[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / TypePromotion.cpp
blob29a74d3f20fe9b09c1713774d1985abc2369d53c
1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Value.h"
35 #include "llvm/IR/Verifier.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
45 using namespace llvm;
47 static cl::opt<bool>
48 DisablePromotion("disable-type-promotion", cl::Hidden, cl::init(false),
49 cl::desc("Disable type promotion pass"));
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
55 // define hidden i32 @cmp(i8 zeroext) {
56 // %2 = add i8 %0, -49
57 // %3 = icmp ult i8 %2, 3
58 // ..
59 // }
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
65 // t19: i32 = add t4, Constant:i32<-49>
66 // t24: i32 = and t19, Constant:i32<255>
68 // Consequently, we generate code like this:
70 // subs r0, #49
71 // uxtb r1, r0
72 // cmp r1, #3
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
78 // sub.w r1, r0, #49
79 // cmp r1, #3
81 // We achieve this by type promoting the IR to i32 like so for this example:
83 // define i32 @cmp(i8 zeroext %c) {
84 // %0 = zext i8 %c to i32
85 // %c.off = add i32 %0, -49
86 // %1 = icmp ult i32 %c.off, 3
87 // ..
88 // }
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
103 namespace {
104 class IRPromoter {
105 LLVMContext &Ctx;
106 IntegerType *OrigTy = nullptr;
107 unsigned PromotedWidth = 0;
108 SetVector<Value*> &Visited;
109 SetVector<Value*> &Sources;
110 SetVector<Instruction*> &Sinks;
111 SmallVectorImpl<Instruction*> &SafeWrap;
112 IntegerType *ExtTy = nullptr;
113 SmallPtrSet<Value*, 8> NewInsts;
114 SmallPtrSet<Instruction*, 4> InstsToRemove;
115 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
116 SmallPtrSet<Value*, 8> Promoted;
118 void ReplaceAllUsersOfWith(Value *From, Value *To);
119 void PrepareWrappingAdds(void);
120 void ExtendSources(void);
121 void ConvertTruncs(void);
122 void PromoteTree(void);
123 void TruncateSinks(void);
124 void Cleanup(void);
126 public:
127 IRPromoter(LLVMContext &C, IntegerType *Ty, unsigned Width,
128 SetVector<Value*> &visited, SetVector<Value*> &sources,
129 SetVector<Instruction*> &sinks,
130 SmallVectorImpl<Instruction*> &wrap) :
131 Ctx(C), OrigTy(Ty), PromotedWidth(Width), Visited(visited),
132 Sources(sources), Sinks(sinks), SafeWrap(wrap) {
133 ExtTy = IntegerType::get(Ctx, PromotedWidth);
134 assert(OrigTy->getPrimitiveSizeInBits().getFixedSize() <
135 ExtTy->getPrimitiveSizeInBits().getFixedSize() &&
136 "Original type not smaller than extended type");
139 void Mutate();
142 class TypePromotion : public FunctionPass {
143 unsigned TypeSize = 0;
144 LLVMContext *Ctx = nullptr;
145 unsigned RegisterBitWidth = 0;
146 SmallPtrSet<Value*, 16> AllVisited;
147 SmallPtrSet<Instruction*, 8> SafeToPromote;
148 SmallVector<Instruction*, 4> SafeWrap;
150 // Does V have the same size result type as TypeSize.
151 bool EqualTypeSize(Value *V);
152 // Does V have the same size, or narrower, result type as TypeSize.
153 bool LessOrEqualTypeSize(Value *V);
154 // Does V have a result type that is wider than TypeSize.
155 bool GreaterThanTypeSize(Value *V);
156 // Does V have a result type that is narrower than TypeSize.
157 bool LessThanTypeSize(Value *V);
158 // Should V be a leaf in the promote tree?
159 bool isSource(Value *V);
160 // Should V be a root in the promotion tree?
161 bool isSink(Value *V);
162 // Should we change the result type of V? It will result in the users of V
163 // being visited.
164 bool shouldPromote(Value *V);
165 // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
166 // result won't affect the computation?
167 bool isSafeWrap(Instruction *I);
168 // Can V have its integer type promoted, or can the type be ignored.
169 bool isSupportedType(Value *V);
170 // Is V an instruction with a supported opcode or another value that we can
171 // handle, such as constants and basic blocks.
