1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements all of the non-inline methods for the LLVM instruction
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
48 static cl::opt
<bool> DisableI2pP2iOpt(
49 "disable-i2p-p2i-opt", cl::init(false),
50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
52 //===----------------------------------------------------------------------===//
54 //===----------------------------------------------------------------------===//
57 AllocaInst::getAllocationSizeInBits(const DataLayout
&DL
) const {
58 TypeSize Size
= DL
.getTypeAllocSizeInBits(getAllocatedType());
59 if (isArrayAllocation()) {
60 auto *C
= dyn_cast
<ConstantInt
>(getArraySize());
63 assert(!Size
.isScalable() && "Array elements cannot have a scalable size");
64 Size
*= C
->getZExtValue();
69 //===----------------------------------------------------------------------===//
71 //===----------------------------------------------------------------------===//
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value
*Op0
, Value
*Op1
, Value
*Op2
) {
76 if (Op1
->getType() != Op2
->getType())
77 return "both values to select must have same type";
79 if (Op1
->getType()->isTokenTy())
80 return "select values cannot have token type";
82 if (VectorType
*VT
= dyn_cast
<VectorType
>(Op0
->getType())) {
84 if (VT
->getElementType() != Type::getInt1Ty(Op0
->getContext()))
85 return "vector select condition element type must be i1";
86 VectorType
*ET
= dyn_cast
<VectorType
>(Op1
->getType());
88 return "selected values for vector select must be vectors";
89 if (ET
->getElementCount() != VT
->getElementCount())
90 return "vector select requires selected vectors to have "
91 "the same vector length as select condition";
92 } else if (Op0
->getType() != Type::getInt1Ty(Op0
->getContext())) {
93 return "select condition must be i1 or <n x i1>";
98 //===----------------------------------------------------------------------===//
100 //===----------------------------------------------------------------------===//
102 PHINode::PHINode(const PHINode
&PN
)
103 : Instruction(PN
.getType(), Instruction::PHI
, nullptr, PN
.getNumOperands()),
104 ReservedSpace(PN
.getNumOperands()) {
105 allocHungoffUses(PN
.getNumOperands());
106 std::copy(PN
.op_begin(), PN
.op_end(), op_begin());
107 std::copy(PN
.block_begin(), PN
.block_end(), block_begin());
108 SubclassOptionalData
= PN
.SubclassOptionalData
;
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
113 Value
*PHINode::removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
) {
114 Value
*Removed
= getIncomingValue(Idx
);
116 // Move everything after this operand down.
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx
+ 1, op_end(), op_begin() + Idx
);
122 std::copy(block_begin() + Idx
+ 1, block_end(), block_begin() + Idx
);
124 // Nuke the last value.
125 Op
<-1>().set(nullptr);
126 setNumHungOffUseOperands(getNumOperands() - 1);
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty
) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
141 void PHINode::growOperands() {
142 unsigned e
= getNumOperands();
143 unsigned NumOps
= e
+ e
/ 2;
144 if (NumOps
< 2) NumOps
= 2; // 2 op PHI nodes are VERY common.
146 ReservedSpace
= NumOps
;
147 growHungoffUses(ReservedSpace
, /* IsPhi */ true);
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value
*PHINode::hasConstantValue() const {
153 // Exploit the fact that phi nodes always have at least one entry.
154 Value
*ConstantValue
= getIncomingValue(0);
155 for (unsigned i
= 1, e
= getNumIncomingValues(); i
!= e
; ++i
)
156 if (getIncomingValue(i
) != ConstantValue
&& getIncomingValue(i
) != this) {
157 if (ConstantValue
!= this)
158 return nullptr; // Incoming values not all the same.
159 // The case where the first value is this PHI.
160 ConstantValue
= getIncomingValue(i
);
162 if (ConstantValue
== this)
163 return UndefValue::get(getType());
164 return ConstantValue
;
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173 Value
*ConstantValue
= nullptr;
174 for (unsigned i
= 0, e
= getNumIncomingValues(); i
!= e
; ++i
) {
175 Value
*Incoming
= getIncomingValue(i
);
176 if (Incoming
!= this && !isa
<UndefValue
>(Incoming
)) {
177 if (ConstantValue
&& ConstantValue
!= Incoming
)
179 ConstantValue
= Incoming
;
185 //===----------------------------------------------------------------------===//
186 // LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
189 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
190 const Twine
&NameStr
, Instruction
*InsertBefore
)
191 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertBefore
) {
192 init(NumReservedValues
, NameStr
);
195 LandingPadInst::LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
196 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
197 : Instruction(RetTy
, Instruction::LandingPad
, nullptr, 0, InsertAtEnd
) {
198 init(NumReservedValues
, NameStr
);
201 LandingPadInst::LandingPadInst(const LandingPadInst
&LP
)
202 : Instruction(LP
.getType(), Instruction::LandingPad
, nullptr,
203 LP
.getNumOperands()),
204 ReservedSpace(LP
.getNumOperands()) {
205 allocHungoffUses(LP
.getNumOperands());
206 Use
*OL
= getOperandList();
207 const Use
*InOL
= LP
.getOperandList();
208 for (unsigned I
= 0, E
= ReservedSpace
; I
!= E
; ++I
)
211 setCleanup(LP
.isCleanup());
214 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
215 const Twine
&NameStr
,
216 Instruction
*InsertBefore
) {
217 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertBefore
);
220 LandingPadInst
*LandingPadInst::Create(Type
*RetTy
, unsigned NumReservedClauses
,
221 const Twine
&NameStr
,
222 BasicBlock
*InsertAtEnd
) {
223 return new LandingPadInst(RetTy
, NumReservedClauses
, NameStr
, InsertAtEnd
);
226 void LandingPadInst::init(unsigned NumReservedValues
, const Twine
&NameStr
) {
227 ReservedSpace
= NumReservedValues
;
228 setNumHungOffUseOperands(0);
229 allocHungoffUses(ReservedSpace
);
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size
) {
237 unsigned e
= getNumOperands();
238 if (ReservedSpace
>= e
+ Size
) return;
239 ReservedSpace
= (std::max(e
, 1U) + Size
/ 2) * 2;
240 growHungoffUses(ReservedSpace
);
243 void LandingPadInst::addClause(Constant
*Val
) {
244 unsigned OpNo
= getNumOperands();
246 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
247 setNumHungOffUseOperands(getNumOperands() + 1);
248 getOperandList()[OpNo
] = Val
;
251 //===----------------------------------------------------------------------===//
252 // CallBase Implementation
253 //===----------------------------------------------------------------------===//
255 CallBase
*CallBase::Create(CallBase
*CB
, ArrayRef
<OperandBundleDef
> Bundles
,
256 Instruction
*InsertPt
) {
257 switch (CB
->getOpcode()) {
258 case Instruction::Call
:
259 return CallInst::Create(cast
<CallInst
>(CB
), Bundles
, InsertPt
);
260 case Instruction::Invoke
:
261 return InvokeInst::Create(cast
<InvokeInst
>(CB
), Bundles
, InsertPt
);
262 case Instruction::CallBr
:
263 return CallBrInst::Create(cast
<CallBrInst
>(CB
), Bundles
, InsertPt
);
265 llvm_unreachable("Unknown CallBase sub-class!");
269 CallBase
*CallBase::Create(CallBase
*CI
, OperandBundleDef OpB
,
270 Instruction
*InsertPt
) {
271 SmallVector
<OperandBundleDef
, 2> OpDefs
;
272 for (unsigned i
= 0, e
= CI
->getNumOperandBundles(); i
< e
; ++i
) {
273 auto ChildOB
= CI
->getOperandBundleAt(i
);
274 if (ChildOB
.getTagName() != OpB
.getTag())
275 OpDefs
.emplace_back(ChildOB
);
277 OpDefs
.emplace_back(OpB
);
278 return CallBase::Create(CI
, OpDefs
, InsertPt
);
282 Function
*CallBase::getCaller() { return getParent()->getParent(); }
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285 assert(getOpcode() == Instruction::CallBr
&& "Unexpected opcode!");
286 return cast
<CallBrInst
>(this)->getNumIndirectDests() + 1;
289 bool CallBase::isIndirectCall() const {
290 const Value
*V
= getCalledOperand();
291 if (isa
<Function
>(V
) || isa
<Constant
>(V
))
293 return !isInlineAsm();
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299 if (auto *CI
= dyn_cast
<CallInst
>(this))
300 return CI
->isMustTailCall();
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306 if (auto *CI
= dyn_cast
<CallInst
>(this))
307 return CI
->isTailCall();
311 Intrinsic::ID
CallBase::getIntrinsicID() const {
312 if (auto *F
= getCalledFunction())
313 return F
->getIntrinsicID();
314 return Intrinsic::not_intrinsic
;
317 bool CallBase::isReturnNonNull() const {
318 if (hasRetAttr(Attribute::NonNull
))
321 if (getRetDereferenceableBytes() > 0 &&
322 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
328 Value
*CallBase::getReturnedArgOperand() const {
331 if (Attrs
.hasAttrSomewhere(Attribute::Returned
, &Index
) && Index
)
332 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
333 if (const Function
*F
= getCalledFunction())
334 if (F
->getAttributes().hasAttrSomewhere(Attribute::Returned
, &Index
) &&
336 return getArgOperand(Index
- AttributeList::FirstArgIndex
);
341 /// Determine whether the argument or parameter has the given attribute.
342 bool CallBase::paramHasAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) const {
343 assert(ArgNo
< getNumArgOperands() && "Param index out of bounds!");
345 if (Attrs
.hasParamAttr(ArgNo
, Kind
))
347 if (const Function
*F
= getCalledFunction())
348 return F
->getAttributes().hasParamAttr(ArgNo
, Kind
);
352 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind
) const {
353 if (const Function
*F
= getCalledFunction())
354 return F
->getAttributes().hasFnAttr(Kind
);
358 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind
) const {
359 if (const Function
*F
= getCalledFunction())
360 return F
->getAttributes().hasFnAttr(Kind
);
364 void CallBase::getOperandBundlesAsDefs(
365 SmallVectorImpl
<OperandBundleDef
> &Defs
) const {
366 for (unsigned i
= 0, e
= getNumOperandBundles(); i
!= e
; ++i
)
367 Defs
.emplace_back(getOperandBundleAt(i
));
370 CallBase::op_iterator
371 CallBase::populateBundleOperandInfos(ArrayRef
<OperandBundleDef
> Bundles
,
372 const unsigned BeginIndex
) {
373 auto It
= op_begin() + BeginIndex
;
374 for (auto &B
: Bundles
)
375 It
= std::copy(B
.input_begin(), B
.input_end(), It
);
377 auto *ContextImpl
= getContext().pImpl
;
378 auto BI
= Bundles
.begin();
379 unsigned CurrentIndex
= BeginIndex
;
381 for (auto &BOI
: bundle_op_infos()) {
382 assert(BI
!= Bundles
.end() && "Incorrect allocation?");
384 BOI
.Tag
= ContextImpl
->getOrInsertBundleTag(BI
->getTag());
385 BOI
.Begin
= CurrentIndex
;
386 BOI
.End
= CurrentIndex
+ BI
->input_size();
387 CurrentIndex
= BOI
.End
;
391 assert(BI
== Bundles
.end() && "Incorrect allocation?");
396 CallBase::BundleOpInfo
&CallBase::getBundleOpInfoForOperand(unsigned OpIdx
) {
397 /// When there isn't many bundles, we do a simple linear search.
398 /// Else fallback to a binary-search that use the fact that bundles usually
399 /// have similar number of argument to get faster convergence.
400 if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
401 for (auto &BOI
: bundle_op_infos())
402 if (BOI
.Begin
<= OpIdx
&& OpIdx
< BOI
.End
)
405 llvm_unreachable("Did not find operand bundle for operand!");
408 assert(OpIdx
>= arg_size() && "the Idx is not in the operand bundles");
409 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
410 OpIdx
< std::prev(bundle_op_info_end())->End
&&
411 "The Idx isn't in the operand bundle");
413 /// We need a decimal number below and to prevent using floating point numbers
414 /// we use an intergal value multiplied by this constant.
415 constexpr unsigned NumberScaling
= 1024;
417 bundle_op_iterator Begin
= bundle_op_info_begin();
418 bundle_op_iterator End
= bundle_op_info_end();
419 bundle_op_iterator Current
= Begin
;
421 while (Begin
!= End
) {
422 unsigned ScaledOperandPerBundle
=
423 NumberScaling
* (std::prev(End
)->End
- Begin
->Begin
) / (End
- Begin
);
424 Current
= Begin
+ (((OpIdx
- Begin
->Begin
) * NumberScaling
) /
425 ScaledOperandPerBundle
);
427 Current
= std::prev(End
);
428 assert(Current
< End
&& Current
>= Begin
&&
429 "the operand bundle doesn't cover every value in the range");
430 if (OpIdx
>= Current
->Begin
&& OpIdx
< Current
->End
)
432 if (OpIdx
>= Current
->End
)
438 assert(OpIdx
>= Current
->Begin
&& OpIdx
< Current
->End
&&
439 "the operand bundle doesn't cover every value in the range");
443 CallBase
*CallBase::addOperandBundle(CallBase
*CB
, uint32_t ID
,
445 Instruction
*InsertPt
) {
446 if (CB
->getOperandBundle(ID
))
449 SmallVector
<OperandBundleDef
, 1> Bundles
;
450 CB
->getOperandBundlesAsDefs(Bundles
);
451 Bundles
.push_back(OB
);
452 return Create(CB
, Bundles
, InsertPt
);
455 CallBase
*CallBase::removeOperandBundle(CallBase
*CB
, uint32_t ID
,
456 Instruction
*InsertPt
) {
457 SmallVector
<OperandBundleDef
, 1> Bundles
;
458 bool CreateNew
= false;
460 for (unsigned I
= 0, E
= CB
->getNumOperandBundles(); I
!= E
; ++I
) {
461 auto Bundle
= CB
->getOperandBundleAt(I
);
462 if (Bundle
.getTagID() == ID
) {
466 Bundles
.emplace_back(Bundle
);
469 return CreateNew
? Create(CB
, Bundles
, InsertPt
) : CB
;
472 bool CallBase::hasReadingOperandBundles() const {
473 // Implementation note: this is a conservative implementation of operand
474 // bundle semantics, where *any* non-assume operand bundle forces a callsite
475 // to be at least readonly.
476 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume
;
479 //===----------------------------------------------------------------------===//
480 // CallInst Implementation
481 //===----------------------------------------------------------------------===//
483 void CallInst::init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
484 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
) {
486 assert(getNumOperands() == Args
.size() + CountBundleInputs(Bundles
) + 1 &&
487 "NumOperands not set up?");
490 assert((Args
.size() == FTy
->getNumParams() ||
491 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
492 "Calling a function with bad signature!");
494 for (unsigned i
= 0; i
!= Args
.size(); ++i
)
495 assert((i
>= FTy
->getNumParams() ||
496 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
497 "Calling a function with a bad signature!");
500 // Set operands in order of their index to match use-list-order
502 llvm::copy(Args
, op_begin());
503 setCalledOperand(Func
);
505 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
507 assert(It
+ 1 == op_end() && "Should add up!");
512 void CallInst::init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
) {
514 assert(getNumOperands() == 1 && "NumOperands not set up?");
515 setCalledOperand(Func
);
517 assert(FTy
->getNumParams() == 0 && "Calling a function with bad signature");
522 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
523 Instruction
*InsertBefore
)
524 : CallBase(Ty
->getReturnType(), Instruction::Call
,
525 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertBefore
) {
526 init(Ty
, Func
, Name
);
529 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, const Twine
&Name
,
530 BasicBlock
*InsertAtEnd
)
531 : CallBase(Ty
->getReturnType(), Instruction::Call
,
532 OperandTraits
<CallBase
>::op_end(this) - 1, 1, InsertAtEnd
) {
533 init(Ty
, Func
, Name
);
536 CallInst::CallInst(const CallInst
&CI
)
537 : CallBase(CI
.Attrs
, CI
.FTy
, CI
.getType(), Instruction::Call
,
538 OperandTraits
<CallBase
>::op_end(this) - CI
.getNumOperands(),
539 CI
.getNumOperands()) {
540 setTailCallKind(CI
.getTailCallKind());
541 setCallingConv(CI
.getCallingConv());
543 std::copy(CI
.op_begin(), CI
.op_end(), op_begin());
544 std::copy(CI
.bundle_op_info_begin(), CI
.bundle_op_info_end(),
545 bundle_op_info_begin());
546 SubclassOptionalData
= CI
.SubclassOptionalData
;
549 CallInst
*CallInst::Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> OpB
,
550 Instruction
*InsertPt
) {
551 std::vector
<Value
*> Args(CI
->arg_begin(), CI
->arg_end());
553 auto *NewCI
= CallInst::Create(CI
->getFunctionType(), CI
->getCalledOperand(),
554 Args
, OpB
, CI
->getName(), InsertPt
);
555 NewCI
->setTailCallKind(CI
->getTailCallKind());
556 NewCI
->setCallingConv(CI
->getCallingConv());
557 NewCI
->SubclassOptionalData
= CI
->SubclassOptionalData
;
558 NewCI
->setAttributes(CI
->getAttributes());
559 NewCI
->setDebugLoc(CI
->getDebugLoc());
563 // Update profile weight for call instruction by scaling it using the ratio
564 // of S/T. The meaning of "branch_weights" meta data for call instruction is
565 // transfered to represent call count.
566 void CallInst::updateProfWeight(uint64_t S
, uint64_t T
) {
567 auto *ProfileData
= getMetadata(LLVMContext::MD_prof
);
568 if (ProfileData
== nullptr)
571 auto *ProfDataName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0));
572 if (!ProfDataName
|| (!ProfDataName
->getString().equals("branch_weights") &&
573 !ProfDataName
->getString().equals("VP")))
577 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
578 "div by 0. Ignoring. Likely the function "
579 << getParent()->getParent()->getName()
580 << " has 0 entry count, and contains call instructions "
581 "with non-zero prof info.");
585 MDBuilder
MDB(getContext());
586 SmallVector
<Metadata
*, 3> Vals
;
587 Vals
.push_back(ProfileData
->getOperand(0));
588 APInt
APS(128, S
), APT(128, T
);
589 if (ProfDataName
->getString().equals("branch_weights") &&
590 ProfileData
->getNumOperands() > 0) {
591 // Using APInt::div may be expensive, but most cases should fit 64 bits.
592 APInt
Val(128, mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(1))
596 Vals
.push_back(MDB
.createConstant(
597 ConstantInt::get(Type::getInt32Ty(getContext()),
598 Val
.udiv(APT
).getLimitedValue(UINT32_MAX
))));
599 } else if (ProfDataName
->getString().equals("VP"))
600 for (unsigned i
= 1; i
< ProfileData
->getNumOperands(); i
+= 2) {
601 // The first value is the key of the value profile, which will not change.
602 Vals
.push_back(ProfileData
->getOperand(i
));
604 mdconst::dyn_extract
<ConstantInt
>(ProfileData
->getOperand(i
+ 1))
607 // Don't scale the magic number.
608 if (Count
== NOMORE_ICP_MAGICNUM
) {
609 Vals
.push_back(ProfileData
->getOperand(i
+ 1));
612 // Using APInt::div may be expensive, but most cases should fit 64 bits.
613 APInt
Val(128, Count
);
615 Vals
.push_back(MDB
.createConstant(
616 ConstantInt::get(Type::getInt64Ty(getContext()),
617 Val
.udiv(APT
).getLimitedValue())));
619 setMetadata(LLVMContext::MD_prof
, MDNode::get(getContext(), Vals
));
622 /// IsConstantOne - Return true only if val is constant int 1
623 static bool IsConstantOne(Value
*val
) {
624 assert(val
&& "IsConstantOne does not work with nullptr val");
625 const ConstantInt
*CVal
= dyn_cast
<ConstantInt
>(val
);
626 return CVal
&& CVal
->isOne();
629 static Instruction
*createMalloc(Instruction
*InsertBefore
,
630 BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
631 Type
*AllocTy
, Value
*AllocSize
,
633 ArrayRef
<OperandBundleDef
> OpB
,
634 Function
*MallocF
, const Twine
&Name
) {
635 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
636 "createMalloc needs either InsertBefore or InsertAtEnd");
638 // malloc(type) becomes:
639 // bitcast (i8* malloc(typeSize)) to type*
640 // malloc(type, arraySize) becomes:
641 // bitcast (i8* malloc(typeSize*arraySize)) to type*
643 ArraySize
= ConstantInt::get(IntPtrTy
, 1);
644 else if (ArraySize
->getType() != IntPtrTy
) {
646 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
649 ArraySize
= CastInst::CreateIntegerCast(ArraySize
, IntPtrTy
, false,
653 if (!IsConstantOne(ArraySize
)) {
654 if (IsConstantOne(AllocSize
)) {
655 AllocSize
= ArraySize
; // Operand * 1 = Operand
656 } else if (Constant
*CO
= dyn_cast
<Constant
>(ArraySize
)) {
657 Constant
*Scale
= ConstantExpr::getIntegerCast(CO
, IntPtrTy
,
659 // Malloc arg is constant product of type size and array size
660 AllocSize
= ConstantExpr::getMul(Scale
, cast
<Constant
>(AllocSize
));
662 // Multiply type size by the array size...
