[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / SplitKit.cpp
blob38493edf0af13145b7f030f48f67eb8f8d3db49a
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
21 #include "llvm/CodeGen/MachineDominators.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineLoopInfo.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/TargetInstrInfo.h"
28 #include "llvm/CodeGen/TargetOpcodes.h"
29 #include "llvm/CodeGen/TargetRegisterInfo.h"
30 #include "llvm/CodeGen/TargetSubtargetInfo.h"
31 #include "llvm/CodeGen/VirtRegMap.h"
32 #include "llvm/Config/llvm-config.h"
33 #include "llvm/IR/DebugLoc.h"
34 #include "llvm/Support/Allocator.h"
35 #include "llvm/Support/BlockFrequency.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <algorithm>
40 #include <cassert>
41 #include <iterator>
42 #include <limits>
43 #include <tuple>
45 using namespace llvm;
47 #define DEBUG_TYPE "regalloc"
49 STATISTIC(NumFinished, "Number of splits finished");
50 STATISTIC(NumSimple, "Number of splits that were simple");
51 STATISTIC(NumCopies, "Number of copies inserted for splitting");
52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
53 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
55 //===----------------------------------------------------------------------===//
56 // Last Insert Point Analysis
57 //===----------------------------------------------------------------------===//
59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
60 unsigned BBNum)
61 : LIS(lis), LastInsertPoint(BBNum) {}
63 SlotIndex
64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
65 const MachineBasicBlock &MBB) {
66 unsigned Num = MBB.getNumber();
67 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
68 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
70 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
71 bool EHPadSuccessor = false;
72 for (const MachineBasicBlock *SMBB : MBB.successors()) {
73 if (SMBB->isEHPad()) {
74 ExceptionalSuccessors.push_back(SMBB);
75 EHPadSuccessor = true;
76 } else if (SMBB->isInlineAsmBrIndirectTarget())
77 ExceptionalSuccessors.push_back(SMBB);
80 // Compute insert points on the first call. The pair is independent of the
81 // current live interval.
82 if (!LIP.first.isValid()) {
83 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
84 if (FirstTerm == MBB.end())
85 LIP.first = MBBEnd;
86 else
87 LIP.first = LIS.getInstructionIndex(*FirstTerm);
89 // If there is a landing pad or inlineasm_br successor, also find the
90 // instruction. If there is no such instruction, we don't need to do
91 // anything special. We assume there cannot be multiple instructions that
92 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
93 // assume that if there are any, they will be after any other call
94 // instructions in the block.
95 if (ExceptionalSuccessors.empty())
96 return LIP.first;
97 for (const MachineInstr &MI : llvm::reverse(MBB)) {
98 if ((EHPadSuccessor && MI.isCall()) ||
99 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
100 LIP.second = LIS.getInstructionIndex(MI);
101 break;
106 // If CurLI is live into a landing pad successor, move the last insert point
107 // back to the call that may throw.
108 if (!LIP.second)
109 return LIP.first;
111 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
112 return LIS.isLiveInToMBB(CurLI, EHPad);
114 return LIP.first;
116 // Find the value leaving MBB.
117 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
118 if (!VNI)
119 return LIP.first;
121 // The def of statepoint instruction is a gc relocation and it should be alive
122 // in landing pad. So we cannot split interval after statepoint instruction.
123 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
124 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
125 if (I->getOpcode() == TargetOpcode::STATEPOINT)
126 return LIP.second;
128 // If the value leaving MBB was defined after the call in MBB, it can't
129 // really be live-in to the landing pad. This can happen if the landing pad
130 // has a PHI, and this register is undef on the exceptional edge.
131 // <rdar://problem/10664933>
132 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
133 return LIP.first;
135 // Value is properly live-in to the landing pad.
136 // Only allow inserts before the call.
137 return LIP.second;
140 MachineBasicBlock::iterator
141 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
142 MachineBasicBlock &MBB) {
143 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
144 if (LIP == LIS.getMBBEndIdx(&MBB))
145 return MBB.end();
146 return LIS.getInstructionFromIndex(LIP);
149 //===----------------------------------------------------------------------===//
150 // Split Analysis
151 //===----------------------------------------------------------------------===//
153 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
154 const MachineLoopInfo &mli)
155 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
156 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
158 void SplitAnalysis::clear() {
159 UseSlots.clear();
160 UseBlocks.clear();
161 ThroughBlocks.clear();
162 CurLI = nullptr;
163 DidRepairRange = false;
166 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
167 void SplitAnalysis::analyzeUses() {
168 assert(UseSlots.empty() && "Call clear first");
170 // First get all the defs from the interval values. This provides the correct
171 // slots for early clobbers.
172 for (const VNInfo *VNI : CurLI->valnos)
173 if (!VNI->isPHIDef() && !VNI->isUnused())
174 UseSlots.push_back(VNI->def);
176 // Get use slots form the use-def chain.
177 const MachineRegisterInfo &MRI = MF.getRegInfo();
178 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
179 if (!MO.isUndef())
180 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
182 array_pod_sort(UseSlots.begin(), UseSlots.end());
184 // Remove duplicates, keeping the smaller slot for each instruction.
185 // That is what we want for early clobbers.
186 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
187 SlotIndex::isSameInstr),
188 UseSlots.end());
190 // Compute per-live block info.
191 if (!calcLiveBlockInfo()) {
192 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
193 // I am looking at you, RegisterCoalescer!
194 DidRepairRange = true;
195 ++NumRepairs;
196 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
197 const_cast<LiveIntervals&>(LIS)
198 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
199 UseBlocks.clear();
200 ThroughBlocks.clear();
201 bool fixed = calcLiveBlockInfo();
202 (void)fixed;
203 assert(fixed && "Couldn't fix broken live interval");
206 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
207 << UseBlocks.size() << " blocks, through "
208 << NumThroughBlocks << " blocks.\n");
211 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
212 /// where CurLI is live.
213 bool SplitAnalysis::calcLiveBlockInfo() {
214 ThroughBlocks.resize(MF.getNumBlockIDs());
215 NumThroughBlocks = NumGapBlocks = 0;
216 if (CurLI->empty())
217 return true;
219 LiveInterval::const_iterator LVI = CurLI->begin();
220 LiveInterval::const_iterator LVE = CurLI->end();
222 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
223 UseI = UseSlots.begin();
224 UseE = UseSlots.end();
226 // Loop over basic blocks where CurLI is live.
227 MachineFunction::iterator MFI =
228 LIS.getMBBFromIndex(LVI->start)->getIterator();
229 while (true) {
230 BlockInfo BI;
231 BI.MBB = &*MFI;
232 SlotIndex Start, Stop;
233 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
235 // If the block contains no uses, the range must be live through. At one
236 // point, RegisterCoalescer could create dangling ranges that ended
237 // mid-block.
