[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / ConstantFold.cpp
blob173117185f2af56339b7f6a276ae23f6682aed8d
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 using namespace llvm;
36 using namespace llvm::PatternMatch;
38 //===----------------------------------------------------------------------===//
39 // ConstantFold*Instruction Implementations
40 //===----------------------------------------------------------------------===//
42 /// Convert the specified vector Constant node to the specified vector type.
43 /// At this point, we know that the elements of the input vector constant are
44 /// all simple integer or FP values.
45 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
47 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
48 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
50 // Do not iterate on scalable vector. The num of elements is unknown at
51 // compile-time.
52 if (isa<ScalableVectorType>(DstTy))
53 return nullptr;
55 // If this cast changes element count then we can't handle it here:
56 // doing so requires endianness information. This should be handled by
57 // Analysis/ConstantFolding.cpp
58 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
59 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
60 return nullptr;
62 Type *DstEltTy = DstTy->getElementType();
63 // Fast path for splatted constants.
64 if (Constant *Splat = CV->getSplatValue()) {
65 return ConstantVector::getSplat(DstTy->getElementCount(),
66 ConstantExpr::getBitCast(Splat, DstEltTy));
69 SmallVector<Constant*, 16> Result;
70 Type *Ty = IntegerType::get(CV->getContext(), 32);
71 for (unsigned i = 0; i != NumElts; ++i) {
72 Constant *C =
73 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
74 C = ConstantExpr::getBitCast(C, DstEltTy);
75 Result.push_back(C);
78 return ConstantVector::get(Result);
81 /// This function determines which opcode to use to fold two constant cast
82 /// expressions together. It uses CastInst::isEliminableCastPair to determine
83 /// the opcode. Consequently its just a wrapper around that function.
84 /// Determine if it is valid to fold a cast of a cast
85 static unsigned
86 foldConstantCastPair(
87 unsigned opc, ///< opcode of the second cast constant expression
88 ConstantExpr *Op, ///< the first cast constant expression
89 Type *DstTy ///< destination type of the first cast
90 ) {
91 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
92 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
93 assert(CastInst::isCast(opc) && "Invalid cast opcode");
95 // The types and opcodes for the two Cast constant expressions
96 Type *SrcTy = Op->getOperand(0)->getType();
97 Type *MidTy = Op->getType();
98 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
99 Instruction::CastOps secondOp = Instruction::CastOps(opc);
101 // Assume that pointers are never more than 64 bits wide, and only use this
102 // for the middle type. Otherwise we could end up folding away illegal
103 // bitcasts between address spaces with different sizes.
104 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
106 // Let CastInst::isEliminableCastPair do the heavy lifting.
107 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
108 nullptr, FakeIntPtrTy, nullptr);
111 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
112 Type *SrcTy = V->getType();
113 if (SrcTy == DestTy)
114 return V; // no-op cast
116 // Check to see if we are casting a pointer to an aggregate to a pointer to
117 // the first element. If so, return the appropriate GEP instruction.
118 if (PointerType *PTy = dyn_cast<PointerType>(V->getType()))
119 if (PointerType *DPTy = dyn_cast<PointerType>(DestTy))
120 if (PTy->getAddressSpace() == DPTy->getAddressSpace() &&
121 !PTy->isOpaque() && !DPTy->isOpaque() &&
122 PTy->getElementType()->isSized()) {
123 SmallVector<Value*, 8> IdxList;
124 Value *Zero =
125 Constant::getNullValue(Type::getInt32Ty(DPTy->getContext()));
126 IdxList.push_back(Zero);
127 Type *ElTy = PTy->getElementType();
128 while (ElTy && ElTy != DPTy->getElementType()) {
129 ElTy = GetElementPtrInst::getTypeAtIndex(ElTy, (uint64_t)0);
130 IdxList.push_back(Zero);
133 if (ElTy == DPTy->getElementType())
134 // This GEP is inbounds because all indices are zero.
135 return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(),
136 V, IdxList);
139 // Handle casts from one vector constant to another. We know that the src
140 // and dest type have the same size (otherwise its an illegal cast).
141 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
142 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
143 assert(DestPTy->getPrimitiveSizeInBits() ==
144 SrcTy->getPrimitiveSizeInBits() &&
145 "Not cast between same sized vectors!");
146 SrcTy = nullptr;
147 // First, check for null. Undef is already handled.
148 if (isa<ConstantAggregateZero>(V))
149 return Constant::getNullValue(DestTy);
151 // Handle ConstantVector and ConstantAggregateVector.
152 return BitCastConstantVector(V, DestPTy);
155 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
156 // This allows for other simplifications (although some of them
157 // can only be handled by Analysis/ConstantFolding.cpp).
158 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
159 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
162 // Finally, implement bitcast folding now. The code below doesn't handle
163 // bitcast right.
164 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
165 return ConstantPointerNull::get(cast<PointerType>(DestTy));
167 // Handle integral constant input.
168 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
169 if (DestTy->isIntegerTy())
170 // Integral -> Integral. This is a no-op because the bit widths must
171 // be the same. Consequently, we just fold to V.
172 return V;
174 // See note below regarding the PPC_FP128 restriction.
175 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
176 return ConstantFP::get(DestTy->getContext(),
177 APFloat(DestTy->getFltSemantics(),
178 CI->getValue()));
180 // Otherwise, can't fold this (vector?)
181 return nullptr;
184 // Handle ConstantFP input: FP -> Integral.
185 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
186 // PPC_FP128 is really the sum of two consecutive doubles, where the first
187 // double is always stored first in memory, regardless of the target
188 // endianness. The memory layout of i128, however, depends on the target
189 // endianness, and so we can't fold this without target endianness
190 // information. This should instead be handled by
191 // Analysis/ConstantFolding.cpp
192 if (FP->getType()->isPPC_FP128Ty())
193 return nullptr;
195 // Make sure dest type is compatible with the folded integer constant.
196 if (!DestTy->isIntegerTy())
197 return nullptr;
199 return ConstantInt::get(FP->getContext(),
200 FP->getValueAPF().bitcastToAPInt());
203 return nullptr;
207 /// V is an integer constant which only has a subset of its bytes used.
208 /// The bytes used are indicated by ByteStart (which is the first byte used,
209 /// counting from the least significant byte) and ByteSize, which is the number
210 /// of bytes used.
212 /// This function analyzes the specified constant to see if the specified byte
213 /// range can be returned as a simplified constant. If so, the constant is
214 /// returned, otherwise null is returned.
215 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
216 unsigned ByteSize) {
217 assert(C->getType()->isIntegerTy() &&
218 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
219 "Non-byte sized integer input");
220 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
221 assert(ByteSize && "Must be accessing some piece");
222 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
223 assert(ByteSize != CSize && "Should not extract everything");
225 // Constant Integers are simple.
226 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
227 APInt V = CI->getValue();
228 if (ByteStart)
229 V.lshrInPlace(ByteStart*8);
230 V = V.trunc(ByteSize*8);
231 return ConstantInt::get(CI->getContext(), V);
234 // In the input is a constant expr, we might be able to recursively simplify.
235 // If not, we definitely can't do anything.
236 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
237 if (!CE) return nullptr;
239 switch (CE->getOpcode()) {
240 default: return nullptr;
241 case Instruction::Or: {
242 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
243 if (!RHS)
244 return nullptr;
246 // X | -1 -> -1.
247 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS))
248 if (RHSC->isMinusOne())
249 return RHSC;
251 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
252 if (!LHS)
253 return nullptr;
254 return ConstantExpr::getOr(LHS, RHS);
256 case Instruction::And: {
257 Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize);
258 if (!RHS)
259 return nullptr;
261 // X & 0 -> 0.
262 if (RHS->isNullValue())
263 return RHS;
265 Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize);
266 if (!LHS)
267 return nullptr;
268 return ConstantExpr::getAnd(LHS, RHS);
270 case Instruction::LShr: {
271 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
272 if (!Amt)
273 return nullptr;
274 APInt ShAmt = Amt->getValue();
275 // Cannot analyze non-byte shifts.
276 if ((ShAmt & 7) != 0)
277 return nullptr;
278 ShAmt.lshrInPlace(3);
280 // If the extract is known to be all zeros, return zero.
281 if (ShAmt.uge(CSize - ByteStart))
282 return Constant::getNullValue(
283 IntegerType::get(CE->getContext(), ByteSize * 8));
284 // If the extract is known to be fully in the input, extract it.
285 if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
286 return ExtractConstantBytes(CE->getOperand(0),
287 ByteStart + ShAmt.getZExtValue(), ByteSize);
289 // TODO: Handle the 'partially zero' case.
290 return nullptr;
293 case Instruction::Shl: {
294 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
295 if (!Amt)
296 return nullptr;
297 APInt ShAmt = Amt->getValue();
298 // Cannot analyze non-byte shifts.
299 if ((ShAmt & 7) != 0)
300 return nullptr;
301 ShAmt.lshrInPlace(3);
303 // If the extract is known to be all zeros, return zero.
304 if (ShAmt.uge(ByteStart + ByteSize))
305 return Constant::getNullValue(
306 IntegerType::get(CE->getContext(), ByteSize * 8));
307 // If the extract is known to be fully in the input, extract it.
308 if (ShAmt.ule(ByteStart))
309 return ExtractConstantBytes(CE->getOperand(0),
310 ByteStart - ShAmt.getZExtValue(), ByteSize);
312 // TODO: Handle the 'partially zero' case.
313 return nullptr;
316 case Instruction::ZExt: {
317 unsigned SrcBitSize =
318 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
320 // If extracting something that is completely zero, return 0.
