[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / ConstantRange.cpp
blob0649776dbc22b8c8ab1ecc41d783354f47f31783
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
41 using namespace llvm;
43 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
44 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
45 Upper(Lower) {}
47 ConstantRange::ConstantRange(APInt V)
48 : Lower(std::move(V)), Upper(Lower + 1) {}
50 ConstantRange::ConstantRange(APInt L, APInt U)
51 : Lower(std::move(L)), Upper(std::move(U)) {
52 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
53 "ConstantRange with unequal bit widths");
54 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
55 "Lower == Upper, but they aren't min or max value!");
58 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
59 bool IsSigned) {
60 assert(!Known.hasConflict() && "Expected valid KnownBits");
62 if (Known.isUnknown())
63 return getFull(Known.getBitWidth());
65 // For unsigned ranges, or signed ranges with known sign bit, create a simple
66 // range between the smallest and largest possible value.
67 if (!IsSigned || Known.isNegative() || Known.isNonNegative())
68 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
70 // If we don't know the sign bit, pick the lower bound as a negative number
71 // and the upper bound as a non-negative one.
72 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
73 Lower.setSignBit();
74 Upper.clearSignBit();
75 return ConstantRange(Lower, Upper + 1);
78 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
79 const ConstantRange &CR) {
80 if (CR.isEmptySet())
81 return CR;
83 uint32_t W = CR.getBitWidth();
84 switch (Pred) {
85 default:
86 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
87 case CmpInst::ICMP_EQ:
88 return CR;
89 case CmpInst::ICMP_NE:
90 if (CR.isSingleElement())
91 return ConstantRange(CR.getUpper(), CR.getLower());
92 return getFull(W);
93 case CmpInst::ICMP_ULT: {
94 APInt UMax(CR.getUnsignedMax());
95 if (UMax.isMinValue())
96 return getEmpty(W);
97 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
99 case CmpInst::ICMP_SLT: {
100 APInt SMax(CR.getSignedMax());
101 if (SMax.isMinSignedValue())
102 return getEmpty(W);
103 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
105 case CmpInst::ICMP_ULE:
106 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
107 case CmpInst::ICMP_SLE:
108 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
109 case CmpInst::ICMP_UGT: {
110 APInt UMin(CR.getUnsignedMin());
111 if (UMin.isMaxValue())
112 return getEmpty(W);
113 return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W));
115 case CmpInst::ICMP_SGT: {
116 APInt SMin(CR.getSignedMin());
117 if (SMin.isMaxSignedValue())
118 return getEmpty(W);
119 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
121 case CmpInst::ICMP_UGE:
122 return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W));
123 case CmpInst::ICMP_SGE:
124 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
128 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
129 const ConstantRange &CR) {
130 // Follows from De-Morgan's laws:
132 // ~(~A union ~B) == A intersect B.
134 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
135 .inverse();
138 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
139 const APInt &C) {
140 // Computes the exact range that is equal to both the constant ranges returned
141 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
142 // when RHS is a singleton such as an APInt and so the assert is valid.
143 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
144 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
146 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
147 return makeAllowedICmpRegion(Pred, C);
150 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
151 APInt &RHS) const {
152 bool Success = false;
154 if (isFullSet() || isEmptySet()) {
155 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
156 RHS = APInt(getBitWidth(), 0);
157 Success = true;
158 } else if (auto *OnlyElt = getSingleElement()) {
159 Pred = CmpInst::ICMP_EQ;
160 RHS = *OnlyElt;
161 Success = true;
162 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
163 Pred = CmpInst::ICMP_NE;
164 RHS = *OnlyMissingElt;
165 Success = true;
166 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
167 Pred =
168 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
169 RHS = getUpper();
170 Success = true;
171 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
172 Pred =
173 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
174 RHS = getLower();
175 Success = true;
178 assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) &&
179 "Bad result!");
181 return Success;
184 bool ConstantRange::icmp(CmpInst::Predicate Pred,
185 const ConstantRange &Other) const {
186 return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
189 /// Exact mul nuw region for single element RHS.
190 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
191 unsigned BitWidth = V.getBitWidth();
192 if (V == 0)
193 return ConstantRange::getFull(V.getBitWidth());
195 return ConstantRange::getNonEmpty(
196 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
197 APInt::Rounding::UP),
198 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
199 APInt::Rounding::DOWN) + 1);
202 /// Exact mul nsw region for single element RHS.
203 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
204 // Handle special case for 0, -1 and 1. See the last for reason why we
205 // specialize -1 and 1.
206 unsigned BitWidth = V.getBitWidth();
207 if (V == 0 || V.isOneValue())
208 return ConstantRange::getFull(BitWidth);
210 APInt MinValue = APInt::getSignedMinValue(BitWidth);
211 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
212 // e.g. Returning [-127, 127], represented as [-127, -128).
213 if (V.isAllOnesValue())
214 return ConstantRange(-MaxValue, MinValue);
216 APInt Lower, Upper;
217 if (V.isNegative()) {
218 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
219 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
220 } else {
221 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
222 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
224 // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1).
225 // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1,
226 // and 1 are already handled as special cases.
227 return ConstantRange(Lower, Upper + 1);
230 ConstantRange
231 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
232 const ConstantRange &Other,
233 unsigned NoWrapKind) {
234 using OBO = OverflowingBinaryOperator;
236 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
238 assert((NoWrapKind == OBO::NoSignedWrap ||
239 NoWrapKind == OBO::NoUnsignedWrap) &&
240 "NoWrapKind invalid!");
242 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
243 unsigned BitWidth = Other.getBitWidth();
245 switch (BinOp) {
246 default:
247 llvm_unreachable("Unsupported binary op");
249 case Instruction::Add: {
250 if (Unsigned)
251 return getNonEmpty(APInt::getNullValue(BitWidth),
252 -Other.getUnsignedMax());
254 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
255 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
256 return getNonEmpty(
257 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
258 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
261 case Instruction::Sub: {
262 if (Unsigned)
263 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
265 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
266 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
267 return getNonEmpty(
268 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
269 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
272 case Instruction::Mul:
273 if (Unsigned)
274 return makeExactMulNUWRegion(Other.getUnsignedMax());
276 return makeExactMulNSWRegion(Other.getSignedMin())
277 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
279 case Instruction::Shl: {
280 // For given range of shift amounts, if we ignore all illegal shift amounts
281 // (that always produce poison), what shift amount range is left?