238 if (UseI == UseE || *UseI >= Stop) {
239 ++NumThroughBlocks;
240 ThroughBlocks.set(BI.MBB->getNumber());
241 // The range shouldn't end mid-block if there are no uses. This shouldn't
242 // happen.
243 if (LVI->end < Stop)
244 return false;
245 } else {
246 // This block has uses. Find the first and last uses in the block.
247 BI.FirstInstr = *UseI;
248 assert(BI.FirstInstr >= Start);
249 do ++UseI;
250 while (UseI != UseE && *UseI < Stop);
251 BI.LastInstr = UseI[-1];
252 assert(BI.LastInstr < Stop);
254 // LVI is the first live segment overlapping MBB.
255 BI.LiveIn = LVI->start <= Start;
257 // When not live in, the first use should be a def.
258 if (!BI.LiveIn) {
259 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
260 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
261 BI.FirstDef = BI.FirstInstr;
264 // Look for gaps in the live range.
265 BI.LiveOut = true;
266 while (LVI->end < Stop) {
267 SlotIndex LastStop = LVI->end;
268 if (++LVI == LVE || LVI->start >= Stop) {
269 BI.LiveOut = false;
270 BI.LastInstr = LastStop;
271 break;
274 if (LastStop < LVI->start) {
275 // There is a gap in the live range. Create duplicate entries for the
276 // live-in snippet and the live-out snippet.
277 ++NumGapBlocks;
279 // Push the Live-in part.
280 BI.LiveOut = false;
281 UseBlocks.push_back(BI);
282 UseBlocks.back().LastInstr = LastStop;
284 // Set up BI for the live-out part.
285 BI.LiveIn = false;
286 BI.LiveOut = true;
287 BI.FirstInstr = BI.FirstDef = LVI->start;
290 // A Segment that starts in the middle of the block must be a def.
291 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
292 if (!BI.FirstDef)
293 BI.FirstDef = LVI->start;
296 UseBlocks.push_back(BI);
298 // LVI is now at LVE or LVI->end >= Stop.
299 if (LVI == LVE)
300 break;
303 // Live segment ends exactly at Stop. Move to the next segment.
304 if (LVI->end == Stop && ++LVI == LVE)
305 break;
307 // Pick the next basic block.
308 if (LVI->start < Stop)
309 ++MFI;
310 else
311 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
314 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
315 return true;
318 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
319 if (cli->empty())
320 return 0;
321 LiveInterval *li = const_cast<LiveInterval*>(cli);
322 LiveInterval::iterator LVI = li->begin();
323 LiveInterval::iterator LVE = li->end();
324 unsigned Count = 0;
326 // Loop over basic blocks where li is live.
327 MachineFunction::const_iterator MFI =
328 LIS.getMBBFromIndex(LVI->start)->getIterator();
329 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
330 while (true) {
331 ++Count;
332 LVI = li->advanceTo(LVI, Stop);
333 if (LVI == LVE)
334 return Count;
335 do {
336 ++MFI;
337 Stop = LIS.getMBBEndIdx(&*MFI);
338 } while (Stop <= LVI->start);
342 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
343 unsigned OrigReg = VRM.getOriginal(CurLI->reg());
344 const LiveInterval &Orig = LIS.getInterval(OrigReg);
345 assert(!Orig.empty() && "Splitting empty interval?");
346 LiveInterval::const_iterator I = Orig.find(Idx);
348 // Range containing Idx should begin at Idx.
349 if (I != Orig.end() && I->start <= Idx)
350 return I->start == Idx;
352 // Range does not contain Idx, previous must end at Idx.
353 return I != Orig.begin() && (--I)->end == Idx;
356 void SplitAnalysis::analyze(const LiveInterval *li) {
357 clear();
358 CurLI = li;
359 analyzeUses();
362 //===----------------------------------------------------------------------===//
363 // Split Editor
364 //===----------------------------------------------------------------------===//
366 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
367 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA,
368 LiveIntervals &LIS, VirtRegMap &VRM,
369 MachineDominatorTree &MDT,
370 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
371 : SA(SA), AA(AA), LIS(LIS), VRM(VRM),
372 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT),
373 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
374 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
375 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
377 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
378 Edit = &LRE;
379 SpillMode = SM;
380 OpenIdx = 0;
381 RegAssign.clear();
382 Values.clear();
384 // Reset the LiveIntervalCalc instances needed for this spill mode.
385 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
386 &LIS.getVNInfoAllocator());
387 if (SpillMode)
388 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
389 &LIS.getVNInfoAllocator());
391 // We don't need an AliasAnalysis since we will only be performing
392 // cheap-as-a-copy remats anyway.
393 Edit->anyRematerializable(nullptr);
396 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
397 LLVM_DUMP_METHOD void SplitEditor::dump() const {
398 if (RegAssign.empty()) {
399 dbgs() << " empty\n";
400 return;
403 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
404 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
405 dbgs() << '\n';
407 #endif
409 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM,
410 LiveInterval &LI) {
411 for (LiveInterval::SubRange &S : LI.subranges())
412 if (S.LaneMask == LM)
413 return S;
414 llvm_unreachable("SubRange for this mask not found");
417 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM,
418 LiveInterval &LI) {
419 for (LiveInterval::SubRange &S : LI.subranges())
420 if ((S.LaneMask & LM) == LM)
421 return S;
422 llvm_unreachable("SubRange for this mask not found");
425 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
426 if (!LI.hasSubRanges()) {
427 LI.createDeadDef(VNI);
428 return;
431 SlotIndex Def = VNI->def;
432 if (Original) {
433 // If we are transferring a def from the original interval, make sure
434 // to only update the subranges for which the original subranges had
435 // a def at this location.
436 for (LiveInterval::SubRange &S : LI.subranges()) {
437 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
438 VNInfo *PV = PS.getVNInfoAt(Def);
439 if (PV != nullptr && PV->def == Def)
440 S.createDeadDef(Def, LIS.getVNInfoAllocator());
442 } else {
443 // This is a new def: either from rematerialization, or from an inserted
444 // copy. Since rematerialization can regenerate a definition of a sub-
445 // register, we need to check which subranges need to be updated.
446 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
447 assert(DefMI != nullptr);
448 LaneBitmask LM;
449 for (const MachineOperand &DefOp : DefMI->defs()) {
450 Register R = DefOp.getReg();
451 if (R != LI.reg())
452 continue;
453 if (unsigned SR = DefOp.getSubReg())
454 LM |= TRI.getSubRegIndexLaneMask(SR);
455 else {
456 LM = MRI.getMaxLaneMaskForVReg(R);
457 break;
460 for (LiveInterval::SubRange &S : LI.subranges())
461 if ((S.LaneMask & LM).any())
462 S.createDeadDef(Def, LIS.getVNInfoAllocator());
466 VNInfo *SplitEditor::defValue(unsigned RegIdx,
467 const VNInfo *ParentVNI,
468 SlotIndex Idx,
469 bool Original) {
470 assert(ParentVNI && "Mapping NULL value");
471 assert(Idx.isValid() && "Invalid SlotIndex");
472 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
473 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
475 // Create a new value.