321 if (ByteStart*8 >= SrcBitSize)
322 return Constant::getNullValue(IntegerType::get(CE->getContext(),
323 ByteSize*8));
325 // If exactly extracting the input, return it.
326 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
327 return CE->getOperand(0);
329 // If extracting something completely in the input, if the input is a
330 // multiple of 8 bits, recurse.
331 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
332 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
334 // Otherwise, if extracting a subset of the input, which is not multiple of
335 // 8 bits, do a shift and trunc to get the bits.
336 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
337 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
338 Constant *Res = CE->getOperand(0);
339 if (ByteStart)
340 Res = ConstantExpr::getLShr(Res,
341 ConstantInt::get(Res->getType(), ByteStart*8));
342 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
343 ByteSize*8));
346 // TODO: Handle the 'partially zero' case.
347 return nullptr;
352 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
353 Type *DestTy) {
354 if (isa<PoisonValue>(V))
355 return PoisonValue::get(DestTy);
357 if (isa<UndefValue>(V)) {
358 // zext(undef) = 0, because the top bits will be zero.
359 // sext(undef) = 0, because the top bits will all be the same.
360 // [us]itofp(undef) = 0, because the result value is bounded.
361 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
362 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
363 return Constant::getNullValue(DestTy);
364 return UndefValue::get(DestTy);
367 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
368 opc != Instruction::AddrSpaceCast)
369 return Constant::getNullValue(DestTy);
371 // If the cast operand is a constant expression, there's a few things we can
372 // do to try to simplify it.
373 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
374 if (CE->isCast()) {
375 // Try hard to fold cast of cast because they are often eliminable.
376 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
377 return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy);
378 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
379 // Do not fold addrspacecast (gep 0, .., 0). It might make the
380 // addrspacecast uncanonicalized.
381 opc != Instruction::AddrSpaceCast &&
382 // Do not fold bitcast (gep) with inrange index, as this loses
383 // information.
384 !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() &&
385 // Do not fold if the gep type is a vector, as bitcasting
386 // operand 0 of a vector gep will result in a bitcast between
387 // different sizes.
388 !CE->getType()->isVectorTy()) {
389 // If all of the indexes in the GEP are null values, there is no pointer
390 // adjustment going on. We might as well cast the source pointer.
391 bool isAllNull = true;
392 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
393 if (!CE->getOperand(i)->isNullValue()) {
394 isAllNull = false;
395 break;
397 if (isAllNull)
398 // This is casting one pointer type to another, always BitCast
399 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
403 // If the cast operand is a constant vector, perform the cast by
404 // operating on each element. In the cast of bitcasts, the element
405 // count may be mismatched; don't attempt to handle that here.
406 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
407 DestTy->isVectorTy() &&
408 cast<FixedVectorType>(DestTy)->getNumElements() ==
409 cast<FixedVectorType>(V->getType())->getNumElements()) {
410 VectorType *DestVecTy = cast<VectorType>(DestTy);
411 Type *DstEltTy = DestVecTy->getElementType();
412 // Fast path for splatted constants.
413 if (Constant *Splat = V->getSplatValue()) {
414 return ConstantVector::getSplat(
415 cast<VectorType>(DestTy)->getElementCount(),
416 ConstantExpr::getCast(opc, Splat, DstEltTy));
418 SmallVector<Constant *, 16> res;
419 Type *Ty = IntegerType::get(V->getContext(), 32);
420 for (unsigned i = 0,
421 e = cast<FixedVectorType>(V->getType())->getNumElements();
422 i != e; ++i) {
423 Constant *C =
424 ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
425 res.push_back(ConstantExpr::getCast(opc, C, DstEltTy));
427 return ConstantVector::get(res);
430 // We actually have to do a cast now. Perform the cast according to the
431 // opcode specified.
432 switch (opc) {
433 default:
434 llvm_unreachable("Failed to cast constant expression");
435 case Instruction::FPTrunc:
436 case Instruction::FPExt:
437 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
438 bool ignored;
439 APFloat Val = FPC->getValueAPF();
440 Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() :
441 DestTy->isFloatTy() ? APFloat::IEEEsingle() :
442 DestTy->isDoubleTy() ? APFloat::IEEEdouble() :
443 DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() :
444 DestTy->isFP128Ty() ? APFloat::IEEEquad() :
445 DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() :
446 APFloat::Bogus(),
447 APFloat::rmNearestTiesToEven, &ignored);
448 return ConstantFP::get(V->getContext(), Val);
450 return nullptr; // Can't fold.
451 case Instruction::FPToUI:
452 case Instruction::FPToSI:
453 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
454 const APFloat &V = FPC->getValueAPF();
455 bool ignored;
456 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
457 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
458 if (APFloat::opInvalidOp ==
459 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
460 // Undefined behavior invoked - the destination type can't represent
461 // the input constant.
462 return PoisonValue::get(DestTy);
464 return ConstantInt::get(FPC->getContext(), IntVal);
466 return nullptr; // Can't fold.
467 case Instruction::IntToPtr: //always treated as unsigned
468 if (V->isNullValue()) // Is it an integral null value?
469 return ConstantPointerNull::get(cast<PointerType>(DestTy));
470 return nullptr; // Other pointer types cannot be casted
471 case Instruction::PtrToInt: // always treated as unsigned
472 // Is it a null pointer value?
473 if (V->isNullValue())
474 return ConstantInt::get(DestTy, 0);
475 // Other pointer types cannot be casted
476 return nullptr;
477 case Instruction::UIToFP:
478 case Instruction::SIToFP:
479 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
480 const APInt &api = CI->getValue();
481 APFloat apf(DestTy->getFltSemantics(),
482 APInt::getNullValue(DestTy->getPrimitiveSizeInBits()));
483 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
484 APFloat::rmNearestTiesToEven);
485 return ConstantFP::get(V->getContext(), apf);
487 return nullptr;
488 case Instruction::ZExt:
489 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
490 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
491 return ConstantInt::get(V->getContext(),
492 CI->getValue().zext(BitWidth));
494 return nullptr;
495 case Instruction::SExt:
496 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
497 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
498 return ConstantInt::get(V->getContext(),
499 CI->getValue().sext(BitWidth));
501 return nullptr;
502 case Instruction::Trunc: {
503 if (V->getType()->isVectorTy())
504 return nullptr;
506 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
507 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
508 return ConstantInt::get(V->getContext(),
509 CI->getValue().trunc(DestBitWidth));
512 // The input must be a constantexpr. See if we can simplify this based on
513 // the bytes we are demanding. Only do this if the source and dest are an
514 // even multiple of a byte.
515 if ((DestBitWidth & 7) == 0 &&
516 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
517 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
518 return Res;
520 return nullptr;
522 case Instruction::BitCast:
523 return FoldBitCast(V, DestTy);
524 case Instruction::AddrSpaceCast:
525 return nullptr;
529 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
530 Constant *V1, Constant *V2) {
531 // Check for i1 and vector true/false conditions.
532 if (Cond->isNullValue()) return V2;
533 if (Cond->isAllOnesValue()) return V1;
535 // If the condition is a vector constant, fold the result elementwise.
536 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
537 auto *V1VTy = CondV->getType();
538 SmallVector<Constant*, 16> Result;
539 Type *Ty = IntegerType::get(CondV->getContext(), 32);
540 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
541 Constant *V;
542 Constant *V1Element = ConstantExpr::getExtractElement(V1,
543 ConstantInt::get(Ty, i));
544 Constant *V2Element = ConstantExpr::getExtractElement(V2,
545 ConstantInt::get(Ty, i));
546 auto *Cond = cast<Constant>(CondV->getOperand(i));
547 if (isa<PoisonValue>(Cond)) {
548 V = PoisonValue::get(V1Element->getType());
549 } else if (V1Element == V2Element) {
550 V = V1Element;
551 } else if (isa<UndefValue>(Cond)) {
552 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
553 } else {
554 if (!isa<ConstantInt>(Cond)) break;
555 V = Cond->isNullValue() ? V2Element : V1Element;
557 Result.push_back(V);
560 // If we were able to build the vector, return it.
561 if (Result.size() == V1VTy->getNumElements())
562 return ConstantVector::get(Result);
565 if (isa<PoisonValue>(Cond))
566 return PoisonValue::get(V1->getType());
568 if (isa<UndefValue>(Cond)) {
569 if (isa<UndefValue>(V1)) return V1;
570 return V2;
573 if (V1 == V2) return V1;
575 if (isa<PoisonValue>(V1))
576 return V2;
577 if (isa<PoisonValue>(V2))
578 return V1;
580 // If the true or false value is undef, we can fold to the other value as
581 // long as the other value isn't poison.
582 auto NotPoison = [](Constant *C) {
583 if (isa<PoisonValue>(C))
584 return false;
586 // TODO: We can analyze ConstExpr by opcode to determine if there is any
587 // possibility of poison.
588 if (isa<ConstantExpr>(C))
589 return false;
591 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
592 isa<ConstantPointerNull>(C) || isa<Function>(C))
593 return true;
595 if (C->getType()->isVectorTy())
596 return !C->containsPoisonElement() && !C->containsConstantExpression();
598 // TODO: Recursively analyze aggregates or other constants.
