValue(I.getArgOperand(0)));
7074 int64_t Offset;
7075 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7076 I.getArgOperand(1), Offset, DAG.getDataLayout()));
7077 if (!Base)
7078 report_fatal_error(
7079 "llvm.icall.branch.funnel operand must be a GlobalValue");
7080 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
7082 struct BranchFunnelTarget {
7083 int64_t Offset;
7084 SDValue Target;
7086 SmallVector<BranchFunnelTarget, 8> Targets;
7088 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
7089 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7090 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7091 if (ElemBase != Base)
7092 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7093 "to the same GlobalValue");
7095 SDValue Val = getValue(I.getArgOperand(Op + 1));
7096 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7097 if (!GA)
7098 report_fatal_error(
7099 "llvm.icall.branch.funnel operand must be a GlobalValue");
7100 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7101 GA->getGlobal(), getCurSDLoc(),
7102 Val.getValueType(), GA->getOffset())});
7104 llvm::sort(Targets,
7105 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7106 return T1.Offset < T2.Offset;
7109 for (auto &T : Targets) {
7110 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
7111 Ops.push_back(T.Target);
7114 Ops.push_back(DAG.getRoot()); // Chain
7115 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
7116 getCurSDLoc(), MVT::Other, Ops),
7118 DAG.setRoot(N);
7119 setValue(&I, N);
7120 HasTailCall = true;
7121 return;
7124 case Intrinsic::wasm_landingpad_index:
7125 // Information this intrinsic contained has been transferred to
7126 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7127 // delete it now.
7128 return;
7130 case Intrinsic::aarch64_settag:
7131 case Intrinsic::aarch64_settag_zero: {
7132 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7133 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7134 SDValue Val = TSI.EmitTargetCodeForSetTag(
7135 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
7136 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7137 ZeroMemory);
7138 DAG.setRoot(Val);
7139 setValue(&I, Val);
7140 return;
7142 case Intrinsic::ptrmask: {
7143 SDValue Ptr = getValue(I.getOperand(0));
7144 SDValue Const = getValue(I.getOperand(1));
7146 EVT PtrVT = Ptr.getValueType();
7147 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr,
7148 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT)));
7149 return;
7151 case Intrinsic::get_active_lane_mask: {
7152 auto DL = getCurSDLoc();
7153 SDValue Index = getValue(I.getOperand(0));
7154 SDValue TripCount = getValue(I.getOperand(1));
7155 Type *ElementTy = I.getOperand(0)->getType();
7156 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7157 unsigned VecWidth = VT.getVectorNumElements();
7159 SmallVector<SDValue, 16> OpsTripCount;
7160 SmallVector<SDValue, 16> OpsIndex;
7161 SmallVector<SDValue, 16> OpsStepConstants;
7162 for (unsigned i = 0; i < VecWidth; i++) {
7163 OpsTripCount.push_back(TripCount);
7164 OpsIndex.push_back(Index);
7165 OpsStepConstants.push_back(
7166 DAG.getConstant(i, DL, EVT::getEVT(ElementTy)));
7169 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth);
7171 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth));
7172 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex);
7173 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants);
7174 SDValue VectorInduction = DAG.getNode(
7175 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep);
7176 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount);
7177 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0),
7178 VectorTripCount, ISD::CondCode::SETULT);
7179 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT,
7180 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT),
7181 SetCC));
7182 return;
7184 case Intrinsic::experimental_vector_insert: {
7185 auto DL = getCurSDLoc();
7187 SDValue Vec = getValue(I.getOperand(0));
7188 SDValue SubVec = getValue(I.getOperand(1));
7189 SDValue Index = getValue(I.getOperand(2));
7191 // The intrinsic's index type is i64, but the SDNode requires an index type
7192 // suitable for the target. Convert the index as required.
7193 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7194 if (Index.getValueType() != VectorIdxTy)
7195 Index = DAG.getVectorIdxConstant(
7196 cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7198 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7199 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec,
7200 Index));
7201 return;
7203 case Intrinsic::experimental_vector_extract: {
7204 auto DL = getCurSDLoc();
7206 SDValue Vec = getValue(I.getOperand(0));
7207 SDValue Index = getValue(I.getOperand(1));
7208 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7210 // The intrinsic's index type is i64, but the SDNode requires an index type
7211 // suitable for the target. Convert the index as required.
7212 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7213 if (Index.getValueType() != VectorIdxTy)
7214 Index = DAG.getVectorIdxConstant(
7215 cast<ConstantSDNode>(Index)->getZExtValue(), DL);
7217 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index));
7218 return;
7220 case Intrinsic::experimental_vector_reverse:
7221 visitVectorReverse(I);
7222 return;
7223 case Intrinsic::experimental_vector_splice:
7224 visitVectorSplice(I);
7225 return;
7229 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7230 const ConstrainedFPIntrinsic &FPI) {
7231 SDLoc sdl = getCurSDLoc();
7233 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7234 SmallVector<EVT, 4> ValueVTs;
7235 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
7236 ValueVTs.push_back(MVT::Other); // Out chain
7238 // We do not need to serialize constrained FP intrinsics against
7239 // each other or against (nonvolatile) loads, so they can be
7240 // chained like loads.
7241 SDValue Chain = DAG.getRoot();
7242 SmallVector<SDValue, 4> Opers;
7243 Opers.push_back(Chain);
7244 if (FPI.isUnaryOp()) {
7245 Opers.push_back(getValue(FPI.getArgOperand(0)));
7246 } else if (FPI.isTernaryOp()) {
7247 Opers.push_back(getValue(FPI.getArgOperand(0)));
7248 Opers.push_back(getValue(FPI.getArgOperand(1)));
7249 Opers.push_back(getValue(FPI.getArgOperand(2)));
7250 } else {
7251 Opers.push_back(getValue(FPI.getArgOperand(0)));
7252 Opers.push_back(getValue(FPI.getArgOperand(1)));
7255 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7256 assert(Result.getNode()->getNumValues() == 2);
7258 // Push node to the appropriate list so that future instructions can be
7259 // chained up correctly.
7260 SDValue OutChain = Result.getValue(1);
7261 switch (EB) {
7262 case fp::ExceptionBehavior::ebIgnore:
7263 // The only reason why ebIgnore nodes still need to be chained is that
7264 // they might depend on the current rounding mode, and therefore must
7265 // not be moved across instruction that may change that mode.
7266 LLVM_FALLTHROUGH;
7267 case fp::ExceptionBehavior::ebMayTrap:
7268 // These must not be moved across calls or instructions that may change
7269 // floating-point exception masks.
7270 PendingConstrainedFP.push_back(OutChain);
7271 break;
7272 case fp::ExceptionBehavior::ebStrict:
7273 // These must not be moved across calls or instructions that may change
7274 // floating-point exception masks or read floating-point exception flags.
7275 // In addition, they cannot be optimized out even if unused.
7276 PendingConstrainedFPStrict.push_back(OutChain);
7277 break;
7281 SDVTList VTs = DAG.getVTList(ValueVTs);
7282 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue();
7284 SDNodeFlags Flags;
7285 if (EB == fp::ExceptionBehavior::ebIgnore)
7286 Flags.setNoFPExcept(true);
7288 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7289 Flags.copyFMF(*FPOp);
7291 unsigned Opcode;
7292 switch (FPI.getIntrinsicID()) {
7293 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
7294 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
7295 case Intrinsic::INTRINSIC: \
7296 Opcode = ISD::STRICT_##DAGN; \
7297 break;
7298 #include "llvm/IR/ConstrainedOps.def"
7299 case Intrinsic::experimental_constrained_fmuladd: {
7300 Opcode = ISD::STRICT_FMA;
7301 // Break fmuladd into fmul and fadd.
7302 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7303 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(),
7304 ValueVTs[0])) {
7305 Opers.pop_back();
7306 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7307 pushOutChain(Mul, EB);
7308 Opcode = ISD::STRICT_FADD;
7309 Opers.clear();
7310 Opers.push_back(Mul.getValue(1));
7311 Opers.push_back(Mul.getValue(0));
7312 Opers.push_back(getValue(FPI.getArgOperand(2)));
7314 break;
7318 // A few strict DAG nodes carry additional operands that are not
7319 // set up by the default code above.
7320 switch (Opcode) {
7321 default: break;
7322 case ISD::STRICT_FP_ROUND:
7323 Opers.push_back(
7324 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7325 break;
7326 case ISD::STRICT_FSETCC:
7327 case ISD::STRICT_FSETCCS: {
7328 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7329 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7330 if (TM.Options.NoNaNsFPMath)
7331 Condition = getFCmpCodeWithoutNaN(Condition);
7332 Opers.push_back(DAG.getCondCode(Condition));
7333 break;
7337 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7338 pushOutChain(Result, EB);
7340 SDValue FPResult = Result.getValue(0);
7341 setValue(&FPI, FPResult);
7344 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7345 Optional<unsigned> ResOPC;
7346 switch (VPIntrin.getIntrinsicID()) {
7347 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN:
7348 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID;
7349 #define END_REGISTER_VP_INTRINSIC(...) break;
7350 #include "llvm/IR/VPIntrinsics.def"
7353 if (!ResOPC.hasValue())
7354 llvm_unreachable(
7355 "Inconsistency: no SDNode available for this VPIntrinsic!");
7357 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7358 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7359 if (VPIntrin.getFastMathFlags().allowReassoc())
7360 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7361 : ISD::VP_REDUCE_FMUL;
7364 return ResOPC.getValue();
7367 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7368 const VPIntrinsic &VPIntrin) {
7369 SDLoc DL = getCurSDLoc();
7370 unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7372 SmallVector<EVT, 4> ValueVTs;
7373 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7374 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7375 SDVTList VTs = DAG.getVTList(ValueVTs);
7377 auto EVLParamPos =
7378 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID());
7380 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7381 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7382 "Unexpected target EVL type");
7384 // Request operands.
7385 SmallVector<SDValue, 7> OpValues;
7386 for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) {
7387 auto Op = getValue(VPIntrin.getArgOperand(I));
7388 if (I == EVLParamPos)
7389 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7390 OpValues.push_back(Op);
7393 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7394 setValue(&VPIntrin, Result);
7397 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7398 const BasicBlock *EHPadBB,
7399 MCSymbol *&BeginLabel) {
7400 MachineFunction &MF = DAG.getMachineFunction();
7401 MachineModuleInfo &MMI = MF.getMMI();
7403 // Insert a label before the invoke call to mark the try range. This can be
7404 // used to detect deletion of the invoke via the MachineModuleInfo.
7405 BeginLabel = MMI.getContext().createTempSymbol();
7407 // For SjLj, keep track of which landing pads go with which invokes
7408 // so as to maintain the ordering of pads in the LSDA.
7409 unsigned CallSiteIndex = MMI.getCurrentCallSite();
7410 if (CallSiteIndex) {
7411 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7412 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7414 // Now that the call site is handled, stop tracking it.
7415 MMI.setCurrentCallSite(0);
7418 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7421 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7422 const BasicBlock *EHPadBB,
7423 MCSymbol *BeginLabel) {
7424 assert(BeginLabel && "BeginLabel should've been set");
7426 MachineFunction &MF = DAG.getMachineFunction();
7427 MachineModuleInfo &MMI = MF.getMMI();
7429 // Insert a label at the end of the invoke call to mark the try range. This
7430 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7431 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7432 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7434 // Inform MachineModuleInfo of range.
7435 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7436 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7437 // actually use outlined funclets and their LSDA info style.
7438 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7439 assert(II && "II should've been set");
7440 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7441 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7442 } else if (!isScopedEHPersonality(Pers)) {
7443 assert(EHPadBB);
7444 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7447 return Chain;
7450 std::pair<SDValue, SDValue>
7451 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7452 const BasicBlock *EHPadBB) {
7453 MCSymbol *BeginLabel = nullptr;
7455 if (EHPadBB) {
7456 // Both PendingLoads and PendingExports must be flushed here;
7457 // this call might not return.
7458 (void)getRoot();
7459 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7460 CLI.setChain(getRoot());
7463 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7464 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7466 assert((CLI.IsTailCall || Result.second.getNode()) &&
7467 "Non-null chain expected with non-tail call!");
7468 assert((Result.second.getNode() || !Result.first.getNode()) &&
7469 "Null value expected with tail call!");
7471 if (!Result.second.getNode()) {
7472 // As a special case, a null chain means that a tail call has been emitted
7473 // and the DAG root is already updated.
7474 HasTailCall = true;
7476 // Since there's no actual continuation from this block, nothing can be
7477 // relying on us setting vregs for them.
7478 PendingExports.clear();
7479 } else {
7480 DAG.setRoot(Result.second);
7483 if (EHPadBB) {
7484 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7485 BeginLabel));
7488 return Result;
7491 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7492 bool isTailCall,
7493 bool isMustTailCall,
7494 const BasicBlock *EHPadBB) {
7495 auto &DL = DAG.getDataLayout();
7496 FunctionType *FTy = CB.getFunctionType();
7497 Type *RetTy = CB.getType();
7499 TargetLowering::ArgListTy Args;
7500 Args.reserve(CB.arg_size());
7502 const Value *SwiftErrorVal = nullptr;
7503 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7505 if (isTailCall) {
7506 // Avoid emitting tail calls in functions with the disable-tail-calls
7507 // attribute.
7508 auto *Caller = CB.getParent()->getParent();
7509 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7510 "true" && !isMustTailCall)
7511 isTailCall = false;
7513 // We can't tail call inside a function with a swifterror argument. Lowering
7514 // does not support this yet. It would have to move into the swifterror
7515 // register before the call.
7516 if (TLI.supportSwiftError() &&
7517 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7518 isTailCall = false;
7521 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7522 TargetLowering::ArgListEntry Entry;
7523 const Value *V = *I;
7525 // Skip empty types
7526 if (V->getType()->isEmptyTy())
7527 continue;
7529 SDValue ArgNode = getValue(V);
7530 Entry.Node = ArgNode; Entry.Ty = V->getType();
7532 Entry.setAttributes(&CB, I - CB.arg_begin());
7534 // Use swifterror virtual register as input to the call.
7535 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7536 SwiftErrorVal = V;
7537 // We find the virtual register for the actual swifterror argument.
7538 // Instead of using the Value, we use the virtual register instead.
7539 Entry.Node =
7540 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7541 EVT(TLI.getPointerTy(DL)));
7544 Args.push_back(Entry);
7546 // If we have an explicit sret argument that is an Instruction, (i.e., it
7547 // might point to function-local memory), we can't meaningfully tail-call.
7548 if (Entry.IsSRet && isa<Instruction>(V))
7549 isTailCall = false;
7552 // If call site has a cfguardtarget operand bundle, create and add an
7553 // additional ArgListEntry.
7554 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7555 TargetLowering::ArgListEntry Entry;
7556 Value *V = Bundle->Inputs[0];
7557 SDValue ArgNode = getValue(V);
7558 Entry.Node = ArgNode;
7559 Entry.Ty = V->getType();
7560 Entry.IsCFGuardTarget = true;
7561 Args.push_back(Entry);
7564 // Check if target-independent constraints permit a tail call here.
7565 // Target-dependent constraints are checked within TLI->LowerCallTo.
7566 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7567 isTailCall = false;
7569 // Disable tail calls if there is an swifterror argument. Targets have not
7570 // been updated to support tail calls.
7571 if (TLI.supportSwiftError() && SwiftErrorVal)
7572 isTailCall = false;
7574 TargetLowering::CallLoweringInfo CLI(DAG);
7575 CLI.setDebugLoc(getCurSDLoc())
7576 .setChain(getRoot())
7577 .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7578 .setTailCall(isTailCall)
7579 .setConvergent(CB.isConvergent())
7580 .setIsPreallocated(
7581 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
7582 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7584 if (Result.first.getNode()) {
7585 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
7586 setValue(&CB, Result.first);
7589 // The last element of CLI.InVals has the SDValue for swifterror return.
7590 // Here we copy it to a virtual register and update SwiftErrorMap for
7591 // book-keeping.
7592 if (SwiftErrorVal && TLI.supportSwiftError()) {
7593 // Get the last element of InVals.
