1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Implementation of the MC-JIT runtime dynamic linker.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ExecutionEngine/RuntimeDyld.h"
14 #include "RuntimeDyldCOFF.h"
15 #include "RuntimeDyldELF.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldMachO.h"
18 #include "llvm/Object/COFF.h"
19 #include "llvm/Object/ELFObjectFile.h"
20 #include "llvm/Support/Alignment.h"
21 #include "llvm/Support/MSVCErrorWorkarounds.h"
22 #include "llvm/Support/ManagedStatic.h"
23 #include "llvm/Support/MathExtras.h"
29 using namespace llvm::object
;
31 #define DEBUG_TYPE "dyld"
35 enum RuntimeDyldErrorCode
{
36 GenericRTDyldError
= 1
39 // FIXME: This class is only here to support the transition to llvm::Error. It
40 // will be removed once this transition is complete. Clients should prefer to
41 // deal with the Error value directly, rather than converting to error_code.
42 class RuntimeDyldErrorCategory
: public std::error_category
{
44 const char *name() const noexcept override
{ return "runtimedyld"; }
46 std::string
message(int Condition
) const override
{
47 switch (static_cast<RuntimeDyldErrorCode
>(Condition
)) {
48 case GenericRTDyldError
: return "Generic RuntimeDyld error";
50 llvm_unreachable("Unrecognized RuntimeDyldErrorCode");
54 static ManagedStatic
<RuntimeDyldErrorCategory
> RTDyldErrorCategory
;
58 char RuntimeDyldError::ID
= 0;
60 void RuntimeDyldError::log(raw_ostream
&OS
) const {
64 std::error_code
RuntimeDyldError::convertToErrorCode() const {
65 return std::error_code(GenericRTDyldError
, *RTDyldErrorCategory
);
68 // Empty out-of-line virtual destructor as the key function.
69 RuntimeDyldImpl::~RuntimeDyldImpl() {}
71 // Pin LoadedObjectInfo's vtables to this file.
72 void RuntimeDyld::LoadedObjectInfo::anchor() {}
76 void RuntimeDyldImpl::registerEHFrames() {}
78 void RuntimeDyldImpl::deregisterEHFrames() {
79 MemMgr
.deregisterEHFrames();
83 static void dumpSectionMemory(const SectionEntry
&S
, StringRef State
) {
84 dbgs() << "----- Contents of section " << S
.getName() << " " << State
87 if (S
.getAddress() == nullptr) {
88 dbgs() << "\n <section not emitted>\n";
92 const unsigned ColsPerRow
= 16;
94 uint8_t *DataAddr
= S
.getAddress();
95 uint64_t LoadAddr
= S
.getLoadAddress();
97 unsigned StartPadding
= LoadAddr
& (ColsPerRow
- 1);
98 unsigned BytesRemaining
= S
.getSize();
101 dbgs() << "\n" << format("0x%016" PRIx64
,
102 LoadAddr
& ~(uint64_t)(ColsPerRow
- 1)) << ":";
103 while (StartPadding
--)
107 while (BytesRemaining
> 0) {
108 if ((LoadAddr
& (ColsPerRow
- 1)) == 0)
109 dbgs() << "\n" << format("0x%016" PRIx64
, LoadAddr
) << ":";
111 dbgs() << " " << format("%02x", *DataAddr
);
122 // Resolve the relocations for all symbols we currently know about.
123 void RuntimeDyldImpl::resolveRelocations() {
124 std::lock_guard
<sys::Mutex
> locked(lock
);
126 // Print out the sections prior to relocation.
127 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
128 dumpSectionMemory(Sections
[i
], "before relocations"););
130 // First, resolve relocations associated with external symbols.
131 if (auto Err
= resolveExternalSymbols()) {
133 ErrorStr
= toString(std::move(Err
));
136 resolveLocalRelocations();
138 // Print out sections after relocation.
139 LLVM_DEBUG(for (int i
= 0, e
= Sections
.size(); i
!= e
; ++i
)
140 dumpSectionMemory(Sections
[i
], "after relocations"););
143 void RuntimeDyldImpl::resolveLocalRelocations() {
144 // Iterate over all outstanding relocations
145 for (auto it
= Relocations
.begin(), e
= Relocations
.end(); it
!= e
; ++it
) {
146 // The Section here (Sections[i]) refers to the section in which the
147 // symbol for the relocation is located. The SectionID in the relocation
148 // entry provides the section to which the relocation will be applied.
149 unsigned Idx
= it
->first
;
150 uint64_t Addr
= getSectionLoadAddress(Idx
);
151 LLVM_DEBUG(dbgs() << "Resolving relocations Section #" << Idx
<< "\t"
152 << format("%p", (uintptr_t)Addr
) << "\n");
153 resolveRelocationList(it
->second
, Addr
);
158 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress
,
159 uint64_t TargetAddress
) {
160 std::lock_guard
<sys::Mutex
> locked(lock
);
161 for (unsigned i
= 0, e
= Sections
.size(); i
!= e
; ++i
) {
162 if (Sections
[i
].getAddress() == LocalAddress
) {
163 reassignSectionAddress(i
, TargetAddress
);
167 llvm_unreachable("Attempting to remap address of unknown section!");
170 static Error
getOffset(const SymbolRef
&Sym
, SectionRef Sec
,
172 Expected
<uint64_t> AddressOrErr
= Sym
.getAddress();
174 return AddressOrErr
.takeError();
175 Result
= *AddressOrErr
- Sec
.getAddress();
176 return Error::success();
179 Expected
<RuntimeDyldImpl::ObjSectionToIDMap
>
180 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile
&Obj
) {
181 std::lock_guard
<sys::Mutex
> locked(lock
);
183 // Save information about our target
184 Arch
= (Triple::ArchType
)Obj
.getArch();
185 IsTargetLittleEndian
= Obj
.isLittleEndian();
188 // Compute the memory size required to load all sections to be loaded
189 // and pass this information to the memory manager
190 if (MemMgr
.needsToReserveAllocationSpace()) {
191 uint64_t CodeSize
= 0, RODataSize
= 0, RWDataSize
= 0;
192 uint32_t CodeAlign
= 1, RODataAlign
= 1, RWDataAlign
= 1;
193 if (auto Err
= computeTotalAllocSize(Obj
,
195 RODataSize
, RODataAlign
,
196 RWDataSize
, RWDataAlign
))
197 return std::move(Err
);
198 MemMgr
.reserveAllocationSpace(CodeSize
, CodeAlign
, RODataSize
, RODataAlign
,
199 RWDataSize
, RWDataAlign
);
202 // Used sections from the object file
203 ObjSectionToIDMap LocalSections
;
205 // Common symbols requiring allocation, with their sizes and alignments
206 CommonSymbolList CommonSymbolsToAllocate
;
208 uint64_t CommonSize
= 0;
209 uint32_t CommonAlign
= 0;
211 // First, collect all weak and common symbols. We need to know if stronger
212 // definitions occur elsewhere.
