[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / ShrinkWrap.cpp
blobf89069e9f72854081d51b54a64e78a5f86bce5c8
1 //===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass looks for safe point where the prologue and epilogue can be
10 // inserted.
11 // The safe point for the prologue (resp. epilogue) is called Save
12 // (resp. Restore).
13 // A point is safe for prologue (resp. epilogue) if and only if
14 // it 1) dominates (resp. post-dominates) all the frame related operations and
15 // between 2) two executions of the Save (resp. Restore) point there is an
16 // execution of the Restore (resp. Save) point.
18 // For instance, the following points are safe:
19 // for (int i = 0; i < 10; ++i) {
20 // Save
21 // ...
22 // Restore
23 // }
24 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
25 // And the following points are not:
26 // for (int i = 0; i < 10; ++i) {
27 // Save
28 // ...
29 // }
30 // for (int i = 0; i < 10; ++i) {
31 // ...
32 // Restore
33 // }
34 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 // This pass also ensures that the safe points are 3) cheaper than the regular
37 // entry and exits blocks.
39 // Property #1 is ensured via the use of MachineDominatorTree and
40 // MachinePostDominatorTree.
41 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
42 // points must be in the same loop.
43 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 // If this pass found points matching all these properties, then
46 // MachineFrameInfo is updated with this information.
48 //===----------------------------------------------------------------------===//
50 #include "llvm/ADT/BitVector.h"
51 #include "llvm/ADT/PostOrderIterator.h"
52 #include "llvm/ADT/SetVector.h"
53 #include "llvm/ADT/SmallVector.h"
54 #include "llvm/ADT/Statistic.h"
55 #include "llvm/Analysis/CFG.h"
56 #include "llvm/CodeGen/MachineBasicBlock.h"
57 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
58 #include "llvm/CodeGen/MachineDominators.h"
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 #include "llvm/CodeGen/MachineFunction.h"
61 #include "llvm/CodeGen/MachineFunctionPass.h"
62 #include "llvm/CodeGen/MachineInstr.h"
63 #include "llvm/CodeGen/MachineLoopInfo.h"
64 #include "llvm/CodeGen/MachineOperand.h"
65 #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
66 #include "llvm/CodeGen/MachinePostDominators.h"
67 #include "llvm/CodeGen/RegisterClassInfo.h"
68 #include "llvm/CodeGen/RegisterScavenging.h"
69 #include "llvm/CodeGen/TargetFrameLowering.h"
70 #include "llvm/CodeGen/TargetInstrInfo.h"
71 #include "llvm/CodeGen/TargetLowering.h"
72 #include "llvm/CodeGen/TargetRegisterInfo.h"
73 #include "llvm/CodeGen/TargetSubtargetInfo.h"
74 #include "llvm/IR/Attributes.h"
75 #include "llvm/IR/Function.h"
76 #include "llvm/InitializePasses.h"
77 #include "llvm/MC/MCAsmInfo.h"
78 #include "llvm/Pass.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <memory>
88 using namespace llvm;
90 #define DEBUG_TYPE "shrink-wrap"
92 STATISTIC(NumFunc, "Number of functions");
93 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
94 STATISTIC(NumCandidatesDropped,
95 "Number of shrink-wrapping candidates dropped because of frequency");
97 static cl::opt<cl::boolOrDefault>
98 EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
99 cl::desc("enable the shrink-wrapping pass"));
101 namespace {
103 /// Class to determine where the safe point to insert the
104 /// prologue and epilogue are.
105 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
106 /// shrink-wrapping term for prologue/epilogue placement, this pass
107 /// does not rely on expensive data-flow analysis. Instead we use the
108 /// dominance properties and loop information to decide which point
109 /// are safe for such insertion.
110 class ShrinkWrap : public MachineFunctionPass {
111 /// Hold callee-saved information.
112 RegisterClassInfo RCI;
113 MachineDominatorTree *MDT;
114 MachinePostDominatorTree *MPDT;
116 /// Current safe point found for the prologue.
117 /// The prologue will be inserted before the first instruction
118 /// in this basic block.
119 MachineBasicBlock *Save;
121 /// Current safe point found for the epilogue.
122 /// The epilogue will be inserted before the first terminator instruction
123 /// in this basic block.
124 MachineBasicBlock *Restore;
126 /// Hold the information of the basic block frequency.
127 /// Use to check the profitability of the new points.
128 MachineBlockFrequencyInfo *MBFI;
130 /// Hold the loop information. Used to determine if Save and Restore
131 /// are in the same loop.
132 MachineLoopInfo *MLI;
134 // Emit remarks.
135 MachineOptimizationRemarkEmitter *ORE = nullptr;
137 /// Frequency of the Entry block.
138 uint64_t EntryFreq;
140 /// Current opcode for frame setup.