476 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
478 bool Force = LI->hasSubRanges();
479 ValueForcePair FP(Force ? nullptr : VNI, Force);
480 // Use insert for lookup, so we can add missing values with a second lookup.
481 std::pair<ValueMap::iterator, bool> InsP =
482 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
484 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
485 // forced. Keep it as a simple def without any liveness.
486 if (!Force && InsP.second)
487 return VNI;
489 // If the previous value was a simple mapping, add liveness for it now.
490 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
491 addDeadDef(*LI, OldVNI, Original);
493 // No longer a simple mapping. Switch to a complex mapping. If the
494 // interval has subranges, make it a forced mapping.
495 InsP.first->second = ValueForcePair(nullptr, Force);
498 // This is a complex mapping, add liveness for VNI
499 addDeadDef(*LI, VNI, Original);
500 return VNI;
503 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
504 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
505 VNInfo *VNI = VFP.getPointer();
507 // ParentVNI was either unmapped or already complex mapped. Either way, just
508 // set the force bit.
509 if (!VNI) {
510 VFP.setInt(true);
511 return;
514 // This was previously a single mapping. Make sure the old def is represented
515 // by a trivial live range.
516 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
518 // Mark as complex mapped, forced.
519 VFP = ValueForcePair(nullptr, true);
522 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg,
523 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore,
524 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) {
525 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
526 bool FirstCopy = !Def.isValid();
527 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
528 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
529 | getInternalReadRegState(!FirstCopy), SubIdx)
530 .addReg(FromReg, 0, SubIdx);
532 SlotIndexes &Indexes = *LIS.getSlotIndexes();
533 if (FirstCopy) {
534 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
535 } else {
536 CopyMI->bundleWithPred();
538 return Def;
541 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
542 LaneBitmask LaneMask, MachineBasicBlock &MBB,
543 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
544 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY);
545 SlotIndexes &Indexes = *LIS.getSlotIndexes();
546 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
547 // The full vreg is copied.
548 MachineInstr *CopyMI =
549 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
550 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
553 // Only a subset of lanes needs to be copied. The following is a simple
554 // heuristic to construct a sequence of COPYs. We could add a target
555 // specific callback if this turns out to be suboptimal.
556 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
558 // First pass: Try to find a perfectly matching subregister index. If none
559 // exists find the one covering the most lanemask bits.
560 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
561 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
563 SmallVector<unsigned, 8> SubIndexes;
565 // Abort if we cannot possibly implement the COPY with the given indexes.
566 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
567 report_fatal_error("Impossible to implement partial COPY");
569 SlotIndex Def;
570 for (unsigned BestIdx : SubIndexes) {
571 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
572 DestLI, Late, Def);
575 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
576 DestLI.refineSubRanges(
577 Allocator, LaneMask,
578 [Def, &Allocator](LiveInterval::SubRange &SR) {
579 SR.createDeadDef(Def, Allocator);
581 Indexes, TRI);
583 return Def;
586 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
587 VNInfo *ParentVNI,
588 SlotIndex UseIdx,
589 MachineBasicBlock &MBB,
590 MachineBasicBlock::iterator I) {
591 SlotIndex Def;
592 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
594 // We may be trying to avoid interference that ends at a deleted instruction,
595 // so always begin RegIdx 0 early and all others late.
596 bool Late = RegIdx != 0;
598 // Attempt cheap-as-a-copy rematerialization.
599 unsigned Original = VRM.getOriginal(Edit->get(RegIdx));
600 LiveInterval &OrigLI = LIS.getInterval(Original);
601 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
603 Register Reg = LI->reg();
604 bool DidRemat = false;
605 if (OrigVNI) {
606 LiveRangeEdit::Remat RM(ParentVNI);
607 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
608 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
609 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
610 ++NumRemats;
611 DidRemat = true;
614 if (!DidRemat) {
615 LaneBitmask LaneMask;
616 if (OrigLI.hasSubRanges()) {
617 LaneMask = LaneBitmask::getNone();
618 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
619 if (S.liveAt(UseIdx))
620 LaneMask |= S.LaneMask;
622 } else {
623 LaneMask = LaneBitmask::getAll();
626 if (LaneMask.none()) {
627 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
628 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
629 SlotIndexes &Indexes = *LIS.getSlotIndexes();
630 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
631 } else {
632 ++NumCopies;
633 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
637 // Define the value in Reg.
638 return defValue(RegIdx, ParentVNI, Def, false);
641 /// Create a new virtual register and live interval.
642 unsigned SplitEditor::openIntv() {
643 // Create the complement as index 0.
644 if (Edit->empty())
645 Edit->createEmptyInterval();
647 // Create the open interval.
648 OpenIdx = Edit->size();
649 Edit->createEmptyInterval();
650 return OpenIdx;
653 void SplitEditor::selectIntv(unsigned Idx) {
654 assert(Idx != 0 && "Cannot select the complement interval");
655 assert(Idx < Edit->size() && "Can only select previously opened interval");
656 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
657 OpenIdx = Idx;
660 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
661 assert(OpenIdx && "openIntv not called before enterIntvBefore");
662 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
663 Idx = Idx.getBaseIndex();
664 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
665 if (!ParentVNI) {
666 LLVM_DEBUG(dbgs() << ": not live\n");
667 return Idx;
669 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
670 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
671 assert(MI && "enterIntvBefore called with invalid index");
673 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
674 return VNI->def;
677 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
678 assert(OpenIdx && "openIntv not called before enterIntvAfter");
679 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
680 Idx = Idx.getBoundaryIndex();
681 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
682 if (!ParentVNI) {
683 LLVM_DEBUG(dbgs() << ": not live\n");
684 return Idx;
686 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
687 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
688 assert(MI && "enterIntvAfter called with invalid index");
690 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
691 std::next(MachineBasicBlock::iterator(MI)));
692 return VNI->def;
695 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
696 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
697 SlotIndex End = LIS.getMBBEndIdx(&MBB);
698 SlotIndex Last = End.getPrevSlot();
699 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
700 << Last);
701 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
702 if (!ParentVNI) {
703 LLVM_DEBUG(dbgs() << ": not live\n");
704 return End;
706 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
707 if (LSP < Last) {
708 // It could be that the use after LSP is a def, and thus the ParentVNI
709 // just selected starts at that def. For this case to exist, the def
710 // must be part of a tied def/use pair (as otherwise we'd have split
711 // distinct live ranges into individual live intervals), and thus we
712 // can insert the def into the VNI of the use and the tied def/use
713 // pair can live in the resulting interval.