172 bool isSupportedValue(Value *V);
173 // Is V an instruction thats result can trivially promoted, or has safe
174 // wrapping.
175 bool isLegalToPromote(Value *V);
176 bool TryToPromote(Value *V, unsigned PromotedWidth);
178 public:
179 static char ID;
181 TypePromotion() : FunctionPass(ID) {}
183 void getAnalysisUsage(AnalysisUsage &AU) const override {
184 AU.addRequired<TargetTransformInfoWrapperPass>();
185 AU.addRequired<TargetPassConfig>();
188 StringRef getPassName() const override { return PASS_NAME; }
190 bool runOnFunction(Function &F) override;
195 static bool GenerateSignBits(Instruction *I) {
196 unsigned Opc = I->getOpcode();
197 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
198 Opc == Instruction::SRem || Opc == Instruction::SExt;
201 bool TypePromotion::EqualTypeSize(Value *V) {
202 return V->getType()->getScalarSizeInBits() == TypeSize;
205 bool TypePromotion::LessOrEqualTypeSize(Value *V) {
206 return V->getType()->getScalarSizeInBits() <= TypeSize;
209 bool TypePromotion::GreaterThanTypeSize(Value *V) {
210 return V->getType()->getScalarSizeInBits() > TypeSize;
213 bool TypePromotion::LessThanTypeSize(Value *V) {
214 return V->getType()->getScalarSizeInBits() < TypeSize;
217 /// Return true if the given value is a source in the use-def chain, producing
218 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
219 /// of the tree to i32. We guarantee that these won't populate the upper bits
220 /// of the register. ZExt on the loads will be free, and the same for call
221 /// return values because we only accept ones that guarantee a zeroext ret val.
222 /// Many arguments will have the zeroext attribute too, so those would be free
223 /// too.
224 bool TypePromotion::isSource(Value *V) {
225 if (!isa<IntegerType>(V->getType()))
226 return false;
228 // TODO Allow zext to be sources.
229 if (isa<Argument>(V))
230 return true;
231 else if (isa<LoadInst>(V))
232 return true;
233 else if (isa<BitCastInst>(V))
234 return true;
235 else if (auto *Call = dyn_cast<CallInst>(V))
236 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
237 else if (auto *Trunc = dyn_cast<TruncInst>(V))
238 return EqualTypeSize(Trunc);
239 return false;
242 /// Return true if V will require any promoted values to be truncated for the
243 /// the IR to remain valid. We can't mutate the value type of these
244 /// instructions.
245 bool TypePromotion::isSink(Value *V) {
246 // TODO The truncate also isn't actually necessary because we would already
247 // proved that the data value is kept within the range of the original data
248 // type.
250 // Sinks are:
251 // - points where the value in the register is being observed, such as an
252 // icmp, switch or store.
253 // - points where value types have to match, such as calls and returns.
254 // - zext are included to ease the transformation and are generally removed
255 // later on.
256 if (auto *Store = dyn_cast<StoreInst>(V))
257 return LessOrEqualTypeSize(Store->getValueOperand());
258 if (auto *Return = dyn_cast<ReturnInst>(V))
259 return LessOrEqualTypeSize(Return->getReturnValue());
260 if (auto *ZExt = dyn_cast<ZExtInst>(V))
261 return GreaterThanTypeSize(ZExt);
262 if (auto *Switch = dyn_cast<SwitchInst>(V))
263 return LessThanTypeSize(Switch->getCondition());
264 if (auto *ICmp = dyn_cast<ICmpInst>(V))
265 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
267 return isa<CallInst>(V);
270 /// Return whether this instruction can safely wrap.
271 bool TypePromotion::isSafeWrap(Instruction *I) {
272 // We can support a, potentially, wrapping instruction (I) if:
273 // - It is only used by an unsigned icmp.
274 // - The icmp uses a constant.
275 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
276 // around zero to become a larger number than before.
277 // - The wrapping instruction (I) also uses a constant.
279 // We can then use the two constants to calculate whether the result would
280 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
281 // just underflows the range, the icmp would give the same result whether the
282 // result has been truncated or not. We calculate this by:
283 // - Zero extending both constants, if needed, to 32-bits.
284 // - Take the absolute value of I's constant, adding this to the icmp const.
285 // - Check that this value is not out of range for small type. If it is, it
286 // means that it has underflowed enough to wrap around the icmp constant.
