[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / DWARFLinker / DWARFLinker.cpp
blob4449cd8ef55534f278976bc2d85aef47c9c135a8
1 //=== DWARFLinker.cpp -----------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/DWARFLinker/DWARFLinker.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/CodeGen/NonRelocatableStringpool.h"
15 #include "llvm/DWARFLinker/DWARFLinkerDeclContext.h"
16 #include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
17 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
18 #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h"
19 #include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
20 #include "llvm/DebugInfo/DWARF/DWARFDebugRangeList.h"
21 #include "llvm/DebugInfo/DWARF/DWARFDie.h"
22 #include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
23 #include "llvm/DebugInfo/DWARF/DWARFSection.h"
24 #include "llvm/DebugInfo/DWARF/DWARFUnit.h"
25 #include "llvm/Support/DataExtractor.h"
26 #include "llvm/Support/Error.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/ErrorOr.h"
29 #include "llvm/Support/FormatVariadic.h"
30 #include "llvm/Support/LEB128.h"
31 #include "llvm/Support/Path.h"
32 #include "llvm/Support/ThreadPool.h"
33 #include <vector>
35 namespace llvm {
37 /// Hold the input and output of the debug info size in bytes.
38 struct DebugInfoSize {
39 uint64_t Input;
40 uint64_t Output;
43 /// Compute the total size of the debug info.
44 static uint64_t getDebugInfoSize(DWARFContext &Dwarf) {
45 uint64_t Size = 0;
46 for (auto &Unit : Dwarf.compile_units()) {
47 Size += Unit->getLength();
49 return Size;
52 /// Similar to DWARFUnitSection::getUnitForOffset(), but returning our
53 /// CompileUnit object instead.
54 static CompileUnit *getUnitForOffset(const UnitListTy &Units, uint64_t Offset) {
55 auto CU = llvm::upper_bound(
56 Units, Offset, [](uint64_t LHS, const std::unique_ptr<CompileUnit> &RHS) {
57 return LHS < RHS->getOrigUnit().getNextUnitOffset();
58 });
59 return CU != Units.end() ? CU->get() : nullptr;
62 /// Resolve the DIE attribute reference that has been extracted in \p RefValue.
63 /// The resulting DIE might be in another CompileUnit which is stored into \p
64 /// ReferencedCU. \returns null if resolving fails for any reason.
65 DWARFDie DWARFLinker::resolveDIEReference(const DWARFFile &File,
66 const UnitListTy &Units,
67 const DWARFFormValue &RefValue,
68 const DWARFDie &DIE,
69 CompileUnit *&RefCU) {
70 assert(RefValue.isFormClass(DWARFFormValue::FC_Reference));
71 uint64_t RefOffset = *RefValue.getAsReference();
72 if ((RefCU = getUnitForOffset(Units, RefOffset)))
73 if (const auto RefDie = RefCU->getOrigUnit().getDIEForOffset(RefOffset)) {
74 // In a file with broken references, an attribute might point to a NULL
75 // DIE.
76 if (!RefDie.isNULL())
77 return RefDie;
80 reportWarning("could not find referenced DIE", File, &DIE);
81 return DWARFDie();
84 /// \returns whether the passed \a Attr type might contain a DIE reference
85 /// suitable for ODR uniquing.
86 static bool isODRAttribute(uint16_t Attr) {
87 switch (Attr) {
88 default:
89 return false;
90 case dwarf::DW_AT_type:
91 case dwarf::DW_AT_containing_type:
92 case dwarf::DW_AT_specification:
93 case dwarf::DW_AT_abstract_origin:
94 case dwarf::DW_AT_import:
95 return true;
97 llvm_unreachable("Improper attribute.");
100 static bool isTypeTag(uint16_t Tag) {
101 switch (Tag) {
102 case dwarf::DW_TAG_array_type:
103 case dwarf::DW_TAG_class_type:
104 case dwarf::DW_TAG_enumeration_type:
105 case dwarf::DW_TAG_pointer_type:
106 case dwarf::DW_TAG_reference_type:
107 case dwarf::DW_TAG_string_type:
108 case dwarf::DW_TAG_structure_type:
109 case dwarf::DW_TAG_subroutine_type:
110 case dwarf::DW_TAG_typedef:
111 case dwarf::DW_TAG_union_type:
112 case dwarf::DW_TAG_ptr_to_member_type:
113 case dwarf::DW_TAG_set_type:
114 case dwarf::DW_TAG_subrange_type:
115 case dwarf::DW_TAG_base_type:
116 case dwarf::DW_TAG_const_type:
117 case dwarf::DW_TAG_constant:
118 case dwarf::DW_TAG_file_type:
119 case dwarf::DW_TAG_namelist:
120 case dwarf::DW_TAG_packed_type:
121 case dwarf::DW_TAG_volatile_type:
122 case dwarf::DW_TAG_restrict_type:
123 case dwarf::DW_TAG_atomic_type:
124 case dwarf::DW_TAG_interface_type:
125 case dwarf::DW_TAG_unspecified_type:
126 case dwarf::DW_TAG_shared_type:
127 return true;
128 default:
129 break;
131 return false;
134 AddressesMap::~AddressesMap() {}
136 DwarfEmitter::~DwarfEmitter() {}
138 static Optional<StringRef> StripTemplateParameters(StringRef Name) {
139 // We are looking for template parameters to strip from Name. e.g.
141 // operator<<B>
143 // We look for > at the end but if it does not contain any < then we
144 // have something like operator>>. We check for the operator<=> case.
145 if (!Name.endswith(">") || Name.count("<") == 0 || Name.endswith("<=>"))
146 return {};
148 // How many < until we have the start of the template parameters.
149 size_t NumLeftAnglesToSkip = 1;
151 // If we have operator<=> then we need to skip its < as well.
152 NumLeftAnglesToSkip += Name.count("<=>");
154 size_t RightAngleCount = Name.count('>');
155 size_t LeftAngleCount = Name.count('<');
157 // If we have more < than > we have operator< or operator<<
158 // we to account for their < as well.
159 if (LeftAngleCount > RightAngleCount)
160 NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount;
162 size_t StartOfTemplate = 0;
163 while (NumLeftAnglesToSkip--)
164 StartOfTemplate = Name.find('<', StartOfTemplate) + 1;
166 return Name.substr(0, StartOfTemplate - 1);
169 bool DWARFLinker::DIECloner::getDIENames(const DWARFDie &Die,
170 AttributesInfo &Info,
171 OffsetsStringPool &StringPool,
172 bool StripTemplate) {
173 // This function will be called on DIEs having low_pcs and
174 // ranges. As getting the name might be more expansive, filter out
175 // blocks directly.
176 if (Die.getTag() == dwarf::DW_TAG_lexical_block)
177 return false;
179 if (!Info.MangledName)
180 if (const char *MangledName = Die.getLinkageName())
181 Info.MangledName = StringPool.getEntry(MangledName);
183 if (!Info.Name)
184 if (const char *Name = Die.getShortName())
185 Info.Name = StringPool.getEntry(Name);
187 if (!Info.MangledName)
188 Info.MangledName = Info.Name;
190 if (StripTemplate && Info.Name && Info.MangledName != Info.Name) {
191 StringRef Name = Info.Name.getString();
192 if (Optional<StringRef> StrippedName = StripTemplateParameters(Name))
193 Info.NameWithoutTemplate = StringPool.getEntry(*StrippedName);
196 return Info.Name || Info.MangledName;
199 /// Resolve the relative path to a build artifact referenced by DWARF by
200 /// applying DW_AT_comp_dir.
201 static void resolveRelativeObjectPath(SmallVectorImpl<char> &Buf, DWARFDie CU) {
202 sys::path::append(Buf, dwarf::toString(CU.find(dwarf::DW_AT_comp_dir), ""));
205 /// Collect references to parseable Swift interfaces in imported
206 /// DW_TAG_module blocks.
207 static void analyzeImportedModule(
208 const DWARFDie &DIE, CompileUnit &CU,
209 swiftInterfacesMap *ParseableSwiftInterfaces,
210 std::function<void(const Twine &, const DWARFDie &)> ReportWarning) {
211 if (CU.getLanguage() != dwarf::DW_LANG_Swift)
212 return;
214 if (!ParseableSwiftInterfaces)
215 return;
217 StringRef Path = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_include_path));
218 if (!Path.endswith(".swiftinterface"))
219 return;
220 // Don't track interfaces that are part of the SDK.
221 StringRef SysRoot = dwarf::toStringRef(DIE.find(dwarf::DW_AT_LLVM_sysroot));
222 if (SysRoot.empty())
223 SysRoot = CU.getSysRoot();
224 if (!SysRoot.empty() && Path.startswith(SysRoot))
225 return;
226 if (Optional<DWARFFormValue> Val = DIE.find(dwarf::DW_AT_name))
227 if (Optional<const char *> Name = Val->getAsCString()) {
228 auto &Entry = (*ParseableSwiftInterfaces)[*Name];
229 // The prepend path is applied later when copying.
230 DWARFDie CUDie = CU.getOrigUnit().getUnitDIE();
231 SmallString<128> ResolvedPath;
232 if (sys::path::is_relative(Path))
233 resolveRelativeObjectPath(ResolvedPath, CUDie);
234 sys::path::append(ResolvedPath, Path);
235 if (!Entry.empty() && Entry != ResolvedPath)
236 ReportWarning(
237 Twine("Conflicting parseable interfaces for Swift Module ") +
238 *Name + ": " + Entry + " and " + Path,
239 DIE);
240 Entry = std::string(ResolvedPath.str());
244 /// The distinct types of work performed by the work loop in
245 /// analyzeContextInfo.
246 enum class ContextWorklistItemType : uint8_t {
247 AnalyzeContextInfo,
248 UpdateChildPruning,
249 UpdatePruning,
252 /// This class represents an item in the work list. The type defines what kind
253 /// of work needs to be performed when processing the current item. Everything
254 /// but the Type and Die fields are optional based on the type.
255 struct ContextWorklistItem {
256 DWARFDie Die;
257 unsigned ParentIdx;
258 union {
259 CompileUnit::DIEInfo *OtherInfo;
260 DeclContext *Context;
262 ContextWorklistItemType Type;
263 bool InImportedModule;
265 ContextWorklistItem(DWARFDie Die, ContextWorklistItemType T,
266 CompileUnit::DIEInfo *OtherInfo = nullptr)
267 : Die(Die), ParentIdx(0), OtherInfo(OtherInfo), Type(T),
268 InImportedModule(false) {}
270 ContextWorklistItem(DWARFDie Die, DeclContext *Context, unsigned ParentIdx,
271 bool InImportedModule)
272 : Die(Die), ParentIdx(ParentIdx), Context(Context),
273 Type(ContextWorklistItemType::AnalyzeContextInfo),
274 InImportedModule(InImportedModule) {}
277 static bool updatePruning(const DWARFDie &Die, CompileUnit &CU,
278 uint64_t ModulesEndOffset) {
279 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
281 // Prune this DIE if it is either a forward declaration inside a
282 // DW_TAG_module or a DW_TAG_module that contains nothing but
283 // forward declarations.
284 Info.Prune &= (Die.getTag() == dwarf::DW_TAG_module) ||
285 (isTypeTag(Die.getTag()) &&
286 dwarf::toUnsigned(Die.find(dwarf::DW_AT_declaration), 0));
288 // Only prune forward declarations inside a DW_TAG_module for which a
289 // definition exists elsewhere.
290 if (ModulesEndOffset == 0)
291 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset();
292 else
293 Info.Prune &= Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() > 0 &&
294 Info.Ctxt->getCanonicalDIEOffset() <= ModulesEndOffset;
296 return Info.Prune;
299 static void updateChildPruning(const DWARFDie &Die, CompileUnit &CU,
300 CompileUnit::DIEInfo &ChildInfo) {
301 CompileUnit::DIEInfo &Info = CU.getInfo(Die);
302 Info.Prune &= ChildInfo.Prune;
305 /// Recursive helper to build the global DeclContext information and
306 /// gather the child->parent relationships in the original compile unit.
308 /// This function uses the same work list approach as lookForDIEsToKeep.
310 /// \return true when this DIE and all of its children are only
311 /// forward declarations to types defined in external clang modules
312 /// (i.e., forward declarations that are children of a DW_TAG_module).
313 static bool analyzeContextInfo(
314 const DWARFDie &DIE, unsigned ParentIdx, CompileUnit &CU,
315 DeclContext *CurrentDeclContext, DeclContextTree &Contexts,
316 uint64_t ModulesEndOffset, swiftInterfacesMap *ParseableSwiftInterfaces,
317 std::function<void(const Twine &, const DWARFDie &)> ReportWarning,
318 bool InImportedModule = false) {
319 // LIFO work list.
320 std::vector<ContextWorklistItem> Worklist;
321 Worklist.emplace_back(DIE, CurrentDeclContext, ParentIdx, InImportedModule);
323 while (!Worklist.empty()) {
324 ContextWorklistItem Current = Worklist.back();
325 Worklist.pop_back();
327 switch (Current.Type) {
328 case ContextWorklistItemType::UpdatePruning:
329 updatePruning(Current.Die, CU, ModulesEndOffset);
330 continue;
331 case ContextWorklistItemType::UpdateChildPruning:
332 updateChildPruning(Current.Die, CU, *Current.OtherInfo);
333 continue;
334 case ContextWorklistItemType::AnalyzeContextInfo:
335 break;
338 unsigned Idx = CU.getOrigUnit().getDIEIndex(Current.Die);
339 CompileUnit::DIEInfo &Info = CU.getInfo(Idx);
341 // Clang imposes an ODR on modules(!) regardless of the language:
342 // "The module-id should consist of only a single identifier,
343 // which provides the name of the module being defined. Each
344 // module shall have a single definition."
346 // This does not extend to the types inside the modules:
347 // "[I]n C, this implies that if two structs are defined in
348 // different submodules with the same name, those two types are
349 // distinct types (but may be compatible types if their
350 // definitions match)."
352 // We treat non-C++ modules like namespaces for this reason.
353 if (Current.Die.getTag() == dwarf::DW_TAG_module &&
354 Current.ParentIdx == 0 &&
355 dwarf::toString(Current.Die.find(dwarf::DW_AT_name), "") !=
356 CU.getClangModuleName()) {
357 Current.InImportedModule = true;
358 analyzeImportedModule(Current.Die, CU, ParseableSwiftInterfaces,
359 ReportWarning);
362 Info.ParentIdx = Current.ParentIdx;
363 bool InClangModule = CU.isClangModule() || Current.InImportedModule;
364 if (CU.hasODR() || InClangModule) {
365 if (Current.Context) {
366 auto PtrInvalidPair = Contexts.getChildDeclContext(
367 *Current.Context, Current.Die, CU, InClangModule);
368 Current.Context = PtrInvalidPair.getPointer();
369 Info.Ctxt =
370 PtrInvalidPair.getInt() ? nullptr : PtrInvalidPair.getPointer();
371 if (Info.Ctxt)
372 Info.Ctxt->setDefinedInClangModule(InClangModule);
373 } else
374 Info.Ctxt = Current.Context = nullptr;
377 Info.Prune = Current.InImportedModule;
378 // Add children in reverse order to the worklist to effectively process
379 // them in order.
