[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
blobc3ba5ebb36fb9b83a171d358148cc4e9551e48d4
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains both code to deal with invoking "external" functions, but
10 // also contains code that implements "exported" external functions.
12 // There are currently two mechanisms for handling external functions in the
13 // Interpreter. The first is to implement lle_* wrapper functions that are
14 // specific to well-known library functions which manually translate the
15 // arguments from GenericValues and make the call. If such a wrapper does
16 // not exist, and libffi is available, then the Interpreter will attempt to
17 // invoke the function using libffi, after finding its address.
19 //===----------------------------------------------------------------------===//
21 #include "Interpreter.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/Config/config.h" // Detect libffi
25 #include "llvm/ExecutionEngine/GenericValue.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/Type.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/DynamicLibrary.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/Mutex.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <cmath>
38 #include <csignal>
39 #include <cstdint>
40 #include <cstdio>
41 #include <cstring>
42 #include <map>
43 #include <mutex>
44 #include <string>
45 #include <utility>
46 #include <vector>
48 #ifdef HAVE_FFI_CALL
49 #ifdef HAVE_FFI_H
50 #include <ffi.h>
51 #define USE_LIBFFI
52 #elif HAVE_FFI_FFI_H
53 #include <ffi/ffi.h>
54 #define USE_LIBFFI
55 #endif
56 #endif
58 using namespace llvm;
60 static ManagedStatic<sys::Mutex> FunctionsLock;
62 typedef GenericValue (*ExFunc)(FunctionType *, ArrayRef<GenericValue>);
63 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
64 static ManagedStatic<std::map<std::string, ExFunc> > FuncNames;
66 #ifdef USE_LIBFFI
67 typedef void (*RawFunc)();
68 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
69 #endif
71 static Interpreter *TheInterpreter;
73 static char getTypeID(Type *Ty) {
74 switch (Ty->getTypeID()) {
75 case Type::VoidTyID: return 'V';
76 case Type::IntegerTyID:
77 switch (cast<IntegerType>(Ty)->getBitWidth()) {
78 case 1: return 'o';
79 case 8: return 'B';
80 case 16: return 'S';
81 case 32: return 'I';
82 case 64: return 'L';
83 default: return 'N';
85 case Type::FloatTyID: return 'F';
86 case Type::DoubleTyID: return 'D';
87 case Type::PointerTyID: return 'P';
88 case Type::FunctionTyID:return 'M';
89 case Type::StructTyID: return 'T';
90 case Type::ArrayTyID: return 'A';
91 default: return 'U';
95 // Try to find address of external function given a Function object.
96 // Please note, that interpreter doesn't know how to assemble a
97 // real call in general case (this is JIT job), that's why it assumes,
98 // that all external functions has the same (and pretty "general") signature.
99 // The typical example of such functions are "lle_X_" ones.
100 static ExFunc lookupFunction(const Function *F) {
101 // Function not found, look it up... start by figuring out what the
102 // composite function name should be.
103 std::string ExtName = "lle_";
104 FunctionType *FT = F->getFunctionType();
105 ExtName += getTypeID(FT->getReturnType());
106 for (Type *T : FT->params())
107 ExtName += getTypeID(T);
108 ExtName += ("_" + F->getName()).str();
110 sys::ScopedLock Writer(*FunctionsLock);
111 ExFunc FnPtr = (*FuncNames)[ExtName];
112 if (!FnPtr)
113 FnPtr = (*FuncNames)[("lle_X_" + F->getName()).str()];
114 if (!FnPtr) // Try calling a generic function... if it exists...