664 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
665 "mallocsize", InsertBefore
);
667 AllocSize
= BinaryOperator::CreateMul(ArraySize
, AllocSize
,
668 "mallocsize", InsertAtEnd
);
672 assert(AllocSize
->getType() == IntPtrTy
&& "malloc arg is wrong size");
673 // Create the call to Malloc.
674 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
675 Module
*M
= BB
->getParent()->getParent();
676 Type
*BPTy
= Type::getInt8PtrTy(BB
->getContext());
677 FunctionCallee MallocFunc
= MallocF
;
679 // prototype malloc as "void *malloc(size_t)"
680 MallocFunc
= M
->getOrInsertFunction("malloc", BPTy
, IntPtrTy
);
681 PointerType
*AllocPtrType
= PointerType::getUnqual(AllocTy
);
682 CallInst
*MCall
= nullptr;
683 Instruction
*Result
= nullptr;
685 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall",
688 if (Result
->getType() != AllocPtrType
)
689 // Create a cast instruction to convert to the right type...
690 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
, InsertBefore
);
692 MCall
= CallInst::Create(MallocFunc
, AllocSize
, OpB
, "malloccall");
694 if (Result
->getType() != AllocPtrType
) {
695 InsertAtEnd
->getInstList().push_back(MCall
);
696 // Create a cast instruction to convert to the right type...
697 Result
= new BitCastInst(MCall
, AllocPtrType
, Name
);
700 MCall
->setTailCall();
701 if (Function
*F
= dyn_cast
<Function
>(MallocFunc
.getCallee())) {
702 MCall
->setCallingConv(F
->getCallingConv());
703 if (!F
->returnDoesNotAlias())
704 F
->setReturnDoesNotAlias();
706 assert(!MCall
->getType()->isVoidTy() && "Malloc has void return type");
711 /// CreateMalloc - Generate the IR for a call to malloc:
712 /// 1. Compute the malloc call's argument as the specified type's size,
713 /// possibly multiplied by the array size if the array size is not
715 /// 2. Call malloc with that argument.
716 /// 3. Bitcast the result of the malloc call to the specified type.
717 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
718 Type
*IntPtrTy
, Type
*AllocTy
,
719 Value
*AllocSize
, Value
*ArraySize
,
722 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
723 ArraySize
, None
, MallocF
, Name
);
725 Instruction
*CallInst::CreateMalloc(Instruction
*InsertBefore
,
726 Type
*IntPtrTy
, Type
*AllocTy
,
727 Value
*AllocSize
, Value
*ArraySize
,
728 ArrayRef
<OperandBundleDef
> OpB
,
731 return createMalloc(InsertBefore
, nullptr, IntPtrTy
, AllocTy
, AllocSize
,
732 ArraySize
, OpB
, MallocF
, Name
);
735 /// CreateMalloc - Generate the IR for a call to malloc:
736 /// 1. Compute the malloc call's argument as the specified type's size,
737 /// possibly multiplied by the array size if the array size is not
739 /// 2. Call malloc with that argument.
740 /// 3. Bitcast the result of the malloc call to the specified type.
741 /// Note: This function does not add the bitcast to the basic block, that is the
742 /// responsibility of the caller.
743 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
744 Type
*IntPtrTy
, Type
*AllocTy
,
745 Value
*AllocSize
, Value
*ArraySize
,
746 Function
*MallocF
, const Twine
&Name
) {
747 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
748 ArraySize
, None
, MallocF
, Name
);
750 Instruction
*CallInst::CreateMalloc(BasicBlock
*InsertAtEnd
,
751 Type
*IntPtrTy
, Type
*AllocTy
,
752 Value
*AllocSize
, Value
*ArraySize
,
753 ArrayRef
<OperandBundleDef
> OpB
,
754 Function
*MallocF
, const Twine
&Name
) {
755 return createMalloc(nullptr, InsertAtEnd
, IntPtrTy
, AllocTy
, AllocSize
,
756 ArraySize
, OpB
, MallocF
, Name
);
759 static Instruction
*createFree(Value
*Source
,
760 ArrayRef
<OperandBundleDef
> Bundles
,
761 Instruction
*InsertBefore
,
762 BasicBlock
*InsertAtEnd
) {
763 assert(((!InsertBefore
&& InsertAtEnd
) || (InsertBefore
&& !InsertAtEnd
)) &&
764 "createFree needs either InsertBefore or InsertAtEnd");
765 assert(Source
->getType()->isPointerTy() &&
766 "Can not free something of nonpointer type!");
768 BasicBlock
*BB
= InsertBefore
? InsertBefore
->getParent() : InsertAtEnd
;
769 Module
*M
= BB
->getParent()->getParent();
771 Type
*VoidTy
= Type::getVoidTy(M
->getContext());
772 Type
*IntPtrTy
= Type::getInt8PtrTy(M
->getContext());
773 // prototype free as "void free(void*)"
774 FunctionCallee FreeFunc
= M
->getOrInsertFunction("free", VoidTy
, IntPtrTy
);
775 CallInst
*Result
= nullptr;
776 Value
*PtrCast
= Source
;
778 if (Source
->getType() != IntPtrTy
)
779 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertBefore
);
780 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "", InsertBefore
);
782 if (Source
->getType() != IntPtrTy
)
783 PtrCast
= new BitCastInst(Source
, IntPtrTy
, "", InsertAtEnd
);
784 Result
= CallInst::Create(FreeFunc
, PtrCast
, Bundles
, "");
786 Result
->setTailCall();
787 if (Function
*F
= dyn_cast
<Function
>(FreeFunc
.getCallee()))
788 Result
->setCallingConv(F
->getCallingConv());
793 /// CreateFree - Generate the IR for a call to the builtin free function.
794 Instruction
*CallInst::CreateFree(Value
*Source
, Instruction
*InsertBefore
) {
795 return createFree(Source
, None
, InsertBefore
, nullptr);
797 Instruction
*CallInst::CreateFree(Value
*Source
,
798 ArrayRef
<OperandBundleDef
> Bundles
,
799 Instruction
*InsertBefore
) {
800 return createFree(Source
, Bundles
, InsertBefore
, nullptr);
803 /// CreateFree - Generate the IR for a call to the builtin free function.
804 /// Note: This function does not add the call to the basic block, that is the
805 /// responsibility of the caller.
806 Instruction
*CallInst::CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
) {
807 Instruction
*FreeCall
= createFree(Source
, None
, nullptr, InsertAtEnd
);
808 assert(FreeCall
&& "CreateFree did not create a CallInst");
811 Instruction
*CallInst::CreateFree(Value
*Source
,
812 ArrayRef
<OperandBundleDef
> Bundles
,
813 BasicBlock
*InsertAtEnd
) {
814 Instruction
*FreeCall
= createFree(Source
, Bundles
, nullptr, InsertAtEnd
);
815 assert(FreeCall
&& "CreateFree did not create a CallInst");
819 //===----------------------------------------------------------------------===//
820 // InvokeInst Implementation
821 //===----------------------------------------------------------------------===//
823 void InvokeInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*IfNormal
,
824 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
825 ArrayRef
<OperandBundleDef
> Bundles
,
826 const Twine
&NameStr
) {
829 assert((int)getNumOperands() ==
830 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
)) &&
831 "NumOperands not set up?");
834 assert(((Args
.size() == FTy
->getNumParams()) ||
835 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
836 "Invoking a function with bad signature");
838 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
839 assert((i
>= FTy
->getNumParams() ||
840 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
841 "Invoking a function with a bad signature!");
844 // Set operands in order of their index to match use-list-order
846 llvm::copy(Args
, op_begin());
847 setNormalDest(IfNormal
);
848 setUnwindDest(IfException
);
849 setCalledOperand(Fn
);
851 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
853 assert(It
+ 3 == op_end() && "Should add up!");
858 InvokeInst::InvokeInst(const InvokeInst
&II
)
859 : CallBase(II
.Attrs
, II
.FTy
, II
.getType(), Instruction::Invoke
,
860 OperandTraits
<CallBase
>::op_end(this) - II
.getNumOperands(),
861 II
.getNumOperands()) {
862 setCallingConv(II
.getCallingConv());
863 std::copy(II
.op_begin(), II
.op_end(), op_begin());
864 std::copy(II
.bundle_op_info_begin(), II
.bundle_op_info_end(),
865 bundle_op_info_begin());
866 SubclassOptionalData
= II
.SubclassOptionalData
;
869 InvokeInst
*InvokeInst::Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> OpB
,
870 Instruction
*InsertPt
) {
871 std::vector
<Value
*> Args(II
->arg_begin(), II
->arg_end());
873 auto *NewII
= InvokeInst::Create(
874 II
->getFunctionType(), II
->getCalledOperand(), II
->getNormalDest(),
875 II
->getUnwindDest(), Args
, OpB
, II
->getName(), InsertPt
);
876 NewII
->setCallingConv(II
->getCallingConv());
877 NewII
->SubclassOptionalData
= II
->SubclassOptionalData
;
878 NewII
->setAttributes(II
->getAttributes());
879 NewII
->setDebugLoc(II
->getDebugLoc());
883 LandingPadInst
*InvokeInst::getLandingPadInst() const {
884 return cast
<LandingPadInst
>(getUnwindDest()->getFirstNonPHI());
887 //===----------------------------------------------------------------------===//
888 // CallBrInst Implementation
889 //===----------------------------------------------------------------------===//
891 void CallBrInst::init(FunctionType
*FTy
, Value
*Fn
, BasicBlock
*Fallthrough
,
892 ArrayRef
<BasicBlock
*> IndirectDests
,
893 ArrayRef
<Value
*> Args
,
894 ArrayRef
<OperandBundleDef
> Bundles
,
895 const Twine
&NameStr
) {
898 assert((int)getNumOperands() ==
899 ComputeNumOperands(Args
.size(), IndirectDests
.size(),
900 CountBundleInputs(Bundles
)) &&
901 "NumOperands not set up?");
904 assert(((Args
.size() == FTy
->getNumParams()) ||
905 (FTy
->isVarArg() && Args
.size() > FTy
->getNumParams())) &&
906 "Calling a function with bad signature");
908 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; i
++)
909 assert((i
>= FTy
->getNumParams() ||
910 FTy
->getParamType(i
) == Args
[i
]->getType()) &&
911 "Calling a function with a bad signature!");
914 // Set operands in order of their index to match use-list-order
916 std::copy(Args
.begin(), Args
.end(), op_begin());
917 NumIndirectDests
= IndirectDests
.size();
918 setDefaultDest(Fallthrough
);
919 for (unsigned i
= 0; i
!= NumIndirectDests
; ++i
)
920 setIndirectDest(i
, IndirectDests
[i
]);
921 setCalledOperand(Fn
);
923 auto It
= populateBundleOperandInfos(Bundles
, Args
.size());
925 assert(It
+ 2 + IndirectDests
.size() == op_end() && "Should add up!");
930 void CallBrInst::updateArgBlockAddresses(unsigned i
, BasicBlock
*B
) {
931 assert(getNumIndirectDests() > i
&& "IndirectDest # out of range for callbr");
932 if (BasicBlock
*OldBB
= getIndirectDest(i
)) {
933 BlockAddress
*Old
= BlockAddress::get(OldBB
);
934 BlockAddress
*New
= BlockAddress::get(B
);
935 for (unsigned ArgNo
= 0, e
= getNumArgOperands(); ArgNo
!= e
; ++ArgNo
)
936 if (dyn_cast
<BlockAddress
>(getArgOperand(ArgNo
)) == Old
)
937 setArgOperand(ArgNo
, New
);
941 CallBrInst::CallBrInst(const CallBrInst
&CBI
)
942 : CallBase(CBI
.Attrs
, CBI
.FTy
, CBI
.getType(), Instruction::CallBr
,
943 OperandTraits
<CallBase
>::op_end(this) - CBI
.getNumOperands(),
944 CBI
.getNumOperands()) {
945 setCallingConv(CBI
.getCallingConv());
946 std::copy(CBI
.op_begin(), CBI
.op_end(), op_begin());
947 std::copy(CBI
.bundle_op_info_begin(), CBI
.bundle_op_info_end(),
948 bundle_op_info_begin());
949 SubclassOptionalData
= CBI
.SubclassOptionalData
;
950 NumIndirectDests
= CBI
.NumIndirectDests
;
953 CallBrInst
*CallBrInst::Create(CallBrInst
*CBI
, ArrayRef
<OperandBundleDef
> OpB
,
954 Instruction
*InsertPt
) {
955 std::vector
<Value
*> Args(CBI
->arg_begin(), CBI
->arg_end());
957 auto *NewCBI
= CallBrInst::Create(
958 CBI
->getFunctionType(), CBI
->getCalledOperand(), CBI
->getDefaultDest(),
959 CBI
->getIndirectDests(), Args
, OpB
, CBI
->getName(), InsertPt
);
960 NewCBI
->setCallingConv(CBI
->getCallingConv());
961 NewCBI
->SubclassOptionalData
= CBI
->SubclassOptionalData
;
962 NewCBI
->setAttributes(CBI
->getAttributes());
963 NewCBI
->setDebugLoc(CBI
->getDebugLoc());
964 NewCBI
->NumIndirectDests
= CBI
->NumIndirectDests
;
968 //===----------------------------------------------------------------------===//
969 // ReturnInst Implementation
970 //===----------------------------------------------------------------------===//
972 ReturnInst::ReturnInst(const ReturnInst
&RI
)
973 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Ret
,
974 OperandTraits
<ReturnInst
>::op_end(this) - RI
.getNumOperands(),
975 RI
.getNumOperands()) {
976 if (RI
.getNumOperands())
977 Op
<0>() = RI
.Op
<0>();
978 SubclassOptionalData
= RI
.SubclassOptionalData
;
981 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, Instruction
*InsertBefore
)
982 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
983 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
989 ReturnInst::ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
)
990 : Instruction(Type::getVoidTy(C
), Instruction::Ret
,
991 OperandTraits
<ReturnInst
>::op_end(this) - !!retVal
, !!retVal
,
997 ReturnInst::ReturnInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
998 : Instruction(Type::getVoidTy(Context
), Instruction::Ret
,
999 OperandTraits
<ReturnInst
>::op_end(this), 0, InsertAtEnd
) {}
1001 //===----------------------------------------------------------------------===//
1002 // ResumeInst Implementation
1003 //===----------------------------------------------------------------------===//
1005 ResumeInst::ResumeInst(const ResumeInst
&RI
)
1006 : Instruction(Type::getVoidTy(RI
.getContext()), Instruction::Resume
,
1007 OperandTraits
<ResumeInst
>::op_begin(this), 1) {
1008 Op
<0>() = RI
.Op
<0>();
1011 ResumeInst::ResumeInst(Value
*Exn
, Instruction
*InsertBefore
)
1012 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
1013 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertBefore
) {
1017 ResumeInst::ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
)
1018 : Instruction(Type::getVoidTy(Exn
->getContext()), Instruction::Resume
,
1019 OperandTraits
<ResumeInst
>::op_begin(this), 1, InsertAtEnd
) {
1023 //===----------------------------------------------------------------------===//
1024 // CleanupReturnInst Implementation
1025 //===----------------------------------------------------------------------===//
1027 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst
&CRI
)
1028 : Instruction(CRI
.getType(), Instruction::CleanupRet
,
1029 OperandTraits
<CleanupReturnInst
>::op_end(this) -
1030 CRI
.getNumOperands(),
1031 CRI
.getNumOperands()) {
1032 setSubclassData
<Instruction::OpaqueField
>(
1033 CRI
.getSubclassData
<Instruction::OpaqueField
>());
1034 Op
<0>() = CRI
.Op
<0>();
1035 if (CRI
.hasUnwindDest())
1036 Op
<1>() = CRI
.Op
<1>();
1039 void CleanupReturnInst::init(Value
*CleanupPad
, BasicBlock
*UnwindBB
) {
1041 setSubclassData
<UnwindDestField
>(true);
1043 Op
<0>() = CleanupPad
;
1048 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
1049 unsigned Values
, Instruction
*InsertBefore
)
1050 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
1051 Instruction::CleanupRet
,
1052 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
1053 Values
, InsertBefore
) {
1054 init(CleanupPad
, UnwindBB
);
1057 CleanupReturnInst::CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
1058 unsigned Values
, BasicBlock
*InsertAtEnd
)
1059 : Instruction(Type::getVoidTy(CleanupPad
->getContext()),
1060 Instruction::CleanupRet
,
1061 OperandTraits
<CleanupReturnInst
>::op_end(this) - Values
,
1062 Values
, InsertAtEnd
) {
1063 init(CleanupPad
, UnwindBB
);
1066 //===----------------------------------------------------------------------===//
1067 // CatchReturnInst Implementation
1068 //===----------------------------------------------------------------------===//
1069 void CatchReturnInst::init(Value
*CatchPad
, BasicBlock
*BB
) {
1074 CatchReturnInst::CatchReturnInst(const CatchReturnInst
&CRI
)
1075 : Instruction(Type::getVoidTy(CRI
.getContext()), Instruction::CatchRet
,
1076 OperandTraits
<CatchReturnInst
>::op_begin(this), 2) {
1077 Op
<0>() = CRI
.Op
<0>();
1078 Op
<1>() = CRI
.Op
<1>();
1081 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
1082 Instruction
*InsertBefore
)
1083 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
1084 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
1089 CatchReturnInst::CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
,
1090 BasicBlock
*InsertAtEnd
)
1091 : Instruction(Type::getVoidTy(BB
->getContext()), Instruction::CatchRet
,
1092 OperandTraits
<CatchReturnInst
>::op_begin(this), 2,
1097 //===----------------------------------------------------------------------===//
1098 // CatchSwitchInst Implementation
1099 //===----------------------------------------------------------------------===//
1101 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
1102 unsigned NumReservedValues
,
1103 const Twine
&NameStr
,
1104 Instruction
*InsertBefore
)
1105 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
1108 ++NumReservedValues
;
1109 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
1113 CatchSwitchInst::CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
1114 unsigned NumReservedValues
,
1115 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
1116 : Instruction(ParentPad
->getType(), Instruction::CatchSwitch
, nullptr, 0,
1119 ++NumReservedValues
;
1120 init(ParentPad
, UnwindDest
, NumReservedValues
+ 1);
1124 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst
&CSI
)
1125 : Instruction(CSI
.getType(), Instruction::CatchSwitch
, nullptr,
1126 CSI
.getNumOperands()) {
1127 init(CSI
.getParentPad(), CSI
.getUnwindDest(), CSI
.getNumOperands());
1128 setNumHungOffUseOperands(ReservedSpace
);
1129 Use
*OL
= getOperandList();
1130 const Use
*InOL
= CSI
.getOperandList();
1131 for (unsigned I
= 1, E
= ReservedSpace
; I
!= E
; ++I
)
1135 void CatchSwitchInst::init(Value
*ParentPad
, BasicBlock
*UnwindDest
,
1136 unsigned NumReservedValues
) {
1137 assert(ParentPad
&& NumReservedValues
);
1139 ReservedSpace
= NumReservedValues
;
1140 setNumHungOffUseOperands(UnwindDest
? 2 : 1);
1141 allocHungoffUses(ReservedSpace
);
1143 Op
<0>() = ParentPad
;
1145 setSubclassData
<UnwindDestField
>(true);
1146 setUnwindDest(UnwindDest
);
1150 /// growOperands - grow operands - This grows the operand list in response to a
1151 /// push_back style of operation. This grows the number of ops by 2 times.
