[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / CodeGen / WinEHPrepare.cpp
blob4564aa1c1278d757f410817259dfe6c426b9021c
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass lowers LLVM IR exception handling into something closer to what the
10 // backend wants for functions using a personality function from a runtime
11 // provided by MSVC. Functions with other personality functions are left alone
12 // and may be prepared by other passes. In particular, all supported MSVC
13 // personality functions require cleanup code to be outlined, and the C++
14 // personality requires catch handler code to be outlined.
16 //===----------------------------------------------------------------------===//
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/WinEHFuncInfo.h"
27 #include "llvm/IR/Verifier.h"
28 #include "llvm/InitializePasses.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Pass.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
35 #include "llvm/Transforms/Utils/Cloning.h"
36 #include "llvm/Transforms/Utils/Local.h"
37 #include "llvm/Transforms/Utils/SSAUpdater.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "winehprepare"
43 static cl::opt<bool> DisableDemotion(
44 "disable-demotion", cl::Hidden,
45 cl::desc(
46 "Clone multicolor basic blocks but do not demote cross scopes"),
47 cl::init(false));
49 static cl::opt<bool> DisableCleanups(
50 "disable-cleanups", cl::Hidden,
51 cl::desc("Do not remove implausible terminators or other similar cleanups"),
52 cl::init(false));
54 static cl::opt<bool> DemoteCatchSwitchPHIOnlyOpt(
55 "demote-catchswitch-only", cl::Hidden,
56 cl::desc("Demote catchswitch BBs only (for wasm EH)"), cl::init(false));
58 namespace {
60 class WinEHPrepare : public FunctionPass {
61 public:
62 static char ID; // Pass identification, replacement for typeid.
63 WinEHPrepare(bool DemoteCatchSwitchPHIOnly = false)
64 : FunctionPass(ID), DemoteCatchSwitchPHIOnly(DemoteCatchSwitchPHIOnly) {}
66 bool runOnFunction(Function &Fn) override;
68 bool doFinalization(Module &M) override;
70 void getAnalysisUsage(AnalysisUsage &AU) const override;
72 StringRef getPassName() const override {
73 return "Windows exception handling preparation";
76 private:
77 void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
78 void
79 insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
80 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
81 AllocaInst *insertPHILoads(PHINode *PN, Function &F);
82 void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
83 DenseMap<BasicBlock *, Value *> &Loads, Function &F);
84 bool prepareExplicitEH(Function &F);
85 void colorFunclets(Function &F);
87 void demotePHIsOnFunclets(Function &F, bool DemoteCatchSwitchPHIOnly);
88 void cloneCommonBlocks(Function &F);
89 void removeImplausibleInstructions(Function &F);
90 void cleanupPreparedFunclets(Function &F);
91 void verifyPreparedFunclets(Function &F);
93 bool DemoteCatchSwitchPHIOnly;
95 // All fields are reset by runOnFunction.
96 EHPersonality Personality = EHPersonality::Unknown;
98 const DataLayout *DL = nullptr;
99 DenseMap<BasicBlock *, ColorVector> BlockColors;
100 MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
103 } // end anonymous namespace
105 char WinEHPrepare::ID = 0;
106 INITIALIZE_PASS(WinEHPrepare, DEBUG_TYPE, "Prepare Windows exceptions",
107 false, false)
109 FunctionPass *llvm::createWinEHPass(bool DemoteCatchSwitchPHIOnly) {
110 return new WinEHPrepare(DemoteCatchSwitchPHIOnly);
113 bool WinEHPrepare::runOnFunction(Function &Fn) {
114 if (!Fn.hasPersonalityFn())
115 return false;
117 // Classify the personality to see what kind of preparation we need.
118 Personality = classifyEHPersonality(Fn.getPersonalityFn());
120 // Do nothing if this is not a scope-based personality.
121 if (!isScopedEHPersonality(Personality))
122 return false;
124 DL = &Fn.getParent()->getDataLayout();
125 return prepareExplicitEH(Fn);
128 bool WinEHPrepare::doFinalization(Module &M) { return false; }
130 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
132 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
133 const BasicBlock *BB) {
134 CxxUnwindMapEntry UME;
135 UME.ToState = ToState;
136 UME.Cleanup = BB;
137 FuncInfo.CxxUnwindMap.push_back(UME);
138 return FuncInfo.getLastStateNumber();
141 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
142 int TryHigh, int CatchHigh,
143 ArrayRef<const CatchPadInst *> Handlers) {
144 WinEHTryBlockMapEntry TBME;
145 TBME.TryLow = TryLow;
146 TBME.TryHigh = TryHigh;
147 TBME.CatchHigh = CatchHigh;
148 assert(TBME.TryLow <= TBME.TryHigh);
149 for (const CatchPadInst *CPI : Handlers) {
150 WinEHHandlerType HT;
151 Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
152 if (TypeInfo->isNullValue())
153 HT.TypeDescriptor = nullptr;
154 else
155 HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
156 HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
157 HT.Handler = CPI->getParent();
158 if (auto *AI =
159 dyn_cast<AllocaInst>(CPI->getArgOperand(2)->stripPointerCasts()))
160 HT.CatchObj.Alloca = AI;
161 else
162 HT.CatchObj.Alloca = nullptr;
163 TBME.HandlerArray.push_back(HT);
165 FuncInfo.TryBlockMap.push_back(TBME);
168 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
169 for (const User *U : CleanupPad->users())
170 if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
171 return CRI->getUnwindDest();
172 return nullptr;
175 static void calculateStateNumbersForInvokes(const Function *Fn,
176 WinEHFuncInfo &FuncInfo) {
177 auto *F = const_cast<Function *>(Fn);
178 DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
179 for (BasicBlock &BB : *F) {
180 auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
181 if (!II)
182 continue;
184 auto &BBColors = BlockColors[&BB];
185 assert(BBColors.size() == 1 && "multi-color BB not removed by preparation");
186 BasicBlock *FuncletEntryBB = BBColors.front();
188 BasicBlock *FuncletUnwindDest;
189 auto *FuncletPad =
190 dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
191 assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
192 if (!FuncletPad)
193 FuncletUnwindDest = nullptr;
194 else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
195 FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
196 else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
197 FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
198 else
199 llvm_unreachable("unexpected funclet pad!");
201 BasicBlock *InvokeUnwindDest = II->getUnwindDest();
202 int BaseState = -1;
203 if (FuncletUnwindDest == InvokeUnwindDest) {
204 auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
205 if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
206 BaseState = BaseStateI->second;
209 if (BaseState != -1) {
210 FuncInfo.InvokeStateMap[II] = BaseState;
211 } else {
212 Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
213 assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
214 FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
219 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
220 // to. If the unwind edge came from an invoke, return null.