714 Last = LSP;
715 ParentVNI = Edit->getParent().getVNInfoAt(Last);
716 if (!ParentVNI) {
717 // undef use --> undef tied def
718 LLVM_DEBUG(dbgs() << ": tied use not live\n");
719 return End;
723 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
724 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
725 SA.getLastSplitPointIter(&MBB));
726 RegAssign.insert(VNI->def, End, OpenIdx);
727 LLVM_DEBUG(dump());
728 return VNI->def;
731 /// useIntv - indicate that all instructions in MBB should use OpenLI.
732 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
733 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
736 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
737 assert(OpenIdx && "openIntv not called before useIntv");
738 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
739 RegAssign.insert(Start, End, OpenIdx);
740 LLVM_DEBUG(dump());
743 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
744 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
745 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
747 // The interval must be live beyond the instruction at Idx.
748 SlotIndex Boundary = Idx.getBoundaryIndex();
749 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
750 if (!ParentVNI) {
751 LLVM_DEBUG(dbgs() << ": not live\n");
752 return Boundary.getNextSlot();
754 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
755 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
756 assert(MI && "No instruction at index");
758 // In spill mode, make live ranges as short as possible by inserting the copy
759 // before MI. This is only possible if that instruction doesn't redefine the
760 // value. The inserted COPY is not a kill, and we don't need to recompute
761 // the source live range. The spiller also won't try to hoist this copy.
762 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
763 MI->readsVirtualRegister(Edit->getReg())) {
764 forceRecompute(0, *ParentVNI);
765 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
766 return Idx;
769 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
770 std::next(MachineBasicBlock::iterator(MI)));
771 return VNI->def;
774 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
775 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
776 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
778 // The interval must be live into the instruction at Idx.
779 Idx = Idx.getBaseIndex();
780 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
781 if (!ParentVNI) {
782 LLVM_DEBUG(dbgs() << ": not live\n");
783 return Idx.getNextSlot();
785 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
787 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
788 assert(MI && "No instruction at index");
789 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
790 return VNI->def;
793 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
794 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
795 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
796 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
797 << Start);
799 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
800 if (!ParentVNI) {
801 LLVM_DEBUG(dbgs() << ": not live\n");
802 return Start;
805 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
806 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
807 RegAssign.insert(Start, VNI->def, OpenIdx);
808 LLVM_DEBUG(dump());
809 return VNI->def;
812 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
813 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
814 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
818 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
819 assert(OpenIdx && "openIntv not called before overlapIntv");
820 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
821 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
822 "Parent changes value in extended range");
823 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
824 "Range cannot span basic blocks");
826 // The complement interval will be extended as needed by LICalc.extend().
827 if (ParentVNI)
828 forceRecompute(0, *ParentVNI);
830 // If the last use is tied to a def, we can't mark it as live for the
831 // interval which includes only the use. That would cause the tied pair
832 // to end up in two different intervals.
833 if (auto *MI = LIS.getInstructionFromIndex(End))
834 if (hasTiedUseOf(*MI, Edit->getReg())) {
835 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
836 return;
839 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
840 RegAssign.insert(Start, End, OpenIdx);
841 LLVM_DEBUG(dump());
844 //===----------------------------------------------------------------------===//
845 // Spill modes
846 //===----------------------------------------------------------------------===//
848 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
849 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
850 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
851 RegAssignMap::iterator AssignI;
852 AssignI.setMap(RegAssign);
854 for (const VNInfo *C : Copies) {
855 SlotIndex Def = C->def;
856 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
857 assert(MI && "No instruction for back-copy");
859 MachineBasicBlock *MBB = MI->getParent();
860 MachineBasicBlock::iterator MBBI(MI);
861 bool AtBegin;
862 do AtBegin = MBBI == MBB->begin();
863 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
865 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
866 LIS.removeVRegDefAt(*LI, Def);
867 LIS.RemoveMachineInstrFromMaps(*MI);
868 MI->eraseFromParent();
870 // Adjust RegAssign if a register assignment is killed at Def. We want to
871 // avoid calculating the live range of the source register if possible.
872 AssignI.find(Def.getPrevSlot());
873 if (!AssignI.valid() || AssignI.start() >= Def)
874 continue;
875 // If MI doesn't kill the assigned register, just leave it.
876 if (AssignI.stop() != Def)
877 continue;
878 unsigned RegIdx = AssignI.value();
879 // We could hoist back-copy right after another back-copy. As a result
880 // MMBI points to copy instruction which is actually dead now.
881 // We cannot set its stop to MBBI which will be the same as start and
882 // interval does not support that.
883 SlotIndex Kill =
884 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
885 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
886 Kill <= AssignI.start()) {
887 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
888 << '\n');
889 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
890 } else {
891 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
892 AssignI.setStop(Kill);
897 MachineBasicBlock*
898 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
899 MachineBasicBlock *DefMBB) {
900 if (MBB == DefMBB)
901 return MBB;
902 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
904 const MachineLoopInfo &Loops = SA.Loops;
905 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
906 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
908 // Best candidate so far.
909 MachineBasicBlock *BestMBB = MBB;
910 unsigned BestDepth = std::numeric_limits<unsigned>::max();
912 while (true) {
913 const MachineLoop *Loop = Loops.getLoopFor(MBB);
915 // MBB isn't in a loop, it doesn't get any better. All dominators have a
916 // higher frequency by definition.
917 if (!Loop) {
918 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
919 << " dominates " << printMBBReference(*MBB)
920 << " at depth 0\n");
921 return MBB;
924 // We'll never be able to exit the DefLoop.
925 if (Loop == DefLoop) {
926 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
927 << " dominates " << printMBBReference(*MBB)
928 << " in the same loop\n");
929 return MBB;
932 // Least busy dominator seen so far.
933 unsigned Depth = Loop->getLoopDepth();
934 if (Depth < BestDepth) {
935 BestMBB = MBB;
936 BestDepth = Depth;
937 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
938 << " dominates " << printMBBReference(*MBB)
939 << " at depth " << Depth << '\n');
942 // Leave loop by going to the immediate dominator of the loop header.
943 // This is a bigger stride than simply walking up the dominator tree.
944 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
946 // Too far up the dominator tree?
947 if (!IDom || !MDT.dominates(DefDomNode, IDom))
948 return BestMBB;
950 MBB = IDom->getBlock();
954 void SplitEditor::computeRedundantBackCopies(
955 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
956 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
957 LiveInterval *Parent = &Edit->getParent();
958 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
959 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
961 // Aggregate VNIs having the same value as ParentVNI.