1152 void CatchSwitchInst::growOperands(unsigned Size
) {
1153 unsigned NumOperands
= getNumOperands();
1154 assert(NumOperands
>= 1);
1155 if (ReservedSpace
>= NumOperands
+ Size
)
1157 ReservedSpace
= (NumOperands
+ Size
/ 2) * 2;
1158 growHungoffUses(ReservedSpace
);
1161 void CatchSwitchInst::addHandler(BasicBlock
*Handler
) {
1162 unsigned OpNo
= getNumOperands();
1164 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
1165 setNumHungOffUseOperands(getNumOperands() + 1);
1166 getOperandList()[OpNo
] = Handler
;
1169 void CatchSwitchInst::removeHandler(handler_iterator HI
) {
1170 // Move all subsequent handlers up one.
1171 Use
*EndDst
= op_end() - 1;
1172 for (Use
*CurDst
= HI
.getCurrent(); CurDst
!= EndDst
; ++CurDst
)
1173 *CurDst
= *(CurDst
+ 1);
1174 // Null out the last handler use.
1177 setNumHungOffUseOperands(getNumOperands() - 1);
1180 //===----------------------------------------------------------------------===//
1181 // FuncletPadInst Implementation
1182 //===----------------------------------------------------------------------===//
1183 void FuncletPadInst::init(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
1184 const Twine
&NameStr
) {
1185 assert(getNumOperands() == 1 + Args
.size() && "NumOperands not set up?");
1186 llvm::copy(Args
, op_begin());
1187 setParentPad(ParentPad
);
1191 FuncletPadInst::FuncletPadInst(const FuncletPadInst
&FPI
)
1192 : Instruction(FPI
.getType(), FPI
.getOpcode(),
1193 OperandTraits
<FuncletPadInst
>::op_end(this) -
1194 FPI
.getNumOperands(),
1195 FPI
.getNumOperands()) {
1196 std::copy(FPI
.op_begin(), FPI
.op_end(), op_begin());
1197 setParentPad(FPI
.getParentPad());
1200 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1201 ArrayRef
<Value
*> Args
, unsigned Values
,
1202 const Twine
&NameStr
, Instruction
*InsertBefore
)
1203 : Instruction(ParentPad
->getType(), Op
,
1204 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1206 init(ParentPad
, Args
, NameStr
);
1209 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op
, Value
*ParentPad
,
1210 ArrayRef
<Value
*> Args
, unsigned Values
,
1211 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
1212 : Instruction(ParentPad
->getType(), Op
,
1213 OperandTraits
<FuncletPadInst
>::op_end(this) - Values
, Values
,
1215 init(ParentPad
, Args
, NameStr
);
1218 //===----------------------------------------------------------------------===//
1219 // UnreachableInst Implementation
1220 //===----------------------------------------------------------------------===//
1222 UnreachableInst::UnreachableInst(LLVMContext
&Context
,
1223 Instruction
*InsertBefore
)
1224 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1226 UnreachableInst::UnreachableInst(LLVMContext
&Context
, BasicBlock
*InsertAtEnd
)
1227 : Instruction(Type::getVoidTy(Context
), Instruction::Unreachable
, nullptr,
1230 //===----------------------------------------------------------------------===//
1231 // BranchInst Implementation
1232 //===----------------------------------------------------------------------===//
1234 void BranchInst::AssertOK() {
1235 if (isConditional())
1236 assert(getCondition()->getType()->isIntegerTy(1) &&
1237 "May only branch on boolean predicates!");
1240 BranchInst::BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
)
1241 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1242 OperandTraits
<BranchInst
>::op_end(this) - 1, 1,
1244 assert(IfTrue
&& "Branch destination may not be null!");
1248 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1249 Instruction
*InsertBefore
)
1250 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1251 OperandTraits
<BranchInst
>::op_end(this) - 3, 3,
1253 // Assign in order of operand index to make use-list order predictable.
1262 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
)
1263 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1264 OperandTraits
<BranchInst
>::op_end(this) - 1, 1, InsertAtEnd
) {
1265 assert(IfTrue
&& "Branch destination may not be null!");
1269 BranchInst::BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
1270 BasicBlock
*InsertAtEnd
)
1271 : Instruction(Type::getVoidTy(IfTrue
->getContext()), Instruction::Br
,
1272 OperandTraits
<BranchInst
>::op_end(this) - 3, 3, InsertAtEnd
) {
1273 // Assign in order of operand index to make use-list order predictable.
1282 BranchInst::BranchInst(const BranchInst
&BI
)
1283 : Instruction(Type::getVoidTy(BI
.getContext()), Instruction::Br
,
1284 OperandTraits
<BranchInst
>::op_end(this) - BI
.getNumOperands(),
1285 BI
.getNumOperands()) {
1286 // Assign in order of operand index to make use-list order predictable.
1287 if (BI
.getNumOperands() != 1) {
1288 assert(BI
.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1289 Op
<-3>() = BI
.Op
<-3>();
1290 Op
<-2>() = BI
.Op
<-2>();
1292 Op
<-1>() = BI
.Op
<-1>();
1293 SubclassOptionalData
= BI
.SubclassOptionalData
;
1296 void BranchInst::swapSuccessors() {
1297 assert(isConditional() &&
1298 "Cannot swap successors of an unconditional branch");
1299 Op
<-1>().swap(Op
<-2>());
1301 // Update profile metadata if present and it matches our structural
1306 //===----------------------------------------------------------------------===//
1307 // AllocaInst Implementation
1308 //===----------------------------------------------------------------------===//
1310 static Value
*getAISize(LLVMContext
&Context
, Value
*Amt
) {
1312 Amt
= ConstantInt::get(Type::getInt32Ty(Context
), 1);
1314 assert(!isa
<BasicBlock
>(Amt
) &&
1315 "Passed basic block into allocation size parameter! Use other ctor");
1316 assert(Amt
->getType()->isIntegerTy() &&
1317 "Allocation array size is not an integer!");
1322 static Align
computeAllocaDefaultAlign(Type
*Ty
, BasicBlock
*BB
) {
1323 assert(BB
&& "Insertion BB cannot be null when alignment not provided!");
1324 assert(BB
->getParent() &&
1325 "BB must be in a Function when alignment not provided!");
1326 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1327 return DL
.getPrefTypeAlign(Ty
);
1330 static Align
computeAllocaDefaultAlign(Type
*Ty
, Instruction
*I
) {
1331 assert(I
&& "Insertion position cannot be null when alignment not provided!");
1332 return computeAllocaDefaultAlign(Ty
, I
->getParent());
1335 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1336 Instruction
*InsertBefore
)
1337 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertBefore
) {}
1339 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, const Twine
&Name
,
1340 BasicBlock
*InsertAtEnd
)
1341 : AllocaInst(Ty
, AddrSpace
, /*ArraySize=*/nullptr, Name
, InsertAtEnd
) {}
1343 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1344 const Twine
&Name
, Instruction
*InsertBefore
)
1345 : AllocaInst(Ty
, AddrSpace
, ArraySize
,
1346 computeAllocaDefaultAlign(Ty
, InsertBefore
), Name
,
1349 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1350 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1351 : AllocaInst(Ty
, AddrSpace
, ArraySize
,
1352 computeAllocaDefaultAlign(Ty
, InsertAtEnd
), Name
,
1355 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1356 Align Align
, const Twine
&Name
,
1357 Instruction
*InsertBefore
)
1358 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1359 getAISize(Ty
->getContext(), ArraySize
), InsertBefore
),
1361 setAlignment(Align
);
1362 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1366 AllocaInst::AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
1367 Align Align
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1368 : UnaryInstruction(PointerType::get(Ty
, AddrSpace
), Alloca
,
1369 getAISize(Ty
->getContext(), ArraySize
), InsertAtEnd
),
1371 setAlignment(Align
);
1372 assert(!Ty
->isVoidTy() && "Cannot allocate void!");
1377 bool AllocaInst::isArrayAllocation() const {
1378 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(0)))
1379 return !CI
->isOne();
1383 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1384 /// function and is a constant size. If so, the code generator will fold it
1385 /// into the prolog/epilog code, so it is basically free.
1386 bool AllocaInst::isStaticAlloca() const {
1387 // Must be constant size.
1388 if (!isa
<ConstantInt
>(getArraySize())) return false;
1390 // Must be in the entry block.
1391 const BasicBlock
*Parent
= getParent();
1392 return Parent
== &Parent
->getParent()->front() && !isUsedWithInAlloca();
1395 //===----------------------------------------------------------------------===//
1396 // LoadInst Implementation
1397 //===----------------------------------------------------------------------===//
1399 void LoadInst::AssertOK() {
1400 assert(getOperand(0)->getType()->isPointerTy() &&
1401 "Ptr must have pointer type.");
1402 assert(!(isAtomic() && getAlignment() == 0) &&
1403 "Alignment required for atomic load");
1406 static Align
computeLoadStoreDefaultAlign(Type
*Ty
, BasicBlock
*BB
) {
1407 assert(BB
&& "Insertion BB cannot be null when alignment not provided!");
1408 assert(BB
->getParent() &&
1409 "BB must be in a Function when alignment not provided!");
1410 const DataLayout
&DL
= BB
->getModule()->getDataLayout();
1411 return DL
.getABITypeAlign(Ty
);
1414 static Align
computeLoadStoreDefaultAlign(Type
*Ty
, Instruction
*I
) {
1415 assert(I
&& "Insertion position cannot be null when alignment not provided!");
1416 return computeLoadStoreDefaultAlign(Ty
, I
->getParent());
1419 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1420 Instruction
*InsertBef
)
1421 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertBef
) {}
1423 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
,
1424 BasicBlock
*InsertAE
)
1425 : LoadInst(Ty
, Ptr
, Name
, /*isVolatile=*/false, InsertAE
) {}
1427 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1428 Instruction
*InsertBef
)
1429 : LoadInst(Ty
, Ptr
, Name
, isVolatile
,
1430 computeLoadStoreDefaultAlign(Ty
, InsertBef
), InsertBef
) {}
1432 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1433 BasicBlock
*InsertAE
)
1434 : LoadInst(Ty
, Ptr
, Name
, isVolatile
,
1435 computeLoadStoreDefaultAlign(Ty
, InsertAE
), InsertAE
) {}
1437 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1438 Align Align
, Instruction
*InsertBef
)
1439 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1440 SyncScope::System
, InsertBef
) {}
1442 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1443 Align Align
, BasicBlock
*InsertAE
)
1444 : LoadInst(Ty
, Ptr
, Name
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1445 SyncScope::System
, InsertAE
) {}
1447 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1448 Align Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
1449 Instruction
*InsertBef
)
1450 : UnaryInstruction(Ty
, Load
, Ptr
, InsertBef
) {
1451 assert(cast
<PointerType
>(Ptr
->getType())->isOpaqueOrPointeeTypeMatches(Ty
));
1452 setVolatile(isVolatile
);
1453 setAlignment(Align
);
1454 setAtomic(Order
, SSID
);
1459 LoadInst::LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&Name
, bool isVolatile
,
1460 Align Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
1461 BasicBlock
*InsertAE
)
1462 : UnaryInstruction(Ty
, Load
, Ptr
, InsertAE
) {
1463 assert(cast
<PointerType
>(Ptr
->getType())->isOpaqueOrPointeeTypeMatches(Ty
));
1464 setVolatile(isVolatile
);
1465 setAlignment(Align
);
1466 setAtomic(Order
, SSID
);
1471 //===----------------------------------------------------------------------===//
1472 // StoreInst Implementation
1473 //===----------------------------------------------------------------------===//
1475 void StoreInst::AssertOK() {
1476 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1477 assert(getOperand(1)->getType()->isPointerTy() &&
1478 "Ptr must have pointer type!");
1479 assert(cast
<PointerType
>(getOperand(1)->getType())
1480 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1481 "Ptr must be a pointer to Val type!");
1482 assert(!(isAtomic() && getAlignment() == 0) &&
1483 "Alignment required for atomic store");
1486 StoreInst::StoreInst(Value
*val
, Value
*addr
, Instruction
*InsertBefore
)
1487 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertBefore
) {}
1489 StoreInst::StoreInst(Value
*val
, Value
*addr
, BasicBlock
*InsertAtEnd
)
1490 : StoreInst(val
, addr
, /*isVolatile=*/false, InsertAtEnd
) {}
1492 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1493 Instruction
*InsertBefore
)
1494 : StoreInst(val
, addr
, isVolatile
,
1495 computeLoadStoreDefaultAlign(val
->getType(), InsertBefore
),
1498 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
,
1499 BasicBlock
*InsertAtEnd
)
1500 : StoreInst(val
, addr
, isVolatile
,
1501 computeLoadStoreDefaultAlign(val
->getType(), InsertAtEnd
),
1504 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, Align Align
,
1505 Instruction
*InsertBefore
)
1506 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1507 SyncScope::System
, InsertBefore
) {}
1509 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, Align Align
,
1510 BasicBlock
*InsertAtEnd
)
1511 : StoreInst(val
, addr
, isVolatile
, Align
, AtomicOrdering::NotAtomic
,
1512 SyncScope::System
, InsertAtEnd
) {}
1514 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, Align Align
,
1515 AtomicOrdering Order
, SyncScope::ID SSID
,
1516 Instruction
*InsertBefore
)
1517 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1518 OperandTraits
<StoreInst
>::op_begin(this),
1519 OperandTraits
<StoreInst
>::operands(this), InsertBefore
) {
1522 setVolatile(isVolatile
);
1523 setAlignment(Align
);
1524 setAtomic(Order
, SSID
);
1528 StoreInst::StoreInst(Value
*val
, Value
*addr
, bool isVolatile
, Align Align
,
1529 AtomicOrdering Order
, SyncScope::ID SSID
,
1530 BasicBlock
*InsertAtEnd
)
1531 : Instruction(Type::getVoidTy(val
->getContext()), Store
,
1532 OperandTraits
<StoreInst
>::op_begin(this),
1533 OperandTraits
<StoreInst
>::operands(this), InsertAtEnd
) {
1536 setVolatile(isVolatile
);
1537 setAlignment(Align
);
1538 setAtomic(Order
, SSID
);
1543 //===----------------------------------------------------------------------===//
1544 // AtomicCmpXchgInst Implementation
1545 //===----------------------------------------------------------------------===//
1547 void AtomicCmpXchgInst::Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1548 Align Alignment
, AtomicOrdering SuccessOrdering
,
1549 AtomicOrdering FailureOrdering
,
1550 SyncScope::ID SSID
) {
1554 setSuccessOrdering(SuccessOrdering
);
1555 setFailureOrdering(FailureOrdering
);
1556 setSyncScopeID(SSID
);
1557 setAlignment(Alignment
);
1559 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1560 "All operands must be non-null!");
1561 assert(getOperand(0)->getType()->isPointerTy() &&
1562 "Ptr must have pointer type!");
1563 assert(cast
<PointerType
>(getOperand(0)->getType())
1564 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1565 "Ptr must be a pointer to Cmp type!");
1566 assert(cast
<PointerType
>(getOperand(0)->getType())
1567 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1568 "Ptr must be a pointer to NewVal type!");
1569 assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1570 "Cmp type and NewVal type must be same!");
1573 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1575 AtomicOrdering SuccessOrdering
,
1576 AtomicOrdering FailureOrdering
,
1578 Instruction
*InsertBefore
)
1580 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1581 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1582 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertBefore
) {
1583 Init(Ptr
, Cmp
, NewVal
, Alignment
, SuccessOrdering
, FailureOrdering
, SSID
);
1586 AtomicCmpXchgInst::AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
1588 AtomicOrdering SuccessOrdering
,
1589 AtomicOrdering FailureOrdering
,
1591 BasicBlock
*InsertAtEnd
)
1593 StructType::get(Cmp
->getType(), Type::getInt1Ty(Cmp
->getContext())),
1594 AtomicCmpXchg
, OperandTraits
<AtomicCmpXchgInst
>::op_begin(this),
1595 OperandTraits
<AtomicCmpXchgInst
>::operands(this), InsertAtEnd
) {
1596 Init(Ptr
, Cmp
, NewVal
, Alignment
, SuccessOrdering
, FailureOrdering
, SSID
);
1599 //===----------------------------------------------------------------------===//
1600 // AtomicRMWInst Implementation
1601 //===----------------------------------------------------------------------===//
1603 void AtomicRMWInst::Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1604 Align Alignment
, AtomicOrdering Ordering
,
1605 SyncScope::ID SSID
) {
1608 setOperation(Operation
);
1609 setOrdering(Ordering
);
1610 setSyncScopeID(SSID
);
1611 setAlignment(Alignment
);
1613 assert(getOperand(0) && getOperand(1) &&
1614 "All operands must be non-null!");
1615 assert(getOperand(0)->getType()->isPointerTy() &&
1616 "Ptr must have pointer type!");
1617 assert(cast
<PointerType
>(getOperand(0)->getType())
1618 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1619 "Ptr must be a pointer to Val type!");
1620 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
1621 "AtomicRMW instructions must be atomic!");
1624 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1625 Align Alignment
, AtomicOrdering Ordering
,
1626 SyncScope::ID SSID
, Instruction
*InsertBefore
)
1627 : Instruction(Val
->getType(), AtomicRMW
,
1628 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1629 OperandTraits
<AtomicRMWInst
>::operands(this), InsertBefore
) {
1630 Init(Operation
, Ptr
, Val
, Alignment
, Ordering
, SSID
);
1633 AtomicRMWInst::AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
1634 Align Alignment
, AtomicOrdering Ordering
,
1635 SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
)
1636 : Instruction(Val
->getType(), AtomicRMW
,
1637 OperandTraits
<AtomicRMWInst
>::op_begin(this),
1638 OperandTraits
<AtomicRMWInst
>::operands(this), InsertAtEnd
) {
1639 Init(Operation
, Ptr
, Val
, Alignment
, Ordering
, SSID
);
1642 StringRef
AtomicRMWInst::getOperationName(BinOp Op
) {
1644 case AtomicRMWInst::Xchg
:
1646 case AtomicRMWInst::Add
:
1648 case AtomicRMWInst::Sub
:
1650 case AtomicRMWInst::And
:
1652 case AtomicRMWInst::Nand
:
1654 case AtomicRMWInst::Or
:
1656 case AtomicRMWInst::Xor
:
1658 case AtomicRMWInst::Max
:
1660 case AtomicRMWInst::Min
:
1662 case AtomicRMWInst::UMax
:
1664 case AtomicRMWInst::UMin
:
1666 case AtomicRMWInst::FAdd
:
1668 case AtomicRMWInst::FSub
:
1670 case AtomicRMWInst::BAD_BINOP
:
1671 return "<invalid operation>";
1674 llvm_unreachable("invalid atomicrmw operation");
1677 //===----------------------------------------------------------------------===//
1678 // FenceInst Implementation
1679 //===----------------------------------------------------------------------===//
1681 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1683 Instruction
*InsertBefore
)
1684 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertBefore
) {
1685 setOrdering(Ordering
);
1686 setSyncScopeID(SSID
);
1689 FenceInst::FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
1691 BasicBlock
*InsertAtEnd
)
1692 : Instruction(Type::getVoidTy(C
), Fence
, nullptr, 0, InsertAtEnd
) {
1693 setOrdering(Ordering
);
1694 setSyncScopeID(SSID
);
1697 //===----------------------------------------------------------------------===//
1698 // GetElementPtrInst Implementation
1699 //===----------------------------------------------------------------------===//
1701 void GetElementPtrInst::init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
1702 const Twine
&Name
) {
1703 assert(getNumOperands() == 1 + IdxList
.size() &&
1704 "NumOperands not initialized?");
1706 llvm::copy(IdxList
, op_begin() + 1);
1710 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst
&GEPI
)
1711 : Instruction(GEPI
.getType(), GetElementPtr
,
1712 OperandTraits
<GetElementPtrInst
>::op_end(this) -
1713 GEPI
.getNumOperands(),
1714 GEPI
.getNumOperands()),
1715 SourceElementType(GEPI
.SourceElementType
),
1716 ResultElementType(GEPI
.ResultElementType
) {
1717 std::copy(GEPI
.op_begin(), GEPI
.op_end(), op_begin());
1718 SubclassOptionalData
= GEPI
.SubclassOptionalData
;
1721 Type
*GetElementPtrInst::getTypeAtIndex(Type
*Ty
, Value
*Idx
) {
1722 if (auto *Struct
= dyn_cast
<StructType
>(Ty
)) {
1723 if (!Struct
->indexValid(Idx
))
1725 return Struct
->getTypeAtIndex(Idx
);
1727 if (!Idx
->getType()->isIntOrIntVectorTy())
1729 if (auto *Array
= dyn_cast
<ArrayType
>(Ty
))
1730 return Array
->getElementType();
1731 if (auto *Vector
= dyn_cast
<VectorType
>(Ty
))
1732 return Vector
->getElementType();
1736 Type
*GetElementPtrInst::getTypeAtIndex(Type
*Ty
, uint64_t Idx
) {
1737 if (auto *Struct
= dyn_cast
<StructType
>(Ty
)) {
1738 if (Idx
>= Struct
->getNumElements())
1740 return Struct
->getElementType(Idx
);
1742 if (auto *Array
= dyn_cast
<ArrayType
>(Ty
))
1743 return Array
->getElementType();
1744 if (auto *Vector
= dyn_cast
<VectorType
>(Ty
))
1745 return Vector
->getElementType();
1749 template <typename IndexTy
>
1750 static Type
*getIndexedTypeInternal(Type
*Ty
, ArrayRef
<IndexTy
> IdxList
) {
1751 if (IdxList
.empty())
1753 for (IndexTy V
: IdxList
.slice(1)) {
1754 Ty
= GetElementPtrInst::getTypeAtIndex(Ty
, V
);
1761 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
) {
1762 return getIndexedTypeInternal(Ty
, IdxList
);
1765 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
,
1766 ArrayRef
<Constant
*> IdxList
) {
1767 return getIndexedTypeInternal(Ty
, IdxList
);
1770 Type
*GetElementPtrInst::getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
) {
1771 return getIndexedTypeInternal(Ty
, IdxList
);
1774 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1775 /// zeros. If so, the result pointer and the first operand have the same
1776 /// value, just potentially different types.
