1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements simple dominator construction algorithms for finding
10 // forward dominators. Postdominators are available in libanalysis, but are not
11 // included in libvmcore, because it's not needed. Forward dominators are
12 // needed to support the Verifier pass.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/IR/Dominators.h"
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Config/llvm-config.h"
20 #include "llvm/IR/CFG.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Support/CommandLine.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
32 bool llvm::VerifyDomInfo
= false;
33 static cl::opt
<bool, true>
34 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo
), cl::Hidden
,
35 cl::desc("Verify dominator info (time consuming)"));
37 #ifdef EXPENSIVE_CHECKS
38 static constexpr bool ExpensiveChecksEnabled
= true;
40 static constexpr bool ExpensiveChecksEnabled
= false;
43 bool BasicBlockEdge::isSingleEdge() const {
44 const Instruction
*TI
= Start
->getTerminator();
45 unsigned NumEdgesToEnd
= 0;
46 for (unsigned int i
= 0, n
= TI
->getNumSuccessors(); i
< n
; ++i
) {
47 if (TI
->getSuccessor(i
) == End
)
49 if (NumEdgesToEnd
>= 2)
52 assert(NumEdgesToEnd
== 1);
56 //===----------------------------------------------------------------------===//
57 // DominatorTree Implementation
58 //===----------------------------------------------------------------------===//
60 // Provide public access to DominatorTree information. Implementation details
61 // can be found in Dominators.h, GenericDomTree.h, and
62 // GenericDomTreeConstruction.h.
64 //===----------------------------------------------------------------------===//
66 template class llvm::DomTreeNodeBase
<BasicBlock
>;
67 template class llvm::DominatorTreeBase
<BasicBlock
, false>; // DomTreeBase
68 template class llvm::DominatorTreeBase
<BasicBlock
, true>; // PostDomTreeBase
70 template class llvm::cfg::Update
<BasicBlock
*>;
72 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBDomTree
>(
73 DomTreeBuilder::BBDomTree
&DT
);
75 llvm::DomTreeBuilder::CalculateWithUpdates
<DomTreeBuilder::BBDomTree
>(
76 DomTreeBuilder::BBDomTree
&DT
, BBUpdates U
);
78 template void llvm::DomTreeBuilder::Calculate
<DomTreeBuilder::BBPostDomTree
>(
79 DomTreeBuilder::BBPostDomTree
&DT
);
80 // No CalculateWithUpdates<PostDomTree> instantiation, unless a usecase arises.
82 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBDomTree
>(
83 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
84 template void llvm::DomTreeBuilder::InsertEdge
<DomTreeBuilder::BBPostDomTree
>(
85 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
87 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBDomTree
>(
88 DomTreeBuilder::BBDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
89 template void llvm::DomTreeBuilder::DeleteEdge
<DomTreeBuilder::BBPostDomTree
>(
90 DomTreeBuilder::BBPostDomTree
&DT
, BasicBlock
*From
, BasicBlock
*To
);
92 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBDomTree
>(
93 DomTreeBuilder::BBDomTree
&DT
, DomTreeBuilder::BBDomTreeGraphDiff
&,
94 DomTreeBuilder::BBDomTreeGraphDiff
*);
95 template void llvm::DomTreeBuilder::ApplyUpdates
<DomTreeBuilder::BBPostDomTree
>(
96 DomTreeBuilder::BBPostDomTree
&DT
, DomTreeBuilder::BBPostDomTreeGraphDiff
&,
97 DomTreeBuilder::BBPostDomTreeGraphDiff
*);
99 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBDomTree
>(
100 const DomTreeBuilder::BBDomTree
&DT
,
101 DomTreeBuilder::BBDomTree::VerificationLevel VL
);
102 template bool llvm::DomTreeBuilder::Verify
<DomTreeBuilder::BBPostDomTree
>(
103 const DomTreeBuilder::BBPostDomTree
&DT
,
104 DomTreeBuilder::BBPostDomTree::VerificationLevel VL
);
106 bool DominatorTree::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
107 FunctionAnalysisManager::Invalidator
&) {
108 // Check whether the analysis, all analyses on functions, or the function's
109 // CFG have been preserved.
110 auto PAC
= PA
.getChecker
<DominatorTreeAnalysis
>();
111 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
112 PAC
.preservedSet
<CFGAnalyses
>());
115 bool DominatorTree::dominates(const BasicBlock
*BB
, const Use
&U
) const {
116 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
117 if (auto *PN
= dyn_cast
<PHINode
>(UserInst
))
118 // A phi use using a value from a block is dominated by the end of that
119 // block. Note that the phi's parent block may not be.
120 return dominates(BB
, PN
->getIncomingBlock(U
));
122 return properlyDominates(BB
, UserInst
->getParent());
125 // dominates - Return true if Def dominates a use in User. This performs
126 // the special checks necessary if Def and User are in the same basic block.
127 // Note that Def doesn't dominate a use in Def itself!