282 ConstantRange ShAmt = Other.intersectWith(
283 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
284 if (ShAmt.isEmptySet()) {
285 // If the entire range of shift amounts is already poison-producing,
286 // then we can freely add more poison-producing flags ontop of that.
287 return getFull(BitWidth);
289 // There are some legal shift amounts, we can compute conservatively-correct
290 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
291 // to be at most bitwidth-1, which results in most conservative range.
292 APInt ShAmtUMax = ShAmt.getUnsignedMax();
293 if (Unsigned)
294 return getNonEmpty(APInt::getNullValue(BitWidth),
295 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
296 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
297 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
302 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
303 const APInt &Other,
304 unsigned NoWrapKind) {
305 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
306 // "for all" and "for any" coincide in this case.
307 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
310 bool ConstantRange::isFullSet() const {
311 return Lower == Upper && Lower.isMaxValue();
314 bool ConstantRange::isEmptySet() const {
315 return Lower == Upper && Lower.isMinValue();
318 bool ConstantRange::isWrappedSet() const {
319 return Lower.ugt(Upper) && !Upper.isNullValue();
322 bool ConstantRange::isUpperWrapped() const {
323 return Lower.ugt(Upper);
326 bool ConstantRange::isSignWrappedSet() const {
327 return Lower.sgt(Upper) && !Upper.isMinSignedValue();
330 bool ConstantRange::isUpperSignWrapped() const {
331 return Lower.sgt(Upper);
334 bool
335 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
336 assert(getBitWidth() == Other.getBitWidth());
337 if (isFullSet())
338 return false;
339 if (Other.isFullSet())
340 return true;
341 return (Upper - Lower).ult(Other.Upper - Other.Lower);
344 bool
345 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
346 assert(MaxSize && "MaxSize can't be 0.");
347 // If this a full set, we need special handling to avoid needing an extra bit
348 // to represent the size.
349 if (isFullSet())
350 return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
352 return (Upper - Lower).ugt(MaxSize);
355 bool ConstantRange::isAllNegative() const {
356 // Empty set is all negative, full set is not.
357 if (isEmptySet())
358 return true;
359 if (isFullSet())
360 return false;
362 return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
365 bool ConstantRange::isAllNonNegative() const {
366 // Empty and full set are automatically treated correctly.
367 return !isSignWrappedSet() && Lower.isNonNegative();
370 APInt ConstantRange::getUnsignedMax() const {
371 if (isFullSet() || isUpperWrapped())
372 return APInt::getMaxValue(getBitWidth());
373 return getUpper() - 1;
376 APInt ConstantRange::getUnsignedMin() const {
377 if (isFullSet() || isWrappedSet())
378 return APInt::getMinValue(getBitWidth());
379 return getLower();
382 APInt ConstantRange::getSignedMax() const {
383 if (isFullSet() || isUpperSignWrapped())
384 return APInt::getSignedMaxValue(getBitWidth());
385 return getUpper() - 1;
388 APInt ConstantRange::getSignedMin() const {
389 if (isFullSet() || isSignWrappedSet())
390 return APInt::getSignedMinValue(getBitWidth());
391 return getLower();
394 bool ConstantRange::contains(const APInt &V) const {
395 if (Lower == Upper)
396 return isFullSet();
398 if (!isUpperWrapped())
399 return Lower.ule(V) && V.ult(Upper);
400 return Lower.ule(V) || V.ult(Upper);
403 bool ConstantRange::contains(const ConstantRange &Other) const {
404 if (isFullSet() || Other.isEmptySet()) return true;
405 if (isEmptySet() || Other.isFullSet()) return false;
407 if (!isUpperWrapped()) {
408 if (Other.isUpperWrapped())
409 return false;
411 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
414 if (!Other.isUpperWrapped())
415 return Other.getUpper().ule(Upper) ||
416 Lower.ule(Other.getLower());
418 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
421 unsigned ConstantRange::getActiveBits() const {
422 if (isEmptySet())
423 return 0;
425 return getUnsignedMax().getActiveBits();
428 unsigned ConstantRange::getMinSignedBits() const {
429 if (isEmptySet())
430 return 0;
432 return std::max(getSignedMin().getMinSignedBits(),
433 getSignedMax().getMinSignedBits());
436 ConstantRange ConstantRange::subtract(const APInt &Val) const {
437 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
438 // If the set is empty or full, don't modify the endpoints.
439 if (Lower == Upper)
440 return *this;
441 return ConstantRange(Lower - Val, Upper - Val);
444 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
445 return intersectWith(CR.inverse());
448 static ConstantRange getPreferredRange(
449 const ConstantRange &CR1, const ConstantRange &CR2,
450 ConstantRange::PreferredRangeType Type) {
451 if (Type == ConstantRange::Unsigned) {
452 if (!CR1.isWrappedSet() && CR2.isWrappedSet())
453 return CR1;
454 if (CR1.isWrappedSet() && !CR2.isWrappedSet())
455 return CR2;
456 } else if (Type == ConstantRange::Signed) {
457 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
458 return CR1;
459 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
460 return CR2;
463 if (CR1.isSizeStrictlySmallerThan(CR2))
464 return CR1;
465 return CR2;
468 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
469 PreferredRangeType Type) const {
470 assert(getBitWidth() == CR.getBitWidth() &&
471 "ConstantRange types don't agree!");
473 // Handle common cases.