288 // For example:
290 // %sub = sub i8 %a, 2
291 // %cmp = icmp ule i8 %sub, 254
293 // If %a = 0, %sub = -2 == FE == 254
294 // But if this is evalulated as a i32
295 // %sub = -2 == FF FF FF FE == 4294967294
296 // So the unsigned compares (i8 and i32) would not yield the same result.
298 // Another way to look at it is:
299 // %a - 2 <= 254
300 // %a + 2 <= 254 + 2
301 // %a <= 256
302 // And we can't represent 256 in the i8 format, so we don't support it.
304 // Whereas:
306 // %sub i8 %a, 1
307 // %cmp = icmp ule i8 %sub, 254
309 // If %a = 0, %sub = -1 == FF == 255
310 // As i32:
311 // %sub = -1 == FF FF FF FF == 4294967295
313 // In this case, the unsigned compare results would be the same and this
314 // would also be true for ult, uge and ugt:
315 // - (255 < 254) == (0xFFFFFFFF < 254) == false
316 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
317 // - (255 > 254) == (0xFFFFFFFF > 254) == true
318 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
320 // To demonstrate why we can't handle increasing values:
322 // %add = add i8 %a, 2
323 // %cmp = icmp ult i8 %add, 127
325 // If %a = 254, %add = 256 == (i8 1)
326 // As i32:
327 // %add = 256
329 // (1 < 127) != (256 < 127)
331 unsigned Opc = I->getOpcode();
332 if (Opc != Instruction::Add && Opc != Instruction::Sub)
333 return false;
335 if (!I->hasOneUse() ||
336 !isa<ICmpInst>(*I->user_begin()) ||
337 !isa<ConstantInt>(I->getOperand(1)))
338 return false;
340 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
341 bool NegImm = OverflowConst->isNegative();
342 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
343 ((Opc == Instruction::Add) && NegImm);
344 if (!IsDecreasing)
345 return false;
347 // Don't support an icmp that deals with sign bits.
348 auto *CI = cast<ICmpInst>(*I->user_begin());
349 if (CI->isSigned() || CI->isEquality())
350 return false;
352 ConstantInt *ICmpConst = nullptr;
353 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
354 ICmpConst = Const;
355 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
356 ICmpConst = Const;
357 else
358 return false;
360 // Now check that the result can't wrap on itself.
361 APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
362 ICmpConst->getValue().zext(32) : ICmpConst->getValue();
364 Total += OverflowConst->getValue().getBitWidth() < 32 ?
365 OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
367 APInt Max = APInt::getAllOnesValue(TypePromotion::TypeSize);
369 if (Total.getBitWidth() > Max.getBitWidth()) {
370 if (Total.ugt(Max.zext(Total.getBitWidth())))
371 return false;
372 } else if (Max.getBitWidth() > Total.getBitWidth()) {
373 if (Total.zext(Max.getBitWidth()).ugt(Max))
374 return false;
375 } else if (Total.ugt(Max))
376 return false;
378 LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for "
379 << *I << "\n");
380 SafeWrap.push_back(I);
381 return true;
384 bool TypePromotion::shouldPromote(Value *V) {
385 if (!isa<IntegerType>(V->getType()) || isSink(V))
386 return false;
388 if (isSource(V))
389 return true;
391 auto *I = dyn_cast<Instruction>(V);
392 if (!I)
393 return false;
395 if (isa<ICmpInst>(I))
396 return false;
398 return true;
401 /// Return whether we can safely mutate V's type to ExtTy without having to be
402 /// concerned with zero extending or truncation.
403 static bool isPromotedResultSafe(Instruction *I) {
404 if (GenerateSignBits(I))
405 return false;
407 if (!isa<OverflowingBinaryOperator>(I))
408 return true;
410 return I->hasNoUnsignedWrap();
413 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
414 SmallVector<Instruction*, 4> Users;
415 Instruction *InstTo = dyn_cast<Instruction>(To);
416 bool ReplacedAll = true;
418 LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
419 << "\n");
421 for (Use &U : From->uses()) {
422 auto *User = cast<Instruction>(U.getUser());
423 if (InstTo && User->isIdenticalTo(InstTo)) {
424 ReplacedAll = false;
425 continue;
427 Users.push_back(User);
430 for (auto *U : Users)
431 U->replaceUsesOfWith(From, To);
433 if (ReplacedAll)
434 if (auto *I = dyn_cast<Instruction>(From))
435 InstsToRemove.insert(I);
438 void IRPromoter::PrepareWrappingAdds() {
439 LLVM_DEBUG(dbgs() << "IR Promotion: Prepare wrapping adds.\n");
440 IRBuilder<> Builder{Ctx};
442 // For adds that safely wrap and use a negative immediate as operand 1, we
443 // create an equivalent instruction using a positive immediate.