380 Worklist.emplace_back(Current.Die, ContextWorklistItemType::UpdatePruning);
381 for (auto Child : reverse(Current.Die.children())) {
382 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
383 Worklist.emplace_back(
384 Current.Die, ContextWorklistItemType::UpdateChildPruning, &ChildInfo);
385 Worklist.emplace_back(Child, Current.Context, Idx,
386 Current.InImportedModule);
390 return CU.getInfo(DIE).Prune;
393 static bool dieNeedsChildrenToBeMeaningful(uint32_t Tag) {
394 switch (Tag) {
395 default:
396 return false;
397 case dwarf::DW_TAG_class_type:
398 case dwarf::DW_TAG_common_block:
399 case dwarf::DW_TAG_lexical_block:
400 case dwarf::DW_TAG_structure_type:
401 case dwarf::DW_TAG_subprogram:
402 case dwarf::DW_TAG_subroutine_type:
403 case dwarf::DW_TAG_union_type:
404 return true;
406 llvm_unreachable("Invalid Tag");
409 void DWARFLinker::cleanupAuxiliarryData(LinkContext &Context) {
410 Context.clear();
412 for (auto I = DIEBlocks.begin(), E = DIEBlocks.end(); I != E; ++I)
413 (*I)->~DIEBlock();
414 for (auto I = DIELocs.begin(), E = DIELocs.end(); I != E; ++I)
415 (*I)->~DIELoc();
417 DIEBlocks.clear();
418 DIELocs.clear();
419 DIEAlloc.Reset();
422 /// Check if a variable describing DIE should be kept.
423 /// \returns updated TraversalFlags.
424 unsigned DWARFLinker::shouldKeepVariableDIE(AddressesMap &RelocMgr,
425 const DWARFDie &DIE,
426 CompileUnit::DIEInfo &MyInfo,
427 unsigned Flags) {
428 const auto *Abbrev = DIE.getAbbreviationDeclarationPtr();
430 // Global variables with constant value can always be kept.
431 if (!(Flags & TF_InFunctionScope) &&
432 Abbrev->findAttributeIndex(dwarf::DW_AT_const_value)) {
433 MyInfo.InDebugMap = true;
434 return Flags | TF_Keep;
437 // See if there is a relocation to a valid debug map entry inside this
438 // variable's location. The order is important here. We want to always check
439 // if the variable has a valid relocation, so that the DIEInfo is filled.
440 // However, we don't want a static variable in a function to force us to keep
441 // the enclosing function, unless requested explicitly.
442 const bool HasLiveMemoryLocation =
443 RelocMgr.hasLiveMemoryLocation(DIE, MyInfo);
444 if (!HasLiveMemoryLocation || ((Flags & TF_InFunctionScope) &&
445 !LLVM_UNLIKELY(Options.KeepFunctionForStatic)))
446 return Flags;
448 if (Options.Verbose) {
449 outs() << "Keeping variable DIE:";
450 DIDumpOptions DumpOpts;
451 DumpOpts.ChildRecurseDepth = 0;
452 DumpOpts.Verbose = Options.Verbose;
453 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
456 return Flags | TF_Keep;
459 /// Check if a function describing DIE should be kept.
460 /// \returns updated TraversalFlags.
461 unsigned DWARFLinker::shouldKeepSubprogramDIE(
462 AddressesMap &RelocMgr, RangesTy &Ranges, const DWARFDie &DIE,
463 const DWARFFile &File, CompileUnit &Unit, CompileUnit::DIEInfo &MyInfo,
464 unsigned Flags) {
465 Flags |= TF_InFunctionScope;
467 auto LowPc = dwarf::toAddress(DIE.find(dwarf::DW_AT_low_pc));
468 if (!LowPc)
469 return Flags;
471 assert(LowPc.hasValue() && "low_pc attribute is not an address.");
472 if (!RelocMgr.hasLiveAddressRange(DIE, MyInfo))
473 return Flags;
475 if (Options.Verbose) {
476 outs() << "Keeping subprogram DIE:";
477 DIDumpOptions DumpOpts;
478 DumpOpts.ChildRecurseDepth = 0;
479 DumpOpts.Verbose = Options.Verbose;
480 DIE.dump(outs(), 8 /* Indent */, DumpOpts);
483 if (DIE.getTag() == dwarf::DW_TAG_label) {
484 if (Unit.hasLabelAt(*LowPc))
485 return Flags;
487 DWARFUnit &OrigUnit = Unit.getOrigUnit();
488 // FIXME: dsymutil-classic compat. dsymutil-classic doesn't consider labels
489 // that don't fall into the CU's aranges. This is wrong IMO. Debug info
490 // generation bugs aside, this is really wrong in the case of labels, where
491 // a label marking the end of a function will have a PC == CU's high_pc.
492 if (dwarf::toAddress(OrigUnit.getUnitDIE().find(dwarf::DW_AT_high_pc))
493 .getValueOr(UINT64_MAX) <= LowPc)
494 return Flags;
495 Unit.addLabelLowPc(*LowPc, MyInfo.AddrAdjust);
496 return Flags | TF_Keep;
499 Flags |= TF_Keep;
501 Optional<uint64_t> HighPc = DIE.getHighPC(*LowPc);
502 if (!HighPc) {
503 reportWarning("Function without high_pc. Range will be discarded.\n", File,
504 &DIE);
505 return Flags;
508 // Replace the debug map range with a more accurate one.
509 Ranges[*LowPc] = ObjFileAddressRange(*HighPc, MyInfo.AddrAdjust);
510 Unit.addFunctionRange(*LowPc, *HighPc, MyInfo.AddrAdjust);
511 return Flags;
514 /// Check if a DIE should be kept.
515 /// \returns updated TraversalFlags.
516 unsigned DWARFLinker::shouldKeepDIE(AddressesMap &RelocMgr, RangesTy &Ranges,
517 const DWARFDie &DIE, const DWARFFile &File,
518 CompileUnit &Unit,
519 CompileUnit::DIEInfo &MyInfo,
520 unsigned Flags) {
521 switch (DIE.getTag()) {
522 case dwarf::DW_TAG_constant:
523 case dwarf::DW_TAG_variable:
524 return shouldKeepVariableDIE(RelocMgr, DIE, MyInfo, Flags);
525 case dwarf::DW_TAG_subprogram:
526 case dwarf::DW_TAG_label:
527 return shouldKeepSubprogramDIE(RelocMgr, Ranges, DIE, File, Unit, MyInfo,
528 Flags);
529 case dwarf::DW_TAG_base_type:
530 // DWARF Expressions may reference basic types, but scanning them
531 // is expensive. Basic types are tiny, so just keep all of them.
532 case dwarf::DW_TAG_imported_module:
533 case dwarf::DW_TAG_imported_declaration:
534 case dwarf::DW_TAG_imported_unit:
535 // We always want to keep these.
536 return Flags | TF_Keep;
537 default:
538 break;
541 return Flags;
544 /// Helper that updates the completeness of the current DIE based on the
545 /// completeness of one of its children. It depends on the incompleteness of
546 /// the children already being computed.
547 static void updateChildIncompleteness(const DWARFDie &Die, CompileUnit &CU,
548 CompileUnit::DIEInfo &ChildInfo) {
549 switch (Die.getTag()) {
550 case dwarf::DW_TAG_structure_type:
551 case dwarf::DW_TAG_class_type:
552 break;
553 default:
554 return;
557 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
559 if (ChildInfo.Incomplete || ChildInfo.Prune)
560 MyInfo.Incomplete = true;
563 /// Helper that updates the completeness of the current DIE based on the
564 /// completeness of the DIEs it references. It depends on the incompleteness of
565 /// the referenced DIE already being computed.
566 static void updateRefIncompleteness(const DWARFDie &Die, CompileUnit &CU,
567 CompileUnit::DIEInfo &RefInfo) {
568 switch (Die.getTag()) {
569 case dwarf::DW_TAG_typedef:
570 case dwarf::DW_TAG_member:
571 case dwarf::DW_TAG_reference_type:
572 case dwarf::DW_TAG_ptr_to_member_type:
573 case dwarf::DW_TAG_pointer_type:
574 break;
575 default:
576 return;
579 CompileUnit::DIEInfo &MyInfo = CU.getInfo(Die);
581 if (MyInfo.Incomplete)
582 return;
584 if (RefInfo.Incomplete)
585 MyInfo.Incomplete = true;
588 /// Look at the children of the given DIE and decide whether they should be
589 /// kept.
590 void DWARFLinker::lookForChildDIEsToKeep(
591 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
592 SmallVectorImpl<WorklistItem> &Worklist) {
593 // The TF_ParentWalk flag tells us that we are currently walking up the
594 // parent chain of a required DIE, and we don't want to mark all the children
595 // of the parents as kept (consider for example a DW_TAG_namespace node in
596 // the parent chain). There are however a set of DIE types for which we want
597 // to ignore that directive and still walk their children.
598 if (dieNeedsChildrenToBeMeaningful(Die.getTag()))
599 Flags &= ~DWARFLinker::TF_ParentWalk;
601 // We're finished if this DIE has no children or we're walking the parent
602 // chain.
603 if (!Die.hasChildren() || (Flags & DWARFLinker::TF_ParentWalk))
604 return;
606 // Add children in reverse order to the worklist to effectively process them
607 // in order.
608 for (auto Child : reverse(Die.children())) {
609 // Add a worklist item before every child to calculate incompleteness right
610 // after the current child is processed.
611 CompileUnit::DIEInfo &ChildInfo = CU.getInfo(Child);
612 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateChildIncompleteness,
613 &ChildInfo);
614 Worklist.emplace_back(Child, CU, Flags);
618 /// Look at DIEs referenced by the given DIE and decide whether they should be
619 /// kept. All DIEs referenced though attributes should be kept.
620 void DWARFLinker::lookForRefDIEsToKeep(
621 const DWARFDie &Die, CompileUnit &CU, unsigned Flags,
622 const UnitListTy &Units, const DWARFFile &File,
623 SmallVectorImpl<WorklistItem> &Worklist) {
624 bool UseOdr = (Flags & DWARFLinker::TF_DependencyWalk)
625 ? (Flags & DWARFLinker::TF_ODR)
626 : CU.hasODR();
627 DWARFUnit &Unit = CU.getOrigUnit();
628 DWARFDataExtractor Data = Unit.getDebugInfoExtractor();
629 const auto *Abbrev = Die.getAbbreviationDeclarationPtr();
630 uint64_t Offset = Die.getOffset() + getULEB128Size(Abbrev->getCode());
632 SmallVector<std::pair<DWARFDie, CompileUnit &>, 4> ReferencedDIEs;
633 for (const auto &AttrSpec : Abbrev->attributes()) {
634 DWARFFormValue Val(AttrSpec.Form);
635 if (!Val.isFormClass(DWARFFormValue::FC_Reference) ||
636 AttrSpec.Attr == dwarf::DW_AT_sibling) {
637 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
638 Unit.getFormParams());
639 continue;
642 Val.extractValue(Data, &Offset, Unit.getFormParams(), &Unit);
643 CompileUnit *ReferencedCU;
644 if (auto RefDie =
645 resolveDIEReference(File, Units, Val, Die, ReferencedCU)) {
646 CompileUnit::DIEInfo &Info = ReferencedCU->getInfo(RefDie);
647 bool IsModuleRef = Info.Ctxt && Info.Ctxt->getCanonicalDIEOffset() &&
648 Info.Ctxt->isDefinedInClangModule();
649 // If the referenced DIE has a DeclContext that has already been
650 // emitted, then do not keep the one in this CU. We'll link to
651 // the canonical DIE in cloneDieReferenceAttribute.
653 // FIXME: compatibility with dsymutil-classic. UseODR shouldn't
654 // be necessary and could be advantageously replaced by
655 // ReferencedCU->hasODR() && CU.hasODR().
657 // FIXME: compatibility with dsymutil-classic. There is no
658 // reason not to unique ref_addr references.
659 if (AttrSpec.Form != dwarf::DW_FORM_ref_addr && (UseOdr || IsModuleRef) &&
660 Info.Ctxt &&
661 Info.Ctxt != ReferencedCU->getInfo(Info.ParentIdx).Ctxt &&
662 Info.Ctxt->getCanonicalDIEOffset() && isODRAttribute(AttrSpec.Attr))
663 continue;
665 // Keep a module forward declaration if there is no definition.
666 if (!(isODRAttribute(AttrSpec.Attr) && Info.Ctxt &&
667 Info.Ctxt->getCanonicalDIEOffset()))
668 Info.Prune = false;
669 ReferencedDIEs.emplace_back(RefDie, *ReferencedCU);
673 unsigned ODRFlag = UseOdr ? DWARFLinker::TF_ODR : 0;
675 // Add referenced DIEs in reverse order to the worklist to effectively
676 // process them in order.
677 for (auto &P : reverse(ReferencedDIEs)) {
678 // Add a worklist item before every child to calculate incompleteness right
679 // after the current child is processed.
680 CompileUnit::DIEInfo &Info = P.second.getInfo(P.first);
681 Worklist.emplace_back(Die, CU, WorklistItemType::UpdateRefIncompleteness,
682 &Info);
683 Worklist.emplace_back(P.first, P.second,
684 DWARFLinker::TF_Keep |
685 DWARFLinker::TF_DependencyWalk | ODRFlag);
689 /// Look at the parent of the given DIE and decide whether they should be kept.
690 void DWARFLinker::lookForParentDIEsToKeep(
691 unsigned AncestorIdx, CompileUnit &CU, unsigned Flags,
692 SmallVectorImpl<WorklistItem> &Worklist) {
693 // Stop if we encounter an ancestor that's already marked as kept.
694 if (CU.getInfo(AncestorIdx).Keep)
695 return;
697 DWARFUnit &Unit = CU.getOrigUnit();
698 DWARFDie ParentDIE = Unit.getDIEAtIndex(AncestorIdx);
699 Worklist.emplace_back(CU.getInfo(AncestorIdx).ParentIdx, CU, Flags);
700 Worklist.emplace_back(ParentDIE, CU, Flags);
703 /// Recursively walk the \p DIE tree and look for DIEs to keep. Store that
704 /// information in \p CU's DIEInfo.
706 /// This function is the entry point of the DIE selection algorithm. It is
707 /// expected to walk the DIE tree in file order and (though the mediation of
708 /// its helper) call hasValidRelocation() on each DIE that might be a 'root
709 /// DIE' (See DwarfLinker class comment).