474 if ( isEmptySet() || CR.isFullSet()) return *this;
475 if (CR.isEmptySet() || isFullSet()) return CR;
477 if (!isUpperWrapped() && CR.isUpperWrapped())
478 return CR.intersectWith(*this, Type);
480 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
481 if (Lower.ult(CR.Lower)) {
482 // L---U : this
483 // L---U : CR
484 if (Upper.ule(CR.Lower))
485 return getEmpty();
487 // L---U : this
488 // L---U : CR
489 if (Upper.ult(CR.Upper))
490 return ConstantRange(CR.Lower, Upper);
492 // L-------U : this
493 // L---U : CR
494 return CR;
496 // L---U : this
497 // L-------U : CR
498 if (Upper.ult(CR.Upper))
499 return *this;
501 // L-----U : this
502 // L-----U : CR
503 if (Lower.ult(CR.Upper))
504 return ConstantRange(Lower, CR.Upper);
506 // L---U : this
507 // L---U : CR
508 return getEmpty();
511 if (isUpperWrapped() && !CR.isUpperWrapped()) {
512 if (CR.Lower.ult(Upper)) {
513 // ------U L--- : this
514 // L--U : CR
515 if (CR.Upper.ult(Upper))
516 return CR;
518 // ------U L--- : this
519 // L------U : CR
520 if (CR.Upper.ule(Lower))
521 return ConstantRange(CR.Lower, Upper);
523 // ------U L--- : this
524 // L----------U : CR
525 return getPreferredRange(*this, CR, Type);
527 if (CR.Lower.ult(Lower)) {
528 // --U L---- : this
529 // L--U : CR
530 if (CR.Upper.ule(Lower))
531 return getEmpty();
533 // --U L---- : this
534 // L------U : CR
535 return ConstantRange(Lower, CR.Upper);
538 // --U L------ : this
539 // L--U : CR
540 return CR;
543 if (CR.Upper.ult(Upper)) {
544 // ------U L-- : this
545 // --U L------ : CR
546 if (CR.Lower.ult(Upper))
547 return getPreferredRange(*this, CR, Type);
549 // ----U L-- : this
550 // --U L---- : CR
551 if (CR.Lower.ult(Lower))
552 return ConstantRange(Lower, CR.Upper);
554 // ----U L---- : this
555 // --U L-- : CR
556 return CR;
558 if (CR.Upper.ule(Lower)) {
559 // --U L-- : this
560 // ----U L---- : CR
561 if (CR.Lower.ult(Lower))
562 return *this;
564 // --U L---- : this
565 // ----U L-- : CR
566 return ConstantRange(CR.Lower, Upper);
569 // --U L------ : this
570 // ------U L-- : CR
571 return getPreferredRange(*this, CR, Type);
574 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
575 PreferredRangeType Type) const {
576 assert(getBitWidth() == CR.getBitWidth() &&
577 "ConstantRange types don't agree!");
579 if ( isFullSet() || CR.isEmptySet()) return *this;
580 if (CR.isFullSet() || isEmptySet()) return CR;
582 if (!isUpperWrapped() && CR.isUpperWrapped())
583 return CR.unionWith(*this, Type);
585 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
586 // L---U and L---U : this
587 // L---U L---U : CR
588 // result in one of
589 // L---------U
590 // -----U L-----
591 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
592 return getPreferredRange(
593 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
595 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
596 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
598 if (L.isNullValue() && U.isNullValue())
599 return getFull();
601 return ConstantRange(std::move(L), std::move(U));
604 if (!CR.isUpperWrapped()) {
605 // ------U L----- and ------U L----- : this
606 // L--U L--U : CR
607 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
608 return *this;
610 // ------U L----- : this
611 // L---------U : CR
612 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
613 return getFull();
615 // ----U L---- : this
616 // L---U : CR
617 // results in one of
618 // ----------U L----
619 // ----U L----------
620 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
621 return getPreferredRange(
622 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
624 // ----U L----- : this
625 // L----U : CR
626 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
627 return ConstantRange(CR.Lower, Upper);
629 // ------U L---- : this
630 // L-----U : CR
631 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
632 "ConstantRange::unionWith missed a case with one range wrapped");
633 return ConstantRange(Lower, CR.Upper);
636 // ------U L---- and ------U L---- : this
637 // -U L----------- and ------------U L : CR
638 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
639 return getFull();
641 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
642 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
644 return ConstantRange(std::move(L), std::move(U));
647 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
648 uint32_t ResultBitWidth) const {
649 switch (CastOp) {
650 default:
651 llvm_unreachable("unsupported cast type");
652 case Instruction::Trunc:
653 return truncate(ResultBitWidth);
654 case Instruction::SExt:
655 return signExtend(ResultBitWidth);
656 case Instruction::ZExt:
657 return zeroExtend(ResultBitWidth);
658 case Instruction::BitCast:
659 return *this;
660 case Instruction::FPToUI:
661 case Instruction::FPToSI:
662 if (getBitWidth() == ResultBitWidth)
663 return *this;
664 else
665 return getFull(ResultBitWidth);
666 case Instruction::UIToFP: {
667 // TODO: use input range if available
668 auto BW = getBitWidth();
669 APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth);
670 APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth);
671 return ConstantRange(std::move(Min), std::move(Max));
673 case Instruction::SIToFP: {
674 // TODO: use input range if available
675 auto BW = getBitWidth();
676 APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth);
677 APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth);
678 return ConstantRange(std::move(SMin), std::move(SMax));
680 case Instruction::FPTrunc:
681 case Instruction::FPExt:
682 case Instruction::IntToPtr:
683 case Instruction::PtrToInt:
684 case Instruction::AddrSpaceCast:
685 // Conservatively return getFull set.
686 return getFull(ResultBitWidth);
690 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
691 if (isEmptySet()) return getEmpty(DstTySize);
693 unsigned SrcTySize = getBitWidth();
694 assert(SrcTySize < DstTySize && "Not a value extension");
695 if (isFullSet() || isUpperWrapped()) {
696 // Change into [0, 1 << src bit width)
697 APInt LowerExt(DstTySize, 0);
698 if (!Upper) // special case: [X, 0) -- not really wrapping around
699 LowerExt = Lower.zext(DstTySize);
700 return ConstantRange(std::move(LowerExt),
701 APInt::getOneBitSet(DstTySize, SrcTySize));
704 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
707 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
708 if (isEmptySet()) return getEmpty(DstTySize);
710 unsigned SrcTySize = getBitWidth();
711 assert(SrcTySize < DstTySize && "Not a value extension");
713 // special case: [X, INT_MIN) -- not really wrapping around
714 if (Upper.isMinSignedValue())
715 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
717 if (isFullSet() || isSignWrappedSet()) {
718 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
719 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
722 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
725 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
726 assert(getBitWidth() > DstTySize && "Not a value truncation");
727 if (isEmptySet())
728 return getEmpty(DstTySize);
729 if (isFullSet())
730 return getFull(DstTySize);
732 APInt LowerDiv(Lower), UpperDiv(Upper);
733 ConstantRange Union(DstTySize, /*isFullSet=*/false);
735 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
736 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
737 // then we do the union with [MaxValue, Upper)
738 if (isUpperWrapped()) {
739 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
740 // truncated range.