221 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
222 Value *ParentPad) {
223 const Instruction *TI = BB->getTerminator();
224 if (isa<InvokeInst>(TI))
225 return nullptr;
226 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
227 if (CatchSwitch->getParentPad() != ParentPad)
228 return nullptr;
229 return BB;
231 assert(!TI->isEHPad() && "unexpected EHPad!");
232 auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
233 if (CleanupPad->getParentPad() != ParentPad)
234 return nullptr;
235 return CleanupPad->getParent();
238 // Starting from a EHPad, Backward walk through control-flow graph
239 // to produce two primary outputs:
240 // FuncInfo.EHPadStateMap[] and FuncInfo.CxxUnwindMap[]
241 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
242 const Instruction *FirstNonPHI,
243 int ParentState) {
244 const BasicBlock *BB = FirstNonPHI->getParent();
245 assert(BB->isEHPad() && "not a funclet!");
247 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
248 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
249 "shouldn't revist catch funclets!");
251 SmallVector<const CatchPadInst *, 2> Handlers;
252 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
253 auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
254 Handlers.push_back(CatchPad);
256 int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
257 FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
258 for (const BasicBlock *PredBlock : predecessors(BB))
259 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
260 CatchSwitch->getParentPad())))
261 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
262 TryLow);
263 int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
265 // catchpads are separate funclets in C++ EH due to the way rethrow works.
266 int TryHigh = CatchLow - 1;
268 // MSVC FrameHandler3/4 on x64&Arm64 expect Catch Handlers in $tryMap$
269 // stored in pre-order (outer first, inner next), not post-order
270 // Add to map here. Fix the CatchHigh after children are processed
271 const Module *Mod = BB->getParent()->getParent();
272 bool IsPreOrder = Triple(Mod->getTargetTriple()).isArch64Bit();
273 if (IsPreOrder)
274 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchLow, Handlers);
275 unsigned TBMEIdx = FuncInfo.TryBlockMap.size() - 1;
277 for (const auto *CatchPad : Handlers) {
278 FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
279 for (const User *U : CatchPad->users()) {
280 const auto *UserI = cast<Instruction>(U);
281 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
282 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
283 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
284 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
286 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
287 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
288 // If a nested cleanup pad reports a null unwind destination and the
289 // enclosing catch pad doesn't it must be post-dominated by an
290 // unreachable instruction.
291 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
292 calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
296 int CatchHigh = FuncInfo.getLastStateNumber();
297 // Now child Catches are processed, update CatchHigh
298 if (IsPreOrder)
299 FuncInfo.TryBlockMap[TBMEIdx].CatchHigh = CatchHigh;
300 else // PostOrder
301 addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
303 LLVM_DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
304 LLVM_DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh
305 << '\n');
306 LLVM_DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
307 << '\n');
308 } else {
309 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
311 // It's possible for a cleanup to be visited twice: it might have multiple
312 // cleanupret instructions.
313 if (FuncInfo.EHPadStateMap.count(CleanupPad))
314 return;
316 int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
317 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
318 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
319 << BB->getName() << '\n');
320 for (const BasicBlock *PredBlock : predecessors(BB)) {
321 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
322 CleanupPad->getParentPad()))) {
323 calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
324 CleanupState);
327 for (const User *U : CleanupPad->users()) {
328 const auto *UserI = cast<Instruction>(U);
329 if (UserI->isEHPad())
330 report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
331 "contain exceptional actions");
336 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
337 const Function *Filter, const BasicBlock *Handler) {
338 SEHUnwindMapEntry Entry;
339 Entry.ToState = ParentState;
340 Entry.IsFinally = false;
341 Entry.Filter = Filter;
342 Entry.Handler = Handler;
343 FuncInfo.SEHUnwindMap.push_back(Entry);
344 return FuncInfo.SEHUnwindMap.size() - 1;
347 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
348 const BasicBlock *Handler) {
349 SEHUnwindMapEntry Entry;
350 Entry.ToState = ParentState;
351 Entry.IsFinally = true;
352 Entry.Filter = nullptr;
353 Entry.Handler = Handler;
354 FuncInfo.SEHUnwindMap.push_back(Entry);
355 return FuncInfo.SEHUnwindMap.size() - 1;
358 // Starting from a EHPad, Backward walk through control-flow graph
359 // to produce two primary outputs:
360 // FuncInfo.EHPadStateMap[] and FuncInfo.SEHUnwindMap[]
361 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
362 const Instruction *FirstNonPHI,
363 int ParentState) {
364 const BasicBlock *BB = FirstNonPHI->getParent();
365 assert(BB->isEHPad() && "no a funclet!");
367 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
368 assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
369 "shouldn't revist catch funclets!");
371 // Extract the filter function and the __except basic block and create a
372 // state for them.