7594 SDValue Src = CLI.InVals.back();
7595 Register VReg =
7596 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
7597 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7598 DAG.setRoot(CopyNode);
7602 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7603 SelectionDAGBuilder &Builder) {
7604 // Check to see if this load can be trivially constant folded, e.g. if the
7605 // input is from a string literal.
7606 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7607 // Cast pointer to the type we really want to load.
7608 Type *LoadTy =
7609 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7610 if (LoadVT.isVector())
7611 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
7613 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7614 PointerType::getUnqual(LoadTy));
7616 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7617 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7618 return Builder.getValue(LoadCst);
7621 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7622 // still constant memory, the input chain can be the entry node.
7623 SDValue Root;
7624 bool ConstantMemory = false;
7626 // Do not serialize (non-volatile) loads of constant memory with anything.
7627 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7628 Root = Builder.DAG.getEntryNode();
7629 ConstantMemory = true;
7630 } else {
7631 // Do not serialize non-volatile loads against each other.
7632 Root = Builder.DAG.getRoot();
7635 SDValue Ptr = Builder.getValue(PtrVal);
7636 SDValue LoadVal =
7637 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
7638 MachinePointerInfo(PtrVal), Align(1));
7640 if (!ConstantMemory)
7641 Builder.PendingLoads.push_back(LoadVal.getValue(1));
7642 return LoadVal;
7645 /// Record the value for an instruction that produces an integer result,
7646 /// converting the type where necessary.
7647 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7648 SDValue Value,
7649 bool IsSigned) {
7650 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7651 I.getType(), true);
7652 if (IsSigned)
7653 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7654 else
7655 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7656 setValue(&I, Value);
7659 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
7660 /// true and lower it. Otherwise return false, and it will be lowered like a
7661 /// normal call.
7662 /// The caller already checked that \p I calls the appropriate LibFunc with a
7663 /// correct prototype.
7664 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
7665 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7666 const Value *Size = I.getArgOperand(2);
7667 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7668 if (CSize && CSize->getZExtValue() == 0) {
7669 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7670 I.getType(), true);
7671 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7672 return true;
7675 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7676 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7677 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7678 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7679 if (Res.first.getNode()) {
7680 processIntegerCallValue(I, Res.first, true);
7681 PendingLoads.push_back(Res.second);
7682 return true;
7685 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7686 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7687 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7688 return false;
7690 // If the target has a fast compare for the given size, it will return a
7691 // preferred load type for that size. Require that the load VT is legal and
7692 // that the target supports unaligned loads of that type. Otherwise, return
7693 // INVALID.
7694 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7695 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7696 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7697 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7698 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7699 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7700 // TODO: Check alignment of src and dest ptrs.
7701 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7702 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7703 if (!TLI.isTypeLegal(LVT) ||
7704 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7705 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7706 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7709 return LVT;
7712 // This turns into unaligned loads. We only do this if the target natively
7713 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7714 // we'll only produce a small number of byte loads.
7715 MVT LoadVT;
7716 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7717 switch (NumBitsToCompare) {
7718 default:
7719 return false;
7720 case 16:
7721 LoadVT = MVT::i16;
7722 break;
7723 case 32:
7724 LoadVT = MVT::i32;
7725 break;
7726 case 64:
7727 case 128:
7728 case 256:
7729 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7730 break;
7733 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7734 return false;
7736 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7737 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7739 // Bitcast to a wide integer type if the loads are vectors.
7740 if (LoadVT.isVector()) {
7741 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7742 LoadL = DAG.getBitcast(CmpVT, LoadL);
7743 LoadR = DAG.getBitcast(CmpVT, LoadR);
7746 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7747 processIntegerCallValue(I, Cmp, false);
7748 return true;
7751 /// See if we can lower a memchr call into an optimized form. If so, return
7752 /// true and lower it. Otherwise return false, and it will be lowered like a
7753 /// normal call.
7754 /// The caller already checked that \p I calls the appropriate LibFunc with a
7755 /// correct prototype.
7756 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7757 const Value *Src = I.getArgOperand(0);
7758 const Value *Char = I.getArgOperand(1);
7759 const Value *Length = I.getArgOperand(2);
7761 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7762 std::pair<SDValue, SDValue> Res =
7763 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7764 getValue(Src), getValue(Char), getValue(Length),
7765 MachinePointerInfo(Src));
7766 if (Res.first.getNode()) {
7767 setValue(&I, Res.first);
7768 PendingLoads.push_back(Res.second);
7769 return true;
7772 return false;
7775 /// See if we can lower a mempcpy call into an optimized form. If so, return
7776 /// true and lower it. Otherwise return false, and it will be lowered like a
7777 /// normal call.
7778 /// The caller already checked that \p I calls the appropriate LibFunc with a
7779 /// correct prototype.
7780 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7781 SDValue Dst = getValue(I.getArgOperand(0));
7782 SDValue Src = getValue(I.getArgOperand(1));
7783 SDValue Size = getValue(I.getArgOperand(2));
7785 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
7786 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
7787 // DAG::getMemcpy needs Alignment to be defined.
7788 Align Alignment = std::min(DstAlign, SrcAlign);
7790 bool isVol = false;
7791 SDLoc sdl = getCurSDLoc();
7793 // In the mempcpy context we need to pass in a false value for isTailCall
7794 // because the return pointer needs to be adjusted by the size of
7795 // the copied memory.
7796 SDValue Root = isVol ? getRoot() : getMemoryRoot();
7797 AAMDNodes AAInfo;
7798 I.getAAMetadata(AAInfo);
7799 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
7800 /*isTailCall=*/false,
7801 MachinePointerInfo(I.getArgOperand(0)),
7802 MachinePointerInfo(I.getArgOperand(1)), AAInfo);
7803 assert(MC.getNode() != nullptr &&
7804 "** memcpy should not be lowered as TailCall in mempcpy context **");
7805 DAG.setRoot(MC);
7807 // Check if Size needs to be truncated or extended.
7808 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7810 // Adjust return pointer to point just past the last dst byte.
7811 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7812 Dst, Size);
7813 setValue(&I, DstPlusSize);
7814 return true;
7817 /// See if we can lower a strcpy call into an optimized form. If so, return
7818 /// true and lower it, otherwise return false and it will be lowered like a
7819 /// normal call.
7820 /// The caller already checked that \p I calls the appropriate LibFunc with a
7821 /// correct prototype.
7822 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7823 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7825 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7826 std::pair<SDValue, SDValue> Res =
7827 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7828 getValue(Arg0), getValue(Arg1),
7829 MachinePointerInfo(Arg0),
7830 MachinePointerInfo(Arg1), isStpcpy);
7831 if (Res.first.getNode()) {
7832 setValue(&I, Res.first);
7833 DAG.setRoot(Res.second);
7834 return true;
7837 return false;
7840 /// See if we can lower a strcmp call into an optimized form. If so, return
7841 /// true and lower it, otherwise return false and it will be lowered like a
7842 /// normal call.
7843 /// The caller already checked that \p I calls the appropriate LibFunc with a
7844 /// correct prototype.
7845 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7846 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7848 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7849 std::pair<SDValue, SDValue> Res =
7850 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7851 getValue(Arg0), getValue(Arg1),
7852 MachinePointerInfo(Arg0),
7853 MachinePointerInfo(Arg1));
7854 if (Res.first.getNode()) {
7855 processIntegerCallValue(I, Res.first, true);
7856 PendingLoads.push_back(Res.second);
7857 return true;
7860 return false;
7863 /// See if we can lower a strlen call into an optimized form. If so, return
7864 /// true and lower it, otherwise return false and it will be lowered like a
7865 /// normal call.
7866 /// The caller already checked that \p I calls the appropriate LibFunc with a
7867 /// correct prototype.
7868 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7869 const Value *Arg0 = I.getArgOperand(0);
7871 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7872 std::pair<SDValue, SDValue> Res =
7873 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7874 getValue(Arg0), MachinePointerInfo(Arg0));
7875 if (Res.first.getNode()) {
7876 processIntegerCallValue(I, Res.first, false);
7877 PendingLoads.push_back(Res.second);
7878 return true;
7881 return false;
7884 /// See if we can lower a strnlen call into an optimized form. If so, return
7885 /// true and lower it, otherwise return false and it will be lowered like a
7886 /// normal call.
7887 /// The caller already checked that \p I calls the appropriate LibFunc with a
7888 /// correct prototype.
7889 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7890 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7892 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7893 std::pair<SDValue, SDValue> Res =
7894 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7895 getValue(Arg0), getValue(Arg1),
7896 MachinePointerInfo(Arg0));
7897 if (Res.first.getNode()) {
7898 processIntegerCallValue(I, Res.first, false);
7899 PendingLoads.push_back(Res.second);
7900 return true;
7903 return false;
7906 /// See if we can lower a unary floating-point operation into an SDNode with
7907 /// the specified Opcode. If so, return true and lower it, otherwise return
7908 /// false and it will be lowered like a normal call.
7909 /// The caller already checked that \p I calls the appropriate LibFunc with a
7910 /// correct prototype.
7911 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7912 unsigned Opcode) {
7913 // We already checked this call's prototype; verify it doesn't modify errno.
7914 if (!I.onlyReadsMemory())
7915 return false;
7917 SDNodeFlags Flags;
7918 Flags.copyFMF(cast<FPMathOperator>(I));
7920 SDValue Tmp = getValue(I.getArgOperand(0));
7921 setValue(&I,
7922 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
7923 return true;
7926 /// See if we can lower a binary floating-point operation into an SDNode with
7927 /// the specified Opcode. If so, return true and lower it. Otherwise return
7928 /// false, and it will be lowered like a normal call.
7929 /// The caller already checked that \p I calls the appropriate LibFunc with a
7930 /// correct prototype.
7931 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7932 unsigned Opcode) {
7933 // We already checked this call's prototype; verify it doesn't modify errno.
7934 if (!I.onlyReadsMemory())
7935 return false;
7937 SDNodeFlags Flags;
7938 Flags.copyFMF(cast<FPMathOperator>(I));
7940 SDValue Tmp0 = getValue(I.getArgOperand(0));
7941 SDValue Tmp1 = getValue(I.getArgOperand(1));
7942 EVT VT = Tmp0.getValueType();
7943 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
7944 return true;
7947 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7948 // Handle inline assembly differently.
7949 if (I.isInlineAsm()) {
7950 visitInlineAsm(I);
7951 return;
7954 if (Function *F = I.getCalledFunction()) {
7955 if (F->isDeclaration()) {
7956 // Is this an LLVM intrinsic or a target-specific intrinsic?
7957 unsigned IID = F->getIntrinsicID();
7958 if (!IID)
7959 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7960 IID = II->getIntrinsicID(F);
7962 if (IID) {
7963 visitIntrinsicCall(I, IID);
7964 return;
7968 // Check for well-known libc/libm calls. If the function is internal, it
7969 // can't be a library call. Don't do the check if marked as nobuiltin for
7970 // some reason or the call site requires strict floating point semantics.
7971 LibFunc Func;
7972 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7973 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7974 LibInfo->hasOptimizedCodeGen(Func)) {
7975 switch (Func) {
7976 default: break;
7977 case LibFunc_bcmp:
7978 if (visitMemCmpBCmpCall(I))
7979 return;
7980 break;
7981 case LibFunc_copysign:
7982 case LibFunc_copysignf:
7983 case LibFunc_copysignl:
7984 // We already checked this call's prototype; verify it doesn't modify
7985 // errno.
7986 if (I.onlyReadsMemory()) {
7987 SDValue LHS = getValue(I.getArgOperand(0));
7988 SDValue RHS = getValue(I.getArgOperand(1));
7989 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7990 LHS.getValueType(), LHS, RHS));
7991 return;
7993 break;
7994 case LibFunc_fabs:
7995 case LibFunc_fabsf:
7996 case LibFunc_fabsl:
7997 if (visitUnaryFloatCall(I, ISD::FABS))
7998 return;
7999 break;
8000 case LibFunc_fmin:
8001 case LibFunc_fminf:
8002 case LibFunc_fminl:
8003 if (visitBinaryFloatCall(I, ISD::FMINNUM))
8004 return;
8005 break;
8006 case LibFunc_fmax:
8007 case LibFunc_fmaxf:
8008 case LibFunc_fmaxl:
8009 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8010 return;
8011 break;
8012 case LibFunc_sin:
8013 case LibFunc_sinf:
8014 case LibFunc_sinl:
8015 if (visitUnaryFloatCall(I, ISD::FSIN))
8016 return;
8017 break;
8018 case LibFunc_cos:
8019 case LibFunc_cosf:
8020 case LibFunc_cosl:
8021 if (visitUnaryFloatCall(I, ISD::FCOS))
8022 return;
8023 break;
8024 case LibFunc_sqrt:
8025 case LibFunc_sqrtf:
8026 case LibFunc_sqrtl:
8027 case LibFunc_sqrt_finite:
8028 case LibFunc_sqrtf_finite:
8029 case LibFunc_sqrtl_finite:
8030 if (visitUnaryFloatCall(I, ISD::FSQRT))
8031 return;
8032 break;
8033 case LibFunc_floor:
8034 case LibFunc_floorf:
8035 case LibFunc_floorl:
8036 if (visitUnaryFloatCall(I, ISD::FFLOOR))
8037 return;
8038 break;
8039 case LibFunc_nearbyint:
8040 case LibFunc_nearbyintf:
8041 case LibFunc_nearbyintl:
8042 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8043 return;
8044 break;
8045 case LibFunc_ceil:
8046 case LibFunc_ceilf:
8047 case LibFunc_ceill:
8048 if (visitUnaryFloatCall(I, ISD::FCEIL))
8049 return;
8050 break;
8051 case LibFunc_rint:
8052 case LibFunc_rintf:
8053 case LibFunc_rintl:
8054 if (visitUnaryFloatCall(I, ISD::FRINT))
8055 return;
8056 break;
8057 case LibFunc_round:
8058 case LibFunc_roundf:
8059 case LibFunc_roundl:
8060 if (visitUnaryFloatCall(I, ISD::FROUND))
8061 return;
8062 break;
8063 case LibFunc_trunc:
8064 case LibFunc_truncf:
8065 case LibFunc_truncl:
8066 if (visitUnaryFloatCall(I, ISD::FTRUNC))
8067 return;
8068 break;
8069 case LibFunc_log2:
8070 case LibFunc_log2f:
8071 case LibFunc_log2l:
8072 if (visitUnaryFloatCall(I, ISD::FLOG2))
8073 return;
8074 break;
8075 case LibFunc_exp2:
8076 case LibFunc_exp2f:
8077 case LibFunc_exp2l:
8078 if (visitUnaryFloatCall(I, ISD::FEXP2))
8079 return;
8080 break;
8081 case LibFunc_memcmp:
8082 if (visitMemCmpBCmpCall(I))
8083 return;
8084 break;
8085 case LibFunc_mempcpy:
8086 if (visitMemPCpyCall(I))
8087 return;
8088 break;
8089 case LibFunc_memchr:
8090 if (visitMemChrCall(I))
8091 return;
8092 break;
8093 case LibFunc_strcpy:
8094 if (visitStrCpyCall(I, false))
8095 return;
8096 break;
8097 case LibFunc_stpcpy:
8098 if (visitStrCpyCall(I, true))
8099 return;
8100 break;
8101 case LibFunc_strcmp:
8102 if (visitStrCmpCall(I))
8103 return;
8104 break;
8105 case LibFunc_strlen:
8106 if (visitStrLenCall(I))
8107 return;
8108 break;
8109 case LibFunc_strnlen:
8110 if (visitStrNLenCall(I))
8111 return;
8112 break;
8117 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8118 // have to do anything here to lower funclet bundles.
8119 // CFGuardTarget bundles are lowered in LowerCallTo.
8120 assert(!I.hasOperandBundlesOtherThan(
8121 {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8122 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8123 LLVMContext::OB_clang_arc_attachedcall}) &&
8124 "Cannot lower calls with arbitrary operand bundles!");
8126 SDValue Callee = getValue(I.getCalledOperand());
8128 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8129 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8130 else
8131 // Check if we can potentially perform a tail call. More detailed checking
8132 // is be done within LowerCallTo, after more information about the call is
8133 // known.
8134 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8137 namespace {
8139 /// AsmOperandInfo - This contains information for each constraint that we are
8140 /// lowering.