741 if (Upper.getActiveBits() > DstTySize ||
742 Upper.countTrailingOnes() == DstTySize)
743 return getFull(DstTySize);
745 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
746 UpperDiv.setAllBits();
748 // Union covers the MaxValue case, so return if the remaining range is just
749 // MaxValue(DstTy).
750 if (LowerDiv == UpperDiv)
751 return Union;
754 // Chop off the most significant bits that are past the destination bitwidth.
755 if (LowerDiv.getActiveBits() > DstTySize) {
756 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
757 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
758 LowerDiv -= Adjust;
759 UpperDiv -= Adjust;
762 unsigned UpperDivWidth = UpperDiv.getActiveBits();
763 if (UpperDivWidth <= DstTySize)
764 return ConstantRange(LowerDiv.trunc(DstTySize),
765 UpperDiv.trunc(DstTySize)).unionWith(Union);
767 // The truncated value wraps around. Check if we can do better than fullset.
768 if (UpperDivWidth == DstTySize + 1) {
769 // Clear the MSB so that UpperDiv wraps around.
770 UpperDiv.clearBit(DstTySize);
771 if (UpperDiv.ult(LowerDiv))
772 return ConstantRange(LowerDiv.trunc(DstTySize),
773 UpperDiv.trunc(DstTySize)).unionWith(Union);
776 return getFull(DstTySize);
779 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
780 unsigned SrcTySize = getBitWidth();
781 if (SrcTySize > DstTySize)
782 return truncate(DstTySize);
783 if (SrcTySize < DstTySize)
784 return zeroExtend(DstTySize);
785 return *this;
788 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
789 unsigned SrcTySize = getBitWidth();
790 if (SrcTySize > DstTySize)
791 return truncate(DstTySize);
792 if (SrcTySize < DstTySize)
793 return signExtend(DstTySize);
794 return *this;
797 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
798 const ConstantRange &Other) const {
799 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
801 switch (BinOp) {
802 case Instruction::Add:
803 return add(Other);
804 case Instruction::Sub:
805 return sub(Other);
806 case Instruction::Mul:
807 return multiply(Other);
808 case Instruction::UDiv:
809 return udiv(Other);
810 case Instruction::SDiv:
811 return sdiv(Other);
812 case Instruction::URem:
813 return urem(Other);
814 case Instruction::SRem:
815 return srem(Other);
816 case Instruction::Shl:
817 return shl(Other);
818 case Instruction::LShr:
819 return lshr(Other);
820 case Instruction::AShr:
821 return ashr(Other);
822 case Instruction::And:
823 return binaryAnd(Other);
824 case Instruction::Or:
825 return binaryOr(Other);
826 case Instruction::Xor:
827 return binaryXor(Other);
828 // Note: floating point operations applied to abstract ranges are just
829 // ideal integer operations with a lossy representation
830 case Instruction::FAdd:
831 return add(Other);
832 case Instruction::FSub:
833 return sub(Other);
834 case Instruction::FMul:
835 return multiply(Other);
836 default:
837 // Conservatively return getFull set.
838 return getFull();
842 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
843 const ConstantRange &Other,
844 unsigned NoWrapKind) const {
845 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
847 switch (BinOp) {
848 case Instruction::Add:
849 return addWithNoWrap(Other, NoWrapKind);
850 case Instruction::Sub:
851 return subWithNoWrap(Other, NoWrapKind);
852 default:
853 // Don't know about this Overflowing Binary Operation.
854 // Conservatively fallback to plain binop handling.
855 return binaryOp(BinOp, Other);
859 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
860 switch (IntrinsicID) {
861 case Intrinsic::uadd_sat:
862 case Intrinsic::usub_sat:
863 case Intrinsic::sadd_sat:
864 case Intrinsic::ssub_sat:
865 case Intrinsic::umin:
866 case Intrinsic::umax:
867 case Intrinsic::smin:
868 case Intrinsic::smax:
869 case Intrinsic::abs:
870 return true;
871 default:
872 return false;
876 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
877 ArrayRef<ConstantRange> Ops) {
878 switch (IntrinsicID) {
879 case Intrinsic::uadd_sat:
880 return Ops[0].uadd_sat(Ops[1]);
881 case Intrinsic::usub_sat:
882 return Ops[0].usub_sat(Ops[1]);
883 case Intrinsic::sadd_sat:
884 return Ops[0].sadd_sat(Ops[1]);
885 case Intrinsic::ssub_sat:
886 return Ops[0].ssub_sat(Ops[1]);
887 case Intrinsic::umin:
888 return Ops[0].umin(Ops[1]);
889 case Intrinsic::umax:
890 return Ops[0].umax(Ops[1]);
891 case Intrinsic::smin:
892 return Ops[0].smin(Ops[1]);
893 case Intrinsic::smax:
894 return Ops[0].smax(Ops[1]);
895 case Intrinsic::abs: {
896 const APInt *IntMinIsPoison = Ops[1].getSingleElement();
897 assert(IntMinIsPoison && "Must be known (immarg)");
898 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
899 return Ops[0].abs(IntMinIsPoison->getBoolValue());
901 default:
902 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
903 llvm_unreachable("Unsupported intrinsic");
907 ConstantRange
908 ConstantRange::add(const ConstantRange &Other) const {
909 if (isEmptySet() || Other.isEmptySet())
910 return getEmpty();
911 if (isFullSet() || Other.isFullSet())
912 return getFull();
914 APInt NewLower = getLower() + Other.getLower();
915 APInt NewUpper = getUpper() + Other.getUpper() - 1;
916 if (NewLower == NewUpper)
917 return getFull();
919 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
920 if (X.isSizeStrictlySmallerThan(*this) ||
921 X.isSizeStrictlySmallerThan(Other))
922 // We've wrapped, therefore, full set.
