1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
43 ConstantRange::ConstantRange(uint32_t BitWidth
, bool Full
)
44 : Lower(Full
? APInt::getMaxValue(BitWidth
) : APInt::getMinValue(BitWidth
)),
47 ConstantRange::ConstantRange(APInt V
)
48 : Lower(std::move(V
)), Upper(Lower
+ 1) {}
50 ConstantRange::ConstantRange(APInt L
, APInt U
)
51 : Lower(std::move(L
)), Upper(std::move(U
)) {
52 assert(Lower
.getBitWidth() == Upper
.getBitWidth() &&
53 "ConstantRange with unequal bit widths");
54 assert((Lower
!= Upper
|| (Lower
.isMaxValue() || Lower
.isMinValue())) &&
55 "Lower == Upper, but they aren't min or max value!");
58 ConstantRange
ConstantRange::fromKnownBits(const KnownBits
&Known
,
60 assert(!Known
.hasConflict() && "Expected valid KnownBits");
62 if (Known
.isUnknown())
63 return getFull(Known
.getBitWidth());
65 // For unsigned ranges, or signed ranges with known sign bit, create a simple
66 // range between the smallest and largest possible value.
67 if (!IsSigned
|| Known
.isNegative() || Known
.isNonNegative())
68 return ConstantRange(Known
.getMinValue(), Known
.getMaxValue() + 1);
70 // If we don't know the sign bit, pick the lower bound as a negative number
71 // and the upper bound as a non-negative one.
72 APInt Lower
= Known
.getMinValue(), Upper
= Known
.getMaxValue();
75 return ConstantRange(Lower
, Upper
+ 1);
78 ConstantRange
ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred
,
79 const ConstantRange
&CR
) {
83 uint32_t W
= CR
.getBitWidth();
86 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87 case CmpInst::ICMP_EQ
:
89 case CmpInst::ICMP_NE
:
90 if (CR
.isSingleElement())
91 return ConstantRange(CR
.getUpper(), CR
.getLower());
93 case CmpInst::ICMP_ULT
: {
94 APInt
UMax(CR
.getUnsignedMax());
95 if (UMax
.isMinValue())
97 return ConstantRange(APInt::getMinValue(W
), std::move(UMax
));
99 case CmpInst::ICMP_SLT
: {
100 APInt
SMax(CR
.getSignedMax());
101 if (SMax
.isMinSignedValue())
103 return ConstantRange(APInt::getSignedMinValue(W
), std::move(SMax
));
105 case CmpInst::ICMP_ULE
:
106 return getNonEmpty(APInt::getMinValue(W
), CR
.getUnsignedMax() + 1);
107 case CmpInst::ICMP_SLE
:
108 return getNonEmpty(APInt::getSignedMinValue(W
), CR
.getSignedMax() + 1);
109 case CmpInst::ICMP_UGT
: {
110 APInt
UMin(CR
.getUnsignedMin());
111 if (UMin
.isMaxValue())
113 return ConstantRange(std::move(UMin
) + 1, APInt::getNullValue(W
));
115 case CmpInst::ICMP_SGT
: {
116 APInt
SMin(CR
.getSignedMin());
117 if (SMin
.isMaxSignedValue())
119 return ConstantRange(std::move(SMin
) + 1, APInt::getSignedMinValue(W
));
121 case CmpInst::ICMP_UGE
:
122 return getNonEmpty(CR
.getUnsignedMin(), APInt::getNullValue(W
));
123 case CmpInst::ICMP_SGE
:
124 return getNonEmpty(CR
.getSignedMin(), APInt::getSignedMinValue(W
));
128 ConstantRange
ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred
,
129 const ConstantRange
&CR
) {
130 // Follows from De-Morgan's laws:
132 // ~(~A union ~B) == A intersect B.
134 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred
), CR
)
138 ConstantRange
ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred
,
140 // Computes the exact range that is equal to both the constant ranges returned
141 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142 // when RHS is a singleton such as an APInt and so the assert is valid.
143 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
146 assert(makeAllowedICmpRegion(Pred
, C
) == makeSatisfyingICmpRegion(Pred
, C
));
147 return makeAllowedICmpRegion(Pred
, C
);
150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate
&Pred
,
152 bool Success
= false;
154 if (isFullSet() || isEmptySet()) {
155 Pred
= isEmptySet() ? CmpInst::ICMP_ULT
: CmpInst::ICMP_UGE
;
156 RHS
= APInt(getBitWidth(), 0);
158 } else if (auto *OnlyElt
= getSingleElement()) {
159 Pred
= CmpInst::ICMP_EQ
;
162 } else if (auto *OnlyMissingElt
= getSingleMissingElement()) {
163 Pred
= CmpInst::ICMP_NE
;
164 RHS
= *OnlyMissingElt
;
166 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
168 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT
: CmpInst::ICMP_ULT
;
171 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
173 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE
: CmpInst::ICMP_UGE
;
178 assert((!Success
|| ConstantRange::makeExactICmpRegion(Pred
, RHS
) == *this) &&
184 bool ConstantRange::icmp(CmpInst::Predicate Pred
,
185 const ConstantRange
&Other
) const {
186 return makeSatisfyingICmpRegion(Pred
, Other
).contains(*this);
189 /// Exact mul nuw region for single element RHS.
190 static ConstantRange
makeExactMulNUWRegion(const APInt
&V
) {
191 unsigned BitWidth
= V
.getBitWidth();
193 return ConstantRange::getFull(V
.getBitWidth());
195 return ConstantRange::getNonEmpty(
196 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth
), V
,
197 APInt::Rounding::UP
),
198 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth
), V
,
199 APInt::Rounding::DOWN
) + 1);
202 /// Exact mul nsw region for single element RHS.
203 static ConstantRange
makeExactMulNSWRegion(const APInt
&V
) {
204 // Handle special case for 0, -1 and 1. See the last for reason why we
205 // specialize -1 and 1.
206 unsigned BitWidth
= V
.getBitWidth();
207 if (V
== 0 || V
.isOneValue())
208 return ConstantRange::getFull(BitWidth
);
210 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
211 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
212 // e.g. Returning [-127, 127], represented as [-127, -128).
213 if (V
.isAllOnesValue())
214 return ConstantRange(-MaxValue
, MinValue
);
217 if (V
.isNegative()) {
218 Lower
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::UP
);
219 Upper
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::DOWN
);
221 Lower
= APIntOps::RoundingSDiv(MinValue
, V
, APInt::Rounding::UP
);
222 Upper
= APIntOps::RoundingSDiv(MaxValue
, V
, APInt::Rounding::DOWN
);
224 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
225 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
226 // and 1 are already handled as special cases.
227 return ConstantRange(Lower
, Upper
+ 1);
231 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp
,
232 const ConstantRange
&Other
,
233 unsigned NoWrapKind
) {
234 using OBO
= OverflowingBinaryOperator
;
236 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
238 assert((NoWrapKind
== OBO::NoSignedWrap
||
239 NoWrapKind
== OBO::NoUnsignedWrap
) &&
240 "NoWrapKind invalid!");
242 bool Unsigned
= NoWrapKind
== OBO::NoUnsignedWrap
;
243 unsigned BitWidth
= Other
.getBitWidth();
247 llvm_unreachable("Unsupported binary op");
249 case Instruction::Add
: {
251 return getNonEmpty(APInt::getNullValue(BitWidth
),
252 -Other
.getUnsignedMax());
254 APInt SignedMinVal
= APInt::getSignedMinValue(BitWidth
);
255 APInt SMin
= Other
.getSignedMin(), SMax
= Other
.getSignedMax();
257 SMin
.isNegative() ? SignedMinVal
- SMin
: SignedMinVal
,
258 SMax
.isStrictlyPositive() ? SignedMinVal
- SMax
: SignedMinVal
);
261 case Instruction::Sub
: {
263 return getNonEmpty(Other
.getUnsignedMax(), APInt::getMinValue(BitWidth
));
265 APInt SignedMinVal
= APInt::getSignedMinValue(BitWidth
);
266 APInt SMin
= Other
.getSignedMin(), SMax
= Other
.getSignedMax();
268 SMax
.isStrictlyPositive() ? SignedMinVal
+ SMax
: SignedMinVal
,
269 SMin
.isNegative() ? SignedMinVal
+ SMin
: SignedMinVal
);
272 case Instruction::Mul
:
274 return makeExactMulNUWRegion(Other
.getUnsignedMax());
276 return makeExactMulNSWRegion(Other
.getSignedMin())
277 .intersectWith(makeExactMulNSWRegion(Other
.getSignedMax()));
279 case Instruction::Shl
: {
280 // For given range of shift amounts, if we ignore all illegal shift amounts
281 // (that always produce poison), what shift amount range is left?
