[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / StackColoring.cpp
blob162f3aab024d44a202d8074d87b6153672824dbb
1 //===- StackColoring.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the stack-coloring optimization that looks for
10 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
11 // which represent the possible lifetime of stack slots. It attempts to
12 // merge disjoint stack slots and reduce the used stack space.
13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 // TODO: In the future we plan to improve stack coloring in the following ways:
16 // 1. Allow merging multiple small slots into a single larger slot at different
17 // offsets.
18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
19 // spill slots.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/SmallPtrSet.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/CodeGen/LiveInterval.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineMemOperand.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/Passes.h"
39 #include "llvm/CodeGen/SelectionDAGNodes.h"
40 #include "llvm/CodeGen/SlotIndexes.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/WinEHFuncInfo.h"
43 #include "llvm/Config/llvm-config.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/IR/Function.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Metadata.h"
49 #include "llvm/IR/Use.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/InitializePasses.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Compiler.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include <algorithm>
59 #include <cassert>
60 #include <limits>
61 #include <memory>
62 #include <utility>
64 using namespace llvm;
66 #define DEBUG_TYPE "stack-coloring"
68 static cl::opt<bool>
69 DisableColoring("no-stack-coloring",
70 cl::init(false), cl::Hidden,
71 cl::desc("Disable stack coloring"));
73 /// The user may write code that uses allocas outside of the declared lifetime
74 /// zone. This can happen when the user returns a reference to a local
75 /// data-structure. We can detect these cases and decide not to optimize the
76 /// code. If this flag is enabled, we try to save the user. This option
77 /// is treated as overriding LifetimeStartOnFirstUse below.
78 static cl::opt<bool>
79 ProtectFromEscapedAllocas("protect-from-escaped-allocas",
80 cl::init(false), cl::Hidden,
81 cl::desc("Do not optimize lifetime zones that "
82 "are broken"));
84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first
85 /// use of stack slot as start of slot lifetime, as opposed to looking
86 /// for LIFETIME_START marker). See "Implementation notes" below for
87 /// more info.
88 static cl::opt<bool>
89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use",
90 cl::init(true), cl::Hidden,
91 cl::desc("Treat stack lifetimes as starting on first use, not on START marker."));
94 STATISTIC(NumMarkerSeen, "Number of lifetime markers found.");
95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
96 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region");
99 //===----------------------------------------------------------------------===//
100 // StackColoring Pass
101 //===----------------------------------------------------------------------===//
103 // Stack Coloring reduces stack usage by merging stack slots when they
104 // can't be used together. For example, consider the following C program:
106 // void bar(char *, int);
107 // void foo(bool var) {
108 // A: {
109 // char z[4096];
110 // bar(z, 0);
111 // }
113 // char *p;
114 // char x[4096];
115 // char y[4096];
116 // if (var) {
117 // p = x;
118 // } else {
119 // bar(y, 1);
120 // p = y + 1024;
121 // }
122 // B:
123 // bar(p, 2);
124 // }
126 // Naively-compiled, this program would use 12k of stack space. However, the
127 // stack slot corresponding to `z` is always destroyed before either of the
128 // stack slots for `x` or `y` are used, and then `x` is only used if `var`
129 // is true, while `y` is only used if `var` is false. So in no time are 2
130 // of the stack slots used together, and therefore we can merge them,
131 // compiling the function using only a single 4k alloca:
133 // void foo(bool var) { // equivalent
134 // char x[4096];
135 // char *p;
136 // bar(x, 0);
137 // if (var) {
138 // p = x;
139 // } else {
140 // bar(x, 1);
141 // p = x + 1024;
142 // }
143 // bar(p, 2);
144 // }
146 // This is an important optimization if we want stack space to be under
147 // control in large functions, both open-coded ones and ones created by
148 // inlining.
150 // Implementation Notes:
151 // ---------------------
153 // An important part of the above reasoning is that `z` can't be accessed
154 // while the latter 2 calls to `bar` are running. This is justified because
155 // `z`'s lifetime is over after we exit from block `A:`, so any further
156 // accesses to it would be UB. The way we represent this information
157 // in LLVM is by having frontends delimit blocks with `lifetime.start`
158 // and `lifetime.end` intrinsics.
160 // The effect of these intrinsics seems to be as follows (maybe I should
161 // specify this in the reference?):
163 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no
164 // lifetime intrinsic refers to that stack slot, in which case
165 // it is marked as *in-scope*.
166 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and
167 // the stack slot is overwritten with `undef`.
168 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*.
169 // L4) on function exit, all stack slots are marked as *out-of-scope*.
170 // L5) `lifetime.end` is a no-op when called on a slot that is already
171 // *out-of-scope*.
172 // L6) memory accesses to *out-of-scope* stack slots are UB.
173 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it
174 // are invalidated, unless the slot is "degenerate". This is used to
175 // justify not marking slots as in-use until the pointer to them is
176 // used, but feels a bit hacky in the presence of things like LICM. See
177 // the "Degenerate Slots" section for more details.
179 // Now, let's ground stack coloring on these rules. We'll define a slot
180 // as *in-use* at a (dynamic) point in execution if it either can be
181 // written to at that point, or if it has a live and non-undef content
182 // at that point.
184 // Obviously, slots that are never *in-use* together can be merged, and
185 // in our example `foo`, the slots for `x`, `y` and `z` are never
186 // in-use together (of course, sometimes slots that *are* in-use together
187 // might still be mergable, but we don't care about that here).
189 // In this implementation, we successively merge pairs of slots that are
190 // not *in-use* together. We could be smarter - for example, we could merge
191 // a single large slot with 2 small slots, or we could construct the
192 // interference graph and run a "smart" graph coloring algorithm, but with
193 // that aside, how do we find out whether a pair of slots might be *in-use*
194 // together?