213 JITSymbolResolver::LookupSet ResponsibilitySet
;
215 JITSymbolResolver::LookupSet Symbols
;
216 for (auto &Sym
: Obj
.symbols()) {
217 Expected
<uint32_t> FlagsOrErr
= Sym
.getFlags();
219 // TODO: Test this error.
220 return FlagsOrErr
.takeError();
221 if ((*FlagsOrErr
& SymbolRef::SF_Common
) ||
222 (*FlagsOrErr
& SymbolRef::SF_Weak
)) {
224 if (auto NameOrErr
= Sym
.getName())
225 Symbols
.insert(*NameOrErr
);
227 return NameOrErr
.takeError();
231 if (auto ResultOrErr
= Resolver
.getResponsibilitySet(Symbols
))
232 ResponsibilitySet
= std::move(*ResultOrErr
);
234 return ResultOrErr
.takeError();
238 LLVM_DEBUG(dbgs() << "Parse symbols:\n");
239 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
241 Expected
<uint32_t> FlagsOrErr
= I
->getFlags();
243 // TODO: Test this error.
244 return FlagsOrErr
.takeError();
246 // Skip undefined symbols.
247 if (*FlagsOrErr
& SymbolRef::SF_Undefined
)
250 // Get the symbol type.
251 object::SymbolRef::Type SymType
;
252 if (auto SymTypeOrErr
= I
->getType())
253 SymType
= *SymTypeOrErr
;
255 return SymTypeOrErr
.takeError();
259 if (auto NameOrErr
= I
->getName())
262 return NameOrErr
.takeError();
264 // Compute JIT symbol flags.
265 auto JITSymFlags
= getJITSymbolFlags(*I
);
267 return JITSymFlags
.takeError();
269 // If this is a weak definition, check to see if there's a strong one.
270 // If there is, skip this symbol (we won't be providing it: the strong
271 // definition will). If there's no strong definition, make this definition
273 if (JITSymFlags
->isWeak() || JITSymFlags
->isCommon()) {
274 // First check whether there's already a definition in this instance.
275 if (GlobalSymbolTable
.count(Name
))
278 // If we're not responsible for this symbol, skip it.
279 if (!ResponsibilitySet
.count(Name
))
282 // Otherwise update the flags on the symbol to make this definition
284 if (JITSymFlags
->isWeak())
285 *JITSymFlags
&= ~JITSymbolFlags::Weak
;
286 if (JITSymFlags
->isCommon()) {
287 *JITSymFlags
&= ~JITSymbolFlags::Common
;
288 uint32_t Align
= I
->getAlignment();
289 uint64_t Size
= I
->getCommonSize();
292 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
293 CommonSymbolsToAllocate
.push_back(*I
);
297 if (*FlagsOrErr
& SymbolRef::SF_Absolute
&&
298 SymType
!= object::SymbolRef::ST_File
) {
300 if (auto AddrOrErr
= I
->getAddress())
303 return AddrOrErr
.takeError();
305 unsigned SectionID
= AbsoluteSymbolSection
;
307 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " (absolute) Name: " << Name
308 << " SID: " << SectionID
309 << " Offset: " << format("%p", (uintptr_t)Addr
)
310 << " flags: " << *FlagsOrErr
<< "\n");
311 if (!Name
.empty()) // Skip absolute symbol relocations.
312 GlobalSymbolTable
[Name
] =
313 SymbolTableEntry(SectionID
, Addr
, *JITSymFlags
);
314 } else if (SymType
== object::SymbolRef::ST_Function
||
315 SymType
== object::SymbolRef::ST_Data
||
316 SymType
== object::SymbolRef::ST_Unknown
||
317 SymType
== object::SymbolRef::ST_Other
) {
319 section_iterator SI
= Obj
.section_end();
320 if (auto SIOrErr
= I
->getSection())
323 return SIOrErr
.takeError();
325 if (SI
== Obj
.section_end())
328 // Get symbol offset.
330 if (auto Err
= getOffset(*I
, *SI
, SectOffset
))
331 return std::move(Err
);
333 bool IsCode
= SI
->isText();
335 if (auto SectionIDOrErr
=
336 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
337 SectionID
= *SectionIDOrErr
;
339 return SectionIDOrErr
.takeError();
341 LLVM_DEBUG(dbgs() << "\tType: " << SymType
<< " Name: " << Name
342 << " SID: " << SectionID
343 << " Offset: " << format("%p", (uintptr_t)SectOffset
)
344 << " flags: " << *FlagsOrErr
<< "\n");
345 if (!Name
.empty()) // Skip absolute symbol relocations
346 GlobalSymbolTable
[Name
] =
347 SymbolTableEntry(SectionID
, SectOffset
, *JITSymFlags
);
351 // Allocate common symbols
352 if (auto Err
= emitCommonSymbols(Obj
, CommonSymbolsToAllocate
, CommonSize
,
354 return std::move(Err
);
356 // Parse and process relocations
357 LLVM_DEBUG(dbgs() << "Parse relocations:\n");
358 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
362 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
364 return RelSecOrErr
.takeError();
366 section_iterator RelocatedSection
= *RelSecOrErr
;
367 if (RelocatedSection
== SE
)
370 relocation_iterator I
= SI
->relocation_begin();
371 relocation_iterator E
= SI
->relocation_end();
373 if (I
== E
&& !ProcessAllSections
)
376 bool IsCode
= RelocatedSection
->isText();
377 unsigned SectionID
= 0;
378 if (auto SectionIDOrErr
= findOrEmitSection(Obj
, *RelocatedSection
, IsCode
,
380 SectionID
= *SectionIDOrErr
;
382 return SectionIDOrErr
.takeError();
384 LLVM_DEBUG(dbgs() << "\tSectionID: " << SectionID
<< "\n");
387 if (auto IOrErr
= processRelocationRef(SectionID
, I
, Obj
, LocalSections
, Stubs
))
390 return IOrErr
.takeError();
392 // If there is a NotifyStubEmitted callback set, call it to register any
393 // stubs created for this section.
394 if (NotifyStubEmitted
) {
395 StringRef FileName
= Obj
.getFileName();
396 StringRef SectionName
= Sections
[SectionID
].getName();
397 for (auto &KV
: Stubs
) {
400 uint64_t StubAddr
= KV
.second
;
402 // If this is a named stub, just call NotifyStubEmitted.
404 NotifyStubEmitted(FileName
, SectionName
, VR
.SymbolName
, SectionID
,
409 // Otherwise we will have to try a reverse lookup on the globla symbol table.