599 return false;
601 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
602 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
604 if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) {
605 if (TrueVal->getOpcode() == Instruction::Select)
606 if (TrueVal->getOperand(0) == Cond)
607 return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2);
609 if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) {
610 if (FalseVal->getOpcode() == Instruction::Select)
611 if (FalseVal->getOperand(0) == Cond)
612 return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2));
615 return nullptr;
618 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
619 Constant *Idx) {
620 auto *ValVTy = cast<VectorType>(Val->getType());
622 // extractelt poison, C -> poison
623 // extractelt C, undef -> poison
624 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
625 return PoisonValue::get(ValVTy->getElementType());
627 // extractelt undef, C -> undef
628 if (isa<UndefValue>(Val))
629 return UndefValue::get(ValVTy->getElementType());
631 auto *CIdx = dyn_cast<ConstantInt>(Idx);
632 if (!CIdx)
633 return nullptr;
635 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
636 // ee({w,x,y,z}, wrong_value) -> poison
637 if (CIdx->uge(ValFVTy->getNumElements()))
638 return PoisonValue::get(ValFVTy->getElementType());
641 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
642 if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
643 if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
644 SmallVector<Constant *, 8> Ops;
645 Ops.reserve(CE->getNumOperands());
646 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
647 Constant *Op = CE->getOperand(i);
648 if (Op->getType()->isVectorTy()) {
649 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
650 if (!ScalarOp)
651 return nullptr;
652 Ops.push_back(ScalarOp);
653 } else
654 Ops.push_back(Op);
656 return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
657 GEP->getSourceElementType());
658 } else if (CE->getOpcode() == Instruction::InsertElement) {
659 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
660 if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
661 APSInt(CIdx->getValue()))) {
662 return CE->getOperand(1);
663 } else {
664 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
670 if (Constant *C = Val->getAggregateElement(CIdx))
671 return C;
673 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
674 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
675 if (Constant *SplatVal = Val->getSplatValue())
676 return SplatVal;
679 return nullptr;
682 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
683 Constant *Elt,
684 Constant *Idx) {
685 if (isa<UndefValue>(Idx))
686 return PoisonValue::get(Val->getType());
688 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
689 if (!CIdx) return nullptr;
691 // Do not iterate on scalable vector. The num of elements is unknown at
692 // compile-time.
693 if (isa<ScalableVectorType>(Val->getType()))
694 return nullptr;
696 auto *ValTy = cast<FixedVectorType>(Val->getType());
698 unsigned NumElts = ValTy->getNumElements();
699 if (CIdx->uge(NumElts))
700 return PoisonValue::get(Val->getType());
702 SmallVector<Constant*, 16> Result;
703 Result.reserve(NumElts);
704 auto *Ty = Type::getInt32Ty(Val->getContext());
705 uint64_t IdxVal = CIdx->getZExtValue();
706 for (unsigned i = 0; i != NumElts; ++i) {
707 if (i == IdxVal) {
708 Result.push_back(Elt);
709 continue;
712 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
713 Result.push_back(C);
716 return ConstantVector::get(Result);
719 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
720 ArrayRef<int> Mask) {
721 auto *V1VTy = cast<VectorType>(V1->getType());
722 unsigned MaskNumElts = Mask.size();
723 auto MaskEltCount =
724 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
725 Type *EltTy = V1VTy->getElementType();
727 // Undefined shuffle mask -> undefined value.
728 if (all_of(Mask, [](int Elt) { return Elt == UndefMaskElem; })) {
729 return UndefValue::get(FixedVectorType::get(EltTy, MaskNumElts));
732 // If the mask is all zeros this is a splat, no need to go through all
733 // elements.
734 if (all_of(Mask, [](int Elt) { return Elt == 0; }) &&
735 !MaskEltCount.isScalable()) {
736 Type *Ty = IntegerType::get(V1->getContext(), 32);
737 Constant *Elt =
738 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
739 return ConstantVector::getSplat(MaskEltCount, Elt);
741 // Do not iterate on scalable vector. The num of elements is unknown at
742 // compile-time.
743 if (isa<ScalableVectorType>(V1VTy))
744 return nullptr;
746 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
748 // Loop over the shuffle mask, evaluating each element.
749 SmallVector<Constant*, 32> Result;
750 for (unsigned i = 0; i != MaskNumElts; ++i) {
751 int Elt = Mask[i];
752 if (Elt == -1) {
753 Result.push_back(UndefValue::get(EltTy));
754 continue;
756 Constant *InElt;
757 if (unsigned(Elt) >= SrcNumElts*2)
758 InElt = UndefValue::get(EltTy);
759 else if (unsigned(Elt) >= SrcNumElts) {
760 Type *Ty = IntegerType::get(V2->getContext(), 32);
761 InElt =
762 ConstantExpr::getExtractElement(V2,
763 ConstantInt::get(Ty, Elt - SrcNumElts));
764 } else {
765 Type *Ty = IntegerType::get(V1->getContext(), 32);
766 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
768 Result.push_back(InElt);
771 return ConstantVector::get(Result);
774 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
775 ArrayRef<unsigned> Idxs) {
776 // Base case: no indices, so return the entire value.
777 if (Idxs.empty())
778 return Agg;
780 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
781 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
783 return nullptr;
786 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
787 Constant *Val,
788 ArrayRef<unsigned> Idxs) {
789 // Base case: no indices, so replace the entire value.
790 if (Idxs.empty())
791 return Val;
793 unsigned NumElts;
794 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
795 NumElts = ST->getNumElements();
796 else
797 NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
799 SmallVector<Constant*, 32> Result;
800 for (unsigned i = 0; i != NumElts; ++i) {
801 Constant *C = Agg->getAggregateElement(i);
802 if (!C) return nullptr;
804 if (Idxs[0] == i)
805 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
807 Result.push_back(C);
810 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
811 return ConstantStruct::get(ST, Result);
812 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
815 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
816 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
818 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
819 // vectors are always evaluated per element.
820 bool IsScalableVector = isa<ScalableVectorType>(C->getType());
821 bool HasScalarUndefOrScalableVectorUndef =
822 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
824 if (HasScalarUndefOrScalableVectorUndef) {
825 switch (static_cast<Instruction::UnaryOps>(Opcode)) {
826 case Instruction::FNeg:
827 return C; // -undef -> undef
828 case Instruction::UnaryOpsEnd:
829 llvm_unreachable("Invalid UnaryOp");
833 // Constant should not be UndefValue, unless these are vector constants.
834 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
835 // We only have FP UnaryOps right now.
836 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
838 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
839 const APFloat &CV = CFP->getValueAPF();
840 switch (Opcode) {
841 default:
842 break;
843 case Instruction::FNeg:
844 return ConstantFP::get(C->getContext(), neg(CV));
846 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
848 Type *Ty = IntegerType::get(VTy->getContext(), 32);
849 // Fast path for splatted constants.
850 if (Constant *Splat = C->getSplatValue()) {
851 Constant *Elt = ConstantExpr::get(Opcode, Splat);
852 return ConstantVector::getSplat(VTy->getElementCount(), Elt);
855 // Fold each element and create a vector constant from those constants.
856 SmallVector<Constant *, 16> Result;
857 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
858 Constant *ExtractIdx = ConstantInt::get(Ty, i);
859 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
861 Result.push_back(ConstantExpr::get(Opcode, Elt));
864 return ConstantVector::get(Result);
867 // We don't know how to fold this.
868 return nullptr;
871 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
872 Constant *C2) {
873 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
875 // Simplify BinOps with their identity values first. They are no-ops and we
876 // can always return the other value, including undef or poison values.
877 // FIXME: remove unnecessary duplicated identity patterns below.
878 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
879 // like X << 0 = X.
880 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
881 if (Identity) {
882 if (C1 == Identity)
883 return C2;
884 if (C2 == Identity)
885 return C1;
888 // Binary operations propagate poison.
889 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
890 return PoisonValue::get(C1->getType());
892 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
893 // vectors are always evaluated per element.
894 bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
895 bool HasScalarUndefOrScalableVectorUndef =
896 (!C1->getType()->isVectorTy() || IsScalableVector) &&
897 (isa<UndefValue>(C1) || isa<UndefValue>(C2));
898 if (HasScalarUndefOrScalableVectorUndef) {
899 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
900 case Instruction::Xor:
901 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
902 // Handle undef ^ undef -> 0 special case. This is a common
903 // idiom (misuse).
904 return Constant::getNullValue(C1->getType());
905 LLVM_FALLTHROUGH;
906 case Instruction::Add:
907 case Instruction::Sub:
908 return UndefValue::get(C1->getType());
909 case Instruction::And:
910 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
911 return C1;
912 return Constant::getNullValue(C1->getType()); // undef & X -> 0
913 case Instruction::Mul: {
914 // undef * undef -> undef
915 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
916 return C1;
917 const APInt *CV;
918 // X * undef -> undef if X is odd
919 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
920 if ((*CV)[0])
921 return UndefValue::get(C1->getType());
923 // X * undef -> 0 otherwise
924 return Constant::getNullValue(C1->getType());
926 case Instruction::SDiv:
927 case Instruction::UDiv:
928 // X / undef -> poison
929 // X / 0 -> poison
930 if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
931 return PoisonValue::get(C2->getType());
932 // undef / 1 -> undef
933 if (match(C2, m_One()))
934 return C1;
935 // undef / X -> 0 otherwise
936 return Constant::getNullValue(C1->getType());
937 case Instruction::URem:
938 case Instruction::SRem:
939 // X % undef -> poison
940 // X % 0 -> poison
941 if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
942 return PoisonValue::get(C2->getType());
943 // undef % X -> 0 otherwise
944 return Constant::getNullValue(C1->getType());
945 case Instruction::Or: // X | undef -> -1
946 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
947 return C1;
948 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
949 case Instruction::LShr:
950 // X >>l undef -> poison
951 if (isa<UndefValue>(C2))
952 return PoisonValue::get(C2->getType());
953 // undef >>l 0 -> undef
954 if (match(C2, m_Zero()))
955 return C1;
956 // undef >>l X -> 0
957 return Constant::getNullValue(C1->getType());
958 case Instruction::AShr:
959 // X >>a undef -> poison
960 if (isa<UndefValue>(C2))
961 return PoisonValue::get(C2->getType());
962 // undef >>a 0 -> undef
963 if (match(C2, m_Zero()))
964 return C1;
965 // TODO: undef >>a X -> poison if the shift is exact
966 // undef >>a X -> 0
967 return Constant::getNullValue(C1->getType());
968 case Instruction::Shl:
969 // X << undef -> undef
970 if (isa<UndefValue>(C2))
971 return PoisonValue::get(C2->getType());
972 // undef << 0 -> undef
973 if (match(C2, m_Zero()))
974 return C1;
975 // undef << X -> 0
976 return Constant::getNullValue(C1->getType());
977 case Instruction::FSub:
978 // -0.0 - undef --> undef (consistent with "fneg undef")
979 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
980 return C2;
981 LLVM_FALLTHROUGH;
982 case Instruction::FAdd:
983 case Instruction::FMul:
984 case Instruction::FDiv:
985 case Instruction::FRem:
986 // [any flop] undef, undef -> undef
987 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
988 return C1;
989 // [any flop] C, undef -> NaN
990 // [any flop] undef, C -> NaN
991 // We could potentially specialize NaN/Inf constants vs. 'normal'
992 // constants (possibly differently depending on opcode and operand). This
993 // would allow returning undef sometimes. But it is always safe to fold to
994 // NaN because we can choose the undef operand as NaN, and any FP opcode
995 // with a NaN operand will propagate NaN.