923 return getFull();
924 return X;
927 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
928 unsigned NoWrapKind,
929 PreferredRangeType RangeType) const {
930 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
931 // (X is from this, and Y is from Other)
932 if (isEmptySet() || Other.isEmptySet())
933 return getEmpty();
934 if (isFullSet() && Other.isFullSet())
935 return getFull();
937 using OBO = OverflowingBinaryOperator;
938 ConstantRange Result = add(Other);
940 // If an overflow happens for every value pair in these two constant ranges,
941 // we must return Empty set. In this case, we get that for free, because we
942 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
943 // in an empty set.
945 if (NoWrapKind & OBO::NoSignedWrap)
946 Result = Result.intersectWith(sadd_sat(Other), RangeType);
948 if (NoWrapKind & OBO::NoUnsignedWrap)
949 Result = Result.intersectWith(uadd_sat(Other), RangeType);
951 return Result;
954 ConstantRange
955 ConstantRange::sub(const ConstantRange &Other) const {
956 if (isEmptySet() || Other.isEmptySet())
957 return getEmpty();
958 if (isFullSet() || Other.isFullSet())
959 return getFull();
961 APInt NewLower = getLower() - Other.getUpper() + 1;
962 APInt NewUpper = getUpper() - Other.getLower();
963 if (NewLower == NewUpper)
964 return getFull();
966 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
967 if (X.isSizeStrictlySmallerThan(*this) ||
968 X.isSizeStrictlySmallerThan(Other))
969 // We've wrapped, therefore, full set.
970 return getFull();
971 return X;
974 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
975 unsigned NoWrapKind,
976 PreferredRangeType RangeType) const {
977 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
978 // (X is from this, and Y is from Other)
979 if (isEmptySet() || Other.isEmptySet())
980 return getEmpty();
981 if (isFullSet() && Other.isFullSet())
982 return getFull();
984 using OBO = OverflowingBinaryOperator;
985 ConstantRange Result = sub(Other);
987 // If an overflow happens for every value pair in these two constant ranges,
988 // we must return Empty set. In signed case, we get that for free, because we
989 // get lucky that intersection of sub() with ssub_sat() results in an
990 // empty set. But for unsigned we must perform the overflow check manually.
992 if (NoWrapKind & OBO::NoSignedWrap)
993 Result = Result.intersectWith(ssub_sat(Other), RangeType);
995 if (NoWrapKind & OBO::NoUnsignedWrap) {
996 if (getUnsignedMax().ult(Other.getUnsignedMin()))
997 return getEmpty(); // Always overflows.
998 Result = Result.intersectWith(usub_sat(Other), RangeType);
1001 return Result;
1004 ConstantRange
1005 ConstantRange::multiply(const ConstantRange &Other) const {
1006 // TODO: If either operand is a single element and the multiply is known to
1007 // be non-wrapping, round the result min and max value to the appropriate
1008 // multiple of that element. If wrapping is possible, at least adjust the
1009 // range according to the greatest power-of-two factor of the single element.
1011 if (isEmptySet() || Other.isEmptySet())
1012 return getEmpty();
1014 // Multiplication is signedness-independent. However different ranges can be
1015 // obtained depending on how the input ranges are treated. These different
1016 // ranges are all conservatively correct, but one might be better than the
1017 // other. We calculate two ranges; one treating the inputs as unsigned
1018 // and the other signed, then return the smallest of these ranges.
1020 // Unsigned range first.
1021 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1022 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1023 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1024 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1026 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1027 this_max * Other_max + 1);
1028 ConstantRange UR = Result_zext.truncate(getBitWidth());
1030 // If the unsigned range doesn't wrap, and isn't negative then it's a range
1031 // from one positive number to another which is as good as we can generate.
1032 // In this case, skip the extra work of generating signed ranges which aren't
1033 // going to be better than this range.
1034 if (!UR.isUpperWrapped() &&
1035 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1036 return UR;
1038 // Now the signed range. Because we could be dealing with negative numbers
1039 // here, the lower bound is the smallest of the cartesian product of the
1040 // lower and upper ranges; for example:
1041 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1042 // Similarly for the upper bound, swapping min for max.
1044 this_min = getSignedMin().sext(getBitWidth() * 2);
1045 this_max = getSignedMax().sext(getBitWidth() * 2);
1046 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1047 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1049 auto L = {this_min * Other_min, this_min * Other_max,
1050 this_max * Other_min, this_max * Other_max};
1051 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1052 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1053 ConstantRange SR = Result_sext.truncate(getBitWidth());
1055 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1058 ConstantRange
1059 ConstantRange::smax(const ConstantRange &Other) const {
1060 // X smax Y is: range(smax(X_smin, Y_smin),
1061 // smax(X_smax, Y_smax))
1062 if (isEmptySet() || Other.isEmptySet())
1063 return getEmpty();
1064 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1065 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1066 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1067 if (isSignWrappedSet() || Other.isSignWrappedSet())
1068 return Res.intersectWith(unionWith(Other, Signed), Signed);
1069 return Res;
1072 ConstantRange
1073 ConstantRange::umax(const ConstantRange &Other) const {
1074 // X umax Y is: range(umax(X_umin, Y_umin),
1075 // umax(X_umax, Y_umax))
1076 if (isEmptySet() || Other.isEmptySet())
1077 return getEmpty();
1078 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1079 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1080 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1081 if (isWrappedSet() || Other.isWrappedSet())
1082 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1083 return Res;
1086 ConstantRange
1087 ConstantRange::smin(const ConstantRange &Other) const {
1088 // X smin Y is: range(smin(X_smin, Y_smin),
1089 // smin(X_smax, Y_smax))
1090 if (isEmptySet() || Other.isEmptySet())
1091 return getEmpty();
1092 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1093 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1094 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1095 if (isSignWrappedSet() || Other.isSignWrappedSet())
1096 return Res.intersectWith(unionWith(Other, Signed), Signed);
1097 return Res;
1100 ConstantRange
1101 ConstantRange::umin(const ConstantRange &Other) const {
1102 // X umin Y is: range(umin(X_umin, Y_umin),
1103 // umin(X_umax, Y_umax))
1104 if (isEmptySet() || Other.isEmptySet())
1105 return getEmpty();
1106 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1107 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1108 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1109 if (isWrappedSet() || Other.isWrappedSet())
1110 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1111 return Res;
1114 ConstantRange
1115 ConstantRange::udiv(const ConstantRange &RHS) const {
1116 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1117 return getEmpty();
1119 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1121 APInt RHS_umin = RHS.getUnsignedMin();
1122 if (RHS_umin.isNullValue()) {
1123 // We want the lowest value in RHS excluding zero. Usually that would be 1
1124 // except for a range in the form of [X, 1) in which case it would be X.