1777 bool GetElementPtrInst::hasAllZeroIndices() const {
1778 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1779 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(getOperand(i
))) {
1780 if (!CI
->isZero()) return false;
1788 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1789 /// constant integers. If so, the result pointer and the first operand have
1790 /// a constant offset between them.
1791 bool GetElementPtrInst::hasAllConstantIndices() const {
1792 for (unsigned i
= 1, e
= getNumOperands(); i
!= e
; ++i
) {
1793 if (!isa
<ConstantInt
>(getOperand(i
)))
1799 void GetElementPtrInst::setIsInBounds(bool B
) {
1800 cast
<GEPOperator
>(this)->setIsInBounds(B
);
1803 bool GetElementPtrInst::isInBounds() const {
1804 return cast
<GEPOperator
>(this)->isInBounds();
1807 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout
&DL
,
1808 APInt
&Offset
) const {
1809 // Delegate to the generic GEPOperator implementation.
1810 return cast
<GEPOperator
>(this)->accumulateConstantOffset(DL
, Offset
);
1813 bool GetElementPtrInst::collectOffset(
1814 const DataLayout
&DL
, unsigned BitWidth
,
1815 MapVector
<Value
*, APInt
> &VariableOffsets
,
1816 APInt
&ConstantOffset
) const {
1817 // Delegate to the generic GEPOperator implementation.
1818 return cast
<GEPOperator
>(this)->collectOffset(DL
, BitWidth
, VariableOffsets
,
1822 //===----------------------------------------------------------------------===//
1823 // ExtractElementInst Implementation
1824 //===----------------------------------------------------------------------===//
1826 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1828 Instruction
*InsertBef
)
1829 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1831 OperandTraits
<ExtractElementInst
>::op_begin(this),
1833 assert(isValidOperands(Val
, Index
) &&
1834 "Invalid extractelement instruction operands!");
1840 ExtractElementInst::ExtractElementInst(Value
*Val
, Value
*Index
,
1842 BasicBlock
*InsertAE
)
1843 : Instruction(cast
<VectorType
>(Val
->getType())->getElementType(),
1845 OperandTraits
<ExtractElementInst
>::op_begin(this),
1847 assert(isValidOperands(Val
, Index
) &&
1848 "Invalid extractelement instruction operands!");
1855 bool ExtractElementInst::isValidOperands(const Value
*Val
, const Value
*Index
) {
1856 if (!Val
->getType()->isVectorTy() || !Index
->getType()->isIntegerTy())
1861 //===----------------------------------------------------------------------===//
1862 // InsertElementInst Implementation
1863 //===----------------------------------------------------------------------===//
1865 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1867 Instruction
*InsertBef
)
1868 : Instruction(Vec
->getType(), InsertElement
,
1869 OperandTraits
<InsertElementInst
>::op_begin(this),
1871 assert(isValidOperands(Vec
, Elt
, Index
) &&
1872 "Invalid insertelement instruction operands!");
1879 InsertElementInst::InsertElementInst(Value
*Vec
, Value
*Elt
, Value
*Index
,
1881 BasicBlock
*InsertAE
)
1882 : Instruction(Vec
->getType(), InsertElement
,
1883 OperandTraits
<InsertElementInst
>::op_begin(this),
1885 assert(isValidOperands(Vec
, Elt
, Index
) &&
1886 "Invalid insertelement instruction operands!");
1894 bool InsertElementInst::isValidOperands(const Value
*Vec
, const Value
*Elt
,
1895 const Value
*Index
) {
1896 if (!Vec
->getType()->isVectorTy())
1897 return false; // First operand of insertelement must be vector type.
1899 if (Elt
->getType() != cast
<VectorType
>(Vec
->getType())->getElementType())
1900 return false;// Second operand of insertelement must be vector element type.
1902 if (!Index
->getType()->isIntegerTy())
1903 return false; // Third operand of insertelement must be i32.
1907 //===----------------------------------------------------------------------===//
1908 // ShuffleVectorInst Implementation
1909 //===----------------------------------------------------------------------===//
1911 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1913 Instruction
*InsertBefore
)
1915 VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1916 cast
<VectorType
>(Mask
->getType())->getElementCount()),
1917 ShuffleVector
, OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1918 OperandTraits
<ShuffleVectorInst
>::operands(this), InsertBefore
) {
1919 assert(isValidOperands(V1
, V2
, Mask
) &&
1920 "Invalid shuffle vector instruction operands!");
1924 SmallVector
<int, 16> MaskArr
;
1925 getShuffleMask(cast
<Constant
>(Mask
), MaskArr
);
1926 setShuffleMask(MaskArr
);
1930 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
1931 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1933 VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1934 cast
<VectorType
>(Mask
->getType())->getElementCount()),
1935 ShuffleVector
, OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1936 OperandTraits
<ShuffleVectorInst
>::operands(this), InsertAtEnd
) {
1937 assert(isValidOperands(V1
, V2
, Mask
) &&
1938 "Invalid shuffle vector instruction operands!");
1942 SmallVector
<int, 16> MaskArr
;
1943 getShuffleMask(cast
<Constant
>(Mask
), MaskArr
);
1944 setShuffleMask(MaskArr
);
1948 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, ArrayRef
<int> Mask
,
1950 Instruction
*InsertBefore
)
1952 VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1953 Mask
.size(), isa
<ScalableVectorType
>(V1
->getType())),
1954 ShuffleVector
, OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1955 OperandTraits
<ShuffleVectorInst
>::operands(this), InsertBefore
) {
1956 assert(isValidOperands(V1
, V2
, Mask
) &&
1957 "Invalid shuffle vector instruction operands!");
1960 setShuffleMask(Mask
);
1964 ShuffleVectorInst::ShuffleVectorInst(Value
*V1
, Value
*V2
, ArrayRef
<int> Mask
,
1965 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
1967 VectorType::get(cast
<VectorType
>(V1
->getType())->getElementType(),
1968 Mask
.size(), isa
<ScalableVectorType
>(V1
->getType())),
1969 ShuffleVector
, OperandTraits
<ShuffleVectorInst
>::op_begin(this),
1970 OperandTraits
<ShuffleVectorInst
>::operands(this), InsertAtEnd
) {
1971 assert(isValidOperands(V1
, V2
, Mask
) &&
1972 "Invalid shuffle vector instruction operands!");
1976 setShuffleMask(Mask
);
1980 void ShuffleVectorInst::commute() {
1981 int NumOpElts
= cast
<FixedVectorType
>(Op
<0>()->getType())->getNumElements();
1982 int NumMaskElts
= ShuffleMask
.size();
1983 SmallVector
<int, 16> NewMask(NumMaskElts
);
1984 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
1985 int MaskElt
= getMaskValue(i
);
1986 if (MaskElt
== UndefMaskElem
) {
1987 NewMask
[i
] = UndefMaskElem
;
1990 assert(MaskElt
>= 0 && MaskElt
< 2 * NumOpElts
&& "Out-of-range mask");
1991 MaskElt
= (MaskElt
< NumOpElts
) ? MaskElt
+ NumOpElts
: MaskElt
- NumOpElts
;
1992 NewMask
[i
] = MaskElt
;
1994 setShuffleMask(NewMask
);
1995 Op
<0>().swap(Op
<1>());
1998 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
1999 ArrayRef
<int> Mask
) {
2000 // V1 and V2 must be vectors of the same type.
2001 if (!isa
<VectorType
>(V1
->getType()) || V1
->getType() != V2
->getType())
2004 // Make sure the mask elements make sense.
2006 cast
<VectorType
>(V1
->getType())->getElementCount().getKnownMinValue();
2007 for (int Elem
: Mask
)
2008 if (Elem
!= UndefMaskElem
&& Elem
>= V1Size
* 2)
2011 if (isa
<ScalableVectorType
>(V1
->getType()))
2012 if ((Mask
[0] != 0 && Mask
[0] != UndefMaskElem
) || !is_splat(Mask
))
2018 bool ShuffleVectorInst::isValidOperands(const Value
*V1
, const Value
*V2
,
2019 const Value
*Mask
) {
2020 // V1 and V2 must be vectors of the same type.
2021 if (!V1
->getType()->isVectorTy() || V1
->getType() != V2
->getType())
2024 // Mask must be vector of i32, and must be the same kind of vector as the
2026 auto *MaskTy
= dyn_cast
<VectorType
>(Mask
->getType());
2027 if (!MaskTy
|| !MaskTy
->getElementType()->isIntegerTy(32) ||
2028 isa
<ScalableVectorType
>(MaskTy
) != isa
<ScalableVectorType
>(V1
->getType()))
2031 // Check to see if Mask is valid.
2032 if (isa
<UndefValue
>(Mask
) || isa
<ConstantAggregateZero
>(Mask
))
2035 if (const auto *MV
= dyn_cast
<ConstantVector
>(Mask
)) {
2036 unsigned V1Size
= cast
<FixedVectorType
>(V1
->getType())->getNumElements();
2037 for (Value
*Op
: MV
->operands()) {
2038 if (auto *CI
= dyn_cast
<ConstantInt
>(Op
)) {
2039 if (CI
->uge(V1Size
*2))
2041 } else if (!isa
<UndefValue
>(Op
)) {
2048 if (const auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
2049 unsigned V1Size
= cast
<FixedVectorType
>(V1
->getType())->getNumElements();
2050 for (unsigned i
= 0, e
= cast
<FixedVectorType
>(MaskTy
)->getNumElements();
2052 if (CDS
->getElementAsInteger(i
) >= V1Size
*2)
2060 void ShuffleVectorInst::getShuffleMask(const Constant
*Mask
,
2061 SmallVectorImpl
<int> &Result
) {
2062 ElementCount EC
= cast
<VectorType
>(Mask
->getType())->getElementCount();
2064 if (isa
<ConstantAggregateZero
>(Mask
)) {
2065 Result
.resize(EC
.getKnownMinValue(), 0);
2069 Result
.reserve(EC
.getKnownMinValue());
2071 if (EC
.isScalable()) {
2072 assert((isa
<ConstantAggregateZero
>(Mask
) || isa
<UndefValue
>(Mask
)) &&
2073 "Scalable vector shuffle mask must be undef or zeroinitializer");
2074 int MaskVal
= isa
<UndefValue
>(Mask
) ? -1 : 0;
2075 for (unsigned I
= 0; I
< EC
.getKnownMinValue(); ++I
)
2076 Result
.emplace_back(MaskVal
);
2080 unsigned NumElts
= EC
.getKnownMinValue();
2082 if (auto *CDS
= dyn_cast
<ConstantDataSequential
>(Mask
)) {
2083 for (unsigned i
= 0; i
!= NumElts
; ++i
)
2084 Result
.push_back(CDS
->getElementAsInteger(i
));
2087 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
2088 Constant
*C
= Mask
->getAggregateElement(i
);
2089 Result
.push_back(isa
<UndefValue
>(C
) ? -1 :
2090 cast
<ConstantInt
>(C
)->getZExtValue());
2094 void ShuffleVectorInst::setShuffleMask(ArrayRef
<int> Mask
) {
2095 ShuffleMask
.assign(Mask
.begin(), Mask
.end());
2096 ShuffleMaskForBitcode
= convertShuffleMaskForBitcode(Mask
, getType());
2099 Constant
*ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef
<int> Mask
,
2101 Type
*Int32Ty
= Type::getInt32Ty(ResultTy
->getContext());
2102 if (isa
<ScalableVectorType
>(ResultTy
)) {
2103 assert(is_splat(Mask
) && "Unexpected shuffle");
2104 Type
*VecTy
= VectorType::get(Int32Ty
, Mask
.size(), true);
2106 return Constant::getNullValue(VecTy
);
2107 return UndefValue::get(VecTy
);
2109 SmallVector
<Constant
*, 16> MaskConst
;
2110 for (int Elem
: Mask
) {
2111 if (Elem
== UndefMaskElem
)
2112 MaskConst
.push_back(UndefValue::get(Int32Ty
));
2114 MaskConst
.push_back(ConstantInt::get(Int32Ty
, Elem
));
2116 return ConstantVector::get(MaskConst
);
2119 static bool isSingleSourceMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
2120 assert(!Mask
.empty() && "Shuffle mask must contain elements");
2121 bool UsesLHS
= false;
2122 bool UsesRHS
= false;
2123 for (int I
: Mask
) {
2126 assert(I
>= 0 && I
< (NumOpElts
* 2) &&
2127 "Out-of-bounds shuffle mask element");
2128 UsesLHS
|= (I
< NumOpElts
);
2129 UsesRHS
|= (I
>= NumOpElts
);
2130 if (UsesLHS
&& UsesRHS
)
2133 // Allow for degenerate case: completely undef mask means neither source is used.
2134 return UsesLHS
|| UsesRHS
;
2137 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef
<int> Mask
) {
2138 // We don't have vector operand size information, so assume operands are the
2139 // same size as the mask.
2140 return isSingleSourceMaskImpl(Mask
, Mask
.size());
2143 static bool isIdentityMaskImpl(ArrayRef
<int> Mask
, int NumOpElts
) {
2144 if (!isSingleSourceMaskImpl(Mask
, NumOpElts
))
2146 for (int i
= 0, NumMaskElts
= Mask
.size(); i
< NumMaskElts
; ++i
) {
2149 if (Mask
[i
] != i
&& Mask
[i
] != (NumOpElts
+ i
))
2155 bool ShuffleVectorInst::isIdentityMask(ArrayRef
<int> Mask
) {
2156 // We don't have vector operand size information, so assume operands are the
2157 // same size as the mask.
2158 return isIdentityMaskImpl(Mask
, Mask
.size());
2161 bool ShuffleVectorInst::isReverseMask(ArrayRef
<int> Mask
) {
2162 if (!isSingleSourceMask(Mask
))
2164 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
2167 if (Mask
[i
] != (NumElts
- 1 - i
) && Mask
[i
] != (NumElts
+ NumElts
- 1 - i
))
2173 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef
<int> Mask
) {
2174 if (!isSingleSourceMask(Mask
))
2176 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
2179 if (Mask
[i
] != 0 && Mask
[i
] != NumElts
)
2185 bool ShuffleVectorInst::isSelectMask(ArrayRef
<int> Mask
) {
2186 // Select is differentiated from identity. It requires using both sources.
2187 if (isSingleSourceMask(Mask
))
2189 for (int i
= 0, NumElts
= Mask
.size(); i
< NumElts
; ++i
) {
2192 if (Mask
[i
] != i
&& Mask
[i
] != (NumElts
+ i
))
2198 bool ShuffleVectorInst::isTransposeMask(ArrayRef
<int> Mask
) {
2199 // Example masks that will return true:
2200 // v1 = <a, b, c, d>
2201 // v2 = <e, f, g, h>
2202 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2203 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2205 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2206 int NumElts
= Mask
.size();
2207 if (NumElts
< 2 || !isPowerOf2_32(NumElts
))
2210 // 2. The first element of the mask must be either a 0 or a 1.
2211 if (Mask
[0] != 0 && Mask
[0] != 1)
2214 // 3. The difference between the first 2 elements must be equal to the
2215 // number of elements in the mask.
2216 if ((Mask
[1] - Mask
[0]) != NumElts
)
2219 // 4. The difference between consecutive even-numbered and odd-numbered
2220 // elements must be equal to 2.
2221 for (int i
= 2; i
< NumElts
; ++i
) {
2222 int MaskEltVal
= Mask
[i
];
2223 if (MaskEltVal
== -1)
2225 int MaskEltPrevVal
= Mask
[i
- 2];
2226 if (MaskEltVal
- MaskEltPrevVal
!= 2)
2232 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef
<int> Mask
,
2233 int NumSrcElts
, int &Index
) {
2234 // Must extract from a single source.
2235 if (!isSingleSourceMaskImpl(Mask
, NumSrcElts
))
2238 // Must be smaller (else this is an Identity shuffle).
2239 if (NumSrcElts
<= (int)Mask
.size())
2242 // Find start of extraction, accounting that we may start with an UNDEF.
2244 for (int i
= 0, e
= Mask
.size(); i
!= e
; ++i
) {
2248 int Offset
= (M
% NumSrcElts
) - i
;
2249 if (0 <= SubIndex
&& SubIndex
!= Offset
)
2254 if (0 <= SubIndex
&& SubIndex
+ (int)Mask
.size() <= NumSrcElts
) {
2261 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef
<int> Mask
,
2262 int NumSrcElts
, int &NumSubElts
,
2264 int NumMaskElts
= Mask
.size();
2266 // Don't try to match if we're shuffling to a smaller size.
2267 if (NumMaskElts
< NumSrcElts
)
2270 // TODO: We don't recognize self-insertion/widening.
2271 if (isSingleSourceMaskImpl(Mask
, NumSrcElts
))
2274 // Determine which mask elements are attributed to which source.
2275 APInt UndefElts
= APInt::getNullValue(NumMaskElts
);
2276 APInt Src0Elts
= APInt::getNullValue(NumMaskElts
);
2277 APInt Src1Elts
= APInt::getNullValue(NumMaskElts
);
2278 bool Src0Identity
= true;
2279 bool Src1Identity
= true;
2281 for (int i
= 0; i
!= NumMaskElts
; ++i
) {
2284 UndefElts
.setBit(i
);
2287 if (M
< NumSrcElts
) {
2289 Src0Identity
&= (M
== i
);
2293 Src1Identity
&= (M
== (i
+ NumSrcElts
));
2296 assert((Src0Elts
| Src1Elts
| UndefElts
).isAllOnesValue() &&
2297 "unknown shuffle elements");
2298 assert(!Src0Elts
.isNullValue() && !Src1Elts
.isNullValue() &&
2299 "2-source shuffle not found");
2301 // Determine lo/hi span ranges.
2302 // TODO: How should we handle undefs at the start of subvector insertions?
2303 int Src0Lo
= Src0Elts
.countTrailingZeros();
2304 int Src1Lo
= Src1Elts
.countTrailingZeros();
2305 int Src0Hi
= NumMaskElts
- Src0Elts
.countLeadingZeros();
2306 int Src1Hi
= NumMaskElts
- Src1Elts
.countLeadingZeros();
2308 // If src0 is in place, see if the src1 elements is inplace within its own
2311 int NumSub1Elts
= Src1Hi
- Src1Lo
;
2312 ArrayRef
<int> Sub1Mask
= Mask
.slice(Src1Lo
, NumSub1Elts
);
2313 if (isIdentityMaskImpl(Sub1Mask
, NumSrcElts
)) {
2314 NumSubElts
= NumSub1Elts
;
2320 // If src1 is in place, see if the src0 elements is inplace within its own
2323 int NumSub0Elts
= Src0Hi
- Src0Lo
;
2324 ArrayRef
<int> Sub0Mask
= Mask
.slice(Src0Lo
, NumSub0Elts
);
2325 if (isIdentityMaskImpl(Sub0Mask
, NumSrcElts
)) {
2326 NumSubElts
= NumSub0Elts
;
2335 bool ShuffleVectorInst::isIdentityWithPadding() const {
2336 if (isa
<UndefValue
>(Op
<2>()))
2339 // FIXME: Not currently possible to express a shuffle mask for a scalable
2340 // vector for this case.