196 // From our rules, we see that *out-of-scope* slots are never *in-use*,
197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use*
198 // until their address is taken. Therefore, we can approximate slot activity
199 // using dataflow.
201 // A subtle point: naively, we might try to figure out which pairs of
202 // stack-slots interfere by propagating `S in-use` through the CFG for every
203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in
204 // which they are both *in-use*.
206 // That is sound, but overly conservative in some cases: in our (artificial)
207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but
208 // as `x` is only in use if we came in from the `var` edge and `y` only
209 // if we came from the `!var` edge, they still can't be in use together.
210 // See PR32488 for an important real-life case.
212 // If we wanted to find all points of interference precisely, we could
213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That
214 // would be precise, but requires propagating `O(n^2)` dataflow facts.
216 // However, we aren't interested in the *set* of points of interference
217 // between 2 stack slots, only *whether* there *is* such a point. So we
218 // can rely on a little trick: for `S` and `T` to be in-use together,
219 // one of them needs to become in-use while the other is in-use (or
220 // they might both become in use simultaneously). We can check this
221 // by also keeping track of the points at which a stack slot might *start*
222 // being in-use.
224 // Exact first use:
225 // ----------------
227 // Consider the following motivating example:
229 // int foo() {
230 // char b1[1024], b2[1024];
231 // if (...) {
232 // char b3[1024];
233 // <uses of b1, b3>;
234 // return x;
235 // } else {
236 // char b4[1024], b5[1024];
237 // <uses of b2, b4, b5>;
238 // return y;
239 // }
240 // }
242 // In the code above, "b3" and "b4" are declared in distinct lexical
243 // scopes, meaning that it is easy to prove that they can share the
244 // same stack slot. Variables "b1" and "b2" are declared in the same
245 // scope, meaning that from a lexical point of view, their lifetimes
246 // overlap. From a control flow pointer of view, however, the two
247 // variables are accessed in disjoint regions of the CFG, thus it
248 // should be possible for them to share the same stack slot. An ideal
249 // stack allocation for the function above would look like:
251 // slot 0: b1, b2
252 // slot 1: b3, b4
253 // slot 2: b5
255 // Achieving this allocation is tricky, however, due to the way
256 // lifetime markers are inserted. Here is a simplified view of the
257 // control flow graph for the code above:
259 // +------ block 0 -------+
260 // 0| LIFETIME_START b1, b2 |
261 // 1| <test 'if' condition> |
262 // +-----------------------+
263 // ./ \.
264 // +------ block 1 -------+ +------ block 2 -------+
265 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 |
266 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> |
267 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 |
268 // +-----------------------+ +-----------------------+
269 // \. /.
270 // +------ block 3 -------+
271 // 8| <cleanupcode> |
272 // 9| LIFETIME_END b1, b2 |
273 // 10| return |
274 // +-----------------------+
276 // If we create live intervals for the variables above strictly based
277 // on the lifetime markers, we'll get the set of intervals on the
278 // left. If we ignore the lifetime start markers and instead treat a
279 // variable's lifetime as beginning with the first reference to the
280 // var, then we get the intervals on the right.
282 // LIFETIME_START First Use
283 // b1: [0,9] [3,4] [8,9]
284 // b2: [0,9] [6,9]
285 // b3: [2,4] [3,4]
286 // b4: [5,7] [6,7]
287 // b5: [5,7] [6,7]
289 // For the intervals on the left, the best we can do is overlap two
290 // variables (b3 and b4, for example); this gives us a stack size of
291 // 4*1024 bytes, not ideal. When treating first-use as the start of a
292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024
293 // byte stack (better).
295 // Degenerate Slots:
296 // -----------------
298 // Relying entirely on first-use of stack slots is problematic,
299 // however, due to the fact that optimizations can sometimes migrate
300 // uses of a variable outside of its lifetime start/end region. Here
301 // is an example:
303 // int bar() {
304 // char b1[1024], b2[1024];
305 // if (...) {
306 // <uses of b2>
307 // return y;
308 // } else {
309 // <uses of b1>
310 // while (...) {
311 // char b3[1024];
312 // <uses of b3>
313 // }
314 // }
315 // }
317 // Before optimization, the control flow graph for the code above
318 // might look like the following:
320 // +------ block 0 -------+
321 // 0| LIFETIME_START b1, b2 |
322 // 1| <test 'if' condition> |
323 // +-----------------------+
324 // ./ \.
325 // +------ block 1 -------+ +------- block 2 -------+
326 // 2| <uses of b2> | 3| <uses of b1> |
327 // +-----------------------+ +-----------------------+
328 // | |
329 // | +------- block 3 -------+ <-\.
330 // | 4| <while condition> | |
331 // | +-----------------------+ |
332 // | / | |
333 // | / +------- block 4 -------+
334 // \ / 5| LIFETIME_START b3 | |
335 // \ / 6| <uses of b3> | |
336 // \ / 7| LIFETIME_END b3 | |
337 // \ | +------------------------+ |
338 // \ | \ /
339 // +------ block 5 -----+ \---------------
340 // 8| <cleanupcode> |
341 // 9| LIFETIME_END b1, b2 |
342 // 10| return |
343 // +---------------------+
345 // During optimization, however, it can happen that an instruction
346 // computing an address in "b3" (for example, a loop-invariant GEP) is
347 // hoisted up out of the loop from block 4 to block 2. [Note that
348 // this is not an actual load from the stack, only an instruction that
349 // computes the address to be loaded]. If this happens, there is now a
350 // path leading from the first use of b3 to the return instruction
351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is
352 // now larger than if we were computing live intervals strictly based
353 // on lifetime markers. In the example above, this lengthened lifetime
354 // would mean that it would appear illegal to overlap b3 with b2.