128 bool DominatorTree::dominates(const Value
*DefV
,
129 const Instruction
*User
) const {
130 const Instruction
*Def
= dyn_cast
<Instruction
>(DefV
);
132 assert((isa
<Argument
>(DefV
) || isa
<Constant
>(DefV
)) &&
133 "Should be called with an instruction, argument or constant");
134 return true; // Arguments and constants dominate everything.
137 const BasicBlock
*UseBB
= User
->getParent();
138 const BasicBlock
*DefBB
= Def
->getParent();
140 // Any unreachable use is dominated, even if Def == User.
141 if (!isReachableFromEntry(UseBB
))
144 // Unreachable definitions don't dominate anything.
145 if (!isReachableFromEntry(DefBB
))
148 // An instruction doesn't dominate a use in itself.
152 // The value defined by an invoke dominates an instruction only if it
153 // dominates every instruction in UseBB.
154 // A PHI is dominated only if the instruction dominates every possible use in
156 if (isa
<InvokeInst
>(Def
) || isa
<CallBrInst
>(Def
) || isa
<PHINode
>(User
))
157 return dominates(Def
, UseBB
);
160 return dominates(DefBB
, UseBB
);
162 return Def
->comesBefore(User
);
165 // true if Def would dominate a use in any instruction in UseBB.
166 // note that dominates(Def, Def->getParent()) is false.
167 bool DominatorTree::dominates(const Instruction
*Def
,
168 const BasicBlock
*UseBB
) const {
169 const BasicBlock
*DefBB
= Def
->getParent();
171 // Any unreachable use is dominated, even if DefBB == UseBB.
172 if (!isReachableFromEntry(UseBB
))
175 // Unreachable definitions don't dominate anything.
176 if (!isReachableFromEntry(DefBB
))
182 // Invoke results are only usable in the normal destination, not in the
183 // exceptional destination.
184 if (const auto *II
= dyn_cast
<InvokeInst
>(Def
)) {
185 BasicBlock
*NormalDest
= II
->getNormalDest();
186 BasicBlockEdge
E(DefBB
, NormalDest
);
187 return dominates(E
, UseBB
);
190 // Callbr results are similarly only usable in the default destination.
191 if (const auto *CBI
= dyn_cast
<CallBrInst
>(Def
)) {
192 BasicBlock
*NormalDest
= CBI
->getDefaultDest();
193 BasicBlockEdge
E(DefBB
, NormalDest
);
194 return dominates(E
, UseBB
);
197 return dominates(DefBB
, UseBB
);
200 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
,
201 const BasicBlock
*UseBB
) const {
202 // If the BB the edge ends in doesn't dominate the use BB, then the
203 // edge also doesn't.
204 const BasicBlock
*Start
= BBE
.getStart();
205 const BasicBlock
*End
= BBE
.getEnd();
206 if (!dominates(End
, UseBB
))
209 // Simple case: if the end BB has a single predecessor, the fact that it
210 // dominates the use block implies that the edge also does.
211 if (End
->getSinglePredecessor())
214 // The normal edge from the invoke is critical. Conceptually, what we would
215 // like to do is split it and check if the new block dominates the use.
216 // With X being the new block, the graph would look like:
229 // Given the definition of dominance, NormalDest is dominated by X iff X
230 // dominates all of NormalDest's predecessors (X, B, C in the example). X
231 // trivially dominates itself, so we only have to find if it dominates the
232 // other predecessors. Since the only way out of X is via NormalDest, X can
233 // only properly dominate a node if NormalDest dominates that node too.
234 int IsDuplicateEdge
= 0;
235 for (const BasicBlock
*BB
: predecessors(End
)) {
237 // If there are multiple edges between Start and End, by definition they
238 // can't dominate anything.
239 if (IsDuplicateEdge
++)
244 if (!dominates(End
, BB
))
250 bool DominatorTree::dominates(const BasicBlockEdge
&BBE
, const Use
&U
) const {
251 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
252 // A PHI in the end of the edge is dominated by it.
253 PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
);
254 if (PN
&& PN
->getParent() == BBE
.getEnd() &&
255 PN
->getIncomingBlock(U
) == BBE
.getStart())
258 // Otherwise use the edge-dominates-block query, which
259 // handles the crazy critical edge cases properly.
260 const BasicBlock
*UseBB
;
262 UseBB
= PN
->getIncomingBlock(U
);
264 UseBB
= UserInst
->getParent();
265 return dominates(BBE
, UseBB
);
268 bool DominatorTree::dominates(const Value
*DefV
, const Use
&U
) const {
269 const Instruction
*Def
= dyn_cast
<Instruction
>(DefV
);
271 assert((isa
<Argument
>(DefV
) || isa
<Constant
>(DefV
)) &&
272 "Should be called with an instruction, argument or constant");
273 return true; // Arguments and constants dominate everything.
276 Instruction
*UserInst
= cast
<Instruction
>(U
.getUser());
277 const BasicBlock
*DefBB
= Def
->getParent();
279 // Determine the block in which the use happens. PHI nodes use
280 // their operands on edges; simulate this by thinking of the use
281 // happening at the end of the predecessor block.