2341 if (isa
<ScalableVectorType
>(getType()))
2344 int NumOpElts
= cast
<FixedVectorType
>(Op
<0>()->getType())->getNumElements();
2345 int NumMaskElts
= cast
<FixedVectorType
>(getType())->getNumElements();
2346 if (NumMaskElts
<= NumOpElts
)
2349 // The first part of the mask must choose elements from exactly 1 source op.
2350 ArrayRef
<int> Mask
= getShuffleMask();
2351 if (!isIdentityMaskImpl(Mask
, NumOpElts
))
2354 // All extending must be with undef elements.
2355 for (int i
= NumOpElts
; i
< NumMaskElts
; ++i
)
2362 bool ShuffleVectorInst::isIdentityWithExtract() const {
2363 if (isa
<UndefValue
>(Op
<2>()))
2366 // FIXME: Not currently possible to express a shuffle mask for a scalable
2367 // vector for this case.
2368 if (isa
<ScalableVectorType
>(getType()))
2371 int NumOpElts
= cast
<FixedVectorType
>(Op
<0>()->getType())->getNumElements();
2372 int NumMaskElts
= cast
<FixedVectorType
>(getType())->getNumElements();
2373 if (NumMaskElts
>= NumOpElts
)
2376 return isIdentityMaskImpl(getShuffleMask(), NumOpElts
);
2379 bool ShuffleVectorInst::isConcat() const {
2380 // Vector concatenation is differentiated from identity with padding.
2381 if (isa
<UndefValue
>(Op
<0>()) || isa
<UndefValue
>(Op
<1>()) ||
2382 isa
<UndefValue
>(Op
<2>()))
2385 // FIXME: Not currently possible to express a shuffle mask for a scalable
2386 // vector for this case.
2387 if (isa
<ScalableVectorType
>(getType()))
2390 int NumOpElts
= cast
<FixedVectorType
>(Op
<0>()->getType())->getNumElements();
2391 int NumMaskElts
= cast
<FixedVectorType
>(getType())->getNumElements();
2392 if (NumMaskElts
!= NumOpElts
* 2)
2395 // Use the mask length rather than the operands' vector lengths here. We
2396 // already know that the shuffle returns a vector twice as long as the inputs,
2397 // and neither of the inputs are undef vectors. If the mask picks consecutive
2398 // elements from both inputs, then this is a concatenation of the inputs.
2399 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts
);
2402 //===----------------------------------------------------------------------===//
2403 // InsertValueInst Class
2404 //===----------------------------------------------------------------------===//
2406 void InsertValueInst::init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2407 const Twine
&Name
) {
2408 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2410 // There's no fundamental reason why we require at least one index
2411 // (other than weirdness with &*IdxBegin being invalid; see
2412 // getelementptr's init routine for example). But there's no
2413 // present need to support it.
2414 assert(!Idxs
.empty() && "InsertValueInst must have at least one index");
2416 assert(ExtractValueInst::getIndexedType(Agg
->getType(), Idxs
) ==
2417 Val
->getType() && "Inserted value must match indexed type!");
2421 Indices
.append(Idxs
.begin(), Idxs
.end());
2425 InsertValueInst::InsertValueInst(const InsertValueInst
&IVI
)
2426 : Instruction(IVI
.getType(), InsertValue
,
2427 OperandTraits
<InsertValueInst
>::op_begin(this), 2),
2428 Indices(IVI
.Indices
) {
2429 Op
<0>() = IVI
.getOperand(0);
2430 Op
<1>() = IVI
.getOperand(1);
2431 SubclassOptionalData
= IVI
.SubclassOptionalData
;
2434 //===----------------------------------------------------------------------===//
2435 // ExtractValueInst Class
2436 //===----------------------------------------------------------------------===//
2438 void ExtractValueInst::init(ArrayRef
<unsigned> Idxs
, const Twine
&Name
) {
2439 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2441 // There's no fundamental reason why we require at least one index.
2442 // But there's no present need to support it.
2443 assert(!Idxs
.empty() && "ExtractValueInst must have at least one index");
2445 Indices
.append(Idxs
.begin(), Idxs
.end());
2449 ExtractValueInst::ExtractValueInst(const ExtractValueInst
&EVI
)
2450 : UnaryInstruction(EVI
.getType(), ExtractValue
, EVI
.getOperand(0)),
2451 Indices(EVI
.Indices
) {
2452 SubclassOptionalData
= EVI
.SubclassOptionalData
;
2455 // getIndexedType - Returns the type of the element that would be extracted
2456 // with an extractvalue instruction with the specified parameters.
2458 // A null type is returned if the indices are invalid for the specified
2461 Type
*ExtractValueInst::getIndexedType(Type
*Agg
,
2462 ArrayRef
<unsigned> Idxs
) {
2463 for (unsigned Index
: Idxs
) {
2464 // We can't use CompositeType::indexValid(Index) here.
2465 // indexValid() always returns true for arrays because getelementptr allows
2466 // out-of-bounds indices. Since we don't allow those for extractvalue and
2467 // insertvalue we need to check array indexing manually.
2468 // Since the only other types we can index into are struct types it's just
2469 // as easy to check those manually as well.
2470 if (ArrayType
*AT
= dyn_cast
<ArrayType
>(Agg
)) {
2471 if (Index
>= AT
->getNumElements())
2473 Agg
= AT
->getElementType();
2474 } else if (StructType
*ST
= dyn_cast
<StructType
>(Agg
)) {
2475 if (Index
>= ST
->getNumElements())
2477 Agg
= ST
->getElementType(Index
);
2479 // Not a valid type to index into.
2483 return const_cast<Type
*>(Agg
);
2486 //===----------------------------------------------------------------------===//
2487 // UnaryOperator Class
2488 //===----------------------------------------------------------------------===//
2490 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2491 Type
*Ty
, const Twine
&Name
,
2492 Instruction
*InsertBefore
)
2493 : UnaryInstruction(Ty
, iType
, S
, InsertBefore
) {
2499 UnaryOperator::UnaryOperator(UnaryOps iType
, Value
*S
,
2500 Type
*Ty
, const Twine
&Name
,
2501 BasicBlock
*InsertAtEnd
)
2502 : UnaryInstruction(Ty
, iType
, S
, InsertAtEnd
) {
2508 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2510 Instruction
*InsertBefore
) {
2511 return new UnaryOperator(Op
, S
, S
->getType(), Name
, InsertBefore
);
2514 UnaryOperator
*UnaryOperator::Create(UnaryOps Op
, Value
*S
,
2516 BasicBlock
*InsertAtEnd
) {
2517 UnaryOperator
*Res
= Create(Op
, S
, Name
);
2518 InsertAtEnd
->getInstList().push_back(Res
);
2522 void UnaryOperator::AssertOK() {
2523 Value
*LHS
= getOperand(0);
2524 (void)LHS
; // Silence warnings.
2526 switch (getOpcode()) {
2528 assert(getType() == LHS
->getType() &&
2529 "Unary operation should return same type as operand!");
2530 assert(getType()->isFPOrFPVectorTy() &&
2531 "Tried to create a floating-point operation on a "
2532 "non-floating-point type!");
2534 default: llvm_unreachable("Invalid opcode provided");
2539 //===----------------------------------------------------------------------===//
2540 // BinaryOperator Class
2541 //===----------------------------------------------------------------------===//
2543 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2544 Type
*Ty
, const Twine
&Name
,
2545 Instruction
*InsertBefore
)
2546 : Instruction(Ty
, iType
,
2547 OperandTraits
<BinaryOperator
>::op_begin(this),
2548 OperandTraits
<BinaryOperator
>::operands(this),
2556 BinaryOperator::BinaryOperator(BinaryOps iType
, Value
*S1
, Value
*S2
,
2557 Type
*Ty
, const Twine
&Name
,
2558 BasicBlock
*InsertAtEnd
)
2559 : Instruction(Ty
, iType
,
2560 OperandTraits
<BinaryOperator
>::op_begin(this),
2561 OperandTraits
<BinaryOperator
>::operands(this),
2569 void BinaryOperator::AssertOK() {
2570 Value
*LHS
= getOperand(0), *RHS
= getOperand(1);
2571 (void)LHS
; (void)RHS
; // Silence warnings.
2572 assert(LHS
->getType() == RHS
->getType() &&
2573 "Binary operator operand types must match!");
2575 switch (getOpcode()) {
2578 assert(getType() == LHS
->getType() &&
2579 "Arithmetic operation should return same type as operands!");
2580 assert(getType()->isIntOrIntVectorTy() &&
2581 "Tried to create an integer operation on a non-integer type!");
2583 case FAdd
: case FSub
:
2585 assert(getType() == LHS
->getType() &&
2586 "Arithmetic operation should return same type as operands!");
2587 assert(getType()->isFPOrFPVectorTy() &&
2588 "Tried to create a floating-point operation on a "
2589 "non-floating-point type!");
2593 assert(getType() == LHS
->getType() &&
2594 "Arithmetic operation should return same type as operands!");
2595 assert(getType()->isIntOrIntVectorTy() &&
2596 "Incorrect operand type (not integer) for S/UDIV");
2599 assert(getType() == LHS
->getType() &&
2600 "Arithmetic operation should return same type as operands!");
2601 assert(getType()->isFPOrFPVectorTy() &&
2602 "Incorrect operand type (not floating point) for FDIV");
2606 assert(getType() == LHS
->getType() &&
2607 "Arithmetic operation should return same type as operands!");
2608 assert(getType()->isIntOrIntVectorTy() &&
2609 "Incorrect operand type (not integer) for S/UREM");
2612 assert(getType() == LHS
->getType() &&
2613 "Arithmetic operation should return same type as operands!");
2614 assert(getType()->isFPOrFPVectorTy() &&
2615 "Incorrect operand type (not floating point) for FREM");
2620 assert(getType() == LHS
->getType() &&
2621 "Shift operation should return same type as operands!");
2622 assert(getType()->isIntOrIntVectorTy() &&
2623 "Tried to create a shift operation on a non-integral type!");
2627 assert(getType() == LHS
->getType() &&
2628 "Logical operation should return same type as operands!");
2629 assert(getType()->isIntOrIntVectorTy() &&
2630 "Tried to create a logical operation on a non-integral type!");
2632 default: llvm_unreachable("Invalid opcode provided");
2637 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2639 Instruction
*InsertBefore
) {
2640 assert(S1
->getType() == S2
->getType() &&
2641 "Cannot create binary operator with two operands of differing type!");
2642 return new BinaryOperator(Op
, S1
, S2
, S1
->getType(), Name
, InsertBefore
);
2645 BinaryOperator
*BinaryOperator::Create(BinaryOps Op
, Value
*S1
, Value
*S2
,
2647 BasicBlock
*InsertAtEnd
) {
2648 BinaryOperator
*Res
= Create(Op
, S1
, S2
, Name
);
2649 InsertAtEnd
->getInstList().push_back(Res
);
2653 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2654 Instruction
*InsertBefore
) {
2655 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2656 return new BinaryOperator(Instruction::Sub
,
2658 Op
->getType(), Name
, InsertBefore
);
2661 BinaryOperator
*BinaryOperator::CreateNeg(Value
*Op
, const Twine
&Name
,
2662 BasicBlock
*InsertAtEnd
) {
2663 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2664 return new BinaryOperator(Instruction::Sub
,
2666 Op
->getType(), Name
, InsertAtEnd
);
2669 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2670 Instruction
*InsertBefore
) {
2671 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2672 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertBefore
);
2675 BinaryOperator
*BinaryOperator::CreateNSWNeg(Value
*Op
, const Twine
&Name
,
2676 BasicBlock
*InsertAtEnd
) {
2677 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2678 return BinaryOperator::CreateNSWSub(zero
, Op
, Name
, InsertAtEnd
);
2681 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2682 Instruction
*InsertBefore
) {
2683 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2684 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertBefore
);
2687 BinaryOperator
*BinaryOperator::CreateNUWNeg(Value
*Op
, const Twine
&Name
,
2688 BasicBlock
*InsertAtEnd
) {
2689 Value
*zero
= ConstantFP::getZeroValueForNegation(Op
->getType());
2690 return BinaryOperator::CreateNUWSub(zero
, Op
, Name
, InsertAtEnd
);
2693 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2694 Instruction
*InsertBefore
) {
2695 Constant
*C
= Constant::getAllOnesValue(Op
->getType());
2696 return new BinaryOperator(Instruction::Xor
, Op
, C
,
2697 Op
->getType(), Name
, InsertBefore
);
2700 BinaryOperator
*BinaryOperator::CreateNot(Value
*Op
, const Twine
&Name
,
2701 BasicBlock
*InsertAtEnd
) {
2702 Constant
*AllOnes
= Constant::getAllOnesValue(Op
->getType());
2703 return new BinaryOperator(Instruction::Xor
, Op
, AllOnes
,
2704 Op
->getType(), Name
, InsertAtEnd
);
2707 // Exchange the two operands to this instruction. This instruction is safe to
2708 // use on any binary instruction and does not modify the semantics of the
2709 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2711 bool BinaryOperator::swapOperands() {
2712 if (!isCommutative())
2713 return true; // Can't commute operands
2714 Op
<0>().swap(Op
<1>());
2718 //===----------------------------------------------------------------------===//
2719 // FPMathOperator Class
2720 //===----------------------------------------------------------------------===//
2722 float FPMathOperator::getFPAccuracy() const {
2724 cast
<Instruction
>(this)->getMetadata(LLVMContext::MD_fpmath
);
2727 ConstantFP
*Accuracy
= mdconst::extract
<ConstantFP
>(MD
->getOperand(0));
2728 return Accuracy
->getValueAPF().convertToFloat();
2731 //===----------------------------------------------------------------------===//
2733 //===----------------------------------------------------------------------===//
2735 // Just determine if this cast only deals with integral->integral conversion.
2736 bool CastInst::isIntegerCast() const {
2737 switch (getOpcode()) {
2738 default: return false;
2739 case Instruction::ZExt
:
2740 case Instruction::SExt
:
2741 case Instruction::Trunc
:
2743 case Instruction::BitCast
:
2744 return getOperand(0)->getType()->isIntegerTy() &&
2745 getType()->isIntegerTy();
2749 bool CastInst::isLosslessCast() const {
2750 // Only BitCast can be lossless, exit fast if we're not BitCast
2751 if (getOpcode() != Instruction::BitCast
)
2754 // Identity cast is always lossless
2755 Type
*SrcTy
= getOperand(0)->getType();
2756 Type
*DstTy
= getType();
2760 // Pointer to pointer is always lossless.
2761 if (SrcTy
->isPointerTy())
2762 return DstTy
->isPointerTy();
2763 return false; // Other types have no identity values
2766 /// This function determines if the CastInst does not require any bits to be
2767 /// changed in order to effect the cast. Essentially, it identifies cases where
2768 /// no code gen is necessary for the cast, hence the name no-op cast. For
2769 /// example, the following are all no-op casts:
2770 /// # bitcast i32* %x to i8*
2771 /// # bitcast <2 x i32> %x to <4 x i16>
2772 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2773 /// Determine if the described cast is a no-op.
2774 bool CastInst::isNoopCast(Instruction::CastOps Opcode
,
2777 const DataLayout
&DL
) {
2778 assert(castIsValid(Opcode
, SrcTy
, DestTy
) && "method precondition");
2780 default: llvm_unreachable("Invalid CastOp");
2781 case Instruction::Trunc
:
2782 case Instruction::ZExt
:
2783 case Instruction::SExt
:
2784 case Instruction::FPTrunc
:
2785 case Instruction::FPExt
:
2786 case Instruction::UIToFP
:
2787 case Instruction::SIToFP
:
2788 case Instruction::FPToUI
:
2789 case Instruction::FPToSI
:
2790 case Instruction::AddrSpaceCast
:
2791 // TODO: Target informations may give a more accurate answer here.
2793 case Instruction::BitCast
:
2794 return true; // BitCast never modifies bits.
2795 case Instruction::PtrToInt
:
2796 return DL
.getIntPtrType(SrcTy
)->getScalarSizeInBits() ==
2797 DestTy
->getScalarSizeInBits();
2798 case Instruction::IntToPtr
:
2799 return DL
.getIntPtrType(DestTy
)->getScalarSizeInBits() ==
2800 SrcTy
->getScalarSizeInBits();
2804 bool CastInst::isNoopCast(const DataLayout
&DL
) const {
2805 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL
);
2808 /// This function determines if a pair of casts can be eliminated and what
2809 /// opcode should be used in the elimination. This assumes that there are two
2810 /// instructions like this:
2811 /// * %F = firstOpcode SrcTy %x to MidTy
2812 /// * %S = secondOpcode MidTy %F to DstTy
2813 /// The function returns a resultOpcode so these two casts can be replaced with:
2814 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2815 /// If no such cast is permitted, the function returns 0.
2816 unsigned CastInst::isEliminableCastPair(
2817 Instruction::CastOps firstOp
, Instruction::CastOps secondOp
,
2818 Type
*SrcTy
, Type
*MidTy
, Type
*DstTy
, Type
*SrcIntPtrTy
, Type
*MidIntPtrTy
,
2819 Type
*DstIntPtrTy
) {
2820 // Define the 144 possibilities for these two cast instructions. The values
2821 // in this matrix determine what to do in a given situation and select the
2822 // case in the switch below. The rows correspond to firstOp, the columns
2823 // correspond to secondOp. In looking at the table below, keep in mind
2824 // the following cast properties:
2826 // Size Compare Source Destination
2827 // Operator Src ? Size Type Sign Type Sign
2828 // -------- ------------ ------------------- ---------------------
2829 // TRUNC > Integer Any Integral Any
2830 // ZEXT < Integral Unsigned Integer Any
2831 // SEXT < Integral Signed Integer Any
2832 // FPTOUI n/a FloatPt n/a Integral Unsigned
2833 // FPTOSI n/a FloatPt n/a Integral Signed
2834 // UITOFP n/a Integral Unsigned FloatPt n/a
2835 // SITOFP n/a Integral Signed FloatPt n/a
2836 // FPTRUNC > FloatPt n/a FloatPt n/a
2837 // FPEXT < FloatPt n/a FloatPt n/a
2838 // PTRTOINT n/a Pointer n/a Integral Unsigned
2839 // INTTOPTR n/a Integral Unsigned Pointer n/a
2840 // BITCAST = FirstClass n/a FirstClass n/a
2841 // ADDRSPCST n/a Pointer n/a Pointer n/a
2843 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2844 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2845 // into "fptoui double to i64", but this loses information about the range
2846 // of the produced value (we no longer know the top-part is all zeros).
2847 // Further this conversion is often much more expensive for typical hardware,
2848 // and causes issues when building libgcc. We disallow fptosi+sext for the
2850 const unsigned numCastOps
=
2851 Instruction::CastOpsEnd
- Instruction::CastOpsBegin
;
2852 static const uint8_t CastResults
[numCastOps
][numCastOps
] = {
2853 // T F F U S F F P I B A -+
2854 // R Z S P P I I T P 2 N T S |
2855 // U E E 2 2 2 2 R E I T C C +- secondOp
2856 // N X X U S F F N X N 2 V V |
2857 // C T T I I P P C T T P T T -+
2858 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2859 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2860 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2861 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2862 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2863 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2864 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2865 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2866 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2867 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2868 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2869 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2870 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2873 // TODO: This logic could be encoded into the table above and handled in the
2875 // If either of the casts are a bitcast from scalar to vector, disallow the
2876 // merging. However, any pair of bitcasts are allowed.
2877 bool IsFirstBitcast
= (firstOp
== Instruction::BitCast
);
2878 bool IsSecondBitcast
= (secondOp
== Instruction::BitCast
);
2879 bool AreBothBitcasts
= IsFirstBitcast
&& IsSecondBitcast
;
2881 // Check if any of the casts convert scalars <-> vectors.