356 // To deal with this such cases, the code in ::collectMarkers() below
357 // tries to identify "degenerate" slots -- those slots where on a single
358 // forward pass through the CFG we encounter a first reference to slot
359 // K before we hit the slot K lifetime start marker. For such slots,
360 // we fall back on using the lifetime start marker as the beginning of
361 // the variable's lifetime. NB: with this implementation, slots can
362 // appear degenerate in cases where there is unstructured control flow:
364 // if (q) goto mid;
365 // if (x > 9) {
366 // int b[100];
367 // memcpy(&b[0], ...);
368 // mid: b[k] = ...;
369 // abc(&b);
370 // }
372 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k]
373 // before visiting the memcpy block (which will contain the lifetime start
374 // for "b" then it will appear that 'b' has a degenerate lifetime.
376 // Handle Windows Exception with LifetimeStartOnFirstUse:
377 // -----------------
379 // There was a bug for using LifetimeStartOnFirstUse in win32.
380 // class Type1 {
381 // ...
382 // ~Type1(){ write memory;}
383 // }
384 // ...
385 // try{
386 // Type1 V
387 // ...
388 // } catch (Type2 X){
389 // ...
390 // }
391 // For variable X in catch(X), we put point pX=&(&X) into ConservativeSlots
392 // to prevent using LifetimeStartOnFirstUse. Because pX may merged with
393 // object V which may call destructor after implicitly writing pX. All these
394 // are done in C++ EH runtime libs (through CxxThrowException), and can't
395 // obviously check it in IR level.
397 // The loader of pX, without obvious writing IR, is usually the first LOAD MI
398 // in EHPad, Some like:
399 // bb.x.catch.i (landing-pad, ehfunclet-entry):
400 // ; predecessors: %bb...
401 // successors: %bb...
402 // %n:gr32 = MOV32rm %stack.pX ...
403 // ...
404 // The Type2** %stack.pX will only be written in EH runtime libs, so we
405 // check the StoreSlots to screen it out.
407 namespace {
409 /// StackColoring - A machine pass for merging disjoint stack allocations,
410 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
411 class StackColoring : public MachineFunctionPass {
412 MachineFrameInfo *MFI;
413 MachineFunction *MF;
415 /// A class representing liveness information for a single basic block.
416 /// Each bit in the BitVector represents the liveness property
417 /// for a different stack slot.
418 struct BlockLifetimeInfo {
419 /// Which slots BEGINs in each basic block.
420 BitVector Begin;
422 /// Which slots ENDs in each basic block.
423 BitVector End;
425 /// Which slots are marked as LIVE_IN, coming into each basic block.
426 BitVector LiveIn;
428 /// Which slots are marked as LIVE_OUT, coming out of each basic block.
429 BitVector LiveOut;
432 /// Maps active slots (per bit) for each basic block.
433 using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>;
434 LivenessMap BlockLiveness;
436 /// Maps serial numbers to basic blocks.
437 DenseMap<const MachineBasicBlock *, int> BasicBlocks;
439 /// Maps basic blocks to a serial number.
440 SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering;
442 /// Maps slots to their use interval. Outside of this interval, slots
443 /// values are either dead or `undef` and they will not be written to.
444 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals;
446 /// Maps slots to the points where they can become in-use.
447 SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts;
449 /// VNInfo is used for the construction of LiveIntervals.
450 VNInfo::Allocator VNInfoAllocator;
452 /// SlotIndex analysis object.
453 SlotIndexes *Indexes;
455 /// The list of lifetime markers found. These markers are to be removed
456 /// once the coloring is done.
457 SmallVector<MachineInstr*, 8> Markers;
459 /// Record the FI slots for which we have seen some sort of
460 /// lifetime marker (either start or end).
461 BitVector InterestingSlots;
463 /// FI slots that need to be handled conservatively (for these
464 /// slots lifetime-start-on-first-use is disabled).
465 BitVector ConservativeSlots;
467 /// Record the FI slots referenced by a 'may write to memory'.
468 BitVector StoreSlots;
470 /// Number of iterations taken during data flow analysis.
471 unsigned NumIterations;
473 public:
474 static char ID;
476 StackColoring() : MachineFunctionPass(ID) {
477 initializeStackColoringPass(*PassRegistry::getPassRegistry());
480 void getAnalysisUsage(AnalysisUsage &AU) const override;
481 bool runOnMachineFunction(MachineFunction &Func) override;
483 private:
484 /// Used in collectMarkers
485 using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>;
487 /// Debug.
488 void dump() const;
489 void dumpIntervals() const;
490 void dumpBB(MachineBasicBlock *MBB) const;
491 void dumpBV(const char *tag, const BitVector &BV) const;
493 /// Removes all of the lifetime marker instructions from the function.
494 /// \returns true if any markers were removed.
495 bool removeAllMarkers();
497 /// Scan the machine function and find all of the lifetime markers.
498 /// Record the findings in the BEGIN and END vectors.
499 /// \returns the number of markers found.
500 unsigned collectMarkers(unsigned NumSlot);
502 /// Perform the dataflow calculation and calculate the lifetime for each of
503 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
504 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
505 /// in and out blocks.
506 void calculateLocalLiveness();
508 /// Returns TRUE if we're using the first-use-begins-lifetime method for
509 /// this slot (if FALSE, then the start marker is treated as start of lifetime).
510 bool applyFirstUse(int Slot) {
511 if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas)
512 return false;
513 if (ConservativeSlots.test(Slot))
514 return false;
515 return true;
518 /// Examines the specified instruction and returns TRUE if the instruction
519 /// represents the start or end of an interesting lifetime. The slot or slots
520 /// starting or ending are added to the vector "slots" and "isStart" is set
521 /// accordingly.
522 /// \returns True if inst contains a lifetime start or end
523 bool isLifetimeStartOrEnd(const MachineInstr &MI,
524 SmallVector<int, 4> &slots,
525 bool &isStart);
527 /// Construct the LiveIntervals for the slots.
528 void calculateLiveIntervals(unsigned NumSlots);
530 /// Go over the machine function and change instructions which use stack
531 /// slots to use the joint slots.
