[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / StackProtector.cpp
blob9f229d51b9854e9c53da15c1c39f9ec7c1912e8d
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DebugInfo.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/InitializePasses.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Target/TargetMachine.h"
50 #include "llvm/Target/TargetOptions.h"
51 #include <utility>
53 using namespace llvm;
55 #define DEBUG_TYPE "stack-protector"
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59 " taken.");
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62 cl::init(true), cl::Hidden);
64 char StackProtector::ID = 0;
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71 "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75 "Insert stack protectors", false, true)
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80 AU.addRequired<TargetPassConfig>();
81 AU.addPreserved<DominatorTreeWrapperPass>();
84 bool StackProtector::runOnFunction(Function &Fn) {
85 F = &Fn;
86 M = F->getParent();
87 DominatorTreeWrapperPass *DTWP =
88 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
89 DT = DTWP ? &DTWP->getDomTree() : nullptr;
90 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
91 Trip = TM->getTargetTriple();
92 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
93 HasPrologue = false;
94 HasIRCheck = false;
96 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
97 if (Attr.isStringAttribute() &&
98 Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
99 return false; // Invalid integer string
101 if (!RequiresStackProtector())
102 return false;
104 // TODO(etienneb): Functions with funclets are not correctly supported now.
105 // Do nothing if this is funclet-based personality.
106 if (Fn.hasPersonalityFn()) {
107 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
108 if (isFuncletEHPersonality(Personality))
109 return false;
112 ++NumFunProtected;
113 return InsertStackProtectors();
116 /// \param [out] IsLarge is set to true if a protectable array is found and
117 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
118 /// multiple arrays, this gets set if any of them is large.
119 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
120 bool Strong,
121 bool InStruct) const {
122 if (!Ty)
123 return false;
124 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
125 if (!AT->getElementType()->isIntegerTy(8)) {
126 // If we're on a non-Darwin platform or we're inside of a structure, don't
127 // add stack protectors unless the array is a character array.
128 // However, in strong mode any array, regardless of type and size,
129 // triggers a protector.
130 if (!Strong && (InStruct || !Trip.isOSDarwin()))
131 return false;
134 // If an array has more than SSPBufferSize bytes of allocated space, then we
135 // emit stack protectors.
136 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
137 IsLarge = true;
138 return true;
141 if (Strong)
142 // Require a protector for all arrays in strong mode
143 return true;
146 const StructType *ST = dyn_cast<StructType>(Ty);
147 if (!ST)
148 return false;
150 bool NeedsProtector = false;
151 for (StructType::element_iterator I = ST->element_begin(),
152 E = ST->element_end();
153 I != E; ++I)
154 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
155 // If the element is a protectable array and is large (>= SSPBufferSize)
156 // then we are done. If the protectable array is not large, then
157 // keep looking in case a subsequent element is a large array.
158 if (IsLarge)
159 return true;
160 NeedsProtector = true;
163 return NeedsProtector;
166 bool StackProtector::HasAddressTaken(const Instruction *AI,
167 uint64_t AllocSize) {
168 const DataLayout &DL = M->getDataLayout();
169 for (const User *U : AI->users()) {
170 const auto *I = cast<Instruction>(U);
171 // If this instruction accesses memory make sure it doesn't access beyond
172 // the bounds of the allocated object.
173 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
174 if (MemLoc.hasValue() && MemLoc->Size.hasValue() &&
175 MemLoc->Size.getValue() > AllocSize)
176 return true;
177 switch (I->getOpcode()) {
178 case Instruction::Store:
179 if (AI == cast<StoreInst>(I)->getValueOperand())
180 return true;
181 break;
182 case Instruction::AtomicCmpXchg:
183 // cmpxchg conceptually includes both a load and store from the same
184 // location. So, like store, the value being stored is what matters.
185 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
186 return true;
187 break;
188 case Instruction::PtrToInt:
189 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
190 return true;
191 break;
192 case Instruction::Call: {
193 // Ignore intrinsics that do not become real instructions.
194 // TODO: Narrow this to intrinsics that have store-like effects.
195 const auto *CI = cast<CallInst>(I);
196 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
197 return true;
198 break;
200 case Instruction::Invoke:
201 return true;
202 case Instruction::GetElementPtr: {
203 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
204 // assumed to be potentially out-of-bounds, then any memory access that
205 // would use it could also be out-of-bounds meaning stack protection is
206 // required.