282 const BasicBlock
*UseBB
;
283 if (PHINode
*PN
= dyn_cast
<PHINode
>(UserInst
))
284 UseBB
= PN
->getIncomingBlock(U
);
286 UseBB
= UserInst
->getParent();
288 // Any unreachable use is dominated, even if Def == User.
289 if (!isReachableFromEntry(UseBB
))
292 // Unreachable definitions don't dominate anything.
293 if (!isReachableFromEntry(DefBB
))
296 // Invoke instructions define their return values on the edges to their normal
297 // successors, so we have to handle them specially.
298 // Among other things, this means they don't dominate anything in
299 // their own block, except possibly a phi, so we don't need to
300 // walk the block in any case.
301 if (const InvokeInst
*II
= dyn_cast
<InvokeInst
>(Def
)) {
302 BasicBlock
*NormalDest
= II
->getNormalDest();
303 BasicBlockEdge
E(DefBB
, NormalDest
);
304 return dominates(E
, U
);
307 // Callbr results are similarly only usable in the default destination.
308 if (const auto *CBI
= dyn_cast
<CallBrInst
>(Def
)) {
309 BasicBlock
*NormalDest
= CBI
->getDefaultDest();
310 BasicBlockEdge
E(DefBB
, NormalDest
);
311 return dominates(E
, U
);
314 // If the def and use are in different blocks, do a simple CFG dominator
317 return dominates(DefBB
, UseBB
);
319 // Ok, def and use are in the same block. If the def is an invoke, it
320 // doesn't dominate anything in the block. If it's a PHI, it dominates
321 // everything in the block.
322 if (isa
<PHINode
>(UserInst
))
325 return Def
->comesBefore(UserInst
);
328 bool DominatorTree::isReachableFromEntry(const Use
&U
) const {
329 Instruction
*I
= dyn_cast
<Instruction
>(U
.getUser());
331 // ConstantExprs aren't really reachable from the entry block, but they
332 // don't need to be treated like unreachable code either.
335 // PHI nodes use their operands on their incoming edges.
336 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
337 return isReachableFromEntry(PN
->getIncomingBlock(U
));
339 // Everything else uses their operands in their own block.
340 return isReachableFromEntry(I
->getParent());
343 // Edge BBE1 dominates edge BBE2 if they match or BBE1 dominates start of BBE2.
344 bool DominatorTree::dominates(const BasicBlockEdge
&BBE1
,
345 const BasicBlockEdge
&BBE2
) const {
346 if (BBE1
.getStart() == BBE2
.getStart() && BBE1
.getEnd() == BBE2
.getEnd())
348 return dominates(BBE1
, BBE2
.getStart());
351 //===----------------------------------------------------------------------===//
352 // DominatorTreeAnalysis and related pass implementations
353 //===----------------------------------------------------------------------===//
355 // This implements the DominatorTreeAnalysis which is used with the new pass
356 // manager. It also implements some methods from utility passes.
358 //===----------------------------------------------------------------------===//
360 DominatorTree
DominatorTreeAnalysis::run(Function
&F
,
361 FunctionAnalysisManager
&) {
367 AnalysisKey
DominatorTreeAnalysis::Key
;
369 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream
&OS
) : OS(OS
) {}
371 PreservedAnalyses
DominatorTreePrinterPass::run(Function
&F
,
372 FunctionAnalysisManager
&AM
) {
373 OS
<< "DominatorTree for function: " << F
.getName() << "\n";
374 AM
.getResult
<DominatorTreeAnalysis
>(F
).print(OS
);
376 return PreservedAnalyses::all();
379 PreservedAnalyses
DominatorTreeVerifierPass::run(Function
&F
,
380 FunctionAnalysisManager
&AM
) {
381 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
384 return PreservedAnalyses::all();
387 //===----------------------------------------------------------------------===//
388 // DominatorTreeWrapperPass Implementation
389 //===----------------------------------------------------------------------===//
391 // The implementation details of the wrapper pass that holds a DominatorTree
392 // suitable for use with the legacy pass manager.
394 //===----------------------------------------------------------------------===//
396 char DominatorTreeWrapperPass::ID
= 0;
398 DominatorTreeWrapperPass::DominatorTreeWrapperPass() : FunctionPass(ID
) {
399 initializeDominatorTreeWrapperPassPass(*PassRegistry::getPassRegistry());
402 INITIALIZE_PASS(DominatorTreeWrapperPass
, "domtree",
403 "Dominator Tree Construction", true, true)
405 bool DominatorTreeWrapperPass::runOnFunction(Function
&F
) {
410 void DominatorTreeWrapperPass::verifyAnalysis() const {
412 assert(DT
.verify(DominatorTree::VerificationLevel::Full
));
413 else if (ExpensiveChecksEnabled
)
414 assert(DT
.verify(DominatorTree::VerificationLevel::Basic
));
417 void DominatorTreeWrapperPass::print(raw_ostream
&OS
, const Module
*) const {