996 return ConstantFP::getNaN(C1->getType());
997 case Instruction::BinaryOpsEnd:
998 llvm_unreachable("Invalid BinaryOp");
1002 // Neither constant should be UndefValue, unless these are vector constants.
1003 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
1005 // Handle simplifications when the RHS is a constant int.
1006 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1007 switch (Opcode) {
1008 case Instruction::Add:
1009 if (CI2->isZero()) return C1; // X + 0 == X
1010 break;
1011 case Instruction::Sub:
1012 if (CI2->isZero()) return C1; // X - 0 == X
1013 break;
1014 case Instruction::Mul:
1015 if (CI2->isZero()) return C2; // X * 0 == 0
1016 if (CI2->isOne())
1017 return C1; // X * 1 == X
1018 break;
1019 case Instruction::UDiv:
1020 case Instruction::SDiv:
1021 if (CI2->isOne())
1022 return C1; // X / 1 == X
1023 if (CI2->isZero())
1024 return PoisonValue::get(CI2->getType()); // X / 0 == poison
1025 break;
1026 case Instruction::URem:
1027 case Instruction::SRem:
1028 if (CI2->isOne())
1029 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
1030 if (CI2->isZero())
1031 return PoisonValue::get(CI2->getType()); // X % 0 == poison
1032 break;
1033 case Instruction::And:
1034 if (CI2->isZero()) return C2; // X & 0 == 0
1035 if (CI2->isMinusOne())
1036 return C1; // X & -1 == X
1038 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1039 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
1040 if (CE1->getOpcode() == Instruction::ZExt) {
1041 unsigned DstWidth = CI2->getType()->getBitWidth();
1042 unsigned SrcWidth =
1043 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
1044 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
1045 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
1046 return C1;
1049 // If and'ing the address of a global with a constant, fold it.
1050 if (CE1->getOpcode() == Instruction::PtrToInt &&
1051 isa<GlobalValue>(CE1->getOperand(0))) {
1052 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1054 MaybeAlign GVAlign;
1056 if (Module *TheModule = GV->getParent()) {
1057 const DataLayout &DL = TheModule->getDataLayout();
1058 GVAlign = GV->getPointerAlignment(DL);
1060 // If the function alignment is not specified then assume that it
1061 // is 4.
1062 // This is dangerous; on x86, the alignment of the pointer
1063 // corresponds to the alignment of the function, but might be less
1064 // than 4 if it isn't explicitly specified.
1065 // However, a fix for this behaviour was reverted because it
1066 // increased code size (see https://reviews.llvm.org/D55115)
1067 // FIXME: This code should be deleted once existing targets have
1068 // appropriate defaults
1069 if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
1070 GVAlign = Align(4);
1071 } else if (isa<Function>(GV)) {
1072 // Without a datalayout we have to assume the worst case: that the
1073 // function pointer isn't aligned at all.
1074 GVAlign = llvm::None;
1075 } else if (isa<GlobalVariable>(GV)) {
1076 GVAlign = cast<GlobalVariable>(GV)->getAlign();
1079 if (GVAlign && *GVAlign > 1) {
1080 unsigned DstWidth = CI2->getType()->getBitWidth();
1081 unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign));
1082 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1084 // If checking bits we know are clear, return zero.
1085 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1086 return Constant::getNullValue(CI2->getType());
1090 break;
1091 case Instruction::Or:
1092 if (CI2->isZero()) return C1; // X | 0 == X
1093 if (CI2->isMinusOne())
1094 return C2; // X | -1 == -1
1095 break;
1096 case Instruction::Xor:
1097 if (CI2->isZero()) return C1; // X ^ 0 == X
1099 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1100 switch (CE1->getOpcode()) {
1101 default: break;
1102 case Instruction::ICmp:
1103 case Instruction::FCmp:
1104 // cmp pred ^ true -> cmp !pred
1105 assert(CI2->isOne());
1106 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1107 pred = CmpInst::getInversePredicate(pred);
1108 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1109 CE1->getOperand(1));
1112 break;
1113 case Instruction::AShr:
1114 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1115 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1116 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1117 return ConstantExpr::getLShr(C1, C2);
1118 break;
1120 } else if (isa<ConstantInt>(C1)) {
1121 // If C1 is a ConstantInt and C2 is not, swap the operands.
1122 if (Instruction::isCommutative(Opcode))
1123 return ConstantExpr::get(Opcode, C2, C1);
1126 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1127 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1128 const APInt &C1V = CI1->getValue();
1129 const APInt &C2V = CI2->getValue();
1130 switch (Opcode) {
1131 default:
1132 break;
1133 case Instruction::Add:
1134 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1135 case Instruction::Sub:
1136 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1137 case Instruction::Mul:
1138 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1139 case Instruction::UDiv:
1140 assert(!CI2->isZero() && "Div by zero handled above");
1141 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1142 case Instruction::SDiv:
1143 assert(!CI2->isZero() && "Div by zero handled above");
1144 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1145 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison
1146 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1147 case Instruction::URem:
1148 assert(!CI2->isZero() && "Div by zero handled above");
1149 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1150 case Instruction::SRem:
1151 assert(!CI2->isZero() && "Div by zero handled above");
1152 if (C2V.isAllOnesValue() && C1V.isMinSignedValue())
1153 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison
1154 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1155 case Instruction::And:
1156 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1157 case Instruction::Or:
1158 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1159 case Instruction::Xor:
1160 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1161 case Instruction::Shl:
1162 if (C2V.ult(C1V.getBitWidth()))
1163 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1164 return PoisonValue::get(C1->getType()); // too big shift is poison
1165 case Instruction::LShr:
1166 if (C2V.ult(C1V.getBitWidth()))
1167 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1168 return PoisonValue::get(C1->getType()); // too big shift is poison
1169 case Instruction::AShr:
1170 if (C2V.ult(C1V.getBitWidth()))
1171 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1172 return PoisonValue::get(C1->getType()); // too big shift is poison
1176 switch (Opcode) {
1177 case Instruction::SDiv:
1178 case Instruction::UDiv:
1179 case Instruction::URem:
1180 case Instruction::SRem:
1181 case Instruction::LShr:
1182 case Instruction::AShr:
1183 case Instruction::Shl:
1184 if (CI1->isZero()) return C1;
1185 break;
1186 default:
1187 break;
1189 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1190 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1191 const APFloat &C1V = CFP1->getValueAPF();
1192 const APFloat &C2V = CFP2->getValueAPF();
1193 APFloat C3V = C1V; // copy for modification
1194 switch (Opcode) {
1195 default:
1196 break;
1197 case Instruction::FAdd:
1198 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1199 return ConstantFP::get(C1->getContext(), C3V);
1200 case Instruction::FSub:
1201 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1202 return ConstantFP::get(C1->getContext(), C3V);
1203 case Instruction::FMul:
1204 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1205 return ConstantFP::get(C1->getContext(), C3V);
1206 case Instruction::FDiv:
1207 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1208 return ConstantFP::get(C1->getContext(), C3V);
1209 case Instruction::FRem:
1210 (void)C3V.mod(C2V);
1211 return ConstantFP::get(C1->getContext(), C3V);
1214 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
1215 // Fast path for splatted constants.
1216 if (Constant *C2Splat = C2->getSplatValue()) {
1217 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1218 return PoisonValue::get(VTy);
1219 if (Constant *C1Splat = C1->getSplatValue()) {
1220 return ConstantVector::getSplat(
1221 VTy->getElementCount(),
1222 ConstantExpr::get(Opcode, C1Splat, C2Splat));
1226 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
1227 // Fold each element and create a vector constant from those constants.
1228 SmallVector<Constant*, 16> Result;
1229 Type *Ty = IntegerType::get(FVTy->getContext(), 32);
1230 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
1231 Constant *ExtractIdx = ConstantInt::get(Ty, i);
1232 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1233 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1235 // If any element of a divisor vector is zero, the whole op is poison.
1236 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1237 return PoisonValue::get(VTy);
1239 Result.push_back(ConstantExpr::get(Opcode, LHS, RHS));
1242 return ConstantVector::get(Result);
1246 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1247 // There are many possible foldings we could do here. We should probably
1248 // at least fold add of a pointer with an integer into the appropriate
1249 // getelementptr. This will improve alias analysis a bit.
1251 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1252 // (a + (b + c)).