711 /// While walking the dependencies of root DIEs, this function is also called,
712 /// but during these dependency walks the file order is not respected. The
713 /// TF_DependencyWalk flag tells us which kind of traversal we are currently
714 /// doing.
716 /// The recursive algorithm is implemented iteratively as a work list because
717 /// very deep recursion could exhaust the stack for large projects. The work
718 /// list acts as a scheduler for different types of work that need to be
719 /// performed.
721 /// The recursive nature of the algorithm is simulated by running the "main"
722 /// algorithm (LookForDIEsToKeep) followed by either looking at more DIEs
723 /// (LookForChildDIEsToKeep, LookForRefDIEsToKeep, LookForParentDIEsToKeep) or
724 /// fixing up a computed property (UpdateChildIncompleteness,
725 /// UpdateRefIncompleteness).
727 /// The return value indicates whether the DIE is incomplete.
728 void DWARFLinker::lookForDIEsToKeep(AddressesMap &AddressesMap,
729 RangesTy &Ranges, const UnitListTy &Units,
730 const DWARFDie &Die, const DWARFFile &File,
731 CompileUnit &Cu, unsigned Flags) {
732 // LIFO work list.
733 SmallVector<WorklistItem, 4> Worklist;
734 Worklist.emplace_back(Die, Cu, Flags);
736 while (!Worklist.empty()) {
737 WorklistItem Current = Worklist.pop_back_val();
739 // Look at the worklist type to decide what kind of work to perform.
740 switch (Current.Type) {
741 case WorklistItemType::UpdateChildIncompleteness:
742 updateChildIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
743 continue;
744 case WorklistItemType::UpdateRefIncompleteness:
745 updateRefIncompleteness(Current.Die, Current.CU, *Current.OtherInfo);
746 continue;
747 case WorklistItemType::LookForChildDIEsToKeep:
748 lookForChildDIEsToKeep(Current.Die, Current.CU, Current.Flags, Worklist);
749 continue;
750 case WorklistItemType::LookForRefDIEsToKeep:
751 lookForRefDIEsToKeep(Current.Die, Current.CU, Current.Flags, Units, File,
752 Worklist);
753 continue;
754 case WorklistItemType::LookForParentDIEsToKeep:
755 lookForParentDIEsToKeep(Current.AncestorIdx, Current.CU, Current.Flags,
756 Worklist);
757 continue;
758 case WorklistItemType::LookForDIEsToKeep:
759 break;
762 unsigned Idx = Current.CU.getOrigUnit().getDIEIndex(Current.Die);
763 CompileUnit::DIEInfo &MyInfo = Current.CU.getInfo(Idx);
765 if (MyInfo.Prune)
766 continue;
768 // If the Keep flag is set, we are marking a required DIE's dependencies.
769 // If our target is already marked as kept, we're all set.
770 bool AlreadyKept = MyInfo.Keep;
771 if ((Current.Flags & TF_DependencyWalk) && AlreadyKept)
772 continue;
774 // We must not call shouldKeepDIE while called from keepDIEAndDependencies,
775 // because it would screw up the relocation finding logic.
776 if (!(Current.Flags & TF_DependencyWalk))
777 Current.Flags = shouldKeepDIE(AddressesMap, Ranges, Current.Die, File,
778 Current.CU, MyInfo, Current.Flags);
780 // Finish by looking for child DIEs. Because of the LIFO worklist we need
781 // to schedule that work before any subsequent items are added to the
782 // worklist.
783 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
784 WorklistItemType::LookForChildDIEsToKeep);
786 if (AlreadyKept || !(Current.Flags & TF_Keep))
787 continue;
789 // If it is a newly kept DIE mark it as well as all its dependencies as
790 // kept.
791 MyInfo.Keep = true;
793 // We're looking for incomplete types.
794 MyInfo.Incomplete =
795 Current.Die.getTag() != dwarf::DW_TAG_subprogram &&
796 Current.Die.getTag() != dwarf::DW_TAG_member &&
797 dwarf::toUnsigned(Current.Die.find(dwarf::DW_AT_declaration), 0);
799 // After looking at the parent chain, look for referenced DIEs. Because of
800 // the LIFO worklist we need to schedule that work before any subsequent
801 // items are added to the worklist.
802 Worklist.emplace_back(Current.Die, Current.CU, Current.Flags,
803 WorklistItemType::LookForRefDIEsToKeep);
805 bool UseOdr = (Current.Flags & TF_DependencyWalk) ? (Current.Flags & TF_ODR)
806 : Current.CU.hasODR();
807 unsigned ODRFlag = UseOdr ? TF_ODR : 0;
808 unsigned ParFlags = TF_ParentWalk | TF_Keep | TF_DependencyWalk | ODRFlag;
810 // Now schedule the parent walk.
811 Worklist.emplace_back(MyInfo.ParentIdx, Current.CU, ParFlags);
815 /// Assign an abbreviation number to \p Abbrev.
817 /// Our DIEs get freed after every DebugMapObject has been processed,
818 /// thus the FoldingSet we use to unique DIEAbbrevs cannot refer to
819 /// the instances hold by the DIEs. When we encounter an abbreviation
820 /// that we don't know, we create a permanent copy of it.
821 void DWARFLinker::assignAbbrev(DIEAbbrev &Abbrev) {
822 // Check the set for priors.
823 FoldingSetNodeID ID;
824 Abbrev.Profile(ID);
825 void *InsertToken;
826 DIEAbbrev *InSet = AbbreviationsSet.FindNodeOrInsertPos(ID, InsertToken);
828 // If it's newly added.
829 if (InSet) {
830 // Assign existing abbreviation number.
831 Abbrev.setNumber(InSet->getNumber());
832 } else {
833 // Add to abbreviation list.
834 Abbreviations.push_back(
835 std::make_unique<DIEAbbrev>(Abbrev.getTag(), Abbrev.hasChildren()));
836 for (const auto &Attr : Abbrev.getData())
837 Abbreviations.back()->AddAttribute(Attr.getAttribute(), Attr.getForm());
838 AbbreviationsSet.InsertNode(Abbreviations.back().get(), InsertToken);
839 // Assign the unique abbreviation number.
840 Abbrev.setNumber(Abbreviations.size());
841 Abbreviations.back()->setNumber(Abbreviations.size());
845 unsigned DWARFLinker::DIECloner::cloneStringAttribute(
846 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
847 const DWARFUnit &U, OffsetsStringPool &StringPool, AttributesInfo &Info) {
848 Optional<const char *> String = Val.getAsCString();
849 if (!String)
850 return 0;
852 // Switch everything to out of line strings.
853 auto StringEntry = StringPool.getEntry(*String);
855 // Update attributes info.
856 if (AttrSpec.Attr == dwarf::DW_AT_name)
857 Info.Name = StringEntry;
858 else if (AttrSpec.Attr == dwarf::DW_AT_MIPS_linkage_name ||
859 AttrSpec.Attr == dwarf::DW_AT_linkage_name)
860 Info.MangledName = StringEntry;
862 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr), dwarf::DW_FORM_strp,
863 DIEInteger(StringEntry.getOffset()));
865 return 4;
868 unsigned DWARFLinker::DIECloner::cloneDieReferenceAttribute(
869 DIE &Die, const DWARFDie &InputDIE, AttributeSpec AttrSpec,
870 unsigned AttrSize, const DWARFFormValue &Val, const DWARFFile &File,
871 CompileUnit &Unit) {
872 const DWARFUnit &U = Unit.getOrigUnit();
873 uint64_t Ref = *Val.getAsReference();
875 DIE *NewRefDie = nullptr;
876 CompileUnit *RefUnit = nullptr;
877 DeclContext *Ctxt = nullptr;
879 DWARFDie RefDie =
880 Linker.resolveDIEReference(File, CompileUnits, Val, InputDIE, RefUnit);
882 // If the referenced DIE is not found, drop the attribute.
883 if (!RefDie || AttrSpec.Attr == dwarf::DW_AT_sibling)
884 return 0;
886 CompileUnit::DIEInfo &RefInfo = RefUnit->getInfo(RefDie);
888 // If we already have emitted an equivalent DeclContext, just point
889 // at it.
890 if (isODRAttribute(AttrSpec.Attr)) {
891 Ctxt = RefInfo.Ctxt;
892 if (Ctxt && Ctxt->getCanonicalDIEOffset()) {
893 DIEInteger Attr(Ctxt->getCanonicalDIEOffset());
894 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
895 dwarf::DW_FORM_ref_addr, Attr);
896 return U.getRefAddrByteSize();
900 if (!RefInfo.Clone) {
901 assert(Ref > InputDIE.getOffset());
902 // We haven't cloned this DIE yet. Just create an empty one and
903 // store it. It'll get really cloned when we process it.
904 RefInfo.Clone = DIE::get(DIEAlloc, dwarf::Tag(RefDie.getTag()));
906 NewRefDie = RefInfo.Clone;
908 if (AttrSpec.Form == dwarf::DW_FORM_ref_addr ||
909 (Unit.hasODR() && isODRAttribute(AttrSpec.Attr))) {
910 // We cannot currently rely on a DIEEntry to emit ref_addr
911 // references, because the implementation calls back to DwarfDebug
912 // to find the unit offset. (We don't have a DwarfDebug)
913 // FIXME: we should be able to design DIEEntry reliance on
914 // DwarfDebug away.
915 uint64_t Attr;
916 if (Ref < InputDIE.getOffset()) {
917 // We must have already cloned that DIE.
918 uint32_t NewRefOffset =
919 RefUnit->getStartOffset() + NewRefDie->getOffset();
920 Attr = NewRefOffset;
921 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
922 dwarf::DW_FORM_ref_addr, DIEInteger(Attr));
923 } else {
924 // A forward reference. Note and fixup later.
925 Attr = 0xBADDEF;
926 Unit.noteForwardReference(
927 NewRefDie, RefUnit, Ctxt,
928 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
929 dwarf::DW_FORM_ref_addr, DIEInteger(Attr)));
931 return U.getRefAddrByteSize();
934 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
935 dwarf::Form(AttrSpec.Form), DIEEntry(*NewRefDie));
937 return AttrSize;
940 void DWARFLinker::DIECloner::cloneExpression(
941 DataExtractor &Data, DWARFExpression Expression, const DWARFFile &File,
942 CompileUnit &Unit, SmallVectorImpl<uint8_t> &OutputBuffer) {
943 using Encoding = DWARFExpression::Operation::Encoding;
945 uint64_t OpOffset = 0;
946 for (auto &Op : Expression) {
947 auto Description = Op.getDescription();
948 // DW_OP_const_type is variable-length and has 3
949 // operands. DWARFExpression thus far only supports 2.
950 auto Op0 = Description.Op[0];
951 auto Op1 = Description.Op[1];
952 if ((Op0 == Encoding::BaseTypeRef && Op1 != Encoding::SizeNA) ||
953 (Op1 == Encoding::BaseTypeRef && Op0 != Encoding::Size1))
954 Linker.reportWarning("Unsupported DW_OP encoding.", File);
956 if ((Op0 == Encoding::BaseTypeRef && Op1 == Encoding::SizeNA) ||
957 (Op1 == Encoding::BaseTypeRef && Op0 == Encoding::Size1)) {
958 // This code assumes that the other non-typeref operand fits into 1 byte.
959 assert(OpOffset < Op.getEndOffset());
960 uint32_t ULEBsize = Op.getEndOffset() - OpOffset - 1;
961 assert(ULEBsize <= 16);
963 // Copy over the operation.
964 OutputBuffer.push_back(Op.getCode());
965 uint64_t RefOffset;
966 if (Op1 == Encoding::SizeNA) {
967 RefOffset = Op.getRawOperand(0);
968 } else {
969 OutputBuffer.push_back(Op.getRawOperand(0));
970 RefOffset = Op.getRawOperand(1);
972 uint32_t Offset = 0;
973 // Look up the base type. For DW_OP_convert, the operand may be 0 to
974 // instead indicate the generic type. The same holds for
975 // DW_OP_reinterpret, which is currently not supported.
976 if (RefOffset > 0 || Op.getCode() != dwarf::DW_OP_convert) {
977 auto RefDie = Unit.getOrigUnit().getDIEForOffset(RefOffset);
978 CompileUnit::DIEInfo &Info = Unit.getInfo(RefDie);
979 if (DIE *Clone = Info.Clone)
980 Offset = Clone->getOffset();
981 else
982 Linker.reportWarning(
983 "base type ref doesn't point to DW_TAG_base_type.", File);
985 uint8_t ULEB[16];
986 unsigned RealSize = encodeULEB128(Offset, ULEB, ULEBsize);
987 if (RealSize > ULEBsize) {
988 // Emit the generic type as a fallback.
989 RealSize = encodeULEB128(0, ULEB, ULEBsize);
990 Linker.reportWarning("base type ref doesn't fit.", File);
992 assert(RealSize == ULEBsize && "padding failed");
993 ArrayRef<uint8_t> ULEBbytes(ULEB, ULEBsize);
994 OutputBuffer.append(ULEBbytes.begin(), ULEBbytes.end());
995 } else {
996 // Copy over everything else unmodified.
997 StringRef Bytes = Data.getData().slice(OpOffset, Op.getEndOffset());
998 OutputBuffer.append(Bytes.begin(), Bytes.end());
1000 OpOffset = Op.getEndOffset();
1004 unsigned DWARFLinker::DIECloner::cloneBlockAttribute(
1005 DIE &Die, const DWARFFile &File, CompileUnit &Unit, AttributeSpec AttrSpec,
1006 const DWARFFormValue &Val, unsigned AttrSize, bool IsLittleEndian) {
1007 DIEValueList *Attr;
1008 DIEValue Value;
1009 DIELoc *Loc = nullptr;
1010 DIEBlock *Block = nullptr;
1011 if (AttrSpec.Form == dwarf::DW_FORM_exprloc) {
1012 Loc = new (DIEAlloc) DIELoc;
1013 Linker.DIELocs.push_back(Loc);
1014 } else {
1015 Block = new (DIEAlloc) DIEBlock;
1016 Linker.DIEBlocks.push_back(Block);
1018 Attr = Loc ? static_cast<DIEValueList *>(Loc)
1019 : static_cast<DIEValueList *>(Block);
1021 if (Loc)
1022 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1023 dwarf::Form(AttrSpec.Form), Loc);
1024 else
1025 Value = DIEValue(dwarf::Attribute(AttrSpec.Attr),
1026 dwarf::Form(AttrSpec.Form), Block);
1028 // If the block is a DWARF Expression, clone it into the temporary
1029 // buffer using cloneExpression(), otherwise copy the data directly.