962 for (VNInfo *VNI : LI->valnos) {
963 if (VNI->isUnused())
964 continue;
965 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
966 EqualVNs[ParentVNI->id].insert(VNI);
969 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
970 // redundant VNIs to BackCopies.
971 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
972 VNInfo *ParentVNI = Parent->getValNumInfo(i);
973 if (!NotToHoistSet.count(ParentVNI->id))
974 continue;
975 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
976 SmallPtrSetIterator<VNInfo *> It2 = It1;
977 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
978 It2 = It1;
979 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
980 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
981 continue;
983 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
984 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
985 if (MBB1 == MBB2) {
986 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
987 } else if (MDT.dominates(MBB1, MBB2)) {
988 DominatedVNIs.insert(*It2);
989 } else if (MDT.dominates(MBB2, MBB1)) {
990 DominatedVNIs.insert(*It1);
994 if (!DominatedVNIs.empty()) {
995 forceRecompute(0, *ParentVNI);
996 append_range(BackCopies, DominatedVNIs);
997 DominatedVNIs.clear();
1002 /// For SM_Size mode, find a common dominator for all the back-copies for
1003 /// the same ParentVNI and hoist the backcopies to the dominator BB.
1004 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1005 /// to do the hoisting, simply remove the dominated backcopies for the same
1006 /// ParentVNI.
1007 void SplitEditor::hoistCopies() {
1008 // Get the complement interval, always RegIdx 0.
1009 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1010 LiveInterval *Parent = &Edit->getParent();
1012 // Track the nearest common dominator for all back-copies for each ParentVNI,
1013 // indexed by ParentVNI->id.
1014 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1015 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1016 // The total cost of all the back-copies for each ParentVNI.
1017 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1018 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1019 // for Speed.
1020 DenseSet<unsigned> NotToHoistSet;
1022 // Find the nearest common dominator for parent values with multiple
1023 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1024 for (VNInfo *VNI : LI->valnos) {
1025 if (VNI->isUnused())
1026 continue;
1027 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1028 assert(ParentVNI && "Parent not live at complement def");
1030 // Don't hoist remats. The complement is probably going to disappear
1031 // completely anyway.
1032 if (Edit->didRematerialize(ParentVNI))
1033 continue;
1035 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1037 DomPair &Dom = NearestDom[ParentVNI->id];
1039 // Keep directly defined parent values. This is either a PHI or an
1040 // instruction in the complement range. All other copies of ParentVNI
1041 // should be eliminated.
1042 if (VNI->def == ParentVNI->def) {
1043 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1044 Dom = DomPair(ValMBB, VNI->def);
1045 continue;
1047 // Skip the singly mapped values. There is nothing to gain from hoisting a
1048 // single back-copy.
1049 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1050 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1051 continue;
1054 if (!Dom.first) {
1055 // First time we see ParentVNI. VNI dominates itself.
1056 Dom = DomPair(ValMBB, VNI->def);
1057 } else if (Dom.first == ValMBB) {
1058 // Two defs in the same block. Pick the earlier def.
1059 if (!Dom.second.isValid() || VNI->def < Dom.second)
1060 Dom.second = VNI->def;
1061 } else {
1062 // Different basic blocks. Check if one dominates.
1063 MachineBasicBlock *Near =
1064 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1065 if (Near == ValMBB)
1066 // Def ValMBB dominates.
1067 Dom = DomPair(ValMBB, VNI->def);
1068 else if (Near != Dom.first)
1069 // None dominate. Hoist to common dominator, need new def.
1070 Dom = DomPair(Near, SlotIndex());
1071 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1074 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1075 << VNI->def << " for parent " << ParentVNI->id << '@'
1076 << ParentVNI->def << " hoist to "
1077 << printMBBReference(*Dom.first) << ' ' << Dom.second
1078 << '\n');
1081 // Insert the hoisted copies.
1082 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1083 DomPair &Dom = NearestDom[i];
1084 if (!Dom.first || Dom.second.isValid())
1085 continue;
1086 // This value needs a hoisted copy inserted at the end of Dom.first.
1087 VNInfo *ParentVNI = Parent->getValNumInfo(i);
1088 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1089 // Get a less loopy dominator than Dom.first.
1090 Dom.first = findShallowDominator(Dom.first, DefMBB);
1091 if (SpillMode == SM_Speed &&
1092 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1093 NotToHoistSet.insert(ParentVNI->id);
1094 continue;
1096 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1097 if (LSP <= ParentVNI->def) {
1098 NotToHoistSet.insert(ParentVNI->id);
1099 continue;
1101 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1102 SA.getLastSplitPointIter(Dom.first))->def;
1105 // Remove redundant back-copies that are now known to be dominated by another
1106 // def with the same value.
1107 SmallVector<VNInfo*, 8> BackCopies;
1108 for (VNInfo *VNI : LI->valnos) {
1109 if (VNI->isUnused())
1110 continue;
1111 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1112 const DomPair &Dom = NearestDom[ParentVNI->id];
1113 if (!Dom.first || Dom.second == VNI->def ||
1114 NotToHoistSet.count(ParentVNI->id))
1115 continue;
1116 BackCopies.push_back(VNI);
1117 forceRecompute(0, *ParentVNI);
1120 // If it is not beneficial to hoist all the BackCopies, simply remove
1121 // redundant BackCopies in speed mode.
1122 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1123 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1125 removeBackCopies(BackCopies);
1128 /// transferValues - Transfer all possible values to the new live ranges.
1129 /// Values that were rematerialized are left alone, they need LICalc.extend().
1130 bool SplitEditor::transferValues() {
1131 bool Skipped = false;
1132 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1133 for (const LiveRange::Segment &S : Edit->getParent()) {
1134 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1135 VNInfo *ParentVNI = S.valno;
1136 // RegAssign has holes where RegIdx 0 should be used.
1137 SlotIndex Start = S.start;
1138 AssignI.advanceTo(Start);
1139 do {
1140 unsigned RegIdx;
1141 SlotIndex End = S.end;
1142 if (!AssignI.valid()) {
1143 RegIdx = 0;
1144 } else if (AssignI.start() <= Start) {
1145 RegIdx = AssignI.value();
1146 if (AssignI.stop() < End) {
1147 End = AssignI.stop();
1148 ++AssignI;
1150 } else {
1151 RegIdx = 0;
1152 End = std::min(End, AssignI.start());
1155 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1156 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1157 << printReg(Edit->get(RegIdx)) << ')');
1158 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1160 // Check for a simply defined value that can be blitted directly.
1161 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1162 if (VNInfo *VNI = VFP.getPointer()) {
1163 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1164 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1165 Start = End;
1166 continue;
1169 // Skip values with forced recomputation.