410 for (auto &GSTMapEntry
: GlobalSymbolTable
) {
411 StringRef SymbolName
= GSTMapEntry
.first();
412 auto &GSTEntry
= GSTMapEntry
.second
;
413 if (GSTEntry
.getSectionID() == VR
.SectionID
&&
414 GSTEntry
.getOffset() == VR
.Offset
) {
415 NotifyStubEmitted(FileName
, SectionName
, SymbolName
, SectionID
,
424 // Process remaining sections
425 if (ProcessAllSections
) {
426 LLVM_DEBUG(dbgs() << "Process remaining sections:\n");
427 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
430 /* Ignore already loaded sections */
431 if (LocalSections
.find(*SI
) != LocalSections
.end())
434 bool IsCode
= SI
->isText();
435 if (auto SectionIDOrErr
=
436 findOrEmitSection(Obj
, *SI
, IsCode
, LocalSections
))
437 LLVM_DEBUG(dbgs() << "\tSectionID: " << (*SectionIDOrErr
) << "\n");
439 return SectionIDOrErr
.takeError();
443 // Give the subclasses a chance to tie-up any loose ends.
444 if (auto Err
= finalizeLoad(Obj
, LocalSections
))
445 return std::move(Err
);
447 // for (auto E : LocalSections)
448 // llvm::dbgs() << "Added: " << E.first.getRawDataRefImpl() << " -> " << E.second << "\n";
450 return LocalSections
;
453 // A helper method for computeTotalAllocSize.
454 // Computes the memory size required to allocate sections with the given sizes,
455 // assuming that all sections are allocated with the given alignment
457 computeAllocationSizeForSections(std::vector
<uint64_t> &SectionSizes
,
458 uint64_t Alignment
) {
459 uint64_t TotalSize
= 0;
460 for (size_t Idx
= 0, Cnt
= SectionSizes
.size(); Idx
< Cnt
; Idx
++) {
461 uint64_t AlignedSize
=
462 (SectionSizes
[Idx
] + Alignment
- 1) / Alignment
* Alignment
;
463 TotalSize
+= AlignedSize
;
468 static bool isRequiredForExecution(const SectionRef Section
) {
469 const ObjectFile
*Obj
= Section
.getObject();
470 if (isa
<object::ELFObjectFileBase
>(Obj
))
471 return ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
;
472 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
)) {
473 const coff_section
*CoffSection
= COFFObj
->getCOFFSection(Section
);
474 // Avoid loading zero-sized COFF sections.
475 // In PE files, VirtualSize gives the section size, and SizeOfRawData
476 // may be zero for sections with content. In Obj files, SizeOfRawData
477 // gives the section size, and VirtualSize is always zero. Hence
478 // the need to check for both cases below.
480 (CoffSection
->VirtualSize
> 0) || (CoffSection
->SizeOfRawData
> 0);
482 CoffSection
->Characteristics
&
483 (COFF::IMAGE_SCN_MEM_DISCARDABLE
| COFF::IMAGE_SCN_LNK_INFO
);
484 return HasContent
&& !IsDiscardable
;
487 assert(isa
<MachOObjectFile
>(Obj
));
491 static bool isReadOnlyData(const SectionRef Section
) {
492 const ObjectFile
*Obj
= Section
.getObject();
493 if (isa
<object::ELFObjectFileBase
>(Obj
))
494 return !(ELFSectionRef(Section
).getFlags() &
495 (ELF::SHF_WRITE
| ELF::SHF_EXECINSTR
));
496 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
497 return ((COFFObj
->getCOFFSection(Section
)->Characteristics
&
498 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
499 | COFF::IMAGE_SCN_MEM_READ
500 | COFF::IMAGE_SCN_MEM_WRITE
))
502 (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
503 | COFF::IMAGE_SCN_MEM_READ
));
505 assert(isa
<MachOObjectFile
>(Obj
));
509 static bool isZeroInit(const SectionRef Section
) {
510 const ObjectFile
*Obj
= Section
.getObject();
511 if (isa
<object::ELFObjectFileBase
>(Obj
))
512 return ELFSectionRef(Section
).getType() == ELF::SHT_NOBITS
;
513 if (auto *COFFObj
= dyn_cast
<object::COFFObjectFile
>(Obj
))
514 return COFFObj
->getCOFFSection(Section
)->Characteristics
&
515 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA
;
517 auto *MachO
= cast
<MachOObjectFile
>(Obj
);
518 unsigned SectionType
= MachO
->getSectionType(Section
);
519 return SectionType
== MachO::S_ZEROFILL
||
520 SectionType
== MachO::S_GB_ZEROFILL
;
523 // Compute an upper bound of the memory size that is required to load all
525 Error
RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile
&Obj
,
528 uint64_t &RODataSize
,
529 uint32_t &RODataAlign
,
530 uint64_t &RWDataSize
,
531 uint32_t &RWDataAlign
) {
532 // Compute the size of all sections required for execution
533 std::vector
<uint64_t> CodeSectionSizes
;
534 std::vector
<uint64_t> ROSectionSizes
;
535 std::vector
<uint64_t> RWSectionSizes
;
537 // Collect sizes of all sections to be loaded;
538 // also determine the max alignment of all sections
539 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
541 const SectionRef
&Section
= *SI
;
543 bool IsRequired
= isRequiredForExecution(Section
) || ProcessAllSections
;
545 // Consider only the sections that are required to be loaded for execution
547 uint64_t DataSize
= Section
.getSize();
548 uint64_t Alignment64
= Section
.getAlignment();
549 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
550 bool IsCode
= Section
.isText();
551 bool IsReadOnly
= isReadOnlyData(Section
);
553 Expected
<StringRef
> NameOrErr
= Section
.getName();
555 return NameOrErr
.takeError();
556 StringRef Name
= *NameOrErr
;
558 uint64_t StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
560 uint64_t PaddingSize
= 0;
561 if (Name
== ".eh_frame")
563 if (StubBufSize
!= 0)
564 PaddingSize
+= getStubAlignment() - 1;
566 uint64_t SectionSize
= DataSize
+ PaddingSize
+ StubBufSize
;
568 // The .eh_frame section (at least on Linux) needs an extra four bytes
570 // with zeroes added at the end. For MachO objects, this section has a
571 // slightly different name, so this won't have any effect for MachO
573 if (Name
== ".eh_frame")
580 CodeAlign
= std::max(CodeAlign
, Alignment
);
581 CodeSectionSizes
.push_back(SectionSize
);
582 } else if (IsReadOnly
) {
583 RODataAlign
= std::max(RODataAlign
, Alignment
);
584 ROSectionSizes
.push_back(SectionSize
);
586 RWDataAlign
= std::max(RWDataAlign
, Alignment
);
587 RWSectionSizes
.push_back(SectionSize
);
592 // Compute Global Offset Table size. If it is not zero we
593 // also update alignment, which is equal to a size of a
595 if (unsigned GotSize
= computeGOTSize(Obj
)) {
596 RWSectionSizes
.push_back(GotSize
);
597 RWDataAlign
= std::max
<uint32_t>(RWDataAlign
, getGOTEntrySize());
600 // Compute the size of all common symbols
601 uint64_t CommonSize
= 0;
602 uint32_t CommonAlign
= 1;
603 for (symbol_iterator I
= Obj
.symbol_begin(), E
= Obj
.symbol_end(); I
!= E
;
605 Expected
<uint32_t> FlagsOrErr
= I
->getFlags();
607 // TODO: Test this error.
