[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / Instructions.cpp
blob16507f5bcdef2243df1e9abba780773f0ceed7e2
1 //===- Instructions.cpp - Implement the LLVM instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements all of the non-inline methods for the LLVM instruction
10 // classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instructions.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/IR/Attributes.h"
20 #include "llvm/IR/BasicBlock.h"
21 #include "llvm/IR/Constant.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/InstrTypes.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Support/AtomicOrdering.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/TypeSize.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <cstdint>
44 #include <vector>
46 using namespace llvm;
48 static cl::opt<bool> DisableI2pP2iOpt(
49 "disable-i2p-p2i-opt", cl::init(false),
50 cl::desc("Disables inttoptr/ptrtoint roundtrip optimization"));
52 //===----------------------------------------------------------------------===//
53 // AllocaInst Class
54 //===----------------------------------------------------------------------===//
56 Optional<TypeSize>
57 AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
58 TypeSize Size = DL.getTypeAllocSizeInBits(getAllocatedType());
59 if (isArrayAllocation()) {
60 auto *C = dyn_cast<ConstantInt>(getArraySize());
61 if (!C)
62 return None;
63 assert(!Size.isScalable() && "Array elements cannot have a scalable size");
64 Size *= C->getZExtValue();
66 return Size;
69 //===----------------------------------------------------------------------===//
70 // SelectInst Class
71 //===----------------------------------------------------------------------===//
73 /// areInvalidOperands - Return a string if the specified operands are invalid
74 /// for a select operation, otherwise return null.
75 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
76 if (Op1->getType() != Op2->getType())
77 return "both values to select must have same type";
79 if (Op1->getType()->isTokenTy())
80 return "select values cannot have token type";
82 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
83 // Vector select.
84 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
85 return "vector select condition element type must be i1";
86 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
87 if (!ET)
88 return "selected values for vector select must be vectors";
89 if (ET->getElementCount() != VT->getElementCount())
90 return "vector select requires selected vectors to have "
91 "the same vector length as select condition";
92 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
93 return "select condition must be i1 or <n x i1>";
95 return nullptr;
98 //===----------------------------------------------------------------------===//
99 // PHINode Class
100 //===----------------------------------------------------------------------===//
102 PHINode::PHINode(const PHINode &PN)
103 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
104 ReservedSpace(PN.getNumOperands()) {
105 allocHungoffUses(PN.getNumOperands());
106 std::copy(PN.op_begin(), PN.op_end(), op_begin());
107 std::copy(PN.block_begin(), PN.block_end(), block_begin());
108 SubclassOptionalData = PN.SubclassOptionalData;
111 // removeIncomingValue - Remove an incoming value. This is useful if a
112 // predecessor basic block is deleted.
113 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
114 Value *Removed = getIncomingValue(Idx);
116 // Move everything after this operand down.
118 // FIXME: we could just swap with the end of the list, then erase. However,
119 // clients might not expect this to happen. The code as it is thrashes the
120 // use/def lists, which is kinda lame.
121 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
122 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
124 // Nuke the last value.
125 Op<-1>().set(nullptr);
126 setNumHungOffUseOperands(getNumOperands() - 1);
128 // If the PHI node is dead, because it has zero entries, nuke it now.
129 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
130 // If anyone is using this PHI, make them use a dummy value instead...
131 replaceAllUsesWith(UndefValue::get(getType()));
132 eraseFromParent();
134 return Removed;
137 /// growOperands - grow operands - This grows the operand list in response
138 /// to a push_back style of operation. This grows the number of ops by 1.5
139 /// times.
141 void PHINode::growOperands() {
142 unsigned e = getNumOperands();
143 unsigned NumOps = e + e / 2;
144 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
146 ReservedSpace = NumOps;
147 growHungoffUses(ReservedSpace, /* IsPhi */ true);
150 /// hasConstantValue - If the specified PHI node always merges together the same
151 /// value, return the value, otherwise return null.
152 Value *PHINode::hasConstantValue() const {
153 // Exploit the fact that phi nodes always have at least one entry.
154 Value *ConstantValue = getIncomingValue(0);
155 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
156 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
157 if (ConstantValue != this)
158 return nullptr; // Incoming values not all the same.