141 unsigned FrameSetupOpcode;
143 /// Current opcode for frame destroy.
144 unsigned FrameDestroyOpcode;
146 /// Stack pointer register, used by llvm.{savestack,restorestack}
147 Register SP;
149 /// Entry block.
150 const MachineBasicBlock *Entry;
152 using SetOfRegs = SmallSetVector<unsigned, 16>;
154 /// Registers that need to be saved for the current function.
155 mutable SetOfRegs CurrentCSRs;
157 /// Current MachineFunction.
158 MachineFunction *MachineFunc;
160 /// Check if \p MI uses or defines a callee-saved register or
161 /// a frame index. If this is the case, this means \p MI must happen
162 /// after Save and before Restore.
163 bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
165 const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
166 if (CurrentCSRs.empty()) {
167 BitVector SavedRegs;
168 const TargetFrameLowering *TFI =
169 MachineFunc->getSubtarget().getFrameLowering();
171 TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
173 for (int Reg = SavedRegs.find_first(); Reg != -1;
174 Reg = SavedRegs.find_next(Reg))
175 CurrentCSRs.insert((unsigned)Reg);
177 return CurrentCSRs;
180 /// Update the Save and Restore points such that \p MBB is in
181 /// the region that is dominated by Save and post-dominated by Restore
182 /// and Save and Restore still match the safe point definition.
183 /// Such point may not exist and Save and/or Restore may be null after
184 /// this call.
185 void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
187 /// Initialize the pass for \p MF.
188 void init(MachineFunction &MF) {
189 RCI.runOnMachineFunction(MF);
190 MDT = &getAnalysis<MachineDominatorTree>();
191 MPDT = &getAnalysis<MachinePostDominatorTree>();
192 Save = nullptr;
193 Restore = nullptr;
194 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
195 MLI = &getAnalysis<MachineLoopInfo>();
196 ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
197 EntryFreq = MBFI->getEntryFreq();
198 const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
199 const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
200 FrameSetupOpcode = TII.getCallFrameSetupOpcode();
201 FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
202 SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
203 Entry = &MF.front();
204 CurrentCSRs.clear();
205 MachineFunc = &MF;
207 ++NumFunc;
210 /// Check whether or not Save and Restore points are still interesting for
211 /// shrink-wrapping.
212 bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
214 /// Check if shrink wrapping is enabled for this target and function.
215 static bool isShrinkWrapEnabled(const MachineFunction &MF);
217 public:
218 static char ID;
220 ShrinkWrap() : MachineFunctionPass(ID) {
221 initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
224 void getAnalysisUsage(AnalysisUsage &AU) const override {
225 AU.setPreservesAll();
226 AU.addRequired<MachineBlockFrequencyInfo>();
227 AU.addRequired<MachineDominatorTree>();
228 AU.addRequired<MachinePostDominatorTree>();
229 AU.addRequired<MachineLoopInfo>();
230 AU.addRequired<MachineOptimizationRemarkEmitterPass>();
231 MachineFunctionPass::getAnalysisUsage(AU);
234 MachineFunctionProperties getRequiredProperties() const override {
235 return MachineFunctionProperties().set(
236 MachineFunctionProperties::Property::NoVRegs);
239 StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
241 /// Perform the shrink-wrapping analysis and update
242 /// the MachineFrameInfo attached to \p MF with the results.
243 bool runOnMachineFunction(MachineFunction &MF) override;
246 } // end anonymous namespace
248 char ShrinkWrap::ID = 0;
250 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
252 INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
253 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
254 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
255 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
256 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
257 INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
258 INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
260 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
261 RegScavenger *RS) const {
262 // This prevents premature stack popping when occurs a indirect stack
263 // access. It is overly aggressive for the moment.
264 // TODO: - Obvious non-stack loads and store, such as global values,
265 // are known to not access the stack.
266 // - Further, data dependency and alias analysis can validate
267 // that load and stores never derive from the stack pointer.
268 if (MI.mayLoadOrStore())
269 return true;
271 if (MI.getOpcode() == FrameSetupOpcode ||
272 MI.getOpcode() == FrameDestroyOpcode) {
273 LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
274 return true;
276 for (const MachineOperand &MO : MI.operands()) {
277 bool UseOrDefCSR = false;
278 if (MO.isReg()) {
279 // Ignore instructions like DBG_VALUE which don't read/def the register.
280 if (!MO.isDef() && !MO.readsReg())
281 continue;
282 Register PhysReg = MO.getReg();
283 if (!PhysReg)
284 continue;
285 assert(Register::isPhysicalRegister(PhysReg) && "Unallocated register?!");
286 // The stack pointer is not normally described as a callee-saved register
287 // in calling convention definitions, so we need to watch for it
288 // separately. An SP mentioned by a call instruction, we can ignore,
289 // though, as it's harmless and we do not want to effectively disable tail
290 // calls by forcing the restore point to post-dominate them.