608 return FlagsOrErr
.takeError();
609 if (*FlagsOrErr
& SymbolRef::SF_Common
) {
610 // Add the common symbols to a list. We'll allocate them all below.
611 uint64_t Size
= I
->getCommonSize();
612 uint32_t Align
= I
->getAlignment();
613 // If this is the first common symbol, use its alignment as the alignment
614 // for the common symbols section.
617 CommonSize
= alignTo(CommonSize
, Align
) + Size
;
620 if (CommonSize
!= 0) {
621 RWSectionSizes
.push_back(CommonSize
);
622 RWDataAlign
= std::max(RWDataAlign
, CommonAlign
);
625 // Compute the required allocation space for each different type of sections
626 // (code, read-only data, read-write data) assuming that all sections are
627 // allocated with the max alignment. Note that we cannot compute with the
628 // individual alignments of the sections, because then the required size
629 // depends on the order, in which the sections are allocated.
630 CodeSize
= computeAllocationSizeForSections(CodeSectionSizes
, CodeAlign
);
631 RODataSize
= computeAllocationSizeForSections(ROSectionSizes
, RODataAlign
);
632 RWDataSize
= computeAllocationSizeForSections(RWSectionSizes
, RWDataAlign
);
634 return Error::success();
638 unsigned RuntimeDyldImpl::computeGOTSize(const ObjectFile
&Obj
) {
639 size_t GotEntrySize
= getGOTEntrySize();
644 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
647 for (const RelocationRef
&Reloc
: SI
->relocations())
648 if (relocationNeedsGot(Reloc
))
649 GotSize
+= GotEntrySize
;
655 // compute stub buffer size for the given section
656 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile
&Obj
,
657 const SectionRef
&Section
) {
658 if (!MemMgr
.allowStubAllocation()) {
662 unsigned StubSize
= getMaxStubSize();
666 // FIXME: this is an inefficient way to handle this. We should computed the
667 // necessary section allocation size in loadObject by walking all the sections
669 unsigned StubBufSize
= 0;
670 for (section_iterator SI
= Obj
.section_begin(), SE
= Obj
.section_end();
673 Expected
<section_iterator
> RelSecOrErr
= SI
->getRelocatedSection();
675 report_fatal_error(toString(RelSecOrErr
.takeError()));
677 section_iterator RelSecI
= *RelSecOrErr
;
678 if (!(RelSecI
== Section
))
681 for (const RelocationRef
&Reloc
: SI
->relocations())
682 if (relocationNeedsStub(Reloc
))
683 StubBufSize
+= StubSize
;
686 // Get section data size and alignment
687 uint64_t DataSize
= Section
.getSize();
688 uint64_t Alignment64
= Section
.getAlignment();
690 // Add stubbuf size alignment
691 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
692 unsigned StubAlignment
= getStubAlignment();
693 unsigned EndAlignment
= (DataSize
| Alignment
) & -(DataSize
| Alignment
);
694 if (StubAlignment
> EndAlignment
)
695 StubBufSize
+= StubAlignment
- EndAlignment
;
699 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src
,
700 unsigned Size
) const {
702 if (IsTargetLittleEndian
) {
705 Result
= (Result
<< 8) | *Src
--;
708 Result
= (Result
<< 8) | *Src
++;
713 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value
, uint8_t *Dst
,
714 unsigned Size
) const {
715 if (IsTargetLittleEndian
) {
717 *Dst
++ = Value
& 0xFF;
723 *Dst
-- = Value
& 0xFF;
729 Expected
<JITSymbolFlags
>
730 RuntimeDyldImpl::getJITSymbolFlags(const SymbolRef
&SR
) {
731 return JITSymbolFlags::fromObjectSymbol(SR
);
734 Error
RuntimeDyldImpl::emitCommonSymbols(const ObjectFile
&Obj
,
735 CommonSymbolList
&SymbolsToAllocate
,
737 uint32_t CommonAlign
) {
738 if (SymbolsToAllocate
.empty())
739 return Error::success();
741 // Allocate memory for the section
742 unsigned SectionID
= Sections
.size();
743 uint8_t *Addr
= MemMgr
.allocateDataSection(CommonSize
, CommonAlign
, SectionID
,
744 "<common symbols>", false);
746 report_fatal_error("Unable to allocate memory for common symbols!");
749 SectionEntry("<common symbols>", Addr
, CommonSize
, CommonSize
, 0));
750 memset(Addr
, 0, CommonSize
);
752 LLVM_DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
753 << " new addr: " << format("%p", Addr
)
754 << " DataSize: " << CommonSize
<< "\n");
756 // Assign the address of each symbol
757 for (auto &Sym
: SymbolsToAllocate
) {
758 uint32_t Alignment
= Sym
.getAlignment();
759 uint64_t Size
= Sym
.getCommonSize();
761 if (auto NameOrErr
= Sym
.getName())
764 return NameOrErr
.takeError();
766 // This symbol has an alignment requirement.
767 uint64_t AlignOffset
=
768 offsetToAlignment((uint64_t)Addr
, Align(Alignment
));
770 Offset
+= AlignOffset
;
772 auto JITSymFlags
= getJITSymbolFlags(Sym
);
775 return JITSymFlags
.takeError();
777 LLVM_DEBUG(dbgs() << "Allocating common symbol " << Name
<< " address "
778 << format("%p", Addr
) << "\n");
779 if (!Name
.empty()) // Skip absolute symbol relocations.
780 GlobalSymbolTable
[Name
] =
781 SymbolTableEntry(SectionID
, Offset
, std::move(*JITSymFlags
));
786 return Error::success();
790 RuntimeDyldImpl::emitSection(const ObjectFile
&Obj
,
791 const SectionRef
&Section
,
794 uint64_t Alignment64
= Section
.getAlignment();
796 unsigned Alignment
= (unsigned)Alignment64
& 0xffffffffL
;
797 unsigned PaddingSize
= 0;
798 unsigned StubBufSize
= 0;
799 bool IsRequired
= isRequiredForExecution(Section
);
800 bool IsVirtual
= Section
.isVirtual();
801 bool IsZeroInit
= isZeroInit(Section
);
802 bool IsReadOnly
= isReadOnlyData(Section
);
803 uint64_t DataSize
= Section
.getSize();
805 // An alignment of 0 (at least with ELF) is identical to an alignment of 1,
806 // while being more "polite". Other formats do not support 0-aligned sections
807 // anyway, so we should guarantee that the alignment is always at least 1.