444 // That positive immediate can then be zext along with all the other
445 // immediates later.
446 for (auto *I : SafeWrap) {
447 if (I->getOpcode() != Instruction::Add)
448 continue;
450 LLVM_DEBUG(dbgs() << "IR Promotion: Adjusting " << *I << "\n");
451 assert((isa<ConstantInt>(I->getOperand(1)) &&
452 cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
453 "Wrapping should have a negative immediate as the second operand");
455 auto Const = cast<ConstantInt>(I->getOperand(1));
456 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
457 Builder.SetInsertPoint(I);
458 Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
459 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
460 NewInst->copyIRFlags(I);
461 NewInsts.insert(NewInst);
463 InstsToRemove.insert(I);
464 I->replaceAllUsesWith(NewVal);
465 LLVM_DEBUG(dbgs() << "IR Promotion: New equivalent: " << *NewVal << "\n");
467 for (auto *I : NewInsts)
468 Visited.insert(I);
471 void IRPromoter::ExtendSources() {
472 IRBuilder<> Builder{Ctx};
474 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
475 assert(V->getType() != ExtTy && "zext already extends to i32");
476 LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
477 Builder.SetInsertPoint(InsertPt);
478 if (auto *I = dyn_cast<Instruction>(V))
479 Builder.SetCurrentDebugLocation(I->getDebugLoc());
481 Value *ZExt = Builder.CreateZExt(V, ExtTy);
482 if (auto *I = dyn_cast<Instruction>(ZExt)) {
483 if (isa<Argument>(V))
484 I->moveBefore(InsertPt);
485 else
486 I->moveAfter(InsertPt);
487 NewInsts.insert(I);
490 ReplaceAllUsersOfWith(V, ZExt);
493 // Now, insert extending instructions between the sources and their users.
494 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
495 for (auto V : Sources) {
496 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
497 if (auto *I = dyn_cast<Instruction>(V))
498 InsertZExt(I, I);
499 else if (auto *Arg = dyn_cast<Argument>(V)) {
500 BasicBlock &BB = Arg->getParent()->front();
501 InsertZExt(Arg, &*BB.getFirstInsertionPt());
502 } else {
503 llvm_unreachable("unhandled source that needs extending");
505 Promoted.insert(V);
509 void IRPromoter::PromoteTree() {
510 LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
512 // Mutate the types of the instructions within the tree. Here we handle
513 // constant operands.
514 for (auto *V : Visited) {
515 if (Sources.count(V))
516 continue;
518 auto *I = cast<Instruction>(V);
519 if (Sinks.count(I))
520 continue;
522 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
523 Value *Op = I->getOperand(i);
524 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
525 continue;
527 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
528 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
529 I->setOperand(i, NewConst);
530 } else if (isa<UndefValue>(Op))
531 I->setOperand(i, UndefValue::get(ExtTy));
534 // Mutate the result type, unless this is an icmp or switch.
535 if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
536 I->mutateType(ExtTy);
537 Promoted.insert(I);
542 void IRPromoter::TruncateSinks() {
543 LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
545 IRBuilder<> Builder{Ctx};
547 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
548 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
549 return nullptr;
551 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
552 return nullptr;
554 LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
555 << *V << "\n");
556 Builder.SetInsertPoint(cast<Instruction>(V));
557 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
558 if (Trunc)
559 NewInsts.insert(Trunc);
560 return Trunc;
563 // Fix up any stores or returns that use the results of the promoted
564 // chain.
565 for (auto I : Sinks) {
566 LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
568 // Handle calls separately as we need to iterate over arg operands.
569 if (auto *Call = dyn_cast<CallInst>(I)) {
570 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
571 Value *Arg = Call->getArgOperand(i);
572 Type *Ty = TruncTysMap[Call][i];
573 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
574 Trunc->moveBefore(Call);
575 Call->setArgOperand(i, Trunc);
578 continue;
581 // Special case switches because we need to truncate the condition.