373 assert(CatchSwitch->getNumHandlers() == 1 &&
374 "SEH doesn't have multiple handlers per __try");
375 const auto *CatchPad =
376 cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
377 const BasicBlock *CatchPadBB = CatchPad->getParent();
378 const Constant *FilterOrNull =
379 cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
380 const Function *Filter = dyn_cast<Function>(FilterOrNull);
381 assert((Filter || FilterOrNull->isNullValue()) &&
382 "unexpected filter value");
383 int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
385 // Everything in the __try block uses TryState as its parent state.
386 FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
387 LLVM_DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
388 << CatchPadBB->getName() << '\n');
389 for (const BasicBlock *PredBlock : predecessors(BB))
390 if ((PredBlock = getEHPadFromPredecessor(PredBlock,
391 CatchSwitch->getParentPad())))
392 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
393 TryState);
395 // Everything in the __except block unwinds to ParentState, just like code
396 // outside the __try.
397 for (const User *U : CatchPad->users()) {
398 const auto *UserI = cast<Instruction>(U);
399 if (auto *InnerCatchSwitch = dyn_cast<CatchSwitchInst>(UserI)) {
400 BasicBlock *UnwindDest = InnerCatchSwitch->getUnwindDest();
401 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
402 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
404 if (auto *InnerCleanupPad = dyn_cast<CleanupPadInst>(UserI)) {
405 BasicBlock *UnwindDest = getCleanupRetUnwindDest(InnerCleanupPad);
406 // If a nested cleanup pad reports a null unwind destination and the
407 // enclosing catch pad doesn't it must be post-dominated by an
408 // unreachable instruction.
409 if (!UnwindDest || UnwindDest == CatchSwitch->getUnwindDest())
410 calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
413 } else {
414 auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
416 // It's possible for a cleanup to be visited twice: it might have multiple
417 // cleanupret instructions.
418 if (FuncInfo.EHPadStateMap.count(CleanupPad))
419 return;
421 int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
422 FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
423 LLVM_DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
424 << BB->getName() << '\n');
425 for (const BasicBlock *PredBlock : predecessors(BB))
426 if ((PredBlock =
427 getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
428 calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
429 CleanupState);
430 for (const User *U : CleanupPad->users()) {
431 const auto *UserI = cast<Instruction>(U);
432 if (UserI->isEHPad())
433 report_fatal_error("Cleanup funclets for the SEH personality cannot "
434 "contain exceptional actions");
439 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
440 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
441 return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
442 CatchSwitch->unwindsToCaller();
443 if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
444 return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
445 getCleanupRetUnwindDest(CleanupPad) == nullptr;
446 if (isa<CatchPadInst>(EHPad))
447 return false;
448 llvm_unreachable("unexpected EHPad!");
451 void llvm::calculateSEHStateNumbers(const Function *Fn,
452 WinEHFuncInfo &FuncInfo) {
453 // Don't compute state numbers twice.
454 if (!FuncInfo.SEHUnwindMap.empty())
455 return;
457 for (const BasicBlock &BB : *Fn) {
458 if (!BB.isEHPad())
459 continue;
460 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
461 if (!isTopLevelPadForMSVC(FirstNonPHI))
462 continue;
463 ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
466 calculateStateNumbersForInvokes(Fn, FuncInfo);
469 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
470 WinEHFuncInfo &FuncInfo) {
471 // Return if it's already been done.
472 if (!FuncInfo.EHPadStateMap.empty())
473 return;
475 for (const BasicBlock &BB : *Fn) {
476 if (!BB.isEHPad())
477 continue;
478 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
479 if (!isTopLevelPadForMSVC(FirstNonPHI))
480 continue;
481 calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
484 calculateStateNumbersForInvokes(Fn, FuncInfo);
487 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int HandlerParentState,
488 int TryParentState, ClrHandlerType HandlerType,
489 uint32_t TypeToken, const BasicBlock *Handler) {
490 ClrEHUnwindMapEntry Entry;
491 Entry.HandlerParentState = HandlerParentState;
492 Entry.TryParentState = TryParentState;
493 Entry.Handler = Handler;
494 Entry.HandlerType = HandlerType;
495 Entry.TypeToken = TypeToken;
496 FuncInfo.ClrEHUnwindMap.push_back(Entry);
497 return FuncInfo.ClrEHUnwindMap.size() - 1;
500 void llvm::calculateClrEHStateNumbers(const Function *Fn,
501 WinEHFuncInfo &FuncInfo) {
502 // Return if it's already been done.
503 if (!FuncInfo.EHPadStateMap.empty())
504 return;
506 // This numbering assigns one state number to each catchpad and cleanuppad.
507 // It also computes two tree-like relations over states:
508 // 1) Each state has a "HandlerParentState", which is the state of the next
509 // outer handler enclosing this state's handler (same as nearest ancestor
510 // per the ParentPad linkage on EH pads, but skipping over catchswitches).
511 // 2) Each state has a "TryParentState", which:
512 // a) for a catchpad that's not the last handler on its catchswitch, is
513 // the state of the next catchpad on that catchswitch
514 // b) for all other pads, is the state of the pad whose try region is the
515 // next outer try region enclosing this state's try region. The "try
516 // regions are not present as such in the IR, but will be inferred
517 // based on the placement of invokes and pads which reach each other
518 // by exceptional exits
519 // Catchswitches do not get their own states, but each gets mapped to the
520 // state of its first catchpad.
522 // Step one: walk down from outermost to innermost funclets, assigning each
523 // catchpad and cleanuppad a state number. Add an entry to the
524 // ClrEHUnwindMap for each state, recording its HandlerParentState and
525 // handler attributes. Record the TryParentState as well for each catchpad
526 // that's not the last on its catchswitch, but initialize all other entries'
527 // TryParentStates to a sentinel -1 value that the next pass will update.
529 // Seed a worklist with pads that have no parent.