291 UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
292 RCI.getLastCalleeSavedAlias(PhysReg);
293 } else if (MO.isRegMask()) {
294 // Check if this regmask clobbers any of the CSRs.
295 for (unsigned Reg : getCurrentCSRs(RS)) {
296 if (MO.clobbersPhysReg(Reg)) {
297 UseOrDefCSR = true;
298 break;
302 // Skip FrameIndex operands in DBG_VALUE instructions.
303 if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
304 LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
305 << MO.isFI() << "): " << MI << '\n');
306 return true;
309 return false;
312 /// Helper function to find the immediate (post) dominator.
313 template <typename ListOfBBs, typename DominanceAnalysis>
314 static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
315 DominanceAnalysis &Dom) {
316 MachineBasicBlock *IDom = &Block;
317 for (MachineBasicBlock *BB : BBs) {
318 IDom = Dom.findNearestCommonDominator(IDom, BB);
319 if (!IDom)
320 break;
322 if (IDom == &Block)
323 return nullptr;
324 return IDom;
327 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
328 RegScavenger *RS) {
329 // Get rid of the easy cases first.
330 if (!Save)
331 Save = &MBB;
332 else
333 Save = MDT->findNearestCommonDominator(Save, &MBB);
334 assert(Save);
336 if (!Restore)
337 Restore = &MBB;
338 else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
339 // means the block never returns. If that's the
340 // case, we don't want to call
341 // `findNearestCommonDominator`, which will
342 // return `Restore`.
343 Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
344 else
345 Restore = nullptr; // Abort, we can't find a restore point in this case.
347 // Make sure we would be able to insert the restore code before the
348 // terminator.
349 if (Restore == &MBB) {
350 for (const MachineInstr &Terminator : MBB.terminators()) {
351 if (!useOrDefCSROrFI(Terminator, RS))
352 continue;
353 // One of the terminator needs to happen before the restore point.
354 if (MBB.succ_empty()) {
355 Restore = nullptr; // Abort, we can't find a restore point in this case.
356 break;
358 // Look for a restore point that post-dominates all the successors.
359 // The immediate post-dominator is what we are looking for.
360 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
361 break;
365 if (!Restore) {
366 LLVM_DEBUG(
367 dbgs() << "Restore point needs to be spanned on several blocks\n");
368 return;
371 // Make sure Save and Restore are suitable for shrink-wrapping:
372 // 1. all path from Save needs to lead to Restore before exiting.
373 // 2. all path to Restore needs to go through Save from Entry.
374 // We achieve that by making sure that:
375 // A. Save dominates Restore.
376 // B. Restore post-dominates Save.
377 // C. Save and Restore are in the same loop.
378 bool SaveDominatesRestore = false;
379 bool RestorePostDominatesSave = false;
380 while (Restore &&
381 (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
382 !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
383 // Post-dominance is not enough in loops to ensure that all uses/defs
384 // are after the prologue and before the epilogue at runtime.
385 // E.g.,
386 // while(1) {
387 // Save
388 // Restore
389 // if (...)
390 // break;
391 // use/def CSRs
392 // }
393 // All the uses/defs of CSRs are dominated by Save and post-dominated
394 // by Restore. However, the CSRs uses are still reachable after
395 // Restore and before Save are executed.
397 // For now, just push the restore/save points outside of loops.
398 // FIXME: Refine the criteria to still find interesting cases
399 // for loops.
400 MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
401 // Fix (A).
402 if (!SaveDominatesRestore) {
403 Save = MDT->findNearestCommonDominator(Save, Restore);
404 continue;
406 // Fix (B).
407 if (!RestorePostDominatesSave)
408 Restore = MPDT->findNearestCommonDominator(Restore, Save);
410 // Fix (C).
411 if (Restore && (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
412 if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
413 // Push Save outside of this loop if immediate dominator is different
414 // from save block. If immediate dominator is not different, bail out.
415 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
416 if (!Save)
417 break;
418 } else {
419 // If the loop does not exit, there is no point in looking
420 // for a post-dominator outside the loop.
421 SmallVector<MachineBasicBlock*, 4> ExitBlocks;
422 MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
423 // Push Restore outside of this loop.
424 // Look for the immediate post-dominator of the loop exits.
425 MachineBasicBlock *IPdom = Restore;
426 for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
427 IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
428 if (!IPdom)
429 break;
431 // If the immediate post-dominator is not in a less nested loop,
432 // then we are stuck in a program with an infinite loop.
433 // In that case, we will not find a safe point, hence, bail out.