282 ConstantRange ShAmt
= Other
.intersectWith(
283 ConstantRange(APInt(BitWidth
, 0), APInt(BitWidth
, (BitWidth
- 1) + 1)));
284 if (ShAmt
.isEmptySet()) {
285 // If the entire range of shift amounts is already poison-producing,
286 // then we can freely add more poison-producing flags ontop of that.
287 return getFull(BitWidth
);
289 // There are some legal shift amounts, we can compute conservatively-correct
290 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
291 // to be at most bitwidth-1, which results in most conservative range.
292 APInt ShAmtUMax
= ShAmt
.getUnsignedMax();
294 return getNonEmpty(APInt::getNullValue(BitWidth
),
295 APInt::getMaxValue(BitWidth
).lshr(ShAmtUMax
) + 1);
296 return getNonEmpty(APInt::getSignedMinValue(BitWidth
).ashr(ShAmtUMax
),
297 APInt::getSignedMaxValue(BitWidth
).ashr(ShAmtUMax
) + 1);
302 ConstantRange
ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp
,
304 unsigned NoWrapKind
) {
305 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
306 // "for all" and "for any" coincide in this case.
307 return makeGuaranteedNoWrapRegion(BinOp
, ConstantRange(Other
), NoWrapKind
);
310 bool ConstantRange::isFullSet() const {
311 return Lower
== Upper
&& Lower
.isMaxValue();
314 bool ConstantRange::isEmptySet() const {
315 return Lower
== Upper
&& Lower
.isMinValue();
318 bool ConstantRange::isWrappedSet() const {
319 return Lower
.ugt(Upper
) && !Upper
.isNullValue();
322 bool ConstantRange::isUpperWrapped() const {
323 return Lower
.ugt(Upper
);
326 bool ConstantRange::isSignWrappedSet() const {
327 return Lower
.sgt(Upper
) && !Upper
.isMinSignedValue();
330 bool ConstantRange::isUpperSignWrapped() const {
331 return Lower
.sgt(Upper
);
335 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange
&Other
) const {
336 assert(getBitWidth() == Other
.getBitWidth());
339 if (Other
.isFullSet())
341 return (Upper
- Lower
).ult(Other
.Upper
- Other
.Lower
);
345 ConstantRange::isSizeLargerThan(uint64_t MaxSize
) const {
346 assert(MaxSize
&& "MaxSize can't be 0.");
347 // If this a full set, we need special handling to avoid needing an extra bit
348 // to represent the size.
350 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize
- 1);
352 return (Upper
- Lower
).ugt(MaxSize
);
355 bool ConstantRange::isAllNegative() const {
356 // Empty set is all negative, full set is not.
362 return !isUpperSignWrapped() && !Upper
.isStrictlyPositive();
365 bool ConstantRange::isAllNonNegative() const {
366 // Empty and full set are automatically treated correctly.
367 return !isSignWrappedSet() && Lower
.isNonNegative();
370 APInt
ConstantRange::getUnsignedMax() const {
371 if (isFullSet() || isUpperWrapped())
372 return APInt::getMaxValue(getBitWidth());
373 return getUpper() - 1;
376 APInt
ConstantRange::getUnsignedMin() const {
377 if (isFullSet() || isWrappedSet())
378 return APInt::getMinValue(getBitWidth());
382 APInt
ConstantRange::getSignedMax() const {
383 if (isFullSet() || isUpperSignWrapped())
384 return APInt::getSignedMaxValue(getBitWidth());
385 return getUpper() - 1;
388 APInt
ConstantRange::getSignedMin() const {
389 if (isFullSet() || isSignWrappedSet())
390 return APInt::getSignedMinValue(getBitWidth());
394 bool ConstantRange::contains(const APInt
&V
) const {
398 if (!isUpperWrapped())
399 return Lower
.ule(V
) && V
.ult(Upper
);
400 return Lower
.ule(V
) || V
.ult(Upper
);
403 bool ConstantRange::contains(const ConstantRange
&Other
) const {
404 if (isFullSet() || Other
.isEmptySet()) return true;
405 if (isEmptySet() || Other
.isFullSet()) return false;
407 if (!isUpperWrapped()) {
408 if (Other
.isUpperWrapped())
411 return Lower
.ule(Other
.getLower()) && Other
.getUpper().ule(Upper
);
414 if (!Other
.isUpperWrapped())
415 return Other
.getUpper().ule(Upper
) ||
416 Lower
.ule(Other
.getLower());
418 return Other
.getUpper().ule(Upper
) && Lower
.ule(Other
.getLower());
421 unsigned ConstantRange::getActiveBits() const {
425 return getUnsignedMax().getActiveBits();
428 unsigned ConstantRange::getMinSignedBits() const {
432 return std::max(getSignedMin().getMinSignedBits(),
433 getSignedMax().getMinSignedBits());
436 ConstantRange
ConstantRange::subtract(const APInt
&Val
) const {
437 assert(Val
.getBitWidth() == getBitWidth() && "Wrong bit width");
438 // If the set is empty or full, don't modify the endpoints.
441 return ConstantRange(Lower
- Val
, Upper
- Val
);
444 ConstantRange
ConstantRange::difference(const ConstantRange
&CR
) const {
445 return intersectWith(CR
.inverse());
448 static ConstantRange
getPreferredRange(
449 const ConstantRange
&CR1
, const ConstantRange
&CR2
,
450 ConstantRange::PreferredRangeType Type
) {
451 if (Type
== ConstantRange::Unsigned
) {
452 if (!CR1
.isWrappedSet() && CR2
.isWrappedSet())
454 if (CR1
.isWrappedSet() && !CR2
.isWrappedSet())
456 } else if (Type
== ConstantRange::Signed
) {
457 if (!CR1
.isSignWrappedSet() && CR2
.isSignWrappedSet())
459 if (CR1
.isSignWrappedSet() && !CR2
.isSignWrappedSet())
463 if (CR1
.isSizeStrictlySmallerThan(CR2
))
468 ConstantRange
ConstantRange::intersectWith(const ConstantRange
&CR
,
469 PreferredRangeType Type
) const {
470 assert(getBitWidth() == CR
.getBitWidth() &&
471 "ConstantRange types don't agree!");
473 // Handle common cases.