1253 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1254 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1255 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1256 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1258 } else if (isa<ConstantExpr>(C2)) {
1259 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1260 // other way if possible.
1261 if (Instruction::isCommutative(Opcode))
1262 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1265 // i1 can be simplified in many cases.
1266 if (C1->getType()->isIntegerTy(1)) {
1267 switch (Opcode) {
1268 case Instruction::Add:
1269 case Instruction::Sub:
1270 return ConstantExpr::getXor(C1, C2);
1271 case Instruction::Mul:
1272 return ConstantExpr::getAnd(C1, C2);
1273 case Instruction::Shl:
1274 case Instruction::LShr:
1275 case Instruction::AShr:
1276 // We can assume that C2 == 0. If it were one the result would be
1277 // undefined because the shift value is as large as the bitwidth.
1278 return C1;
1279 case Instruction::SDiv:
1280 case Instruction::UDiv:
1281 // We can assume that C2 == 1. If it were zero the result would be
1282 // undefined through division by zero.
1283 return C1;
1284 case Instruction::URem:
1285 case Instruction::SRem:
1286 // We can assume that C2 == 1. If it were zero the result would be
1287 // undefined through division by zero.
1288 return ConstantInt::getFalse(C1->getContext());
1289 default:
1290 break;
1294 // We don't know how to fold this.
1295 return nullptr;
1298 /// This type is zero-sized if it's an array or structure of zero-sized types.
1299 /// The only leaf zero-sized type is an empty structure.
1300 static bool isMaybeZeroSizedType(Type *Ty) {
1301 if (StructType *STy = dyn_cast<StructType>(Ty)) {
1302 if (STy->isOpaque()) return true; // Can't say.
1304 // If all of elements have zero size, this does too.
1305 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1306 if (!isMaybeZeroSizedType(STy->getElementType(i))) return false;
1307 return true;
1309 } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1310 return isMaybeZeroSizedType(ATy->getElementType());
1312 return false;
1315 /// Compare the two constants as though they were getelementptr indices.
1316 /// This allows coercion of the types to be the same thing.
1318 /// If the two constants are the "same" (after coercion), return 0. If the
1319 /// first is less than the second, return -1, if the second is less than the
1320 /// first, return 1. If the constants are not integral, return -2.
1322 static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) {
1323 if (C1 == C2) return 0;
1325 // Ok, we found a different index. If they are not ConstantInt, we can't do
1326 // anything with them.
1327 if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2))
1328 return -2; // don't know!
1330 // We cannot compare the indices if they don't fit in an int64_t.
1331 if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 ||
1332 cast<ConstantInt>(C2)->getValue().getActiveBits() > 64)
1333 return -2; // don't know!
1335 // Ok, we have two differing integer indices. Sign extend them to be the same
1336 // type.
1337 int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue();
1338 int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue();
1340 if (C1Val == C2Val) return 0; // They are equal
1342 // If the type being indexed over is really just a zero sized type, there is
1343 // no pointer difference being made here.
1344 if (isMaybeZeroSizedType(ElTy))
1345 return -2; // dunno.
1347 // If they are really different, now that they are the same type, then we
1348 // found a difference!
1349 if (C1Val < C2Val)
1350 return -1;
1351 else
1352 return 1;
1355 /// This function determines if there is anything we can decide about the two
1356 /// constants provided. This doesn't need to handle simple things like
1357 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1358 /// If we can determine that the two constants have a particular relation to
1359 /// each other, we should return the corresponding FCmpInst predicate,
1360 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1361 /// ConstantFoldCompareInstruction.
1363 /// To simplify this code we canonicalize the relation so that the first
1364 /// operand is always the most "complex" of the two. We consider ConstantFP
1365 /// to be the simplest, and ConstantExprs to be the most complex.
1366 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1367 assert(V1->getType() == V2->getType() &&
1368 "Cannot compare values of different types!");
1370 // We do not know if a constant expression will evaluate to a number or NaN.
1371 // Therefore, we can only say that the relation is unordered or equal.
1372 if (V1 == V2) return FCmpInst::FCMP_UEQ;
1374 if (!isa<ConstantExpr>(V1)) {
1375 if (!isa<ConstantExpr>(V2)) {
1376 // Simple case, use the standard constant folder.
1377 ConstantInt *R = nullptr;
1378 R = dyn_cast<ConstantInt>(
1379 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1380 if (R && !R->isZero())
1381 return FCmpInst::FCMP_OEQ;
1382 R = dyn_cast<ConstantInt>(
1383 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1384 if (R && !R->isZero())
1385 return FCmpInst::FCMP_OLT;
1386 R = dyn_cast<ConstantInt>(
1387 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1388 if (R && !R->isZero())
1389 return FCmpInst::FCMP_OGT;
1391 // Nothing more we can do
1392 return FCmpInst::BAD_FCMP_PREDICATE;
1395 // If the first operand is simple and second is ConstantExpr, swap operands.
1396 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1397 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1398 return FCmpInst::getSwappedPredicate(SwappedRelation);
1399 } else {
1400 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1401 // constantexpr or a simple constant.
1402 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1403 switch (CE1->getOpcode()) {
1404 case Instruction::FPTrunc:
1405 case Instruction::FPExt:
1406 case Instruction::UIToFP:
1407 case Instruction::SIToFP:
1408 // We might be able to do something with these but we don't right now.
1409 break;
1410 default:
1411 break;
1414 // There are MANY other foldings that we could perform here. They will
1415 // probably be added on demand, as they seem needed.
1416 return FCmpInst::BAD_FCMP_PREDICATE;
1419 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1420 const GlobalValue *GV2) {
1421 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1422 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
1423 return true;
1424 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1425 Type *Ty = GVar->getValueType();
1426 // A global with opaque type might end up being zero sized.
1427 if (!Ty->isSized())
1428 return true;
1429 // A global with an empty type might lie at the address of any other
1430 // global.
1431 if (Ty->isEmptyTy())
1432 return true;
1434 return false;
1436 // Don't try to decide equality of aliases.
1437 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1438 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1439 return ICmpInst::ICMP_NE;
1440 return ICmpInst::BAD_ICMP_PREDICATE;
1443 /// This function determines if there is anything we can decide about the two
1444 /// constants provided. This doesn't need to handle simple things like integer
1445 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1446 /// If we can determine that the two constants have a particular relation to
1447 /// each other, we should return the corresponding ICmp predicate, otherwise
1448 /// return ICmpInst::BAD_ICMP_PREDICATE.
1450 /// To simplify this code we canonicalize the relation so that the first
1451 /// operand is always the most "complex" of the two. We consider simple
1452 /// constants (like ConstantInt) to be the simplest, followed by
1453 /// GlobalValues, followed by ConstantExpr's (the most complex).
1455 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1456 bool isSigned) {
1457 assert(V1->getType() == V2->getType() &&
1458 "Cannot compare different types of values!");
1459 if (V1 == V2) return ICmpInst::ICMP_EQ;
1461 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1462 !isa<BlockAddress>(V1)) {
1463 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1464 !isa<BlockAddress>(V2)) {
1465 // We distilled this down to a simple case, use the standard constant
1466 // folder.
1467 ConstantInt *R = nullptr;
1468 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1469 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1470 if (R && !R->isZero())
1471 return pred;
1472 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1473 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1474 if (R && !R->isZero())
1475 return pred;
1476 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1477 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1478 if (R && !R->isZero())
1479 return pred;
1481 // If we couldn't figure it out, bail.
1482 return ICmpInst::BAD_ICMP_PREDICATE;
1485 // If the first operand is simple, swap operands.
1486 ICmpInst::Predicate SwappedRelation =
1487 evaluateICmpRelation(V2, V1, isSigned);
1488 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1489 return ICmpInst::getSwappedPredicate(SwappedRelation);
1491 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1492 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1493 ICmpInst::Predicate SwappedRelation =
1494 evaluateICmpRelation(V2, V1, isSigned);
1495 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1496 return ICmpInst::getSwappedPredicate(SwappedRelation);
1497 return ICmpInst::BAD_ICMP_PREDICATE;
1500 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1501 // constant (which, since the types must match, means that it's a
1502 // ConstantPointerNull).
1503 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1504 return areGlobalsPotentiallyEqual(GV, GV2);
1505 } else if (isa<BlockAddress>(V2)) {
1506 return ICmpInst::ICMP_NE; // Globals never equal labels.
1507 } else {
1508 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1509 // GlobalVals can never be null unless they have external weak linkage.
1510 // We don't try to evaluate aliases here.
1511 // NOTE: We should not be doing this constant folding if null pointer
1512 // is considered valid for the function. But currently there is no way to
1513 // query it from the Constant type.
1514 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1515 !NullPointerIsDefined(nullptr /* F */,
1516 GV->getType()->getAddressSpace()))
1517 return ICmpInst::ICMP_UGT;
1519 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1520 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1521 ICmpInst::Predicate SwappedRelation =
1522 evaluateICmpRelation(V2, V1, isSigned);
1523 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1524 return ICmpInst::getSwappedPredicate(SwappedRelation);
1525 return ICmpInst::BAD_ICMP_PREDICATE;
1528 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1529 // constant (which, since the types must match, means that it is a
1530 // ConstantPointerNull).
1531 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1532 // Block address in another function can't equal this one, but block
1533 // addresses in the current function might be the same if blocks are
1534 // empty.
1535 if (BA2->getFunction() != BA->getFunction())
1536 return ICmpInst::ICMP_NE;
1537 } else {
1538 // Block addresses aren't null, don't equal the address of globals.
1539 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1540 "Canonicalization guarantee!");
1541 return ICmpInst::ICMP_NE;
1543 } else {
1544 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1545 // constantexpr, a global, block address, or a simple constant.