532 void remapInstructions(DenseMap<int, int> &SlotRemap);
534 /// The input program may contain instructions which are not inside lifetime
535 /// markers. This can happen due to a bug in the compiler or due to a bug in
536 /// user code (for example, returning a reference to a local variable).
537 /// This procedure checks all of the instructions in the function and
538 /// invalidates lifetime ranges which do not contain all of the instructions
539 /// which access that frame slot.
540 void removeInvalidSlotRanges();
542 /// Map entries which point to other entries to their destination.
543 /// A->B->C becomes A->C.
544 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
547 } // end anonymous namespace
549 char StackColoring::ID = 0;
551 char &llvm::StackColoringID = StackColoring::ID;
553 INITIALIZE_PASS_BEGIN(StackColoring, DEBUG_TYPE,
554 "Merge disjoint stack slots", false, false)
555 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
556 INITIALIZE_PASS_END(StackColoring, DEBUG_TYPE,
557 "Merge disjoint stack slots", false, false)
559 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
560 AU.addRequired<SlotIndexes>();
561 MachineFunctionPass::getAnalysisUsage(AU);
564 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
565 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag,
566 const BitVector &BV) const {
567 dbgs() << tag << " : { ";
568 for (unsigned I = 0, E = BV.size(); I != E; ++I)
569 dbgs() << BV.test(I) << " ";
570 dbgs() << "}\n";
573 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const {
574 LivenessMap::const_iterator BI = BlockLiveness.find(MBB);
575 assert(BI != BlockLiveness.end() && "Block not found");
576 const BlockLifetimeInfo &BlockInfo = BI->second;
578 dumpBV("BEGIN", BlockInfo.Begin);
579 dumpBV("END", BlockInfo.End);
580 dumpBV("LIVE_IN", BlockInfo.LiveIn);
581 dumpBV("LIVE_OUT", BlockInfo.LiveOut);
584 LLVM_DUMP_METHOD void StackColoring::dump() const {
585 for (MachineBasicBlock *MBB : depth_first(MF)) {
586 dbgs() << "Inspecting block #" << MBB->getNumber() << " ["
587 << MBB->getName() << "]\n";
588 dumpBB(MBB);
592 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const {
593 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) {
594 dbgs() << "Interval[" << I << "]:\n";
595 Intervals[I]->dump();
598 #endif
600 static inline int getStartOrEndSlot(const MachineInstr &MI)
602 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START ||
603 MI.getOpcode() == TargetOpcode::LIFETIME_END) &&
604 "Expected LIFETIME_START or LIFETIME_END op");
605 const MachineOperand &MO = MI.getOperand(0);
606 int Slot = MO.getIndex();
607 if (Slot >= 0)
608 return Slot;
609 return -1;
612 // At the moment the only way to end a variable lifetime is with
613 // a VARIABLE_LIFETIME op (which can't contain a start). If things
614 // change and the IR allows for a single inst that both begins
615 // and ends lifetime(s), this interface will need to be reworked.
616 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI,
617 SmallVector<int, 4> &slots,
618 bool &isStart) {
619 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
620 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
621 int Slot = getStartOrEndSlot(MI);
622 if (Slot < 0)
623 return false;
624 if (!InterestingSlots.test(Slot))
625 return false;
626 slots.push_back(Slot);
627 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) {
628 isStart = false;
629 return true;
631 if (!applyFirstUse(Slot)) {
632 isStart = true;
633 return true;
635 } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) {
636 if (!MI.isDebugInstr()) {
637 bool found = false;
638 for (const MachineOperand &MO : MI.operands()) {
639 if (!MO.isFI())
640 continue;
641 int Slot = MO.getIndex();
642 if (Slot<0)
643 continue;
644 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) {
645 slots.push_back(Slot);
646 found = true;
649 if (found) {
650 isStart = true;
651 return true;
655 return false;
658 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
659 unsigned MarkersFound = 0;
660 BlockBitVecMap SeenStartMap;
661 InterestingSlots.clear();
662 InterestingSlots.resize(NumSlot);
663 ConservativeSlots.clear();
664 ConservativeSlots.resize(NumSlot);
665 StoreSlots.clear();
666 StoreSlots.resize(NumSlot);
668 // number of start and end lifetime ops for each slot
669 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0);
670 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0);
671 SmallVector<int, 8> NumLoadInCatchPad(NumSlot, 0);
673 // Step 1: collect markers and populate the "InterestingSlots"
674 // and "ConservativeSlots" sets.
675 for (MachineBasicBlock *MBB : depth_first(MF)) {
676 // Compute the set of slots for which we've seen a START marker but have
677 // not yet seen an END marker at this point in the walk (e.g. on entry
678 // to this bb).
679 BitVector BetweenStartEnd;
680 BetweenStartEnd.resize(NumSlot);
681 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
682 BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred);
683 if (I != SeenStartMap.end()) {
684 BetweenStartEnd |= I->second;
688 // Walk the instructions in the block to look for start/end ops.
689 for (MachineInstr &MI : *MBB) {
690 if (MI.getOpcode() == TargetOpcode::LIFETIME_START ||
691 MI.getOpcode() == TargetOpcode::LIFETIME_END) {
692 int Slot = getStartOrEndSlot(MI);
693 if (Slot < 0)
694 continue;
695 InterestingSlots.set(Slot);
696 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) {
697 BetweenStartEnd.set(Slot);
698 NumStartLifetimes[Slot] += 1;
699 } else {
700 BetweenStartEnd.reset(Slot);
701 NumEndLifetimes[Slot] += 1;
703 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
704 if (Allocation) {
705 LLVM_DEBUG(dbgs() << "Found a lifetime ");
706 LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START
707 ? "start"
708 : "end"));
709 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot);
710 LLVM_DEBUG(dbgs()
711 << " with allocation: " << Allocation->getName() << "\n");
713 Markers.push_back(&MI);
714 MarkersFound += 1;
715 } else {
716 for (const MachineOperand &MO : MI.operands()) {
717 if (!MO.isFI())
718 continue;
719 int Slot = MO.getIndex();
720 if (Slot < 0)
721 continue;
722 if (! BetweenStartEnd.test(Slot)) {
723 ConservativeSlots.set(Slot);
725 // Here we check the StoreSlots to screen catch point out. For more
726 // information, please refer "Handle Windows Exception with
727 // LifetimeStartOnFirstUse" at the head of this file.