1125 if (RHS.getUpper() == 1)
1126 RHS_umin = RHS.getLower();
1127 else
1128 RHS_umin = 1;
1131 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1132 return getNonEmpty(std::move(Lower), std::move(Upper));
1135 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1136 // We split up the LHS and RHS into positive and negative components
1137 // and then also compute the positive and negative components of the result
1138 // separately by combining division results with the appropriate signs.
1139 APInt Zero = APInt::getNullValue(getBitWidth());
1140 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1141 ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin);
1142 ConstantRange NegFilter(SignedMin, Zero);
1143 ConstantRange PosL = intersectWith(PosFilter);
1144 ConstantRange NegL = intersectWith(NegFilter);
1145 ConstantRange PosR = RHS.intersectWith(PosFilter);
1146 ConstantRange NegR = RHS.intersectWith(NegFilter);
1148 ConstantRange PosRes = getEmpty();
1149 if (!PosL.isEmptySet() && !PosR.isEmptySet())
1150 // pos / pos = pos.
1151 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1152 (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1154 if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1155 // neg / neg = pos.
1157 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1158 // IR level, so we'll want to exclude this case when calculating bounds.
1159 // (For APInts the operation is well-defined and yields SignedMin.) We
1160 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1161 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1162 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) {
1163 // Remove -1 from the LHS. Skip if it's the only element, as this would
1164 // leave us with an empty set.
1165 if (!NegR.Lower.isAllOnesValue()) {
1166 APInt AdjNegRUpper;
1167 if (RHS.Lower.isAllOnesValue())
1168 // Negative part of [-1, X] without -1 is [SignedMin, X].
1169 AdjNegRUpper = RHS.Upper;
1170 else
1171 // [X, -1] without -1 is [X, -2].
1172 AdjNegRUpper = NegR.Upper - 1;
1174 PosRes = PosRes.unionWith(
1175 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1178 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1179 // would leave us with an empty set.
1180 if (NegL.Upper != SignedMin + 1) {
1181 APInt AdjNegLLower;
1182 if (Upper == SignedMin + 1)
1183 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1184 AdjNegLLower = Lower;
1185 else
1186 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1187 AdjNegLLower = NegL.Lower + 1;
1189 PosRes = PosRes.unionWith(
1190 ConstantRange(std::move(Lo),
1191 AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1193 } else {
1194 PosRes = PosRes.unionWith(
1195 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1199 ConstantRange NegRes = getEmpty();
1200 if (!PosL.isEmptySet() && !NegR.isEmptySet())
1201 // pos / neg = neg.
1202 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1203 PosL.Lower.sdiv(NegR.Lower) + 1);
1205 if (!NegL.isEmptySet() && !PosR.isEmptySet())
1206 // neg / pos = neg.
1207 NegRes = NegRes.unionWith(
1208 ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1209 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1211 // Prefer a non-wrapping signed range here.
1212 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1214 // Preserve the zero that we dropped when splitting the LHS by sign.
1215 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1216 Res = Res.unionWith(ConstantRange(Zero));
1217 return Res;
1220 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1221 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue())
1222 return getEmpty();
1224 if (const APInt *RHSInt = RHS.getSingleElement()) {
1225 // UREM by null is UB.
1226 if (RHSInt->isNullValue())
1227 return getEmpty();
1228 // Use APInt's implementation of UREM for single element ranges.
1229 if (const APInt *LHSInt = getSingleElement())
1230 return {LHSInt->urem(*RHSInt)};
1233 // L % R for L < R is L.
1234 if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1235 return *this;
1237 // L % R is <= L and < R.
1238 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1239 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper));
1242 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1243 if (isEmptySet() || RHS.isEmptySet())
1244 return getEmpty();
1246 if (const APInt *RHSInt = RHS.getSingleElement()) {
1247 // SREM by null is UB.
1248 if (RHSInt->isNullValue())
1249 return getEmpty();
1250 // Use APInt's implementation of SREM for single element ranges.
1251 if (const APInt *LHSInt = getSingleElement())
1252 return {LHSInt->srem(*RHSInt)};
1255 ConstantRange AbsRHS = RHS.abs();
1256 APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1257 APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1259 // Modulus by zero is UB.
1260 if (MaxAbsRHS.isNullValue())
1261 return getEmpty();
1263 if (MinAbsRHS.isNullValue())
1264 ++MinAbsRHS;
1266 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1268 if (MinLHS.isNonNegative()) {
1269 // L % R for L < R is L.
1270 if (MaxLHS.ult(MinAbsRHS))
1271 return *this;
1273 // L % R is <= L and < R.
1274 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1275 return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper));
1278 // Same basic logic as above, but the result is negative.
1279 if (MaxLHS.isNegative()) {
1280 if (MinLHS.ugt(-MinAbsRHS))
1281 return *this;
1283 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1284 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1287 // LHS range crosses zero.
1288 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1289 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1290 return ConstantRange(std::move(Lower), std::move(Upper));
1293 ConstantRange ConstantRange::binaryNot() const {
1294 return ConstantRange(APInt::getAllOnesValue(getBitWidth())).sub(*this);
1297 ConstantRange
1298 ConstantRange::binaryAnd(const ConstantRange &Other) const {
1299 if (isEmptySet() || Other.isEmptySet())
1300 return getEmpty();
1302 // Use APInt's implementation of AND for single element ranges.