1030 SmallVector<uint8_t, 32> Buffer;
1031 ArrayRef<uint8_t> Bytes = *Val.getAsBlock();
1032 if (DWARFAttribute::mayHaveLocationExpr(AttrSpec.Attr) &&
1033 (Val.isFormClass(DWARFFormValue::FC_Block) ||
1034 Val.isFormClass(DWARFFormValue::FC_Exprloc))) {
1035 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1036 DataExtractor Data(StringRef((const char *)Bytes.data(), Bytes.size()),
1037 IsLittleEndian, OrigUnit.getAddressByteSize());
1038 DWARFExpression Expr(Data, OrigUnit.getAddressByteSize(),
1039 OrigUnit.getFormParams().Format);
1040 cloneExpression(Data, Expr, File, Unit, Buffer);
1041 Bytes = Buffer;
1043 for (auto Byte : Bytes)
1044 Attr->addValue(DIEAlloc, static_cast<dwarf::Attribute>(0),
1045 dwarf::DW_FORM_data1, DIEInteger(Byte));
1047 // FIXME: If DIEBlock and DIELoc just reuses the Size field of
1048 // the DIE class, this "if" could be replaced by
1049 // Attr->setSize(Bytes.size()).
1050 if (Loc)
1051 Loc->setSize(Bytes.size());
1052 else
1053 Block->setSize(Bytes.size());
1055 Die.addValue(DIEAlloc, Value);
1056 return AttrSize;
1059 unsigned DWARFLinker::DIECloner::cloneAddressAttribute(
1060 DIE &Die, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1061 const CompileUnit &Unit, AttributesInfo &Info) {
1062 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1063 if (AttrSpec.Attr == dwarf::DW_AT_low_pc)
1064 Info.HasLowPc = true;
1065 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1066 dwarf::Form(AttrSpec.Form), DIEInteger(Val.getRawUValue()));
1067 return Unit.getOrigUnit().getAddressByteSize();
1070 dwarf::Form Form = AttrSpec.Form;
1071 uint64_t Addr = 0;
1072 if (Form == dwarf::DW_FORM_addrx) {
1073 if (Optional<uint64_t> AddrOffsetSectionBase =
1074 Unit.getOrigUnit().getAddrOffsetSectionBase()) {
1075 uint64_t StartOffset = *AddrOffsetSectionBase + Val.getRawUValue();
1076 uint64_t EndOffset =
1077 StartOffset + Unit.getOrigUnit().getAddressByteSize();
1078 if (llvm::Expected<uint64_t> RelocAddr =
1079 ObjFile.Addresses->relocateIndexedAddr(StartOffset, EndOffset))
1080 Addr = *RelocAddr;
1081 else
1082 Linker.reportWarning(toString(RelocAddr.takeError()), ObjFile);
1083 } else
1084 Linker.reportWarning("no base offset for address table", ObjFile);
1086 // If this is an indexed address emit the debug_info address.
1087 Form = dwarf::DW_FORM_addr;
1088 } else
1089 Addr = *Val.getAsAddress();
1091 if (AttrSpec.Attr == dwarf::DW_AT_low_pc) {
1092 if (Die.getTag() == dwarf::DW_TAG_inlined_subroutine ||
1093 Die.getTag() == dwarf::DW_TAG_lexical_block ||
1094 Die.getTag() == dwarf::DW_TAG_label) {
1095 // The low_pc of a block or inline subroutine might get
1096 // relocated because it happens to match the low_pc of the
1097 // enclosing subprogram. To prevent issues with that, always use
1098 // the low_pc from the input DIE if relocations have been applied.
1099 Addr = (Info.OrigLowPc != std::numeric_limits<uint64_t>::max()
1100 ? Info.OrigLowPc
1101 : Addr) +
1102 Info.PCOffset;
1103 } else if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1104 Addr = Unit.getLowPc();
1105 if (Addr == std::numeric_limits<uint64_t>::max())
1106 return 0;
1108 Info.HasLowPc = true;
1109 } else if (AttrSpec.Attr == dwarf::DW_AT_high_pc) {
1110 if (Die.getTag() == dwarf::DW_TAG_compile_unit) {
1111 if (uint64_t HighPc = Unit.getHighPc())
1112 Addr = HighPc;
1113 else
1114 return 0;
1115 } else
1116 // If we have a high_pc recorded for the input DIE, use
1117 // it. Otherwise (when no relocations where applied) just use the
1118 // one we just decoded.
1119 Addr = (Info.OrigHighPc ? Info.OrigHighPc : Addr) + Info.PCOffset;
1120 } else if (AttrSpec.Attr == dwarf::DW_AT_call_return_pc) {
1121 // Relocate a return PC address within a call site entry.
1122 if (Die.getTag() == dwarf::DW_TAG_call_site)
1123 Addr = (Info.OrigCallReturnPc ? Info.OrigCallReturnPc : Addr) +
1124 Info.PCOffset;
1125 } else if (AttrSpec.Attr == dwarf::DW_AT_call_pc) {
1126 // Relocate the address of a branch instruction within a call site entry.
1127 if (Die.getTag() == dwarf::DW_TAG_call_site)
1128 Addr = (Info.OrigCallPc ? Info.OrigCallPc : Addr) + Info.PCOffset;
1131 Die.addValue(DIEAlloc, static_cast<dwarf::Attribute>(AttrSpec.Attr),
1132 static_cast<dwarf::Form>(Form), DIEInteger(Addr));
1133 return Unit.getOrigUnit().getAddressByteSize();
1136 unsigned DWARFLinker::DIECloner::cloneScalarAttribute(
1137 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1138 CompileUnit &Unit, AttributeSpec AttrSpec, const DWARFFormValue &Val,
1139 unsigned AttrSize, AttributesInfo &Info) {
1140 uint64_t Value;
1142 if (LLVM_UNLIKELY(Linker.Options.Update)) {
1143 if (auto OptionalValue = Val.getAsUnsignedConstant())
1144 Value = *OptionalValue;
1145 else if (auto OptionalValue = Val.getAsSignedConstant())
1146 Value = *OptionalValue;
1147 else if (auto OptionalValue = Val.getAsSectionOffset())
1148 Value = *OptionalValue;
1149 else {
1150 Linker.reportWarning(
1151 "Unsupported scalar attribute form. Dropping attribute.", File,
1152 &InputDIE);
1153 return 0;
1155 if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1156 Info.IsDeclaration = true;
1157 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1158 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1159 return AttrSize;
1162 if (AttrSpec.Attr == dwarf::DW_AT_high_pc &&
1163 Die.getTag() == dwarf::DW_TAG_compile_unit) {
1164 if (Unit.getLowPc() == -1ULL)
1165 return 0;
1166 // Dwarf >= 4 high_pc is an size, not an address.
1167 Value = Unit.getHighPc() - Unit.getLowPc();
1168 } else if (AttrSpec.Form == dwarf::DW_FORM_sec_offset)
1169 Value = *Val.getAsSectionOffset();
1170 else if (AttrSpec.Form == dwarf::DW_FORM_sdata)
1171 Value = *Val.getAsSignedConstant();
1172 else if (auto OptionalValue = Val.getAsUnsignedConstant())
1173 Value = *OptionalValue;
1174 else {
1175 Linker.reportWarning(
1176 "Unsupported scalar attribute form. Dropping attribute.", File,
1177 &InputDIE);
1178 return 0;
1180 PatchLocation Patch =
1181 Die.addValue(DIEAlloc, dwarf::Attribute(AttrSpec.Attr),
1182 dwarf::Form(AttrSpec.Form), DIEInteger(Value));
1183 if (AttrSpec.Attr == dwarf::DW_AT_ranges) {
1184 Unit.noteRangeAttribute(Die, Patch);
1185 Info.HasRanges = true;
1188 // A more generic way to check for location attributes would be
1189 // nice, but it's very unlikely that any other attribute needs a
1190 // location list.
1191 // FIXME: use DWARFAttribute::mayHaveLocationDescription().
1192 else if (AttrSpec.Attr == dwarf::DW_AT_location ||
1193 AttrSpec.Attr == dwarf::DW_AT_frame_base) {
1194 Unit.noteLocationAttribute(Patch, Info.PCOffset);
1195 } else if (AttrSpec.Attr == dwarf::DW_AT_declaration && Value)
1196 Info.IsDeclaration = true;
1198 return AttrSize;
1201 /// Clone \p InputDIE's attribute described by \p AttrSpec with
1202 /// value \p Val, and add it to \p Die.
1203 /// \returns the size of the cloned attribute.
1204 unsigned DWARFLinker::DIECloner::cloneAttribute(
1205 DIE &Die, const DWARFDie &InputDIE, const DWARFFile &File,
1206 CompileUnit &Unit, OffsetsStringPool &StringPool, const DWARFFormValue &Val,
1207 const AttributeSpec AttrSpec, unsigned AttrSize, AttributesInfo &Info,
1208 bool IsLittleEndian) {
1209 const DWARFUnit &U = Unit.getOrigUnit();
1211 switch (AttrSpec.Form) {
1212 case dwarf::DW_FORM_strp:
1213 case dwarf::DW_FORM_string:
1214 case dwarf::DW_FORM_strx:
1215 case dwarf::DW_FORM_strx1:
1216 case dwarf::DW_FORM_strx2:
1217 case dwarf::DW_FORM_strx3:
1218 case dwarf::DW_FORM_strx4:
1219 return cloneStringAttribute(Die, AttrSpec, Val, U, StringPool, Info);
1220 case dwarf::DW_FORM_ref_addr:
1221 case dwarf::DW_FORM_ref1:
1222 case dwarf::DW_FORM_ref2:
1223 case dwarf::DW_FORM_ref4:
1224 case dwarf::DW_FORM_ref8:
1225 return cloneDieReferenceAttribute(Die, InputDIE, AttrSpec, AttrSize, Val,
1226 File, Unit);
1227 case dwarf::DW_FORM_block:
1228 case dwarf::DW_FORM_block1:
1229 case dwarf::DW_FORM_block2:
1230 case dwarf::DW_FORM_block4:
1231 case dwarf::DW_FORM_exprloc:
1232 return cloneBlockAttribute(Die, File, Unit, AttrSpec, Val, AttrSize,
1233 IsLittleEndian);
1234 case dwarf::DW_FORM_addr:
1235 case dwarf::DW_FORM_addrx:
1236 return cloneAddressAttribute(Die, AttrSpec, Val, Unit, Info);
1237 case dwarf::DW_FORM_data1:
1238 case dwarf::DW_FORM_data2:
1239 case dwarf::DW_FORM_data4:
1240 case dwarf::DW_FORM_data8:
1241 case dwarf::DW_FORM_udata:
1242 case dwarf::DW_FORM_sdata:
1243 case dwarf::DW_FORM_sec_offset:
1244 case dwarf::DW_FORM_flag:
1245 case dwarf::DW_FORM_flag_present:
1246 return cloneScalarAttribute(Die, InputDIE, File, Unit, AttrSpec, Val,
1247 AttrSize, Info);
1248 default:
1249 Linker.reportWarning("Unsupported attribute form " +
1250 dwarf::FormEncodingString(AttrSpec.Form) +
1251 " in cloneAttribute. Dropping.",
1252 File, &InputDIE);
1255 return 0;
1258 static bool isObjCSelector(StringRef Name) {
1259 return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') &&
1260 (Name[1] == '[');
1263 void DWARFLinker::DIECloner::addObjCAccelerator(CompileUnit &Unit,
1264 const DIE *Die,
1265 DwarfStringPoolEntryRef Name,
1266 OffsetsStringPool &StringPool,
1267 bool SkipPubSection) {
1268 assert(isObjCSelector(Name.getString()) && "not an objc selector");
1269 // Objective C method or class function.
1270 // "- [Class(Category) selector :withArg ...]"
1271 StringRef ClassNameStart(Name.getString().drop_front(2));
1272 size_t FirstSpace = ClassNameStart.find(' ');
1273 if (FirstSpace == StringRef::npos)
1274 return;
1276 StringRef SelectorStart(ClassNameStart.data() + FirstSpace + 1);
1277 if (!SelectorStart.size())
1278 return;
1280 StringRef Selector(SelectorStart.data(), SelectorStart.size() - 1);
1281 Unit.addNameAccelerator(Die, StringPool.getEntry(Selector), SkipPubSection);
1283 // Add an entry for the class name that points to this
1284 // method/class function.
1285 StringRef ClassName(ClassNameStart.data(), FirstSpace);
1286 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassName), SkipPubSection);
1288 if (ClassName[ClassName.size() - 1] == ')') {
1289 size_t OpenParens = ClassName.find('(');
1290 if (OpenParens != StringRef::npos) {
1291 StringRef ClassNameNoCategory(ClassName.data(), OpenParens);
1292 Unit.addObjCAccelerator(Die, StringPool.getEntry(ClassNameNoCategory),
1293 SkipPubSection);
1295 std::string MethodNameNoCategory(Name.getString().data(), OpenParens + 2);
1296 // FIXME: The missing space here may be a bug, but
1297 // dsymutil-classic also does it this way.
1298 MethodNameNoCategory.append(std::string(SelectorStart));
1299 Unit.addNameAccelerator(Die, StringPool.getEntry(MethodNameNoCategory),
1300 SkipPubSection);
1305 static bool
1306 shouldSkipAttribute(DWARFAbbreviationDeclaration::AttributeSpec AttrSpec,
1307 uint16_t Tag, bool InDebugMap, bool SkipPC,
1308 bool InFunctionScope) {
1309 switch (AttrSpec.Attr) {
1310 default:
1311 return false;
1312 case dwarf::DW_AT_low_pc:
1313 case dwarf::DW_AT_high_pc:
1314 case dwarf::DW_AT_ranges:
1315 return SkipPC;
1316 case dwarf::DW_AT_str_offsets_base:
1317 // FIXME: Use the string offset table with Dwarf 5.
1318 return true;
1319 case dwarf::DW_AT_location:
1320 case dwarf::DW_AT_frame_base:
1321 // FIXME: for some reason dsymutil-classic keeps the location attributes
1322 // when they are of block type (i.e. not location lists). This is totally
1323 // wrong for globals where we will keep a wrong address. It is mostly
1324 // harmless for locals, but there is no point in keeping these anyway when
1325 // the function wasn't linked.
1326 return (SkipPC || (!InFunctionScope && Tag == dwarf::DW_TAG_variable &&
1327 !InDebugMap)) &&
1328 !DWARFFormValue(AttrSpec.Form).isFormClass(DWARFFormValue::FC_Block);
1332 DIE *DWARFLinker::DIECloner::cloneDIE(const DWARFDie &InputDIE,
1333 const DWARFFile &File, CompileUnit &Unit,
1334 OffsetsStringPool &StringPool,
1335 int64_t PCOffset, uint32_t OutOffset,
1336 unsigned Flags, bool IsLittleEndian,
1337 DIE *Die) {
1338 DWARFUnit &U = Unit.getOrigUnit();
1339 unsigned Idx = U.getDIEIndex(InputDIE);
1340 CompileUnit::DIEInfo &Info = Unit.getInfo(Idx);
1342 // Should the DIE appear in the output?