728 if (MI.mayStore())
729 StoreSlots.set(Slot);
730 if (MF->getWinEHFuncInfo() && MBB->isEHPad() && MI.mayLoad())
731 NumLoadInCatchPad[Slot] += 1;
735 BitVector &SeenStart = SeenStartMap[MBB];
736 SeenStart |= BetweenStartEnd;
738 if (!MarkersFound) {
739 return 0;
742 // 1) PR27903: slots with multiple start or end lifetime ops are not
743 // safe to enable for "lifetime-start-on-first-use".
744 // 2) And also not safe for variable X in catch(X) in windows.
745 for (unsigned slot = 0; slot < NumSlot; ++slot) {
746 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1 ||
747 (NumLoadInCatchPad[slot] > 1 && !StoreSlots.test(slot)))
748 ConservativeSlots.set(slot);
750 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots));
752 // Step 2: compute begin/end sets for each block
754 // NOTE: We use a depth-first iteration to ensure that we obtain a
755 // deterministic numbering.
756 for (MachineBasicBlock *MBB : depth_first(MF)) {
757 // Assign a serial number to this basic block.
758 BasicBlocks[MBB] = BasicBlockNumbering.size();
759 BasicBlockNumbering.push_back(MBB);
761 // Keep a reference to avoid repeated lookups.
762 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB];
764 BlockInfo.Begin.resize(NumSlot);
765 BlockInfo.End.resize(NumSlot);
767 SmallVector<int, 4> slots;
768 for (MachineInstr &MI : *MBB) {
769 bool isStart = false;
770 slots.clear();
771 if (isLifetimeStartOrEnd(MI, slots, isStart)) {
772 if (!isStart) {
773 assert(slots.size() == 1 && "unexpected: MI ends multiple slots");
774 int Slot = slots[0];
775 if (BlockInfo.Begin.test(Slot)) {
776 BlockInfo.Begin.reset(Slot);
778 BlockInfo.End.set(Slot);
779 } else {
780 for (auto Slot : slots) {
781 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot);
782 LLVM_DEBUG(dbgs()
783 << " at " << printMBBReference(*MBB) << " index ");
784 LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs()));
785 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot);
786 if (Allocation) {
787 LLVM_DEBUG(dbgs()
788 << " with allocation: " << Allocation->getName());
790 LLVM_DEBUG(dbgs() << "\n");
791 if (BlockInfo.End.test(Slot)) {
792 BlockInfo.End.reset(Slot);
794 BlockInfo.Begin.set(Slot);
801 // Update statistics.
802 NumMarkerSeen += MarkersFound;
803 return MarkersFound;
806 void StackColoring::calculateLocalLiveness() {
807 unsigned NumIters = 0;
808 bool changed = true;
809 while (changed) {
810 changed = false;
811 ++NumIters;
813 for (const MachineBasicBlock *BB : BasicBlockNumbering) {
814 // Use an iterator to avoid repeated lookups.
815 LivenessMap::iterator BI = BlockLiveness.find(BB);
816 assert(BI != BlockLiveness.end() && "Block not found");
817 BlockLifetimeInfo &BlockInfo = BI->second;
819 // Compute LiveIn by unioning together the LiveOut sets of all preds.
820 BitVector LocalLiveIn;
821 for (MachineBasicBlock *Pred : BB->predecessors()) {
822 LivenessMap::const_iterator I = BlockLiveness.find(Pred);
823 // PR37130: transformations prior to stack coloring can
824 // sometimes leave behind statically unreachable blocks; these
825 // can be safely skipped here.
826 if (I != BlockLiveness.end())
827 LocalLiveIn |= I->second.LiveOut;
830 // Compute LiveOut by subtracting out lifetimes that end in this
831 // block, then adding in lifetimes that begin in this block. If
832 // we have both BEGIN and END markers in the same basic block
833 // then we know that the BEGIN marker comes after the END,
834 // because we already handle the case where the BEGIN comes
835 // before the END when collecting the markers (and building the
836 // BEGIN/END vectors).
837 BitVector LocalLiveOut = LocalLiveIn;
838 LocalLiveOut.reset(BlockInfo.End);
839 LocalLiveOut |= BlockInfo.Begin;
841 // Update block LiveIn set, noting whether it has changed.
842 if (LocalLiveIn.test(BlockInfo.LiveIn)) {
843 changed = true;
844 BlockInfo.LiveIn |= LocalLiveIn;
847 // Update block LiveOut set, noting whether it has changed.
848 if (LocalLiveOut.test(BlockInfo.LiveOut)) {
849 changed = true;
850 BlockInfo.LiveOut |= LocalLiveOut;
853 } // while changed.
855 NumIterations = NumIters;
858 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
859 SmallVector<SlotIndex, 16> Starts;
860 SmallVector<bool, 16> DefinitelyInUse;
862 // For each block, find which slots are active within this block
863 // and update the live intervals.
864 for (const MachineBasicBlock &MBB : *MF) {
865 Starts.clear();
866 Starts.resize(NumSlots);
867 DefinitelyInUse.clear();
868 DefinitelyInUse.resize(NumSlots);
870 // Start the interval of the slots that we previously found to be 'in-use'.