8141 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8142 public:
8143 /// CallOperand - If this is the result output operand or a clobber
8144 /// this is null, otherwise it is the incoming operand to the CallInst.
8145 /// This gets modified as the asm is processed.
8146 SDValue CallOperand;
8148 /// AssignedRegs - If this is a register or register class operand, this
8149 /// contains the set of register corresponding to the operand.
8150 RegsForValue AssignedRegs;
8152 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8153 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8156 /// Whether or not this operand accesses memory
8157 bool hasMemory(const TargetLowering &TLI) const {
8158 // Indirect operand accesses access memory.
8159 if (isIndirect)
8160 return true;
8162 for (const auto &Code : Codes)
8163 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8164 return true;
8166 return false;
8169 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
8170 /// corresponds to. If there is no Value* for this operand, it returns
8171 /// MVT::Other.
8172 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
8173 const DataLayout &DL) const {
8174 if (!CallOperandVal) return MVT::Other;
8176 if (isa<BasicBlock>(CallOperandVal))
8177 return TLI.getProgramPointerTy(DL);
8179 llvm::Type *OpTy = CallOperandVal->getType();
8181 // FIXME: code duplicated from TargetLowering::ParseConstraints().
8182 // If this is an indirect operand, the operand is a pointer to the
8183 // accessed type.
8184 if (isIndirect) {
8185 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
8186 if (!PtrTy)
8187 report_fatal_error("Indirect operand for inline asm not a pointer!");
8188 OpTy = PtrTy->getElementType();
8191 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
8192 if (StructType *STy = dyn_cast<StructType>(OpTy))
8193 if (STy->getNumElements() == 1)
8194 OpTy = STy->getElementType(0);
8196 // If OpTy is not a single value, it may be a struct/union that we
8197 // can tile with integers.
8198 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
8199 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
8200 switch (BitSize) {
8201 default: break;
8202 case 1:
8203 case 8:
8204 case 16:
8205 case 32:
8206 case 64:
8207 case 128:
8208 OpTy = IntegerType::get(Context, BitSize);
8209 break;
8213 return TLI.getAsmOperandValueType(DL, OpTy, true);
8218 } // end anonymous namespace
8220 /// Make sure that the output operand \p OpInfo and its corresponding input
8221 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8222 /// out).
8223 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8224 SDISelAsmOperandInfo &MatchingOpInfo,
8225 SelectionDAG &DAG) {
8226 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8227 return;
8229 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8230 const auto &TLI = DAG.getTargetLoweringInfo();
8232 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8233 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8234 OpInfo.ConstraintVT);
8235 std::pair<unsigned, const TargetRegisterClass *> InputRC =
8236 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8237 MatchingOpInfo.ConstraintVT);
8238 if ((OpInfo.ConstraintVT.isInteger() !=
8239 MatchingOpInfo.ConstraintVT.isInteger()) ||
8240 (MatchRC.second != InputRC.second)) {
8241 // FIXME: error out in a more elegant fashion
8242 report_fatal_error("Unsupported asm: input constraint"
8243 " with a matching output constraint of"
8244 " incompatible type!");
8246 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8249 /// Get a direct memory input to behave well as an indirect operand.
8250 /// This may introduce stores, hence the need for a \p Chain.
8251 /// \return The (possibly updated) chain.
8252 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8253 SDISelAsmOperandInfo &OpInfo,
8254 SelectionDAG &DAG) {
8255 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8257 // If we don't have an indirect input, put it in the constpool if we can,
8258 // otherwise spill it to a stack slot.
8259 // TODO: This isn't quite right. We need to handle these according to
8260 // the addressing mode that the constraint wants. Also, this may take
8261 // an additional register for the computation and we don't want that
8262 // either.
8264 // If the operand is a float, integer, or vector constant, spill to a
8265 // constant pool entry to get its address.
8266 const Value *OpVal = OpInfo.CallOperandVal;
8267 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8268 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8269 OpInfo.CallOperand = DAG.getConstantPool(
8270 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8271 return Chain;
8274 // Otherwise, create a stack slot and emit a store to it before the asm.
8275 Type *Ty = OpVal->getType();
8276 auto &DL = DAG.getDataLayout();
8277 uint64_t TySize = DL.getTypeAllocSize(Ty);
8278 MachineFunction &MF = DAG.getMachineFunction();
8279 int SSFI = MF.getFrameInfo().CreateStackObject(
8280 TySize, DL.getPrefTypeAlign(Ty), false);
8281 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8282 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8283 MachinePointerInfo::getFixedStack(MF, SSFI),
8284 TLI.getMemValueType(DL, Ty));
8285 OpInfo.CallOperand = StackSlot;
8287 return Chain;
8290 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8291 /// specified operand. We prefer to assign virtual registers, to allow the
8292 /// register allocator to handle the assignment process. However, if the asm
8293 /// uses features that we can't model on machineinstrs, we have SDISel do the
8294 /// allocation. This produces generally horrible, but correct, code.
8296 /// OpInfo describes the operand
8297 /// RefOpInfo describes the matching operand if any, the operand otherwise
8298 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8299 SDISelAsmOperandInfo &OpInfo,
8300 SDISelAsmOperandInfo &RefOpInfo) {
8301 LLVMContext &Context = *DAG.getContext();
8302 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8304 MachineFunction &MF = DAG.getMachineFunction();
8305 SmallVector<unsigned, 4> Regs;
8306 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8308 // No work to do for memory operations.
8309 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
8310 return;
8312 // If this is a constraint for a single physreg, or a constraint for a
8313 // register class, find it.
8314 unsigned AssignedReg;
8315 const TargetRegisterClass *RC;
8316 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8317 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8318 // RC is unset only on failure. Return immediately.
8319 if (!RC)
8320 return;
8322 // Get the actual register value type. This is important, because the user
8323 // may have asked for (e.g.) the AX register in i32 type. We need to
8324 // remember that AX is actually i16 to get the right extension.
8325 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8327 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8328 // If this is an FP operand in an integer register (or visa versa), or more
8329 // generally if the operand value disagrees with the register class we plan
8330 // to stick it in, fix the operand type.
8332 // If this is an input value, the bitcast to the new type is done now.
8333 // Bitcast for output value is done at the end of visitInlineAsm().
8334 if ((OpInfo.Type == InlineAsm::isOutput ||
8335 OpInfo.Type == InlineAsm::isInput) &&
8336 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8337 // Try to convert to the first EVT that the reg class contains. If the
8338 // types are identical size, use a bitcast to convert (e.g. two differing
8339 // vector types). Note: output bitcast is done at the end of
8340 // visitInlineAsm().
8341 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8342 // Exclude indirect inputs while they are unsupported because the code
8343 // to perform the load is missing and thus OpInfo.CallOperand still
8344 // refers to the input address rather than the pointed-to value.
8345 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8346 OpInfo.CallOperand =
8347 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8348 OpInfo.ConstraintVT = RegVT;
8349 // If the operand is an FP value and we want it in integer registers,
8350 // use the corresponding integer type. This turns an f64 value into
8351 // i64, which can be passed with two i32 values on a 32-bit machine.
8352 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8353 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8354 if (OpInfo.Type == InlineAsm::isInput)
8355 OpInfo.CallOperand =
8356 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8357 OpInfo.ConstraintVT = VT;
8362 // No need to allocate a matching input constraint since the constraint it's
8363 // matching to has already been allocated.
8364 if (OpInfo.isMatchingInputConstraint())
8365 return;
8367 EVT ValueVT = OpInfo.ConstraintVT;
8368 if (OpInfo.ConstraintVT == MVT::Other)
8369 ValueVT = RegVT;
8371 // Initialize NumRegs.
8372 unsigned NumRegs = 1;
8373 if (OpInfo.ConstraintVT != MVT::Other)
8374 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8376 // If this is a constraint for a specific physical register, like {r17},
8377 // assign it now.
8379 // If this associated to a specific register, initialize iterator to correct
8380 // place. If virtual, make sure we have enough registers
8382 // Initialize iterator if necessary
8383 TargetRegisterClass::iterator I = RC->begin();
8384 MachineRegisterInfo &RegInfo = MF.getRegInfo();
8386 // Do not check for single registers.
8387 if (AssignedReg) {
8388 for (; *I != AssignedReg; ++I)
8389 assert(I != RC->end() && "AssignedReg should be member of RC");
8392 for (; NumRegs; --NumRegs, ++I) {
8393 assert(I != RC->end() && "Ran out of registers to allocate!");
8394 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8395 Regs.push_back(R);
8398 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8401 static unsigned
8402 findMatchingInlineAsmOperand(unsigned OperandNo,
8403 const std::vector<SDValue> &AsmNodeOperands) {
8404 // Scan until we find the definition we already emitted of this operand.
8405 unsigned CurOp = InlineAsm::Op_FirstOperand;
8406 for (; OperandNo; --OperandNo) {
8407 // Advance to the next operand.
8408 unsigned OpFlag =
8409 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8410 assert((InlineAsm::isRegDefKind(OpFlag) ||
8411 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8412 InlineAsm::isMemKind(OpFlag)) &&
8413 "Skipped past definitions?");
8414 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8416 return CurOp;
8419 namespace {
8421 class ExtraFlags {
8422 unsigned Flags = 0;
8424 public:
8425 explicit ExtraFlags(const CallBase &Call) {
8426 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8427 if (IA->hasSideEffects())
8428 Flags |= InlineAsm::Extra_HasSideEffects;
8429 if (IA->isAlignStack())
8430 Flags |= InlineAsm::Extra_IsAlignStack;
8431 if (Call.isConvergent())
8432 Flags |= InlineAsm::Extra_IsConvergent;
8433 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8436 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8437 // Ideally, we would only check against memory constraints. However, the
8438 // meaning of an Other constraint can be target-specific and we can't easily
8439 // reason about it. Therefore, be conservative and set MayLoad/MayStore
8440 // for Other constraints as well.
8441 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8442 OpInfo.ConstraintType == TargetLowering::C_Other) {
8443 if (OpInfo.Type == InlineAsm::isInput)
8444 Flags |= InlineAsm::Extra_MayLoad;
8445 else if (OpInfo.Type == InlineAsm::isOutput)
8446 Flags |= InlineAsm::Extra_MayStore;
8447 else if (OpInfo.Type == InlineAsm::isClobber)
8448 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8452 unsigned get() const { return Flags; }
8455 } // end anonymous namespace
8457 /// visitInlineAsm - Handle a call to an InlineAsm object.
8458 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8459 const BasicBlock *EHPadBB) {
8460 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8462 /// ConstraintOperands - Information about all of the constraints.
8463 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8465 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8466 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8467 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8469 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8470 // AsmDialect, MayLoad, MayStore).
8471 bool HasSideEffect = IA->hasSideEffects();
8472 ExtraFlags ExtraInfo(Call);
8474 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
8475 unsigned ResNo = 0; // ResNo - The result number of the next output.
8476 unsigned NumMatchingOps = 0;
8477 for (auto &T : TargetConstraints) {
8478 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8479 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8481 // Compute the value type for each operand.
8482 if (OpInfo.Type == InlineAsm::isInput ||
8483 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8484 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++);
8486 // Process the call argument. BasicBlocks are labels, currently appearing
8487 // only in asm's.
8488 if (isa<CallBrInst>(Call) &&
8489 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() -
8490 cast<CallBrInst>(&Call)->getNumIndirectDests() -
8491 NumMatchingOps) &&
8492 (NumMatchingOps == 0 ||
8493 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() -
8494 NumMatchingOps))) {
8495 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8496 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8497 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8498 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8499 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8500 } else {
8501 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8504 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
8505 DAG.getDataLayout());
8506 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other;
8507 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8508 // The return value of the call is this value. As such, there is no
8509 // corresponding argument.
8510 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8511 if (StructType *STy = dyn_cast<StructType>(Call.getType())) {
8512 OpInfo.ConstraintVT = TLI.getSimpleValueType(
8513 DAG.getDataLayout(), STy->getElementType(ResNo));
8514 } else {
8515 assert(ResNo == 0 && "Asm only has one result!");
8516 OpInfo.ConstraintVT = TLI.getAsmOperandValueType(
8517 DAG.getDataLayout(), Call.getType()).getSimpleVT();
8519 ++ResNo;
8520 } else {
8521 OpInfo.ConstraintVT = MVT::Other;
8524 if (OpInfo.hasMatchingInput())
8525 ++NumMatchingOps;
8527 if (!HasSideEffect)
8528 HasSideEffect = OpInfo.hasMemory(TLI);
8530 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8531 // FIXME: Could we compute this on OpInfo rather than T?
8533 // Compute the constraint code and ConstraintType to use.
8534 TLI.ComputeConstraintToUse(T, SDValue());
8536 if (T.ConstraintType == TargetLowering::C_Immediate &&
8537 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8538 // We've delayed emitting a diagnostic like the "n" constraint because
8539 // inlining could cause an integer showing up.
8540 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8541 "' expects an integer constant "
8542 "expression");
8544 ExtraInfo.update(T);
8547 // We won't need to flush pending loads if this asm doesn't touch
8548 // memory and is nonvolatile.
8549 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8551 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow();
8552 if (EmitEHLabels) {
8553 assert(EHPadBB && "InvokeInst must have an EHPadBB");
8555 bool IsCallBr = isa<CallBrInst>(Call);
8557 if (IsCallBr || EmitEHLabels) {
8558 // If this is a callbr or invoke we need to flush pending exports since
8559 // inlineasm_br and invoke are terminators.
8560 // We need to do this before nodes are glued to the inlineasm_br node.
8561 Chain = getControlRoot();
8564 MCSymbol *BeginLabel = nullptr;
8565 if (EmitEHLabels) {
8566 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8569 // Second pass over the constraints: compute which constraint option to use.
8570 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8571 // If this is an output operand with a matching input operand, look up the
8572 // matching input. If their types mismatch, e.g. one is an integer, the
8573 // other is floating point, or their sizes are different, flag it as an
8574 // error.
8575 if (OpInfo.hasMatchingInput()) {
8576 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8577 patchMatchingInput(OpInfo, Input, DAG);
8580 // Compute the constraint code and ConstraintType to use.
8581 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8583 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8584 OpInfo.Type == InlineAsm::isClobber)
8585 continue;
8587 // If this is a memory input, and if the operand is not indirect, do what we
8588 // need to provide an address for the memory input.
8589 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8590 !OpInfo.isIndirect) {
8591 assert((OpInfo.isMultipleAlternative ||
8592 (OpInfo.Type == InlineAsm::isInput)) &&
8593 "Can only indirectify direct input operands!");
8595 // Memory operands really want the address of the value.
8596 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8598 // There is no longer a Value* corresponding to this operand.
8599 OpInfo.CallOperandVal = nullptr;
8601 // It is now an indirect operand.
8602 OpInfo.isIndirect = true;
8607 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8608 std::vector<SDValue> AsmNodeOperands;
8609 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
8610 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8611 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
8613 // If we have a !srcloc metadata node associated with it, we want to attach
8614 // this to the ultimately generated inline asm machineinstr. To do this, we
8615 // pass in the third operand as this (potentially null) inline asm MDNode.
8616 const MDNode *SrcLoc = Call.getMetadata("srcloc");
8617 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8619 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8620 // bits as operand 3.
8621 AsmNodeOperands.push_back(DAG.getTargetConstant(
8622 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8624 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8625 // this, assign virtual and physical registers for inputs and otput.
8626 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8627 // Assign Registers.
8628 SDISelAsmOperandInfo &RefOpInfo =
8629 OpInfo.isMatchingInputConstraint()
8630 ? ConstraintOperands[OpInfo.getMatchedOperand()]
8631 : OpInfo;
8632 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8634 auto DetectWriteToReservedRegister = [&]() {
8635 const MachineFunction &MF = DAG.getMachineFunction();
8636 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8637 for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
8638 if (Register::isPhysicalRegister(Reg) &&
8639 TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
8640 const char *RegName = TRI.getName(Reg);
8641 emitInlineAsmError(Call, "write to reserved register '" +
8642 Twine(RegName) + "'");
8643 return true;
8646 return false;
8649 switch (OpInfo.Type) {
8650 case InlineAsm::isOutput:
8651 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8652 unsigned ConstraintID =
8653 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8654 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8655 "Failed to convert memory constraint code to constraint id.");
8657 // Add information to the INLINEASM node to know about this output.