1170 if (VFP.getInt()) {
1171 LLVM_DEBUG(dbgs() << "(recalc)");
1172 Skipped = true;
1173 Start = End;
1174 continue;
1177 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1179 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1180 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1181 // LiveInBlocks.
1182 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1183 SlotIndex BlockStart, BlockEnd;
1184 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1186 // The first block may be live-in, or it may have its own def.
1187 if (Start != BlockStart) {
1188 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1189 assert(VNI && "Missing def for complex mapped value");
1190 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1191 // MBB has its own def. Is it also live-out?
1192 if (BlockEnd <= End)
1193 LIC.setLiveOutValue(&*MBB, VNI);
1195 // Skip to the next block for live-in.
1196 ++MBB;
1197 BlockStart = BlockEnd;
1200 // Handle the live-in blocks covered by [Start;End).
1201 assert(Start <= BlockStart && "Expected live-in block");
1202 while (BlockStart < End) {
1203 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1204 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1205 if (BlockStart == ParentVNI->def) {
1206 // This block has the def of a parent PHI, so it isn't live-in.
1207 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1208 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1209 assert(VNI && "Missing def for complex mapped parent PHI");
1210 if (End >= BlockEnd)
1211 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1212 } else {
1213 // This block needs a live-in value. The last block covered may not
1214 // be live-out.
1215 if (End < BlockEnd)
1216 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1217 else {
1218 // Live-through, and we don't know the value.
1219 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1220 LIC.setLiveOutValue(&*MBB, nullptr);
1223 BlockStart = BlockEnd;
1224 ++MBB;
1226 Start = End;
1227 } while (Start != S.end);
1228 LLVM_DEBUG(dbgs() << '\n');
1231 LICalc[0].calculateValues();
1232 if (SpillMode)
1233 LICalc[1].calculateValues();
1235 return Skipped;
1238 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1239 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1240 if (Seg == nullptr)
1241 return true;
1242 if (Seg->end != Def.getDeadSlot())
1243 return false;
1244 // This is a dead PHI. Remove it.
1245 LR.removeSegment(*Seg, true);
1246 return true;
1249 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1250 LiveRange &LR, LaneBitmask LM,
1251 ArrayRef<SlotIndex> Undefs) {
1252 for (MachineBasicBlock *P : B.predecessors()) {
1253 SlotIndex End = LIS.getMBBEndIdx(P);
1254 SlotIndex LastUse = End.getPrevSlot();
1255 // The predecessor may not have a live-out value. That is OK, like an
1256 // undef PHI operand.
1257 LiveInterval &PLI = Edit->getParent();
1258 // Need the cast because the inputs to ?: would otherwise be deemed
1259 // "incompatible": SubRange vs LiveInterval.
1260 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1261 : static_cast<LiveRange &>(PLI);
1262 if (PSR.liveAt(LastUse))
1263 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1267 void SplitEditor::extendPHIKillRanges() {
1268 // Extend live ranges to be live-out for successor PHI values.
1270 // Visit each PHI def slot in the parent live interval. If the def is dead,
1271 // remove it. Otherwise, extend the live interval to reach the end indexes
1272 // of all predecessor blocks.
1274 LiveInterval &ParentLI = Edit->getParent();
1275 for (const VNInfo *V : ParentLI.valnos) {
1276 if (V->isUnused() || !V->isPHIDef())
1277 continue;
1279 unsigned RegIdx = RegAssign.lookup(V->def);
1280 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1281 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1282 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1283 if (!removeDeadSegment(V->def, LI))
1284 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1287 SmallVector<SlotIndex, 4> Undefs;
1288 LiveIntervalCalc SubLIC;
1290 for (LiveInterval::SubRange &PS : ParentLI.subranges()) {
1291 for (const VNInfo *V : PS.valnos) {
1292 if (V->isUnused() || !V->isPHIDef())
1293 continue;
1294 unsigned RegIdx = RegAssign.lookup(V->def);
1295 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1296 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1297 if (removeDeadSegment(V->def, S))
1298 continue;
1300 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1301 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1302 &LIS.getVNInfoAllocator());
1303 Undefs.clear();
1304 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1305 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1310 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1311 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1312 struct ExtPoint {
1313 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1314 : MO(O), RegIdx(R), Next(N) {}
1316 MachineOperand MO;
1317 unsigned RegIdx;
1318 SlotIndex Next;
1321 SmallVector<ExtPoint,4> ExtPoints;
1323 for (MachineOperand &MO :
1324 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1325 MachineInstr *MI = MO.getParent();
1326 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1327 if (MI->isDebugValue()) {
1328 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1329 MO.setReg(0);
1330 continue;
1333 // <undef> operands don't really read the register, so it doesn't matter
1334 // which register we choose. When the use operand is tied to a def, we must
1335 // use the same register as the def, so just do that always.
1336 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1337 if (MO.isDef() || MO.isUndef())
1338 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1340 // Rewrite to the mapped register at Idx.
1341 unsigned RegIdx = RegAssign.lookup(Idx);
1342 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1343 MO.setReg(LI.reg());
1344 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1345 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1347 // Extend liveness to Idx if the instruction reads reg.
1348 if (!ExtendRanges || MO.isUndef())
1349 continue;
1351 // Skip instructions that don't read Reg.
1352 if (MO.isDef()) {
1353 if (!MO.getSubReg() && !MO.isEarlyClobber())
1354 continue;
1355 // We may want to extend a live range for a partial redef, or for a use
1356 // tied to an early clobber.
1357 Idx = Idx.getPrevSlot();
1358 if (!Edit->getParent().liveAt(Idx))
1359 continue;
1360 } else
1361 Idx = Idx.getRegSlot(true);
1363 SlotIndex Next = Idx.getNextSlot();
1364 if (LI.hasSubRanges()) {
1365 // We have to delay extending subranges until we have seen all operands
1366 // defining the register. This is because a <def,read-undef> operand
1367 // will create an "undef" point, and we cannot extend any subranges
1368 // until all of them have been accounted for.
1369 if (MO.isUse())
1370 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1371 } else {
1372 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1373 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1377 for (ExtPoint &EP : ExtPoints) {
1378 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1379 assert(LI.hasSubRanges());
1381 LiveIntervalCalc SubLIC;
1382 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1383 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1384 : MRI.getMaxLaneMaskForVReg(Reg);
1385 for (LiveInterval::SubRange &S : LI.subranges()) {
1386 if ((S.LaneMask & LM).none())
1387 continue;
1388 // The problem here can be that the new register may have been created
1389 // for a partially defined original register. For example:
1390 // %0:subreg_hireg<def,read-undef> = ...
1391 // ...