159 // The case where the first value is this PHI.
160 ConstantValue = getIncomingValue(i);
162 if (ConstantValue == this)
163 return UndefValue::get(getType());
164 return ConstantValue;
167 /// hasConstantOrUndefValue - Whether the specified PHI node always merges
168 /// together the same value, assuming that undefs result in the same value as
169 /// non-undefs.
170 /// Unlike \ref hasConstantValue, this does not return a value because the
171 /// unique non-undef incoming value need not dominate the PHI node.
172 bool PHINode::hasConstantOrUndefValue() const {
173 Value *ConstantValue = nullptr;
174 for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
175 Value *Incoming = getIncomingValue(i);
176 if (Incoming != this && !isa<UndefValue>(Incoming)) {
177 if (ConstantValue && ConstantValue != Incoming)
178 return false;
179 ConstantValue = Incoming;
182 return true;
185 //===----------------------------------------------------------------------===//
186 // LandingPadInst Implementation
187 //===----------------------------------------------------------------------===//
189 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
190 const Twine &NameStr, Instruction *InsertBefore)
191 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
192 init(NumReservedValues, NameStr);
195 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
196 const Twine &NameStr, BasicBlock *InsertAtEnd)
197 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
198 init(NumReservedValues, NameStr);
201 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
202 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
203 LP.getNumOperands()),
204 ReservedSpace(LP.getNumOperands()) {
205 allocHungoffUses(LP.getNumOperands());
206 Use *OL = getOperandList();
207 const Use *InOL = LP.getOperandList();
208 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
209 OL[I] = InOL[I];
211 setCleanup(LP.isCleanup());
214 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
215 const Twine &NameStr,
216 Instruction *InsertBefore) {
217 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
220 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
221 const Twine &NameStr,
222 BasicBlock *InsertAtEnd) {
223 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
226 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
227 ReservedSpace = NumReservedValues;
228 setNumHungOffUseOperands(0);
229 allocHungoffUses(ReservedSpace);
230 setName(NameStr);
231 setCleanup(false);
234 /// growOperands - grow operands - This grows the operand list in response to a
235 /// push_back style of operation. This grows the number of ops by 2 times.
236 void LandingPadInst::growOperands(unsigned Size) {
237 unsigned e = getNumOperands();
238 if (ReservedSpace >= e + Size) return;
239 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
240 growHungoffUses(ReservedSpace);
243 void LandingPadInst::addClause(Constant *Val) {
244 unsigned OpNo = getNumOperands();
245 growOperands(1);
246 assert(OpNo < ReservedSpace && "Growing didn't work!");
247 setNumHungOffUseOperands(getNumOperands() + 1);
248 getOperandList()[OpNo] = Val;
251 //===----------------------------------------------------------------------===//
252 // CallBase Implementation
253 //===----------------------------------------------------------------------===//
255 CallBase *CallBase::Create(CallBase *CB, ArrayRef<OperandBundleDef> Bundles,
256 Instruction *InsertPt) {
257 switch (CB->getOpcode()) {
258 case Instruction::Call:
259 return CallInst::Create(cast<CallInst>(CB), Bundles, InsertPt);
260 case Instruction::Invoke:
261 return InvokeInst::Create(cast<InvokeInst>(CB), Bundles, InsertPt);
262 case Instruction::CallBr:
263 return CallBrInst::Create(cast<CallBrInst>(CB), Bundles, InsertPt);
264 default:
265 llvm_unreachable("Unknown CallBase sub-class!");
269 CallBase *CallBase::Create(CallBase *CI, OperandBundleDef OpB,
270 Instruction *InsertPt) {
271 SmallVector<OperandBundleDef, 2> OpDefs;
272 for (unsigned i = 0, e = CI->getNumOperandBundles(); i < e; ++i) {
273 auto ChildOB = CI->getOperandBundleAt(i);
274 if (ChildOB.getTagName() != OpB.getTag())
275 OpDefs.emplace_back(ChildOB);
277 OpDefs.emplace_back(OpB);
278 return CallBase::Create(CI, OpDefs, InsertPt);
282 Function *CallBase::getCaller() { return getParent()->getParent(); }
284 unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
285 assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
286 return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
289 bool CallBase::isIndirectCall() const {
290 const Value *V = getCalledOperand();
291 if (isa<Function>(V) || isa<Constant>(V))
292 return false;
293 return !isInlineAsm();
296 /// Tests if this call site must be tail call optimized. Only a CallInst can
297 /// be tail call optimized.