2882 if ((IsFirstBitcast
&& isa
<VectorType
>(SrcTy
) != isa
<VectorType
>(MidTy
)) ||
2883 (IsSecondBitcast
&& isa
<VectorType
>(MidTy
) != isa
<VectorType
>(DstTy
)))
2884 if (!AreBothBitcasts
)
2887 int ElimCase
= CastResults
[firstOp
-Instruction::CastOpsBegin
]
2888 [secondOp
-Instruction::CastOpsBegin
];
2891 // Categorically disallowed.
2894 // Allowed, use first cast's opcode.
2897 // Allowed, use second cast's opcode.
2900 // No-op cast in second op implies firstOp as long as the DestTy
2901 // is integer and we are not converting between a vector and a
2903 if (!SrcTy
->isVectorTy() && DstTy
->isIntegerTy())
2907 // No-op cast in second op implies firstOp as long as the DestTy
2908 // is floating point.
2909 if (DstTy
->isFloatingPointTy())
2913 // No-op cast in first op implies secondOp as long as the SrcTy
2915 if (SrcTy
->isIntegerTy())
2919 // No-op cast in first op implies secondOp as long as the SrcTy
2920 // is a floating point.
2921 if (SrcTy
->isFloatingPointTy())
2925 // Disable inttoptr/ptrtoint optimization if enabled.
2926 if (DisableI2pP2iOpt
)
2929 // Cannot simplify if address spaces are different!
2930 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2933 unsigned MidSize
= MidTy
->getScalarSizeInBits();
2934 // We can still fold this without knowing the actual sizes as long we
2935 // know that the intermediate pointer is the largest possible
2937 // FIXME: Is this always true?
2939 return Instruction::BitCast
;
2941 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2942 if (!SrcIntPtrTy
|| DstIntPtrTy
!= SrcIntPtrTy
)
2944 unsigned PtrSize
= SrcIntPtrTy
->getScalarSizeInBits();
2945 if (MidSize
>= PtrSize
)
2946 return Instruction::BitCast
;
2950 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2951 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2952 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2953 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2954 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2955 if (SrcSize
== DstSize
)
2956 return Instruction::BitCast
;
2957 else if (SrcSize
< DstSize
)
2962 // zext, sext -> zext, because sext can't sign extend after zext
2963 return Instruction::ZExt
;
2965 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2968 unsigned PtrSize
= MidIntPtrTy
->getScalarSizeInBits();
2969 unsigned SrcSize
= SrcTy
->getScalarSizeInBits();
2970 unsigned DstSize
= DstTy
->getScalarSizeInBits();
2971 if (SrcSize
<= PtrSize
&& SrcSize
== DstSize
)
2972 return Instruction::BitCast
;
2976 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2977 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2978 if (SrcTy
->getPointerAddressSpace() != DstTy
->getPointerAddressSpace())
2979 return Instruction::AddrSpaceCast
;
2980 return Instruction::BitCast
;
2982 // FIXME: this state can be merged with (1), but the following assert
2983 // is useful to check the correcteness of the sequence due to semantic
2984 // change of bitcast.
2986 SrcTy
->isPtrOrPtrVectorTy() &&
2987 MidTy
->isPtrOrPtrVectorTy() &&
2988 DstTy
->isPtrOrPtrVectorTy() &&
2989 SrcTy
->getPointerAddressSpace() != MidTy
->getPointerAddressSpace() &&
2990 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
2991 "Illegal addrspacecast, bitcast sequence!");
2992 // Allowed, use first cast's opcode
2995 // bitcast, addrspacecast -> addrspacecast if the element type of
2996 // bitcast's source is the same as that of addrspacecast's destination.
2997 PointerType
*SrcPtrTy
= cast
<PointerType
>(SrcTy
->getScalarType());
2998 PointerType
*DstPtrTy
= cast
<PointerType
>(DstTy
->getScalarType());
2999 if (SrcPtrTy
->hasSameElementTypeAs(DstPtrTy
))
3000 return Instruction::AddrSpaceCast
;
3004 // FIXME: this state can be merged with (1), but the following assert
3005 // is useful to check the correcteness of the sequence due to semantic
3006 // change of bitcast.
3008 SrcTy
->isIntOrIntVectorTy() &&
3009 MidTy
->isPtrOrPtrVectorTy() &&
3010 DstTy
->isPtrOrPtrVectorTy() &&
3011 MidTy
->getPointerAddressSpace() == DstTy
->getPointerAddressSpace() &&
3012 "Illegal inttoptr, bitcast sequence!");
3013 // Allowed, use first cast's opcode
3016 // FIXME: this state can be merged with (2), but the following assert
3017 // is useful to check the correcteness of the sequence due to semantic
3018 // change of bitcast.
3020 SrcTy
->isPtrOrPtrVectorTy() &&
3021 MidTy
->isPtrOrPtrVectorTy() &&
3022 DstTy
->isIntOrIntVectorTy() &&
3023 SrcTy
->getPointerAddressSpace() == MidTy
->getPointerAddressSpace() &&
3024 "Illegal bitcast, ptrtoint sequence!");
3025 // Allowed, use second cast's opcode
3028 // (sitofp (zext x)) -> (uitofp x)
3029 return Instruction::UIToFP
;
3031 // Cast combination can't happen (error in input). This is for all cases
3032 // where the MidTy is not the same for the two cast instructions.
3033 llvm_unreachable("Invalid Cast Combination");
3035 llvm_unreachable("Error in CastResults table!!!");
3039 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
3040 const Twine
&Name
, Instruction
*InsertBefore
) {
3041 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
3042 // Construct and return the appropriate CastInst subclass
3044 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertBefore
);
3045 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertBefore
);
3046 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertBefore
);
3047 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertBefore
);
3048 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertBefore
);
3049 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertBefore
);
3050 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertBefore
);
3051 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertBefore
);
3052 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertBefore
);
3053 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertBefore
);
3054 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertBefore
);
3055 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertBefore
);
3056 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertBefore
);
3057 default: llvm_unreachable("Invalid opcode provided");
3061 CastInst
*CastInst::Create(Instruction::CastOps op
, Value
*S
, Type
*Ty
,
3062 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
3063 assert(castIsValid(op
, S
, Ty
) && "Invalid cast!");
3064 // Construct and return the appropriate CastInst subclass
3066 case Trunc
: return new TruncInst (S
, Ty
, Name
, InsertAtEnd
);
3067 case ZExt
: return new ZExtInst (S
, Ty
, Name
, InsertAtEnd
);
3068 case SExt
: return new SExtInst (S
, Ty
, Name
, InsertAtEnd
);
3069 case FPTrunc
: return new FPTruncInst (S
, Ty
, Name
, InsertAtEnd
);
3070 case FPExt
: return new FPExtInst (S
, Ty
, Name
, InsertAtEnd
);
3071 case UIToFP
: return new UIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
3072 case SIToFP
: return new SIToFPInst (S
, Ty
, Name
, InsertAtEnd
);
3073 case FPToUI
: return new FPToUIInst (S
, Ty
, Name
, InsertAtEnd
);
3074 case FPToSI
: return new FPToSIInst (S
, Ty
, Name
, InsertAtEnd
);
3075 case PtrToInt
: return new PtrToIntInst (S
, Ty
, Name
, InsertAtEnd
);
3076 case IntToPtr
: return new IntToPtrInst (S
, Ty
, Name
, InsertAtEnd
);
3077 case BitCast
: return new BitCastInst (S
, Ty
, Name
, InsertAtEnd
);
3078 case AddrSpaceCast
: return new AddrSpaceCastInst (S
, Ty
, Name
, InsertAtEnd
);
3079 default: llvm_unreachable("Invalid opcode provided");
3083 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
3085 Instruction
*InsertBefore
) {
3086 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3087 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
3088 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertBefore
);
3091 CastInst
*CastInst::CreateZExtOrBitCast(Value
*S
, Type
*Ty
,
3093 BasicBlock
*InsertAtEnd
) {
3094 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3095 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
3096 return Create(Instruction::ZExt
, S
, Ty
, Name
, InsertAtEnd
);
3099 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
3101 Instruction
*InsertBefore
) {
3102 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3103 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
3104 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertBefore
);
3107 CastInst
*CastInst::CreateSExtOrBitCast(Value
*S
, Type
*Ty
,
3109 BasicBlock
*InsertAtEnd
) {
3110 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3111 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
3112 return Create(Instruction::SExt
, S
, Ty
, Name
, InsertAtEnd
);
3115 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
3117 Instruction
*InsertBefore
) {
3118 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3119 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
3120 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertBefore
);
3123 CastInst
*CastInst::CreateTruncOrBitCast(Value
*S
, Type
*Ty
,
3125 BasicBlock
*InsertAtEnd
) {
3126 if (S
->getType()->getScalarSizeInBits() == Ty
->getScalarSizeInBits())
3127 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
3128 return Create(Instruction::Trunc
, S
, Ty
, Name
, InsertAtEnd
);
3131 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
3133 BasicBlock
*InsertAtEnd
) {
3134 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3135 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
3137 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
3138 assert((!Ty
->isVectorTy() ||
3139 cast
<VectorType
>(Ty
)->getElementCount() ==
3140 cast
<VectorType
>(S
->getType())->getElementCount()) &&
3143 if (Ty
->isIntOrIntVectorTy())
3144 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertAtEnd
);
3146 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertAtEnd
);
3149 /// Create a BitCast or a PtrToInt cast instruction
3150 CastInst
*CastInst::CreatePointerCast(Value
*S
, Type
*Ty
,
3152 Instruction
*InsertBefore
) {
3153 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3154 assert((Ty
->isIntOrIntVectorTy() || Ty
->isPtrOrPtrVectorTy()) &&
3156 assert(Ty
->isVectorTy() == S
->getType()->isVectorTy() && "Invalid cast");
3157 assert((!Ty
->isVectorTy() ||
3158 cast
<VectorType
>(Ty
)->getElementCount() ==
3159 cast
<VectorType
>(S
->getType())->getElementCount()) &&
3162 if (Ty
->isIntOrIntVectorTy())
3163 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
3165 return CreatePointerBitCastOrAddrSpaceCast(S
, Ty
, Name
, InsertBefore
);
3168 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
3171 BasicBlock
*InsertAtEnd
) {
3172 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3173 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
3175 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
3176 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertAtEnd
);
3178 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertAtEnd
);
3181 CastInst
*CastInst::CreatePointerBitCastOrAddrSpaceCast(
3184 Instruction
*InsertBefore
) {
3185 assert(S
->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3186 assert(Ty
->isPtrOrPtrVectorTy() && "Invalid cast");
3188 if (S
->getType()->getPointerAddressSpace() != Ty
->getPointerAddressSpace())
3189 return Create(Instruction::AddrSpaceCast
, S
, Ty
, Name
, InsertBefore
);
3191 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
3194 CastInst
*CastInst::CreateBitOrPointerCast(Value
*S
, Type
*Ty
,
3196 Instruction
*InsertBefore
) {
3197 if (S
->getType()->isPointerTy() && Ty
->isIntegerTy())
3198 return Create(Instruction::PtrToInt
, S
, Ty
, Name
, InsertBefore
);
3199 if (S
->getType()->isIntegerTy() && Ty
->isPointerTy())
3200 return Create(Instruction::IntToPtr
, S
, Ty
, Name
, InsertBefore
);
3202 return Create(Instruction::BitCast
, S
, Ty
, Name
, InsertBefore
);
3205 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
3206 bool isSigned
, const Twine
&Name
,
3207 Instruction
*InsertBefore
) {
3208 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
3209 "Invalid integer cast");
3210 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
3211 unsigned DstBits
= Ty
->getScalarSizeInBits();
3212 Instruction::CastOps opcode
=
3213 (SrcBits
== DstBits
? Instruction::BitCast
:
3214 (SrcBits
> DstBits
? Instruction::Trunc
:
3215 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
3216 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
3219 CastInst
*CastInst::CreateIntegerCast(Value
*C
, Type
*Ty
,
3220 bool isSigned
, const Twine
&Name
,
3221 BasicBlock
*InsertAtEnd
) {
3222 assert(C
->getType()->isIntOrIntVectorTy() && Ty
->isIntOrIntVectorTy() &&
3224 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
3225 unsigned DstBits
= Ty
->getScalarSizeInBits();
3226 Instruction::CastOps opcode
=
3227 (SrcBits
== DstBits
? Instruction::BitCast
:
3228 (SrcBits
> DstBits
? Instruction::Trunc
:
3229 (isSigned
? Instruction::SExt
: Instruction::ZExt
)));
3230 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
3233 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
3235 Instruction
*InsertBefore
) {
3236 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
3238 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
3239 unsigned DstBits
= Ty
->getScalarSizeInBits();
3240 Instruction::CastOps opcode
=
3241 (SrcBits
== DstBits
? Instruction::BitCast
:
3242 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
3243 return Create(opcode
, C
, Ty
, Name
, InsertBefore
);
3246 CastInst
*CastInst::CreateFPCast(Value
*C
, Type
*Ty
,
3248 BasicBlock
*InsertAtEnd
) {
3249 assert(C
->getType()->isFPOrFPVectorTy() && Ty
->isFPOrFPVectorTy() &&
3251 unsigned SrcBits
= C
->getType()->getScalarSizeInBits();
3252 unsigned DstBits
= Ty
->getScalarSizeInBits();
3253 Instruction::CastOps opcode
=
3254 (SrcBits
== DstBits
? Instruction::BitCast
:
3255 (SrcBits
> DstBits
? Instruction::FPTrunc
: Instruction::FPExt
));
3256 return Create(opcode
, C
, Ty
, Name
, InsertAtEnd
);
3259 bool CastInst::isBitCastable(Type
*SrcTy
, Type
*DestTy
) {
3260 if (!SrcTy
->isFirstClassType() || !DestTy
->isFirstClassType())
3263 if (SrcTy
== DestTy
)
3266 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
)) {
3267 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
)) {
3268 if (SrcVecTy
->getElementCount() == DestVecTy
->getElementCount()) {
3269 // An element by element cast. Valid if casting the elements is valid.
3270 SrcTy
= SrcVecTy
->getElementType();
3271 DestTy
= DestVecTy
->getElementType();
3276 if (PointerType
*DestPtrTy
= dyn_cast
<PointerType
>(DestTy
)) {
3277 if (PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
)) {
3278 return SrcPtrTy
->getAddressSpace() == DestPtrTy
->getAddressSpace();
3282 TypeSize SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
3283 TypeSize DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
3285 // Could still have vectors of pointers if the number of elements doesn't
3287 if (SrcBits
.getKnownMinSize() == 0 || DestBits
.getKnownMinSize() == 0)
3290 if (SrcBits
!= DestBits
)
3293 if (DestTy
->isX86_MMXTy() || SrcTy
->isX86_MMXTy())
3299 bool CastInst::isBitOrNoopPointerCastable(Type
*SrcTy
, Type
*DestTy
,
3300 const DataLayout
&DL
) {
3301 // ptrtoint and inttoptr are not allowed on non-integral pointers
3302 if (auto *PtrTy
= dyn_cast
<PointerType
>(SrcTy
))
3303 if (auto *IntTy
= dyn_cast
<IntegerType
>(DestTy
))
3304 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
3305 !DL
.isNonIntegralPointerType(PtrTy
));
3306 if (auto *PtrTy
= dyn_cast
<PointerType
>(DestTy
))
3307 if (auto *IntTy
= dyn_cast
<IntegerType
>(SrcTy
))
3308 return (IntTy
->getBitWidth() == DL
.getPointerTypeSizeInBits(PtrTy
) &&
3309 !DL
.isNonIntegralPointerType(PtrTy
));
3311 return isBitCastable(SrcTy
, DestTy
);
3314 // Provide a way to get a "cast" where the cast opcode is inferred from the
3315 // types and size of the operand. This, basically, is a parallel of the
3316 // logic in the castIsValid function below. This axiom should hold:
3317 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3318 // should not assert in castIsValid. In other words, this produces a "correct"
3319 // casting opcode for the arguments passed to it.
3320 Instruction::CastOps
3321 CastInst::getCastOpcode(
3322 const Value
*Src
, bool SrcIsSigned
, Type
*DestTy
, bool DestIsSigned
) {
3323 Type
*SrcTy
= Src
->getType();
3325 assert(SrcTy
->isFirstClassType() && DestTy
->isFirstClassType() &&
3326 "Only first class types are castable!");
3328 if (SrcTy
== DestTy
)
3331 // FIXME: Check address space sizes here
3332 if (VectorType
*SrcVecTy
= dyn_cast
<VectorType
>(SrcTy
))
3333 if (VectorType
*DestVecTy
= dyn_cast
<VectorType
>(DestTy
))
3334 if (SrcVecTy
->getElementCount() == DestVecTy
->getElementCount()) {
3335 // An element by element cast. Find the appropriate opcode based on the
3337 SrcTy
= SrcVecTy
->getElementType();
3338 DestTy
= DestVecTy
->getElementType();
3341 // Get the bit sizes, we'll need these
3342 unsigned SrcBits
= SrcTy
->getPrimitiveSizeInBits(); // 0 for ptr
3343 unsigned DestBits
= DestTy
->getPrimitiveSizeInBits(); // 0 for ptr
3345 // Run through the possibilities ...
3346 if (DestTy
->isIntegerTy()) { // Casting to integral
3347 if (SrcTy
->isIntegerTy()) { // Casting from integral
3348 if (DestBits
< SrcBits
)
3349 return Trunc
; // int -> smaller int
3350 else if (DestBits
> SrcBits
) { // its an extension
3352 return SExt
; // signed -> SEXT
3354 return ZExt
; // unsigned -> ZEXT
3356 return BitCast
; // Same size, No-op cast
3358 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3360 return FPToSI
; // FP -> sint
3362 return FPToUI
; // FP -> uint
3363 } else if (SrcTy
->isVectorTy()) {
3364 assert(DestBits
== SrcBits
&&
3365 "Casting vector to integer of different width");
3366 return BitCast
; // Same size, no-op cast
3368 assert(SrcTy
->isPointerTy() &&
3369 "Casting from a value that is not first-class type");
3370 return PtrToInt
; // ptr -> int
3372 } else if (DestTy
->isFloatingPointTy()) { // Casting to floating pt
3373 if (SrcTy
->isIntegerTy()) { // Casting from integral
3375 return SIToFP
; // sint -> FP
3377 return UIToFP
; // uint -> FP
3378 } else if (SrcTy
->isFloatingPointTy()) { // Casting from floating pt
3379 if (DestBits
< SrcBits
) {
3380 return FPTrunc
; // FP -> smaller FP
3381 } else if (DestBits
> SrcBits
) {
3382 return FPExt
; // FP -> larger FP
3384 return BitCast
; // same size, no-op cast
3386 } else if (SrcTy
->isVectorTy()) {
3387 assert(DestBits
== SrcBits
&&
3388 "Casting vector to floating point of different width");
3389 return BitCast
; // same size, no-op cast
3391 llvm_unreachable("Casting pointer or non-first class to float");
3392 } else if (DestTy
->isVectorTy()) {
3393 assert(DestBits
== SrcBits
&&
3394 "Illegal cast to vector (wrong type or size)");
3396 } else if (DestTy
->isPointerTy()) {
3397 if (SrcTy
->isPointerTy()) {
3398 if (DestTy
->getPointerAddressSpace() != SrcTy
->getPointerAddressSpace())
3399 return AddrSpaceCast
;
3400 return BitCast
; // ptr -> ptr
3401 } else if (SrcTy
->isIntegerTy()) {
3402 return IntToPtr
; // int -> ptr
3404 llvm_unreachable("Casting pointer to other than pointer or int");
3405 } else if (DestTy
->isX86_MMXTy()) {
3406 if (SrcTy
->isVectorTy()) {
3407 assert(DestBits
== SrcBits
&& "Casting vector of wrong width to X86_MMX");
3408 return BitCast
; // 64-bit vector to MMX
3410 llvm_unreachable("Illegal cast to X86_MMX");
3412 llvm_unreachable("Casting to type that is not first-class");
3415 //===----------------------------------------------------------------------===//
3416 // CastInst SubClass Constructors
3417 //===----------------------------------------------------------------------===//
3419 /// Check that the construction parameters for a CastInst are correct. This
3420 /// could be broken out into the separate constructors but it is useful to have
3421 /// it in one place and to eliminate the redundant code for getting the sizes
3422 /// of the types involved.