474 if ( isEmptySet() || CR
.isFullSet()) return *this;
475 if (CR
.isEmptySet() || isFullSet()) return CR
;
477 if (!isUpperWrapped() && CR
.isUpperWrapped())
478 return CR
.intersectWith(*this, Type
);
480 if (!isUpperWrapped() && !CR
.isUpperWrapped()) {
481 if (Lower
.ult(CR
.Lower
)) {
484 if (Upper
.ule(CR
.Lower
))
489 if (Upper
.ult(CR
.Upper
))
490 return ConstantRange(CR
.Lower
, Upper
);
498 if (Upper
.ult(CR
.Upper
))
503 if (Lower
.ult(CR
.Upper
))
504 return ConstantRange(Lower
, CR
.Upper
);
511 if (isUpperWrapped() && !CR
.isUpperWrapped()) {
512 if (CR
.Lower
.ult(Upper
)) {
513 // ------U L--- : this
515 if (CR
.Upper
.ult(Upper
))
518 // ------U L--- : this
520 if (CR
.Upper
.ule(Lower
))
521 return ConstantRange(CR
.Lower
, Upper
);
523 // ------U L--- : this
525 return getPreferredRange(*this, CR
, Type
);
527 if (CR
.Lower
.ult(Lower
)) {
530 if (CR
.Upper
.ule(Lower
))
535 return ConstantRange(Lower
, CR
.Upper
);
538 // --U L------ : this
543 if (CR
.Upper
.ult(Upper
)) {
544 // ------U L-- : this
546 if (CR
.Lower
.ult(Upper
))
547 return getPreferredRange(*this, CR
, Type
);
551 if (CR
.Lower
.ult(Lower
))
552 return ConstantRange(Lower
, CR
.Upper
);
554 // ----U L---- : this
558 if (CR
.Upper
.ule(Lower
)) {
561 if (CR
.Lower
.ult(Lower
))
566 return ConstantRange(CR
.Lower
, Upper
);
569 // --U L------ : this
571 return getPreferredRange(*this, CR
, Type
);
574 ConstantRange
ConstantRange::unionWith(const ConstantRange
&CR
,
575 PreferredRangeType Type
) const {
576 assert(getBitWidth() == CR
.getBitWidth() &&
577 "ConstantRange types don't agree!");
579 if ( isFullSet() || CR
.isEmptySet()) return *this;
580 if (CR
.isFullSet() || isEmptySet()) return CR
;
582 if (!isUpperWrapped() && CR
.isUpperWrapped())
583 return CR
.unionWith(*this, Type
);
585 if (!isUpperWrapped() && !CR
.isUpperWrapped()) {
586 // L---U and L---U : this
591 if (CR
.Upper
.ult(Lower
) || Upper
.ult(CR
.Lower
))
592 return getPreferredRange(
593 ConstantRange(Lower
, CR
.Upper
), ConstantRange(CR
.Lower
, Upper
), Type
);
595 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
596 APInt U
= (CR
.Upper
- 1).ugt(Upper
- 1) ? CR
.Upper
: Upper
;
598 if (L
.isNullValue() && U
.isNullValue())
601 return ConstantRange(std::move(L
), std::move(U
));
604 if (!CR
.isUpperWrapped()) {
605 // ------U L----- and ------U L----- : this
607 if (CR
.Upper
.ule(Upper
) || CR
.Lower
.uge(Lower
))
610 // ------U L----- : this
612 if (CR
.Lower
.ule(Upper
) && Lower
.ule(CR
.Upper
))
615 // ----U L---- : this
620 if (Upper
.ult(CR
.Lower
) && CR
.Upper
.ult(Lower
))
621 return getPreferredRange(
622 ConstantRange(Lower
, CR
.Upper
), ConstantRange(CR
.Lower
, Upper
), Type
);
624 // ----U L----- : this
626 if (Upper
.ult(CR
.Lower
) && Lower
.ule(CR
.Upper
))
627 return ConstantRange(CR
.Lower
, Upper
);
629 // ------U L---- : this
631 assert(CR
.Lower
.ule(Upper
) && CR
.Upper
.ult(Lower
) &&
632 "ConstantRange::unionWith missed a case with one range wrapped");
633 return ConstantRange(Lower
, CR
.Upper
);
636 // ------U L---- and ------U L---- : this
637 // -U L----------- and ------------U L : CR
638 if (CR
.Lower
.ule(Upper
) || Lower
.ule(CR
.Upper
))
641 APInt L
= CR
.Lower
.ult(Lower
) ? CR
.Lower
: Lower
;
642 APInt U
= CR
.Upper
.ugt(Upper
) ? CR
.Upper
: Upper
;
644 return ConstantRange(std::move(L
), std::move(U
));
647 ConstantRange
ConstantRange::castOp(Instruction::CastOps CastOp
,
648 uint32_t ResultBitWidth
) const {
651 llvm_unreachable("unsupported cast type");
652 case Instruction::Trunc
:
653 return truncate(ResultBitWidth
);
654 case Instruction::SExt
:
655 return signExtend(ResultBitWidth
);
656 case Instruction::ZExt
:
657 return zeroExtend(ResultBitWidth
);
658 case Instruction::BitCast
:
660 case Instruction::FPToUI
:
661 case Instruction::FPToSI
:
662 if (getBitWidth() == ResultBitWidth
)
665 return getFull(ResultBitWidth
);
666 case Instruction::UIToFP
: {
667 // TODO: use input range if available
668 auto BW
= getBitWidth();
669 APInt Min
= APInt::getMinValue(BW
).zextOrSelf(ResultBitWidth
);
670 APInt Max
= APInt::getMaxValue(BW
).zextOrSelf(ResultBitWidth
);
671 return ConstantRange(std::move(Min
), std::move(Max
));
673 case Instruction::SIToFP
: {
674 // TODO: use input range if available
675 auto BW
= getBitWidth();
676 APInt SMin
= APInt::getSignedMinValue(BW
).sextOrSelf(ResultBitWidth
);
677 APInt SMax
= APInt::getSignedMaxValue(BW
).sextOrSelf(ResultBitWidth
);
678 return ConstantRange(std::move(SMin
), std::move(SMax
));
680 case Instruction::FPTrunc
:
681 case Instruction::FPExt
:
682 case Instruction::IntToPtr
:
683 case Instruction::PtrToInt
:
684 case Instruction::AddrSpaceCast
:
685 // Conservatively return getFull set.
686 return getFull(ResultBitWidth
);
690 ConstantRange
ConstantRange::zeroExtend(uint32_t DstTySize
) const {
691 if (isEmptySet()) return getEmpty(DstTySize
);
693 unsigned SrcTySize
= getBitWidth();
694 assert(SrcTySize
< DstTySize
&& "Not a value extension");
695 if (isFullSet() || isUpperWrapped()) {
696 // Change into [0, 1 << src bit width)
697 APInt
LowerExt(DstTySize
, 0);
698 if (!Upper
) // special case: [X, 0) -- not really wrapping around
699 LowerExt
= Lower
.zext(DstTySize
);
700 return ConstantRange(std::move(LowerExt
),
701 APInt::getOneBitSet(DstTySize
, SrcTySize
));
704 return ConstantRange(Lower
.zext(DstTySize
), Upper
.zext(DstTySize
));
707 ConstantRange
ConstantRange::signExtend(uint32_t DstTySize
) const {
708 if (isEmptySet()) return getEmpty(DstTySize
);
710 unsigned SrcTySize
= getBitWidth();
711 assert(SrcTySize
< DstTySize
&& "Not a value extension");
713 // special case: [X, INT_MIN) -- not really wrapping around
714 if (Upper
.isMinSignedValue())
715 return ConstantRange(Lower
.sext(DstTySize
), Upper
.zext(DstTySize
));
717 if (isFullSet() || isSignWrappedSet()) {
718 return ConstantRange(APInt::getHighBitsSet(DstTySize
,DstTySize
-SrcTySize
+1),
719 APInt::getLowBitsSet(DstTySize
, SrcTySize
-1) + 1);
722 return ConstantRange(Lower
.sext(DstTySize
), Upper
.sext(DstTySize
));
725 ConstantRange
ConstantRange::truncate(uint32_t DstTySize
) const {
726 assert(getBitWidth() > DstTySize
&& "Not a value truncation");
728 return getEmpty(DstTySize
);
730 return getFull(DstTySize
);
732 APInt
LowerDiv(Lower
), UpperDiv(Upper
);
733 ConstantRange
Union(DstTySize
, /*isFullSet=*/false);
735 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
736 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
737 // then we do the union with [MaxValue, Upper)
738 if (isUpperWrapped()) {
739 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
741 if (Upper
.getActiveBits() > DstTySize
||
742 Upper
.countTrailingOnes() == DstTySize
)
743 return getFull(DstTySize
);
745 Union
= ConstantRange(APInt::getMaxValue(DstTySize
),Upper
.trunc(DstTySize
));
746 UpperDiv
.setAllBits();
748 // Union covers the MaxValue case, so return if the remaining range is just
750 if (LowerDiv
== UpperDiv
)
754 // Chop off the most significant bits that are past the destination bitwidth.