1546 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1547 Constant *CE1Op0 = CE1->getOperand(0);
1549 switch (CE1->getOpcode()) {
1550 case Instruction::Trunc:
1551 case Instruction::FPTrunc:
1552 case Instruction::FPExt:
1553 case Instruction::FPToUI:
1554 case Instruction::FPToSI:
1555 break; // We can't evaluate floating point casts or truncations.
1557 case Instruction::BitCast:
1558 // If this is a global value cast, check to see if the RHS is also a
1559 // GlobalValue.
1560 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0))
1561 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2))
1562 return areGlobalsPotentiallyEqual(GV, GV2);
1563 LLVM_FALLTHROUGH;
1564 case Instruction::UIToFP:
1565 case Instruction::SIToFP:
1566 case Instruction::ZExt:
1567 case Instruction::SExt:
1568 // We can't evaluate floating point casts or truncations.
1569 if (CE1Op0->getType()->isFPOrFPVectorTy())
1570 break;
1572 // If the cast is not actually changing bits, and the second operand is a
1573 // null pointer, do the comparison with the pre-casted value.
1574 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1575 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1576 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1577 return evaluateICmpRelation(CE1Op0,
1578 Constant::getNullValue(CE1Op0->getType()),
1579 isSigned);
1581 break;
1583 case Instruction::GetElementPtr: {
1584 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1585 // Ok, since this is a getelementptr, we know that the constant has a
1586 // pointer type. Check the various cases.
1587 if (isa<ConstantPointerNull>(V2)) {
1588 // If we are comparing a GEP to a null pointer, check to see if the base
1589 // of the GEP equals the null pointer.
1590 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1591 // If its not weak linkage, the GVal must have a non-zero address
1592 // so the result is greater-than
1593 if (!GV->hasExternalWeakLinkage())
1594 return ICmpInst::ICMP_UGT;
1595 } else if (isa<ConstantPointerNull>(CE1Op0)) {
1596 // If we are indexing from a null pointer, check to see if we have any
1597 // non-zero indices.
1598 for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i)
1599 if (!CE1->getOperand(i)->isNullValue())
1600 // Offsetting from null, must not be equal.
1601 return ICmpInst::ICMP_UGT;
1602 // Only zero indexes from null, must still be zero.
1603 return ICmpInst::ICMP_EQ;
1605 // Otherwise, we can't really say if the first operand is null or not.
1606 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1607 if (isa<ConstantPointerNull>(CE1Op0)) {
1608 // If its not weak linkage, the GVal must have a non-zero address
1609 // so the result is less-than
1610 if (!GV2->hasExternalWeakLinkage())
1611 return ICmpInst::ICMP_ULT;
1612 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1613 if (GV == GV2) {
1614 // If this is a getelementptr of the same global, then it must be
1615 // different. Because the types must match, the getelementptr could
1616 // only have at most one index, and because we fold getelementptr's
1617 // with a single zero index, it must be nonzero.
1618 assert(CE1->getNumOperands() == 2 &&
1619 !CE1->getOperand(1)->isNullValue() &&
1620 "Surprising getelementptr!");
1621 return ICmpInst::ICMP_UGT;
1622 } else {
1623 if (CE1GEP->hasAllZeroIndices())
1624 return areGlobalsPotentiallyEqual(GV, GV2);
1625 return ICmpInst::BAD_ICMP_PREDICATE;
1628 } else {
1629 ConstantExpr *CE2 = cast<ConstantExpr>(V2);
1630 Constant *CE2Op0 = CE2->getOperand(0);
1632 // There are MANY other foldings that we could perform here. They will
1633 // probably be added on demand, as they seem needed.
1634 switch (CE2->getOpcode()) {
1635 default: break;
1636 case Instruction::GetElementPtr:
1637 // By far the most common case to handle is when the base pointers are
1638 // obviously to the same global.
1639 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1640 // Don't know relative ordering, but check for inequality.
1641 if (CE1Op0 != CE2Op0) {
1642 GEPOperator *CE2GEP = cast<GEPOperator>(CE2);
1643 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1644 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1645 cast<GlobalValue>(CE2Op0));
1646 return ICmpInst::BAD_ICMP_PREDICATE;
1648 // Ok, we know that both getelementptr instructions are based on the
1649 // same global. From this, we can precisely determine the relative
1650 // ordering of the resultant pointers.
1651 unsigned i = 1;
1653 // The logic below assumes that the result of the comparison
1654 // can be determined by finding the first index that differs.
1655 // This doesn't work if there is over-indexing in any
1656 // subsequent indices, so check for that case first.
1657 if (!CE1->isGEPWithNoNotionalOverIndexing() ||
1658 !CE2->isGEPWithNoNotionalOverIndexing())
1659 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1661 // Compare all of the operands the GEP's have in common.
1662 gep_type_iterator GTI = gep_type_begin(CE1);
1663 for (;i != CE1->getNumOperands() && i != CE2->getNumOperands();
1664 ++i, ++GTI)
1665 switch (IdxCompare(CE1->getOperand(i),
1666 CE2->getOperand(i), GTI.getIndexedType())) {
1667 case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT;
1668 case 1: return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT;
1669 case -2: return ICmpInst::BAD_ICMP_PREDICATE;
1672 // Ok, we ran out of things they have in common. If any leftovers
1673 // are non-zero then we have a difference, otherwise we are equal.
1674 for (; i < CE1->getNumOperands(); ++i)
1675 if (!CE1->getOperand(i)->isNullValue()) {
1676 if (isa<ConstantInt>(CE1->getOperand(i)))
1677 return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1678 else
1679 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1682 for (; i < CE2->getNumOperands(); ++i)
1683 if (!CE2->getOperand(i)->isNullValue()) {
1684 if (isa<ConstantInt>(CE2->getOperand(i)))
1685 return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1686 else
1687 return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal.
1689 return ICmpInst::ICMP_EQ;
1693 break;
1695 default:
1696 break;
1700 return ICmpInst::BAD_ICMP_PREDICATE;
1703 Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred,
1704 Constant *C1, Constant *C2) {
1705 Type *ResultTy;
1706 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1707 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1708 VT->getElementCount());
1709 else
1710 ResultTy = Type::getInt1Ty(C1->getContext());
1712 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1713 if (pred == FCmpInst::FCMP_FALSE)
1714 return Constant::getNullValue(ResultTy);
1716 if (pred == FCmpInst::FCMP_TRUE)
1717 return Constant::getAllOnesValue(ResultTy);
1719 // Handle some degenerate cases first
1720 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1721 return PoisonValue::get(ResultTy);
1723 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1724 CmpInst::Predicate Predicate = CmpInst::Predicate(pred);
1725 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1726 // For EQ and NE, we can always pick a value for the undef to make the
1727 // predicate pass or fail, so we can return undef.
1728 // Also, if both operands are undef, we can return undef for int comparison.
1729 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1730 return UndefValue::get(ResultTy);
1732 // Otherwise, for integer compare, pick the same value as the non-undef
1733 // operand, and fold it to true or false.
1734 if (isIntegerPredicate)
1735 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1737 // Choosing NaN for the undef will always make unordered comparison succeed
1738 // and ordered comparison fails.
1739 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1742 // icmp eq/ne(null,GV) -> false/true
1743 if (C1->isNullValue()) {
1744 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2))
1745 // Don't try to evaluate aliases. External weak GV can be null.
1746 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1747 !NullPointerIsDefined(nullptr /* F */,
1748 GV->getType()->getAddressSpace())) {
1749 if (pred == ICmpInst::ICMP_EQ)
1750 return ConstantInt::getFalse(C1->getContext());
1751 else if (pred == ICmpInst::ICMP_NE)
1752 return ConstantInt::getTrue(C1->getContext());
1754 // icmp eq/ne(GV,null) -> false/true
1755 } else if (C2->isNullValue()) {
1756 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) {
1757 // Don't try to evaluate aliases. External weak GV can be null.
1758 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1759 !NullPointerIsDefined(nullptr /* F */,
1760 GV->getType()->getAddressSpace())) {
1761 if (pred == ICmpInst::ICMP_EQ)
1762 return ConstantInt::getFalse(C1->getContext());
1763 else if (pred == ICmpInst::ICMP_NE)
1764 return ConstantInt::getTrue(C1->getContext());
1768 // The caller is expected to commute the operands if the constant expression
1769 // is C2.
1770 // C1 >= 0 --> true
1771 if (pred == ICmpInst::ICMP_UGE)
1772 return Constant::getAllOnesValue(ResultTy);
1773 // C1 < 0 --> false
1774 if (pred == ICmpInst::ICMP_ULT)
1775 return Constant::getNullValue(ResultTy);
1778 // If the comparison is a comparison between two i1's, simplify it.