115 FnPtr = (ExFunc)(intptr_t)sys::DynamicLibrary::SearchForAddressOfSymbol(
116 ("lle_X_" + F->getName()).str());
117 if (FnPtr)
118 ExportedFunctions->insert(std::make_pair(F, FnPtr)); // Cache for later
119 return FnPtr;
122 #ifdef USE_LIBFFI
123 static ffi_type *ffiTypeFor(Type *Ty) {
124 switch (Ty->getTypeID()) {
125 case Type::VoidTyID: return &ffi_type_void;
126 case Type::IntegerTyID:
127 switch (cast<IntegerType>(Ty)->getBitWidth()) {
128 case 8: return &ffi_type_sint8;
129 case 16: return &ffi_type_sint16;
130 case 32: return &ffi_type_sint32;
131 case 64: return &ffi_type_sint64;
133 llvm_unreachable("Unhandled integer type bitwidth");
134 case Type::FloatTyID: return &ffi_type_float;
135 case Type::DoubleTyID: return &ffi_type_double;
136 case Type::PointerTyID: return &ffi_type_pointer;
137 default: break;
139 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
140 report_fatal_error("Type could not be mapped for use with libffi.");
141 return NULL;
144 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
145 void *ArgDataPtr) {
146 switch (Ty->getTypeID()) {
147 case Type::IntegerTyID:
148 switch (cast<IntegerType>(Ty)->getBitWidth()) {
149 case 8: {
150 int8_t *I8Ptr = (int8_t *) ArgDataPtr;
151 *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
152 return ArgDataPtr;
154 case 16: {
155 int16_t *I16Ptr = (int16_t *) ArgDataPtr;
156 *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
157 return ArgDataPtr;
159 case 32: {
160 int32_t *I32Ptr = (int32_t *) ArgDataPtr;
161 *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
162 return ArgDataPtr;
164 case 64: {
165 int64_t *I64Ptr = (int64_t *) ArgDataPtr;
166 *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
167 return ArgDataPtr;
170 llvm_unreachable("Unhandled integer type bitwidth");
171 case Type::FloatTyID: {
172 float *FloatPtr = (float *) ArgDataPtr;
173 *FloatPtr = AV.FloatVal;
174 return ArgDataPtr;
176 case Type::DoubleTyID: {
177 double *DoublePtr = (double *) ArgDataPtr;
178 *DoublePtr = AV.DoubleVal;
179 return ArgDataPtr;
181 case Type::PointerTyID: {
182 void **PtrPtr = (void **) ArgDataPtr;
183 *PtrPtr = GVTOP(AV);
184 return ArgDataPtr;
186 default: break;
188 // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
189 report_fatal_error("Type value could not be mapped for use with libffi.");
190 return NULL;
193 static bool ffiInvoke(RawFunc Fn, Function *F, ArrayRef<GenericValue> ArgVals,
194 const DataLayout &TD, GenericValue &Result) {
195 ffi_cif cif;
196 FunctionType *FTy = F->getFunctionType();
197 const unsigned NumArgs = F->arg_size();
199 // TODO: We don't have type information about the remaining arguments, because
200 // this information is never passed into ExecutionEngine::runFunction().
201 if (ArgVals.size() > NumArgs && F->isVarArg()) {
202 report_fatal_error("Calling external var arg function '" + F->getName()
203 + "' is not supported by the Interpreter.");
206 unsigned ArgBytes = 0;
208 std::vector<ffi_type*> args(NumArgs);
209 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
210 A != E; ++A) {
211 const unsigned ArgNo = A->getArgNo();
212 Type *ArgTy = FTy->getParamType(ArgNo);
213 args[ArgNo] = ffiTypeFor(ArgTy);
214 ArgBytes += TD.getTypeStoreSize(ArgTy);
217 SmallVector<uint8_t, 128> ArgData;
218 ArgData.resize(ArgBytes);
219 uint8_t *ArgDataPtr = ArgData.data();
220 SmallVector<void*, 16> values(NumArgs);
221 for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
222 A != E; ++A) {
223 const unsigned ArgNo = A->getArgNo();
224 Type *ArgTy = FTy->getParamType(ArgNo);
225 values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
226 ArgDataPtr += TD.getTypeStoreSize(ArgTy);
229 Type *RetTy = FTy->getReturnType();
230 ffi_type *rtype = ffiTypeFor(RetTy);
232 if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, args.data()) ==
233 FFI_OK) {
234 SmallVector<uint8_t, 128> ret;
235 if (RetTy->getTypeID() != Type::VoidTyID)
236 ret.resize(TD.getTypeStoreSize(RetTy));
237 ffi_call(&cif, Fn, ret.data(), values.data());
238 switch (RetTy->getTypeID()) {
239 case Type::IntegerTyID:
240 switch (cast<IntegerType>(RetTy)->getBitWidth()) {
241 case 8: Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
242 case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
243 case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
244 case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
246 break;
247 case Type::FloatTyID: Result.FloatVal = *(float *) ret.data(); break;
248 case Type::DoubleTyID: Result.DoubleVal = *(double*) ret.data(); break;
249 case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
250 default: break;
252 return true;
255 return false;
257 #endif // USE_LIBFFI
259 GenericValue Interpreter::callExternalFunction(Function *F,
260 ArrayRef<GenericValue> ArgVals) {
261 TheInterpreter = this;
263 std::unique_lock<sys::Mutex> Guard(*FunctionsLock);
265 // Do a lookup to see if the function is in our cache... this should just be a
266 // deferred annotation!