808 Alignment
= std::max(1u, Alignment
);
810 Expected
<StringRef
> NameOrErr
= Section
.getName();
812 return NameOrErr
.takeError();
813 StringRef Name
= *NameOrErr
;
815 StubBufSize
= computeSectionStubBufSize(Obj
, Section
);
817 // The .eh_frame section (at least on Linux) needs an extra four bytes padded
818 // with zeroes added at the end. For MachO objects, this section has a
819 // slightly different name, so this won't have any effect for MachO objects.
820 if (Name
== ".eh_frame")
824 unsigned SectionID
= Sections
.size();
826 const char *pData
= nullptr;
828 // If this section contains any bits (i.e. isn't a virtual or bss section),
829 // grab a reference to them.
830 if (!IsVirtual
&& !IsZeroInit
) {
831 // In either case, set the location of the unrelocated section in memory,
832 // since we still process relocations for it even if we're not applying them.
833 if (Expected
<StringRef
> E
= Section
.getContents())
836 return E
.takeError();
840 // If there are any stubs then the section alignment needs to be at least as
841 // high as stub alignment or padding calculations may by incorrect when the
842 // section is remapped.
843 if (StubBufSize
!= 0) {
844 Alignment
= std::max(Alignment
, getStubAlignment());
845 PaddingSize
+= getStubAlignment() - 1;
848 // Some sections, such as debug info, don't need to be loaded for execution.
849 // Process those only if explicitly requested.
850 if (IsRequired
|| ProcessAllSections
) {
851 Allocate
= DataSize
+ PaddingSize
+ StubBufSize
;
854 Addr
= IsCode
? MemMgr
.allocateCodeSection(Allocate
, Alignment
, SectionID
,
856 : MemMgr
.allocateDataSection(Allocate
, Alignment
, SectionID
,
859 report_fatal_error("Unable to allocate section memory!");
861 // Zero-initialize or copy the data from the image
862 if (IsZeroInit
|| IsVirtual
)
863 memset(Addr
, 0, DataSize
);
865 memcpy(Addr
, pData
, DataSize
);
867 // Fill in any extra bytes we allocated for padding
868 if (PaddingSize
!= 0) {
869 memset(Addr
+ DataSize
, 0, PaddingSize
);
870 // Update the DataSize variable to include padding.
871 DataSize
+= PaddingSize
;
873 // Align DataSize to stub alignment if we have any stubs (PaddingSize will
874 // have been increased above to account for this).
876 DataSize
&= -(uint64_t)getStubAlignment();
879 LLVM_DEBUG(dbgs() << "emitSection SectionID: " << SectionID
<< " Name: "
880 << Name
<< " obj addr: " << format("%p", pData
)
881 << " new addr: " << format("%p", Addr
) << " DataSize: "
882 << DataSize
<< " StubBufSize: " << StubBufSize
883 << " Allocate: " << Allocate
<< "\n");
885 // Even if we didn't load the section, we need to record an entry for it
886 // to handle later processing (and by 'handle' I mean don't do anything
887 // with these sections).
891 dbgs() << "emitSection SectionID: " << SectionID
<< " Name: " << Name
892 << " obj addr: " << format("%p", data
.data()) << " new addr: 0"
893 << " DataSize: " << DataSize
<< " StubBufSize: " << StubBufSize
894 << " Allocate: " << Allocate
<< "\n");
898 SectionEntry(Name
, Addr
, DataSize
, Allocate
, (uintptr_t)pData
));
900 // Debug info sections are linked as if their load address was zero
902 Sections
.back().setLoadAddress(0);
908 RuntimeDyldImpl::findOrEmitSection(const ObjectFile
&Obj
,
909 const SectionRef
&Section
,
911 ObjSectionToIDMap
&LocalSections
) {
913 unsigned SectionID
= 0;
914 ObjSectionToIDMap::iterator i
= LocalSections
.find(Section
);
915 if (i
!= LocalSections
.end())
916 SectionID
= i
->second
;
918 if (auto SectionIDOrErr
= emitSection(Obj
, Section
, IsCode
))
919 SectionID
= *SectionIDOrErr
;
921 return SectionIDOrErr
.takeError();
922 LocalSections
[Section
] = SectionID
;
927 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry
&RE
,
928 unsigned SectionID
) {
929 Relocations
[SectionID
].push_back(RE
);
932 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry
&RE
,
933 StringRef SymbolName
) {
934 // Relocation by symbol. If the symbol is found in the global symbol table,
935 // create an appropriate section relocation. Otherwise, add it to
936 // ExternalSymbolRelocations.
937 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(SymbolName
);
938 if (Loc
== GlobalSymbolTable
.end()) {
939 ExternalSymbolRelocations
[SymbolName
].push_back(RE
);
941 assert(!SymbolName
.empty() &&
942 "Empty symbol should not be in GlobalSymbolTable");
943 // Copy the RE since we want to modify its addend.
944 RelocationEntry RECopy
= RE
;
945 const auto &SymInfo
= Loc
->second
;
946 RECopy
.Addend
+= SymInfo
.getOffset();
947 Relocations
[SymInfo
.getSectionID()].push_back(RECopy
);
951 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr
,
952 unsigned AbiVariant
) {
953 if (Arch
== Triple::aarch64
|| Arch
== Triple::aarch64_be
||
954 Arch
== Triple::aarch64_32
) {
955 // This stub has to be able to access the full address space,
956 // since symbol lookup won't necessarily find a handy, in-range,
957 // PLT stub for functions which could be anywhere.
958 // Stub can use ip0 (== x16) to calculate address
959 writeBytesUnaligned(0xd2e00010, Addr
, 4); // movz ip0, #:abs_g3:<addr>
960 writeBytesUnaligned(0xf2c00010, Addr
+4, 4); // movk ip0, #:abs_g2_nc:<addr>
961 writeBytesUnaligned(0xf2a00010, Addr
+8, 4); // movk ip0, #:abs_g1_nc:<addr>
962 writeBytesUnaligned(0xf2800010, Addr
+12, 4); // movk ip0, #:abs_g0_nc:<addr>
963 writeBytesUnaligned(0xd61f0200, Addr
+16, 4); // br ip0
966 } else if (Arch
== Triple::arm
|| Arch
== Triple::armeb
) {
967 // TODO: There is only ARM far stub now. We should add the Thumb stub,
968 // and stubs for branches Thumb - ARM and ARM - Thumb.
969 writeBytesUnaligned(0xe51ff004, Addr
, 4); // ldr pc, [pc, #-4]
971 } else if (IsMipsO32ABI
|| IsMipsN32ABI
) {
972 // 0: 3c190000 lui t9,%hi(addr).
973 // 4: 27390000 addiu t9,t9,%lo(addr).
974 // 8: 03200008 jr t9.