871 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB];
872 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1;
873 pos = MBBLiveness.LiveIn.find_next(pos)) {
874 Starts[pos] = Indexes->getMBBStartIdx(&MBB);
877 // Create the interval for the basic blocks containing lifetime begin/end.
878 for (const MachineInstr &MI : MBB) {
879 SmallVector<int, 4> slots;
880 bool IsStart = false;
881 if (!isLifetimeStartOrEnd(MI, slots, IsStart))
882 continue;
883 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI);
884 for (auto Slot : slots) {
885 if (IsStart) {
886 // If a slot is already definitely in use, we don't have to emit
887 // a new start marker because there is already a pre-existing
888 // one.
889 if (!DefinitelyInUse[Slot]) {
890 LiveStarts[Slot].push_back(ThisIndex);
891 DefinitelyInUse[Slot] = true;
893 if (!Starts[Slot].isValid())
894 Starts[Slot] = ThisIndex;
895 } else {
896 if (Starts[Slot].isValid()) {
897 VNInfo *VNI = Intervals[Slot]->getValNumInfo(0);
898 Intervals[Slot]->addSegment(
899 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI));
900 Starts[Slot] = SlotIndex(); // Invalidate the start index
901 DefinitelyInUse[Slot] = false;
907 // Finish up started segments
908 for (unsigned i = 0; i < NumSlots; ++i) {
909 if (!Starts[i].isValid())
910 continue;
912 SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB);
913 VNInfo *VNI = Intervals[i]->getValNumInfo(0);
914 Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI));
919 bool StackColoring::removeAllMarkers() {
920 unsigned Count = 0;
921 for (MachineInstr *MI : Markers) {
922 MI->eraseFromParent();
923 Count++;
925 Markers.clear();
927 LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n");
928 return Count;
931 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
932 unsigned FixedInstr = 0;
933 unsigned FixedMemOp = 0;
934 unsigned FixedDbg = 0;
936 // Remap debug information that refers to stack slots.
937 for (auto &VI : MF->getVariableDbgInfo()) {
938 if (!VI.Var)
939 continue;
940 if (SlotRemap.count(VI.Slot)) {
941 LLVM_DEBUG(dbgs() << "Remapping debug info for ["
942 << cast<DILocalVariable>(VI.Var)->getName() << "].\n");
943 VI.Slot = SlotRemap[VI.Slot];
944 FixedDbg++;
948 // Keep a list of *allocas* which need to be remapped.
949 DenseMap<const AllocaInst*, const AllocaInst*> Allocas;
951 // Keep a list of allocas which has been affected by the remap.
952 SmallPtrSet<const AllocaInst*, 32> MergedAllocas;
954 for (const std::pair<int, int> &SI : SlotRemap) {
955 const AllocaInst *From = MFI->getObjectAllocation(SI.first);
956 const AllocaInst *To = MFI->getObjectAllocation(SI.second);
957 assert(To && From && "Invalid allocation object");
958 Allocas[From] = To;
960 // If From is before wo, its possible that there is a use of From between
961 // them.
962 if (From->comesBefore(To))
963 const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From));
965 // AA might be used later for instruction scheduling, and we need it to be
966 // able to deduce the correct aliasing releationships between pointers
967 // derived from the alloca being remapped and the target of that remapping.
968 // The only safe way, without directly informing AA about the remapping
969 // somehow, is to directly update the IR to reflect the change being made
970 // here.
971 Instruction *Inst = const_cast<AllocaInst *>(To);
972 if (From->getType() != To->getType()) {
973 BitCastInst *Cast = new BitCastInst(Inst, From->getType());
974 Cast->insertAfter(Inst);
975 Inst = Cast;
978 // We keep both slots to maintain AliasAnalysis metadata later.
979 MergedAllocas.insert(From);
980 MergedAllocas.insert(To);
982 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf
983 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure
984 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
985 MachineFrameInfo::SSPLayoutKind FromKind
986 = MFI->getObjectSSPLayout(SI.first);
987 MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second);
988 if (FromKind != MachineFrameInfo::SSPLK_None &&
989 (ToKind == MachineFrameInfo::SSPLK_None ||
990 (ToKind != MachineFrameInfo::SSPLK_LargeArray &&
991 FromKind != MachineFrameInfo::SSPLK_AddrOf)))
992 MFI->setObjectSSPLayout(SI.second, FromKind);
994 // The new alloca might not be valid in a llvm.dbg.declare for this
995 // variable, so undef out the use to make the verifier happy.
996 AllocaInst *FromAI = const_cast<AllocaInst *>(From);
997 if (FromAI->isUsedByMetadata())
998 ValueAsMetadata::handleRAUW(FromAI, UndefValue::get(FromAI->getType()));
999 for (auto &Use : FromAI->uses()) {
1000 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get()))
1001 if (BCI->isUsedByMetadata())
1002 ValueAsMetadata::handleRAUW(BCI, UndefValue::get(BCI->getType()));
1005 // Note that this will not replace uses in MMOs (which we'll update below),
1006 // or anywhere else (which is why we won't delete the original
1007 // instruction).
1008 FromAI->replaceAllUsesWith(Inst);
1011 // Remap all instructions to the new stack slots.
1012 std::vector<std::vector<MachineMemOperand *>> SSRefs(
1013 MFI->getObjectIndexEnd());
1014 for (MachineBasicBlock &BB : *MF)
1015 for (MachineInstr &I : BB) {
1016 // Skip lifetime markers. We'll remove them soon.
1017 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1018 I.getOpcode() == TargetOpcode::LIFETIME_END)
1019 continue;
1021 // Update the MachineMemOperand to use the new alloca.
1022 for (MachineMemOperand *MMO : I.memoperands()) {
1023 // We've replaced IR-level uses of the remapped allocas, so we only
1024 // need to replace direct uses here.
1025 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue());
1026 if (!AI)
1027 continue;
1029 if (!Allocas.count(AI))
1030 continue;
1032 MMO->setValue(Allocas[AI]);
1033 FixedMemOp++;
1036 // Update all of the machine instruction operands.