298 bool CallBase::isMustTailCall() const {
299 if (auto *CI = dyn_cast<CallInst>(this))
300 return CI->isMustTailCall();
301 return false;
304 /// Tests if this call site is marked as a tail call.
305 bool CallBase::isTailCall() const {
306 if (auto *CI = dyn_cast<CallInst>(this))
307 return CI->isTailCall();
308 return false;
311 Intrinsic::ID CallBase::getIntrinsicID() const {
312 if (auto *F = getCalledFunction())
313 return F->getIntrinsicID();
314 return Intrinsic::not_intrinsic;
317 bool CallBase::isReturnNonNull() const {
318 if (hasRetAttr(Attribute::NonNull))
319 return true;
321 if (getRetDereferenceableBytes() > 0 &&
322 !NullPointerIsDefined(getCaller(), getType()->getPointerAddressSpace()))
323 return true;
325 return false;
328 Value *CallBase::getReturnedArgOperand() const {
329 unsigned Index;
331 if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
332 return getArgOperand(Index - AttributeList::FirstArgIndex);
333 if (const Function *F = getCalledFunction())
334 if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
335 Index)
336 return getArgOperand(Index - AttributeList::FirstArgIndex);
338 return nullptr;
341 /// Determine whether the argument or parameter has the given attribute.
342 bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
343 assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
345 if (Attrs.hasParamAttr(ArgNo, Kind))
346 return true;
347 if (const Function *F = getCalledFunction())
348 return F->getAttributes().hasParamAttr(ArgNo, Kind);
349 return false;
352 bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
353 if (const Function *F = getCalledFunction())
354 return F->getAttributes().hasFnAttr(Kind);
355 return false;
358 bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
359 if (const Function *F = getCalledFunction())
360 return F->getAttributes().hasFnAttr(Kind);
361 return false;
364 void CallBase::getOperandBundlesAsDefs(
365 SmallVectorImpl<OperandBundleDef> &Defs) const {
366 for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
367 Defs.emplace_back(getOperandBundleAt(i));
370 CallBase::op_iterator
371 CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
372 const unsigned BeginIndex) {
373 auto It = op_begin() + BeginIndex;
374 for (auto &B : Bundles)
375 It = std::copy(B.input_begin(), B.input_end(), It);
377 auto *ContextImpl = getContext().pImpl;
378 auto BI = Bundles.begin();
379 unsigned CurrentIndex = BeginIndex;
381 for (auto &BOI : bundle_op_infos()) {
382 assert(BI != Bundles.end() && "Incorrect allocation?");
384 BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
385 BOI.Begin = CurrentIndex;
386 BOI.End = CurrentIndex + BI->input_size();
387 CurrentIndex = BOI.End;
388 BI++;
391 assert(BI == Bundles.end() && "Incorrect allocation?");
393 return It;
396 CallBase::BundleOpInfo &CallBase::getBundleOpInfoForOperand(unsigned OpIdx) {
397 /// When there isn't many bundles, we do a simple linear search.
398 /// Else fallback to a binary-search that use the fact that bundles usually
399 /// have similar number of argument to get faster convergence.
400 if (bundle_op_info_end() - bundle_op_info_begin() < 8) {
401 for (auto &BOI : bundle_op_infos())
402 if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
403 return BOI;
405 llvm_unreachable("Did not find operand bundle for operand!");
408 assert(OpIdx >= arg_size() && "the Idx is not in the operand bundles");
409 assert(bundle_op_info_end() - bundle_op_info_begin() > 0 &&
410 OpIdx < std::prev(bundle_op_info_end())->End &&
411 "The Idx isn't in the operand bundle");
413 /// We need a decimal number below and to prevent using floating point numbers
414 /// we use an intergal value multiplied by this constant.