530 SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
531 for (const BasicBlock &BB : *Fn) {
532 const Instruction *FirstNonPHI = BB.getFirstNonPHI();
533 const Value *ParentPad;
534 if (const auto *CPI = dyn_cast<CleanupPadInst>(FirstNonPHI))
535 ParentPad = CPI->getParentPad();
536 else if (const auto *CSI = dyn_cast<CatchSwitchInst>(FirstNonPHI))
537 ParentPad = CSI->getParentPad();
538 else
539 continue;
540 if (isa<ConstantTokenNone>(ParentPad))
541 Worklist.emplace_back(FirstNonPHI, -1);
544 // Use the worklist to visit all pads, from outer to inner. Record
545 // HandlerParentState for all pads. Record TryParentState only for catchpads
546 // that aren't the last on their catchswitch (setting all other entries'
547 // TryParentStates to an initial value of -1). This loop is also responsible
548 // for setting the EHPadStateMap entry for all catchpads, cleanuppads, and
549 // catchswitches.
550 while (!Worklist.empty()) {
551 const Instruction *Pad;
552 int HandlerParentState;
553 std::tie(Pad, HandlerParentState) = Worklist.pop_back_val();
555 if (const auto *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
556 // Create the entry for this cleanup with the appropriate handler
557 // properties. Finally and fault handlers are distinguished by arity.
558 ClrHandlerType HandlerType =
559 (Cleanup->getNumArgOperands() ? ClrHandlerType::Fault
560 : ClrHandlerType::Finally);
561 int CleanupState = addClrEHHandler(FuncInfo, HandlerParentState, -1,
562 HandlerType, 0, Pad->getParent());
563 // Queue any child EH pads on the worklist.
564 for (const User *U : Cleanup->users())
565 if (const auto *I = dyn_cast<Instruction>(U))
566 if (I->isEHPad())
567 Worklist.emplace_back(I, CleanupState);
568 // Remember this pad's state.
569 FuncInfo.EHPadStateMap[Cleanup] = CleanupState;
570 } else {
571 // Walk the handlers of this catchswitch in reverse order since all but
572 // the last need to set the following one as its TryParentState.
573 const auto *CatchSwitch = cast<CatchSwitchInst>(Pad);
574 int CatchState = -1, FollowerState = -1;
575 SmallVector<const BasicBlock *, 4> CatchBlocks(CatchSwitch->handlers());
576 for (auto CBI = CatchBlocks.rbegin(), CBE = CatchBlocks.rend();
577 CBI != CBE; ++CBI, FollowerState = CatchState) {
578 const BasicBlock *CatchBlock = *CBI;
579 // Create the entry for this catch with the appropriate handler
580 // properties.
581 const auto *Catch = cast<CatchPadInst>(CatchBlock->getFirstNonPHI());
582 uint32_t TypeToken = static_cast<uint32_t>(
583 cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
584 CatchState =
585 addClrEHHandler(FuncInfo, HandlerParentState, FollowerState,
586 ClrHandlerType::Catch, TypeToken, CatchBlock);
587 // Queue any child EH pads on the worklist.
588 for (const User *U : Catch->users())
589 if (const auto *I = dyn_cast<Instruction>(U))
590 if (I->isEHPad())
591 Worklist.emplace_back(I, CatchState);
592 // Remember this catch's state.
593 FuncInfo.EHPadStateMap[Catch] = CatchState;
595 // Associate the catchswitch with the state of its first catch.
596 assert(CatchSwitch->getNumHandlers());
597 FuncInfo.EHPadStateMap[CatchSwitch] = CatchState;
601 // Step two: record the TryParentState of each state. For cleanuppads that
602 // don't have cleanuprets, we may need to infer this from their child pads,
603 // so visit pads in descendant-most to ancestor-most order.
604 for (auto Entry = FuncInfo.ClrEHUnwindMap.rbegin(),
605 End = FuncInfo.ClrEHUnwindMap.rend();
606 Entry != End; ++Entry) {
607 const Instruction *Pad =
608 Entry->Handler.get<const BasicBlock *>()->getFirstNonPHI();
609 // For most pads, the TryParentState is the state associated with the
610 // unwind dest of exceptional exits from it.
611 const BasicBlock *UnwindDest;
612 if (const auto *Catch = dyn_cast<CatchPadInst>(Pad)) {
613 // If a catch is not the last in its catchswitch, its TryParentState is
614 // the state associated with the next catch in the switch, even though
615 // that's not the unwind dest of exceptions escaping the catch. Those
616 // cases were already assigned a TryParentState in the first pass, so
617 // skip them.
618 if (Entry->TryParentState != -1)
619 continue;
620 // Otherwise, get the unwind dest from the catchswitch.
621 UnwindDest = Catch->getCatchSwitch()->getUnwindDest();
622 } else {
623 const auto *Cleanup = cast<CleanupPadInst>(Pad);
624 UnwindDest = nullptr;
625 for (const User *U : Cleanup->users()) {
626 if (auto *CleanupRet = dyn_cast<CleanupReturnInst>(U)) {
627 // Common and unambiguous case -- cleanupret indicates cleanup's
628 // unwind dest.
629 UnwindDest = CleanupRet->getUnwindDest();
630 break;
633 // Get an unwind dest for the user
634 const BasicBlock *UserUnwindDest = nullptr;
635 if (auto *Invoke = dyn_cast<InvokeInst>(U)) {
636 UserUnwindDest = Invoke->getUnwindDest();
637 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(U)) {
638 UserUnwindDest = CatchSwitch->getUnwindDest();
639 } else if (auto *ChildCleanup = dyn_cast<CleanupPadInst>(U)) {
640 int UserState = FuncInfo.EHPadStateMap[ChildCleanup];
641 int UserUnwindState =
642 FuncInfo.ClrEHUnwindMap[UserState].TryParentState;
643 if (UserUnwindState != -1)
644 UserUnwindDest = FuncInfo.ClrEHUnwindMap[UserUnwindState]
645 .Handler.get<const BasicBlock *>();
648 // Not having an unwind dest for this user might indicate that it
649 // doesn't unwind, so can't be taken as proof that the cleanup itself
650 // may unwind to caller (see e.g. SimplifyUnreachable and
651 // RemoveUnwindEdge).