8658 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8659 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8660 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8661 MVT::i32));
8662 AsmNodeOperands.push_back(OpInfo.CallOperand);
8663 } else {
8664 // Otherwise, this outputs to a register (directly for C_Register /
8665 // C_RegisterClass, and a target-defined fashion for
8666 // C_Immediate/C_Other). Find a register that we can use.
8667 if (OpInfo.AssignedRegs.Regs.empty()) {
8668 emitInlineAsmError(
8669 Call, "couldn't allocate output register for constraint '" +
8670 Twine(OpInfo.ConstraintCode) + "'");
8671 return;
8674 if (DetectWriteToReservedRegister())
8675 return;
8677 // Add information to the INLINEASM node to know that this register is
8678 // set.
8679 OpInfo.AssignedRegs.AddInlineAsmOperands(
8680 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8681 : InlineAsm::Kind_RegDef,
8682 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8684 break;
8686 case InlineAsm::isInput: {
8687 SDValue InOperandVal = OpInfo.CallOperand;
8689 if (OpInfo.isMatchingInputConstraint()) {
8690 // If this is required to match an output register we have already set,
8691 // just use its register.
8692 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8693 AsmNodeOperands);
8694 unsigned OpFlag =
8695 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8696 if (InlineAsm::isRegDefKind(OpFlag) ||
8697 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8698 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8699 if (OpInfo.isIndirect) {
8700 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8701 emitInlineAsmError(Call, "inline asm not supported yet: "
8702 "don't know how to handle tied "
8703 "indirect register inputs");
8704 return;
8707 SmallVector<unsigned, 4> Regs;
8708 MachineFunction &MF = DAG.getMachineFunction();
8709 MachineRegisterInfo &MRI = MF.getRegInfo();
8710 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8711 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
8712 Register TiedReg = R->getReg();
8713 MVT RegVT = R->getSimpleValueType(0);
8714 const TargetRegisterClass *RC = TiedReg.isVirtual() ?
8715 MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg);
8716 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8717 for (unsigned i = 0; i != NumRegs; ++i)
8718 Regs.push_back(MRI.createVirtualRegister(RC));
8720 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8722 SDLoc dl = getCurSDLoc();
8723 // Use the produced MatchedRegs object to
8724 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
8725 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8726 true, OpInfo.getMatchedOperand(), dl,
8727 DAG, AsmNodeOperands);
8728 break;
8731 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8732 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8733 "Unexpected number of operands");
8734 // Add information to the INLINEASM node to know about this input.
8735 // See InlineAsm.h isUseOperandTiedToDef.
8736 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8737 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8738 OpInfo.getMatchedOperand());
8739 AsmNodeOperands.push_back(DAG.getTargetConstant(
8740 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8741 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8742 break;
8745 // Treat indirect 'X' constraint as memory.
8746 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8747 OpInfo.isIndirect)
8748 OpInfo.ConstraintType = TargetLowering::C_Memory;
8750 if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8751 OpInfo.ConstraintType == TargetLowering::C_Other) {
8752 std::vector<SDValue> Ops;
8753 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8754 Ops, DAG);
8755 if (Ops.empty()) {
8756 if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8757 if (isa<ConstantSDNode>(InOperandVal)) {
8758 emitInlineAsmError(Call, "value out of range for constraint '" +
8759 Twine(OpInfo.ConstraintCode) + "'");
8760 return;
8763 emitInlineAsmError(Call,
8764 "invalid operand for inline asm constraint '" +
8765 Twine(OpInfo.ConstraintCode) + "'");
8766 return;
8769 // Add information to the INLINEASM node to know about this input.
8770 unsigned ResOpType =
8771 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8772 AsmNodeOperands.push_back(DAG.getTargetConstant(
8773 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8774 llvm::append_range(AsmNodeOperands, Ops);
8775 break;
8778 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8779 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8780 assert(InOperandVal.getValueType() ==
8781 TLI.getPointerTy(DAG.getDataLayout()) &&
8782 "Memory operands expect pointer values");
8784 unsigned ConstraintID =
8785 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8786 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8787 "Failed to convert memory constraint code to constraint id.");
8789 // Add information to the INLINEASM node to know about this input.
8790 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8791 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8792 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8793 getCurSDLoc(),
8794 MVT::i32));
8795 AsmNodeOperands.push_back(InOperandVal);
8796 break;
8799 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8800 OpInfo.ConstraintType == TargetLowering::C_Register) &&
8801 "Unknown constraint type!");
8803 // TODO: Support this.
8804 if (OpInfo.isIndirect) {
8805 emitInlineAsmError(
8806 Call, "Don't know how to handle indirect register inputs yet "
8807 "for constraint '" +
8808 Twine(OpInfo.ConstraintCode) + "'");
8809 return;
8812 // Copy the input into the appropriate registers.
8813 if (OpInfo.AssignedRegs.Regs.empty()) {
8814 emitInlineAsmError(Call,
8815 "couldn't allocate input reg for constraint '" +
8816 Twine(OpInfo.ConstraintCode) + "'");
8817 return;
8820 if (DetectWriteToReservedRegister())
8821 return;
8823 SDLoc dl = getCurSDLoc();
8825 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8826 &Call);
8828 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8829 dl, DAG, AsmNodeOperands);
8830 break;
8832 case InlineAsm::isClobber:
8833 // Add the clobbered value to the operand list, so that the register
8834 // allocator is aware that the physreg got clobbered.
8835 if (!OpInfo.AssignedRegs.Regs.empty())
8836 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8837 false, 0, getCurSDLoc(), DAG,
8838 AsmNodeOperands);
8839 break;
8843 // Finish up input operands. Set the input chain and add the flag last.
8844 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8845 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8847 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8848 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8849 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8850 Flag = Chain.getValue(1);
8852 // Do additional work to generate outputs.
8854 SmallVector<EVT, 1> ResultVTs;
8855 SmallVector<SDValue, 1> ResultValues;
8856 SmallVector<SDValue, 8> OutChains;
8858 llvm::Type *CallResultType = Call.getType();
8859 ArrayRef<Type *> ResultTypes;
8860 if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
8861 ResultTypes = StructResult->elements();
8862 else if (!CallResultType->isVoidTy())
8863 ResultTypes = makeArrayRef(CallResultType);
8865 auto CurResultType = ResultTypes.begin();
8866 auto handleRegAssign = [&](SDValue V) {
8867 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8868 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8869 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8870 ++CurResultType;
8871 // If the type of the inline asm call site return value is different but has
8872 // same size as the type of the asm output bitcast it. One example of this
8873 // is for vectors with different width / number of elements. This can
8874 // happen for register classes that can contain multiple different value
8875 // types. The preg or vreg allocated may not have the same VT as was
8876 // expected.
8878 // This can also happen for a return value that disagrees with the register
8879 // class it is put in, eg. a double in a general-purpose register on a
8880 // 32-bit machine.
8881 if (ResultVT != V.getValueType() &&
8882 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8883 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8884 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8885 V.getValueType().isInteger()) {
8886 // If a result value was tied to an input value, the computed result
8887 // may have a wider width than the expected result. Extract the
8888 // relevant portion.
8889 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8891 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8892 ResultVTs.push_back(ResultVT);
8893 ResultValues.push_back(V);
8896 // Deal with output operands.
8897 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8898 if (OpInfo.Type == InlineAsm::isOutput) {
8899 SDValue Val;
8900 // Skip trivial output operands.
8901 if (OpInfo.AssignedRegs.Regs.empty())
8902 continue;
8904 switch (OpInfo.ConstraintType) {
8905 case TargetLowering::C_Register:
8906 case TargetLowering::C_RegisterClass:
8907 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
8908 Chain, &Flag, &Call);
8909 break;
8910 case TargetLowering::C_Immediate:
8911 case TargetLowering::C_Other:
8912 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8913 OpInfo, DAG);
8914 break;
8915 case TargetLowering::C_Memory:
8916 break; // Already handled.
8917 case TargetLowering::C_Unknown:
8918 assert(false && "Unexpected unknown constraint");
8921 // Indirect output manifest as stores. Record output chains.
8922 if (OpInfo.isIndirect) {
8923 const Value *Ptr = OpInfo.CallOperandVal;
8924 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8925 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8926 MachinePointerInfo(Ptr));
8927 OutChains.push_back(Store);
8928 } else {
8929 // generate CopyFromRegs to associated registers.
8930 assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
8931 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8932 for (const SDValue &V : Val->op_values())
8933 handleRegAssign(V);
8934 } else
8935 handleRegAssign(Val);
8940 // Set results.
8941 if (!ResultValues.empty()) {
8942 assert(CurResultType == ResultTypes.end() &&
8943 "Mismatch in number of ResultTypes");
8944 assert(ResultValues.size() == ResultTypes.size() &&
8945 "Mismatch in number of output operands in asm result");
8947 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8948 DAG.getVTList(ResultVTs), ResultValues);
8949 setValue(&Call, V);
8952 // Collect store chains.
8953 if (!OutChains.empty())
8954 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8956 if (EmitEHLabels) {
8957 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
8960 // Only Update Root if inline assembly has a memory effect.
8961 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
8962 EmitEHLabels)
8963 DAG.setRoot(Chain);
8966 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
8967 const Twine &Message) {
8968 LLVMContext &Ctx = *DAG.getContext();
8969 Ctx.emitError(&Call, Message);
8971 // Make sure we leave the DAG in a valid state
8972 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8973 SmallVector<EVT, 1> ValueVTs;
8974 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
8976 if (ValueVTs.empty())
8977 return;
8979 SmallVector<SDValue, 1> Ops;
8980 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8981 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8983 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
8986 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8987 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8988 MVT::Other, getRoot(),
8989 getValue(I.getArgOperand(0)),
8990 DAG.getSrcValue(I.getArgOperand(0))));
8993 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8994 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8995 const DataLayout &DL = DAG.getDataLayout();
8996 SDValue V = DAG.getVAArg(
8997 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8998 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8999 DL.getABITypeAlign(I.getType()).value());
9000 DAG.setRoot(V.getValue(1));
9002 if (I.getType()->isPointerTy())
9003 V = DAG.getPtrExtOrTrunc(
9004 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9005 setValue(&I, V);
9008 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9009 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9010 MVT::Other, getRoot(),
9011 getValue(I.getArgOperand(0)),
9012 DAG.getSrcValue(I.getArgOperand(0))));
9015 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9016 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9017 MVT::Other, getRoot(),
9018 getValue(I.getArgOperand(0)),
9019 getValue(I.getArgOperand(1)),
9020 DAG.getSrcValue(I.getArgOperand(0)),
9021 DAG.getSrcValue(I.getArgOperand(1))));
9024 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9025 const Instruction &I,
9026 SDValue Op) {
9027 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9028 if (!Range)
9029 return Op;
9031 ConstantRange CR = getConstantRangeFromMetadata(*Range);
9032 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9033 return Op;
9035 APInt Lo = CR.getUnsignedMin();
9036 if (!Lo.isMinValue())
9037 return Op;
9039 APInt Hi = CR.getUnsignedMax();
9040 unsigned Bits = std::max(Hi.getActiveBits(),
9041 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9043 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9045 SDLoc SL = getCurSDLoc();
9047 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9048 DAG.getValueType(SmallVT));
9049 unsigned NumVals = Op.getNode()->getNumValues();
9050 if (NumVals == 1)
9051 return ZExt;
9053 SmallVector<SDValue, 4> Ops;
9055 Ops.push_back(ZExt);
9056 for (unsigned I = 1; I != NumVals; ++I)
9057 Ops.push_back(Op.getValue(I));
9059 return DAG.getMergeValues(Ops, SL);
9062 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9063 /// the call being lowered.
9065 /// This is a helper for lowering intrinsics that follow a target calling
9066 /// convention or require stack pointer adjustment. Only a subset of the
9067 /// intrinsic's operands need to participate in the calling convention.
9068 void SelectionDAGBuilder::populateCallLoweringInfo(
9069 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9070 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9071 bool IsPatchPoint) {
9072 TargetLowering::ArgListTy Args;
9073 Args.reserve(NumArgs);
9075 // Populate the argument list.
9076 // Attributes for args start at offset 1, after the return attribute.
9077 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9078 ArgI != ArgE; ++ArgI) {
9079 const Value *V = Call->getOperand(ArgI);
9081 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9083 TargetLowering::ArgListEntry Entry;
9084 Entry.Node = getValue(V);
9085 Entry.Ty = V->getType();
9086 Entry.setAttributes(Call, ArgI);
9087 Args.push_back(Entry);
9090 CLI.setDebugLoc(getCurSDLoc())
9091 .setChain(getRoot())
9092 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9093 .setDiscardResult(Call->use_empty())
9094 .setIsPatchPoint(IsPatchPoint)
9095 .setIsPreallocated(
9096 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9099 /// Add a stack map intrinsic call's live variable operands to a stackmap
9100 /// or patchpoint target node's operand list.
9102 /// Constants are converted to TargetConstants purely as an optimization to
9103 /// avoid constant materialization and register allocation.
9105 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9106 /// generate addess computation nodes, and so FinalizeISel can convert the
9107 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9108 /// address materialization and register allocation, but may also be required
9109 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9110 /// alloca in the entry block, then the runtime may assume that the alloca's
9111 /// StackMap location can be read immediately after compilation and that the
9112 /// location is valid at any point during execution (this is similar to the
9113 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9114 /// only available in a register, then the runtime would need to trap when
9115 /// execution reaches the StackMap in order to read the alloca's location.
9116 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9117 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9118 SelectionDAGBuilder &Builder) {
9119 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) {
9120 SDValue OpVal = Builder.getValue(Call.getArgOperand(i));
9121 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
9122 Ops.push_back(
9123 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
9124 Ops.push_back(
9125 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
9126 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
9127 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
9128 Ops.push_back(Builder.DAG.getTargetFrameIndex(
9129 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
9130 } else
9131 Ops.push_back(OpVal);
9135 /// Lower llvm.experimental.stackmap directly to its target opcode.
9136 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9137 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
9138 // [live variables...])
9140 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9142 SDValue Chain, InFlag, Callee, NullPtr;
9143 SmallVector<SDValue, 32> Ops;
9145 SDLoc DL = getCurSDLoc();
9146 Callee = getValue(CI.getCalledOperand());
9147 NullPtr = DAG.getIntPtrConstant(0, DL, true);
9149 // The stackmap intrinsic only records the live variables (the arguments
9150 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9151 // intrinsic, this won't be lowered to a function call. This means we don't
9152 // have to worry about calling conventions and target specific lowering code.
9153 // Instead we perform the call lowering right here.
9155 // chain, flag = CALLSEQ_START(chain, 0, 0)
9156 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9157 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9159 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9160 InFlag = Chain.getValue(1);
9162 // Add the <id> and <numBytes> constants.
9163 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
9164 Ops.push_back(DAG.getTargetConstant(
9165 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
9166 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
9167 Ops.push_back(DAG.getTargetConstant(
9168 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
9169 MVT::i32));
9171 // Push live variables for the stack map.
9172 addStackMapLiveVars(CI, 2, DL, Ops, *this);
9174 // We are not pushing any register mask info here on the operands list,
9175 // because the stackmap doesn't clobber anything.
9177 // Push the chain and the glue flag.
9178 Ops.push_back(Chain);
9179 Ops.push_back(InFlag);
9181 // Create the STACKMAP node.
9182 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9183 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
9184 Chain = SDValue(SM, 0);
9185 InFlag = Chain.getValue(1);
9187 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
9189 // Stackmaps don't generate values, so nothing goes into the NodeMap.
9191 // Set the root to the target-lowered call chain.
9192 DAG.setRoot(Chain);
9194 // Inform the Frame Information that we have a stackmap in this function.
9195 FuncInfo.MF->getFrameInfo().setHasStackMap();
9198 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9199 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9200 const BasicBlock *EHPadBB) {
9201 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9202 // i32 <numBytes>,
9203 // i8* <target>,
9204 // i32 <numArgs>,
9205 // [Args...],
9206 // [live variables...])
9208 CallingConv::ID CC = CB.getCallingConv();
9209 bool IsAnyRegCC = CC == CallingConv::AnyReg;
9210 bool HasDef = !CB.getType()->isVoidTy();
9211 SDLoc dl = getCurSDLoc();
9212 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9214 // Handle immediate and symbolic callees.