1392 // %1 = COPY %0
1393 if (S.empty())
1394 continue;
1395 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1396 &LIS.getVNInfoAllocator());
1397 SmallVector<SlotIndex, 4> Undefs;
1398 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1399 SubLIC.extend(S, EP.Next, 0, Undefs);
1403 for (Register R : *Edit) {
1404 LiveInterval &LI = LIS.getInterval(R);
1405 if (!LI.hasSubRanges())
1406 continue;
1407 LI.clear();
1408 LI.removeEmptySubRanges();
1409 LIS.constructMainRangeFromSubranges(LI);
1413 void SplitEditor::deleteRematVictims() {
1414 SmallVector<MachineInstr*, 8> Dead;
1415 for (const Register &R : *Edit) {
1416 LiveInterval *LI = &LIS.getInterval(R);
1417 for (const LiveRange::Segment &S : LI->segments) {
1418 // Dead defs end at the dead slot.
1419 if (S.end != S.valno->def.getDeadSlot())
1420 continue;
1421 if (S.valno->isPHIDef())
1422 continue;
1423 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1424 assert(MI && "Missing instruction for dead def");
1425 MI->addRegisterDead(LI->reg(), &TRI);
1427 if (!MI->allDefsAreDead())
1428 continue;
1430 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1431 Dead.push_back(MI);
1435 if (Dead.empty())
1436 return;
1438 Edit->eliminateDeadDefs(Dead, None, &AA);
1441 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1442 // Fast-path for common case.
1443 if (!ParentVNI.isPHIDef()) {
1444 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1445 forceRecompute(I, ParentVNI);
1446 return;
1449 // Trace value through phis.
1450 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1451 SmallVector<const VNInfo *, 4> WorkList;
1452 Visited.insert(&ParentVNI);
1453 WorkList.push_back(&ParentVNI);
1455 const LiveInterval &ParentLI = Edit->getParent();
1456 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1457 do {
1458 const VNInfo &VNI = *WorkList.back();
1459 WorkList.pop_back();
1460 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1461 forceRecompute(I, VNI);
1462 if (!VNI.isPHIDef())
1463 continue;
1465 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1466 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1467 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1468 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1469 assert(PredVNI && "Value available in PhiVNI predecessor");
1470 if (Visited.insert(PredVNI).second)
1471 WorkList.push_back(PredVNI);
1473 } while(!WorkList.empty());
1476 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1477 ++NumFinished;
1479 // At this point, the live intervals in Edit contain VNInfos corresponding to
1480 // the inserted copies.
1482 // Add the original defs from the parent interval.
1483 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1484 if (ParentVNI->isUnused())
1485 continue;
1486 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1487 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1489 // Force rematted values to be recomputed everywhere.
1490 // The new live ranges may be truncated.
1491 if (Edit->didRematerialize(ParentVNI))
1492 forceRecomputeVNI(*ParentVNI);
1495 // Hoist back-copies to the complement interval when in spill mode.
1496 switch (SpillMode) {
1497 case SM_Partition:
1498 // Leave all back-copies as is.
1499 break;
1500 case SM_Size:
1501 case SM_Speed:
1502 // hoistCopies will behave differently between size and speed.
1503 hoistCopies();
1506 // Transfer the simply mapped values, check if any are skipped.
1507 bool Skipped = transferValues();
1509 // Rewrite virtual registers, possibly extending ranges.
1510 rewriteAssigned(Skipped);
1512 if (Skipped)
1513 extendPHIKillRanges();
1514 else
1515 ++NumSimple;
1517 // Delete defs that were rematted everywhere.
1518 if (Skipped)
1519 deleteRematVictims();
1521 // Get rid of unused values and set phi-kill flags.
1522 for (Register Reg : *Edit) {
1523 LiveInterval &LI = LIS.getInterval(Reg);
1524 LI.removeEmptySubRanges();
1525 LI.RenumberValues();
1528 // Provide a reverse mapping from original indices to Edit ranges.
1529 if (LRMap) {
1530 LRMap->clear();
1531 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1532 LRMap->push_back(i);
1535 // Now check if any registers were separated into multiple components.
1536 ConnectedVNInfoEqClasses ConEQ(LIS);
1537 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1538 // Don't use iterators, they are invalidated by create() below.
1539 Register VReg = Edit->get(i);
1540 LiveInterval &LI = LIS.getInterval(VReg);
1541 SmallVector<LiveInterval*, 8> SplitLIs;
1542 LIS.splitSeparateComponents(LI, SplitLIs);
1543 Register Original = VRM.getOriginal(VReg);
1544 for (LiveInterval *SplitLI : SplitLIs)
1545 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1547 // The new intervals all map back to i.
1548 if (LRMap)
1549 LRMap->resize(Edit->size(), i);
1552 // Calculate spill weight and allocation hints for new intervals.
1553 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1555 assert(!LRMap || LRMap->size() == Edit->size());
1558 //===----------------------------------------------------------------------===//
1559 // Single Block Splitting
1560 //===----------------------------------------------------------------------===//
1562 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1563 bool SingleInstrs) const {
1564 // Always split for multiple instructions.
1565 if (!BI.isOneInstr())
1566 return true;
1567 // Don't split for single instructions unless explicitly requested.
1568 if (!SingleInstrs)
1569 return false;
1570 // Splitting a live-through range always makes progress.
1571 if (BI.LiveIn && BI.LiveOut)
1572 return true;
1573 // No point in isolating a copy. It has no register class constraints.
1574 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1575 return false;
1576 // Finally, don't isolate an end point that was created by earlier splits.
1577 return isOriginalEndpoint(BI.FirstInstr);
1580 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1581 openIntv();
1582 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1583 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1584 LastSplitPoint));
1585 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1586 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1587 } else {
1588 // The last use is after the last valid split point.
1589 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1590 useIntv(SegStart, SegStop);
1591 overlapIntv(SegStop, BI.LastInstr);
1595 //===----------------------------------------------------------------------===//
1596 // Global Live Range Splitting Support
1597 //===----------------------------------------------------------------------===//
1599 // These methods support a method of global live range splitting that uses a
1600 // global algorithm to decide intervals for CFG edges. They will insert split
1601 // points and color intervals in basic blocks while avoiding interference.
1603 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1604 // are on the stack.
1606 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1607 unsigned IntvIn, SlotIndex LeaveBefore,
1608 unsigned IntvOut, SlotIndex EnterAfter){
1609 SlotIndex Start, Stop;
1610 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1612 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1613 << ") intf " << LeaveBefore << '-' << EnterAfter
1614 << ", live-through " << IntvIn << " -> " << IntvOut);
1616 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1618 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1619 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1620 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1622 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1624 if (!IntvOut) {
1625 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1627 // <<<<<<<<< Possible LeaveBefore interference.
1628 // |-----------| Live through.
1629 // -____________ Spill on entry.