976 const unsigned LuiT9Instr
= 0x3c190000, AdduiT9Instr
= 0x27390000;
977 const unsigned NopInstr
= 0x0;
978 unsigned JrT9Instr
= 0x03200008;
979 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_32R6
||
980 (AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
981 JrT9Instr
= 0x03200009;
983 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
984 writeBytesUnaligned(AdduiT9Instr
, Addr
+ 4, 4);
985 writeBytesUnaligned(JrT9Instr
, Addr
+ 8, 4);
986 writeBytesUnaligned(NopInstr
, Addr
+ 12, 4);
988 } else if (IsMipsN64ABI
) {
989 // 0: 3c190000 lui t9,%highest(addr).
990 // 4: 67390000 daddiu t9,t9,%higher(addr).
991 // 8: 0019CC38 dsll t9,t9,16.
992 // c: 67390000 daddiu t9,t9,%hi(addr).
993 // 10: 0019CC38 dsll t9,t9,16.
994 // 14: 67390000 daddiu t9,t9,%lo(addr).
995 // 18: 03200008 jr t9.
997 const unsigned LuiT9Instr
= 0x3c190000, DaddiuT9Instr
= 0x67390000,
998 DsllT9Instr
= 0x19CC38;
999 const unsigned NopInstr
= 0x0;
1000 unsigned JrT9Instr
= 0x03200008;
1001 if ((AbiVariant
& ELF::EF_MIPS_ARCH
) == ELF::EF_MIPS_ARCH_64R6
)
1002 JrT9Instr
= 0x03200009;
1004 writeBytesUnaligned(LuiT9Instr
, Addr
, 4);
1005 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 4, 4);
1006 writeBytesUnaligned(DsllT9Instr
, Addr
+ 8, 4);
1007 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 12, 4);
1008 writeBytesUnaligned(DsllT9Instr
, Addr
+ 16, 4);
1009 writeBytesUnaligned(DaddiuT9Instr
, Addr
+ 20, 4);
1010 writeBytesUnaligned(JrT9Instr
, Addr
+ 24, 4);
1011 writeBytesUnaligned(NopInstr
, Addr
+ 28, 4);
1013 } else if (Arch
== Triple::ppc64
|| Arch
== Triple::ppc64le
) {
1014 // Depending on which version of the ELF ABI is in use, we need to
1015 // generate one of two variants of the stub. They both start with
1016 // the same sequence to load the target address into r12.
1017 writeInt32BE(Addr
, 0x3D800000); // lis r12, highest(addr)
1018 writeInt32BE(Addr
+4, 0x618C0000); // ori r12, higher(addr)
1019 writeInt32BE(Addr
+8, 0x798C07C6); // sldi r12, r12, 32
1020 writeInt32BE(Addr
+12, 0x658C0000); // oris r12, r12, h(addr)
1021 writeInt32BE(Addr
+16, 0x618C0000); // ori r12, r12, l(addr)
1022 if (AbiVariant
== 2) {
1023 // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
1024 // The address is already in r12 as required by the ABI. Branch to it.
1025 writeInt32BE(Addr
+20, 0xF8410018); // std r2, 24(r1)
1026 writeInt32BE(Addr
+24, 0x7D8903A6); // mtctr r12
1027 writeInt32BE(Addr
+28, 0x4E800420); // bctr
1029 // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
1030 // Load the function address on r11 and sets it to control register. Also
1031 // loads the function TOC in r2 and environment pointer to r11.
1032 writeInt32BE(Addr
+20, 0xF8410028); // std r2, 40(r1)
1033 writeInt32BE(Addr
+24, 0xE96C0000); // ld r11, 0(r12)
1034 writeInt32BE(Addr
+28, 0xE84C0008); // ld r2, 0(r12)
1035 writeInt32BE(Addr
+32, 0x7D6903A6); // mtctr r11
1036 writeInt32BE(Addr
+36, 0xE96C0010); // ld r11, 16(r2)
1037 writeInt32BE(Addr
+40, 0x4E800420); // bctr
1040 } else if (Arch
== Triple::systemz
) {
1041 writeInt16BE(Addr
, 0xC418); // lgrl %r1,.+8
1042 writeInt16BE(Addr
+2, 0x0000);
1043 writeInt16BE(Addr
+4, 0x0004);
1044 writeInt16BE(Addr
+6, 0x07F1); // brc 15,%r1
1045 // 8-byte address stored at Addr + 8
1047 } else if (Arch
== Triple::x86_64
) {
1048 *Addr
= 0xFF; // jmp
1049 *(Addr
+1) = 0x25; // rip
1050 // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
1051 } else if (Arch
== Triple::x86
) {
1052 *Addr
= 0xE9; // 32-bit pc-relative jump.
1057 // Assign an address to a symbol name and resolve all the relocations
1058 // associated with it.
1059 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID
,
1061 // The address to use for relocation resolution is not
1062 // the address of the local section buffer. We must be doing
1063 // a remote execution environment of some sort. Relocations can't
1064 // be applied until all the sections have been moved. The client must
1065 // trigger this with a call to MCJIT::finalize() or
1066 // RuntimeDyld::resolveRelocations().
1068 // Addr is a uint64_t because we can't assume the pointer width
1069 // of the target is the same as that of the host. Just use a generic
1070 // "big enough" type.
1072 dbgs() << "Reassigning address for section " << SectionID
<< " ("
1073 << Sections
[SectionID
].getName() << "): "
1074 << format("0x%016" PRIx64
, Sections
[SectionID
].getLoadAddress())
1075 << " -> " << format("0x%016" PRIx64
, Addr
) << "\n");
1076 Sections
[SectionID
].setLoadAddress(Addr
);
1079 void RuntimeDyldImpl::resolveRelocationList(const RelocationList
&Relocs
,
1081 for (unsigned i
= 0, e
= Relocs
.size(); i
!= e
; ++i
) {
1082 const RelocationEntry
&RE
= Relocs
[i
];
1083 // Ignore relocations for sections that were not loaded
1084 if (RE
.SectionID
!= AbsoluteSymbolSection
&&
1085 Sections
[RE
.SectionID
].getAddress() == nullptr)
1087 resolveRelocation(RE
, Value
);
1091 void RuntimeDyldImpl::applyExternalSymbolRelocations(
1092 const StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
) {
1093 for (auto &RelocKV
: ExternalSymbolRelocations
) {
1094 StringRef Name
= RelocKV
.first();
1095 RelocationList
&Relocs
= RelocKV
.second
;
1096 if (Name
.size() == 0) {
1097 // This is an absolute symbol, use an address of zero.
1098 LLVM_DEBUG(dbgs() << "Resolving absolute relocations."
1100 resolveRelocationList(Relocs
, 0);
1103 JITSymbolFlags Flags
;
1104 RTDyldSymbolTable::const_iterator Loc
= GlobalSymbolTable
.find(Name
);
1105 if (Loc
== GlobalSymbolTable
.end()) {
1106 auto RRI
= ExternalSymbolMap
.find(Name
);
1107 assert(RRI
!= ExternalSymbolMap
.end() && "No result for symbol");
1108 Addr
= RRI
->second
.getAddress();
1109 Flags
= RRI
->second
.getFlags();
1111 // We found the symbol in our global table. It was probably in a
1112 // Module that we loaded previously.