9215 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9216 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9217 /*isTarget=*/true);
9218 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9219 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9220 SDLoc(SymbolicCallee),
9221 SymbolicCallee->getValueType(0));
9223 // Get the real number of arguments participating in the call <numArgs>
9224 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9225 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9227 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9228 // Intrinsics include all meta-operands up to but not including CC.
9229 unsigned NumMetaOpers = PatchPointOpers::CCPos;
9230 assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9231 "Not enough arguments provided to the patchpoint intrinsic");
9233 // For AnyRegCC the arguments are lowered later on manually.
9234 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9235 Type *ReturnTy =
9236 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9238 TargetLowering::CallLoweringInfo CLI(DAG);
9239 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9240 ReturnTy, true);
9241 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9243 SDNode *CallEnd = Result.second.getNode();
9244 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9245 CallEnd = CallEnd->getOperand(0).getNode();
9247 /// Get a call instruction from the call sequence chain.
9248 /// Tail calls are not allowed.
9249 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9250 "Expected a callseq node.");
9251 SDNode *Call = CallEnd->getOperand(0).getNode();
9252 bool HasGlue = Call->getGluedNode();
9254 // Replace the target specific call node with the patchable intrinsic.
9255 SmallVector<SDValue, 8> Ops;
9257 // Add the <id> and <numBytes> constants.
9258 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9259 Ops.push_back(DAG.getTargetConstant(
9260 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9261 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9262 Ops.push_back(DAG.getTargetConstant(
9263 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9264 MVT::i32));
9266 // Add the callee.
9267 Ops.push_back(Callee);
9269 // Adjust <numArgs> to account for any arguments that have been passed on the
9270 // stack instead.
9271 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9272 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9273 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9274 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9276 // Add the calling convention
9277 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9279 // Add the arguments we omitted previously. The register allocator should
9280 // place these in any free register.
9281 if (IsAnyRegCC)
9282 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9283 Ops.push_back(getValue(CB.getArgOperand(i)));
9285 // Push the arguments from the call instruction up to the register mask.
9286 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9287 Ops.append(Call->op_begin() + 2, e);
9289 // Push live variables for the stack map.
9290 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9292 // Push the register mask info.
9293 if (HasGlue)
9294 Ops.push_back(*(Call->op_end()-2));
9295 else
9296 Ops.push_back(*(Call->op_end()-1));
9298 // Push the chain (this is originally the first operand of the call, but
9299 // becomes now the last or second to last operand).
9300 Ops.push_back(*(Call->op_begin()));
9302 // Push the glue flag (last operand).
9303 if (HasGlue)
9304 Ops.push_back(*(Call->op_end()-1));
9306 SDVTList NodeTys;
9307 if (IsAnyRegCC && HasDef) {
9308 // Create the return types based on the intrinsic definition
9309 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9310 SmallVector<EVT, 3> ValueVTs;
9311 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9312 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9314 // There is always a chain and a glue type at the end
9315 ValueVTs.push_back(MVT::Other);
9316 ValueVTs.push_back(MVT::Glue);
9317 NodeTys = DAG.getVTList(ValueVTs);
9318 } else
9319 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9321 // Replace the target specific call node with a PATCHPOINT node.
9322 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
9323 dl, NodeTys, Ops);
9325 // Update the NodeMap.
9326 if (HasDef) {
9327 if (IsAnyRegCC)
9328 setValue(&CB, SDValue(MN, 0));
9329 else
9330 setValue(&CB, Result.first);
9333 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9334 // call sequence. Furthermore the location of the chain and glue can change
9335 // when the AnyReg calling convention is used and the intrinsic returns a
9336 // value.
9337 if (IsAnyRegCC && HasDef) {
9338 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9339 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
9340 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9341 } else
9342 DAG.ReplaceAllUsesWith(Call, MN);
9343 DAG.DeleteNode(Call);
9345 // Inform the Frame Information that we have a patchpoint in this function.
9346 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9349 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9350 unsigned Intrinsic) {
9351 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9352 SDValue Op1 = getValue(I.getArgOperand(0));
9353 SDValue Op2;
9354 if (I.getNumArgOperands() > 1)
9355 Op2 = getValue(I.getArgOperand(1));
9356 SDLoc dl = getCurSDLoc();
9357 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9358 SDValue Res;
9359 SDNodeFlags SDFlags;
9360 if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9361 SDFlags.copyFMF(*FPMO);
9363 switch (Intrinsic) {
9364 case Intrinsic::vector_reduce_fadd:
9365 if (SDFlags.hasAllowReassociation())
9366 Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9367 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9368 SDFlags);
9369 else
9370 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9371 break;
9372 case Intrinsic::vector_reduce_fmul:
9373 if (SDFlags.hasAllowReassociation())
9374 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9375 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9376 SDFlags);
9377 else
9378 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9379 break;
9380 case Intrinsic::vector_reduce_add:
9381 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9382 break;
9383 case Intrinsic::vector_reduce_mul:
9384 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9385 break;
9386 case Intrinsic::vector_reduce_and:
9387 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9388 break;
9389 case Intrinsic::vector_reduce_or:
9390 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9391 break;
9392 case Intrinsic::vector_reduce_xor:
9393 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9394 break;
9395 case Intrinsic::vector_reduce_smax:
9396 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9397 break;
9398 case Intrinsic::vector_reduce_smin:
9399 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9400 break;
9401 case Intrinsic::vector_reduce_umax:
9402 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9403 break;
9404 case Intrinsic::vector_reduce_umin:
9405 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9406 break;
9407 case Intrinsic::vector_reduce_fmax:
9408 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9409 break;
9410 case Intrinsic::vector_reduce_fmin:
9411 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9412 break;
9413 default:
9414 llvm_unreachable("Unhandled vector reduce intrinsic");
9416 setValue(&I, Res);
9419 /// Returns an AttributeList representing the attributes applied to the return
9420 /// value of the given call.
9421 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9422 SmallVector<Attribute::AttrKind, 2> Attrs;
9423 if (CLI.RetSExt)
9424 Attrs.push_back(Attribute::SExt);
9425 if (CLI.RetZExt)
9426 Attrs.push_back(Attribute::ZExt);
9427 if (CLI.IsInReg)
9428 Attrs.push_back(Attribute::InReg);
9430 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9431 Attrs);
9434 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9435 /// implementation, which just calls LowerCall.
9436 /// FIXME: When all targets are
9437 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9438 std::pair<SDValue, SDValue>
9439 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9440 // Handle the incoming return values from the call.
9441 CLI.Ins.clear();
9442 Type *OrigRetTy = CLI.RetTy;
9443 SmallVector<EVT, 4> RetTys;
9444 SmallVector<uint64_t, 4> Offsets;
9445 auto &DL = CLI.DAG.getDataLayout();
9446 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9448 if (CLI.IsPostTypeLegalization) {
9449 // If we are lowering a libcall after legalization, split the return type.
9450 SmallVector<EVT, 4> OldRetTys;
9451 SmallVector<uint64_t, 4> OldOffsets;
9452 RetTys.swap(OldRetTys);
9453 Offsets.swap(OldOffsets);
9455 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9456 EVT RetVT = OldRetTys[i];
9457 uint64_t Offset = OldOffsets[i];
9458 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9459 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9460 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9461 RetTys.append(NumRegs, RegisterVT);
9462 for (unsigned j = 0; j != NumRegs; ++j)
9463 Offsets.push_back(Offset + j * RegisterVTByteSZ);
9467 SmallVector<ISD::OutputArg, 4> Outs;
9468 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9470 bool CanLowerReturn =
9471 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9472 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9474 SDValue DemoteStackSlot;
9475 int DemoteStackIdx = -100;
9476 if (!CanLowerReturn) {
9477 // FIXME: equivalent assert?
9478 // assert(!CS.hasInAllocaArgument() &&
9479 // "sret demotion is incompatible with inalloca");
9480 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9481 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9482 MachineFunction &MF = CLI.DAG.getMachineFunction();
9483 DemoteStackIdx =
9484 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9485 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9486 DL.getAllocaAddrSpace());
9488 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9489 ArgListEntry Entry;
9490 Entry.Node = DemoteStackSlot;
9491 Entry.Ty = StackSlotPtrType;
9492 Entry.IsSExt = false;
9493 Entry.IsZExt = false;
9494 Entry.IsInReg = false;
9495 Entry.IsSRet = true;
9496 Entry.IsNest = false;
9497 Entry.IsByVal = false;
9498 Entry.IsByRef = false;
9499 Entry.IsReturned = false;
9500 Entry.IsSwiftSelf = false;
9501 Entry.IsSwiftAsync = false;
9502 Entry.IsSwiftError = false;
9503 Entry.IsCFGuardTarget = false;
9504 Entry.Alignment = Alignment;
9505 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9506 CLI.NumFixedArgs += 1;
9507 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9509 // sret demotion isn't compatible with tail-calls, since the sret argument
9510 // points into the callers stack frame.
9511 CLI.IsTailCall = false;
9512 } else {
9513 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9514 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9515 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9516 ISD::ArgFlagsTy Flags;
9517 if (NeedsRegBlock) {
9518 Flags.setInConsecutiveRegs();
9519 if (I == RetTys.size() - 1)
9520 Flags.setInConsecutiveRegsLast();
9522 EVT VT = RetTys[I];
9523 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9524 CLI.CallConv, VT);
9525 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9526 CLI.CallConv, VT);
9527 for (unsigned i = 0; i != NumRegs; ++i) {
9528 ISD::InputArg MyFlags;
9529 MyFlags.Flags = Flags;
9530 MyFlags.VT = RegisterVT;
9531 MyFlags.ArgVT = VT;
9532 MyFlags.Used = CLI.IsReturnValueUsed;
9533 if (CLI.RetTy->isPointerTy()) {
9534 MyFlags.Flags.setPointer();
9535 MyFlags.Flags.setPointerAddrSpace(
9536 cast<PointerType>(CLI.RetTy)->getAddressSpace());
9538 if (CLI.RetSExt)
9539 MyFlags.Flags.setSExt();
9540 if (CLI.RetZExt)
9541 MyFlags.Flags.setZExt();
9542 if (CLI.IsInReg)
9543 MyFlags.Flags.setInReg();
9544 CLI.Ins.push_back(MyFlags);
9549 // We push in swifterror return as the last element of CLI.Ins.
9550 ArgListTy &Args = CLI.getArgs();
9551 if (supportSwiftError()) {
9552 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9553 if (Args[i].IsSwiftError) {
9554 ISD::InputArg MyFlags;
9555 MyFlags.VT = getPointerTy(DL);
9556 MyFlags.ArgVT = EVT(getPointerTy(DL));
9557 MyFlags.Flags.setSwiftError();
9558 CLI.Ins.push_back(MyFlags);
9563 // Handle all of the outgoing arguments.
9564 CLI.Outs.clear();
9565 CLI.OutVals.clear();
9566 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9567 SmallVector<EVT, 4> ValueVTs;
9568 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9569 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9570 Type *FinalType = Args[i].Ty;
9571 if (Args[i].IsByVal)
9572 FinalType = Args[i].IndirectType;
9573 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9574 FinalType, CLI.CallConv, CLI.IsVarArg, DL);
9575 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9576 ++Value) {
9577 EVT VT = ValueVTs[Value];
9578 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9579 SDValue Op = SDValue(Args[i].Node.getNode(),
9580 Args[i].Node.getResNo() + Value);
9581 ISD::ArgFlagsTy Flags;
9583 // Certain targets (such as MIPS), may have a different ABI alignment
9584 // for a type depending on the context. Give the target a chance to
9585 // specify the alignment it wants.
9586 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9587 Flags.setOrigAlign(OriginalAlignment);
9589 if (Args[i].Ty->isPointerTy()) {
9590 Flags.setPointer();
9591 Flags.setPointerAddrSpace(
9592 cast<PointerType>(Args[i].Ty)->getAddressSpace());
9594 if (Args[i].IsZExt)
9595 Flags.setZExt();
9596 if (Args[i].IsSExt)
9597 Flags.setSExt();
9598 if (Args[i].IsInReg) {
9599 // If we are using vectorcall calling convention, a structure that is
9600 // passed InReg - is surely an HVA
9601 if (CLI.CallConv == CallingConv::X86_VectorCall &&
9602 isa<StructType>(FinalType)) {
9603 // The first value of a structure is marked
9604 if (0 == Value)
9605 Flags.setHvaStart();
9606 Flags.setHva();
9608 // Set InReg Flag
9609 Flags.setInReg();
9611 if (Args[i].IsSRet)
9612 Flags.setSRet();
9613 if (Args[i].IsSwiftSelf)
9614 Flags.setSwiftSelf();
9615 if (Args[i].IsSwiftAsync)
9616 Flags.setSwiftAsync();
9617 if (Args[i].IsSwiftError)
9618 Flags.setSwiftError();
9619 if (Args[i].IsCFGuardTarget)
9620 Flags.setCFGuardTarget();
9621 if (Args[i].IsByVal)
9622 Flags.setByVal();
9623 if (Args[i].IsByRef)
9624 Flags.setByRef();
9625 if (Args[i].IsPreallocated) {
9626 Flags.setPreallocated();
9627 // Set the byval flag for CCAssignFn callbacks that don't know about
9628 // preallocated. This way we can know how many bytes we should've
9629 // allocated and how many bytes a callee cleanup function will pop. If
9630 // we port preallocated to more targets, we'll have to add custom
9631 // preallocated handling in the various CC lowering callbacks.
9632 Flags.setByVal();
9634 if (Args[i].IsInAlloca) {
9635 Flags.setInAlloca();
9636 // Set the byval flag for CCAssignFn callbacks that don't know about
9637 // inalloca. This way we can know how many bytes we should've allocated
9638 // and how many bytes a callee cleanup function will pop. If we port
9639 // inalloca to more targets, we'll have to add custom inalloca handling
9640 // in the various CC lowering callbacks.
9641 Flags.setByVal();
9643 Align MemAlign;
9644 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
9645 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
9646 Flags.setByValSize(FrameSize);
9648 // info is not there but there are cases it cannot get right.
9649 if (auto MA = Args[i].Alignment)
9650 MemAlign = *MA;
9651 else
9652 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
9653 } else if (auto MA = Args[i].Alignment) {
9654 MemAlign = *MA;
9655 } else {
9656 MemAlign = OriginalAlignment;
9658 Flags.setMemAlign(MemAlign);
9659 if (Args[i].IsNest)
9660 Flags.setNest();
9661 if (NeedsRegBlock)
9662 Flags.setInConsecutiveRegs();
9664 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9665 CLI.CallConv, VT);
9666 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9667 CLI.CallConv, VT);
9668 SmallVector<SDValue, 4> Parts(NumParts);
9669 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9671 if (Args[i].IsSExt)
9672 ExtendKind = ISD::SIGN_EXTEND;
9673 else if (Args[i].IsZExt)
9674 ExtendKind = ISD::ZERO_EXTEND;
9676 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9677 // for now.
9678 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9679 CanLowerReturn) {
9680 assert((CLI.RetTy == Args[i].Ty ||
9681 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9682 CLI.RetTy->getPointerAddressSpace() ==
9683 Args[i].Ty->getPointerAddressSpace())) &&
9684 RetTys.size() == NumValues && "unexpected use of 'returned'");
9685 // Before passing 'returned' to the target lowering code, ensure that
9686 // either the register MVT and the actual EVT are the same size or that
9687 // the return value and argument are extended in the same way; in these
9688 // cases it's safe to pass the argument register value unchanged as the
9689 // return register value (although it's at the target's option whether
9690 // to do so)
9691 // TODO: allow code generation to take advantage of partially preserved
9692 // registers rather than clobbering the entire register when the
9693 // parameter extension method is not compatible with the return
9694 // extension method
9695 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9696 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9697 CLI.RetZExt == Args[i].IsZExt))
9698 Flags.setReturned();
9701 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
9702 CLI.CallConv, ExtendKind);
9704 for (unsigned j = 0; j != NumParts; ++j) {
9705 // if it isn't first piece, alignment must be 1
9706 // For scalable vectors the scalable part is currently handled
9707 // by individual targets, so we just use the known minimum size here.