207 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
208 unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType());
209 APInt Offset(TypeSize, 0);
210 APInt MaxOffset(TypeSize, AllocSize);
211 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset))
212 return true;
213 // Adjust AllocSize to be the space remaining after this offset.
214 if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue()))
215 return true;
216 break;
218 case Instruction::BitCast:
219 case Instruction::Select:
220 case Instruction::AddrSpaceCast:
221 if (HasAddressTaken(I, AllocSize))
222 return true;
223 break;
224 case Instruction::PHI: {
225 // Keep track of what PHI nodes we have already visited to ensure
226 // they are only visited once.
227 const auto *PN = cast<PHINode>(I);
228 if (VisitedPHIs.insert(PN).second)
229 if (HasAddressTaken(PN, AllocSize))
230 return true;
231 break;
233 case Instruction::Load:
234 case Instruction::AtomicRMW:
235 case Instruction::Ret:
236 // These instructions take an address operand, but have load-like or
237 // other innocuous behavior that should not trigger a stack protector.
238 // atomicrmw conceptually has both load and store semantics, but the
239 // value being stored must be integer; so if a pointer is being stored,
240 // we'll catch it in the PtrToInt case above.
241 break;
242 default:
243 // Conservatively return true for any instruction that takes an address
244 // operand, but is not handled above.
245 return true;
248 return false;
251 /// Search for the first call to the llvm.stackprotector intrinsic and return it
252 /// if present.
253 static const CallInst *findStackProtectorIntrinsic(Function &F) {
254 for (const BasicBlock &BB : F)
255 for (const Instruction &I : BB)
256 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
257 if (II->getIntrinsicID() == Intrinsic::stackprotector)
258 return II;
259 return nullptr;
262 /// Check whether or not this function needs a stack protector based
263 /// upon the stack protector level.
265 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
266 /// The standard heuristic which will add a guard variable to functions that
267 /// call alloca with a either a variable size or a size >= SSPBufferSize,
268 /// functions with character buffers larger than SSPBufferSize, and functions
269 /// with aggregates containing character buffers larger than SSPBufferSize. The
270 /// strong heuristic will add a guard variables to functions that call alloca
271 /// regardless of size, functions with any buffer regardless of type and size,
272 /// functions with aggregates that contain any buffer regardless of type and
273 /// size, and functions that contain stack-based variables that have had their
274 /// address taken.
275 bool StackProtector::RequiresStackProtector() {
276 bool Strong = false;
277 bool NeedsProtector = false;
279 if (F->hasFnAttribute(Attribute::SafeStack))
280 return false;
282 // We are constructing the OptimizationRemarkEmitter on the fly rather than
283 // using the analysis pass to avoid building DominatorTree and LoopInfo which
284 // are not available this late in the IR pipeline.
285 OptimizationRemarkEmitter ORE(F);
287 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
288 ORE.emit([&]() {
289 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
290 << "Stack protection applied to function "
291 << ore::NV("Function", F)
292 << " due to a function attribute or command-line switch";
294 NeedsProtector = true;
295 Strong = true; // Use the same heuristic as strong to determine SSPLayout
296 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
297 Strong = true;
298 else if (!F->hasFnAttribute(Attribute::StackProtect))
299 return false;
301 for (const BasicBlock &BB : *F) {
302 for (const Instruction &I : BB) {
303 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
304 if (AI->isArrayAllocation()) {
305 auto RemarkBuilder = [&]() {
306 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
308 << "Stack protection applied to function "
309 << ore::NV("Function", F)
310 << " due to a call to alloca or use of a variable length "
311 "array";
313 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
314 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
315 // A call to alloca with size >= SSPBufferSize requires
316 // stack protectors.
317 Layout.insert(std::make_pair(AI,
318 MachineFrameInfo::SSPLK_LargeArray));
319 ORE.emit(RemarkBuilder);
320 NeedsProtector = true;
321 } else if (Strong) {
322 // Require protectors for all alloca calls in strong mode.
323 Layout.insert(std::make_pair(AI,
324 MachineFrameInfo::SSPLK_SmallArray));
325 ORE.emit(RemarkBuilder);
326 NeedsProtector = true;
328 } else {
329 // A call to alloca with a variable size requires protectors.