652 if (!UserUnwindDest)
653 continue;
655 // Now we have an unwind dest for the user, but we need to see if it
656 // unwinds all the way out of the cleanup or if it stays within it.
657 const Instruction *UserUnwindPad = UserUnwindDest->getFirstNonPHI();
658 const Value *UserUnwindParent;
659 if (auto *CSI = dyn_cast<CatchSwitchInst>(UserUnwindPad))
660 UserUnwindParent = CSI->getParentPad();
661 else
662 UserUnwindParent =
663 cast<CleanupPadInst>(UserUnwindPad)->getParentPad();
665 // The unwind stays within the cleanup iff it targets a child of the
666 // cleanup.
667 if (UserUnwindParent == Cleanup)
668 continue;
670 // This unwind exits the cleanup, so its dest is the cleanup's dest.
671 UnwindDest = UserUnwindDest;
672 break;
676 // Record the state of the unwind dest as the TryParentState.
677 int UnwindDestState;
679 // If UnwindDest is null at this point, either the pad in question can
680 // be exited by unwind to caller, or it cannot be exited by unwind. In
681 // either case, reporting such cases as unwinding to caller is correct.
682 // This can lead to EH tables that "look strange" -- if this pad's is in
683 // a parent funclet which has other children that do unwind to an enclosing
684 // pad, the try region for this pad will be missing the "duplicate" EH
685 // clause entries that you'd expect to see covering the whole parent. That
686 // should be benign, since the unwind never actually happens. If it were
687 // an issue, we could add a subsequent pass that pushes unwind dests down
688 // from parents that have them to children that appear to unwind to caller.
689 if (!UnwindDest) {
690 UnwindDestState = -1;
691 } else {
692 UnwindDestState = FuncInfo.EHPadStateMap[UnwindDest->getFirstNonPHI()];
695 Entry->TryParentState = UnwindDestState;
698 // Step three: transfer information from pads to invokes.
699 calculateStateNumbersForInvokes(Fn, FuncInfo);
702 void WinEHPrepare::colorFunclets(Function &F) {
703 BlockColors = colorEHFunclets(F);
705 // Invert the map from BB to colors to color to BBs.
706 for (BasicBlock &BB : F) {
707 ColorVector &Colors = BlockColors[&BB];
708 for (BasicBlock *Color : Colors)
709 FuncletBlocks[Color].push_back(&BB);
713 void WinEHPrepare::demotePHIsOnFunclets(Function &F,
714 bool DemoteCatchSwitchPHIOnly) {
715 // Strip PHI nodes off of EH pads.
716 SmallVector<PHINode *, 16> PHINodes;
717 for (BasicBlock &BB : make_early_inc_range(F)) {
718 if (!BB.isEHPad())
719 continue;
720 if (DemoteCatchSwitchPHIOnly && !isa<CatchSwitchInst>(BB.getFirstNonPHI()))
721 continue;
723 for (Instruction &I : make_early_inc_range(BB)) {
724 auto *PN = dyn_cast<PHINode>(&I);
725 // Stop at the first non-PHI.
726 if (!PN)
727 break;
729 AllocaInst *SpillSlot = insertPHILoads(PN, F);
730 if (SpillSlot)
731 insertPHIStores(PN, SpillSlot);
733 PHINodes.push_back(PN);
737 for (auto *PN : PHINodes) {
738 // There may be lingering uses on other EH PHIs being removed
739 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
740 PN->eraseFromParent();
744 void WinEHPrepare::cloneCommonBlocks(Function &F) {
745 // We need to clone all blocks which belong to multiple funclets. Values are
746 // remapped throughout the funclet to propagate both the new instructions
747 // *and* the new basic blocks themselves.
748 for (auto &Funclets : FuncletBlocks) {
749 BasicBlock *FuncletPadBB = Funclets.first;
750 std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
751 Value *FuncletToken;
752 if (FuncletPadBB == &F.getEntryBlock())
753 FuncletToken = ConstantTokenNone::get(F.getContext());
754 else
755 FuncletToken = FuncletPadBB->getFirstNonPHI();
757 std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
758 ValueToValueMapTy VMap;
759 for (BasicBlock *BB : BlocksInFunclet) {
760 ColorVector &ColorsForBB = BlockColors[BB];
761 // We don't need to do anything if the block is monochromatic.
762 size_t NumColorsForBB = ColorsForBB.size();
763 if (NumColorsForBB == 1)
764 continue;
766 DEBUG_WITH_TYPE("winehprepare-coloring",
767 dbgs() << " Cloning block \'" << BB->getName()
768 << "\' for funclet \'" << FuncletPadBB->getName()
769 << "\'.\n");
771 // Create a new basic block and copy instructions into it!
772 BasicBlock *CBB =
773 CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
774 // Insert the clone immediately after the original to ensure determinism
775 // and to keep the same relative ordering of any funclet's blocks.
776 CBB->insertInto(&F, BB->getNextNode());
778 // Add basic block mapping.
779 VMap[BB] = CBB;
781 // Record delta operations that we need to perform to our color mappings.
782 Orig2Clone.emplace_back(BB, CBB);
785 // If nothing was cloned, we're done cloning in this funclet.
786 if (Orig2Clone.empty())
787 continue;
789 // Update our color mappings to reflect that one block has lost a color and
790 // another has gained a color.