415 constexpr unsigned NumberScaling = 1024;
417 bundle_op_iterator Begin = bundle_op_info_begin();
418 bundle_op_iterator End = bundle_op_info_end();
419 bundle_op_iterator Current = Begin;
421 while (Begin != End) {
422 unsigned ScaledOperandPerBundle =
423 NumberScaling * (std::prev(End)->End - Begin->Begin) / (End - Begin);
424 Current = Begin + (((OpIdx - Begin->Begin) * NumberScaling) /
425 ScaledOperandPerBundle);
426 if (Current >= End)
427 Current = std::prev(End);
428 assert(Current < End && Current >= Begin &&
429 "the operand bundle doesn't cover every value in the range");
430 if (OpIdx >= Current->Begin && OpIdx < Current->End)
431 break;
432 if (OpIdx >= Current->End)
433 Begin = Current + 1;
434 else
435 End = Current;
438 assert(OpIdx >= Current->Begin && OpIdx < Current->End &&
439 "the operand bundle doesn't cover every value in the range");
440 return *Current;
443 CallBase *CallBase::addOperandBundle(CallBase *CB, uint32_t ID,
444 OperandBundleDef OB,
445 Instruction *InsertPt) {
446 if (CB->getOperandBundle(ID))
447 return CB;
449 SmallVector<OperandBundleDef, 1> Bundles;
450 CB->getOperandBundlesAsDefs(Bundles);
451 Bundles.push_back(OB);
452 return Create(CB, Bundles, InsertPt);
455 CallBase *CallBase::removeOperandBundle(CallBase *CB, uint32_t ID,
456 Instruction *InsertPt) {
457 SmallVector<OperandBundleDef, 1> Bundles;
458 bool CreateNew = false;
460 for (unsigned I = 0, E = CB->getNumOperandBundles(); I != E; ++I) {
461 auto Bundle = CB->getOperandBundleAt(I);
462 if (Bundle.getTagID() == ID) {
463 CreateNew = true;
464 continue;
466 Bundles.emplace_back(Bundle);
469 return CreateNew ? Create(CB, Bundles, InsertPt) : CB;
472 bool CallBase::hasReadingOperandBundles() const {
473 // Implementation note: this is a conservative implementation of operand
474 // bundle semantics, where *any* non-assume operand bundle forces a callsite
475 // to be at least readonly.
476 return hasOperandBundles() && getIntrinsicID() != Intrinsic::assume;
479 //===----------------------------------------------------------------------===//
480 // CallInst Implementation
481 //===----------------------------------------------------------------------===//
483 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
484 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
485 this->FTy = FTy;
486 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
487 "NumOperands not set up?");
489 #ifndef NDEBUG
490 assert((Args.size() == FTy->getNumParams() ||
491 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
492 "Calling a function with bad signature!");
494 for (unsigned i = 0; i != Args.size(); ++i)
495 assert((i >= FTy->getNumParams() ||
496 FTy->getParamType(i) == Args[i]->getType()) &&
497 "Calling a function with a bad signature!");
498 #endif
500 // Set operands in order of their index to match use-list-order
501 // prediction.
502 llvm::copy(Args, op_begin());
503 setCalledOperand(Func);
505 auto It = populateBundleOperandInfos(Bundles, Args.size());
506 (void)It;
507 assert(It + 1 == op_end() && "Should add up!");
509 setName(NameStr);
512 void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
513 this->FTy = FTy;
514 assert(getNumOperands() == 1 && "NumOperands not set up?");
515 setCalledOperand(Func);
517 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
519 setName(NameStr);
522 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
523 Instruction *InsertBefore)
524 : CallBase(Ty->getReturnType(), Instruction::Call,
525 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
526 init(Ty, Func, Name);
529 CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
530 BasicBlock *InsertAtEnd)
531 : CallBase(Ty->getReturnType(), Instruction::Call,
532 OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
533 init(Ty, Func, Name);
536 CallInst::CallInst(const CallInst &CI)
537 : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
538 OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
539 CI.getNumOperands()) {
540 setTailCallKind(CI.getTailCallKind());
541 setCallingConv(CI.getCallingConv());
543 std::copy(CI.op_begin(), CI.op_end(), op_begin());
544 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
545 bundle_op_info_begin());
546 SubclassOptionalData = CI.SubclassOptionalData;
549 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
550 Instruction *InsertPt) {
551 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
553 auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledOperand(),
554 Args, OpB, CI->getName(), InsertPt);
555 NewCI->setTailCallKind(CI->getTailCallKind());
556 NewCI->setCallingConv(CI->getCallingConv());
557 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
558 NewCI->setAttributes(CI->getAttributes());
559 NewCI->setDebugLoc(CI->getDebugLoc());
560 return NewCI;
563 // Update profile weight for call instruction by scaling it using the ratio
564 // of S/T. The meaning of "branch_weights" meta data for call instruction is
565 // transfered to represent call count.