3424 CastInst::castIsValid(Instruction::CastOps op
, Type
*SrcTy
, Type
*DstTy
) {
3425 if (!SrcTy
->isFirstClassType() || !DstTy
->isFirstClassType() ||
3426 SrcTy
->isAggregateType() || DstTy
->isAggregateType())
3429 // Get the size of the types in bits, and whether we are dealing
3430 // with vector types, we'll need this later.
3431 bool SrcIsVec
= isa
<VectorType
>(SrcTy
);
3432 bool DstIsVec
= isa
<VectorType
>(DstTy
);
3433 unsigned SrcScalarBitSize
= SrcTy
->getScalarSizeInBits();
3434 unsigned DstScalarBitSize
= DstTy
->getScalarSizeInBits();
3436 // If these are vector types, get the lengths of the vectors (using zero for
3437 // scalar types means that checking that vector lengths match also checks that
3438 // scalars are not being converted to vectors or vectors to scalars).
3439 ElementCount SrcEC
= SrcIsVec
? cast
<VectorType
>(SrcTy
)->getElementCount()
3440 : ElementCount::getFixed(0);
3441 ElementCount DstEC
= DstIsVec
? cast
<VectorType
>(DstTy
)->getElementCount()
3442 : ElementCount::getFixed(0);
3444 // Switch on the opcode provided
3446 default: return false; // This is an input error
3447 case Instruction::Trunc
:
3448 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3449 SrcEC
== DstEC
&& SrcScalarBitSize
> DstScalarBitSize
;
3450 case Instruction::ZExt
:
3451 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3452 SrcEC
== DstEC
&& SrcScalarBitSize
< DstScalarBitSize
;
3453 case Instruction::SExt
:
3454 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3455 SrcEC
== DstEC
&& SrcScalarBitSize
< DstScalarBitSize
;
3456 case Instruction::FPTrunc
:
3457 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3458 SrcEC
== DstEC
&& SrcScalarBitSize
> DstScalarBitSize
;
3459 case Instruction::FPExt
:
3460 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3461 SrcEC
== DstEC
&& SrcScalarBitSize
< DstScalarBitSize
;
3462 case Instruction::UIToFP
:
3463 case Instruction::SIToFP
:
3464 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isFPOrFPVectorTy() &&
3466 case Instruction::FPToUI
:
3467 case Instruction::FPToSI
:
3468 return SrcTy
->isFPOrFPVectorTy() && DstTy
->isIntOrIntVectorTy() &&
3470 case Instruction::PtrToInt
:
3473 return SrcTy
->isPtrOrPtrVectorTy() && DstTy
->isIntOrIntVectorTy();
3474 case Instruction::IntToPtr
:
3477 return SrcTy
->isIntOrIntVectorTy() && DstTy
->isPtrOrPtrVectorTy();
3478 case Instruction::BitCast
: {
3479 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3480 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3482 // BitCast implies a no-op cast of type only. No bits change.
3483 // However, you can't cast pointers to anything but pointers.
3484 if (!SrcPtrTy
!= !DstPtrTy
)
3487 // For non-pointer cases, the cast is okay if the source and destination bit
3488 // widths are identical.
3490 return SrcTy
->getPrimitiveSizeInBits() == DstTy
->getPrimitiveSizeInBits();
3492 // If both are pointers then the address spaces must match.
3493 if (SrcPtrTy
->getAddressSpace() != DstPtrTy
->getAddressSpace())
3496 // A vector of pointers must have the same number of elements.
3497 if (SrcIsVec
&& DstIsVec
)
3498 return SrcEC
== DstEC
;
3500 return SrcEC
== ElementCount::getFixed(1);
3502 return DstEC
== ElementCount::getFixed(1);
3506 case Instruction::AddrSpaceCast
: {
3507 PointerType
*SrcPtrTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType());
3511 PointerType
*DstPtrTy
= dyn_cast
<PointerType
>(DstTy
->getScalarType());
3515 if (SrcPtrTy
->getAddressSpace() == DstPtrTy
->getAddressSpace())
3518 return SrcEC
== DstEC
;
3523 TruncInst::TruncInst(
3524 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3525 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertBefore
) {
3526 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3529 TruncInst::TruncInst(
3530 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3531 ) : CastInst(Ty
, Trunc
, S
, Name
, InsertAtEnd
) {
3532 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal Trunc");
3536 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3537 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertBefore
) {
3538 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3542 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3543 ) : CastInst(Ty
, ZExt
, S
, Name
, InsertAtEnd
) {
3544 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal ZExt");
3547 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3548 ) : CastInst(Ty
, SExt
, S
, Name
, InsertBefore
) {
3549 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3553 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3554 ) : CastInst(Ty
, SExt
, S
, Name
, InsertAtEnd
) {
3555 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SExt");
3558 FPTruncInst::FPTruncInst(
3559 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3560 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertBefore
) {
3561 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3564 FPTruncInst::FPTruncInst(
3565 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3566 ) : CastInst(Ty
, FPTrunc
, S
, Name
, InsertAtEnd
) {
3567 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPTrunc");
3570 FPExtInst::FPExtInst(
3571 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3572 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertBefore
) {
3573 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3576 FPExtInst::FPExtInst(
3577 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3578 ) : CastInst(Ty
, FPExt
, S
, Name
, InsertAtEnd
) {
3579 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPExt");
3582 UIToFPInst::UIToFPInst(
3583 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3584 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertBefore
) {
3585 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3588 UIToFPInst::UIToFPInst(
3589 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3590 ) : CastInst(Ty
, UIToFP
, S
, Name
, InsertAtEnd
) {
3591 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal UIToFP");
3594 SIToFPInst::SIToFPInst(
3595 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3596 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertBefore
) {
3597 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3600 SIToFPInst::SIToFPInst(
3601 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3602 ) : CastInst(Ty
, SIToFP
, S
, Name
, InsertAtEnd
) {
3603 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal SIToFP");
3606 FPToUIInst::FPToUIInst(
3607 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3608 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertBefore
) {
3609 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3612 FPToUIInst::FPToUIInst(
3613 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3614 ) : CastInst(Ty
, FPToUI
, S
, Name
, InsertAtEnd
) {
3615 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToUI");
3618 FPToSIInst::FPToSIInst(
3619 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3620 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertBefore
) {
3621 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3624 FPToSIInst::FPToSIInst(
3625 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3626 ) : CastInst(Ty
, FPToSI
, S
, Name
, InsertAtEnd
) {
3627 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal FPToSI");
3630 PtrToIntInst::PtrToIntInst(
3631 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3632 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertBefore
) {
3633 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3636 PtrToIntInst::PtrToIntInst(
3637 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3638 ) : CastInst(Ty
, PtrToInt
, S
, Name
, InsertAtEnd
) {
3639 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal PtrToInt");
3642 IntToPtrInst::IntToPtrInst(
3643 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3644 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertBefore
) {
3645 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3648 IntToPtrInst::IntToPtrInst(
3649 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3650 ) : CastInst(Ty
, IntToPtr
, S
, Name
, InsertAtEnd
) {
3651 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal IntToPtr");
3654 BitCastInst::BitCastInst(
3655 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3656 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertBefore
) {
3657 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3660 BitCastInst::BitCastInst(
3661 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3662 ) : CastInst(Ty
, BitCast
, S
, Name
, InsertAtEnd
) {
3663 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal BitCast");
3666 AddrSpaceCastInst::AddrSpaceCastInst(
3667 Value
*S
, Type
*Ty
, const Twine
&Name
, Instruction
*InsertBefore
3668 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertBefore
) {
3669 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3672 AddrSpaceCastInst::AddrSpaceCastInst(
3673 Value
*S
, Type
*Ty
, const Twine
&Name
, BasicBlock
*InsertAtEnd
3674 ) : CastInst(Ty
, AddrSpaceCast
, S
, Name
, InsertAtEnd
) {
3675 assert(castIsValid(getOpcode(), S
, Ty
) && "Illegal AddrSpaceCast");
3678 //===----------------------------------------------------------------------===//
3680 //===----------------------------------------------------------------------===//
3682 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3683 Value
*RHS
, const Twine
&Name
, Instruction
*InsertBefore
,
3684 Instruction
*FlagsSource
)
3685 : Instruction(ty
, op
,
3686 OperandTraits
<CmpInst
>::op_begin(this),
3687 OperandTraits
<CmpInst
>::operands(this),
3691 setPredicate((Predicate
)predicate
);
3694 copyIRFlags(FlagsSource
);
3697 CmpInst::CmpInst(Type
*ty
, OtherOps op
, Predicate predicate
, Value
*LHS
,
3698 Value
*RHS
, const Twine
&Name
, BasicBlock
*InsertAtEnd
)
3699 : Instruction(ty
, op
,
3700 OperandTraits
<CmpInst
>::op_begin(this),
3701 OperandTraits
<CmpInst
>::operands(this),
3705 setPredicate((Predicate
)predicate
);
3710 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3711 const Twine
&Name
, Instruction
*InsertBefore
) {
3712 if (Op
== Instruction::ICmp
) {
3714 return new ICmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3717 return new ICmpInst(CmpInst::Predicate(predicate
),
3722 return new FCmpInst(InsertBefore
, CmpInst::Predicate(predicate
),
3725 return new FCmpInst(CmpInst::Predicate(predicate
),
3730 CmpInst::Create(OtherOps Op
, Predicate predicate
, Value
*S1
, Value
*S2
,
3731 const Twine
&Name
, BasicBlock
*InsertAtEnd
) {
3732 if (Op
== Instruction::ICmp
) {
3733 return new ICmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3736 return new FCmpInst(*InsertAtEnd
, CmpInst::Predicate(predicate
),
3740 void CmpInst::swapOperands() {
3741 if (ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3744 cast
<FCmpInst
>(this)->swapOperands();
3747 bool CmpInst::isCommutative() const {
3748 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(this))
3749 return IC
->isCommutative();
3750 return cast
<FCmpInst
>(this)->isCommutative();
3753 bool CmpInst::isEquality(Predicate P
) {
3754 if (ICmpInst::isIntPredicate(P
))
3755 return ICmpInst::isEquality(P
);
3756 if (FCmpInst::isFPPredicate(P
))
3757 return FCmpInst::isEquality(P
);
3758 llvm_unreachable("Unsupported predicate kind");
3761 CmpInst::Predicate
CmpInst::getInversePredicate(Predicate pred
) {
3763 default: llvm_unreachable("Unknown cmp predicate!");
3764 case ICMP_EQ
: return ICMP_NE
;
3765 case ICMP_NE
: return ICMP_EQ
;
3766 case ICMP_UGT
: return ICMP_ULE
;
3767 case ICMP_ULT
: return ICMP_UGE
;
3768 case ICMP_UGE
: return ICMP_ULT
;
3769 case ICMP_ULE
: return ICMP_UGT
;
3770 case ICMP_SGT
: return ICMP_SLE
;
3771 case ICMP_SLT
: return ICMP_SGE
;
3772 case ICMP_SGE
: return ICMP_SLT
;
3773 case ICMP_SLE
: return ICMP_SGT
;
3775 case FCMP_OEQ
: return FCMP_UNE
;
3776 case FCMP_ONE
: return FCMP_UEQ
;
3777 case FCMP_OGT
: return FCMP_ULE
;
3778 case FCMP_OLT
: return FCMP_UGE
;
3779 case FCMP_OGE
: return FCMP_ULT
;
3780 case FCMP_OLE
: return FCMP_UGT
;
3781 case FCMP_UEQ
: return FCMP_ONE
;
3782 case FCMP_UNE
: return FCMP_OEQ
;
3783 case FCMP_UGT
: return FCMP_OLE
;
3784 case FCMP_ULT
: return FCMP_OGE
;
3785 case FCMP_UGE
: return FCMP_OLT
;
3786 case FCMP_ULE
: return FCMP_OGT
;
3787 case FCMP_ORD
: return FCMP_UNO
;
3788 case FCMP_UNO
: return FCMP_ORD
;
3789 case FCMP_TRUE
: return FCMP_FALSE
;
3790 case FCMP_FALSE
: return FCMP_TRUE
;
3794 StringRef
CmpInst::getPredicateName(Predicate Pred
) {
3796 default: return "unknown";
3797 case FCmpInst::FCMP_FALSE
: return "false";
3798 case FCmpInst::FCMP_OEQ
: return "oeq";
3799 case FCmpInst::FCMP_OGT
: return "ogt";
3800 case FCmpInst::FCMP_OGE
: return "oge";
3801 case FCmpInst::FCMP_OLT
: return "olt";
3802 case FCmpInst::FCMP_OLE
: return "ole";
3803 case FCmpInst::FCMP_ONE
: return "one";
3804 case FCmpInst::FCMP_ORD
: return "ord";
3805 case FCmpInst::FCMP_UNO
: return "uno";
3806 case FCmpInst::FCMP_UEQ
: return "ueq";
3807 case FCmpInst::FCMP_UGT
: return "ugt";
3808 case FCmpInst::FCMP_UGE
: return "uge";
3809 case FCmpInst::FCMP_ULT
: return "ult";
3810 case FCmpInst::FCMP_ULE
: return "ule";
3811 case FCmpInst::FCMP_UNE
: return "une";
3812 case FCmpInst::FCMP_TRUE
: return "true";
3813 case ICmpInst::ICMP_EQ
: return "eq";
3814 case ICmpInst::ICMP_NE
: return "ne";
3815 case ICmpInst::ICMP_SGT
: return "sgt";
3816 case ICmpInst::ICMP_SGE
: return "sge";
3817 case ICmpInst::ICMP_SLT
: return "slt";
3818 case ICmpInst::ICMP_SLE
: return "sle";
3819 case ICmpInst::ICMP_UGT
: return "ugt";
3820 case ICmpInst::ICMP_UGE
: return "uge";
3821 case ICmpInst::ICMP_ULT
: return "ult";
3822 case ICmpInst::ICMP_ULE
: return "ule";
3826 ICmpInst::Predicate
ICmpInst::getSignedPredicate(Predicate pred
) {
3828 default: llvm_unreachable("Unknown icmp predicate!");
3829 case ICMP_EQ
: case ICMP_NE
:
3830 case ICMP_SGT
: case ICMP_SLT
: case ICMP_SGE
: case ICMP_SLE
:
3832 case ICMP_UGT
: return ICMP_SGT
;
3833 case ICMP_ULT
: return ICMP_SLT
;
3834 case ICMP_UGE
: return ICMP_SGE
;
3835 case ICMP_ULE
: return ICMP_SLE
;
3839 ICmpInst::Predicate
ICmpInst::getUnsignedPredicate(Predicate pred
) {
3841 default: llvm_unreachable("Unknown icmp predicate!");
3842 case ICMP_EQ
: case ICMP_NE
:
3843 case ICMP_UGT
: case ICMP_ULT
: case ICMP_UGE
: case ICMP_ULE
:
3845 case ICMP_SGT
: return ICMP_UGT
;
3846 case ICMP_SLT
: return ICMP_ULT
;
3847 case ICMP_SGE
: return ICMP_UGE
;
3848 case ICMP_SLE
: return ICMP_ULE
;
3852 CmpInst::Predicate
CmpInst::getSwappedPredicate(Predicate pred
) {
3854 default: llvm_unreachable("Unknown cmp predicate!");
3855 case ICMP_EQ
: case ICMP_NE
:
3857 case ICMP_SGT
: return ICMP_SLT
;
3858 case ICMP_SLT
: return ICMP_SGT
;
3859 case ICMP_SGE
: return ICMP_SLE
;
3860 case ICMP_SLE
: return ICMP_SGE
;
3861 case ICMP_UGT
: return ICMP_ULT
;
3862 case ICMP_ULT
: return ICMP_UGT
;
3863 case ICMP_UGE
: return ICMP_ULE
;
3864 case ICMP_ULE
: return ICMP_UGE
;
3866 case FCMP_FALSE
: case FCMP_TRUE
:
3867 case FCMP_OEQ
: case FCMP_ONE
:
3868 case FCMP_UEQ
: case FCMP_UNE
:
3869 case FCMP_ORD
: case FCMP_UNO
:
3871 case FCMP_OGT
: return FCMP_OLT
;
3872 case FCMP_OLT
: return FCMP_OGT
;
3873 case FCMP_OGE
: return FCMP_OLE
;
3874 case FCMP_OLE
: return FCMP_OGE
;
3875 case FCMP_UGT
: return FCMP_ULT
;
3876 case FCMP_ULT
: return FCMP_UGT
;
3877 case FCMP_UGE
: return FCMP_ULE
;
3878 case FCMP_ULE
: return FCMP_UGE
;
3882 bool CmpInst::isNonStrictPredicate(Predicate pred
) {
3898 bool CmpInst::isStrictPredicate(Predicate pred
) {
3914 CmpInst::Predicate
CmpInst::getStrictPredicate(Predicate pred
) {
3937 CmpInst::Predicate
CmpInst::getNonStrictPredicate(Predicate pred
) {
3960 CmpInst::Predicate
CmpInst::getFlippedStrictnessPredicate(Predicate pred
) {
3961 assert(CmpInst::isRelational(pred
) && "Call only with relational predicate!");
3963 if (isStrictPredicate(pred
))
3964 return getNonStrictPredicate(pred
);
3965 if (isNonStrictPredicate(pred
))
3966 return getStrictPredicate(pred
);
3968 llvm_unreachable("Unknown predicate!");
3971 CmpInst::Predicate
CmpInst::getSignedPredicate(Predicate pred
) {
3972 assert(CmpInst::isUnsigned(pred
) && "Call only with unsigned predicates!");
3976 llvm_unreachable("Unknown predicate!");
3977 case CmpInst::ICMP_ULT
:
3978 return CmpInst::ICMP_SLT
;
3979 case CmpInst::ICMP_ULE
:
3980 return CmpInst::ICMP_SLE
;
3981 case CmpInst::ICMP_UGT
:
3982 return CmpInst::ICMP_SGT
;
3983 case CmpInst::ICMP_UGE
:
3984 return CmpInst::ICMP_SGE
;
3988 CmpInst::Predicate
CmpInst::getUnsignedPredicate(Predicate pred
) {
3989 assert(CmpInst::isSigned(pred
) && "Call only with signed predicates!");
3993 llvm_unreachable("Unknown predicate!");
3994 case CmpInst::ICMP_SLT
:
3995 return CmpInst::ICMP_ULT
;
3996 case CmpInst::ICMP_SLE
:
3997 return CmpInst::ICMP_ULE
;
3998 case CmpInst::ICMP_SGT
:
3999 return CmpInst::ICMP_UGT
;
4000 case CmpInst::ICMP_SGE
:
4001 return CmpInst::ICMP_UGE
;
4005 bool CmpInst::isUnsigned(Predicate predicate
) {
4006 switch (predicate
) {
4007 default: return false;
4008 case ICmpInst::ICMP_ULT
: case ICmpInst::ICMP_ULE
: case ICmpInst::ICMP_UGT
:
4009 case ICmpInst::ICMP_UGE
: return true;
4013 bool CmpInst::isSigned(Predicate predicate
) {
4014 switch (predicate
) {
4015 default: return false;
4016 case ICmpInst::ICMP_SLT
: case ICmpInst::ICMP_SLE
: case ICmpInst::ICMP_SGT
:
4017 case ICmpInst::ICMP_SGE
: return true;
4021 CmpInst::Predicate
CmpInst::getFlippedSignednessPredicate(Predicate pred
) {
4022 assert(CmpInst::isRelational(pred
) &&
4023 "Call only with non-equality predicates!");
4026 return getUnsignedPredicate(pred
);
4027 if (isUnsigned(pred
))
4028 return getSignedPredicate(pred
);
4030 llvm_unreachable("Unknown predicate!");
4033 bool CmpInst::isOrdered(Predicate predicate
) {
4034 switch (predicate
) {
4035 default: return false;
4036 case FCmpInst::FCMP_OEQ
: case FCmpInst::FCMP_ONE
: case FCmpInst::FCMP_OGT
:
4037 case FCmpInst::FCMP_OLT
: case FCmpInst::FCMP_OGE
: case FCmpInst::FCMP_OLE
:
4038 case FCmpInst::FCMP_ORD
: return true;
4042 bool CmpInst::isUnordered(Predicate predicate
) {
4043 switch (predicate
) {
4044 default: return false;
4045 case FCmpInst::FCMP_UEQ
: case FCmpInst::FCMP_UNE
: case FCmpInst::FCMP_UGT
:
4046 case FCmpInst::FCMP_ULT
: case FCmpInst::FCMP_UGE
: case FCmpInst::FCMP_ULE
:
4047 case FCmpInst::FCMP_UNO
: return true;
4051 bool CmpInst::isTrueWhenEqual(Predicate predicate
) {
4053 default: return false;
4054 case ICMP_EQ
: case ICMP_UGE
: case ICMP_ULE
: case ICMP_SGE
: case ICMP_SLE
:
4055 case FCMP_TRUE
: case FCMP_UEQ
: case FCMP_UGE
: case FCMP_ULE
: return true;
4059 bool CmpInst::isFalseWhenEqual(Predicate predicate
) {
4061 case ICMP_NE
: case ICMP_UGT
: case ICMP_ULT
: case ICMP_SGT
: case ICMP_SLT
:
4062 case FCMP_FALSE
: case FCMP_ONE
: case FCMP_OGT
: case FCMP_OLT
: return true;
4063 default: return false;
4067 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
4068 // If the predicates match, then we know the first condition implies the
4077 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4078 return Pred2
== ICMP_UGE
|| Pred2
== ICMP_ULE
|| Pred2
== ICMP_SGE
||
4080 case ICMP_UGT
: // A >u B implies A != B and A >=u B are true.