434 if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
435 Restore = IPdom;
436 else {
437 Restore = nullptr;
438 break;
445 static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
446 StringRef RemarkName, StringRef RemarkMessage,
447 const DiagnosticLocation &Loc,
448 const MachineBasicBlock *MBB) {
449 ORE->emit([&]() {
450 return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
451 << RemarkMessage;
454 LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
455 return false;
458 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
459 if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
460 return false;
462 LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
464 init(MF);
466 ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
467 if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
468 // If MF is irreducible, a block may be in a loop without
469 // MachineLoopInfo reporting it. I.e., we may use the
470 // post-dominance property in loops, which lead to incorrect
471 // results. Moreover, we may miss that the prologue and
472 // epilogue are not in the same loop, leading to unbalanced
473 // construction/deconstruction of the stack frame.
474 return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
475 "Irreducible CFGs are not supported yet.",
476 MF.getFunction().getSubprogram(), &MF.front());
479 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
480 std::unique_ptr<RegScavenger> RS(
481 TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
483 for (MachineBasicBlock &MBB : MF) {
484 LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
485 << MBB.getName() << '\n');
487 if (MBB.isEHFuncletEntry())
488 return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
489 "EH Funclets are not supported yet.",
490 MBB.front().getDebugLoc(), &MBB);
492 if (MBB.isEHPad() || MBB.isInlineAsmBrIndirectTarget()) {
493 // Push the prologue and epilogue outside of the region that may throw (or
494 // jump out via inlineasm_br), by making sure that all the landing pads
495 // are at least at the boundary of the save and restore points. The
496 // problem is that a basic block can jump out from the middle in these
497 // cases, which we do not handle.
498 updateSaveRestorePoints(MBB, RS.get());
499 if (!ArePointsInteresting()) {
500 LLVM_DEBUG(dbgs() << "EHPad/inlineasm_br prevents shrink-wrapping\n");
501 return false;
503 continue;
506 for (const MachineInstr &MI : MBB) {
507 if (!useOrDefCSROrFI(MI, RS.get()))
508 continue;
509 // Save (resp. restore) point must dominate (resp. post dominate)
510 // MI. Look for the proper basic block for those.
511 updateSaveRestorePoints(MBB, RS.get());
512 // If we are at a point where we cannot improve the placement of
513 // save/restore instructions, just give up.
514 if (!ArePointsInteresting()) {
515 LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
516 return false;
518 // No need to look for other instructions, this basic block
519 // will already be part of the handled region.
520 break;
523 if (!ArePointsInteresting()) {
524 // If the points are not interesting at this point, then they must be null
525 // because it means we did not encounter any frame/CSR related code.
526 // Otherwise, we would have returned from the previous loop.
527 assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
528 LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
529 return false;
532 LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
533 << '\n');
535 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
536 do {
537 LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
538 << Save->getNumber() << ' ' << Save->getName() << ' '
539 << MBFI->getBlockFreq(Save).getFrequency()
540 << "\nRestore: " << Restore->getNumber() << ' '
541 << Restore->getName() << ' '
542 << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
544 bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
545 if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
546 EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
547 ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
548 TFI->canUseAsEpilogue(*Restore)))
549 break;
550 LLVM_DEBUG(
551 dbgs() << "New points are too expensive or invalid for the target\n");
552 MachineBasicBlock *NewBB;
553 if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
554 Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
555 if (!Save)
556 break;
557 NewBB = Save;
558 } else {
559 // Restore is expensive.
560 Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
561 if (!Restore)
562 break;
563 NewBB = Restore;
565 updateSaveRestorePoints(*NewBB, RS.get());
566 } while (Save && Restore);
568 if (!ArePointsInteresting()) {
569 ++NumCandidatesDropped;
570 return false;
573 LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
574 << Save->getNumber() << ' ' << Save->getName()
575 << "\nRestore: " << Restore->getNumber() << ' '
576 << Restore->getName() << '\n');
578 MachineFrameInfo &MFI = MF.getFrameInfo();
579 MFI.setSavePoint(Save);
580 MFI.setRestorePoint(Restore);
581 ++NumCandidates;
582 return false;
585 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
586 const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
588 switch (EnableShrinkWrapOpt) {
589 case cl::BOU_UNSET:
590 return TFI->enableShrinkWrapping(MF) &&
591 // Windows with CFI has some limitations that make it impossible
592 // to use shrink-wrapping.
593 !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
594 // Sanitizers look at the value of the stack at the location
595 // of the crash. Since a crash can happen anywhere, the
596 // frame must be lowered before anything else happen for the
597 // sanitizers to be able to get a correct stack frame.
598 !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
599 MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
600 MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
601 MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
602 // If EnableShrinkWrap is set, it takes precedence on whatever the
603 // target sets. The rational is that we assume we want to test
604 // something related to shrink-wrapping.
605 case cl::BOU_TRUE:
606 return true;
607 case cl::BOU_FALSE:
608 return false;
610 llvm_unreachable("Invalid shrink-wrapping state");