9708 ISD::OutputArg MyFlags(
9709 Flags, Parts[j].getValueType().getSimpleVT(), VT,
9710 i < CLI.NumFixedArgs, i,
9711 j * Parts[j].getValueType().getStoreSize().getKnownMinSize());
9712 if (NumParts > 1 && j == 0)
9713 MyFlags.Flags.setSplit();
9714 else if (j != 0) {
9715 MyFlags.Flags.setOrigAlign(Align(1));
9716 if (j == NumParts - 1)
9717 MyFlags.Flags.setSplitEnd();
9720 CLI.Outs.push_back(MyFlags);
9721 CLI.OutVals.push_back(Parts[j]);
9724 if (NeedsRegBlock && Value == NumValues - 1)
9725 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9729 SmallVector<SDValue, 4> InVals;
9730 CLI.Chain = LowerCall(CLI, InVals);
9732 // Update CLI.InVals to use outside of this function.
9733 CLI.InVals = InVals;
9735 // Verify that the target's LowerCall behaved as expected.
9736 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9737 "LowerCall didn't return a valid chain!");
9738 assert((!CLI.IsTailCall || InVals.empty()) &&
9739 "LowerCall emitted a return value for a tail call!");
9740 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9741 "LowerCall didn't emit the correct number of values!");
9743 // For a tail call, the return value is merely live-out and there aren't
9744 // any nodes in the DAG representing it. Return a special value to
9745 // indicate that a tail call has been emitted and no more Instructions
9746 // should be processed in the current block.
9747 if (CLI.IsTailCall) {
9748 CLI.DAG.setRoot(CLI.Chain);
9749 return std::make_pair(SDValue(), SDValue());
9752 #ifndef NDEBUG
9753 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9754 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9755 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9756 "LowerCall emitted a value with the wrong type!");
9758 #endif
9760 SmallVector<SDValue, 4> ReturnValues;
9761 if (!CanLowerReturn) {
9762 // The instruction result is the result of loading from the
9763 // hidden sret parameter.
9764 SmallVector<EVT, 1> PVTs;
9765 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9767 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9768 assert(PVTs.size() == 1 && "Pointers should fit in one register");
9769 EVT PtrVT = PVTs[0];
9771 unsigned NumValues = RetTys.size();
9772 ReturnValues.resize(NumValues);
9773 SmallVector<SDValue, 4> Chains(NumValues);
9775 // An aggregate return value cannot wrap around the address space, so
9776 // offsets to its parts don't wrap either.
9777 SDNodeFlags Flags;
9778 Flags.setNoUnsignedWrap(true);
9780 MachineFunction &MF = CLI.DAG.getMachineFunction();
9781 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
9782 for (unsigned i = 0; i < NumValues; ++i) {
9783 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9784 CLI.DAG.getConstant(Offsets[i], CLI.DL,
9785 PtrVT), Flags);
9786 SDValue L = CLI.DAG.getLoad(
9787 RetTys[i], CLI.DL, CLI.Chain, Add,
9788 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9789 DemoteStackIdx, Offsets[i]),
9790 HiddenSRetAlign);
9791 ReturnValues[i] = L;
9792 Chains[i] = L.getValue(1);
9795 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9796 } else {
9797 // Collect the legal value parts into potentially illegal values
9798 // that correspond to the original function's return values.
9799 Optional<ISD::NodeType> AssertOp;
9800 if (CLI.RetSExt)
9801 AssertOp = ISD::AssertSext;
9802 else if (CLI.RetZExt)
9803 AssertOp = ISD::AssertZext;
9804 unsigned CurReg = 0;
9805 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9806 EVT VT = RetTys[I];
9807 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9808 CLI.CallConv, VT);
9809 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9810 CLI.CallConv, VT);
9812 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9813 NumRegs, RegisterVT, VT, nullptr,
9814 CLI.CallConv, AssertOp));
9815 CurReg += NumRegs;
9818 // For a function returning void, there is no return value. We can't create
9819 // such a node, so we just return a null return value in that case. In
9820 // that case, nothing will actually look at the value.
9821 if (ReturnValues.empty())
9822 return std::make_pair(SDValue(), CLI.Chain);
9825 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9826 CLI.DAG.getVTList(RetTys), ReturnValues);
9827 return std::make_pair(Res, CLI.Chain);
9830 /// Places new result values for the node in Results (their number
9831 /// and types must exactly match those of the original return values of
9832 /// the node), or leaves Results empty, which indicates that the node is not
9833 /// to be custom lowered after all.
9834 void TargetLowering::LowerOperationWrapper(SDNode *N,
9835 SmallVectorImpl<SDValue> &Results,
9836 SelectionDAG &DAG) const {
9837 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
9839 if (!Res.getNode())
9840 return;
9842 // If the original node has one result, take the return value from
9843 // LowerOperation as is. It might not be result number 0.
9844 if (N->getNumValues() == 1) {
9845 Results.push_back(Res);
9846 return;
9849 // If the original node has multiple results, then the return node should
9850 // have the same number of results.
9851 assert((N->getNumValues() == Res->getNumValues()) &&
9852 "Lowering returned the wrong number of results!");
9854 // Places new result values base on N result number.
9855 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
9856 Results.push_back(Res.getValue(I));
9859 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9860 llvm_unreachable("LowerOperation not implemented for this target!");
9863 void
9864 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9865 SDValue Op = getNonRegisterValue(V);
9866 assert((Op.getOpcode() != ISD::CopyFromReg ||
9867 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9868 "Copy from a reg to the same reg!");
9869 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9871 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9872 // If this is an InlineAsm we have to match the registers required, not the
9873 // notional registers required by the type.
9875 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9876 None); // This is not an ABI copy.
9877 SDValue Chain = DAG.getEntryNode();
9879 ISD::NodeType ExtendType = ISD::ANY_EXTEND;
9880 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
9881 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
9882 ExtendType = PreferredExtendIt->second;
9883 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9884 PendingExports.push_back(Chain);
9887 #include "llvm/CodeGen/SelectionDAGISel.h"
9889 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9890 /// entry block, return true. This includes arguments used by switches, since
9891 /// the switch may expand into multiple basic blocks.
9892 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9893 // With FastISel active, we may be splitting blocks, so force creation
9894 // of virtual registers for all non-dead arguments.
9895 if (FastISel)
9896 return A->use_empty();
9898 const BasicBlock &Entry = A->getParent()->front();
9899 for (const User *U : A->users())
9900 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9901 return false; // Use not in entry block.
9903 return true;
9906 using ArgCopyElisionMapTy =
9907 DenseMap<const Argument *,
9908 std::pair<const AllocaInst *, const StoreInst *>>;
9910 /// Scan the entry block of the function in FuncInfo for arguments that look
9911 /// like copies into a local alloca. Record any copied arguments in
9912 /// ArgCopyElisionCandidates.
9913 static void
9914 findArgumentCopyElisionCandidates(const DataLayout &DL,
9915 FunctionLoweringInfo *FuncInfo,
9916 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9917 // Record the state of every static alloca used in the entry block. Argument
9918 // allocas are all used in the entry block, so we need approximately as many
9919 // entries as we have arguments.
9920 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9921 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9922 unsigned NumArgs = FuncInfo->Fn->arg_size();
9923 StaticAllocas.reserve(NumArgs * 2);
9925 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9926 if (!V)
9927 return nullptr;
9928 V = V->stripPointerCasts();
9929 const auto *AI = dyn_cast<AllocaInst>(V);
9930 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9931 return nullptr;
9932 auto Iter = StaticAllocas.insert({AI, Unknown});
9933 return &Iter.first->second;
9936 // Look for stores of arguments to static allocas. Look through bitcasts and
9937 // GEPs to handle type coercions, as long as the alloca is fully initialized
9938 // by the store. Any non-store use of an alloca escapes it and any subsequent
9939 // unanalyzed store might write it.
9940 // FIXME: Handle structs initialized with multiple stores.
9941 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9942 // Look for stores, and handle non-store uses conservatively.
9943 const auto *SI = dyn_cast<StoreInst>(&I);
9944 if (!SI) {
9945 // We will look through cast uses, so ignore them completely.
9946 if (I.isCast())
9947 continue;
9948 // Ignore debug info and pseudo op intrinsics, they don't escape or store
9949 // to allocas.
9950 if (I.isDebugOrPseudoInst())
9951 continue;
9952 // This is an unknown instruction. Assume it escapes or writes to all
9953 // static alloca operands.
9954 for (const Use &U : I.operands()) {
9955 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9956 *Info = StaticAllocaInfo::Clobbered;
9958 continue;
9961 // If the stored value is a static alloca, mark it as escaped.
9962 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9963 *Info = StaticAllocaInfo::Clobbered;
9965 // Check if the destination is a static alloca.
9966 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9967 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9968 if (!Info)
9969 continue;
9970 const AllocaInst *AI = cast<AllocaInst>(Dst);
9972 // Skip allocas that have been initialized or clobbered.
9973 if (*Info != StaticAllocaInfo::Unknown)
9974 continue;
9976 // Check if the stored value is an argument, and that this store fully
9977 // initializes the alloca.
9978 // If the argument type has padding bits we can't directly forward a pointer
9979 // as the upper bits may contain garbage.
9980 // Don't elide copies from the same argument twice.
9981 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9982 const auto *Arg = dyn_cast<Argument>(Val);
9983 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
9984 Arg->getType()->isEmptyTy() ||
9985 DL.getTypeStoreSize(Arg->getType()) !=
9986 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9987 !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
9988 ArgCopyElisionCandidates.count(Arg)) {
9989 *Info = StaticAllocaInfo::Clobbered;
9990 continue;
9993 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9994 << '\n');
9996 // Mark this alloca and store for argument copy elision.
9997 *Info = StaticAllocaInfo::Elidable;
9998 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10000 // Stop scanning if we've seen all arguments. This will happen early in -O0
10001 // builds, which is useful, because -O0 builds have large entry blocks and
10002 // many allocas.
10003 if (ArgCopyElisionCandidates.size() == NumArgs)
10004 break;
10008 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10009 /// ArgVal is a load from a suitable fixed stack object.
10010 static void tryToElideArgumentCopy(
10011 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10012 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10013 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10014 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10015 SDValue ArgVal, bool &ArgHasUses) {
10016 // Check if this is a load from a fixed stack object.
10017 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10018 if (!LNode)
10019 return;
10020 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10021 if (!FINode)
10022 return;
10024 // Check that the fixed stack object is the right size and alignment.
10025 // Look at the alignment that the user wrote on the alloca instead of looking
10026 // at the stack object.
10027 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10028 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10029 const AllocaInst *AI = ArgCopyIter->second.first;
10030 int FixedIndex = FINode->getIndex();
10031 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10032 int OldIndex = AllocaIndex;
10033 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10034 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10035 LLVM_DEBUG(
10036 dbgs() << " argument copy elision failed due to bad fixed stack "
10037 "object size\n");
10038 return;
10040 Align RequiredAlignment = AI->getAlign();
10041 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10042 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
10043 "greater than stack argument alignment ("
10044 << DebugStr(RequiredAlignment) << " vs "
10045 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10046 return;
10049 // Perform the elision. Delete the old stack object and replace its only use
10050 // in the variable info map. Mark the stack object as mutable.
10051 LLVM_DEBUG({
10052 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10053 << " Replacing frame index " << OldIndex << " with " << FixedIndex
10054 << '\n';
10056 MFI.RemoveStackObject(OldIndex);
10057 MFI.setIsImmutableObjectIndex(FixedIndex, false);
10058 AllocaIndex = FixedIndex;
10059 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10060 Chains.push_back(ArgVal.getValue(1));
10062 // Avoid emitting code for the store implementing the copy.
10063 const StoreInst *SI = ArgCopyIter->second.second;
10064 ElidedArgCopyInstrs.insert(SI);
10066 // Check for uses of the argument again so that we can avoid exporting ArgVal
10067 // if it is't used by anything other than the store.
10068 for (const Value *U : Arg.users()) {
10069 if (U != SI) {
10070 ArgHasUses = true;
10071 break;
10076 void SelectionDAGISel::LowerArguments(const Function &F) {
10077 SelectionDAG &DAG = SDB->DAG;
10078 SDLoc dl = SDB->getCurSDLoc();
10079 const DataLayout &DL = DAG.getDataLayout();
10080 SmallVector<ISD::InputArg, 16> Ins;
10082 // In Naked functions we aren't going to save any registers.
10083 if (F.hasFnAttribute(Attribute::Naked))
10084 return;
10086 if (!FuncInfo->CanLowerReturn) {
10087 // Put in an sret pointer parameter before all the other parameters.
10088 SmallVector<EVT, 1> ValueVTs;
10089 ComputeValueVTs(*TLI, DAG.getDataLayout(),
10090 F.getReturnType()->getPointerTo(
10091 DAG.getDataLayout().getAllocaAddrSpace()),
10092 ValueVTs);
10094 // NOTE: Assuming that a pointer will never break down to more than one VT
10095 // or one register.
10096 ISD::ArgFlagsTy Flags;
10097 Flags.setSRet();
10098 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10099 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10100 ISD::InputArg::NoArgIndex, 0);
10101 Ins.push_back(RetArg);
10104 // Look for stores of arguments to static allocas. Mark such arguments with a
10105 // flag to ask the target to give us the memory location of that argument if
10106 // available.
10107 ArgCopyElisionMapTy ArgCopyElisionCandidates;
10108 findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10109 ArgCopyElisionCandidates);
10111 // Set up the incoming argument description vector.
10112 for (const Argument &Arg : F.args()) {
10113 unsigned ArgNo = Arg.getArgNo();
10114 SmallVector<EVT, 4> ValueVTs;
10115 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10116 bool isArgValueUsed = !Arg.use_empty();
10117 unsigned PartBase = 0;
10118 Type *FinalType = Arg.getType();
10119 if (Arg.hasAttribute(Attribute::ByVal))
10120 FinalType = Arg.getParamByValType();
10121 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10122 FinalType, F.getCallingConv(), F.isVarArg(), DL);
10123 for (unsigned Value = 0, NumValues = ValueVTs.size();
10124 Value != NumValues; ++Value) {
10125 EVT VT = ValueVTs[Value];
10126 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10127 ISD::ArgFlagsTy Flags;
10130 if (Arg.getType()->isPointerTy()) {
10131 Flags.setPointer();
10132 Flags.setPointerAddrSpace(
10133 cast<PointerType>(Arg.getType())->getAddressSpace());
10135 if (Arg.hasAttribute(Attribute::ZExt))
10136 Flags.setZExt();
10137 if (Arg.hasAttribute(Attribute::SExt))
10138 Flags.setSExt();
10139 if (Arg.hasAttribute(Attribute::InReg)) {
10140 // If we are using vectorcall calling convention, a structure that is
10141 // passed InReg - is surely an HVA
10142 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10143 isa<StructType>(Arg.getType())) {
10144 // The first value of a structure is marked
10145 if (0 == Value)
10146 Flags.setHvaStart();
10147 Flags.setHva();
10149 // Set InReg Flag
10150 Flags.setInReg();
10152 if (Arg.hasAttribute(Attribute::StructRet))
10153 Flags.setSRet();
10154 if (Arg.hasAttribute(Attribute::SwiftSelf))
10155 Flags.setSwiftSelf();
10156 if (Arg.hasAttribute(Attribute::SwiftAsync))
10157 Flags.setSwiftAsync();
10158 if (Arg.hasAttribute(Attribute::SwiftError))
10159 Flags.setSwiftError();
10160 if (Arg.hasAttribute(Attribute::ByVal))
10161 Flags.setByVal();
10162 if (Arg.hasAttribute(Attribute::ByRef))
10163 Flags.setByRef();
10164 if (Arg.hasAttribute(Attribute::InAlloca)) {
10165 Flags.setInAlloca();
10166 // Set the byval flag for CCAssignFn callbacks that don't know about
10167 // inalloca. This way we can know how many bytes we should've allocated
10168 // and how many bytes a callee cleanup function will pop. If we port
10169 // inalloca to more targets, we'll have to add custom inalloca handling
10170 // in the various CC lowering callbacks.