582 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
583 Type *Ty = TruncTysMap[Switch][0];
584 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
585 Trunc->moveBefore(Switch);
586 Switch->setCondition(Trunc);
588 continue;
591 // Now handle the others.
592 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
593 Type *Ty = TruncTysMap[I][i];
594 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
595 Trunc->moveBefore(I);
596 I->setOperand(i, Trunc);
602 void IRPromoter::Cleanup() {
603 LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
604 // Some zexts will now have become redundant, along with their trunc
605 // operands, so remove them
606 for (auto V : Visited) {
607 if (!isa<ZExtInst>(V))
608 continue;
610 auto ZExt = cast<ZExtInst>(V);
611 if (ZExt->getDestTy() != ExtTy)
612 continue;
614 Value *Src = ZExt->getOperand(0);
615 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
616 LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
617 << "\n");
618 ReplaceAllUsersOfWith(ZExt, Src);
619 continue;
622 // Unless they produce a value that is narrower than ExtTy, we can
623 // replace the result of the zext with the input of a newly inserted
624 // trunc.
625 if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
626 Src->getType() == OrigTy) {
627 auto *Trunc = cast<TruncInst>(Src);
628 assert(Trunc->getOperand(0)->getType() == ExtTy &&
629 "expected inserted trunc to be operating on i32");
630 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
634 for (auto *I : InstsToRemove) {
635 LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
636 I->dropAllReferences();
637 I->eraseFromParent();
641 void IRPromoter::ConvertTruncs() {
642 LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
643 IRBuilder<> Builder{Ctx};
645 for (auto *V : Visited) {
646 if (!isa<TruncInst>(V) || Sources.count(V))
647 continue;
649 auto *Trunc = cast<TruncInst>(V);
650 Builder.SetInsertPoint(Trunc);
651 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
652 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
654 unsigned NumBits = DestTy->getScalarSizeInBits();
655 ConstantInt *Mask =
656 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
657 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
659 if (auto *I = dyn_cast<Instruction>(Masked))
660 NewInsts.insert(I);
662 ReplaceAllUsersOfWith(Trunc, Masked);
666 void IRPromoter::Mutate() {
667 LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains from "
668 << OrigTy->getBitWidth() << " to " << PromotedWidth << "-bits\n");
670 // Cache original types of the values that will likely need truncating
671 for (auto *I : Sinks) {
672 if (auto *Call = dyn_cast<CallInst>(I)) {
673 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
674 Value *Arg = Call->getArgOperand(i);
675 TruncTysMap[Call].push_back(Arg->getType());
677 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
678 TruncTysMap[I].push_back(Switch->getCondition()->getType());
679 else {
680 for (unsigned i = 0; i < I->getNumOperands(); ++i)
681 TruncTysMap[I].push_back(I->getOperand(i)->getType());
684 for (auto *V : Visited) {
685 if (!isa<TruncInst>(V) || Sources.count(V))
686 continue;
687 auto *Trunc = cast<TruncInst>(V);
688 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
691 // Convert adds using negative immediates to equivalent instructions that use
692 // positive constants.
693 PrepareWrappingAdds();
695 // Insert zext instructions between sources and their users.
696 ExtendSources();
698 // Promote visited instructions, mutating their types in place.
699 PromoteTree();
701 // Convert any truncs, that aren't sources, into AND masks.
702 ConvertTruncs();
704 // Insert trunc instructions for use by calls, stores etc...
705 TruncateSinks();
707 // Finally, remove unecessary zexts and truncs, delete old instructions and
708 // clear the data structures.
709 Cleanup();
711 LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
714 /// We disallow booleans to make life easier when dealing with icmps but allow
715 /// any other integer that fits in a scalar register. Void types are accepted
716 /// so we can handle switches.
717 bool TypePromotion::isSupportedType(Value *V) {
718 Type *Ty = V->getType();
720 // Allow voids and pointers, these won't be promoted.
721 if (Ty->isVoidTy() || Ty->isPointerTy())
722 return true;
724 if (!isa<IntegerType>(Ty) ||
725 cast<IntegerType>(Ty)->getBitWidth() == 1 ||
726 cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
727 return false;
729 return LessOrEqualTypeSize(V);
732 /// We accept most instructions, as well as Arguments and ConstantInsts. We
733 /// Disallow casts other than zext and truncs and only allow calls if their
734 /// return value is zeroext. We don't allow opcodes that can introduce sign
735 /// bits.