1343 if (!Unit.getInfo(Idx).Keep)
1344 return nullptr;
1346 uint64_t Offset = InputDIE.getOffset();
1347 assert(!(Die && Info.Clone) && "Can't supply a DIE and a cloned DIE");
1348 if (!Die) {
1349 // The DIE might have been already created by a forward reference
1350 // (see cloneDieReferenceAttribute()).
1351 if (!Info.Clone)
1352 Info.Clone = DIE::get(DIEAlloc, dwarf::Tag(InputDIE.getTag()));
1353 Die = Info.Clone;
1356 assert(Die->getTag() == InputDIE.getTag());
1357 Die->setOffset(OutOffset);
1358 if ((Unit.hasODR() || Unit.isClangModule()) && !Info.Incomplete &&
1359 Die->getTag() != dwarf::DW_TAG_namespace && Info.Ctxt &&
1360 Info.Ctxt != Unit.getInfo(Info.ParentIdx).Ctxt &&
1361 !Info.Ctxt->getCanonicalDIEOffset()) {
1362 // We are about to emit a DIE that is the root of its own valid
1363 // DeclContext tree. Make the current offset the canonical offset
1364 // for this context.
1365 Info.Ctxt->setCanonicalDIEOffset(OutOffset + Unit.getStartOffset());
1368 // Extract and clone every attribute.
1369 DWARFDataExtractor Data = U.getDebugInfoExtractor();
1370 // Point to the next DIE (generally there is always at least a NULL
1371 // entry after the current one). If this is a lone
1372 // DW_TAG_compile_unit without any children, point to the next unit.
1373 uint64_t NextOffset = (Idx + 1 < U.getNumDIEs())
1374 ? U.getDIEAtIndex(Idx + 1).getOffset()
1375 : U.getNextUnitOffset();
1376 AttributesInfo AttrInfo;
1378 // We could copy the data only if we need to apply a relocation to it. After
1379 // testing, it seems there is no performance downside to doing the copy
1380 // unconditionally, and it makes the code simpler.
1381 SmallString<40> DIECopy(Data.getData().substr(Offset, NextOffset - Offset));
1382 Data =
1383 DWARFDataExtractor(DIECopy, Data.isLittleEndian(), Data.getAddressSize());
1385 // Modify the copy with relocated addresses.
1386 if (ObjFile.Addresses->areRelocationsResolved() &&
1387 ObjFile.Addresses->applyValidRelocs(DIECopy, Offset,
1388 Data.isLittleEndian())) {
1389 // If we applied relocations, we store the value of high_pc that was
1390 // potentially stored in the input DIE. If high_pc is an address
1391 // (Dwarf version == 2), then it might have been relocated to a
1392 // totally unrelated value (because the end address in the object
1393 // file might be start address of another function which got moved
1394 // independently by the linker). The computation of the actual
1395 // high_pc value is done in cloneAddressAttribute().
1396 AttrInfo.OrigHighPc =
1397 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_high_pc), 0);
1398 // Also store the low_pc. It might get relocated in an
1399 // inline_subprogram that happens at the beginning of its
1400 // inlining function.
1401 AttrInfo.OrigLowPc = dwarf::toAddress(InputDIE.find(dwarf::DW_AT_low_pc),
1402 std::numeric_limits<uint64_t>::max());
1403 AttrInfo.OrigCallReturnPc =
1404 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_return_pc), 0);
1405 AttrInfo.OrigCallPc =
1406 dwarf::toAddress(InputDIE.find(dwarf::DW_AT_call_pc), 0);
1409 // Reset the Offset to 0 as we will be working on the local copy of
1410 // the data.
1411 Offset = 0;
1413 const auto *Abbrev = InputDIE.getAbbreviationDeclarationPtr();
1414 Offset += getULEB128Size(Abbrev->getCode());
1416 // We are entering a subprogram. Get and propagate the PCOffset.
1417 if (Die->getTag() == dwarf::DW_TAG_subprogram)
1418 PCOffset = Info.AddrAdjust;
1419 AttrInfo.PCOffset = PCOffset;
1421 if (Abbrev->getTag() == dwarf::DW_TAG_subprogram) {
1422 Flags |= TF_InFunctionScope;
1423 if (!Info.InDebugMap && LLVM_LIKELY(!Update))
1424 Flags |= TF_SkipPC;
1427 for (const auto &AttrSpec : Abbrev->attributes()) {
1428 if (LLVM_LIKELY(!Update) &&
1429 shouldSkipAttribute(AttrSpec, Die->getTag(), Info.InDebugMap,
1430 Flags & TF_SkipPC, Flags & TF_InFunctionScope)) {
1431 DWARFFormValue::skipValue(AttrSpec.Form, Data, &Offset,
1432 U.getFormParams());
1433 continue;
1436 DWARFFormValue Val(AttrSpec.Form);
1437 uint64_t AttrSize = Offset;
1438 Val.extractValue(Data, &Offset, U.getFormParams(), &U);
1439 AttrSize = Offset - AttrSize;
1441 OutOffset += cloneAttribute(*Die, InputDIE, File, Unit, StringPool, Val,
1442 AttrSpec, AttrSize, AttrInfo, IsLittleEndian);
1445 // Look for accelerator entries.
1446 uint16_t Tag = InputDIE.getTag();
1447 // FIXME: This is slightly wrong. An inline_subroutine without a
1448 // low_pc, but with AT_ranges might be interesting to get into the
1449 // accelerator tables too. For now stick with dsymutil's behavior.
1450 if ((Info.InDebugMap || AttrInfo.HasLowPc || AttrInfo.HasRanges) &&
1451 Tag != dwarf::DW_TAG_compile_unit &&
1452 getDIENames(InputDIE, AttrInfo, StringPool,
1453 Tag != dwarf::DW_TAG_inlined_subroutine)) {
1454 if (AttrInfo.MangledName && AttrInfo.MangledName != AttrInfo.Name)
1455 Unit.addNameAccelerator(Die, AttrInfo.MangledName,
1456 Tag == dwarf::DW_TAG_inlined_subroutine);
1457 if (AttrInfo.Name) {
1458 if (AttrInfo.NameWithoutTemplate)
1459 Unit.addNameAccelerator(Die, AttrInfo.NameWithoutTemplate,
1460 /* SkipPubSection */ true);
1461 Unit.addNameAccelerator(Die, AttrInfo.Name,
1462 Tag == dwarf::DW_TAG_inlined_subroutine);
1464 if (AttrInfo.Name && isObjCSelector(AttrInfo.Name.getString()))
1465 addObjCAccelerator(Unit, Die, AttrInfo.Name, StringPool,
1466 /* SkipPubSection =*/true);
1468 } else if (Tag == dwarf::DW_TAG_namespace) {
1469 if (!AttrInfo.Name)
1470 AttrInfo.Name = StringPool.getEntry("(anonymous namespace)");
1471 Unit.addNamespaceAccelerator(Die, AttrInfo.Name);
1472 } else if (isTypeTag(Tag) && !AttrInfo.IsDeclaration &&
1473 getDIENames(InputDIE, AttrInfo, StringPool) && AttrInfo.Name &&
1474 AttrInfo.Name.getString()[0]) {
1475 uint32_t Hash = hashFullyQualifiedName(InputDIE, Unit, File);
1476 uint64_t RuntimeLang =
1477 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_runtime_class))
1478 .getValueOr(0);
1479 bool ObjCClassIsImplementation =
1480 (RuntimeLang == dwarf::DW_LANG_ObjC ||
1481 RuntimeLang == dwarf::DW_LANG_ObjC_plus_plus) &&
1482 dwarf::toUnsigned(InputDIE.find(dwarf::DW_AT_APPLE_objc_complete_type))
1483 .getValueOr(0);
1484 Unit.addTypeAccelerator(Die, AttrInfo.Name, ObjCClassIsImplementation,
1485 Hash);
1488 // Determine whether there are any children that we want to keep.
1489 bool HasChildren = false;
1490 for (auto Child : InputDIE.children()) {
1491 unsigned Idx = U.getDIEIndex(Child);
1492 if (Unit.getInfo(Idx).Keep) {
1493 HasChildren = true;
1494 break;
1498 DIEAbbrev NewAbbrev = Die->generateAbbrev();
1499 if (HasChildren)
1500 NewAbbrev.setChildrenFlag(dwarf::DW_CHILDREN_yes);
1501 // Assign a permanent abbrev number
1502 Linker.assignAbbrev(NewAbbrev);
1503 Die->setAbbrevNumber(NewAbbrev.getNumber());
1505 // Add the size of the abbreviation number to the output offset.
1506 OutOffset += getULEB128Size(Die->getAbbrevNumber());
1508 if (!HasChildren) {
1509 // Update our size.
1510 Die->setSize(OutOffset - Die->getOffset());
1511 return Die;
1514 // Recursively clone children.
1515 for (auto Child : InputDIE.children()) {
1516 if (DIE *Clone = cloneDIE(Child, File, Unit, StringPool, PCOffset,
1517 OutOffset, Flags, IsLittleEndian)) {
1518 Die->addChild(Clone);
1519 OutOffset = Clone->getOffset() + Clone->getSize();
1523 // Account for the end of children marker.
1524 OutOffset += sizeof(int8_t);
1525 // Update our size.
1526 Die->setSize(OutOffset - Die->getOffset());
1527 return Die;
1530 /// Patch the input object file relevant debug_ranges entries
1531 /// and emit them in the output file. Update the relevant attributes
1532 /// to point at the new entries.
1533 void DWARFLinker::patchRangesForUnit(const CompileUnit &Unit,
1534 DWARFContext &OrigDwarf,
1535 const DWARFFile &File) const {
1536 DWARFDebugRangeList RangeList;
1537 const auto &FunctionRanges = Unit.getFunctionRanges();
1538 unsigned AddressSize = Unit.getOrigUnit().getAddressByteSize();
1539 DWARFDataExtractor RangeExtractor(OrigDwarf.getDWARFObj(),
1540 OrigDwarf.getDWARFObj().getRangesSection(),
1541 OrigDwarf.isLittleEndian(), AddressSize);
1542 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1543 DWARFUnit &OrigUnit = Unit.getOrigUnit();
1544 auto OrigUnitDie = OrigUnit.getUnitDIE(false);
1545 uint64_t OrigLowPc =
1546 dwarf::toAddress(OrigUnitDie.find(dwarf::DW_AT_low_pc), -1ULL);
1547 // Ranges addresses are based on the unit's low_pc. Compute the
1548 // offset we need to apply to adapt to the new unit's low_pc.
1549 int64_t UnitPcOffset = 0;
1550 if (OrigLowPc != -1ULL)
1551 UnitPcOffset = int64_t(OrigLowPc) - Unit.getLowPc();
1553 for (const auto &RangeAttribute : Unit.getRangesAttributes()) {
1554 uint64_t Offset = RangeAttribute.get();
1555 RangeAttribute.set(TheDwarfEmitter->getRangesSectionSize());
1556 if (Error E = RangeList.extract(RangeExtractor, &Offset)) {
1557 llvm::consumeError(std::move(E));
1558 reportWarning("invalid range list ignored.", File);
1559 RangeList.clear();
1561 const auto &Entries = RangeList.getEntries();
1562 if (!Entries.empty()) {
1563 const DWARFDebugRangeList::RangeListEntry &First = Entries.front();
1565 if (CurrRange == InvalidRange ||
1566 First.StartAddress + OrigLowPc < CurrRange.start() ||
1567 First.StartAddress + OrigLowPc >= CurrRange.stop()) {
1568 CurrRange = FunctionRanges.find(First.StartAddress + OrigLowPc);
1569 if (CurrRange == InvalidRange ||
1570 CurrRange.start() > First.StartAddress + OrigLowPc) {
1571 reportWarning("no mapping for range.", File);
1572 continue;
1577 TheDwarfEmitter->emitRangesEntries(UnitPcOffset, OrigLowPc, CurrRange,
1578 Entries, AddressSize);
1582 /// Generate the debug_aranges entries for \p Unit and if the
1583 /// unit has a DW_AT_ranges attribute, also emit the debug_ranges
1584 /// contribution for this attribute.
1585 /// FIXME: this could actually be done right in patchRangesForUnit,
1586 /// but for the sake of initial bit-for-bit compatibility with legacy
1587 /// dsymutil, we have to do it in a delayed pass.
1588 void DWARFLinker::generateUnitRanges(CompileUnit &Unit) const {
1589 auto Attr = Unit.getUnitRangesAttribute();
1590 if (Attr)
1591 Attr->set(TheDwarfEmitter->getRangesSectionSize());
1592 TheDwarfEmitter->emitUnitRangesEntries(Unit, static_cast<bool>(Attr));
1595 /// Insert the new line info sequence \p Seq into the current
1596 /// set of already linked line info \p Rows.
1597 static void insertLineSequence(std::vector<DWARFDebugLine::Row> &Seq,
1598 std::vector<DWARFDebugLine::Row> &Rows) {
1599 if (Seq.empty())
1600 return;
1602 if (!Rows.empty() && Rows.back().Address < Seq.front().Address) {
1603 llvm::append_range(Rows, Seq);
1604 Seq.clear();
1605 return;
1608 object::SectionedAddress Front = Seq.front().Address;
1609 auto InsertPoint = partition_point(
1610 Rows, [=](const DWARFDebugLine::Row &O) { return O.Address < Front; });
1612 // FIXME: this only removes the unneeded end_sequence if the
1613 // sequences have been inserted in order. Using a global sort like
1614 // described in patchLineTableForUnit() and delaying the end_sequene
1615 // elimination to emitLineTableForUnit() we can get rid of all of them.
1616 if (InsertPoint != Rows.end() && InsertPoint->Address == Front &&
1617 InsertPoint->EndSequence) {
1618 *InsertPoint = Seq.front();
1619 Rows.insert(InsertPoint + 1, Seq.begin() + 1, Seq.end());
1620 } else {
1621 Rows.insert(InsertPoint, Seq.begin(), Seq.end());
1624 Seq.clear();
1627 static void patchStmtList(DIE &Die, DIEInteger Offset) {
1628 for (auto &V : Die.values())
1629 if (V.getAttribute() == dwarf::DW_AT_stmt_list) {
1630 V = DIEValue(V.getAttribute(), V.getForm(), Offset);
1631 return;
1634 llvm_unreachable("Didn't find DW_AT_stmt_list in cloned DIE!");
1637 /// Extract the line table for \p Unit from \p OrigDwarf, and
1638 /// recreate a relocated version of these for the address ranges that
1639 /// are present in the binary.