1303 if (isSingleElement() && Other.isSingleElement())
1304 return {*getSingleElement() & *Other.getSingleElement()};
1306 // TODO: replace this with something less conservative
1308 APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax());
1309 return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1);
1312 ConstantRange
1313 ConstantRange::binaryOr(const ConstantRange &Other) const {
1314 if (isEmptySet() || Other.isEmptySet())
1315 return getEmpty();
1317 // Use APInt's implementation of OR for single element ranges.
1318 if (isSingleElement() && Other.isSingleElement())
1319 return {*getSingleElement() | *Other.getSingleElement()};
1321 // TODO: replace this with something less conservative
1323 APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1324 return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth()));
1327 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1328 if (isEmptySet() || Other.isEmptySet())
1329 return getEmpty();
1331 // Use APInt's implementation of XOR for single element ranges.
1332 if (isSingleElement() && Other.isSingleElement())
1333 return {*getSingleElement() ^ *Other.getSingleElement()};
1335 // Special-case binary complement, since we can give a precise answer.
1336 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnesValue())
1337 return binaryNot();
1338 if (isSingleElement() && getSingleElement()->isAllOnesValue())
1339 return Other.binaryNot();
1341 // TODO: replace this with something less conservative
1342 return getFull();
1345 ConstantRange
1346 ConstantRange::shl(const ConstantRange &Other) const {
1347 if (isEmptySet() || Other.isEmptySet())
1348 return getEmpty();
1350 APInt max = getUnsignedMax();
1351 APInt Other_umax = Other.getUnsignedMax();
1353 // If we are shifting by maximum amount of
1354 // zero return return the original range.
1355 if (Other_umax.isNullValue())
1356 return *this;
1357 // there's overflow!
1358 if (Other_umax.ugt(max.countLeadingZeros()))
1359 return getFull();
1361 // FIXME: implement the other tricky cases
1363 APInt min = getUnsignedMin();
1364 min <<= Other.getUnsignedMin();
1365 max <<= Other_umax;
1367 return ConstantRange(std::move(min), std::move(max) + 1);
1370 ConstantRange
1371 ConstantRange::lshr(const ConstantRange &Other) const {
1372 if (isEmptySet() || Other.isEmptySet())
1373 return getEmpty();
1375 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1376 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1377 return getNonEmpty(std::move(min), std::move(max));
1380 ConstantRange
1381 ConstantRange::ashr(const ConstantRange &Other) const {
1382 if (isEmptySet() || Other.isEmptySet())
1383 return getEmpty();
1385 // May straddle zero, so handle both positive and negative cases.
1386 // 'PosMax' is the upper bound of the result of the ashr
1387 // operation, when Upper of the LHS of ashr is a non-negative.
1388 // number. Since ashr of a non-negative number will result in a
1389 // smaller number, the Upper value of LHS is shifted right with
1390 // the minimum value of 'Other' instead of the maximum value.
1391 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1393 // 'PosMin' is the lower bound of the result of the ashr
1394 // operation, when Lower of the LHS is a non-negative number.
1395 // Since ashr of a non-negative number will result in a smaller
1396 // number, the Lower value of LHS is shifted right with the
1397 // maximum value of 'Other'.
1398 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1400 // 'NegMax' is the upper bound of the result of the ashr
1401 // operation, when Upper of the LHS of ashr is a negative number.
1402 // Since 'ashr' of a negative number will result in a bigger
1403 // number, the Upper value of LHS is shifted right with the
1404 // maximum value of 'Other'.
1405 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1407 // 'NegMin' is the lower bound of the result of the ashr
1408 // operation, when Lower of the LHS of ashr is a negative number.
1409 // Since 'ashr' of a negative number will result in a bigger
1410 // number, the Lower value of LHS is shifted right with the
1411 // minimum value of 'Other'.
1412 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1414 APInt max, min;
1415 if (getSignedMin().isNonNegative()) {
1416 // Upper and Lower of LHS are non-negative.
1417 min = PosMin;
1418 max = PosMax;
1419 } else if (getSignedMax().isNegative()) {
1420 // Upper and Lower of LHS are negative.
1421 min = NegMin;
1422 max = NegMax;
1423 } else {
1424 // Upper is non-negative and Lower is negative.
1425 min = NegMin;
1426 max = PosMax;
1428 return getNonEmpty(std::move(min), std::move(max));
1431 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1432 if (isEmptySet() || Other.isEmptySet())
1433 return getEmpty();
1435 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1436 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1437 return getNonEmpty(std::move(NewL), std::move(NewU));
1440 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1441 if (isEmptySet() || Other.isEmptySet())
1442 return getEmpty();
1444 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1445 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1446 return getNonEmpty(std::move(NewL), std::move(NewU));
1449 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1450 if (isEmptySet() || Other.isEmptySet())
1451 return getEmpty();
1453 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1454 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1455 return getNonEmpty(std::move(NewL), std::move(NewU));
1458 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1459 if (isEmptySet() || Other.isEmptySet())
1460 return getEmpty();
1462 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1463 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1464 return getNonEmpty(std::move(NewL), std::move(NewU));
1467 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1468 if (isEmptySet() || Other.isEmptySet())
1469 return getEmpty();
1471 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1472 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1473 return getNonEmpty(std::move(NewL), std::move(NewU));
1476 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1477 if (isEmptySet() || Other.isEmptySet())
1478 return getEmpty();
1480 // Because we could be dealing with negative numbers here, the lower bound is
1481 // the smallest of the cartesian product of the lower and upper ranges;
1482 // for example:
1483 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1484 // Similarly for the upper bound, swapping min for max.
1486 APInt this_min = getSignedMin().sext(getBitWidth() * 2);
1487 APInt this_max = getSignedMax().sext(getBitWidth() * 2);
1488 APInt Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1489 APInt Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1491 auto L = {this_min * Other_min, this_min * Other_max, this_max * Other_min,
1492 this_max * Other_max};
1493 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1495 // Note that we wanted to perform signed saturating multiplication,
1496 // so since we performed plain multiplication in twice the bitwidth,
1497 // we need to perform signed saturating truncation.