4081 return Pred2
== ICMP_NE
|| Pred2
== ICMP_UGE
;
4082 case ICMP_ULT
: // A <u B implies A != B and A <=u B are true.
4083 return Pred2
== ICMP_NE
|| Pred2
== ICMP_ULE
;
4084 case ICMP_SGT
: // A >s B implies A != B and A >=s B are true.
4085 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SGE
;
4086 case ICMP_SLT
: // A <s B implies A != B and A <=s B are true.
4087 return Pred2
== ICMP_NE
|| Pred2
== ICMP_SLE
;
4092 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1
, Predicate Pred2
) {
4093 return isImpliedTrueByMatchingCmp(Pred1
, getInversePredicate(Pred2
));
4096 //===----------------------------------------------------------------------===//
4097 // SwitchInst Implementation
4098 //===----------------------------------------------------------------------===//
4100 void SwitchInst::init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
) {
4101 assert(Value
&& Default
&& NumReserved
);
4102 ReservedSpace
= NumReserved
;
4103 setNumHungOffUseOperands(2);
4104 allocHungoffUses(ReservedSpace
);
4110 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4111 /// switch on and a default destination. The number of additional cases can
4112 /// be specified here to make memory allocation more efficient. This
4113 /// constructor can also autoinsert before another instruction.
4114 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
4115 Instruction
*InsertBefore
)
4116 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
4117 nullptr, 0, InsertBefore
) {
4118 init(Value
, Default
, 2+NumCases
*2);
4121 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4122 /// switch on and a default destination. The number of additional cases can
4123 /// be specified here to make memory allocation more efficient. This
4124 /// constructor also autoinserts at the end of the specified BasicBlock.
4125 SwitchInst::SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
4126 BasicBlock
*InsertAtEnd
)
4127 : Instruction(Type::getVoidTy(Value
->getContext()), Instruction::Switch
,
4128 nullptr, 0, InsertAtEnd
) {
4129 init(Value
, Default
, 2+NumCases
*2);
4132 SwitchInst::SwitchInst(const SwitchInst
&SI
)
4133 : Instruction(SI
.getType(), Instruction::Switch
, nullptr, 0) {
4134 init(SI
.getCondition(), SI
.getDefaultDest(), SI
.getNumOperands());
4135 setNumHungOffUseOperands(SI
.getNumOperands());
4136 Use
*OL
= getOperandList();
4137 const Use
*InOL
= SI
.getOperandList();
4138 for (unsigned i
= 2, E
= SI
.getNumOperands(); i
!= E
; i
+= 2) {
4140 OL
[i
+1] = InOL
[i
+1];
4142 SubclassOptionalData
= SI
.SubclassOptionalData
;
4145 /// addCase - Add an entry to the switch instruction...
4147 void SwitchInst::addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
) {
4148 unsigned NewCaseIdx
= getNumCases();
4149 unsigned OpNo
= getNumOperands();
4150 if (OpNo
+2 > ReservedSpace
)
4151 growOperands(); // Get more space!
4152 // Initialize some new operands.
4153 assert(OpNo
+1 < ReservedSpace
&& "Growing didn't work!");
4154 setNumHungOffUseOperands(OpNo
+2);
4155 CaseHandle
Case(this, NewCaseIdx
);
4156 Case
.setValue(OnVal
);
4157 Case
.setSuccessor(Dest
);
4160 /// removeCase - This method removes the specified case and its successor
4161 /// from the switch instruction.
4162 SwitchInst::CaseIt
SwitchInst::removeCase(CaseIt I
) {
4163 unsigned idx
= I
->getCaseIndex();
4165 assert(2 + idx
*2 < getNumOperands() && "Case index out of range!!!");
4167 unsigned NumOps
= getNumOperands();
4168 Use
*OL
= getOperandList();
4170 // Overwrite this case with the end of the list.
4171 if (2 + (idx
+ 1) * 2 != NumOps
) {
4172 OL
[2 + idx
* 2] = OL
[NumOps
- 2];
4173 OL
[2 + idx
* 2 + 1] = OL
[NumOps
- 1];
4176 // Nuke the last value.
4177 OL
[NumOps
-2].set(nullptr);
4178 OL
[NumOps
-2+1].set(nullptr);
4179 setNumHungOffUseOperands(NumOps
-2);
4181 return CaseIt(this, idx
);
4184 /// growOperands - grow operands - This grows the operand list in response
4185 /// to a push_back style of operation. This grows the number of ops by 3 times.
4187 void SwitchInst::growOperands() {
4188 unsigned e
= getNumOperands();
4189 unsigned NumOps
= e
*3;
4191 ReservedSpace
= NumOps
;
4192 growHungoffUses(ReservedSpace
);
4196 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst
&SI
) {
4197 if (MDNode
*ProfileData
= SI
.getMetadata(LLVMContext::MD_prof
))
4198 if (auto *MDName
= dyn_cast
<MDString
>(ProfileData
->getOperand(0)))
4199 if (MDName
->getString() == "branch_weights")
4204 MDNode
*SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4205 assert(Changed
&& "called only if metadata has changed");
4210 assert(SI
.getNumSuccessors() == Weights
->size() &&
4211 "num of prof branch_weights must accord with num of successors");
4214 all_of(Weights
.getValue(), [](uint32_t W
) { return W
== 0; });
4216 if (AllZeroes
|| Weights
.getValue().size() < 2)
4219 return MDBuilder(SI
.getParent()->getContext()).createBranchWeights(*Weights
);
4222 void SwitchInstProfUpdateWrapper::init() {
4223 MDNode
*ProfileData
= getProfBranchWeightsMD(SI
);
4227 if (ProfileData
->getNumOperands() != SI
.getNumSuccessors() + 1) {
4228 llvm_unreachable("number of prof branch_weights metadata operands does "
4229 "not correspond to number of succesors");
4232 SmallVector
<uint32_t, 8> Weights
;
4233 for (unsigned CI
= 1, CE
= SI
.getNumSuccessors(); CI
<= CE
; ++CI
) {
4234 ConstantInt
*C
= mdconst::extract
<ConstantInt
>(ProfileData
->getOperand(CI
));
4235 uint32_t CW
= C
->getValue().getZExtValue();
4236 Weights
.push_back(CW
);
4238 this->Weights
= std::move(Weights
);
4242 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I
) {
4244 assert(SI
.getNumSuccessors() == Weights
->size() &&
4245 "num of prof branch_weights must accord with num of successors");
4247 // Copy the last case to the place of the removed one and shrink.
4248 // This is tightly coupled with the way SwitchInst::removeCase() removes
4249 // the cases in SwitchInst::removeCase(CaseIt).
4250 Weights
.getValue()[I
->getCaseIndex() + 1] = Weights
.getValue().back();
4251 Weights
.getValue().pop_back();
4253 return SI
.removeCase(I
);
4256 void SwitchInstProfUpdateWrapper::addCase(
4257 ConstantInt
*OnVal
, BasicBlock
*Dest
,
4258 SwitchInstProfUpdateWrapper::CaseWeightOpt W
) {
4259 SI
.addCase(OnVal
, Dest
);
4261 if (!Weights
&& W
&& *W
) {
4263 Weights
= SmallVector
<uint32_t, 8>(SI
.getNumSuccessors(), 0);
4264 Weights
.getValue()[SI
.getNumSuccessors() - 1] = *W
;
4265 } else if (Weights
) {
4267 Weights
.getValue().push_back(W
? *W
: 0);
4270 assert(SI
.getNumSuccessors() == Weights
->size() &&
4271 "num of prof branch_weights must accord with num of successors");
4274 SymbolTableList
<Instruction
>::iterator
4275 SwitchInstProfUpdateWrapper::eraseFromParent() {
4276 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4280 return SI
.eraseFromParent();
4283 SwitchInstProfUpdateWrapper::CaseWeightOpt
4284 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx
) {
4287 return Weights
.getValue()[idx
];
4290 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4291 unsigned idx
, SwitchInstProfUpdateWrapper::CaseWeightOpt W
) {
4296 Weights
= SmallVector
<uint32_t, 8>(SI
.getNumSuccessors(), 0);
4299 auto &OldW
= Weights
.getValue()[idx
];
4307 SwitchInstProfUpdateWrapper::CaseWeightOpt
4308 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst
&SI
,
4310 if (MDNode
*ProfileData
= getProfBranchWeightsMD(SI
))
4311 if (ProfileData
->getNumOperands() == SI
.getNumSuccessors() + 1)
4312 return mdconst::extract
<ConstantInt
>(ProfileData
->getOperand(idx
+ 1))
4319 //===----------------------------------------------------------------------===//
4320 // IndirectBrInst Implementation
4321 //===----------------------------------------------------------------------===//
4323 void IndirectBrInst::init(Value
*Address
, unsigned NumDests
) {
4324 assert(Address
&& Address
->getType()->isPointerTy() &&
4325 "Address of indirectbr must be a pointer");
4326 ReservedSpace
= 1+NumDests
;
4327 setNumHungOffUseOperands(1);
4328 allocHungoffUses(ReservedSpace
);
4334 /// growOperands - grow operands - This grows the operand list in response
4335 /// to a push_back style of operation. This grows the number of ops by 2 times.
4337 void IndirectBrInst::growOperands() {
4338 unsigned e
= getNumOperands();
4339 unsigned NumOps
= e
*2;
4341 ReservedSpace
= NumOps
;
4342 growHungoffUses(ReservedSpace
);
4345 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
4346 Instruction
*InsertBefore
)
4347 : Instruction(Type::getVoidTy(Address
->getContext()),
4348 Instruction::IndirectBr
, nullptr, 0, InsertBefore
) {
4349 init(Address
, NumCases
);
4352 IndirectBrInst::IndirectBrInst(Value
*Address
, unsigned NumCases
,
4353 BasicBlock
*InsertAtEnd
)
4354 : Instruction(Type::getVoidTy(Address
->getContext()),
4355 Instruction::IndirectBr
, nullptr, 0, InsertAtEnd
) {
4356 init(Address
, NumCases
);
4359 IndirectBrInst::IndirectBrInst(const IndirectBrInst
&IBI
)
4360 : Instruction(Type::getVoidTy(IBI
.getContext()), Instruction::IndirectBr
,
4361 nullptr, IBI
.getNumOperands()) {
4362 allocHungoffUses(IBI
.getNumOperands());
4363 Use
*OL
= getOperandList();
4364 const Use
*InOL
= IBI
.getOperandList();
4365 for (unsigned i
= 0, E
= IBI
.getNumOperands(); i
!= E
; ++i
)
4367 SubclassOptionalData
= IBI
.SubclassOptionalData
;
4370 /// addDestination - Add a destination.
4372 void IndirectBrInst::addDestination(BasicBlock
*DestBB
) {
4373 unsigned OpNo
= getNumOperands();
4374 if (OpNo
+1 > ReservedSpace
)
4375 growOperands(); // Get more space!
4376 // Initialize some new operands.
4377 assert(OpNo
< ReservedSpace
&& "Growing didn't work!");
4378 setNumHungOffUseOperands(OpNo
+1);
4379 getOperandList()[OpNo
] = DestBB
;
4382 /// removeDestination - This method removes the specified successor from the
4383 /// indirectbr instruction.
4384 void IndirectBrInst::removeDestination(unsigned idx
) {
4385 assert(idx
< getNumOperands()-1 && "Successor index out of range!");
4387 unsigned NumOps
= getNumOperands();
4388 Use
*OL
= getOperandList();
4390 // Replace this value with the last one.
4391 OL
[idx
+1] = OL
[NumOps
-1];
4393 // Nuke the last value.
4394 OL
[NumOps
-1].set(nullptr);
4395 setNumHungOffUseOperands(NumOps
-1);
4398 //===----------------------------------------------------------------------===//
4399 // FreezeInst Implementation
4400 //===----------------------------------------------------------------------===//
4402 FreezeInst::FreezeInst(Value
*S
,
4403 const Twine
&Name
, Instruction
*InsertBefore
)
4404 : UnaryInstruction(S
->getType(), Freeze
, S
, InsertBefore
) {
4408 FreezeInst::FreezeInst(Value
*S
,
4409 const Twine
&Name
, BasicBlock
*InsertAtEnd
)
4410 : UnaryInstruction(S
->getType(), Freeze
, S
, InsertAtEnd
) {
4414 //===----------------------------------------------------------------------===//
4415 // cloneImpl() implementations
4416 //===----------------------------------------------------------------------===//
4418 // Define these methods here so vtables don't get emitted into every translation
4419 // unit that uses these classes.
4421 GetElementPtrInst
*GetElementPtrInst::cloneImpl() const {
4422 return new (getNumOperands()) GetElementPtrInst(*this);
4425 UnaryOperator
*UnaryOperator::cloneImpl() const {
4426 return Create(getOpcode(), Op
<0>());
4429 BinaryOperator
*BinaryOperator::cloneImpl() const {
4430 return Create(getOpcode(), Op
<0>(), Op
<1>());
4433 FCmpInst
*FCmpInst::cloneImpl() const {
4434 return new FCmpInst(getPredicate(), Op
<0>(), Op
<1>());
4437 ICmpInst
*ICmpInst::cloneImpl() const {
4438 return new ICmpInst(getPredicate(), Op
<0>(), Op
<1>());
4441 ExtractValueInst
*ExtractValueInst::cloneImpl() const {
4442 return new ExtractValueInst(*this);
4445 InsertValueInst
*InsertValueInst::cloneImpl() const {
4446 return new InsertValueInst(*this);
4449 AllocaInst
*AllocaInst::cloneImpl() const {
4450 AllocaInst
*Result
=
4451 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4452 getOperand(0), getAlign());
4453 Result
->setUsedWithInAlloca(isUsedWithInAlloca());
4454 Result
->setSwiftError(isSwiftError());
4458 LoadInst
*LoadInst::cloneImpl() const {
4459 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4460 getAlign(), getOrdering(), getSyncScopeID());
4463 StoreInst
*StoreInst::cloneImpl() const {
4464 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4465 getOrdering(), getSyncScopeID());
4468 AtomicCmpXchgInst
*AtomicCmpXchgInst::cloneImpl() const {
4469 AtomicCmpXchgInst
*Result
= new AtomicCmpXchgInst(
4470 getOperand(0), getOperand(1), getOperand(2), getAlign(),
4471 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4472 Result
->setVolatile(isVolatile());
4473 Result
->setWeak(isWeak());
4477 AtomicRMWInst
*AtomicRMWInst::cloneImpl() const {
4478 AtomicRMWInst
*Result
=
4479 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4480 getAlign(), getOrdering(), getSyncScopeID());
4481 Result
->setVolatile(isVolatile());
4485 FenceInst
*FenceInst::cloneImpl() const {
4486 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4489 TruncInst
*TruncInst::cloneImpl() const {
4490 return new TruncInst(getOperand(0), getType());
4493 ZExtInst
*ZExtInst::cloneImpl() const {
4494 return new ZExtInst(getOperand(0), getType());
4497 SExtInst
*SExtInst::cloneImpl() const {
4498 return new SExtInst(getOperand(0), getType());
4501 FPTruncInst
*FPTruncInst::cloneImpl() const {
4502 return new FPTruncInst(getOperand(0), getType());
4505 FPExtInst
*FPExtInst::cloneImpl() const {
4506 return new FPExtInst(getOperand(0), getType());
4509 UIToFPInst
*UIToFPInst::cloneImpl() const {
4510 return new UIToFPInst(getOperand(0), getType());
4513 SIToFPInst
*SIToFPInst::cloneImpl() const {
4514 return new SIToFPInst(getOperand(0), getType());
4517 FPToUIInst
*FPToUIInst::cloneImpl() const {
4518 return new FPToUIInst(getOperand(0), getType());
4521 FPToSIInst
*FPToSIInst::cloneImpl() const {
4522 return new FPToSIInst(getOperand(0), getType());
4525 PtrToIntInst
*PtrToIntInst::cloneImpl() const {
4526 return new PtrToIntInst(getOperand(0), getType());
4529 IntToPtrInst
*IntToPtrInst::cloneImpl() const {
4530 return new IntToPtrInst(getOperand(0), getType());
4533 BitCastInst
*BitCastInst::cloneImpl() const {
4534 return new BitCastInst(getOperand(0), getType());
4537 AddrSpaceCastInst
*AddrSpaceCastInst::cloneImpl() const {
4538 return new AddrSpaceCastInst(getOperand(0), getType());
4541 CallInst
*CallInst::cloneImpl() const {
4542 if (hasOperandBundles()) {
4543 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4544 return new(getNumOperands(), DescriptorBytes
) CallInst(*this);
4546 return new(getNumOperands()) CallInst(*this);
4549 SelectInst
*SelectInst::cloneImpl() const {
4550 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4553 VAArgInst
*VAArgInst::cloneImpl() const {
4554 return new VAArgInst(getOperand(0), getType());
4557 ExtractElementInst
*ExtractElementInst::cloneImpl() const {
4558 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4561 InsertElementInst
*InsertElementInst::cloneImpl() const {
4562 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4565 ShuffleVectorInst
*ShuffleVectorInst::cloneImpl() const {
4566 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4569 PHINode
*PHINode::cloneImpl() const { return new PHINode(*this); }
4571 LandingPadInst
*LandingPadInst::cloneImpl() const {
4572 return new LandingPadInst(*this);
4575 ReturnInst
*ReturnInst::cloneImpl() const {
4576 return new(getNumOperands()) ReturnInst(*this);
4579 BranchInst
*BranchInst::cloneImpl() const {
4580 return new(getNumOperands()) BranchInst(*this);
4583 SwitchInst
*SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4585 IndirectBrInst
*IndirectBrInst::cloneImpl() const {
4586 return new IndirectBrInst(*this);
4589 InvokeInst
*InvokeInst::cloneImpl() const {
4590 if (hasOperandBundles()) {
4591 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4592 return new(getNumOperands(), DescriptorBytes
) InvokeInst(*this);
4594 return new(getNumOperands()) InvokeInst(*this);
4597 CallBrInst
*CallBrInst::cloneImpl() const {
4598 if (hasOperandBundles()) {
4599 unsigned DescriptorBytes
= getNumOperandBundles() * sizeof(BundleOpInfo
);
4600 return new (getNumOperands(), DescriptorBytes
) CallBrInst(*this);
4602 return new (getNumOperands()) CallBrInst(*this);
4605 ResumeInst
*ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4607 CleanupReturnInst
*CleanupReturnInst::cloneImpl() const {
4608 return new (getNumOperands()) CleanupReturnInst(*this);
4611 CatchReturnInst
*CatchReturnInst::cloneImpl() const {
4612 return new (getNumOperands()) CatchReturnInst(*this);
4615 CatchSwitchInst
*CatchSwitchInst::cloneImpl() const {
4616 return new CatchSwitchInst(*this);
4619 FuncletPadInst
*FuncletPadInst::cloneImpl() const {
4620 return new (getNumOperands()) FuncletPadInst(*this);
4623 UnreachableInst
*UnreachableInst::cloneImpl() const {
4624 LLVMContext
&Context
= getContext();
4625 return new UnreachableInst(Context
);
4628 FreezeInst
*FreezeInst::cloneImpl() const {
4629 return new FreezeInst(getOperand(0));