1640 void DWARFLinker::patchLineTableForUnit(CompileUnit &Unit,
1641 DWARFContext &OrigDwarf,
1642 const DWARFFile &File) {
1643 DWARFDie CUDie = Unit.getOrigUnit().getUnitDIE();
1644 auto StmtList = dwarf::toSectionOffset(CUDie.find(dwarf::DW_AT_stmt_list));
1645 if (!StmtList)
1646 return;
1648 // Update the cloned DW_AT_stmt_list with the correct debug_line offset.
1649 if (auto *OutputDIE = Unit.getOutputUnitDIE())
1650 patchStmtList(*OutputDIE,
1651 DIEInteger(TheDwarfEmitter->getLineSectionSize()));
1653 RangesTy &Ranges = File.Addresses->getValidAddressRanges();
1655 // Parse the original line info for the unit.
1656 DWARFDebugLine::LineTable LineTable;
1657 uint64_t StmtOffset = *StmtList;
1658 DWARFDataExtractor LineExtractor(
1659 OrigDwarf.getDWARFObj(), OrigDwarf.getDWARFObj().getLineSection(),
1660 OrigDwarf.isLittleEndian(), Unit.getOrigUnit().getAddressByteSize());
1661 if (needToTranslateStrings())
1662 return TheDwarfEmitter->translateLineTable(LineExtractor, StmtOffset);
1664 if (Error Err =
1665 LineTable.parse(LineExtractor, &StmtOffset, OrigDwarf,
1666 &Unit.getOrigUnit(), OrigDwarf.getWarningHandler()))
1667 OrigDwarf.getWarningHandler()(std::move(Err));
1669 // This vector is the output line table.
1670 std::vector<DWARFDebugLine::Row> NewRows;
1671 NewRows.reserve(LineTable.Rows.size());
1673 // Current sequence of rows being extracted, before being inserted
1674 // in NewRows.
1675 std::vector<DWARFDebugLine::Row> Seq;
1676 const auto &FunctionRanges = Unit.getFunctionRanges();
1677 auto InvalidRange = FunctionRanges.end(), CurrRange = InvalidRange;
1679 // FIXME: This logic is meant to generate exactly the same output as
1680 // Darwin's classic dsymutil. There is a nicer way to implement this
1681 // by simply putting all the relocated line info in NewRows and simply
1682 // sorting NewRows before passing it to emitLineTableForUnit. This
1683 // should be correct as sequences for a function should stay
1684 // together in the sorted output. There are a few corner cases that
1685 // look suspicious though, and that required to implement the logic
1686 // this way. Revisit that once initial validation is finished.
1688 // Iterate over the object file line info and extract the sequences
1689 // that correspond to linked functions.
1690 for (auto &Row : LineTable.Rows) {
1691 // Check whether we stepped out of the range. The range is
1692 // half-open, but consider accept the end address of the range if
1693 // it is marked as end_sequence in the input (because in that
1694 // case, the relocation offset is accurate and that entry won't
1695 // serve as the start of another function).
1696 if (CurrRange == InvalidRange || Row.Address.Address < CurrRange.start() ||
1697 Row.Address.Address > CurrRange.stop() ||
1698 (Row.Address.Address == CurrRange.stop() && !Row.EndSequence)) {
1699 // We just stepped out of a known range. Insert a end_sequence
1700 // corresponding to the end of the range.
1701 uint64_t StopAddress = CurrRange != InvalidRange
1702 ? CurrRange.stop() + CurrRange.value()
1703 : -1ULL;
1704 CurrRange = FunctionRanges.find(Row.Address.Address);
1705 bool CurrRangeValid =
1706 CurrRange != InvalidRange && CurrRange.start() <= Row.Address.Address;
1707 if (!CurrRangeValid) {
1708 CurrRange = InvalidRange;
1709 if (StopAddress != -1ULL) {
1710 // Try harder by looking in the Address ranges map.
1711 // There are corner cases where this finds a
1712 // valid entry. It's unclear if this is right or wrong, but
1713 // for now do as dsymutil.
1714 // FIXME: Understand exactly what cases this addresses and
1715 // potentially remove it along with the Ranges map.
1716 auto Range = Ranges.lower_bound(Row.Address.Address);
1717 if (Range != Ranges.begin() && Range != Ranges.end())
1718 --Range;
1720 if (Range != Ranges.end() && Range->first <= Row.Address.Address &&
1721 Range->second.HighPC >= Row.Address.Address) {
1722 StopAddress = Row.Address.Address + Range->second.Offset;
1726 if (StopAddress != -1ULL && !Seq.empty()) {
1727 // Insert end sequence row with the computed end address, but
1728 // the same line as the previous one.
1729 auto NextLine = Seq.back();
1730 NextLine.Address.Address = StopAddress;
1731 NextLine.EndSequence = 1;
1732 NextLine.PrologueEnd = 0;
1733 NextLine.BasicBlock = 0;
1734 NextLine.EpilogueBegin = 0;
1735 Seq.push_back(NextLine);
1736 insertLineSequence(Seq, NewRows);
1739 if (!CurrRangeValid)
1740 continue;
1743 // Ignore empty sequences.
1744 if (Row.EndSequence && Seq.empty())
1745 continue;
1747 // Relocate row address and add it to the current sequence.
1748 Row.Address.Address += CurrRange.value();
1749 Seq.emplace_back(Row);
1751 if (Row.EndSequence)
1752 insertLineSequence(Seq, NewRows);
1755 // Finished extracting, now emit the line tables.
1756 // FIXME: LLVM hard-codes its prologue values. We just copy the
1757 // prologue over and that works because we act as both producer and
1758 // consumer. It would be nicer to have a real configurable line
1759 // table emitter.
1760 if (LineTable.Prologue.getVersion() < 2 ||
1761 LineTable.Prologue.getVersion() > 5 ||
1762 LineTable.Prologue.DefaultIsStmt != DWARF2_LINE_DEFAULT_IS_STMT ||
1763 LineTable.Prologue.OpcodeBase > 13)
1764 reportWarning("line table parameters mismatch. Cannot emit.", File);
1765 else {
1766 uint32_t PrologueEnd = *StmtList + 10 + LineTable.Prologue.PrologueLength;
1767 // DWARF v5 has an extra 2 bytes of information before the header_length
1768 // field.
1769 if (LineTable.Prologue.getVersion() == 5)
1770 PrologueEnd += 2;
1771 StringRef LineData = OrigDwarf.getDWARFObj().getLineSection().Data;
1772 MCDwarfLineTableParams Params;
1773 Params.DWARF2LineOpcodeBase = LineTable.Prologue.OpcodeBase;
1774 Params.DWARF2LineBase = LineTable.Prologue.LineBase;
1775 Params.DWARF2LineRange = LineTable.Prologue.LineRange;
1776 TheDwarfEmitter->emitLineTableForUnit(
1777 Params, LineData.slice(*StmtList + 4, PrologueEnd),
1778 LineTable.Prologue.MinInstLength, NewRows,
1779 Unit.getOrigUnit().getAddressByteSize());
1783 void DWARFLinker::emitAcceleratorEntriesForUnit(CompileUnit &Unit) {
1784 switch (Options.TheAccelTableKind) {
1785 case AccelTableKind::Apple:
1786 emitAppleAcceleratorEntriesForUnit(Unit);
1787 break;
1788 case AccelTableKind::Dwarf:
1789 emitDwarfAcceleratorEntriesForUnit(Unit);
1790 break;
1791 case AccelTableKind::Pub:
1792 emitPubAcceleratorEntriesForUnit(Unit);
1793 break;
1794 case AccelTableKind::Default:
1795 llvm_unreachable("The default must be updated to a concrete value.");
1796 break;
1800 void DWARFLinker::emitAppleAcceleratorEntriesForUnit(CompileUnit &Unit) {
1801 // Add namespaces.
1802 for (const auto &Namespace : Unit.getNamespaces())
1803 AppleNamespaces.addName(Namespace.Name,
1804 Namespace.Die->getOffset() + Unit.getStartOffset());
1806 /// Add names.
1807 for (const auto &Pubname : Unit.getPubnames())
1808 AppleNames.addName(Pubname.Name,
1809 Pubname.Die->getOffset() + Unit.getStartOffset());
1811 /// Add types.
1812 for (const auto &Pubtype : Unit.getPubtypes())
1813 AppleTypes.addName(
1814 Pubtype.Name, Pubtype.Die->getOffset() + Unit.getStartOffset(),
1815 Pubtype.Die->getTag(),
1816 Pubtype.ObjcClassImplementation ? dwarf::DW_FLAG_type_implementation
1817 : 0,
1818 Pubtype.QualifiedNameHash);
1820 /// Add ObjC names.
1821 for (const auto &ObjC : Unit.getObjC())
1822 AppleObjc.addName(ObjC.Name, ObjC.Die->getOffset() + Unit.getStartOffset());
1825 void DWARFLinker::emitDwarfAcceleratorEntriesForUnit(CompileUnit &Unit) {
1826 for (const auto &Namespace : Unit.getNamespaces())
1827 DebugNames.addName(Namespace.Name, Namespace.Die->getOffset(),
1828 Namespace.Die->getTag(), Unit.getUniqueID());
1829 for (const auto &Pubname : Unit.getPubnames())
1830 DebugNames.addName(Pubname.Name, Pubname.Die->getOffset(),
1831 Pubname.Die->getTag(), Unit.getUniqueID());
1832 for (const auto &Pubtype : Unit.getPubtypes())
1833 DebugNames.addName(Pubtype.Name, Pubtype.Die->getOffset(),
1834 Pubtype.Die->getTag(), Unit.getUniqueID());
1837 void DWARFLinker::emitPubAcceleratorEntriesForUnit(CompileUnit &Unit) {
1838 TheDwarfEmitter->emitPubNamesForUnit(Unit);
1839 TheDwarfEmitter->emitPubTypesForUnit(Unit);
1842 /// Read the frame info stored in the object, and emit the
1843 /// patched frame descriptions for the resulting file.
1845 /// This is actually pretty easy as the data of the CIEs and FDEs can
1846 /// be considered as black boxes and moved as is. The only thing to do
1847 /// is to patch the addresses in the headers.
1848 void DWARFLinker::patchFrameInfoForObject(const DWARFFile &File,
1849 RangesTy &Ranges,
1850 DWARFContext &OrigDwarf,
1851 unsigned AddrSize) {
1852 StringRef FrameData = OrigDwarf.getDWARFObj().getFrameSection().Data;
1853 if (FrameData.empty())
1854 return;
1856 DataExtractor Data(FrameData, OrigDwarf.isLittleEndian(), 0);
1857 uint64_t InputOffset = 0;
1859 // Store the data of the CIEs defined in this object, keyed by their
1860 // offsets.
1861 DenseMap<uint64_t, StringRef> LocalCIES;
1863 while (Data.isValidOffset(InputOffset)) {
1864 uint64_t EntryOffset = InputOffset;
1865 uint32_t InitialLength = Data.getU32(&InputOffset);
1866 if (InitialLength == 0xFFFFFFFF)
1867 return reportWarning("Dwarf64 bits no supported", File);
1869 uint32_t CIEId = Data.getU32(&InputOffset);
1870 if (CIEId == 0xFFFFFFFF) {
1871 // This is a CIE, store it.
1872 StringRef CIEData = FrameData.substr(EntryOffset, InitialLength + 4);
1873 LocalCIES[EntryOffset] = CIEData;
1874 // The -4 is to account for the CIEId we just read.
1875 InputOffset += InitialLength - 4;
1876 continue;
1879 uint32_t Loc = Data.getUnsigned(&InputOffset, AddrSize);
1881 // Some compilers seem to emit frame info that doesn't start at
1882 // the function entry point, thus we can't just lookup the address
1883 // in the debug map. Use the AddressInfo's range map to see if the FDE
1884 // describes something that we can relocate.
1885 auto Range = Ranges.upper_bound(Loc);
1886 if (Range != Ranges.begin())
1887 --Range;
1888 if (Range == Ranges.end() || Range->first > Loc ||
1889 Range->second.HighPC <= Loc) {
1890 // The +4 is to account for the size of the InitialLength field itself.
1891 InputOffset = EntryOffset + InitialLength + 4;
1892 continue;
1895 // This is an FDE, and we have a mapping.
1896 // Have we already emitted a corresponding CIE?
1897 StringRef CIEData = LocalCIES[CIEId];
1898 if (CIEData.empty())
1899 return reportWarning("Inconsistent debug_frame content. Dropping.", File);
1901 // Look if we already emitted a CIE that corresponds to the
1902 // referenced one (the CIE data is the key of that lookup).
1903 auto IteratorInserted = EmittedCIEs.insert(
1904 std::make_pair(CIEData, TheDwarfEmitter->getFrameSectionSize()));
1905 // If there is no CIE yet for this ID, emit it.
1906 if (IteratorInserted.second) {
1907 LastCIEOffset = TheDwarfEmitter->getFrameSectionSize();
1908 IteratorInserted.first->getValue() = LastCIEOffset;
1909 TheDwarfEmitter->emitCIE(CIEData);
1912 // Emit the FDE with updated address and CIE pointer.
1913 // (4 + AddrSize) is the size of the CIEId + initial_location
1914 // fields that will get reconstructed by emitFDE().
1915 unsigned FDERemainingBytes = InitialLength - (4 + AddrSize);
1916 TheDwarfEmitter->emitFDE(IteratorInserted.first->getValue(), AddrSize,
1917 Loc + Range->second.Offset,
1918 FrameData.substr(InputOffset, FDERemainingBytes));
1919 InputOffset += FDERemainingBytes;
1923 uint32_t DWARFLinker::DIECloner::hashFullyQualifiedName(DWARFDie DIE,
1924 CompileUnit &U,
1925 const DWARFFile &File,
1926 int ChildRecurseDepth) {
1927 const char *Name = nullptr;
1928 DWARFUnit *OrigUnit = &U.getOrigUnit();
1929 CompileUnit *CU = &U;
1930 Optional<DWARFFormValue> Ref;
1932 while (1) {
1933 if (const char *CurrentName = DIE.getName(DINameKind::ShortName))
1934 Name = CurrentName;
1936 if (!(Ref = DIE.find(dwarf::DW_AT_specification)) &&
1937 !(Ref = DIE.find(dwarf::DW_AT_abstract_origin)))
1938 break;
1940 if (!Ref->isFormClass(DWARFFormValue::FC_Reference))
1941 break;
1943 CompileUnit *RefCU;
1944 if (auto RefDIE =
1945 Linker.resolveDIEReference(File, CompileUnits, *Ref, DIE, RefCU)) {
1946 CU = RefCU;
1947 OrigUnit = &RefCU->getOrigUnit();
1948 DIE = RefDIE;
1952 unsigned Idx = OrigUnit->getDIEIndex(DIE);
1953 if (!Name && DIE.getTag() == dwarf::DW_TAG_namespace)
1954 Name = "(anonymous namespace)";
1956 if (CU->getInfo(Idx).ParentIdx == 0 ||
1957 // FIXME: dsymutil-classic compatibility. Ignore modules.