267 std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
268 if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
269 : FI->second) {
270 Guard.unlock();
271 return Fn(F->getFunctionType(), ArgVals);
274 #ifdef USE_LIBFFI
275 std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
276 RawFunc RawFn;
277 if (RF == RawFunctions->end()) {
278 RawFn = (RawFunc)(intptr_t)
279 sys::DynamicLibrary::SearchForAddressOfSymbol(std::string(F->getName()));
280 if (!RawFn)
281 RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
282 if (RawFn != 0)
283 RawFunctions->insert(std::make_pair(F, RawFn)); // Cache for later
284 } else {
285 RawFn = RF->second;
288 Guard.unlock();
290 GenericValue Result;
291 if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
292 return Result;
293 #endif // USE_LIBFFI
295 if (F->getName() == "__main")
296 errs() << "Tried to execute an unknown external function: "
297 << *F->getType() << " __main\n";
298 else
299 report_fatal_error("Tried to execute an unknown external function: " +
300 F->getName());
301 #ifndef USE_LIBFFI
302 errs() << "Recompiling LLVM with --enable-libffi might help.\n";
303 #endif
304 return GenericValue();
307 //===----------------------------------------------------------------------===//
308 // Functions "exported" to the running application...
311 // void atexit(Function*)
312 static GenericValue lle_X_atexit(FunctionType *FT,
313 ArrayRef<GenericValue> Args) {
314 assert(Args.size() == 1);
315 TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
316 GenericValue GV;
317 GV.IntVal = 0;
318 return GV;
321 // void exit(int)
322 static GenericValue lle_X_exit(FunctionType *FT, ArrayRef<GenericValue> Args) {
323 TheInterpreter->exitCalled(Args[0]);
324 return GenericValue();
327 // void abort(void)
328 static GenericValue lle_X_abort(FunctionType *FT, ArrayRef<GenericValue> Args) {
329 //FIXME: should we report or raise here?
330 //report_fatal_error("Interpreted program raised SIGABRT");
331 raise (SIGABRT);
332 return GenericValue();
335 // int sprintf(char *, const char *, ...) - a very rough implementation to make
336 // output useful.
337 static GenericValue lle_X_sprintf(FunctionType *FT,
338 ArrayRef<GenericValue> Args) {
339 char *OutputBuffer = (char *)GVTOP(Args[0]);
340 const char *FmtStr = (const char *)GVTOP(Args[1]);
341 unsigned ArgNo = 2;
343 // printf should return # chars printed. This is completely incorrect, but
344 // close enough for now.
345 GenericValue GV;
346 GV.IntVal = APInt(32, strlen(FmtStr));
347 while (true) {
348 switch (*FmtStr) {
349 case 0: return GV; // Null terminator...
350 default: // Normal nonspecial character
351 sprintf(OutputBuffer++, "%c", *FmtStr++);
352 break;
353 case '\\': { // Handle escape codes
354 sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
355 FmtStr += 2; OutputBuffer += 2;
356 break;
358 case '%': { // Handle format specifiers
359 char FmtBuf[100] = "", Buffer[1000] = "";
360 char *FB = FmtBuf;
361 *FB++ = *FmtStr++;
362 char Last = *FB++ = *FmtStr++;
363 unsigned HowLong = 0;
364 while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
365 Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
366 Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
367 Last != 'p' && Last != 's' && Last != '%') {
368 if (Last == 'l' || Last == 'L') HowLong++; // Keep track of l's
369 Last = *FB++ = *FmtStr++;
371 *FB = 0;
373 switch (Last) {
374 case '%':
375 memcpy(Buffer, "%", 2); break;
376 case 'c':
377 sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
378 break;
379 case 'd': case 'i':
380 case 'u': case 'o':
381 case 'x': case 'X':
382 if (HowLong >= 1) {
383 if (HowLong == 1 &&
384 TheInterpreter->getDataLayout().getPointerSizeInBits() == 64 &&
385 sizeof(long) < sizeof(int64_t)) {
386 // Make sure we use %lld with a 64 bit argument because we might be
387 // compiling LLI on a 32 bit compiler.