566 void CallInst::updateProfWeight(uint64_t S, uint64_t T) {
567 auto *ProfileData = getMetadata(LLVMContext::MD_prof);
568 if (ProfileData == nullptr)
569 return;
571 auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0));
572 if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") &&
573 !ProfDataName->getString().equals("VP")))
574 return;
576 if (T == 0) {
577 LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in "
578 "div by 0. Ignoring. Likely the function "
579 << getParent()->getParent()->getName()
580 << " has 0 entry count, and contains call instructions "
581 "with non-zero prof info.");
582 return;
585 MDBuilder MDB(getContext());
586 SmallVector<Metadata *, 3> Vals;
587 Vals.push_back(ProfileData->getOperand(0));
588 APInt APS(128, S), APT(128, T);
589 if (ProfDataName->getString().equals("branch_weights") &&
590 ProfileData->getNumOperands() > 0) {
591 // Using APInt::div may be expensive, but most cases should fit 64 bits.
592 APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1))
593 ->getValue()
594 .getZExtValue());
595 Val *= APS;
596 Vals.push_back(MDB.createConstant(
597 ConstantInt::get(Type::getInt32Ty(getContext()),
598 Val.udiv(APT).getLimitedValue(UINT32_MAX))));
599 } else if (ProfDataName->getString().equals("VP"))
600 for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) {
601 // The first value is the key of the value profile, which will not change.
602 Vals.push_back(ProfileData->getOperand(i));
603 uint64_t Count =
604 mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1))
605 ->getValue()
606 .getZExtValue();
607 // Don't scale the magic number.
608 if (Count == NOMORE_ICP_MAGICNUM) {
609 Vals.push_back(ProfileData->getOperand(i + 1));
610 continue;
612 // Using APInt::div may be expensive, but most cases should fit 64 bits.
613 APInt Val(128, Count);
614 Val *= APS;
615 Vals.push_back(MDB.createConstant(
616 ConstantInt::get(Type::getInt64Ty(getContext()),
617 Val.udiv(APT).getLimitedValue())));
619 setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals));
622 /// IsConstantOne - Return true only if val is constant int 1
623 static bool IsConstantOne(Value *val) {
624 assert(val && "IsConstantOne does not work with nullptr val");
625 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
626 return CVal && CVal->isOne();
629 static Instruction *createMalloc(Instruction *InsertBefore,
630 BasicBlock *InsertAtEnd, Type *IntPtrTy,
631 Type *AllocTy, Value *AllocSize,
632 Value *ArraySize,
633 ArrayRef<OperandBundleDef> OpB,
634 Function *MallocF, const Twine &Name) {
635 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
636 "createMalloc needs either InsertBefore or InsertAtEnd");
638 // malloc(type) becomes:
639 // bitcast (i8* malloc(typeSize)) to type*
640 // malloc(type, arraySize) becomes:
641 // bitcast (i8* malloc(typeSize*arraySize)) to type*
642 if (!ArraySize)
643 ArraySize = ConstantInt::get(IntPtrTy, 1);
644 else if (ArraySize->getType() != IntPtrTy) {
645 if (InsertBefore)
646 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
647 "", InsertBefore);
648 else
649 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
650 "", InsertAtEnd);
653 if (!IsConstantOne(ArraySize)) {
654 if (IsConstantOne(AllocSize)) {
655 AllocSize = ArraySize; // Operand * 1 = Operand
656 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
657 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
658 false /*ZExt*/);
659 // Malloc arg is constant product of type size and array size
660 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
661 } else {
662 // Multiply type size by the array size...