1498 return getNonEmpty(std::min(L, Compare).truncSSat(getBitWidth()),
1499 std::max(L, Compare).truncSSat(getBitWidth()) + 1);
1502 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1503 if (isEmptySet() || Other.isEmptySet())
1504 return getEmpty();
1506 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1507 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1508 return getNonEmpty(std::move(NewL), std::move(NewU));
1511 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1512 if (isEmptySet() || Other.isEmptySet())
1513 return getEmpty();
1515 APInt Min = getSignedMin(), Max = getSignedMax();
1516 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1517 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1518 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1519 return getNonEmpty(std::move(NewL), std::move(NewU));
1522 ConstantRange ConstantRange::inverse() const {
1523 if (isFullSet())
1524 return getEmpty();
1525 if (isEmptySet())
1526 return getFull();
1527 return ConstantRange(Upper, Lower);
1530 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1531 if (isEmptySet())
1532 return getEmpty();
1534 if (isSignWrappedSet()) {
1535 APInt Lo;
1536 // Check whether the range crosses zero.
1537 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1538 Lo = APInt::getNullValue(getBitWidth());
1539 else
1540 Lo = APIntOps::umin(Lower, -Upper + 1);
1542 // If SignedMin is not poison, then it is included in the result range.
1543 if (IntMinIsPoison)
1544 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1545 else
1546 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1549 APInt SMin = getSignedMin(), SMax = getSignedMax();
1551 // Skip SignedMin if it is poison.
1552 if (IntMinIsPoison && SMin.isMinSignedValue()) {
1553 // The range may become empty if it *only* contains SignedMin.
1554 if (SMax.isMinSignedValue())
1555 return getEmpty();
1556 ++SMin;
1559 // All non-negative.
1560 if (SMin.isNonNegative())
1561 return *this;
1563 // All negative.
1564 if (SMax.isNegative())
1565 return ConstantRange(-SMax, -SMin + 1);
1567 // Range crosses zero.
1568 return ConstantRange(APInt::getNullValue(getBitWidth()),
1569 APIntOps::umax(-SMin, SMax) + 1);
1572 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1573 const ConstantRange &Other) const {
1574 if (isEmptySet() || Other.isEmptySet())
1575 return OverflowResult::MayOverflow;
1577 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1578 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1580 // a u+ b overflows high iff a u> ~b.
1581 if (Min.ugt(~OtherMin))
1582 return OverflowResult::AlwaysOverflowsHigh;
1583 if (Max.ugt(~OtherMax))
1584 return OverflowResult::MayOverflow;
1585 return OverflowResult::NeverOverflows;
1588 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1589 const ConstantRange &Other) const {
1590 if (isEmptySet() || Other.isEmptySet())
1591 return OverflowResult::MayOverflow;
1593 APInt Min = getSignedMin(), Max = getSignedMax();
1594 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1596 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1597 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1599 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1600 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1601 if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1602 Min.sgt(SignedMax - OtherMin))
1603 return OverflowResult::AlwaysOverflowsHigh;
1604 if (Max.isNegative() && OtherMax.isNegative() &&
1605 Max.slt(SignedMin - OtherMax))
1606 return OverflowResult::AlwaysOverflowsLow;
1608 if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1609 Max.sgt(SignedMax - OtherMax))
1610 return OverflowResult::MayOverflow;
1611 if (Min.isNegative() && OtherMin.isNegative() &&
1612 Min.slt(SignedMin - OtherMin))
1613 return OverflowResult::MayOverflow;
1615 return OverflowResult::NeverOverflows;
1618 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1619 const ConstantRange &Other) const {
1620 if (isEmptySet() || Other.isEmptySet())
1621 return OverflowResult::MayOverflow;
1623 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1624 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1626 // a u- b overflows low iff a u< b.
1627 if (Max.ult(OtherMin))
1628 return OverflowResult::AlwaysOverflowsLow;
1629 if (Min.ult(OtherMax))
1630 return OverflowResult::MayOverflow;
1631 return OverflowResult::NeverOverflows;
1634 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1635 const ConstantRange &Other) const {
1636 if (isEmptySet() || Other.isEmptySet())
1637 return OverflowResult::MayOverflow;
1639 APInt Min = getSignedMin(), Max = getSignedMax();
1640 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1642 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1643 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1645 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1646 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1647 if (Min.isNonNegative() && OtherMax.isNegative() &&
1648 Min.sgt(SignedMax + OtherMax))
1649 return OverflowResult::AlwaysOverflowsHigh;
1650 if (Max.isNegative() && OtherMin.isNonNegative() &&
1651 Max.slt(SignedMin + OtherMin))
1652 return OverflowResult::AlwaysOverflowsLow;
1654 if (Max.isNonNegative() && OtherMin.isNegative() &&
1655 Max.sgt(SignedMax + OtherMin))
1656 return OverflowResult::MayOverflow;
1657 if (Min.isNegative() && OtherMax.isNonNegative() &&
1658 Min.slt(SignedMin + OtherMax))
1659 return OverflowResult::MayOverflow;
1661 return OverflowResult::NeverOverflows;
1664 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1665 const ConstantRange &Other) const {
1666 if (isEmptySet() || Other.isEmptySet())
1667 return OverflowResult::MayOverflow;
1669 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1670 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1671 bool Overflow;
1673 (void) Min.umul_ov(OtherMin, Overflow);
1674 if (Overflow)
1675 return OverflowResult::AlwaysOverflowsHigh;
1677 (void) Max.umul_ov(OtherMax, Overflow);
1678 if (Overflow)
1679 return OverflowResult::MayOverflow;
1681 return OverflowResult::NeverOverflows;
1684 void ConstantRange::print(raw_ostream &OS) const {
1685 if (isFullSet())
1686 OS << "full-set";
1687 else if (isEmptySet())
1688 OS << "empty-set";
1689 else
1690 OS << "[" << Lower << "," << Upper << ")";
1693 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1694 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1695 print(dbgs());
1697 #endif
1699 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1700 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1701 assert(NumRanges >= 1 && "Must have at least one range!");
1702 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1704 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1705 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1707 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1709 for (unsigned i = 1; i < NumRanges; ++i) {
1710 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1711 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1713 // Note: unionWith will potentially create a range that contains values not
1714 // contained in any of the original N ranges.
1715 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1718 return CR;