1779 if (C1->getType()->isIntegerTy(1)) {
1780 switch(pred) {
1781 case ICmpInst::ICMP_EQ:
1782 if (isa<ConstantInt>(C2))
1783 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1784 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1785 case ICmpInst::ICMP_NE:
1786 return ConstantExpr::getXor(C1, C2);
1787 default:
1788 break;
1792 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1793 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1794 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1795 switch (pred) {
1796 default: llvm_unreachable("Invalid ICmp Predicate");
1797 case ICmpInst::ICMP_EQ: return ConstantInt::get(ResultTy, V1 == V2);
1798 case ICmpInst::ICMP_NE: return ConstantInt::get(ResultTy, V1 != V2);
1799 case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2));
1800 case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2));
1801 case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2));
1802 case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2));
1803 case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2));
1804 case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2));
1805 case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2));
1806 case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2));
1808 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1809 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1810 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1811 APFloat::cmpResult R = C1V.compare(C2V);
1812 switch (pred) {
1813 default: llvm_unreachable("Invalid FCmp Predicate");
1814 case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy);
1815 case FCmpInst::FCMP_TRUE: return Constant::getAllOnesValue(ResultTy);
1816 case FCmpInst::FCMP_UNO:
1817 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered);
1818 case FCmpInst::FCMP_ORD:
1819 return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered);
1820 case FCmpInst::FCMP_UEQ:
1821 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1822 R==APFloat::cmpEqual);
1823 case FCmpInst::FCMP_OEQ:
1824 return ConstantInt::get(ResultTy, R==APFloat::cmpEqual);
1825 case FCmpInst::FCMP_UNE:
1826 return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual);
1827 case FCmpInst::FCMP_ONE:
1828 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1829 R==APFloat::cmpGreaterThan);
1830 case FCmpInst::FCMP_ULT:
1831 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1832 R==APFloat::cmpLessThan);
1833 case FCmpInst::FCMP_OLT:
1834 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan);
1835 case FCmpInst::FCMP_UGT:
1836 return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered ||
1837 R==APFloat::cmpGreaterThan);
1838 case FCmpInst::FCMP_OGT:
1839 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan);
1840 case FCmpInst::FCMP_ULE:
1841 return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan);
1842 case FCmpInst::FCMP_OLE:
1843 return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan ||
1844 R==APFloat::cmpEqual);
1845 case FCmpInst::FCMP_UGE:
1846 return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan);
1847 case FCmpInst::FCMP_OGE:
1848 return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan ||
1849 R==APFloat::cmpEqual);
1851 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1853 // Fast path for splatted constants.
1854 if (Constant *C1Splat = C1->getSplatValue())
1855 if (Constant *C2Splat = C2->getSplatValue())
1856 return ConstantVector::getSplat(
1857 C1VTy->getElementCount(),
1858 ConstantExpr::getCompare(pred, C1Splat, C2Splat));
1860 // Do not iterate on scalable vector. The number of elements is unknown at
1861 // compile-time.
1862 if (isa<ScalableVectorType>(C1VTy))
1863 return nullptr;
1865 // If we can constant fold the comparison of each element, constant fold
1866 // the whole vector comparison.
1867 SmallVector<Constant*, 4> ResElts;
1868 Type *Ty = IntegerType::get(C1->getContext(), 32);
1869 // Compare the elements, producing an i1 result or constant expr.
1870 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1871 I != E; ++I) {
1872 Constant *C1E =
1873 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1874 Constant *C2E =
1875 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1877 ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E));
1880 return ConstantVector::get(ResElts);
1883 if (C1->getType()->isFloatingPointTy() &&
1884 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1885 // infinite recursive loop
1886 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1887 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1888 switch (evaluateFCmpRelation(C1, C2)) {
1889 default: llvm_unreachable("Unknown relation!");
1890 case FCmpInst::FCMP_UNO:
1891 case FCmpInst::FCMP_ORD:
1892 case FCmpInst::FCMP_UNE:
1893 case FCmpInst::FCMP_ULT:
1894 case FCmpInst::FCMP_UGT:
1895 case FCmpInst::FCMP_ULE:
1896 case FCmpInst::FCMP_UGE:
1897 case FCmpInst::FCMP_TRUE:
1898 case FCmpInst::FCMP_FALSE:
1899 case FCmpInst::BAD_FCMP_PREDICATE:
1900 break; // Couldn't determine anything about these constants.
1901 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1902 Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ ||
1903 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE ||
1904 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1905 break;
1906 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1907 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1908 pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT ||
1909 pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE);
1910 break;
1911 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1912 Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE ||
1913 pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT ||
1914 pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE);
1915 break;
1916 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1917 // We can only partially decide this relation.
1918 if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1919 Result = 0;
1920 else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1921 Result = 1;
1922 break;
1923 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1924 // We can only partially decide this relation.
1925 if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT)
1926 Result = 0;
1927 else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT)
1928 Result = 1;
1929 break;
1930 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1931 // We can only partially decide this relation.
1932 if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ)
1933 Result = 0;
1934 else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE)
1935 Result = 1;
1936 break;
1937 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1938 // We can only partially decide this relation.
1939 if (pred == FCmpInst::FCMP_ONE)
1940 Result = 0;
1941 else if (pred == FCmpInst::FCMP_UEQ)
1942 Result = 1;
1943 break;
1946 // If we evaluated the result, return it now.
1947 if (Result != -1)
1948 return ConstantInt::get(ResultTy, Result);
1950 } else {
1951 // Evaluate the relation between the two constants, per the predicate.
1952 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1953 switch (evaluateICmpRelation(C1, C2,
1954 CmpInst::isSigned((CmpInst::Predicate)pred))) {
1955 default: llvm_unreachable("Unknown relational!");
1956 case ICmpInst::BAD_ICMP_PREDICATE:
1957 break; // Couldn't determine anything about these constants.
1958 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1959 // If we know the constants are equal, we can decide the result of this
1960 // computation precisely.
1961 Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred);
1962 break;
1963 case ICmpInst::ICMP_ULT:
1964 switch (pred) {
1965 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1966 Result = 1; break;
1967 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1968 Result = 0; break;
1970 break;
1971 case ICmpInst::ICMP_SLT:
1972 switch (pred) {
1973 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1974 Result = 1; break;
1975 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1976 Result = 0; break;
1978 break;
1979 case ICmpInst::ICMP_UGT:
1980 switch (pred) {
1981 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1982 Result = 1; break;
1983 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1984 Result = 0; break;
1986 break;
1987 case ICmpInst::ICMP_SGT:
1988 switch (pred) {
1989 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1990 Result = 1; break;
1991 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1992 Result = 0; break;
1994 break;
1995 case ICmpInst::ICMP_ULE:
1996 if (pred == ICmpInst::ICMP_UGT) Result = 0;
1997 if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1;
1998 break;
1999 case ICmpInst::ICMP_SLE:
2000 if (pred == ICmpInst::ICMP_SGT) Result = 0;
2001 if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1;
2002 break;
2003 case ICmpInst::ICMP_UGE:
2004 if (pred == ICmpInst::ICMP_ULT) Result = 0;
2005 if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1;
2006 break;
2007 case ICmpInst::ICMP_SGE:
2008 if (pred == ICmpInst::ICMP_SLT) Result = 0;
2009 if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1;
2010 break;
2011 case ICmpInst::ICMP_NE:
2012 if (pred == ICmpInst::ICMP_EQ) Result = 0;
2013 if (pred == ICmpInst::ICMP_NE) Result = 1;
2014 break;
2017 // If we evaluated the result, return it now.
2018 if (Result != -1)
2019 return ConstantInt::get(ResultTy, Result);
2021 // If the right hand side is a bitcast, try using its inverse to simplify
2022 // it by moving it to the left hand side. We can't do this if it would turn
2023 // a vector compare into a scalar compare or visa versa, or if it would turn
2024 // the operands into FP values.
2025 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
2026 Constant *CE2Op0 = CE2->getOperand(0);
2027 if (CE2->getOpcode() == Instruction::BitCast &&
2028 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
2029 !CE2Op0->getType()->isFPOrFPVectorTy()) {
2030 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
2031 return ConstantExpr::getICmp(pred, Inverse, CE2Op0);
2035 // If the left hand side is an extension, try eliminating it.
2036 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
2037 if ((CE1->getOpcode() == Instruction::SExt &&
2038 ICmpInst::isSigned((ICmpInst::Predicate)pred)) ||
2039 (CE1->getOpcode() == Instruction::ZExt &&
2040 !ICmpInst::isSigned((ICmpInst::Predicate)pred))){
2041 Constant *CE1Op0 = CE1->getOperand(0);
2042 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
2043 if (CE1Inverse == CE1Op0) {
2044 // Check whether we can safely truncate the right hand side.
2045 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
2046 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
2047 C2->getType()) == C2)
2048 return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse);
2053 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
2054 (C1->isNullValue() && !C2->isNullValue())) {
2055 // If C2 is a constant expr and C1 isn't, flip them around and fold the
2056 // other way if possible.
2057 // Also, if C1 is null and C2 isn't, flip them around.
2058 pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred);
2059 return ConstantExpr::getICmp(pred, C2, C1);
2062 return nullptr;
2065 /// Test whether the given sequence of *normalized* indices is "inbounds".
2066 template<typename IndexTy>
2067 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
2068 // No indices means nothing that could be out of bounds.
2069 if (Idxs.empty()) return true;
2071 // If the first index is zero, it's in bounds.
2072 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
2074 // If the first index is one and all the rest are zero, it's in bounds,
2075 // by the one-past-the-end rule.
2076 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
2077 if (!CI->isOne())
2078 return false;
2079 } else {
2080 auto *CV = cast<ConstantDataVector>(Idxs[0]);
2081 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
2082 if (!CI || !CI->isOne())
2083 return false;
2086 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
2087 if (!cast<Constant>(Idxs[i])->isNullValue())
2088 return false;
2089 return true;
2092 /// Test whether a given ConstantInt is in-range for a SequentialType.
2093 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
2094 const ConstantInt *CI) {
2095 // We cannot bounds check the index if it doesn't fit in an int64_t.
2096 if (CI->getValue().getMinSignedBits() > 64)
2097 return false;
2099 // A negative index or an index past the end of our sequential type is
2100 // considered out-of-range.
2101 int64_t IndexVal = CI->getSExtValue();
2102 if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements))
2103 return false;
2105 // Otherwise, it is in-range.
2106 return true;
2109 // Combine Indices - If the source pointer to this getelementptr instruction
2110 // is a getelementptr instruction, combine the indices of the two
2111 // getelementptr instructions into a single instruction.