755 if (LowerDiv
.getActiveBits() > DstTySize
) {
756 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
757 APInt Adjust
= LowerDiv
& APInt::getBitsSetFrom(getBitWidth(), DstTySize
);
762 unsigned UpperDivWidth
= UpperDiv
.getActiveBits();
763 if (UpperDivWidth
<= DstTySize
)
764 return ConstantRange(LowerDiv
.trunc(DstTySize
),
765 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
767 // The truncated value wraps around. Check if we can do better than fullset.
768 if (UpperDivWidth
== DstTySize
+ 1) {
769 // Clear the MSB so that UpperDiv wraps around.
770 UpperDiv
.clearBit(DstTySize
);
771 if (UpperDiv
.ult(LowerDiv
))
772 return ConstantRange(LowerDiv
.trunc(DstTySize
),
773 UpperDiv
.trunc(DstTySize
)).unionWith(Union
);
776 return getFull(DstTySize
);
779 ConstantRange
ConstantRange::zextOrTrunc(uint32_t DstTySize
) const {
780 unsigned SrcTySize
= getBitWidth();
781 if (SrcTySize
> DstTySize
)
782 return truncate(DstTySize
);
783 if (SrcTySize
< DstTySize
)
784 return zeroExtend(DstTySize
);
788 ConstantRange
ConstantRange::sextOrTrunc(uint32_t DstTySize
) const {
789 unsigned SrcTySize
= getBitWidth();
790 if (SrcTySize
> DstTySize
)
791 return truncate(DstTySize
);
792 if (SrcTySize
< DstTySize
)
793 return signExtend(DstTySize
);
797 ConstantRange
ConstantRange::binaryOp(Instruction::BinaryOps BinOp
,
798 const ConstantRange
&Other
) const {
799 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
802 case Instruction::Add
:
804 case Instruction::Sub
:
806 case Instruction::Mul
:
807 return multiply(Other
);
808 case Instruction::UDiv
:
810 case Instruction::SDiv
:
812 case Instruction::URem
:
814 case Instruction::SRem
:
816 case Instruction::Shl
:
818 case Instruction::LShr
:
820 case Instruction::AShr
:
822 case Instruction::And
:
823 return binaryAnd(Other
);
824 case Instruction::Or
:
825 return binaryOr(Other
);
826 case Instruction::Xor
:
827 return binaryXor(Other
);
828 // Note: floating point operations applied to abstract ranges are just
829 // ideal integer operations with a lossy representation
830 case Instruction::FAdd
:
832 case Instruction::FSub
:
834 case Instruction::FMul
:
835 return multiply(Other
);
837 // Conservatively return getFull set.
842 ConstantRange
ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp
,
843 const ConstantRange
&Other
,
844 unsigned NoWrapKind
) const {
845 assert(Instruction::isBinaryOp(BinOp
) && "Binary operators only!");
848 case Instruction::Add
:
849 return addWithNoWrap(Other
, NoWrapKind
);
850 case Instruction::Sub
:
851 return subWithNoWrap(Other
, NoWrapKind
);
853 // Don't know about this Overflowing Binary Operation.
854 // Conservatively fallback to plain binop handling.
855 return binaryOp(BinOp
, Other
);
859 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID
) {
860 switch (IntrinsicID
) {
861 case Intrinsic::uadd_sat
:
862 case Intrinsic::usub_sat
:
863 case Intrinsic::sadd_sat
:
864 case Intrinsic::ssub_sat
:
865 case Intrinsic::umin
:
866 case Intrinsic::umax
:
867 case Intrinsic::smin
:
868 case Intrinsic::smax
:
876 ConstantRange
ConstantRange::intrinsic(Intrinsic::ID IntrinsicID
,
877 ArrayRef
<ConstantRange
> Ops
) {
878 switch (IntrinsicID
) {
879 case Intrinsic::uadd_sat
:
880 return Ops
[0].uadd_sat(Ops
[1]);
881 case Intrinsic::usub_sat
:
882 return Ops
[0].usub_sat(Ops
[1]);
883 case Intrinsic::sadd_sat
:
884 return Ops
[0].sadd_sat(Ops
[1]);
885 case Intrinsic::ssub_sat
:
886 return Ops
[0].ssub_sat(Ops
[1]);
887 case Intrinsic::umin
:
888 return Ops
[0].umin(Ops
[1]);
889 case Intrinsic::umax
:
890 return Ops
[0].umax(Ops
[1]);
891 case Intrinsic::smin
:
892 return Ops
[0].smin(Ops
[1]);
893 case Intrinsic::smax
:
894 return Ops
[0].smax(Ops
[1]);
895 case Intrinsic::abs
: {
896 const APInt
*IntMinIsPoison
= Ops
[1].getSingleElement();
897 assert(IntMinIsPoison
&& "Must be known (immarg)");
898 assert(IntMinIsPoison
->getBitWidth() == 1 && "Must be boolean");
899 return Ops
[0].abs(IntMinIsPoison
->getBoolValue());
902 assert(!isIntrinsicSupported(IntrinsicID
) && "Shouldn't be supported");
903 llvm_unreachable("Unsupported intrinsic");
908 ConstantRange::add(const ConstantRange
&Other
) const {
909 if (isEmptySet() || Other
.isEmptySet())
911 if (isFullSet() || Other
.isFullSet())
914 APInt NewLower
= getLower() + Other
.getLower();
915 APInt NewUpper
= getUpper() + Other
.getUpper() - 1;
916 if (NewLower
== NewUpper
)
919 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
920 if (X
.isSizeStrictlySmallerThan(*this) ||
921 X
.isSizeStrictlySmallerThan(Other
))
922 // We've wrapped, therefore, full set.
927 ConstantRange
ConstantRange::addWithNoWrap(const ConstantRange
&Other
,
929 PreferredRangeType RangeType
) const {
930 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
931 // (X is from this, and Y is from Other)
932 if (isEmptySet() || Other
.isEmptySet())
934 if (isFullSet() && Other
.isFullSet())
937 using OBO
= OverflowingBinaryOperator
;
938 ConstantRange Result
= add(Other
);
940 // If an overflow happens for every value pair in these two constant ranges,
941 // we must return Empty set. In this case, we get that for free, because we
942 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
945 if (NoWrapKind
& OBO::NoSignedWrap
)
946 Result
= Result
.intersectWith(sadd_sat(Other
), RangeType
);
948 if (NoWrapKind
& OBO::NoUnsignedWrap
)
949 Result
= Result
.intersectWith(uadd_sat(Other
), RangeType
);
955 ConstantRange::sub(const ConstantRange
&Other
) const {
956 if (isEmptySet() || Other
.isEmptySet())
958 if (isFullSet() || Other
.isFullSet())
961 APInt NewLower
= getLower() - Other
.getUpper() + 1;
962 APInt NewUpper
= getUpper() - Other
.getLower();
963 if (NewLower
== NewUpper
)
966 ConstantRange X
= ConstantRange(std::move(NewLower
), std::move(NewUpper
));
967 if (X
.isSizeStrictlySmallerThan(*this) ||
968 X
.isSizeStrictlySmallerThan(Other
))
969 // We've wrapped, therefore, full set.