1958 CU->getOrigUnit().getDIEAtIndex(CU->getInfo(Idx).ParentIdx).getTag() ==
1959 dwarf::DW_TAG_module)
1960 return djbHash(Name ? Name : "", djbHash(ChildRecurseDepth ? "" : "::"));
1962 DWARFDie Die = OrigUnit->getDIEAtIndex(CU->getInfo(Idx).ParentIdx);
1963 return djbHash(
1964 (Name ? Name : ""),
1965 djbHash((Name ? "::" : ""),
1966 hashFullyQualifiedName(Die, *CU, File, ++ChildRecurseDepth)));
1969 static uint64_t getDwoId(const DWARFDie &CUDie, const DWARFUnit &Unit) {
1970 auto DwoId = dwarf::toUnsigned(
1971 CUDie.find({dwarf::DW_AT_dwo_id, dwarf::DW_AT_GNU_dwo_id}));
1972 if (DwoId)
1973 return *DwoId;
1974 return 0;
1977 static std::string remapPath(StringRef Path,
1978 const objectPrefixMap &ObjectPrefixMap) {
1979 if (ObjectPrefixMap.empty())
1980 return Path.str();
1982 SmallString<256> p = Path;
1983 for (const auto &Entry : ObjectPrefixMap)
1984 if (llvm::sys::path::replace_path_prefix(p, Entry.first, Entry.second))
1985 break;
1986 return p.str().str();
1989 bool DWARFLinker::registerModuleReference(DWARFDie CUDie, const DWARFUnit &Unit,
1990 const DWARFFile &File,
1991 OffsetsStringPool &StringPool,
1992 DeclContextTree &ODRContexts,
1993 uint64_t ModulesEndOffset,
1994 unsigned &UnitID, bool IsLittleEndian,
1995 unsigned Indent, bool Quiet) {
1996 std::string PCMfile = dwarf::toString(
1997 CUDie.find({dwarf::DW_AT_dwo_name, dwarf::DW_AT_GNU_dwo_name}), "");
1998 if (PCMfile.empty())
1999 return false;
2000 if (Options.ObjectPrefixMap)
2001 PCMfile = remapPath(PCMfile, *Options.ObjectPrefixMap);
2003 // Clang module DWARF skeleton CUs abuse this for the path to the module.
2004 uint64_t DwoId = getDwoId(CUDie, Unit);
2006 std::string Name = dwarf::toString(CUDie.find(dwarf::DW_AT_name), "");
2007 if (Name.empty()) {
2008 if (!Quiet)
2009 reportWarning("Anonymous module skeleton CU for " + PCMfile, File);
2010 return true;
2013 if (!Quiet && Options.Verbose) {
2014 outs().indent(Indent);
2015 outs() << "Found clang module reference " << PCMfile;
2018 auto Cached = ClangModules.find(PCMfile);
2019 if (Cached != ClangModules.end()) {
2020 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2021 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2022 // ASTFileSignatures will change randomly when a module is rebuilt.
2023 if (!Quiet && Options.Verbose && (Cached->second != DwoId))
2024 reportWarning(Twine("hash mismatch: this object file was built against a "
2025 "different version of the module ") +
2026 PCMfile,
2027 File);
2028 if (!Quiet && Options.Verbose)
2029 outs() << " [cached].\n";
2030 return true;
2032 if (!Quiet && Options.Verbose)
2033 outs() << " ...\n";
2035 // Cyclic dependencies are disallowed by Clang, but we still
2036 // shouldn't run into an infinite loop, so mark it as processed now.
2037 ClangModules.insert({PCMfile, DwoId});
2039 if (Error E = loadClangModule(CUDie, PCMfile, Name, DwoId, File, StringPool,
2040 ODRContexts, ModulesEndOffset, UnitID,
2041 IsLittleEndian, Indent + 2, Quiet)) {
2042 consumeError(std::move(E));
2043 return false;
2045 return true;
2048 Error DWARFLinker::loadClangModule(
2049 DWARFDie CUDie, StringRef Filename, StringRef ModuleName, uint64_t DwoId,
2050 const DWARFFile &File, OffsetsStringPool &StringPool,
2051 DeclContextTree &ODRContexts, uint64_t ModulesEndOffset, unsigned &UnitID,
2052 bool IsLittleEndian, unsigned Indent, bool Quiet) {
2053 /// Using a SmallString<0> because loadClangModule() is recursive.
2054 SmallString<0> Path(Options.PrependPath);
2055 if (sys::path::is_relative(Filename))
2056 resolveRelativeObjectPath(Path, CUDie);
2057 sys::path::append(Path, Filename);
2058 // Don't use the cached binary holder because we have no thread-safety
2059 // guarantee and the lifetime is limited.
2061 if (Options.ObjFileLoader == nullptr)
2062 return Error::success();
2064 auto ErrOrObj = Options.ObjFileLoader(File.FileName, Path);
2065 if (!ErrOrObj)
2066 return Error::success();
2068 std::unique_ptr<CompileUnit> Unit;
2070 for (const auto &CU : ErrOrObj->Dwarf->compile_units()) {
2071 updateDwarfVersion(CU->getVersion());
2072 // Recursively get all modules imported by this one.
2073 auto CUDie = CU->getUnitDIE(false);
2074 if (!CUDie)
2075 continue;
2076 if (!registerModuleReference(CUDie, *CU, File, StringPool, ODRContexts,
2077 ModulesEndOffset, UnitID, IsLittleEndian,
2078 Indent, Quiet)) {
2079 if (Unit) {
2080 std::string Err =
2081 (Filename +
2082 ": Clang modules are expected to have exactly 1 compile unit.\n")
2083 .str();
2084 reportError(Err, File);
2085 return make_error<StringError>(Err, inconvertibleErrorCode());
2087 // FIXME: Until PR27449 (https://llvm.org/bugs/show_bug.cgi?id=27449) is
2088 // fixed in clang, only warn about DWO_id mismatches in verbose mode.
2089 // ASTFileSignatures will change randomly when a module is rebuilt.
2090 uint64_t PCMDwoId = getDwoId(CUDie, *CU);
2091 if (PCMDwoId != DwoId) {
2092 if (!Quiet && Options.Verbose)
2093 reportWarning(
2094 Twine("hash mismatch: this object file was built against a "
2095 "different version of the module ") +
2096 Filename,
2097 File);
2098 // Update the cache entry with the DwoId of the module loaded from disk.
2099 ClangModules[Filename] = PCMDwoId;
2102 // Add this module.
2103 Unit = std::make_unique<CompileUnit>(*CU, UnitID++, !Options.NoODR,
2104 ModuleName);
2105 Unit->setHasInterestingContent();
2106 analyzeContextInfo(CUDie, 0, *Unit, &ODRContexts.getRoot(), ODRContexts,
2107 ModulesEndOffset, Options.ParseableSwiftInterfaces,
2108 [&](const Twine &Warning, const DWARFDie &DIE) {
2109 reportWarning(Warning, File, &DIE);
2111 // Keep everything.
2112 Unit->markEverythingAsKept();
2115 assert(Unit && "CompileUnit is not set!");
2116 if (!Unit->getOrigUnit().getUnitDIE().hasChildren())
2117 return Error::success();
2118 if (!Quiet && Options.Verbose) {
2119 outs().indent(Indent);
2120 outs() << "cloning .debug_info from " << Filename << "\n";
2123 UnitListTy CompileUnits;
2124 CompileUnits.push_back(std::move(Unit));
2125 assert(TheDwarfEmitter);
2126 DIECloner(*this, TheDwarfEmitter, *ErrOrObj, DIEAlloc, CompileUnits,
2127 Options.Update)
2128 .cloneAllCompileUnits(*(ErrOrObj->Dwarf), File, StringPool,
2129 IsLittleEndian);
2130 return Error::success();
2133 uint64_t DWARFLinker::DIECloner::cloneAllCompileUnits(
2134 DWARFContext &DwarfContext, const DWARFFile &File,
2135 OffsetsStringPool &StringPool, bool IsLittleEndian) {
2136 uint64_t OutputDebugInfoSize =
2137 Linker.Options.NoOutput ? 0 : Emitter->getDebugInfoSectionSize();
2138 const uint64_t StartOutputDebugInfoSize = OutputDebugInfoSize;
2140 for (auto &CurrentUnit : CompileUnits) {
2141 const uint16_t DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2142 const uint32_t UnitHeaderSize = DwarfVersion >= 5 ? 12 : 11;
2143 auto InputDIE = CurrentUnit->getOrigUnit().getUnitDIE();
2144 CurrentUnit->setStartOffset(OutputDebugInfoSize);
2145 if (!InputDIE) {
2146 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2147 continue;
2149 if (CurrentUnit->getInfo(0).Keep) {
2150 // Clone the InputDIE into your Unit DIE in our compile unit since it
2151 // already has a DIE inside of it.
2152 CurrentUnit->createOutputDIE();
2153 cloneDIE(InputDIE, File, *CurrentUnit, StringPool, 0 /* PC offset */,
2154 UnitHeaderSize, 0, IsLittleEndian,
2155 CurrentUnit->getOutputUnitDIE());
2158 OutputDebugInfoSize = CurrentUnit->computeNextUnitOffset(DwarfVersion);
2160 if (!Linker.Options.NoOutput) {
2161 assert(Emitter);
2163 if (LLVM_LIKELY(!Linker.Options.Update) ||
2164 Linker.needToTranslateStrings())
2165 Linker.patchLineTableForUnit(*CurrentUnit, DwarfContext, File);
2167 Linker.emitAcceleratorEntriesForUnit(*CurrentUnit);
2169 if (LLVM_UNLIKELY(Linker.Options.Update))
2170 continue;
2172 Linker.patchRangesForUnit(*CurrentUnit, DwarfContext, File);
2173 auto ProcessExpr = [&](StringRef Bytes,
2174 SmallVectorImpl<uint8_t> &Buffer) {
2175 DWARFUnit &OrigUnit = CurrentUnit->getOrigUnit();
2176 DataExtractor Data(Bytes, IsLittleEndian,
2177 OrigUnit.getAddressByteSize());
2178 cloneExpression(Data,
2179 DWARFExpression(Data, OrigUnit.getAddressByteSize(),
2180 OrigUnit.getFormParams().Format),
2181 File, *CurrentUnit, Buffer);
2183 Emitter->emitLocationsForUnit(*CurrentUnit, DwarfContext, ProcessExpr);
2187 if (!Linker.Options.NoOutput) {
2188 assert(Emitter);
2189 // Emit all the compile unit's debug information.
2190 for (auto &CurrentUnit : CompileUnits) {
2191 if (LLVM_LIKELY(!Linker.Options.Update))
2192 Linker.generateUnitRanges(*CurrentUnit);
2194 CurrentUnit->fixupForwardReferences();
2196 if (!CurrentUnit->getOutputUnitDIE())
2197 continue;
2199 unsigned DwarfVersion = CurrentUnit->getOrigUnit().getVersion();
2201 assert(Emitter->getDebugInfoSectionSize() ==
2202 CurrentUnit->getStartOffset());
2203 Emitter->emitCompileUnitHeader(*CurrentUnit, DwarfVersion);
2204 Emitter->emitDIE(*CurrentUnit->getOutputUnitDIE());
2205 assert(Emitter->getDebugInfoSectionSize() ==
2206 CurrentUnit->computeNextUnitOffset(DwarfVersion));
2210 return OutputDebugInfoSize - StartOutputDebugInfoSize;
2213 void DWARFLinker::updateAccelKind(DWARFContext &Dwarf) {
2214 if (Options.TheAccelTableKind != AccelTableKind::Default)
2215 return;
2217 auto &DwarfObj = Dwarf.getDWARFObj();
2219 if (!AtLeastOneDwarfAccelTable &&
2220 (!DwarfObj.getAppleNamesSection().Data.empty() ||
2221 !DwarfObj.getAppleTypesSection().Data.empty() ||
2222 !DwarfObj.getAppleNamespacesSection().Data.empty() ||
2223 !DwarfObj.getAppleObjCSection().Data.empty())) {
2224 AtLeastOneAppleAccelTable = true;
2227 if (!AtLeastOneDwarfAccelTable && !DwarfObj.getNamesSection().Data.empty()) {
2228 AtLeastOneDwarfAccelTable = true;
2232 bool DWARFLinker::emitPaperTrailWarnings(const DWARFFile &File,
2233 OffsetsStringPool &StringPool) {
2235 if (File.Warnings.empty())
2236 return false;
2238 DIE *CUDie = DIE::get(DIEAlloc, dwarf::DW_TAG_compile_unit);
2239 CUDie->setOffset(11);
2240 StringRef Producer;
2241 StringRef WarningHeader;
2243 switch (DwarfLinkerClientID) {
2244 case DwarfLinkerClient::Dsymutil:
2245 Producer = StringPool.internString("dsymutil");
2246 WarningHeader = "dsymutil_warning";
2247 break;
2249 default:
2250 Producer = StringPool.internString("dwarfopt");
2251 WarningHeader = "dwarfopt_warning";
2252 break;
2255 StringRef FileName = StringPool.internString(File.FileName);
2256 CUDie->addValue(DIEAlloc, dwarf::DW_AT_producer, dwarf::DW_FORM_strp,
2257 DIEInteger(StringPool.getStringOffset(Producer)));
2258 DIEBlock *String = new (DIEAlloc) DIEBlock();
2259 DIEBlocks.push_back(String);
2260 for (auto &C : FileName)
2261 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2262 DIEInteger(C));
2263 String->addValue(DIEAlloc, dwarf::Attribute(0), dwarf::DW_FORM_data1,
2264 DIEInteger(0));
2266 CUDie->addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_string, String);
2267 for (const auto &Warning : File.Warnings) {
2268 DIE &ConstDie = CUDie->addChild(DIE::get(DIEAlloc, dwarf::DW_TAG_constant));
2269 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_name, dwarf::DW_FORM_strp,
2270 DIEInteger(StringPool.getStringOffset(WarningHeader)));
2271 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_artificial, dwarf::DW_FORM_flag,
2272 DIEInteger(1));
2273 ConstDie.addValue(DIEAlloc, dwarf::DW_AT_const_value, dwarf::DW_FORM_strp,
2274 DIEInteger(StringPool.getStringOffset(Warning)));
2276 unsigned Size = 4 /* FORM_strp */ + FileName.size() + 1 +
2277 File.Warnings.size() * (4 + 1 + 4) + 1 /* End of children */;
2278 DIEAbbrev Abbrev = CUDie->generateAbbrev();
2279 assignAbbrev(Abbrev);
2280 CUDie->setAbbrevNumber(Abbrev.getNumber());
2281 Size += getULEB128Size(Abbrev.getNumber());
2282 // Abbreviation ordering needed for classic compatibility.