791 for (auto &BBMapping : Orig2Clone) {
792 BasicBlock *OldBlock = BBMapping.first;
793 BasicBlock *NewBlock = BBMapping.second;
795 BlocksInFunclet.push_back(NewBlock);
796 ColorVector &NewColors = BlockColors[NewBlock];
797 assert(NewColors.empty() && "A new block should only have one color!");
798 NewColors.push_back(FuncletPadBB);
800 DEBUG_WITH_TYPE("winehprepare-coloring",
801 dbgs() << " Assigned color \'" << FuncletPadBB->getName()
802 << "\' to block \'" << NewBlock->getName()
803 << "\'.\n");
805 llvm::erase_value(BlocksInFunclet, OldBlock);
806 ColorVector &OldColors = BlockColors[OldBlock];
807 llvm::erase_value(OldColors, FuncletPadBB);
809 DEBUG_WITH_TYPE("winehprepare-coloring",
810 dbgs() << " Removed color \'" << FuncletPadBB->getName()
811 << "\' from block \'" << OldBlock->getName()
812 << "\'.\n");
815 // Loop over all of the instructions in this funclet, fixing up operand
816 // references as we go. This uses VMap to do all the hard work.
817 for (BasicBlock *BB : BlocksInFunclet)
818 // Loop over all instructions, fixing each one as we find it...
819 for (Instruction &I : *BB)
820 RemapInstruction(&I, VMap,
821 RF_IgnoreMissingLocals | RF_NoModuleLevelChanges);
823 // Catchrets targeting cloned blocks need to be updated separately from
824 // the loop above because they are not in the current funclet.
825 SmallVector<CatchReturnInst *, 2> FixupCatchrets;
826 for (auto &BBMapping : Orig2Clone) {
827 BasicBlock *OldBlock = BBMapping.first;
828 BasicBlock *NewBlock = BBMapping.second;
830 FixupCatchrets.clear();
831 for (BasicBlock *Pred : predecessors(OldBlock))
832 if (auto *CatchRet = dyn_cast<CatchReturnInst>(Pred->getTerminator()))
833 if (CatchRet->getCatchSwitchParentPad() == FuncletToken)
834 FixupCatchrets.push_back(CatchRet);
836 for (CatchReturnInst *CatchRet : FixupCatchrets)
837 CatchRet->setSuccessor(NewBlock);
840 auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
841 unsigned NumPreds = PN->getNumIncomingValues();
842 for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
843 ++PredIdx) {
844 BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
845 bool EdgeTargetsFunclet;
846 if (auto *CRI =
847 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
848 EdgeTargetsFunclet = (CRI->getCatchSwitchParentPad() == FuncletToken);
849 } else {
850 ColorVector &IncomingColors = BlockColors[IncomingBlock];
851 assert(!IncomingColors.empty() && "Block not colored!");
852 assert((IncomingColors.size() == 1 ||
853 llvm::all_of(IncomingColors,
854 [&](BasicBlock *Color) {
855 return Color != FuncletPadBB;
856 })) &&
857 "Cloning should leave this funclet's blocks monochromatic");
858 EdgeTargetsFunclet = (IncomingColors.front() == FuncletPadBB);
860 if (IsForOldBlock != EdgeTargetsFunclet)
861 continue;
862 PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
863 // Revisit the next entry.
864 --PredIdx;
865 --PredEnd;
869 for (auto &BBMapping : Orig2Clone) {
870 BasicBlock *OldBlock = BBMapping.first;
871 BasicBlock *NewBlock = BBMapping.second;
872 for (PHINode &OldPN : OldBlock->phis()) {
873 UpdatePHIOnClonedBlock(&OldPN, /*IsForOldBlock=*/true);
875 for (PHINode &NewPN : NewBlock->phis()) {
876 UpdatePHIOnClonedBlock(&NewPN, /*IsForOldBlock=*/false);
880 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
881 // the PHI nodes for NewBB now.
882 for (auto &BBMapping : Orig2Clone) {
883 BasicBlock *OldBlock = BBMapping.first;
884 BasicBlock *NewBlock = BBMapping.second;
885 for (BasicBlock *SuccBB : successors(NewBlock)) {
886 for (PHINode &SuccPN : SuccBB->phis()) {
887 // Ok, we have a PHI node. Figure out what the incoming value was for
888 // the OldBlock.
889 int OldBlockIdx = SuccPN.getBasicBlockIndex(OldBlock);
890 if (OldBlockIdx == -1)
891 break;
892 Value *IV = SuccPN.getIncomingValue(OldBlockIdx);
894 // Remap the value if necessary.
895 if (auto *Inst = dyn_cast<Instruction>(IV)) {
896 ValueToValueMapTy::iterator I = VMap.find(Inst);
897 if (I != VMap.end())
898 IV = I->second;
901 SuccPN.addIncoming(IV, NewBlock);
906 for (ValueToValueMapTy::value_type VT : VMap) {
907 // If there were values defined in BB that are used outside the funclet,
908 // then we now have to update all uses of the value to use either the
909 // original value, the cloned value, or some PHI derived value. This can
910 // require arbitrary PHI insertion, of which we are prepared to do, clean
911 // these up now.
912 SmallVector<Use *, 16> UsesToRename;
914 auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
915 if (!OldI)
916 continue;
917 auto *NewI = cast<Instruction>(VT.second);
918 // Scan all uses of this instruction to see if it is used outside of its
919 // funclet, and if so, record them in UsesToRename.
920 for (Use &U : OldI->uses()) {
921 Instruction *UserI = cast<Instruction>(U.getUser());
922 BasicBlock *UserBB = UserI->getParent();
923 ColorVector &ColorsForUserBB = BlockColors[UserBB];
924 assert(!ColorsForUserBB.empty());
925 if (ColorsForUserBB.size() > 1 ||
926 *ColorsForUserBB.begin() != FuncletPadBB)
927 UsesToRename.push_back(&U);
930 // If there are no uses outside the block, we're done with this
931 // instruction.
932 if (UsesToRename.empty())
933 continue;
935 // We found a use of OldI outside of the funclet. Rename all uses of OldI
936 // that are outside its funclet to be uses of the appropriate PHI node
937 // etc.