974 ConstantRange
ConstantRange::subWithNoWrap(const ConstantRange
&Other
,
976 PreferredRangeType RangeType
) const {
977 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
978 // (X is from this, and Y is from Other)
979 if (isEmptySet() || Other
.isEmptySet())
981 if (isFullSet() && Other
.isFullSet())
984 using OBO
= OverflowingBinaryOperator
;
985 ConstantRange Result
= sub(Other
);
987 // If an overflow happens for every value pair in these two constant ranges,
988 // we must return Empty set. In signed case, we get that for free, because we
989 // get lucky that intersection of sub() with ssub_sat() results in an
990 // empty set. But for unsigned we must perform the overflow check manually.
992 if (NoWrapKind
& OBO::NoSignedWrap
)
993 Result
= Result
.intersectWith(ssub_sat(Other
), RangeType
);
995 if (NoWrapKind
& OBO::NoUnsignedWrap
) {
996 if (getUnsignedMax().ult(Other
.getUnsignedMin()))
997 return getEmpty(); // Always overflows.
998 Result
= Result
.intersectWith(usub_sat(Other
), RangeType
);
1005 ConstantRange::multiply(const ConstantRange
&Other
) const {
1006 // TODO: If either operand is a single element and the multiply is known to
1007 // be non-wrapping, round the result min and max value to the appropriate
1008 // multiple of that element. If wrapping is possible, at least adjust the
1009 // range according to the greatest power-of-two factor of the single element.
1011 if (isEmptySet() || Other
.isEmptySet())
1014 // Multiplication is signedness-independent. However different ranges can be
1015 // obtained depending on how the input ranges are treated. These different
1016 // ranges are all conservatively correct, but one might be better than the
1017 // other. We calculate two ranges; one treating the inputs as unsigned
1018 // and the other signed, then return the smallest of these ranges.
1020 // Unsigned range first.
1021 APInt this_min
= getUnsignedMin().zext(getBitWidth() * 2);
1022 APInt this_max
= getUnsignedMax().zext(getBitWidth() * 2);
1023 APInt Other_min
= Other
.getUnsignedMin().zext(getBitWidth() * 2);
1024 APInt Other_max
= Other
.getUnsignedMax().zext(getBitWidth() * 2);
1026 ConstantRange Result_zext
= ConstantRange(this_min
* Other_min
,
1027 this_max
* Other_max
+ 1);
1028 ConstantRange UR
= Result_zext
.truncate(getBitWidth());
1030 // If the unsigned range doesn't wrap, and isn't negative then it's a range
1031 // from one positive number to another which is as good as we can generate.
1032 // In this case, skip the extra work of generating signed ranges which aren't
1033 // going to be better than this range.
1034 if (!UR
.isUpperWrapped() &&
1035 (UR
.getUpper().isNonNegative() || UR
.getUpper().isMinSignedValue()))
1038 // Now the signed range. Because we could be dealing with negative numbers
1039 // here, the lower bound is the smallest of the cartesian product of the
1040 // lower and upper ranges; for example:
1041 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1042 // Similarly for the upper bound, swapping min for max.
1044 this_min
= getSignedMin().sext(getBitWidth() * 2);
1045 this_max
= getSignedMax().sext(getBitWidth() * 2);
1046 Other_min
= Other
.getSignedMin().sext(getBitWidth() * 2);
1047 Other_max
= Other
.getSignedMax().sext(getBitWidth() * 2);
1049 auto L
= {this_min
* Other_min
, this_min
* Other_max
,
1050 this_max
* Other_min
, this_max
* Other_max
};
1051 auto Compare
= [](const APInt
&A
, const APInt
&B
) { return A
.slt(B
); };
1052 ConstantRange
Result_sext(std::min(L
, Compare
), std::max(L
, Compare
) + 1);
1053 ConstantRange SR
= Result_sext
.truncate(getBitWidth());
1055 return UR
.isSizeStrictlySmallerThan(SR
) ? UR
: SR
;
1059 ConstantRange::smax(const ConstantRange
&Other
) const {
1060 // X smax Y is: range(smax(X_smin, Y_smin),
1061 // smax(X_smax, Y_smax))
1062 if (isEmptySet() || Other
.isEmptySet())
1064 APInt NewL
= APIntOps::smax(getSignedMin(), Other
.getSignedMin());
1065 APInt NewU
= APIntOps::smax(getSignedMax(), Other
.getSignedMax()) + 1;
1066 ConstantRange Res
= getNonEmpty(std::move(NewL
), std::move(NewU
));
1067 if (isSignWrappedSet() || Other
.isSignWrappedSet())
1068 return Res
.intersectWith(unionWith(Other
, Signed
), Signed
);
1073 ConstantRange::umax(const ConstantRange
&Other
) const {
1074 // X umax Y is: range(umax(X_umin, Y_umin),
1075 // umax(X_umax, Y_umax))
1076 if (isEmptySet() || Other
.isEmptySet())
1078 APInt NewL
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
1079 APInt NewU
= APIntOps::umax(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
1080 ConstantRange Res
= getNonEmpty(std::move(NewL
), std::move(NewU
));
1081 if (isWrappedSet() || Other
.isWrappedSet())
1082 return Res
.intersectWith(unionWith(Other
, Unsigned
), Unsigned
);
1087 ConstantRange::smin(const ConstantRange
&Other
) const {
1088 // X smin Y is: range(smin(X_smin, Y_smin),
1089 // smin(X_smax, Y_smax))
1090 if (isEmptySet() || Other
.isEmptySet())
1092 APInt NewL
= APIntOps::smin(getSignedMin(), Other
.getSignedMin());
1093 APInt NewU
= APIntOps::smin(getSignedMax(), Other
.getSignedMax()) + 1;
1094 ConstantRange Res
= getNonEmpty(std::move(NewL
), std::move(NewU
));
1095 if (isSignWrappedSet() || Other
.isSignWrappedSet())
1096 return Res
.intersectWith(unionWith(Other
, Signed
), Signed
);
1101 ConstantRange::umin(const ConstantRange
&Other
) const {
1102 // X umin Y is: range(umin(X_umin, Y_umin),
1103 // umin(X_umax, Y_umax))
1104 if (isEmptySet() || Other
.isEmptySet())
1106 APInt NewL
= APIntOps::umin(getUnsignedMin(), Other
.getUnsignedMin());
1107 APInt NewU
= APIntOps::umin(getUnsignedMax(), Other
.getUnsignedMax()) + 1;
1108 ConstantRange Res
= getNonEmpty(std::move(NewL
), std::move(NewU
));
1109 if (isWrappedSet() || Other
.isWrappedSet())
1110 return Res
.intersectWith(unionWith(Other
, Unsigned
), Unsigned
);
1115 ConstantRange::udiv(const ConstantRange
&RHS
) const {
1116 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax().isNullValue())
1119 APInt Lower
= getUnsignedMin().udiv(RHS
.getUnsignedMax());
1121 APInt RHS_umin
= RHS
.getUnsignedMin();
1122 if (RHS_umin
.isNullValue()) {
1123 // We want the lowest value in RHS excluding zero. Usually that would be 1
1124 // except for a range in the form of [X, 1) in which case it would be X.
1125 if (RHS
.getUpper() == 1)
1126 RHS_umin
= RHS
.getLower();
1131 APInt Upper
= getUnsignedMax().udiv(RHS_umin
) + 1;
1132 return getNonEmpty(std::move(Lower
), std::move(Upper
));
1135 ConstantRange
ConstantRange::sdiv(const ConstantRange
&RHS
) const {
1136 // We split up the LHS and RHS into positive and negative components
1137 // and then also compute the positive and negative components of the result
1138 // separately by combining division results with the appropriate signs.