1037 for (MachineOperand &MO : I.operands()) {
1038 if (!MO.isFI())
1039 continue;
1040 int FromSlot = MO.getIndex();
1042 // Don't touch arguments.
1043 if (FromSlot<0)
1044 continue;
1046 // Only look at mapped slots.
1047 if (!SlotRemap.count(FromSlot))
1048 continue;
1050 // In a debug build, check that the instruction that we are modifying is
1051 // inside the expected live range. If the instruction is not inside
1052 // the calculated range then it means that the alloca usage moved
1053 // outside of the lifetime markers, or that the user has a bug.
1054 // NOTE: Alloca address calculations which happen outside the lifetime
1055 // zone are okay, despite the fact that we don't have a good way
1056 // for validating all of the usages of the calculation.
1057 #ifndef NDEBUG
1058 bool TouchesMemory = I.mayLoadOrStore();
1059 // If we *don't* protect the user from escaped allocas, don't bother
1060 // validating the instructions.
1061 if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) {
1062 SlotIndex Index = Indexes->getInstructionIndex(I);
1063 const LiveInterval *Interval = &*Intervals[FromSlot];
1064 assert(Interval->find(Index) != Interval->end() &&
1065 "Found instruction usage outside of live range.");
1067 #endif
1069 // Fix the machine instructions.
1070 int ToSlot = SlotRemap[FromSlot];
1071 MO.setIndex(ToSlot);
1072 FixedInstr++;
1075 // We adjust AliasAnalysis information for merged stack slots.
1076 SmallVector<MachineMemOperand *, 2> NewMMOs;
1077 bool ReplaceMemOps = false;
1078 for (MachineMemOperand *MMO : I.memoperands()) {
1079 // Collect MachineMemOperands which reference
1080 // FixedStackPseudoSourceValues with old frame indices.
1081 if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>(
1082 MMO->getPseudoValue())) {
1083 int FI = FSV->getFrameIndex();
1084 auto To = SlotRemap.find(FI);
1085 if (To != SlotRemap.end())
1086 SSRefs[FI].push_back(MMO);
1089 // If this memory location can be a slot remapped here,
1090 // we remove AA information.
1091 bool MayHaveConflictingAAMD = false;
1092 if (MMO->getAAInfo()) {
1093 if (const Value *MMOV = MMO->getValue()) {
1094 SmallVector<Value *, 4> Objs;
1095 getUnderlyingObjectsForCodeGen(MMOV, Objs);
1097 if (Objs.empty())
1098 MayHaveConflictingAAMD = true;
1099 else
1100 for (Value *V : Objs) {
1101 // If this memory location comes from a known stack slot
1102 // that is not remapped, we continue checking.
1103 // Otherwise, we need to invalidate AA infomation.
1104 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V);
1105 if (AI && MergedAllocas.count(AI)) {
1106 MayHaveConflictingAAMD = true;
1107 break;
1112 if (MayHaveConflictingAAMD) {
1113 NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes()));
1114 ReplaceMemOps = true;
1115 } else {
1116 NewMMOs.push_back(MMO);
1120 // If any memory operand is updated, set memory references of
1121 // this instruction.
1122 if (ReplaceMemOps)
1123 I.setMemRefs(*MF, NewMMOs);
1126 // Rewrite MachineMemOperands that reference old frame indices.
1127 for (auto E : enumerate(SSRefs))
1128 if (!E.value().empty()) {
1129 const PseudoSourceValue *NewSV =
1130 MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second);
1131 for (MachineMemOperand *Ref : E.value())
1132 Ref->setValue(NewSV);
1135 // Update the location of C++ catch objects for the MSVC personality routine.
1136 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo())
1137 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap)
1138 for (WinEHHandlerType &H : TBME.HandlerArray)
1139 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() &&
1140 SlotRemap.count(H.CatchObj.FrameIndex))
1141 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex];
1143 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n");
1144 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n");
1145 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n");
1148 void StackColoring::removeInvalidSlotRanges() {
1149 for (MachineBasicBlock &BB : *MF)
1150 for (MachineInstr &I : BB) {
1151 if (I.getOpcode() == TargetOpcode::LIFETIME_START ||
1152 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr())
1153 continue;
1155 // Some intervals are suspicious! In some cases we find address
1156 // calculations outside of the lifetime zone, but not actual memory
1157 // read or write. Memory accesses outside of the lifetime zone are a clear
1158 // violation, but address calculations are okay. This can happen when
1159 // GEPs are hoisted outside of the lifetime zone.
1160 // So, in here we only check instructions which can read or write memory.
1161 if (!I.mayLoad() && !I.mayStore())
1162 continue;
1164 // Check all of the machine operands.
1165 for (const MachineOperand &MO : I.operands()) {
1166 if (!MO.isFI())
1167 continue;
1169 int Slot = MO.getIndex();
1171 if (Slot<0)
1172 continue;
1174 if (Intervals[Slot]->empty())
1175 continue;
1177 // Check that the used slot is inside the calculated lifetime range.
1178 // If it is not, warn about it and invalidate the range.
1179 LiveInterval *Interval = &*Intervals[Slot];
1180 SlotIndex Index = Indexes->getInstructionIndex(I);
1181 if (Interval->find(Index) == Interval->end()) {
1182 Interval->clear();
1183 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n");
1184 EscapedAllocas++;
1190 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
1191 unsigned NumSlots) {
1192 // Expunge slot remap map.
1193 for (unsigned i=0; i < NumSlots; ++i) {
1194 // If we are remapping i
1195 if (SlotRemap.count(i)) {
1196 int Target = SlotRemap[i];
1197 // As long as our target is mapped to something else, follow it.