938 SSAUpdater SSAUpdate;
939 SSAUpdate.Initialize(OldI->getType(), OldI->getName());
940 SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
941 SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
943 while (!UsesToRename.empty())
944 SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
949 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
950 // Remove implausible terminators and replace them with UnreachableInst.
951 for (auto &Funclet : FuncletBlocks) {
952 BasicBlock *FuncletPadBB = Funclet.first;
953 std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
954 Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
955 auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
956 auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
957 auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
959 for (BasicBlock *BB : BlocksInFunclet) {
960 for (Instruction &I : *BB) {
961 auto *CB = dyn_cast<CallBase>(&I);
962 if (!CB)
963 continue;
965 Value *FuncletBundleOperand = nullptr;
966 if (auto BU = CB->getOperandBundle(LLVMContext::OB_funclet))
967 FuncletBundleOperand = BU->Inputs.front();
969 if (FuncletBundleOperand == FuncletPad)
970 continue;
972 // Skip call sites which are nounwind intrinsics or inline asm.
973 auto *CalledFn =
974 dyn_cast<Function>(CB->getCalledOperand()->stripPointerCasts());
975 if (CalledFn && ((CalledFn->isIntrinsic() && CB->doesNotThrow()) ||
976 CB->isInlineAsm()))
977 continue;
979 // This call site was not part of this funclet, remove it.
980 if (isa<InvokeInst>(CB)) {
981 // Remove the unwind edge if it was an invoke.
982 removeUnwindEdge(BB);
983 // Get a pointer to the new call.
984 BasicBlock::iterator CallI =
985 std::prev(BB->getTerminator()->getIterator());
986 auto *CI = cast<CallInst>(&*CallI);
987 changeToUnreachable(CI);
988 } else {
989 changeToUnreachable(&I);
992 // There are no more instructions in the block (except for unreachable),
993 // we are done.
994 break;
997 Instruction *TI = BB->getTerminator();
998 // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
999 bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
1000 // The token consumed by a CatchReturnInst must match the funclet token.
1001 bool IsUnreachableCatchret = false;
1002 if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
1003 IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
1004 // The token consumed by a CleanupReturnInst must match the funclet token.
1005 bool IsUnreachableCleanupret = false;
1006 if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
1007 IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
1008 if (IsUnreachableRet || IsUnreachableCatchret ||
1009 IsUnreachableCleanupret) {
1010 changeToUnreachable(TI);
1011 } else if (isa<InvokeInst>(TI)) {
1012 if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
1013 // Invokes within a cleanuppad for the MSVC++ personality never
1014 // transfer control to their unwind edge: the personality will
1015 // terminate the program.
1016 removeUnwindEdge(BB);
1023 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
1024 // Clean-up some of the mess we made by removing useles PHI nodes, trivial
1025 // branches, etc.
1026 for (BasicBlock &BB : llvm::make_early_inc_range(F)) {
1027 SimplifyInstructionsInBlock(&BB);
1028 ConstantFoldTerminator(&BB, /*DeleteDeadConditions=*/true);
1029 MergeBlockIntoPredecessor(&BB);
1032 // We might have some unreachable blocks after cleaning up some impossible
1033 // control flow.
1034 removeUnreachableBlocks(F);
1037 #ifndef NDEBUG
1038 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
1039 for (BasicBlock &BB : F) {
1040 size_t NumColors = BlockColors[&BB].size();
1041 assert(NumColors == 1 && "Expected monochromatic BB!");
1042 if (NumColors == 0)
1043 report_fatal_error("Uncolored BB!");
1044 if (NumColors > 1)
1045 report_fatal_error("Multicolor BB!");
1046 assert((DisableDemotion || !(BB.isEHPad() && isa<PHINode>(BB.begin()))) &&
1047 "EH Pad still has a PHI!");
1050 #endif
1052 bool WinEHPrepare::prepareExplicitEH(Function &F) {
1053 // Remove unreachable blocks. It is not valuable to assign them a color and
1054 // their existence can trick us into thinking values are alive when they are
1055 // not.
1056 removeUnreachableBlocks(F);
1058 // Determine which blocks are reachable from which funclet entries.
1059 colorFunclets(F);
1061 cloneCommonBlocks(F);
1063 if (!DisableDemotion)
1064 demotePHIsOnFunclets(F, DemoteCatchSwitchPHIOnly ||
1065 DemoteCatchSwitchPHIOnlyOpt);
1067 if (!DisableCleanups) {
1068 assert(!verifyFunction(F, &dbgs()));
1069 removeImplausibleInstructions(F);
1071 assert(!verifyFunction(F, &dbgs()));
1072 cleanupPreparedFunclets(F);
1075 LLVM_DEBUG(verifyPreparedFunclets(F));
1076 // Recolor the CFG to verify that all is well.
1077 LLVM_DEBUG(colorFunclets(F));
1078 LLVM_DEBUG(verifyPreparedFunclets(F));
1080 BlockColors.clear();
1081 FuncletBlocks.clear();
1083 return true;
1086 // TODO: Share loads when one use dominates another, or when a catchpad exit
1087 // dominates uses (needs dominators).
1088 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
1089 BasicBlock *PHIBlock = PN->getParent();
1090 AllocaInst *SpillSlot = nullptr;
1091 Instruction *EHPad = PHIBlock->getFirstNonPHI();
1093 if (!EHPad->isTerminator()) {
1094 // If the EHPad isn't a terminator, then we can insert a load in this block
1095 // that will dominate all uses.
1096 SpillSlot = new AllocaInst(PN->getType(), DL->getAllocaAddrSpace(), nullptr,
1097 Twine(PN->getName(), ".wineh.spillslot"),
1098 &F.getEntryBlock().front());
1099 Value *V = new LoadInst(PN->getType(), SpillSlot,
1100 Twine(PN->getName(), ".wineh.reload"),
1101 &*PHIBlock->getFirstInsertionPt());
1102 PN->replaceAllUsesWith(V);
1103 return SpillSlot;
1106 // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
1107 // loads of the slot before every use.