330 Layout.insert(std::make_pair(AI,
331 MachineFrameInfo::SSPLK_LargeArray));
332 ORE.emit(RemarkBuilder);
333 NeedsProtector = true;
335 continue;
338 bool IsLarge = false;
339 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
340 Layout.insert(std::make_pair(AI, IsLarge
341 ? MachineFrameInfo::SSPLK_LargeArray
342 : MachineFrameInfo::SSPLK_SmallArray));
343 ORE.emit([&]() {
344 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
345 << "Stack protection applied to function "
346 << ore::NV("Function", F)
347 << " due to a stack allocated buffer or struct containing a "
348 "buffer";
350 NeedsProtector = true;
351 continue;
354 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
355 AI->getAllocatedType()))) {
356 ++NumAddrTaken;
357 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
358 ORE.emit([&]() {
359 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
361 << "Stack protection applied to function "
362 << ore::NV("Function", F)
363 << " due to the address of a local variable being taken";
365 NeedsProtector = true;
367 // Clear any PHIs that we visited, to make sure we examine all uses of
368 // any subsequent allocas that we look at.
369 VisitedPHIs.clear();
374 return NeedsProtector;
377 /// Create a stack guard loading and populate whether SelectionDAG SSP is
378 /// supported.
379 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
380 IRBuilder<> &B,
381 bool *SupportsSelectionDAGSP = nullptr) {
382 Value *Guard = TLI->getIRStackGuard(B);
383 StringRef GuardMode = M->getStackProtectorGuard();
384 if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
385 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
387 // Use SelectionDAG SSP handling, since there isn't an IR guard.
389 // This is more or less weird, since we optionally output whether we
390 // should perform a SelectionDAG SP here. The reason is that it's strictly
391 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
392 // mutating. There is no way to get this bit without mutating the IR, so
393 // getting this bit has to happen in this right time.
395 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
396 // will put more burden on the backends' overriding work, especially when it
397 // actually conveys the same information getIRStackGuard() already gives.
398 if (SupportsSelectionDAGSP)
399 *SupportsSelectionDAGSP = true;
400 TLI->insertSSPDeclarations(*M);
401 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
404 /// Insert code into the entry block that stores the stack guard
405 /// variable onto the stack:
407 /// entry:
408 /// StackGuardSlot = alloca i8*
409 /// StackGuard = <stack guard>
410 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
412 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
413 /// node.
414 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
415 const TargetLoweringBase *TLI, AllocaInst *&AI) {
416 bool SupportsSelectionDAGSP = false;
417 IRBuilder<> B(&F->getEntryBlock().front());
418 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
419 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
421 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
422 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
423 {GuardSlot, AI});
424 return SupportsSelectionDAGSP;
427 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
428 /// function.
430 /// - The prologue code loads and stores the stack guard onto the stack.
431 /// - The epilogue checks the value stored in the prologue against the original
432 /// value. It calls __stack_chk_fail if they differ.
433 bool StackProtector::InsertStackProtectors() {
434 // If the target wants to XOR the frame pointer into the guard value, it's
435 // impossible to emit the check in IR, so the target *must* support stack
436 // protection in SDAG.
437 bool SupportsSelectionDAGSP =
438 TLI->useStackGuardXorFP() ||
439 (EnableSelectionDAGSP && !TM->Options.EnableFastISel &&
440 !TM->Options.EnableGlobalISel);
441 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
443 for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
444 BasicBlock *BB = &*I++;
445 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
446 if (!RI)
447 continue;
449 // Generate prologue instrumentation if not already generated.
450 if (!HasPrologue) {
451 HasPrologue = true;
452 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
455 // SelectionDAG based code generation. Nothing else needs to be done here.
456 // The epilogue instrumentation is postponed to SelectionDAG.
457 if (SupportsSelectionDAGSP)
458 break;
460 // Find the stack guard slot if the prologue was not created by this pass
461 // itself via a previous call to CreatePrologue().
462 if (!AI) {
463 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
464 assert(SPCall && "Call to llvm.stackprotector is missing");
465 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
468 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
469 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
470 // instrumentation has already been generated.
471 HasIRCheck = true;
473 // If we're instrumenting a block with a musttail call, the check has to be
474 // inserted before the call rather than between it and the return. The
475 // verifier guarantees that a musttail call is either directly before the
476 // return or with a single correct bitcast of the return value in between so
477 // we don't need to worry about many situations here.