1198 while (SlotRemap.count(Target)) {
1199 Target = SlotRemap[Target];
1200 SlotRemap[i] = Target;
1206 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
1207 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n"
1208 << "********** Function: " << Func.getName() << '\n');
1209 MF = &Func;
1210 MFI = &MF->getFrameInfo();
1211 Indexes = &getAnalysis<SlotIndexes>();
1212 BlockLiveness.clear();
1213 BasicBlocks.clear();
1214 BasicBlockNumbering.clear();
1215 Markers.clear();
1216 Intervals.clear();
1217 LiveStarts.clear();
1218 VNInfoAllocator.Reset();
1220 unsigned NumSlots = MFI->getObjectIndexEnd();
1222 // If there are no stack slots then there are no markers to remove.
1223 if (!NumSlots)
1224 return false;
1226 SmallVector<int, 8> SortedSlots;
1227 SortedSlots.reserve(NumSlots);
1228 Intervals.reserve(NumSlots);
1229 LiveStarts.resize(NumSlots);
1231 unsigned NumMarkers = collectMarkers(NumSlots);
1233 unsigned TotalSize = 0;
1234 LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots
1235 << " slots\n");
1236 LLVM_DEBUG(dbgs() << "Slot structure:\n");
1238 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
1239 LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i)
1240 << " bytes.\n");
1241 TotalSize += MFI->getObjectSize(i);
1244 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n");
1246 // Don't continue because there are not enough lifetime markers, or the
1247 // stack is too small, or we are told not to optimize the slots.
1248 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring ||
1249 skipFunction(Func.getFunction())) {
1250 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n");
1251 return removeAllMarkers();
1254 for (unsigned i=0; i < NumSlots; ++i) {
1255 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0));
1256 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
1257 Intervals.push_back(std::move(LI));
1258 SortedSlots.push_back(i);
1261 // Calculate the liveness of each block.
1262 calculateLocalLiveness();
1263 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n");
1264 LLVM_DEBUG(dump());
1266 // Propagate the liveness information.
1267 calculateLiveIntervals(NumSlots);
1268 LLVM_DEBUG(dumpIntervals());
1270 // Search for allocas which are used outside of the declared lifetime
1271 // markers.
1272 if (ProtectFromEscapedAllocas)
1273 removeInvalidSlotRanges();
1275 // Maps old slots to new slots.
1276 DenseMap<int, int> SlotRemap;
1277 unsigned RemovedSlots = 0;
1278 unsigned ReducedSize = 0;
1280 // Do not bother looking at empty intervals.
1281 for (unsigned I = 0; I < NumSlots; ++I) {
1282 if (Intervals[SortedSlots[I]]->empty())
1283 SortedSlots[I] = -1;
1286 // This is a simple greedy algorithm for merging allocas. First, sort the
1287 // slots, placing the largest slots first. Next, perform an n^2 scan and look
1288 // for disjoint slots. When you find disjoint slots, merge the smaller one
1289 // into the bigger one and update the live interval. Remove the small alloca
1290 // and continue.
1292 // Sort the slots according to their size. Place unused slots at the end.
1293 // Use stable sort to guarantee deterministic code generation.
1294 llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) {
1295 // We use -1 to denote a uninteresting slot. Place these slots at the end.
1296 if (LHS == -1)
1297 return false;
1298 if (RHS == -1)
1299 return true;
1300 // Sort according to size.
1301 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
1304 for (auto &s : LiveStarts)
1305 llvm::sort(s);
1307 bool Changed = true;
1308 while (Changed) {
1309 Changed = false;
1310 for (unsigned I = 0; I < NumSlots; ++I) {
1311 if (SortedSlots[I] == -1)
1312 continue;
1314 for (unsigned J=I+1; J < NumSlots; ++J) {
1315 if (SortedSlots[J] == -1)
1316 continue;
1318 int FirstSlot = SortedSlots[I];
1319 int SecondSlot = SortedSlots[J];
1320 LiveInterval *First = &*Intervals[FirstSlot];
1321 LiveInterval *Second = &*Intervals[SecondSlot];
1322 auto &FirstS = LiveStarts[FirstSlot];
1323 auto &SecondS = LiveStarts[SecondSlot];
1324 assert(!First->empty() && !Second->empty() && "Found an empty range");
1326 // Merge disjoint slots. This is a little bit tricky - see the
1327 // Implementation Notes section for an explanation.
1328 if (!First->isLiveAtIndexes(SecondS) &&
1329 !Second->isLiveAtIndexes(FirstS)) {
1330 Changed = true;
1331 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0));
1333 int OldSize = FirstS.size();
1334 FirstS.append(SecondS.begin(), SecondS.end());
1335 auto Mid = FirstS.begin() + OldSize;
1336 std::inplace_merge(FirstS.begin(), Mid, FirstS.end());
1338 SlotRemap[SecondSlot] = FirstSlot;
1339 SortedSlots[J] = -1;
1340 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #"
1341 << SecondSlot << " together.\n");
1342 Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot),
1343 MFI->getObjectAlign(SecondSlot));
1345 assert(MFI->getObjectSize(FirstSlot) >=
1346 MFI->getObjectSize(SecondSlot) &&
1347 "Merging a small object into a larger one");
1349 RemovedSlots+=1;
1350 ReducedSize += MFI->getObjectSize(SecondSlot);
1351 MFI->setObjectAlignment(FirstSlot, MaxAlignment);
1352 MFI->RemoveStackObject(SecondSlot);
1356 }// While changed.
1358 // Record statistics.
1359 StackSpaceSaved += ReducedSize;
1360 StackSlotMerged += RemovedSlots;
1361 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved "
1362 << ReducedSize << " bytes\n");
1364 // Scan the entire function and update all machine operands that use frame
1365 // indices to use the remapped frame index.
1366 expungeSlotMap(SlotRemap, NumSlots);
1367 remapInstructions(SlotRemap);
1369 return removeAllMarkers();