10171 Flags.setByVal();
10173 if (Arg.hasAttribute(Attribute::Preallocated)) {
10174 Flags.setPreallocated();
10175 // Set the byval flag for CCAssignFn callbacks that don't know about
10176 // preallocated. This way we can know how many bytes we should've
10177 // allocated and how many bytes a callee cleanup function will pop. If
10178 // we port preallocated to more targets, we'll have to add custom
10179 // preallocated handling in the various CC lowering callbacks.
10180 Flags.setByVal();
10183 // Certain targets (such as MIPS), may have a different ABI alignment
10184 // for a type depending on the context. Give the target a chance to
10185 // specify the alignment it wants.
10186 const Align OriginalAlignment(
10187 TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10188 Flags.setOrigAlign(OriginalAlignment);
10190 Align MemAlign;
10191 Type *ArgMemTy = nullptr;
10192 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10193 Flags.isByRef()) {
10194 if (!ArgMemTy)
10195 ArgMemTy = Arg.getPointeeInMemoryValueType();
10197 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10199 // For in-memory arguments, size and alignment should be passed from FE.
10200 // BE will guess if this info is not there but there are cases it cannot
10201 // get right.
10202 if (auto ParamAlign = Arg.getParamStackAlign())
10203 MemAlign = *ParamAlign;
10204 else if ((ParamAlign = Arg.getParamAlign()))
10205 MemAlign = *ParamAlign;
10206 else
10207 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10208 if (Flags.isByRef())
10209 Flags.setByRefSize(MemSize);
10210 else
10211 Flags.setByValSize(MemSize);
10212 } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10213 MemAlign = *ParamAlign;
10214 } else {
10215 MemAlign = OriginalAlignment;
10217 Flags.setMemAlign(MemAlign);
10219 if (Arg.hasAttribute(Attribute::Nest))
10220 Flags.setNest();
10221 if (NeedsRegBlock)
10222 Flags.setInConsecutiveRegs();
10223 if (ArgCopyElisionCandidates.count(&Arg))
10224 Flags.setCopyElisionCandidate();
10225 if (Arg.hasAttribute(Attribute::Returned))
10226 Flags.setReturned();
10228 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10229 *CurDAG->getContext(), F.getCallingConv(), VT);
10230 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10231 *CurDAG->getContext(), F.getCallingConv(), VT);
10232 for (unsigned i = 0; i != NumRegs; ++i) {
10233 // For scalable vectors, use the minimum size; individual targets
10234 // are responsible for handling scalable vector arguments and
10235 // return values.
10236 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
10237 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
10238 if (NumRegs > 1 && i == 0)
10239 MyFlags.Flags.setSplit();
10240 // if it isn't first piece, alignment must be 1
10241 else if (i > 0) {
10242 MyFlags.Flags.setOrigAlign(Align(1));
10243 if (i == NumRegs - 1)
10244 MyFlags.Flags.setSplitEnd();
10246 Ins.push_back(MyFlags);
10248 if (NeedsRegBlock && Value == NumValues - 1)
10249 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10250 PartBase += VT.getStoreSize().getKnownMinSize();
10254 // Call the target to set up the argument values.
10255 SmallVector<SDValue, 8> InVals;
10256 SDValue NewRoot = TLI->LowerFormalArguments(
10257 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10259 // Verify that the target's LowerFormalArguments behaved as expected.
10260 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10261 "LowerFormalArguments didn't return a valid chain!");
10262 assert(InVals.size() == Ins.size() &&
10263 "LowerFormalArguments didn't emit the correct number of values!");
10264 LLVM_DEBUG({
10265 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10266 assert(InVals[i].getNode() &&
10267 "LowerFormalArguments emitted a null value!");
10268 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10269 "LowerFormalArguments emitted a value with the wrong type!");
10273 // Update the DAG with the new chain value resulting from argument lowering.
10274 DAG.setRoot(NewRoot);
10276 // Set up the argument values.
10277 unsigned i = 0;
10278 if (!FuncInfo->CanLowerReturn) {
10279 // Create a virtual register for the sret pointer, and put in a copy
10280 // from the sret argument into it.
10281 SmallVector<EVT, 1> ValueVTs;
10282 ComputeValueVTs(*TLI, DAG.getDataLayout(),
10283 F.getReturnType()->getPointerTo(
10284 DAG.getDataLayout().getAllocaAddrSpace()),
10285 ValueVTs);
10286 MVT VT = ValueVTs[0].getSimpleVT();
10287 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10288 Optional<ISD::NodeType> AssertOp = None;
10289 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10290 nullptr, F.getCallingConv(), AssertOp);
10292 MachineFunction& MF = SDB->DAG.getMachineFunction();
10293 MachineRegisterInfo& RegInfo = MF.getRegInfo();
10294 Register SRetReg =
10295 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10296 FuncInfo->DemoteRegister = SRetReg;
10297 NewRoot =
10298 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10299 DAG.setRoot(NewRoot);
10301 // i indexes lowered arguments. Bump it past the hidden sret argument.
10302 ++i;
10305 SmallVector<SDValue, 4> Chains;
10306 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10307 for (const Argument &Arg : F.args()) {
10308 SmallVector<SDValue, 4> ArgValues;
10309 SmallVector<EVT, 4> ValueVTs;
10310 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10311 unsigned NumValues = ValueVTs.size();
10312 if (NumValues == 0)
10313 continue;
10315 bool ArgHasUses = !Arg.use_empty();
10317 // Elide the copying store if the target loaded this argument from a
10318 // suitable fixed stack object.
10319 if (Ins[i].Flags.isCopyElisionCandidate()) {
10320 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10321 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10322 InVals[i], ArgHasUses);
10325 // If this argument is unused then remember its value. It is used to generate
10326 // debugging information.
10327 bool isSwiftErrorArg =
10328 TLI->supportSwiftError() &&
10329 Arg.hasAttribute(Attribute::SwiftError);
10330 if (!ArgHasUses && !isSwiftErrorArg) {
10331 SDB->setUnusedArgValue(&Arg, InVals[i]);
10333 // Also remember any frame index for use in FastISel.
10334 if (FrameIndexSDNode *FI =
10335 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10336 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10339 for (unsigned Val = 0; Val != NumValues; ++Val) {
10340 EVT VT = ValueVTs[Val];
10341 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10342 F.getCallingConv(), VT);
10343 unsigned NumParts = TLI->getNumRegistersForCallingConv(
10344 *CurDAG->getContext(), F.getCallingConv(), VT);
10346 // Even an apparent 'unused' swifterror argument needs to be returned. So
10347 // we do generate a copy for it that can be used on return from the
10348 // function.
10349 if (ArgHasUses || isSwiftErrorArg) {
10350 Optional<ISD::NodeType> AssertOp;
10351 if (Arg.hasAttribute(Attribute::SExt))
10352 AssertOp = ISD::AssertSext;
10353 else if (Arg.hasAttribute(Attribute::ZExt))
10354 AssertOp = ISD::AssertZext;
10356 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10357 PartVT, VT, nullptr,
10358 F.getCallingConv(), AssertOp));
10361 i += NumParts;
10364 // We don't need to do anything else for unused arguments.
10365 if (ArgValues.empty())
10366 continue;
10368 // Note down frame index.
10369 if (FrameIndexSDNode *FI =
10370 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10371 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10373 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
10374 SDB->getCurSDLoc());
10376 SDB->setValue(&Arg, Res);
10377 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10378 // We want to associate the argument with the frame index, among
10379 // involved operands, that correspond to the lowest address. The
10380 // getCopyFromParts function, called earlier, is swapping the order of
10381 // the operands to BUILD_PAIR depending on endianness. The result of
10382 // that swapping is that the least significant bits of the argument will
10383 // be in the first operand of the BUILD_PAIR node, and the most
10384 // significant bits will be in the second operand.
10385 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10386 if (LoadSDNode *LNode =
10387 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10388 if (FrameIndexSDNode *FI =
10389 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10390 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10393 // Analyses past this point are naive and don't expect an assertion.
10394 if (Res.getOpcode() == ISD::AssertZext)
10395 Res = Res.getOperand(0);
10397 // Update the SwiftErrorVRegDefMap.
10398 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10399 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10400 if (Register::isVirtualRegister(Reg))
10401 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10402 Reg);
10405 // If this argument is live outside of the entry block, insert a copy from
10406 // wherever we got it to the vreg that other BB's will reference it as.
10407 if (Res.getOpcode() == ISD::CopyFromReg) {
10408 // If we can, though, try to skip creating an unnecessary vreg.
10409 // FIXME: This isn't very clean... it would be nice to make this more
10410 // general.
10411 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10412 if (Register::isVirtualRegister(Reg)) {
10413 FuncInfo->ValueMap[&Arg] = Reg;
10414 continue;
10417 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10418 FuncInfo->InitializeRegForValue(&Arg);
10419 SDB->CopyToExportRegsIfNeeded(&Arg);
10423 if (!Chains.empty()) {
10424 Chains.push_back(NewRoot);
10425 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10428 DAG.setRoot(NewRoot);
10430 assert(i == InVals.size() && "Argument register count mismatch!");
10432 // If any argument copy elisions occurred and we have debug info, update the
10433 // stale frame indices used in the dbg.declare variable info table.
10434 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10435 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10436 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10437 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10438 if (I != ArgCopyElisionFrameIndexMap.end())
10439 VI.Slot = I->second;
10443 // Finally, if the target has anything special to do, allow it to do so.
10444 emitFunctionEntryCode();
10447 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
10448 /// ensure constants are generated when needed. Remember the virtual registers
10449 /// that need to be added to the Machine PHI nodes as input. We cannot just
10450 /// directly add them, because expansion might result in multiple MBB's for one
10451 /// BB. As such, the start of the BB might correspond to a different MBB than
10452 /// the end.
10453 void
10454 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10455 const Instruction *TI = LLVMBB->getTerminator();
10457 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10459 // Check PHI nodes in successors that expect a value to be available from this
10460 // block.
10461 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
10462 const BasicBlock *SuccBB = TI->getSuccessor(succ);
10463 if (!isa<PHINode>(SuccBB->begin())) continue;
10464 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10466 // If this terminator has multiple identical successors (common for
10467 // switches), only handle each succ once.
10468 if (!SuccsHandled.insert(SuccMBB).second)
10469 continue;
10471 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10473 // At this point we know that there is a 1-1 correspondence between LLVM PHI
10474 // nodes and Machine PHI nodes, but the incoming operands have not been
10475 // emitted yet.
10476 for (const PHINode &PN : SuccBB->phis()) {
10477 // Ignore dead phi's.
10478 if (PN.use_empty())
10479 continue;
10481 // Skip empty types
10482 if (PN.getType()->isEmptyTy())
10483 continue;
10485 unsigned Reg;
10486 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10488 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
10489 unsigned &RegOut = ConstantsOut[C];
10490 if (RegOut == 0) {
10491 RegOut = FuncInfo.CreateRegs(C);
10492 CopyValueToVirtualRegister(C, RegOut);
10494 Reg = RegOut;
10495 } else {
10496 DenseMap<const Value *, Register>::iterator I =
10497 FuncInfo.ValueMap.find(PHIOp);
10498 if (I != FuncInfo.ValueMap.end())
10499 Reg = I->second;
10500 else {
10501 assert(isa<AllocaInst>(PHIOp) &&
10502 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10503 "Didn't codegen value into a register!??");
10504 Reg = FuncInfo.CreateRegs(PHIOp);
10505 CopyValueToVirtualRegister(PHIOp, Reg);
10509 // Remember that this register needs to added to the machine PHI node as
10510 // the input for this MBB.
10511 SmallVector<EVT, 4> ValueVTs;
10512 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10513 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10514 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
10515 EVT VT = ValueVTs[vti];
10516 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10517 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
10518 FuncInfo.PHINodesToUpdate.push_back(
10519 std::make_pair(&*MBBI++, Reg + i));
10520 Reg += NumRegisters;
10525 ConstantsOut.clear();
10528 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
10529 /// is 0.
10530 MachineBasicBlock *
10531 SelectionDAGBuilder::StackProtectorDescriptor::
10532 AddSuccessorMBB(const BasicBlock *BB,
10533 MachineBasicBlock *ParentMBB,
10534 bool IsLikely,
10535 MachineBasicBlock *SuccMBB) {
10536 // If SuccBB has not been created yet, create it.
10537 if (!SuccMBB) {
10538 MachineFunction *MF = ParentMBB->getParent();
10539 MachineFunction::iterator BBI(ParentMBB);
10540 SuccMBB = MF->CreateMachineBasicBlock(BB);
10541 MF->insert(++BBI, SuccMBB);
10543 // Add it as a successor of ParentMBB.
10544 ParentMBB->addSuccessor(
10545 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
10546 return SuccMBB;
10549 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10550 MachineFunction::iterator I(MBB);
10551 if (++I == FuncInfo.MF->end())
10552 return nullptr;
10553 return &*I;
10556 /// During lowering new call nodes can be created (such as memset, etc.).
10557 /// Those will become new roots of the current DAG, but complications arise
10558 /// when they are tail calls. In such cases, the call lowering will update
10559 /// the root, but the builder still needs to know that a tail call has been
10560 /// lowered in order to avoid generating an additional return.
10561 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10562 // If the node is null, we do have a tail call.
10563 if (MaybeTC.getNode() != nullptr)
10564 DAG.setRoot(MaybeTC);
10565 else
10566 HasTailCall = true;
10569 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10570 MachineBasicBlock *SwitchMBB,
10571 MachineBasicBlock *DefaultMBB) {
10572 MachineFunction *CurMF = FuncInfo.MF;
10573 MachineBasicBlock *NextMBB = nullptr;
10574 MachineFunction::iterator BBI(W.MBB);
10575 if (++BBI != FuncInfo.MF->end())
10576 NextMBB = &*BBI;
10578 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10580 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10582 if (Size == 2 && W.MBB == SwitchMBB) {
10583 // If any two of the cases has the same destination, and if one value
10584 // is the same as the other, but has one bit unset that the other has set,
10585 // use bit manipulation to do two compares at once. For example:
10586 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10587 // TODO: This could be extended to merge any 2 cases in switches with 3
10588 // cases.
10589 // TODO: Handle cases where W.CaseBB != SwitchBB.
10590 CaseCluster &Small = *W.FirstCluster;
10591 CaseCluster &Big = *W.LastCluster;
10593 if (Small.Low == Small.High && Big.Low == Big.High &&
10594 Small.MBB == Big.MBB) {
10595 const APInt &SmallValue = Small.Low->getValue();
10596 const APInt &BigValue = Big.Low->getValue();
10598 // Check that there is only one bit different.
10599 APInt CommonBit = BigValue ^ SmallValue;
10600 if (CommonBit.isPowerOf2()) {
10601 SDValue CondLHS = getValue(Cond);
10602 EVT VT = CondLHS.getValueType();
10603 SDLoc DL = getCurSDLoc();
10605 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10606 DAG.getConstant(CommonBit, DL, VT));
10607 SDValue Cond = DAG.getSetCC(
10608 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10609 ISD::SETEQ);
10611 // Update successor info.
10612 // Both Small and Big will jump to Small.BB, so we sum up the
10613 // probabilities.
10614 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10615 if (BPI)
10616 addSuccessorWithProb(
10617 SwitchMBB, DefaultMBB,
10618 // The default destination is the first successor in IR.
10619 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10620 else
10621 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10623 // Insert the true branch.
10624 SDValue BrCond =
10625 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10626 DAG.getBasicBlock(Small.MBB));
10627 // Insert the false branch.
10628 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10629 DAG.getBasicBlock(DefaultMBB));
10631 DAG.setRoot(BrCond);
10632 return;
10637 if (TM.getOptLevel() != CodeGenOpt::None) {
10638 // Here, we order cases by probability so the most likely case will be
10639 // checked first. However, two clusters can have the same probability in
10640 // which case their relative ordering is non-deterministic. So we use Low
10641 // as a tie-breaker as clusters are guaranteed to never overlap.
10642 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10643 [](const CaseCluster &a, const CaseCluster &b) {
10644 return a.Prob != b.Prob ?
10645 a.Prob > b.Prob :
10646 a.Low->getValue().slt(b.Low->getValue());
10649 // Rearrange the case blocks so that the last one falls through if possible
10650 // without changing the order of probabilities.