478 Instruction *CheckLoc = RI;
479 Instruction *Prev = RI->getPrevNonDebugInstruction();
480 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
481 CheckLoc = Prev;
482 else if (Prev) {
483 Prev = Prev->getPrevNonDebugInstruction();
484 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isMustTailCall())
485 CheckLoc = Prev;
488 // Generate epilogue instrumentation. The epilogue intrumentation can be
489 // function-based or inlined depending on which mechanism the target is
490 // providing.
491 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
492 // Generate the function-based epilogue instrumentation.
493 // The target provides a guard check function, generate a call to it.
494 IRBuilder<> B(CheckLoc);
495 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
496 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
497 Call->setAttributes(GuardCheck->getAttributes());
498 Call->setCallingConv(GuardCheck->getCallingConv());
499 } else {
500 // Generate the epilogue with inline instrumentation.
501 // If we do not support SelectionDAG based calls, generate IR level
502 // calls.
504 // For each block with a return instruction, convert this:
506 // return:
507 // ...
508 // ret ...
510 // into this:
512 // return:
513 // ...
514 // %1 = <stack guard>
515 // %2 = load StackGuardSlot
516 // %3 = cmp i1 %1, %2
517 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk
519 // SP_return:
520 // ret ...
522 // CallStackCheckFailBlk:
523 // call void @__stack_chk_fail()
524 // unreachable
526 // Create the FailBB. We duplicate the BB every time since the MI tail
527 // merge pass will merge together all of the various BB into one including
528 // fail BB generated by the stack protector pseudo instruction.
529 BasicBlock *FailBB = CreateFailBB();
531 // Split the basic block before the return instruction.
532 BasicBlock *NewBB =
533 BB->splitBasicBlock(CheckLoc->getIterator(), "SP_return");
535 // Update the dominator tree if we need to.
536 if (DT && DT->isReachableFromEntry(BB)) {
537 DT->addNewBlock(NewBB, BB);
538 DT->addNewBlock(FailBB, BB);
541 // Remove default branch instruction to the new BB.
542 BB->getTerminator()->eraseFromParent();
544 // Move the newly created basic block to the point right after the old
545 // basic block so that it's in the "fall through" position.
546 NewBB->moveAfter(BB);
548 // Generate the stack protector instructions in the old basic block.
549 IRBuilder<> B(BB);
550 Value *Guard = getStackGuard(TLI, M, B);
551 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
552 Value *Cmp = B.CreateICmpEQ(Guard, LI2);
553 auto SuccessProb =
554 BranchProbabilityInfo::getBranchProbStackProtector(true);
555 auto FailureProb =
556 BranchProbabilityInfo::getBranchProbStackProtector(false);
557 MDNode *Weights = MDBuilder(F->getContext())
558 .createBranchWeights(SuccessProb.getNumerator(),
559 FailureProb.getNumerator());
560 B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
564 // Return if we didn't modify any basic blocks. i.e., there are no return
565 // statements in the function.
566 return HasPrologue;
569 /// CreateFailBB - Create a basic block to jump to when the stack protector
570 /// check fails.
571 BasicBlock *StackProtector::CreateFailBB() {
572 LLVMContext &Context = F->getContext();
573 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
574 IRBuilder<> B(FailBB);
575 if (F->getSubprogram())
576 B.SetCurrentDebugLocation(
577 DILocation::get(Context, 0, 0, F->getSubprogram()));
578 if (Trip.isOSOpenBSD()) {
579 FunctionCallee StackChkFail = M->getOrInsertFunction(
580 "__stack_smash_handler", Type::getVoidTy(Context),
581 Type::getInt8PtrTy(Context));
583 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
584 } else {
585 FunctionCallee StackChkFail =
586 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
588 B.CreateCall(StackChkFail, {});
590 B.CreateUnreachable();
591 return FailBB;
594 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
595 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
598 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
599 if (Layout.empty())
600 return;
602 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
603 if (MFI.isDeadObjectIndex(I))
604 continue;
606 const AllocaInst *AI = MFI.getObjectAllocation(I);
607 if (!AI)
608 continue;
610 SSPLayoutMap::const_iterator LI = Layout.find(AI);
611 if (LI == Layout.end())
612 continue;
614 MFI.setObjectSSPLayout(I, LI->second);