736 bool TypePromotion::isSupportedValue(Value *V) {
737 if (auto *I = dyn_cast<Instruction>(V)) {
738 switch (I->getOpcode()) {
739 default:
740 return isa<BinaryOperator>(I) && isSupportedType(I) &&
741 !GenerateSignBits(I);
742 case Instruction::GetElementPtr:
743 case Instruction::Store:
744 case Instruction::Br:
745 case Instruction::Switch:
746 return true;
747 case Instruction::PHI:
748 case Instruction::Select:
749 case Instruction::Ret:
750 case Instruction::Load:
751 case Instruction::Trunc:
752 case Instruction::BitCast:
753 return isSupportedType(I);
754 case Instruction::ZExt:
755 return isSupportedType(I->getOperand(0));
756 case Instruction::ICmp:
757 // Now that we allow small types than TypeSize, only allow icmp of
758 // TypeSize because they will require a trunc to be legalised.
759 // TODO: Allow icmp of smaller types, and calculate at the end
760 // whether the transform would be beneficial.
761 if (isa<PointerType>(I->getOperand(0)->getType()))
762 return true;
763 return EqualTypeSize(I->getOperand(0));
764 case Instruction::Call: {
765 // Special cases for calls as we need to check for zeroext
766 // TODO We should accept calls even if they don't have zeroext, as they
767 // can still be sinks.
768 auto *Call = cast<CallInst>(I);
769 return isSupportedType(Call) &&
770 Call->hasRetAttr(Attribute::AttrKind::ZExt);
773 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
774 return isSupportedType(V);
775 } else if (isa<Argument>(V))
776 return isSupportedType(V);
778 return isa<BasicBlock>(V);
781 /// Check that the type of V would be promoted and that the original type is
782 /// smaller than the targeted promoted type. Check that we're not trying to
783 /// promote something larger than our base 'TypeSize' type.
784 bool TypePromotion::isLegalToPromote(Value *V) {
786 auto *I = dyn_cast<Instruction>(V);
787 if (!I)
788 return true;
790 if (SafeToPromote.count(I))
791 return true;
793 if (isPromotedResultSafe(I) || isSafeWrap(I)) {
794 SafeToPromote.insert(I);
795 return true;
797 return false;
800 bool TypePromotion::TryToPromote(Value *V, unsigned PromotedWidth) {
801 Type *OrigTy = V->getType();
802 TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedSize();
803 SafeToPromote.clear();
804 SafeWrap.clear();
806 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
807 return false;
809 LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
810 << TypeSize << " bits to " << PromotedWidth << "\n");
812 SetVector<Value*> WorkList;
813 SetVector<Value*> Sources;
814 SetVector<Instruction*> Sinks;
815 SetVector<Value*> CurrentVisited;
816 WorkList.insert(V);
818 // Return true if V was added to the worklist as a supported instruction,
819 // if it was already visited, or if we don't need to explore it (e.g.
820 // pointer values and GEPs), and false otherwise.
821 auto AddLegalInst = [&](Value *V) {
822 if (CurrentVisited.count(V))
823 return true;
825 // Ignore GEPs because they don't need promoting and the constant indices
826 // will prevent the transformation.
827 if (isa<GetElementPtrInst>(V))
828 return true;
830 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
831 LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
832 return false;
835 WorkList.insert(V);
836 return true;
839 // Iterate through, and add to, a tree of operands and users in the use-def.
840 while (!WorkList.empty()) {
841 Value *V = WorkList.pop_back_val();
842 if (CurrentVisited.count(V))
843 continue;
845 // Ignore non-instructions, other than arguments.
846 if (!isa<Instruction>(V) && !isSource(V))
847 continue;
849 // If we've already visited this value from somewhere, bail now because
850 // the tree has already been explored.
851 // TODO: This could limit the transform, ie if we try to promote something
852 // from an i8 and fail first, before trying an i16.
853 if (AllVisited.count(V))
854 return false;
856 CurrentVisited.insert(V);
857 AllVisited.insert(V);
859 // Calls can be both sources and sinks.