1113 const auto &SymInfo
= Loc
->second
;
1114 Addr
= getSectionLoadAddress(SymInfo
.getSectionID()) +
1115 SymInfo
.getOffset();
1116 Flags
= SymInfo
.getFlags();
1119 // FIXME: Implement error handling that doesn't kill the host program!
1120 if (!Addr
&& !Resolver
.allowsZeroSymbols())
1121 report_fatal_error("Program used external function '" + Name
+
1122 "' which could not be resolved!");
1124 // If Resolver returned UINT64_MAX, the client wants to handle this symbol
1125 // manually and we shouldn't resolve its relocations.
1126 if (Addr
!= UINT64_MAX
) {
1128 // Tweak the address based on the symbol flags if necessary.
1129 // For example, this is used by RuntimeDyldMachOARM to toggle the low bit
1130 // if the target symbol is Thumb.
1131 Addr
= modifyAddressBasedOnFlags(Addr
, Flags
);
1133 LLVM_DEBUG(dbgs() << "Resolving relocations Name: " << Name
<< "\t"
1134 << format("0x%lx", Addr
) << "\n");
1135 resolveRelocationList(Relocs
, Addr
);
1139 ExternalSymbolRelocations
.clear();
1142 Error
RuntimeDyldImpl::resolveExternalSymbols() {
1143 StringMap
<JITEvaluatedSymbol
> ExternalSymbolMap
;
1145 // Resolution can trigger emission of more symbols, so iterate until
1146 // we've resolved *everything*.
1148 JITSymbolResolver::LookupSet ResolvedSymbols
;
1151 JITSymbolResolver::LookupSet NewSymbols
;
1153 for (auto &RelocKV
: ExternalSymbolRelocations
) {
1154 StringRef Name
= RelocKV
.first();
1155 if (!Name
.empty() && !GlobalSymbolTable
.count(Name
) &&
1156 !ResolvedSymbols
.count(Name
))
1157 NewSymbols
.insert(Name
);
1160 if (NewSymbols
.empty())
1164 using ExpectedLookupResult
=
1165 MSVCPExpected
<JITSymbolResolver::LookupResult
>;
1167 using ExpectedLookupResult
= Expected
<JITSymbolResolver::LookupResult
>;
1170 auto NewSymbolsP
= std::make_shared
<std::promise
<ExpectedLookupResult
>>();
1171 auto NewSymbolsF
= NewSymbolsP
->get_future();
1172 Resolver
.lookup(NewSymbols
,
1173 [=](Expected
<JITSymbolResolver::LookupResult
> Result
) {
1174 NewSymbolsP
->set_value(std::move(Result
));
1177 auto NewResolverResults
= NewSymbolsF
.get();
1179 if (!NewResolverResults
)
1180 return NewResolverResults
.takeError();
1182 assert(NewResolverResults
->size() == NewSymbols
.size() &&
1183 "Should have errored on unresolved symbols");
1185 for (auto &RRKV
: *NewResolverResults
) {
1186 assert(!ResolvedSymbols
.count(RRKV
.first
) && "Redundant resolution?");
1187 ExternalSymbolMap
.insert(RRKV
);
1188 ResolvedSymbols
.insert(RRKV
.first
);
1193 applyExternalSymbolRelocations(ExternalSymbolMap
);
1195 return Error::success();
1198 void RuntimeDyldImpl::finalizeAsync(
1199 std::unique_ptr
<RuntimeDyldImpl
> This
,
1200 unique_function
<void(object::OwningBinary
<object::ObjectFile
>,
1201 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>, Error
)>
1203 object::OwningBinary
<object::ObjectFile
> O
,
1204 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
> Info
) {
1206 auto SharedThis
= std::shared_ptr
<RuntimeDyldImpl
>(std::move(This
));
1207 auto PostResolveContinuation
=
1208 [SharedThis
, OnEmitted
= std::move(OnEmitted
), O
= std::move(O
),
1209 Info
= std::move(Info
)](
1210 Expected
<JITSymbolResolver::LookupResult
> Result
) mutable {
1212 OnEmitted(std::move(O
), std::move(Info
), Result
.takeError());
1216 /// Copy the result into a StringMap, where the keys are held by value.
1217 StringMap
<JITEvaluatedSymbol
> Resolved
;
1218 for (auto &KV
: *Result
)
1219 Resolved
[KV
.first
] = KV
.second
;
1221 SharedThis
->applyExternalSymbolRelocations(Resolved
);
1222 SharedThis
->resolveLocalRelocations();
1223 SharedThis
->registerEHFrames();
1225 if (SharedThis
->MemMgr
.finalizeMemory(&ErrMsg
))
1226 OnEmitted(std::move(O
), std::move(Info
),
1227 make_error
<StringError
>(std::move(ErrMsg
),
1228 inconvertibleErrorCode()));
1230 OnEmitted(std::move(O
), std::move(Info
), Error::success());
1233 JITSymbolResolver::LookupSet Symbols
;
1235 for (auto &RelocKV
: SharedThis
->ExternalSymbolRelocations
) {
1236 StringRef Name
= RelocKV
.first();
1237 if (Name
.empty()) // Skip absolute symbol relocations.
1239 assert(!SharedThis
->GlobalSymbolTable
.count(Name
) &&
1240 "Name already processed. RuntimeDyld instances can not be re-used "
1241 "when finalizing with finalizeAsync.");
1242 Symbols
.insert(Name
);
1245 if (!Symbols
.empty()) {
1246 SharedThis
->Resolver
.lookup(Symbols
, std::move(PostResolveContinuation
));
1248 PostResolveContinuation(std::map
<StringRef
, JITEvaluatedSymbol
>());
1251 //===----------------------------------------------------------------------===//
1252 // RuntimeDyld class implementation
1254 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
1255 const object::SectionRef
&Sec
) const {
1257 auto I
= ObjSecToIDMap
.find(Sec
);
1258 if (I
!= ObjSecToIDMap
.end())
1259 return RTDyld
.Sections
[I
->second
].getLoadAddress();
1264 void RuntimeDyld::MemoryManager::anchor() {}
1265 void JITSymbolResolver::anchor() {}
1266 void LegacyJITSymbolResolver::anchor() {}
1268 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager
&MemMgr
,
1269 JITSymbolResolver
&Resolver
)
1270 : MemMgr(MemMgr
), Resolver(Resolver
) {
1271 // FIXME: There's a potential issue lurking here if a single instance of
1272 // RuntimeDyld is used to load multiple objects. The current implementation
1273 // associates a single memory manager with a RuntimeDyld instance. Even
1274 // though the public class spawns a new 'impl' instance for each load,
1275 // they share a single memory manager. This can become a problem when page
1276 // permissions are applied.