1139 APInt Zero
= APInt::getNullValue(getBitWidth());
1140 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1141 ConstantRange
PosFilter(APInt(getBitWidth(), 1), SignedMin
);
1142 ConstantRange
NegFilter(SignedMin
, Zero
);
1143 ConstantRange PosL
= intersectWith(PosFilter
);
1144 ConstantRange NegL
= intersectWith(NegFilter
);
1145 ConstantRange PosR
= RHS
.intersectWith(PosFilter
);
1146 ConstantRange NegR
= RHS
.intersectWith(NegFilter
);
1148 ConstantRange PosRes
= getEmpty();
1149 if (!PosL
.isEmptySet() && !PosR
.isEmptySet())
1151 PosRes
= ConstantRange(PosL
.Lower
.sdiv(PosR
.Upper
- 1),
1152 (PosL
.Upper
- 1).sdiv(PosR
.Lower
) + 1);
1154 if (!NegL
.isEmptySet() && !NegR
.isEmptySet()) {
1157 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1158 // IR level, so we'll want to exclude this case when calculating bounds.
1159 // (For APInts the operation is well-defined and yields SignedMin.) We
1160 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1161 APInt Lo
= (NegL
.Upper
- 1).sdiv(NegR
.Lower
);
1162 if (NegL
.Lower
.isMinSignedValue() && NegR
.Upper
.isNullValue()) {
1163 // Remove -1 from the LHS. Skip if it's the only element, as this would
1164 // leave us with an empty set.
1165 if (!NegR
.Lower
.isAllOnesValue()) {
1167 if (RHS
.Lower
.isAllOnesValue())
1168 // Negative part of [-1, X] without -1 is [SignedMin, X].
1169 AdjNegRUpper
= RHS
.Upper
;
1171 // [X, -1] without -1 is [X, -2].
1172 AdjNegRUpper
= NegR
.Upper
- 1;
1174 PosRes
= PosRes
.unionWith(
1175 ConstantRange(Lo
, NegL
.Lower
.sdiv(AdjNegRUpper
- 1) + 1));
1178 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1179 // would leave us with an empty set.
1180 if (NegL
.Upper
!= SignedMin
+ 1) {
1182 if (Upper
== SignedMin
+ 1)
1183 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1184 AdjNegLLower
= Lower
;
1186 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1187 AdjNegLLower
= NegL
.Lower
+ 1;
1189 PosRes
= PosRes
.unionWith(
1190 ConstantRange(std::move(Lo
),
1191 AdjNegLLower
.sdiv(NegR
.Upper
- 1) + 1));
1194 PosRes
= PosRes
.unionWith(
1195 ConstantRange(std::move(Lo
), NegL
.Lower
.sdiv(NegR
.Upper
- 1) + 1));
1199 ConstantRange NegRes
= getEmpty();
1200 if (!PosL
.isEmptySet() && !NegR
.isEmptySet())
1202 NegRes
= ConstantRange((PosL
.Upper
- 1).sdiv(NegR
.Upper
- 1),
1203 PosL
.Lower
.sdiv(NegR
.Lower
) + 1);
1205 if (!NegL
.isEmptySet() && !PosR
.isEmptySet())
1207 NegRes
= NegRes
.unionWith(
1208 ConstantRange(NegL
.Lower
.sdiv(PosR
.Lower
),
1209 (NegL
.Upper
- 1).sdiv(PosR
.Upper
- 1) + 1));
1211 // Prefer a non-wrapping signed range here.
1212 ConstantRange Res
= NegRes
.unionWith(PosRes
, PreferredRangeType::Signed
);
1214 // Preserve the zero that we dropped when splitting the LHS by sign.
1215 if (contains(Zero
) && (!PosR
.isEmptySet() || !NegR
.isEmptySet()))
1216 Res
= Res
.unionWith(ConstantRange(Zero
));
1220 ConstantRange
ConstantRange::urem(const ConstantRange
&RHS
) const {
1221 if (isEmptySet() || RHS
.isEmptySet() || RHS
.getUnsignedMax().isNullValue())
1224 if (const APInt
*RHSInt
= RHS
.getSingleElement()) {
1225 // UREM by null is UB.
1226 if (RHSInt
->isNullValue())
1228 // Use APInt's implementation of UREM for single element ranges.
1229 if (const APInt
*LHSInt
= getSingleElement())
1230 return {LHSInt
->urem(*RHSInt
)};
1233 // L % R for L < R is L.
1234 if (getUnsignedMax().ult(RHS
.getUnsignedMin()))
1237 // L % R is <= L and < R.
1238 APInt Upper
= APIntOps::umin(getUnsignedMax(), RHS
.getUnsignedMax() - 1) + 1;
1239 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper
));
1242 ConstantRange
ConstantRange::srem(const ConstantRange
&RHS
) const {
1243 if (isEmptySet() || RHS
.isEmptySet())
1246 if (const APInt
*RHSInt
= RHS
.getSingleElement()) {
1247 // SREM by null is UB.
1248 if (RHSInt
->isNullValue())
1250 // Use APInt's implementation of SREM for single element ranges.
1251 if (const APInt
*LHSInt
= getSingleElement())
1252 return {LHSInt
->srem(*RHSInt
)};
1255 ConstantRange AbsRHS
= RHS
.abs();
1256 APInt MinAbsRHS
= AbsRHS
.getUnsignedMin();
1257 APInt MaxAbsRHS
= AbsRHS
.getUnsignedMax();
1259 // Modulus by zero is UB.
1260 if (MaxAbsRHS
.isNullValue())
1263 if (MinAbsRHS
.isNullValue())
1266 APInt MinLHS
= getSignedMin(), MaxLHS
= getSignedMax();
1268 if (MinLHS
.isNonNegative()) {
1269 // L % R for L < R is L.
1270 if (MaxLHS
.ult(MinAbsRHS
))
1273 // L % R is <= L and < R.
1274 APInt Upper
= APIntOps::umin(MaxLHS
, MaxAbsRHS
- 1) + 1;
1275 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper
));
1278 // Same basic logic as above, but the result is negative.
1279 if (MaxLHS
.isNegative()) {
1280 if (MinLHS
.ugt(-MinAbsRHS
))
1283 APInt Lower
= APIntOps::umax(MinLHS
, -MaxAbsRHS
+ 1);
1284 return ConstantRange(std::move(Lower
), APInt(getBitWidth(), 1));
1287 // LHS range crosses zero.
1288 APInt Lower
= APIntOps::umax(MinLHS
, -MaxAbsRHS
+ 1);
1289 APInt Upper
= APIntOps::umin(MaxLHS
, MaxAbsRHS
- 1) + 1;
1290 return ConstantRange(std::move(Lower
), std::move(Upper
));
1293 ConstantRange
ConstantRange::binaryNot() const {
1294 return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this);
1298 ConstantRange::binaryAnd(const ConstantRange
&Other
) const {
1299 if (isEmptySet() || Other
.isEmptySet())
1302 // Use APInt's implementation of AND for single element ranges.
1303 if (isSingleElement() && Other
.isSingleElement())
1304 return {*getSingleElement() & *Other
.getSingleElement()};
1306 // TODO: replace this with something less conservative
1308 APInt umin
= APIntOps::umin(Other
.getUnsignedMax(), getUnsignedMax());
1309 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin
) + 1);
1313 ConstantRange::binaryOr(const ConstantRange
&Other
) const {
1314 if (isEmptySet() || Other
.isEmptySet())
1317 // Use APInt's implementation of OR for single element ranges.
1318 if (isSingleElement() && Other
.isSingleElement())
1319 return {*getSingleElement() | *Other
.getSingleElement()};
1321 // TODO: replace this with something less conservative
1323 APInt umax
= APIntOps::umax(getUnsignedMin(), Other
.getUnsignedMin());
1324 return getNonEmpty(std::move(umax
), APInt::getNullValue(getBitWidth()));
1327 ConstantRange
ConstantRange::binaryXor(const ConstantRange
&Other
) const {
1328 if (isEmptySet() || Other
.isEmptySet())
1331 // Use APInt's implementation of XOR for single element ranges.