860 if (isSink(V))
861 Sinks.insert(cast<Instruction>(V));
863 if (isSource(V))
864 Sources.insert(V);
866 if (!isSink(V) && !isSource(V)) {
867 if (auto *I = dyn_cast<Instruction>(V)) {
868 // Visit operands of any instruction visited.
869 for (auto &U : I->operands()) {
870 if (!AddLegalInst(U))
871 return false;
876 // Don't visit users of a node which isn't going to be mutated unless its a
877 // source.
878 if (isSource(V) || shouldPromote(V)) {
879 for (Use &U : V->uses()) {
880 if (!AddLegalInst(U.getUser()))
881 return false;
886 LLVM_DEBUG(dbgs() << "IR Promotion: Visited nodes:\n";
887 for (auto *I : CurrentVisited)
888 I->dump();
891 unsigned ToPromote = 0;
892 unsigned NonFreeArgs = 0;
893 SmallPtrSet<BasicBlock*, 4> Blocks;
894 for (auto *V : CurrentVisited) {
895 if (auto *I = dyn_cast<Instruction>(V))
896 Blocks.insert(I->getParent());
898 if (Sources.count(V)) {
899 if (auto *Arg = dyn_cast<Argument>(V))
900 if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
901 ++NonFreeArgs;
902 continue;
905 if (Sinks.count(cast<Instruction>(V)))
906 continue;
907 ++ToPromote;
910 // DAG optimizations should be able to handle these cases better, especially
911 // for function arguments.
912 if (ToPromote < 2 || (Blocks.size() == 1 && (NonFreeArgs > SafeWrap.size())))
913 return false;
915 IRPromoter Promoter(*Ctx, cast<IntegerType>(OrigTy), PromotedWidth,
916 CurrentVisited, Sources, Sinks, SafeWrap);
917 Promoter.Mutate();
918 return true;
921 bool TypePromotion::runOnFunction(Function &F) {
922 if (skipFunction(F) || DisablePromotion)
923 return false;
925 LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
927 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
928 if (!TPC)
929 return false;
931 AllVisited.clear();
932 SafeToPromote.clear();
933 SafeWrap.clear();
934 bool MadeChange = false;
935 const DataLayout &DL = F.getParent()->getDataLayout();
936 const TargetMachine &TM = TPC->getTM<TargetMachine>();
937 const TargetSubtargetInfo *SubtargetInfo = TM.getSubtargetImpl(F);
938 const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
939 const TargetTransformInfo &TII =
940 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
941 RegisterBitWidth =
942 TII.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedSize();
943 Ctx = &F.getParent()->getContext();
945 // Search up from icmps to try to promote their operands.
946 for (BasicBlock &BB : F) {
947 for (auto &I : BB) {
948 if (AllVisited.count(&I))
949 continue;
951 if (!isa<ICmpInst>(&I))
952 continue;
954 auto *ICmp = cast<ICmpInst>(&I);
955 // Skip signed or pointer compares
956 if (ICmp->isSigned() ||
957 !isa<IntegerType>(ICmp->getOperand(0)->getType()))
958 continue;
960 LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
962 for (auto &Op : ICmp->operands()) {
963 if (auto *I = dyn_cast<Instruction>(Op)) {
964 EVT SrcVT = TLI->getValueType(DL, I->getType());
965 if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
966 break;
968 if (TLI->getTypeAction(ICmp->getContext(), SrcVT) !=
969 TargetLowering::TypePromoteInteger)
970 break;
971 EVT PromotedVT = TLI->getTypeToTransformTo(ICmp->getContext(), SrcVT);
972 if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
973 LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
974 << "for promoted type\n");
975 break;
978 MadeChange |= TryToPromote(I, PromotedVT.getFixedSizeInBits());
979 break;
983 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
984 dbgs() << F;
985 report_fatal_error("Broken function after type promotion");
988 if (MadeChange)
989 LLVM_DEBUG(dbgs() << "After TypePromotion: " << F << "\n");
991 AllVisited.clear();
992 SafeToPromote.clear();
993 SafeWrap.clear();
995 return MadeChange;
998 INITIALIZE_PASS_BEGIN(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
999 INITIALIZE_PASS_END(TypePromotion, DEBUG_TYPE, PASS_NAME, false, false)
1001 char TypePromotion::ID = 0;
1003 FunctionPass *llvm::createTypePromotionPass() {
1004 return new TypePromotion();