1631 selectIntv(IntvIn);
1632 SlotIndex Idx = leaveIntvAtTop(*MBB);
1633 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1634 (void)Idx;
1635 return;
1638 if (!IntvIn) {
1639 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1641 // >>>>>>> Possible EnterAfter interference.
1642 // |-----------| Live through.
1643 // ___________-- Reload on exit.
1645 selectIntv(IntvOut);
1646 SlotIndex Idx = enterIntvAtEnd(*MBB);
1647 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1648 (void)Idx;
1649 return;
1652 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1653 LLVM_DEBUG(dbgs() << ", straight through.\n");
1655 // |-----------| Live through.
1656 // ------------- Straight through, same intv, no interference.
1658 selectIntv(IntvOut);
1659 useIntv(Start, Stop);
1660 return;
1663 // We cannot legally insert splits after LSP.
1664 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1665 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1667 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1668 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1669 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1671 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1672 // |-----------| Live through.
1673 // ------======= Switch intervals between interference.
1675 selectIntv(IntvOut);
1676 SlotIndex Idx;
1677 if (LeaveBefore && LeaveBefore < LSP) {
1678 Idx = enterIntvBefore(LeaveBefore);
1679 useIntv(Idx, Stop);
1680 } else {
1681 Idx = enterIntvAtEnd(*MBB);
1683 selectIntv(IntvIn);
1684 useIntv(Start, Idx);
1685 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1686 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1687 return;
1690 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1692 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1693 // |-----------| Live through.
1694 // ==---------== Switch intervals before/after interference.
1696 assert(LeaveBefore <= EnterAfter && "Missed case");
1698 selectIntv(IntvOut);
1699 SlotIndex Idx = enterIntvAfter(EnterAfter);
1700 useIntv(Idx, Stop);
1701 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1703 selectIntv(IntvIn);
1704 Idx = leaveIntvBefore(LeaveBefore);
1705 useIntv(Start, Idx);
1706 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1709 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1710 unsigned IntvIn, SlotIndex LeaveBefore) {
1711 SlotIndex Start, Stop;
1712 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1714 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1715 << Stop << "), uses " << BI.FirstInstr << '-'
1716 << BI.LastInstr << ", reg-in " << IntvIn
1717 << ", leave before " << LeaveBefore
1718 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1720 assert(IntvIn && "Must have register in");
1721 assert(BI.LiveIn && "Must be live-in");
1722 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1724 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1725 LLVM_DEBUG(dbgs() << " before interference.\n");
1727 // <<< Interference after kill.
1728 // |---o---x | Killed in block.
1729 // ========= Use IntvIn everywhere.
1731 selectIntv(IntvIn);
1732 useIntv(Start, BI.LastInstr);
1733 return;
1736 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1738 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1740 // <<< Possible interference after last use.
1741 // |---o---o---| Live-out on stack.
1742 // =========____ Leave IntvIn after last use.
1744 // < Interference after last use.
1745 // |---o---o--o| Live-out on stack, late last use.
1746 // ============ Copy to stack after LSP, overlap IntvIn.
1747 // \_____ Stack interval is live-out.
1749 if (BI.LastInstr < LSP) {
1750 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1751 selectIntv(IntvIn);
1752 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1753 useIntv(Start, Idx);
1754 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1755 } else {
1756 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1757 selectIntv(IntvIn);
1758 SlotIndex Idx = leaveIntvBefore(LSP);
1759 overlapIntv(Idx, BI.LastInstr);
1760 useIntv(Start, Idx);
1761 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1763 return;
1766 // The interference is overlapping somewhere we wanted to use IntvIn. That
1767 // means we need to create a local interval that can be allocated a
1768 // different register.
1769 unsigned LocalIntv = openIntv();
1770 (void)LocalIntv;
1771 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1773 if (!BI.LiveOut || BI.LastInstr < LSP) {
1775 // <<<<<<< Interference overlapping uses.
1776 // |---o---o---| Live-out on stack.
1777 // =====----____ Leave IntvIn before interference, then spill.
1779 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1780 SlotIndex From = enterIntvBefore(LeaveBefore);
1781 useIntv(From, To);
1782 selectIntv(IntvIn);
1783 useIntv(Start, From);
1784 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1785 return;
1788 // <<<<<<< Interference overlapping uses.
1789 // |---o---o--o| Live-out on stack, late last use.
1790 // =====------- Copy to stack before LSP, overlap LocalIntv.
1791 // \_____ Stack interval is live-out.
1793 SlotIndex To = leaveIntvBefore(LSP);
1794 overlapIntv(To, BI.LastInstr);
1795 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1796 useIntv(From, To);
1797 selectIntv(IntvIn);
1798 useIntv(Start, From);
1799 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1802 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1803 unsigned IntvOut, SlotIndex EnterAfter) {
1804 SlotIndex Start, Stop;
1805 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1807 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1808 << Stop << "), uses " << BI.FirstInstr << '-'
1809 << BI.LastInstr << ", reg-out " << IntvOut
1810 << ", enter after " << EnterAfter
1811 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1813 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1815 assert(IntvOut && "Must have register out");
1816 assert(BI.LiveOut && "Must be live-out");
1817 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1819 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1820 LLVM_DEBUG(dbgs() << " after interference.\n");
1822 // >>>> Interference before def.
1823 // | o---o---| Defined in block.
1824 // ========= Use IntvOut everywhere.
1826 selectIntv(IntvOut);
1827 useIntv(BI.FirstInstr, Stop);
1828 return;
1831 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1832 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1834 // >>>> Interference before def.
1835 // |---o---o---| Live-through, stack-in.
1836 // ____========= Enter IntvOut before first use.
1838 selectIntv(IntvOut);
1839 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1840 useIntv(Idx, Stop);
1841 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1842 return;
1845 // The interference is overlapping somewhere we wanted to use IntvOut. That
1846 // means we need to create a local interval that can be allocated a
1847 // different register.
1848 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1850 // >>>>>>> Interference overlapping uses.
1851 // |---o---o---| Live-through, stack-in.
1852 // ____---====== Create local interval for interference range.
1854 selectIntv(IntvOut);
1855 SlotIndex Idx = enterIntvAfter(EnterAfter);
1856 useIntv(Idx, Stop);
1857 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1859 openIntv();
1860 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1861 useIntv(From, Idx);
1864 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1865 OS << "{" << printMBBReference(*MBB) << ", "
1866 << "uses " << FirstInstr << " to " << LastInstr << ", "
1867 << "1st def " << FirstDef << ", "
1868 << (LiveIn ? "live in" : "dead in") << ", "
1869 << (LiveOut ? "live out" : "dead out") << "}";
1872 void SplitAnalysis::BlockInfo::dump() const {
1873 print(dbgs());
1874 dbgs() << "\n";