388 unsigned Size = strlen(FmtBuf);
389 FmtBuf[Size] = FmtBuf[Size-1];
390 FmtBuf[Size+1] = 0;
391 FmtBuf[Size-1] = 'l';
393 sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
394 } else
395 sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
396 break;
397 case 'e': case 'E': case 'g': case 'G': case 'f':
398 sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
399 case 'p':
400 sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
401 case 's':
402 sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
403 default:
404 errs() << "<unknown printf code '" << *FmtStr << "'!>";
405 ArgNo++; break;
407 size_t Len = strlen(Buffer);
408 memcpy(OutputBuffer, Buffer, Len + 1);
409 OutputBuffer += Len;
411 break;
414 return GV;
417 // int printf(const char *, ...) - a very rough implementation to make output
418 // useful.
419 static GenericValue lle_X_printf(FunctionType *FT,
420 ArrayRef<GenericValue> Args) {
421 char Buffer[10000];
422 std::vector<GenericValue> NewArgs;
423 NewArgs.push_back(PTOGV((void*)&Buffer[0]));
424 llvm::append_range(NewArgs, Args);
425 GenericValue GV = lle_X_sprintf(FT, NewArgs);
426 outs() << Buffer;
427 return GV;
430 // int sscanf(const char *format, ...);
431 static GenericValue lle_X_sscanf(FunctionType *FT,
432 ArrayRef<GenericValue> args) {
433 assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
435 char *Args[10];
436 for (unsigned i = 0; i < args.size(); ++i)
437 Args[i] = (char*)GVTOP(args[i]);
439 GenericValue GV;
440 GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
441 Args[5], Args[6], Args[7], Args[8], Args[9]));
442 return GV;
445 // int scanf(const char *format, ...);
446 static GenericValue lle_X_scanf(FunctionType *FT, ArrayRef<GenericValue> args) {
447 assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
449 char *Args[10];
450 for (unsigned i = 0; i < args.size(); ++i)
451 Args[i] = (char*)GVTOP(args[i]);
453 GenericValue GV;
454 GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
455 Args[5], Args[6], Args[7], Args[8], Args[9]));
456 return GV;
459 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
460 // output useful.
461 static GenericValue lle_X_fprintf(FunctionType *FT,
462 ArrayRef<GenericValue> Args) {
463 assert(Args.size() >= 2);
464 char Buffer[10000];
465 std::vector<GenericValue> NewArgs;
466 NewArgs.push_back(PTOGV(Buffer));
467 NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
468 GenericValue GV = lle_X_sprintf(FT, NewArgs);
470 fputs(Buffer, (FILE *) GVTOP(Args[0]));
471 return GV;
474 static GenericValue lle_X_memset(FunctionType *FT,
475 ArrayRef<GenericValue> Args) {
476 int val = (int)Args[1].IntVal.getSExtValue();
477 size_t len = (size_t)Args[2].IntVal.getZExtValue();
478 memset((void *)GVTOP(Args[0]), val, len);
479 // llvm.memset.* returns void, lle_X_* returns GenericValue,
480 // so here we return GenericValue with IntVal set to zero
481 GenericValue GV;
482 GV.IntVal = 0;
483 return GV;
486 static GenericValue lle_X_memcpy(FunctionType *FT,
487 ArrayRef<GenericValue> Args) {
488 memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
489 (size_t)(Args[2].IntVal.getLimitedValue()));
491 // llvm.memcpy* returns void, lle_X_* returns GenericValue,
492 // so here we return GenericValue with IntVal set to zero
493 GenericValue GV;
494 GV.IntVal = 0;
495 return GV;
498 void Interpreter::initializeExternalFunctions() {
499 sys::ScopedLock Writer(*FunctionsLock);
500 (*FuncNames)["lle_X_atexit"] = lle_X_atexit;
501 (*FuncNames)["lle_X_exit"] = lle_X_exit;
502 (*FuncNames)["lle_X_abort"] = lle_X_abort;
504 (*FuncNames)["lle_X_printf"] = lle_X_printf;
505 (*FuncNames)["lle_X_sprintf"] = lle_X_sprintf;
506 (*FuncNames)["lle_X_sscanf"] = lle_X_sscanf;
507 (*FuncNames)["lle_X_scanf"] = lle_X_scanf;
508 (*FuncNames)["lle_X_fprintf"] = lle_X_fprintf;
509 (*FuncNames)["lle_X_memset"] = lle_X_memset;
510 (*FuncNames)["lle_X_memcpy"] = lle_X_memcpy;