1332 if (isSingleElement() && Other
.isSingleElement())
1333 return {*getSingleElement() ^ *Other
.getSingleElement()};
1335 // Special-case binary complement, since we can give a precise answer.
1336 if (Other
.isSingleElement() && Other
.getSingleElement()->isAllOnesValue())
1338 if (isSingleElement() && getSingleElement()->isAllOnesValue())
1339 return Other
.binaryNot();
1341 // TODO: replace this with something less conservative
1346 ConstantRange::shl(const ConstantRange
&Other
) const {
1347 if (isEmptySet() || Other
.isEmptySet())
1350 APInt max
= getUnsignedMax();
1351 APInt Other_umax
= Other
.getUnsignedMax();
1353 // If we are shifting by maximum amount of
1354 // zero return return the original range.
1355 if (Other_umax
.isNullValue())
1357 // there's overflow!
1358 if (Other_umax
.ugt(max
.countLeadingZeros()))
1361 // FIXME: implement the other tricky cases
1363 APInt min
= getUnsignedMin();
1364 min
<<= Other
.getUnsignedMin();
1367 return ConstantRange(std::move(min
), std::move(max
) + 1);
1371 ConstantRange::lshr(const ConstantRange
&Other
) const {
1372 if (isEmptySet() || Other
.isEmptySet())
1375 APInt max
= getUnsignedMax().lshr(Other
.getUnsignedMin()) + 1;
1376 APInt min
= getUnsignedMin().lshr(Other
.getUnsignedMax());
1377 return getNonEmpty(std::move(min
), std::move(max
));
1381 ConstantRange::ashr(const ConstantRange
&Other
) const {
1382 if (isEmptySet() || Other
.isEmptySet())
1385 // May straddle zero, so handle both positive and negative cases.
1386 // 'PosMax' is the upper bound of the result of the ashr
1387 // operation, when Upper of the LHS of ashr is a non-negative.
1388 // number. Since ashr of a non-negative number will result in a
1389 // smaller number, the Upper value of LHS is shifted right with
1390 // the minimum value of 'Other' instead of the maximum value.
1391 APInt PosMax
= getSignedMax().ashr(Other
.getUnsignedMin()) + 1;
1393 // 'PosMin' is the lower bound of the result of the ashr
1394 // operation, when Lower of the LHS is a non-negative number.
1395 // Since ashr of a non-negative number will result in a smaller
1396 // number, the Lower value of LHS is shifted right with the
1397 // maximum value of 'Other'.
1398 APInt PosMin
= getSignedMin().ashr(Other
.getUnsignedMax());
1400 // 'NegMax' is the upper bound of the result of the ashr
1401 // operation, when Upper of the LHS of ashr is a negative number.
1402 // Since 'ashr' of a negative number will result in a bigger
1403 // number, the Upper value of LHS is shifted right with the
1404 // maximum value of 'Other'.
1405 APInt NegMax
= getSignedMax().ashr(Other
.getUnsignedMax()) + 1;
1407 // 'NegMin' is the lower bound of the result of the ashr
1408 // operation, when Lower of the LHS of ashr is a negative number.
1409 // Since 'ashr' of a negative number will result in a bigger
1410 // number, the Lower value of LHS is shifted right with the
1411 // minimum value of 'Other'.
1412 APInt NegMin
= getSignedMin().ashr(Other
.getUnsignedMin());
1415 if (getSignedMin().isNonNegative()) {
1416 // Upper and Lower of LHS are non-negative.
1419 } else if (getSignedMax().isNegative()) {
1420 // Upper and Lower of LHS are negative.
1424 // Upper is non-negative and Lower is negative.
1428 return getNonEmpty(std::move(min
), std::move(max
));
1431 ConstantRange
ConstantRange::uadd_sat(const ConstantRange
&Other
) const {
1432 if (isEmptySet() || Other
.isEmptySet())
1435 APInt NewL
= getUnsignedMin().uadd_sat(Other
.getUnsignedMin());
1436 APInt NewU
= getUnsignedMax().uadd_sat(Other
.getUnsignedMax()) + 1;
1437 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1440 ConstantRange
ConstantRange::sadd_sat(const ConstantRange
&Other
) const {
1441 if (isEmptySet() || Other
.isEmptySet())
1444 APInt NewL
= getSignedMin().sadd_sat(Other
.getSignedMin());
1445 APInt NewU
= getSignedMax().sadd_sat(Other
.getSignedMax()) + 1;
1446 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1449 ConstantRange
ConstantRange::usub_sat(const ConstantRange
&Other
) const {
1450 if (isEmptySet() || Other
.isEmptySet())
1453 APInt NewL
= getUnsignedMin().usub_sat(Other
.getUnsignedMax());
1454 APInt NewU
= getUnsignedMax().usub_sat(Other
.getUnsignedMin()) + 1;
1455 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1458 ConstantRange
ConstantRange::ssub_sat(const ConstantRange
&Other
) const {
1459 if (isEmptySet() || Other
.isEmptySet())
1462 APInt NewL
= getSignedMin().ssub_sat(Other
.getSignedMax());
1463 APInt NewU
= getSignedMax().ssub_sat(Other
.getSignedMin()) + 1;
1464 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1467 ConstantRange
ConstantRange::umul_sat(const ConstantRange
&Other
) const {
1468 if (isEmptySet() || Other
.isEmptySet())
1471 APInt NewL
= getUnsignedMin().umul_sat(Other
.getUnsignedMin());
1472 APInt NewU
= getUnsignedMax().umul_sat(Other
.getUnsignedMax()) + 1;
1473 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1476 ConstantRange
ConstantRange::smul_sat(const ConstantRange
&Other
) const {
1477 if (isEmptySet() || Other
.isEmptySet())
1480 // Because we could be dealing with negative numbers here, the lower bound is
1481 // the smallest of the cartesian product of the lower and upper ranges;
1483 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1484 // Similarly for the upper bound, swapping min for max.
1486 APInt this_min
= getSignedMin().sext(getBitWidth() * 2);
1487 APInt this_max
= getSignedMax().sext(getBitWidth() * 2);
1488 APInt Other_min
= Other
.getSignedMin().sext(getBitWidth() * 2);
1489 APInt Other_max
= Other
.getSignedMax().sext(getBitWidth() * 2);
1491 auto L
= {this_min
* Other_min
, this_min
* Other_max
, this_max
* Other_min
,
1492 this_max
* Other_max
};
1493 auto Compare
= [](const APInt
&A
, const APInt
&B
) { return A
.slt(B
); };
1495 // Note that we wanted to perform signed saturating multiplication,
1496 // so since we performed plain multiplication in twice the bitwidth,
1497 // we need to perform signed saturating truncation.
1498 return getNonEmpty(std::min(L
, Compare
).truncSSat(getBitWidth()),
1499 std::max(L
, Compare
).truncSSat(getBitWidth()) + 1);
1502 ConstantRange
ConstantRange::ushl_sat(const ConstantRange
&Other
) const {
1503 if (isEmptySet() || Other
.isEmptySet())
1506 APInt NewL
= getUnsignedMin().ushl_sat(Other
.getUnsignedMin());
1507 APInt NewU
= getUnsignedMax().ushl_sat(Other
.getUnsignedMax()) + 1;
1508 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1511 ConstantRange
ConstantRange::sshl_sat(const ConstantRange
&Other
) const {
1512 if (isEmptySet() || Other
.isEmptySet())
1515 APInt Min
= getSignedMin(), Max
= getSignedMax();
1516 APInt ShAmtMin
= Other
.getUnsignedMin(), ShAmtMax
= Other
.getUnsignedMax();
1517 APInt NewL
= Min
.sshl_sat(Min
.isNonNegative() ? ShAmtMin
: ShAmtMax
);
1518 APInt NewU
= Max
.sshl_sat(Max
.isNegative() ? ShAmtMin
: ShAmtMax
) + 1;
1519 return getNonEmpty(std::move(NewL
), std::move(NewU
));
1522 ConstantRange
ConstantRange::inverse() const {
1527 return ConstantRange(Upper
, Lower
);
1530 ConstantRange
ConstantRange::abs(bool IntMinIsPoison
) const {
1534 if (isSignWrappedSet()) {
1536 // Check whether the range crosses zero.