2283 for (auto &Child : CUDie->children()) {
2284 Abbrev = Child.generateAbbrev();
2285 assignAbbrev(Abbrev);
2286 Child.setAbbrevNumber(Abbrev.getNumber());
2287 Size += getULEB128Size(Abbrev.getNumber());
2289 CUDie->setSize(Size);
2290 TheDwarfEmitter->emitPaperTrailWarningsDie(*CUDie);
2292 return true;
2295 void DWARFLinker::copyInvariantDebugSection(DWARFContext &Dwarf) {
2296 if (!needToTranslateStrings())
2297 TheDwarfEmitter->emitSectionContents(
2298 Dwarf.getDWARFObj().getLineSection().Data, "debug_line");
2299 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getLocSection().Data,
2300 "debug_loc");
2301 TheDwarfEmitter->emitSectionContents(
2302 Dwarf.getDWARFObj().getRangesSection().Data, "debug_ranges");
2303 TheDwarfEmitter->emitSectionContents(
2304 Dwarf.getDWARFObj().getFrameSection().Data, "debug_frame");
2305 TheDwarfEmitter->emitSectionContents(Dwarf.getDWARFObj().getArangesSection(),
2306 "debug_aranges");
2309 void DWARFLinker::addObjectFile(DWARFFile &File) {
2310 ObjectContexts.emplace_back(LinkContext(File));
2312 if (ObjectContexts.back().File.Dwarf)
2313 updateAccelKind(*ObjectContexts.back().File.Dwarf);
2316 bool DWARFLinker::link() {
2317 assert(Options.NoOutput || TheDwarfEmitter);
2319 // A unique ID that identifies each compile unit.
2320 unsigned UnitID = 0;
2322 // First populate the data structure we need for each iteration of the
2323 // parallel loop.
2324 unsigned NumObjects = ObjectContexts.size();
2326 // This Dwarf string pool which is used for emission. It must be used
2327 // serially as the order of calling getStringOffset matters for
2328 // reproducibility.
2329 OffsetsStringPool OffsetsStringPool(StringsTranslator, true);
2331 // ODR Contexts for the optimize.
2332 DeclContextTree ODRContexts;
2334 // If we haven't decided on an accelerator table kind yet, we base ourselves
2335 // on the DWARF we have seen so far. At this point we haven't pulled in debug
2336 // information from modules yet, so it is technically possible that they
2337 // would affect the decision. However, as they're built with the same
2338 // compiler and flags, it is safe to assume that they will follow the
2339 // decision made here.
2340 if (Options.TheAccelTableKind == AccelTableKind::Default) {
2341 if (AtLeastOneDwarfAccelTable && !AtLeastOneAppleAccelTable)
2342 Options.TheAccelTableKind = AccelTableKind::Dwarf;
2343 else
2344 Options.TheAccelTableKind = AccelTableKind::Apple;
2347 for (LinkContext &OptContext : ObjectContexts) {
2348 if (Options.Verbose) {
2349 if (DwarfLinkerClientID == DwarfLinkerClient::Dsymutil)
2350 outs() << "DEBUG MAP OBJECT: " << OptContext.File.FileName << "\n";
2351 else
2352 outs() << "OBJECT FILE: " << OptContext.File.FileName << "\n";
2355 if (emitPaperTrailWarnings(OptContext.File, OffsetsStringPool))
2356 continue;
2358 if (!OptContext.File.Dwarf)
2359 continue;
2360 // Look for relocations that correspond to address map entries.
2362 // there was findvalidrelocations previously ... probably we need to gather
2363 // info here
2364 if (LLVM_LIKELY(!Options.Update) &&
2365 !OptContext.File.Addresses->hasValidRelocs()) {
2366 if (Options.Verbose)
2367 outs() << "No valid relocations found. Skipping.\n";
2369 // Set "Skip" flag as a signal to other loops that we should not
2370 // process this iteration.
2371 OptContext.Skip = true;
2372 continue;
2375 // Setup access to the debug info.
2376 if (!OptContext.File.Dwarf)
2377 continue;
2379 // In a first phase, just read in the debug info and load all clang modules.
2380 OptContext.CompileUnits.reserve(
2381 OptContext.File.Dwarf->getNumCompileUnits());
2383 for (const auto &CU : OptContext.File.Dwarf->compile_units()) {
2384 updateDwarfVersion(CU->getVersion());
2385 auto CUDie = CU->getUnitDIE(false);
2386 if (Options.Verbose) {
2387 outs() << "Input compilation unit:";
2388 DIDumpOptions DumpOpts;
2389 DumpOpts.ChildRecurseDepth = 0;
2390 DumpOpts.Verbose = Options.Verbose;
2391 CUDie.dump(outs(), 0, DumpOpts);
2393 if (CUDie && !LLVM_UNLIKELY(Options.Update))
2394 registerModuleReference(CUDie, *CU, OptContext.File, OffsetsStringPool,
2395 ODRContexts, 0, UnitID,
2396 OptContext.File.Dwarf->isLittleEndian());
2400 // If we haven't seen any CUs, pick an arbitrary valid Dwarf version anyway.
2401 if (MaxDwarfVersion == 0)
2402 MaxDwarfVersion = 3;
2404 // At this point we know how much data we have emitted. We use this value to
2405 // compare canonical DIE offsets in analyzeContextInfo to see if a definition
2406 // is already emitted, without being affected by canonical die offsets set
2407 // later. This prevents undeterminism when analyze and clone execute
2408 // concurrently, as clone set the canonical DIE offset and analyze reads it.
2409 const uint64_t ModulesEndOffset =
2410 Options.NoOutput ? 0 : TheDwarfEmitter->getDebugInfoSectionSize();
2412 // These variables manage the list of processed object files.
2413 // The mutex and condition variable are to ensure that this is thread safe.
2414 std::mutex ProcessedFilesMutex;
2415 std::condition_variable ProcessedFilesConditionVariable;
2416 BitVector ProcessedFiles(NumObjects, false);
2418 // Analyzing the context info is particularly expensive so it is executed in
2419 // parallel with emitting the previous compile unit.
2420 auto AnalyzeLambda = [&](size_t I) {
2421 auto &Context = ObjectContexts[I];
2423 if (Context.Skip || !Context.File.Dwarf)
2424 return;
2426 for (const auto &CU : Context.File.Dwarf->compile_units()) {
2427 updateDwarfVersion(CU->getVersion());
2428 // The !registerModuleReference() condition effectively skips
2429 // over fully resolved skeleton units. This second pass of
2430 // registerModuleReferences doesn't do any new work, but it
2431 // will collect top-level errors, which are suppressed. Module
2432 // warnings were already displayed in the first iteration.
2433 bool Quiet = true;
2434 auto CUDie = CU->getUnitDIE(false);
2435 if (!CUDie || LLVM_UNLIKELY(Options.Update) ||
2436 !registerModuleReference(CUDie, *CU, Context.File, OffsetsStringPool,
2437 ODRContexts, ModulesEndOffset, UnitID,
2438 Quiet)) {
2439 Context.CompileUnits.push_back(std::make_unique<CompileUnit>(
2440 *CU, UnitID++, !Options.NoODR && !Options.Update, ""));
2444 // Now build the DIE parent links that we will use during the next phase.
2445 for (auto &CurrentUnit : Context.CompileUnits) {
2446 auto CUDie = CurrentUnit->getOrigUnit().getUnitDIE();
2447 if (!CUDie)
2448 continue;
2449 analyzeContextInfo(CurrentUnit->getOrigUnit().getUnitDIE(), 0,
2450 *CurrentUnit, &ODRContexts.getRoot(), ODRContexts,
2451 ModulesEndOffset, Options.ParseableSwiftInterfaces,
2452 [&](const Twine &Warning, const DWARFDie &DIE) {
2453 reportWarning(Warning, Context.File, &DIE);
2458 // For each object file map how many bytes were emitted.
2459 StringMap<DebugInfoSize> SizeByObject;
2461 // And then the remaining work in serial again.
2462 // Note, although this loop runs in serial, it can run in parallel with
2463 // the analyzeContextInfo loop so long as we process files with indices >=
2464 // than those processed by analyzeContextInfo.
2465 auto CloneLambda = [&](size_t I) {
2466 auto &OptContext = ObjectContexts[I];
2467 if (OptContext.Skip || !OptContext.File.Dwarf)
2468 return;
2470 // Then mark all the DIEs that need to be present in the generated output
2471 // and collect some information about them.
2472 // Note that this loop can not be merged with the previous one because
2473 // cross-cu references require the ParentIdx to be setup for every CU in
2474 // the object file before calling this.
2475 if (LLVM_UNLIKELY(Options.Update)) {
2476 for (auto &CurrentUnit : OptContext.CompileUnits)
2477 CurrentUnit->markEverythingAsKept();
2478 copyInvariantDebugSection(*OptContext.File.Dwarf);
2479 } else {
2480 for (auto &CurrentUnit : OptContext.CompileUnits)
2481 lookForDIEsToKeep(*OptContext.File.Addresses,
2482 OptContext.File.Addresses->getValidAddressRanges(),
2483 OptContext.CompileUnits,
2484 CurrentUnit->getOrigUnit().getUnitDIE(),
2485 OptContext.File, *CurrentUnit, 0);
2488 // The calls to applyValidRelocs inside cloneDIE will walk the reloc
2489 // array again (in the same way findValidRelocsInDebugInfo() did). We
2490 // need to reset the NextValidReloc index to the beginning.
2491 if (OptContext.File.Addresses->hasValidRelocs() ||
2492 LLVM_UNLIKELY(Options.Update)) {
2493 SizeByObject[OptContext.File.FileName].Input =
2494 getDebugInfoSize(*OptContext.File.Dwarf);
2495 SizeByObject[OptContext.File.FileName].Output =
2496 DIECloner(*this, TheDwarfEmitter, OptContext.File, DIEAlloc,
2497 OptContext.CompileUnits, Options.Update)
2498 .cloneAllCompileUnits(*OptContext.File.Dwarf, OptContext.File,
2499 OffsetsStringPool,
2500 OptContext.File.Dwarf->isLittleEndian());
2502 if (!Options.NoOutput && !OptContext.CompileUnits.empty() &&
2503 LLVM_LIKELY(!Options.Update))
2504 patchFrameInfoForObject(
2505 OptContext.File, OptContext.File.Addresses->getValidAddressRanges(),
2506 *OptContext.File.Dwarf,
2507 OptContext.CompileUnits[0]->getOrigUnit().getAddressByteSize());
2509 // Clean-up before starting working on the next object.
2510 cleanupAuxiliarryData(OptContext);
2513 auto EmitLambda = [&]() {
2514 // Emit everything that's global.
2515 if (!Options.NoOutput) {
2516 TheDwarfEmitter->emitAbbrevs(Abbreviations, MaxDwarfVersion);
2517 TheDwarfEmitter->emitStrings(OffsetsStringPool);
2518 switch (Options.TheAccelTableKind) {
2519 case AccelTableKind::Apple:
2520 TheDwarfEmitter->emitAppleNames(AppleNames);
2521 TheDwarfEmitter->emitAppleNamespaces(AppleNamespaces);
2522 TheDwarfEmitter->emitAppleTypes(AppleTypes);
2523 TheDwarfEmitter->emitAppleObjc(AppleObjc);
2524 break;
2525 case AccelTableKind::Dwarf:
2526 TheDwarfEmitter->emitDebugNames(DebugNames);
2527 break;
2528 case AccelTableKind::Pub:
2529 // Already emitted by emitPubAcceleratorEntriesForUnit.
2530 break;
2531 case AccelTableKind::Default:
2532 llvm_unreachable("Default should have already been resolved.");
2533 break;
2538 auto AnalyzeAll = [&]() {
2539 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2540 AnalyzeLambda(I);
2542 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2543 ProcessedFiles.set(I);
2544 ProcessedFilesConditionVariable.notify_one();
2548 auto CloneAll = [&]() {
2549 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2551 std::unique_lock<std::mutex> LockGuard(ProcessedFilesMutex);
2552 if (!ProcessedFiles[I]) {
2553 ProcessedFilesConditionVariable.wait(
2554 LockGuard, [&]() { return ProcessedFiles[I]; });
2558 CloneLambda(I);
2560 EmitLambda();
2563 // To limit memory usage in the single threaded case, analyze and clone are
2564 // run sequentially so the OptContext is freed after processing each object
2565 // in endDebugObject.
2566 if (Options.Threads == 1) {
2567 for (unsigned I = 0, E = NumObjects; I != E; ++I) {
2568 AnalyzeLambda(I);
2569 CloneLambda(I);
2571 EmitLambda();
2572 } else {
2573 ThreadPool Pool(hardware_concurrency(2));
2574 Pool.async(AnalyzeAll);
2575 Pool.async(CloneAll);
2576 Pool.wait();
2579 if (Options.Statistics) {
2580 // Create a vector sorted in descending order by output size.
2581 std::vector<std::pair<StringRef, DebugInfoSize>> Sorted;
2582 for (auto &E : SizeByObject)
2583 Sorted.emplace_back(E.first(), E.second);
2584 llvm::sort(Sorted, [](auto &LHS, auto &RHS) {
2585 return LHS.second.Output > RHS.second.Output;
2588 auto ComputePercentange = [](int64_t Input, int64_t Output) -> float {
2589 const float Difference = Output - Input;
2590 const float Sum = Input + Output;
2591 if (Sum == 0)
2592 return 0;
2593 return (Difference / (Sum / 2));
2596 int64_t InputTotal = 0;
2597 int64_t OutputTotal = 0;
2598 const char *FormatStr = "{0,-45} {1,10}b {2,10}b {3,8:P}\n";
2600 // Print header.
2601 outs() << ".debug_info section size (in bytes)\n";
2602 outs() << "----------------------------------------------------------------"
2603 "---------------\n";
2604 outs() << "Filename Object "
2605 " dSYM Change\n";
2606 outs() << "----------------------------------------------------------------"
2607 "---------------\n";
2609 // Print body.
2610 for (auto &E : Sorted) {
2611 InputTotal += E.second.Input;
2612 OutputTotal += E.second.Output;
2613 llvm::outs() << formatv(
2614 FormatStr, sys::path::filename(E.first).take_back(45), E.second.Input,
2615 E.second.Output, ComputePercentange(E.second.Input, E.second.Output));
2617 // Print total and footer.
2618 outs() << "----------------------------------------------------------------"
2619 "---------------\n";
2620 llvm::outs() << formatv(FormatStr, "Total", InputTotal, OutputTotal,
2621 ComputePercentange(InputTotal, OutputTotal));
2622 outs() << "----------------------------------------------------------------"
2623 "---------------\n\n";
2626 return true;
2629 } // namespace llvm