2112 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
2113 ArrayRef<Value *> Idxs) {
2114 if (PointeeTy != GEP->getResultElementType())
2115 return nullptr;
2117 Constant *Idx0 = cast<Constant>(Idxs[0]);
2118 if (Idx0->isNullValue()) {
2119 // Handle the simple case of a zero index.
2120 SmallVector<Value*, 16> NewIndices;
2121 NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
2122 NewIndices.append(GEP->idx_begin(), GEP->idx_end());
2123 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2124 return ConstantExpr::getGetElementPtr(
2125 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
2126 NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
2129 gep_type_iterator LastI = gep_type_end(GEP);
2130 for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
2131 I != E; ++I)
2132 LastI = I;
2134 // We cannot combine indices if doing so would take us outside of an
2135 // array or vector. Doing otherwise could trick us if we evaluated such a
2136 // GEP as part of a load.
2138 // e.g. Consider if the original GEP was:
2139 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2140 // i32 0, i32 0, i64 0)
2142 // If we then tried to offset it by '8' to get to the third element,
2143 // an i8, we should *not* get:
2144 // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c,
2145 // i32 0, i32 0, i64 8)
2147 // This GEP tries to index array element '8 which runs out-of-bounds.
2148 // Subsequent evaluation would get confused and produce erroneous results.
2150 // The following prohibits such a GEP from being formed by checking to see
2151 // if the index is in-range with respect to an array.
2152 if (!LastI.isSequential())
2153 return nullptr;
2154 ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
2155 if (!CI)
2156 return nullptr;
2157 if (LastI.isBoundedSequential() &&
2158 !isIndexInRangeOfArrayType(LastI.getSequentialNumElements(), CI))
2159 return nullptr;
2161 // TODO: This code may be extended to handle vectors as well.
2162 auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
2163 Type *LastIdxTy = LastIdx->getType();
2164 if (LastIdxTy->isVectorTy())
2165 return nullptr;
2167 SmallVector<Value*, 16> NewIndices;
2168 NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
2169 NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
2171 // Add the last index of the source with the first index of the new GEP.
2172 // Make sure to handle the case when they are actually different types.
2173 if (LastIdxTy != Idx0->getType()) {
2174 unsigned CommonExtendedWidth =
2175 std::max(LastIdxTy->getIntegerBitWidth(),
2176 Idx0->getType()->getIntegerBitWidth());
2177 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2179 Type *CommonTy =
2180 Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
2181 Idx0 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy);
2182 LastIdx = ConstantExpr::getSExtOrBitCast(LastIdx, CommonTy);
2185 NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
2186 NewIndices.append(Idxs.begin() + 1, Idxs.end());
2188 // The combined GEP normally inherits its index inrange attribute from
2189 // the inner GEP, but if the inner GEP's last index was adjusted by the
2190 // outer GEP, any inbounds attribute on that index is invalidated.
2191 Optional<unsigned> IRIndex = GEP->getInRangeIndex();
2192 if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
2193 IRIndex = None;
2195 return ConstantExpr::getGetElementPtr(
2196 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
2197 NewIndices, InBounds && GEP->isInBounds(), IRIndex);
2200 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
2201 bool InBounds,
2202 Optional<unsigned> InRangeIndex,
2203 ArrayRef<Value *> Idxs) {
2204 if (Idxs.empty()) return C;
2206 Type *GEPTy = GetElementPtrInst::getGEPReturnType(
2207 PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size()));
2209 if (isa<PoisonValue>(C))
2210 return PoisonValue::get(GEPTy);
2212 if (isa<UndefValue>(C))
2213 // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
2214 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
2216 Constant *Idx0 = cast<Constant>(Idxs[0]);
2217 if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0)))
2218 return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2219 ? ConstantVector::getSplat(
2220 cast<VectorType>(GEPTy)->getElementCount(), C)
2221 : C;
2223 if (C->isNullValue()) {
2224 bool isNull = true;
2225 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2226 if (!isa<UndefValue>(Idxs[i]) &&
2227 !cast<Constant>(Idxs[i])->isNullValue()) {
2228 isNull = false;
2229 break;
2231 if (isNull) {
2232 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2233 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2235 assert(Ty && "Invalid indices for GEP!");
2236 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2237 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2238 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2239 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2241 // The GEP returns a vector of pointers when one of more of
2242 // its arguments is a vector.
2243 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2244 if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) {
2245 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
2246 isa<ScalableVectorType>(VT)) &&
2247 "Mismatched GEPTy vector types");
2248 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2249 break;
2253 return Constant::getNullValue(GEPTy);
2257 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
2258 if (auto *GEP = dyn_cast<GEPOperator>(CE))
2259 if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
2260 return C;
2262 // Attempt to fold casts to the same type away. For example, folding:
2264 // i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*),
2265 // i64 0, i64 0)
2266 // into:
2268 // i32* getelementptr ([3 x i32]* %X, i64 0, i64 0)
2270 // Don't fold if the cast is changing address spaces.
2271 if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) {
2272 PointerType *SrcPtrTy =
2273 dyn_cast<PointerType>(CE->getOperand(0)->getType());
2274 PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType());
2275 if (SrcPtrTy && DstPtrTy) {
2276 ArrayType *SrcArrayTy =
2277 dyn_cast<ArrayType>(SrcPtrTy->getElementType());
2278 ArrayType *DstArrayTy =
2279 dyn_cast<ArrayType>(DstPtrTy->getElementType());
2280 if (SrcArrayTy && DstArrayTy
2281 && SrcArrayTy->getElementType() == DstArrayTy->getElementType()
2282 && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
2283 return ConstantExpr::getGetElementPtr(SrcArrayTy,
2284 (Constant *)CE->getOperand(0),
2285 Idxs, InBounds, InRangeIndex);
2290 // Check to see if any array indices are not within the corresponding
2291 // notional array or vector bounds. If so, try to determine if they can be
2292 // factored out into preceding dimensions.
2293 SmallVector<Constant *, 8> NewIdxs;
2294 Type *Ty = PointeeTy;
2295 Type *Prev = C->getType();
2296 auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2297 bool Unknown =
2298 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2299 for (unsigned i = 1, e = Idxs.size(); i != e;
2300 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2301 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2302 // We don't know if it's in range or not.
2303 Unknown = true;
2304 continue;
2306 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2307 // Skip if the type of the previous index is not supported.
2308 continue;
2309 if (InRangeIndex && i == *InRangeIndex + 1) {
2310 // If an index is marked inrange, we cannot apply this canonicalization to
2311 // the following index, as that will cause the inrange index to point to
2312 // the wrong element.
2313 continue;
2315 if (isa<StructType>(Ty)) {
2316 // The verify makes sure that GEPs into a struct are in range.
2317 continue;
2319 if (isa<VectorType>(Ty)) {
2320 // There can be awkward padding in after a non-power of two vector.
2321 Unknown = true;
2322 continue;
2324 auto *STy = cast<ArrayType>(Ty);
2325 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2326 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2327 // It's in range, skip to the next index.
2328 continue;
2329 if (CI->getSExtValue() < 0) {
2330 // It's out of range and negative, don't try to factor it.
2331 Unknown = true;
2332 continue;
2334 } else {
2335 auto *CV = cast<ConstantDataVector>(Idxs[i]);
2336 bool InRange = true;
2337 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2338 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2339 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2340 if (CI->getSExtValue() < 0) {
2341 Unknown = true;
2342 break;
2345 if (InRange || Unknown)
2346 // It's in range, skip to the next index.
2347 // It's out of range and negative, don't try to factor it.
2348 continue;
2350 if (isa<StructType>(Prev)) {
2351 // It's out of range, but the prior dimension is a struct
2352 // so we can't do anything about it.
2353 Unknown = true;
2354 continue;
2356 // It's out of range, but we can factor it into the prior
2357 // dimension.
2358 NewIdxs.resize(Idxs.size());
2359 // Determine the number of elements in our sequential type.
2360 uint64_t NumElements = STy->getArrayNumElements();
2362 // Expand the current index or the previous index to a vector from a scalar
2363 // if necessary.
2364 Constant *CurrIdx = cast<Constant>(Idxs[i]);
2365 auto *PrevIdx =
2366 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2367 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2368 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2369 bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2371 if (!IsCurrIdxVector && IsPrevIdxVector)
2372 CurrIdx = ConstantDataVector::getSplat(
2373 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2375 if (!IsPrevIdxVector && IsCurrIdxVector)
2376 PrevIdx = ConstantDataVector::getSplat(
2377 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2379 Constant *Factor =
2380 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2381 if (UseVector)
2382 Factor = ConstantDataVector::getSplat(
2383 IsPrevIdxVector
2384 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2385 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
2386 Factor);
2388 NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor);
2390 Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor);
2392 unsigned CommonExtendedWidth =
2393 std::max(PrevIdx->getType()->getScalarSizeInBits(),
2394 Div->getType()->getScalarSizeInBits());
2395 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2397 // Before adding, extend both operands to i64 to avoid
2398 // overflow trouble.
2399 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2400 if (UseVector)
2401 ExtendedTy = FixedVectorType::get(
2402 ExtendedTy,
2403 IsPrevIdxVector
2404 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2405 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
2407 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2408 PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy);
2410 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2411 Div = ConstantExpr::getSExt(Div, ExtendedTy);
2413 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2416 // If we did any factoring, start over with the adjusted indices.
2417 if (!NewIdxs.empty()) {
2418 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2419 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2420 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2421 InRangeIndex);
2424 // If all indices are known integers and normalized, we can do a simple
2425 // check for the "inbounds" property.
2426 if (!Unknown && !InBounds)
2427 if (auto *GV = dyn_cast<GlobalVariable>(C))
2428 if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs))
2429 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2430 /*InBounds=*/true, InRangeIndex);
2432 return nullptr;