10651 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10652 --I;
10653 if (I->Prob > W.LastCluster->Prob)
10654 break;
10655 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10656 std::swap(*I, *W.LastCluster);
10657 break;
10662 // Compute total probability.
10663 BranchProbability DefaultProb = W.DefaultProb;
10664 BranchProbability UnhandledProbs = DefaultProb;
10665 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10666 UnhandledProbs += I->Prob;
10668 MachineBasicBlock *CurMBB = W.MBB;
10669 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10670 bool FallthroughUnreachable = false;
10671 MachineBasicBlock *Fallthrough;
10672 if (I == W.LastCluster) {
10673 // For the last cluster, fall through to the default destination.
10674 Fallthrough = DefaultMBB;
10675 FallthroughUnreachable = isa<UnreachableInst>(
10676 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10677 } else {
10678 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10679 CurMF->insert(BBI, Fallthrough);
10680 // Put Cond in a virtual register to make it available from the new blocks.
10681 ExportFromCurrentBlock(Cond);
10683 UnhandledProbs -= I->Prob;
10685 switch (I->Kind) {
10686 case CC_JumpTable: {
10687 // FIXME: Optimize away range check based on pivot comparisons.
10688 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10689 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10691 // The jump block hasn't been inserted yet; insert it here.
10692 MachineBasicBlock *JumpMBB = JT->MBB;
10693 CurMF->insert(BBI, JumpMBB);
10695 auto JumpProb = I->Prob;
10696 auto FallthroughProb = UnhandledProbs;
10698 // If the default statement is a target of the jump table, we evenly
10699 // distribute the default probability to successors of CurMBB. Also
10700 // update the probability on the edge from JumpMBB to Fallthrough.
10701 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10702 SE = JumpMBB->succ_end();
10703 SI != SE; ++SI) {
10704 if (*SI == DefaultMBB) {
10705 JumpProb += DefaultProb / 2;
10706 FallthroughProb -= DefaultProb / 2;
10707 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10708 JumpMBB->normalizeSuccProbs();
10709 break;
10713 if (FallthroughUnreachable) {
10714 // Skip the range check if the fallthrough block is unreachable.
10715 JTH->OmitRangeCheck = true;
10718 if (!JTH->OmitRangeCheck)
10719 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10720 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10721 CurMBB->normalizeSuccProbs();
10723 // The jump table header will be inserted in our current block, do the
10724 // range check, and fall through to our fallthrough block.
10725 JTH->HeaderBB = CurMBB;
10726 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10728 // If we're in the right place, emit the jump table header right now.
10729 if (CurMBB == SwitchMBB) {
10730 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10731 JTH->Emitted = true;
10733 break;
10735 case CC_BitTests: {
10736 // FIXME: Optimize away range check based on pivot comparisons.
10737 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10739 // The bit test blocks haven't been inserted yet; insert them here.
10740 for (BitTestCase &BTC : BTB->Cases)
10741 CurMF->insert(BBI, BTC.ThisBB);
10743 // Fill in fields of the BitTestBlock.
10744 BTB->Parent = CurMBB;
10745 BTB->Default = Fallthrough;
10747 BTB->DefaultProb = UnhandledProbs;
10748 // If the cases in bit test don't form a contiguous range, we evenly
10749 // distribute the probability on the edge to Fallthrough to two
10750 // successors of CurMBB.
10751 if (!BTB->ContiguousRange) {
10752 BTB->Prob += DefaultProb / 2;
10753 BTB->DefaultProb -= DefaultProb / 2;
10756 if (FallthroughUnreachable) {
10757 // Skip the range check if the fallthrough block is unreachable.
10758 BTB->OmitRangeCheck = true;
10761 // If we're in the right place, emit the bit test header right now.
10762 if (CurMBB == SwitchMBB) {
10763 visitBitTestHeader(*BTB, SwitchMBB);
10764 BTB->Emitted = true;
10766 break;
10768 case CC_Range: {
10769 const Value *RHS, *LHS, *MHS;
10770 ISD::CondCode CC;
10771 if (I->Low == I->High) {
10772 // Check Cond == I->Low.
10773 CC = ISD::SETEQ;
10774 LHS = Cond;
10775 RHS=I->Low;
10776 MHS = nullptr;
10777 } else {
10778 // Check I->Low <= Cond <= I->High.
10779 CC = ISD::SETLE;
10780 LHS = I->Low;
10781 MHS = Cond;
10782 RHS = I->High;
10785 // If Fallthrough is unreachable, fold away the comparison.
10786 if (FallthroughUnreachable)
10787 CC = ISD::SETTRUE;
10789 // The false probability is the sum of all unhandled cases.
10790 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10791 getCurSDLoc(), I->Prob, UnhandledProbs);
10793 if (CurMBB == SwitchMBB)
10794 visitSwitchCase(CB, SwitchMBB);
10795 else
10796 SL->SwitchCases.push_back(CB);
10798 break;
10801 CurMBB = Fallthrough;
10805 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10806 CaseClusterIt First,
10807 CaseClusterIt Last) {
10808 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10809 if (X.Prob != CC.Prob)
10810 return X.Prob > CC.Prob;
10812 // Ties are broken by comparing the case value.
10813 return X.Low->getValue().slt(CC.Low->getValue());
10817 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10818 const SwitchWorkListItem &W,
10819 Value *Cond,
10820 MachineBasicBlock *SwitchMBB) {
10821 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10822 "Clusters not sorted?");
10824 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10826 // Balance the tree based on branch probabilities to create a near-optimal (in
10827 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10828 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10829 CaseClusterIt LastLeft = W.FirstCluster;
10830 CaseClusterIt FirstRight = W.LastCluster;
10831 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10832 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10834 // Move LastLeft and FirstRight towards each other from opposite directions to
10835 // find a partitioning of the clusters which balances the probability on both
10836 // sides. If LeftProb and RightProb are equal, alternate which side is
10837 // taken to ensure 0-probability nodes are distributed evenly.
10838 unsigned I = 0;
10839 while (LastLeft + 1 < FirstRight) {
10840 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10841 LeftProb += (++LastLeft)->Prob;
10842 else
10843 RightProb += (--FirstRight)->Prob;
10844 I++;
10847 while (true) {
10848 // Our binary search tree differs from a typical BST in that ours can have up
10849 // to three values in each leaf. The pivot selection above doesn't take that
10850 // into account, which means the tree might require more nodes and be less
10851 // efficient. We compensate for this here.
10853 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10854 unsigned NumRight = W.LastCluster - FirstRight + 1;
10856 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10857 // If one side has less than 3 clusters, and the other has more than 3,
10858 // consider taking a cluster from the other side.
10860 if (NumLeft < NumRight) {
10861 // Consider moving the first cluster on the right to the left side.
10862 CaseCluster &CC = *FirstRight;
10863 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10864 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10865 if (LeftSideRank <= RightSideRank) {
10866 // Moving the cluster to the left does not demote it.
10867 ++LastLeft;
10868 ++FirstRight;
10869 continue;
10871 } else {
10872 assert(NumRight < NumLeft);
10873 // Consider moving the last element on the left to the right side.
10874 CaseCluster &CC = *LastLeft;
10875 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10876 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10877 if (RightSideRank <= LeftSideRank) {
10878 // Moving the cluster to the right does not demot it.
10879 --LastLeft;
10880 --FirstRight;
10881 continue;
10885 break;
10888 assert(LastLeft + 1 == FirstRight);
10889 assert(LastLeft >= W.FirstCluster);
10890 assert(FirstRight <= W.LastCluster);
10892 // Use the first element on the right as pivot since we will make less-than
10893 // comparisons against it.
10894 CaseClusterIt PivotCluster = FirstRight;
10895 assert(PivotCluster > W.FirstCluster);
10896 assert(PivotCluster <= W.LastCluster);
10898 CaseClusterIt FirstLeft = W.FirstCluster;
10899 CaseClusterIt LastRight = W.LastCluster;
10901 const ConstantInt *Pivot = PivotCluster->Low;
10903 // New blocks will be inserted immediately after the current one.
10904 MachineFunction::iterator BBI(W.MBB);
10905 ++BBI;
10907 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10908 // we can branch to its destination directly if it's squeezed exactly in
10909 // between the known lower bound and Pivot - 1.
10910 MachineBasicBlock *LeftMBB;
10911 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10912 FirstLeft->Low == W.GE &&
10913 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10914 LeftMBB = FirstLeft->MBB;
10915 } else {
10916 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10917 FuncInfo.MF->insert(BBI, LeftMBB);
10918 WorkList.push_back(
10919 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10920 // Put Cond in a virtual register to make it available from the new blocks.
10921 ExportFromCurrentBlock(Cond);
10924 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10925 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10926 // directly if RHS.High equals the current upper bound.
10927 MachineBasicBlock *RightMBB;
10928 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10929 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10930 RightMBB = FirstRight->MBB;
10931 } else {
10932 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10933 FuncInfo.MF->insert(BBI, RightMBB);
10934 WorkList.push_back(
10935 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10936 // Put Cond in a virtual register to make it available from the new blocks.
10937 ExportFromCurrentBlock(Cond);
10940 // Create the CaseBlock record that will be used to lower the branch.
10941 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10942 getCurSDLoc(), LeftProb, RightProb);
10944 if (W.MBB == SwitchMBB)
10945 visitSwitchCase(CB, SwitchMBB);
10946 else
10947 SL->SwitchCases.push_back(CB);
10950 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10951 // from the swith statement.
10952 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10953 BranchProbability PeeledCaseProb) {
10954 if (PeeledCaseProb == BranchProbability::getOne())
10955 return BranchProbability::getZero();
10956 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10958 uint32_t Numerator = CaseProb.getNumerator();
10959 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10960 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10963 // Try to peel the top probability case if it exceeds the threshold.
10964 // Return current MachineBasicBlock for the switch statement if the peeling
10965 // does not occur.
10966 // If the peeling is performed, return the newly created MachineBasicBlock
10967 // for the peeled switch statement. Also update Clusters to remove the peeled
10968 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10969 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10970 const SwitchInst &SI, CaseClusterVector &Clusters,
10971 BranchProbability &PeeledCaseProb) {
10972 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10973 // Don't perform if there is only one cluster or optimizing for size.
10974 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10975 TM.getOptLevel() == CodeGenOpt::None ||
10976 SwitchMBB->getParent()->getFunction().hasMinSize())
10977 return SwitchMBB;
10979 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10980 unsigned PeeledCaseIndex = 0;
10981 bool SwitchPeeled = false;
10982 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10983 CaseCluster &CC = Clusters[Index];
10984 if (CC.Prob < TopCaseProb)
10985 continue;
10986 TopCaseProb = CC.Prob;
10987 PeeledCaseIndex = Index;
10988 SwitchPeeled = true;
10990 if (!SwitchPeeled)
10991 return SwitchMBB;
10993 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10994 << TopCaseProb << "\n");
10996 // Record the MBB for the peeled switch statement.
10997 MachineFunction::iterator BBI(SwitchMBB);
10998 ++BBI;
10999 MachineBasicBlock *PeeledSwitchMBB =
11000 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11001 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11003 ExportFromCurrentBlock(SI.getCondition());
11004 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11005 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11006 nullptr, nullptr, TopCaseProb.getCompl()};
11007 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11009 Clusters.erase(PeeledCaseIt);
11010 for (CaseCluster &CC : Clusters) {
11011 LLVM_DEBUG(
11012 dbgs() << "Scale the probablity for one cluster, before scaling: "
11013 << CC.Prob << "\n");
11014 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11015 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11017 PeeledCaseProb = TopCaseProb;
11018 return PeeledSwitchMBB;
11021 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11022 // Extract cases from the switch.
11023 BranchProbabilityInfo *BPI = FuncInfo.BPI;
11024 CaseClusterVector Clusters;
11025 Clusters.reserve(SI.getNumCases());
11026 for (auto I : SI.cases()) {
11027 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11028 const ConstantInt *CaseVal = I.getCaseValue();
11029 BranchProbability Prob =
11030 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11031 : BranchProbability(1, SI.getNumCases() + 1);
11032 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11035 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11037 // Cluster adjacent cases with the same destination. We do this at all
11038 // optimization levels because it's cheap to do and will make codegen faster
11039 // if there are many clusters.
11040 sortAndRangeify(Clusters);
11042 // The branch probablity of the peeled case.
11043 BranchProbability PeeledCaseProb = BranchProbability::getZero();
11044 MachineBasicBlock *PeeledSwitchMBB =
11045 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11047 // If there is only the default destination, jump there directly.
11048 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11049 if (Clusters.empty()) {
11050 assert(PeeledSwitchMBB == SwitchMBB);
11051 SwitchMBB->addSuccessor(DefaultMBB);
11052 if (DefaultMBB != NextBlock(SwitchMBB)) {
11053 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11054 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11056 return;
11059 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11060 SL->findBitTestClusters(Clusters, &SI);
11062 LLVM_DEBUG({
11063 dbgs() << "Case clusters: ";
11064 for (const CaseCluster &C : Clusters) {
11065 if (C.Kind == CC_JumpTable)
11066 dbgs() << "JT:";
11067 if (C.Kind == CC_BitTests)
11068 dbgs() << "BT:";
11070 C.Low->getValue().print(dbgs(), true);
11071 if (C.Low != C.High) {
11072 dbgs() << '-';
11073 C.High->getValue().print(dbgs(), true);
11075 dbgs() << ' ';
11077 dbgs() << '\n';
11080 assert(!Clusters.empty());
11081 SwitchWorkList WorkList;
11082 CaseClusterIt First = Clusters.begin();
11083 CaseClusterIt Last = Clusters.end() - 1;
11084 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11085 // Scale the branchprobability for DefaultMBB if the peel occurs and
11086 // DefaultMBB is not replaced.
11087 if (PeeledCaseProb != BranchProbability::getZero() &&
11088 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11089 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11090 WorkList.push_back(
11091 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11093 while (!WorkList.empty()) {
11094 SwitchWorkListItem W = WorkList.pop_back_val();
11095 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11097 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11098 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11099 // For optimized builds, lower large range as a balanced binary tree.
11100 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11101 continue;
11104 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11108 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11109 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11110 auto DL = getCurSDLoc();
11111 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11112 setValue(&I, DAG.getStepVector(DL, ResultVT));
11115 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11116 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11117 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11119 SDLoc DL = getCurSDLoc();
11120 SDValue V = getValue(I.getOperand(0));
11121 assert(VT == V.getValueType() && "Malformed vector.reverse!");
11123 if (VT.isScalableVector()) {
11124 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11125 return;
11128 // Use VECTOR_SHUFFLE for the fixed-length vector
11129 // to maintain existing behavior.
11130 SmallVector<int, 8> Mask;
11131 unsigned NumElts = VT.getVectorMinNumElements();
11132 for (unsigned i = 0; i != NumElts; ++i)
11133 Mask.push_back(NumElts - 1 - i);
11135 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11138 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11139 SmallVector<EVT, 4> ValueVTs;
11140 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11141 ValueVTs);
11142 unsigned NumValues = ValueVTs.size();
11143 if (NumValues == 0) return;
11145 SmallVector<SDValue, 4> Values(NumValues);
11146 SDValue Op = getValue(I.getOperand(0));
11148 for (unsigned i = 0; i != NumValues; ++i)
11149 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11150 SDValue(Op.getNode(), Op.getResNo() + i));
11152 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11153 DAG.getVTList(ValueVTs), Values));
11156 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11157 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11158 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11160 SDLoc DL = getCurSDLoc();
11161 SDValue V1 = getValue(I.getOperand(0));
11162 SDValue V2 = getValue(I.getOperand(1));
11163 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11165 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11166 if (VT.isScalableVector()) {
11167 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11168 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11169 DAG.getConstant(Imm, DL, IdxVT)));
11170 return;
11173 unsigned NumElts = VT.getVectorNumElements();
11175 if ((-Imm > NumElts) || (Imm >= NumElts)) {
11176 // Result is undefined if immediate is out-of-bounds.
11177 setValue(&I, DAG.getUNDEF(VT));
11178 return;
11181 uint64_t Idx = (NumElts + Imm) % NumElts;
11183 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11184 SmallVector<int, 8> Mask;
11185 for (unsigned i = 0; i < NumElts; ++i)
11186 Mask.push_back(Idx + i);
11187 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));