1108 DenseMap<BasicBlock *, Value *> Loads;
1109 for (Use &U : llvm::make_early_inc_range(PN->uses())) {
1110 auto *UsingInst = cast<Instruction>(U.getUser());
1111 if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
1112 // Use is on an EH pad phi. Leave it alone; we'll insert loads and
1113 // stores for it separately.
1114 continue;
1116 replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
1118 return SpillSlot;
1121 // TODO: improve store placement. Inserting at def is probably good, but need
1122 // to be careful not to introduce interfering stores (needs liveness analysis).
1123 // TODO: identify related phi nodes that can share spill slots, and share them
1124 // (also needs liveness).
1125 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
1126 AllocaInst *SpillSlot) {
1127 // Use a worklist of (Block, Value) pairs -- the given Value needs to be
1128 // stored to the spill slot by the end of the given Block.
1129 SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
1131 Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
1133 while (!Worklist.empty()) {
1134 BasicBlock *EHBlock;
1135 Value *InVal;
1136 std::tie(EHBlock, InVal) = Worklist.pop_back_val();
1138 PHINode *PN = dyn_cast<PHINode>(InVal);
1139 if (PN && PN->getParent() == EHBlock) {
1140 // The value is defined by another PHI we need to remove, with no room to
1141 // insert a store after the PHI, so each predecessor needs to store its
1142 // incoming value.
1143 for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
1144 Value *PredVal = PN->getIncomingValue(i);
1146 // Undef can safely be skipped.
1147 if (isa<UndefValue>(PredVal))
1148 continue;
1150 insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
1152 } else {
1153 // We need to store InVal, which dominates EHBlock, but can't put a store
1154 // in EHBlock, so need to put stores in each predecessor.
1155 for (BasicBlock *PredBlock : predecessors(EHBlock)) {
1156 insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
1162 void WinEHPrepare::insertPHIStore(
1163 BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
1164 SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
1166 if (PredBlock->isEHPad() && PredBlock->getFirstNonPHI()->isTerminator()) {
1167 // Pred is unsplittable, so we need to queue it on the worklist.
1168 Worklist.push_back({PredBlock, PredVal});
1169 return;
1172 // Otherwise, insert the store at the end of the basic block.
1173 new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
1176 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
1177 DenseMap<BasicBlock *, Value *> &Loads,
1178 Function &F) {
1179 // Lazilly create the spill slot.
1180 if (!SpillSlot)
1181 SpillSlot = new AllocaInst(V->getType(), DL->getAllocaAddrSpace(), nullptr,
1182 Twine(V->getName(), ".wineh.spillslot"),
1183 &F.getEntryBlock().front());
1185 auto *UsingInst = cast<Instruction>(U.getUser());
1186 if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1187 // If this is a PHI node, we can't insert a load of the value before
1188 // the use. Instead insert the load in the predecessor block
1189 // corresponding to the incoming value.
1191 // Note that if there are multiple edges from a basic block to this
1192 // PHI node that we cannot have multiple loads. The problem is that
1193 // the resulting PHI node will have multiple values (from each load)
1194 // coming in from the same block, which is illegal SSA form.
1195 // For this reason, we keep track of and reuse loads we insert.
1196 BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1197 if (auto *CatchRet =
1198 dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1199 // Putting a load above a catchret and use on the phi would still leave
1200 // a cross-funclet def/use. We need to split the edge, change the
1201 // catchret to target the new block, and put the load there.
1202 BasicBlock *PHIBlock = UsingInst->getParent();
1203 BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1204 // SplitEdge gives us:
1205 // IncomingBlock:
1206 // ...
1207 // br label %NewBlock
1208 // NewBlock:
1209 // catchret label %PHIBlock
1210 // But we need:
1211 // IncomingBlock:
1212 // ...
1213 // catchret label %NewBlock
1214 // NewBlock:
1215 // br label %PHIBlock
1216 // So move the terminators to each others' blocks and swap their
1217 // successors.
1218 BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1219 Goto->removeFromParent();
1220 CatchRet->removeFromParent();
1221 IncomingBlock->getInstList().push_back(CatchRet);
1222 NewBlock->getInstList().push_back(Goto);
1223 Goto->setSuccessor(0, PHIBlock);
1224 CatchRet->setSuccessor(NewBlock);
1225 // Update the color mapping for the newly split edge.
1226 // Grab a reference to the ColorVector to be inserted before getting the
1227 // reference to the vector we are copying because inserting the new
1228 // element in BlockColors might cause the map to be reallocated.
1229 ColorVector &ColorsForNewBlock = BlockColors[NewBlock];
1230 ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1231 ColorsForNewBlock = ColorsForPHIBlock;
1232 for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1233 FuncletBlocks[FuncletPad].push_back(NewBlock);
1234 // Treat the new block as incoming for load insertion.
1235 IncomingBlock = NewBlock;
1237 Value *&Load = Loads[IncomingBlock];
1238 // Insert the load into the predecessor block
1239 if (!Load)
1240 Load = new LoadInst(V->getType(), SpillSlot,
1241 Twine(V->getName(), ".wineh.reload"),
1242 /*isVolatile=*/false, IncomingBlock->getTerminator());
1244 U.set(Load);
1245 } else {
1246 // Reload right before the old use.
1247 auto *Load = new LoadInst(V->getType(), SpillSlot,
1248 Twine(V->getName(), ".wineh.reload"),
1249 /*isVolatile=*/false, UsingInst);
1250 U.set(Load);
1254 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1255 MCSymbol *InvokeBegin,
1256 MCSymbol *InvokeEnd) {
1257 assert(InvokeStateMap.count(II) &&
1258 "should get invoke with precomputed state");
1259 LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1262 WinEHFuncInfo::WinEHFuncInfo() {}