1278 ProcessAllSections
= false;
1281 RuntimeDyld::~RuntimeDyld() {}
1283 static std::unique_ptr
<RuntimeDyldCOFF
>
1284 createRuntimeDyldCOFF(
1285 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1286 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1287 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1288 std::unique_ptr
<RuntimeDyldCOFF
> Dyld
=
1289 RuntimeDyldCOFF::create(Arch
, MM
, Resolver
);
1290 Dyld
->setProcessAllSections(ProcessAllSections
);
1291 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1295 static std::unique_ptr
<RuntimeDyldELF
>
1296 createRuntimeDyldELF(Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1297 JITSymbolResolver
&Resolver
, bool ProcessAllSections
,
1298 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1299 std::unique_ptr
<RuntimeDyldELF
> Dyld
=
1300 RuntimeDyldELF::create(Arch
, MM
, Resolver
);
1301 Dyld
->setProcessAllSections(ProcessAllSections
);
1302 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1306 static std::unique_ptr
<RuntimeDyldMachO
>
1307 createRuntimeDyldMachO(
1308 Triple::ArchType Arch
, RuntimeDyld::MemoryManager
&MM
,
1309 JITSymbolResolver
&Resolver
,
1310 bool ProcessAllSections
,
1311 RuntimeDyld::NotifyStubEmittedFunction NotifyStubEmitted
) {
1312 std::unique_ptr
<RuntimeDyldMachO
> Dyld
=
1313 RuntimeDyldMachO::create(Arch
, MM
, Resolver
);
1314 Dyld
->setProcessAllSections(ProcessAllSections
);
1315 Dyld
->setNotifyStubEmitted(std::move(NotifyStubEmitted
));
1319 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>
1320 RuntimeDyld::loadObject(const ObjectFile
&Obj
) {
1324 createRuntimeDyldELF(static_cast<Triple::ArchType
>(Obj
.getArch()),
1325 MemMgr
, Resolver
, ProcessAllSections
,
1326 std::move(NotifyStubEmitted
));
1327 else if (Obj
.isMachO())
1328 Dyld
= createRuntimeDyldMachO(
1329 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1330 ProcessAllSections
, std::move(NotifyStubEmitted
));
1331 else if (Obj
.isCOFF())
1332 Dyld
= createRuntimeDyldCOFF(
1333 static_cast<Triple::ArchType
>(Obj
.getArch()), MemMgr
, Resolver
,
1334 ProcessAllSections
, std::move(NotifyStubEmitted
));
1336 report_fatal_error("Incompatible object format!");
1339 if (!Dyld
->isCompatibleFile(Obj
))
1340 report_fatal_error("Incompatible object format!");
1342 auto LoadedObjInfo
= Dyld
->loadObject(Obj
);
1343 MemMgr
.notifyObjectLoaded(*this, Obj
);
1344 return LoadedObjInfo
;
1347 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name
) const {
1350 return Dyld
->getSymbolLocalAddress(Name
);
1353 unsigned RuntimeDyld::getSymbolSectionID(StringRef Name
) const {
1354 assert(Dyld
&& "No RuntimeDyld instance attached");
1355 return Dyld
->getSymbolSectionID(Name
);
1358 JITEvaluatedSymbol
RuntimeDyld::getSymbol(StringRef Name
) const {
1361 return Dyld
->getSymbol(Name
);
1364 std::map
<StringRef
, JITEvaluatedSymbol
> RuntimeDyld::getSymbolTable() const {
1366 return std::map
<StringRef
, JITEvaluatedSymbol
>();
1367 return Dyld
->getSymbolTable();
1370 void RuntimeDyld::resolveRelocations() { Dyld
->resolveRelocations(); }
1372 void RuntimeDyld::reassignSectionAddress(unsigned SectionID
, uint64_t Addr
) {
1373 Dyld
->reassignSectionAddress(SectionID
, Addr
);
1376 void RuntimeDyld::mapSectionAddress(const void *LocalAddress
,
1377 uint64_t TargetAddress
) {
1378 Dyld
->mapSectionAddress(LocalAddress
, TargetAddress
);
1381 bool RuntimeDyld::hasError() { return Dyld
->hasError(); }
1383 StringRef
RuntimeDyld::getErrorString() { return Dyld
->getErrorString(); }
1385 void RuntimeDyld::finalizeWithMemoryManagerLocking() {
1386 bool MemoryFinalizationLocked
= MemMgr
.FinalizationLocked
;
1387 MemMgr
.FinalizationLocked
= true;
1388 resolveRelocations();
1390 if (!MemoryFinalizationLocked
) {
1391 MemMgr
.finalizeMemory();
1392 MemMgr
.FinalizationLocked
= false;
1396 StringRef
RuntimeDyld::getSectionContent(unsigned SectionID
) const {
1397 assert(Dyld
&& "No Dyld instance attached");
1398 return Dyld
->getSectionContent(SectionID
);
1401 uint64_t RuntimeDyld::getSectionLoadAddress(unsigned SectionID
) const {
1402 assert(Dyld
&& "No Dyld instance attached");
1403 return Dyld
->getSectionLoadAddress(SectionID
);
1406 void RuntimeDyld::registerEHFrames() {
1408 Dyld
->registerEHFrames();
1411 void RuntimeDyld::deregisterEHFrames() {
1413 Dyld
->deregisterEHFrames();
1415 // FIXME: Kill this with fire once we have a new JIT linker: this is only here
1416 // so that we can re-use RuntimeDyld's implementation without twisting the
1417 // interface any further for ORC's purposes.
1419 object::OwningBinary
<object::ObjectFile
> O
,
1420 RuntimeDyld::MemoryManager
&MemMgr
, JITSymbolResolver
&Resolver
,
1421 bool ProcessAllSections
,
1422 unique_function
<Error(const object::ObjectFile
&Obj
,
1423 RuntimeDyld::LoadedObjectInfo
&LoadedObj
,
1424 std::map
<StringRef
, JITEvaluatedSymbol
>)>
1426 unique_function
<void(object::OwningBinary
<object::ObjectFile
>,
1427 std::unique_ptr
<RuntimeDyld::LoadedObjectInfo
>, Error
)>
1430 RuntimeDyld
RTDyld(MemMgr
, Resolver
);
1431 RTDyld
.setProcessAllSections(ProcessAllSections
);
1433 auto Info
= RTDyld
.loadObject(*O
.getBinary());
1435 if (RTDyld
.hasError()) {
1436 OnEmitted(std::move(O
), std::move(Info
),
1437 make_error
<StringError
>(RTDyld
.getErrorString(),
1438 inconvertibleErrorCode()));
1442 if (auto Err
= OnLoaded(*O
.getBinary(), *Info
, RTDyld
.getSymbolTable()))
1443 OnEmitted(std::move(O
), std::move(Info
), std::move(Err
));
1445 RuntimeDyldImpl::finalizeAsync(std::move(RTDyld
.Dyld
), std::move(OnEmitted
),
1446 std::move(O
), std::move(Info
));
1449 } // end namespace llvm