1537 if (Upper
.isStrictlyPositive() || !Lower
.isStrictlyPositive())
1538 Lo
= APInt::getNullValue(getBitWidth());
1540 Lo
= APIntOps::umin(Lower
, -Upper
+ 1);
1542 // If SignedMin is not poison, then it is included in the result range.
1544 return ConstantRange(Lo
, APInt::getSignedMinValue(getBitWidth()));
1546 return ConstantRange(Lo
, APInt::getSignedMinValue(getBitWidth()) + 1);
1549 APInt SMin
= getSignedMin(), SMax
= getSignedMax();
1551 // Skip SignedMin if it is poison.
1552 if (IntMinIsPoison
&& SMin
.isMinSignedValue()) {
1553 // The range may become empty if it *only* contains SignedMin.
1554 if (SMax
.isMinSignedValue())
1559 // All non-negative.
1560 if (SMin
.isNonNegative())
1564 if (SMax
.isNegative())
1565 return ConstantRange(-SMax
, -SMin
+ 1);
1567 // Range crosses zero.
1568 return ConstantRange(APInt::getNullValue(getBitWidth()),
1569 APIntOps::umax(-SMin
, SMax
) + 1);
1572 ConstantRange::OverflowResult
ConstantRange::unsignedAddMayOverflow(
1573 const ConstantRange
&Other
) const {
1574 if (isEmptySet() || Other
.isEmptySet())
1575 return OverflowResult::MayOverflow
;
1577 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1578 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1580 // a u+ b overflows high iff a u> ~b.
1581 if (Min
.ugt(~OtherMin
))
1582 return OverflowResult::AlwaysOverflowsHigh
;
1583 if (Max
.ugt(~OtherMax
))
1584 return OverflowResult::MayOverflow
;
1585 return OverflowResult::NeverOverflows
;
1588 ConstantRange::OverflowResult
ConstantRange::signedAddMayOverflow(
1589 const ConstantRange
&Other
) const {
1590 if (isEmptySet() || Other
.isEmptySet())
1591 return OverflowResult::MayOverflow
;
1593 APInt Min
= getSignedMin(), Max
= getSignedMax();
1594 APInt OtherMin
= Other
.getSignedMin(), OtherMax
= Other
.getSignedMax();
1596 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1597 APInt SignedMax
= APInt::getSignedMaxValue(getBitWidth());
1599 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1600 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1601 if (Min
.isNonNegative() && OtherMin
.isNonNegative() &&
1602 Min
.sgt(SignedMax
- OtherMin
))
1603 return OverflowResult::AlwaysOverflowsHigh
;
1604 if (Max
.isNegative() && OtherMax
.isNegative() &&
1605 Max
.slt(SignedMin
- OtherMax
))
1606 return OverflowResult::AlwaysOverflowsLow
;
1608 if (Max
.isNonNegative() && OtherMax
.isNonNegative() &&
1609 Max
.sgt(SignedMax
- OtherMax
))
1610 return OverflowResult::MayOverflow
;
1611 if (Min
.isNegative() && OtherMin
.isNegative() &&
1612 Min
.slt(SignedMin
- OtherMin
))
1613 return OverflowResult::MayOverflow
;
1615 return OverflowResult::NeverOverflows
;
1618 ConstantRange::OverflowResult
ConstantRange::unsignedSubMayOverflow(
1619 const ConstantRange
&Other
) const {
1620 if (isEmptySet() || Other
.isEmptySet())
1621 return OverflowResult::MayOverflow
;
1623 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1624 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1626 // a u- b overflows low iff a u< b.
1627 if (Max
.ult(OtherMin
))
1628 return OverflowResult::AlwaysOverflowsLow
;
1629 if (Min
.ult(OtherMax
))
1630 return OverflowResult::MayOverflow
;
1631 return OverflowResult::NeverOverflows
;
1634 ConstantRange::OverflowResult
ConstantRange::signedSubMayOverflow(
1635 const ConstantRange
&Other
) const {
1636 if (isEmptySet() || Other
.isEmptySet())
1637 return OverflowResult::MayOverflow
;
1639 APInt Min
= getSignedMin(), Max
= getSignedMax();
1640 APInt OtherMin
= Other
.getSignedMin(), OtherMax
= Other
.getSignedMax();
1642 APInt SignedMin
= APInt::getSignedMinValue(getBitWidth());
1643 APInt SignedMax
= APInt::getSignedMaxValue(getBitWidth());
1645 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1646 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1647 if (Min
.isNonNegative() && OtherMax
.isNegative() &&
1648 Min
.sgt(SignedMax
+ OtherMax
))
1649 return OverflowResult::AlwaysOverflowsHigh
;
1650 if (Max
.isNegative() && OtherMin
.isNonNegative() &&
1651 Max
.slt(SignedMin
+ OtherMin
))
1652 return OverflowResult::AlwaysOverflowsLow
;
1654 if (Max
.isNonNegative() && OtherMin
.isNegative() &&
1655 Max
.sgt(SignedMax
+ OtherMin
))
1656 return OverflowResult::MayOverflow
;
1657 if (Min
.isNegative() && OtherMax
.isNonNegative() &&
1658 Min
.slt(SignedMin
+ OtherMax
))
1659 return OverflowResult::MayOverflow
;
1661 return OverflowResult::NeverOverflows
;
1664 ConstantRange::OverflowResult
ConstantRange::unsignedMulMayOverflow(
1665 const ConstantRange
&Other
) const {
1666 if (isEmptySet() || Other
.isEmptySet())
1667 return OverflowResult::MayOverflow
;
1669 APInt Min
= getUnsignedMin(), Max
= getUnsignedMax();
1670 APInt OtherMin
= Other
.getUnsignedMin(), OtherMax
= Other
.getUnsignedMax();
1673 (void) Min
.umul_ov(OtherMin
, Overflow
);
1675 return OverflowResult::AlwaysOverflowsHigh
;
1677 (void) Max
.umul_ov(OtherMax
, Overflow
);
1679 return OverflowResult::MayOverflow
;
1681 return OverflowResult::NeverOverflows
;
1684 void ConstantRange::print(raw_ostream
&OS
) const {
1687 else if (isEmptySet())
1690 OS
<< "[" << Lower
<< "," << Upper
<< ")";
1693 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1694 LLVM_DUMP_METHOD
void ConstantRange::dump() const {
1699 ConstantRange
llvm::getConstantRangeFromMetadata(const MDNode
&Ranges
) {
1700 const unsigned NumRanges
= Ranges
.getNumOperands() / 2;
1701 assert(NumRanges
>= 1 && "Must have at least one range!");
1702 assert(Ranges
.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1704 auto *FirstLow
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(0));
1705 auto *FirstHigh
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(1));
1707 ConstantRange
CR(FirstLow
->getValue(), FirstHigh
->getValue());
1709 for (unsigned i
= 1; i
< NumRanges
; ++i
) {
1710 auto *Low
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 0));
1711 auto *High
= mdconst::extract
<ConstantInt
>(Ranges
.getOperand(2 * i
+ 1));
1713 // Note: unionWith will potentially create a range that contains values not
1714 // contained in any of the original N ranges.
1715 CR
= CR
.unionWith(ConstantRange(Low
->getValue(), High
->getValue()));