663 if (InsertBefore)
664 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
665 "mallocsize", InsertBefore);
666 else
667 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
668 "mallocsize", InsertAtEnd);
672 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
673 // Create the call to Malloc.
674 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
675 Module *M = BB->getParent()->getParent();
676 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
677 FunctionCallee MallocFunc = MallocF;
678 if (!MallocFunc)
679 // prototype malloc as "void *malloc(size_t)"
680 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
681 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
682 CallInst *MCall = nullptr;
683 Instruction *Result = nullptr;
684 if (InsertBefore) {
685 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
686 InsertBefore);
687 Result = MCall;
688 if (Result->getType() != AllocPtrType)
689 // Create a cast instruction to convert to the right type...
690 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
691 } else {
692 MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
693 Result = MCall;
694 if (Result->getType() != AllocPtrType) {
695 InsertAtEnd->getInstList().push_back(MCall);
696 // Create a cast instruction to convert to the right type...
697 Result = new BitCastInst(MCall, AllocPtrType, Name);
700 MCall->setTailCall();
701 if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
702 MCall->setCallingConv(F->getCallingConv());
703 if (!F->returnDoesNotAlias())
704 F->setReturnDoesNotAlias();
706 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
708 return Result;
711 /// CreateMalloc - Generate the IR for a call to malloc:
712 /// 1. Compute the malloc call's argument as the specified type's size,
713 /// possibly multiplied by the array size if the array size is not
714 /// constant 1.
715 /// 2. Call malloc with that argument.
716 /// 3. Bitcast the result of the malloc call to the specified type.
717 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
718 Type *IntPtrTy, Type *AllocTy,
719 Value *AllocSize, Value *ArraySize,
720 Function *MallocF,
721 const Twine &Name) {
722 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
723 ArraySize, None, MallocF, Name);
725 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
726 Type *IntPtrTy, Type *AllocTy,
727 Value *AllocSize, Value *ArraySize,
728 ArrayRef<OperandBundleDef> OpB,
729 Function *MallocF,
730 const Twine &Name) {
731 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
732 ArraySize, OpB, MallocF, Name);
735 /// CreateMalloc - Generate the IR for a call to malloc:
736 /// 1. Compute the malloc call's argument as the specified type's size,
737 /// possibly multiplied by the array size if the array size is not
738 /// constant 1.
739 /// 2. Call malloc with that argument.
740 /// 3. Bitcast the result of the malloc call to the specified type.
741 /// Note: This function does not add the bitcast to the basic block, that is the
742 /// responsibility of the caller.
743 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
744 Type *IntPtrTy, Type *AllocTy,
745 Value *AllocSize, Value *ArraySize,
746 Function *MallocF, const Twine &Name) {
747 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
748 ArraySize, None, MallocF, Name);
750 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
751 Type *IntPtrTy, Type *AllocTy,
752 Value *AllocSize, Value *ArraySize,
753 ArrayRef<OperandBundleDef> OpB,
754 Function *MallocF, const Twine &Name) {
755 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
756 ArraySize, OpB, MallocF, Name);
759 static Instruction *createFree(Value *Source,
760 ArrayRef<OperandBundleDef> Bundles,
761 Instruction *InsertBefore,
762 BasicBlock *InsertAtEnd) {
763 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
764 "createFree needs either InsertBefore or InsertAtEnd");
765 assert(Source->getType()->isPointerTy() &&
766 "Can not free something of nonpointer type!");
768 BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
769 Module *M = BB->getParent()->getParent();
771 Type *VoidTy = Type::getVoidTy(M->getContext());
772 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
773 // prototype free as "void free(void*)"
774 FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
775 CallInst *Result = nullptr;
776 Value *PtrCast = Source;
777 if (InsertBefore) {
778 if (Source->getType() != IntPtrTy)
779 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
780 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
781 } else {
782 if (Source->getType() != IntPtrTy)
783 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
784 Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
786 Result->setTailCall();
787 if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
788 Result->setCallingConv(F->getCallingConv());
790 return Result;
793 /// CreateFree - Generate the IR for a call to the builtin free function.
794 Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
795 return createFree(Source, None, InsertBefore, nullptr);
797 Instruction *CallInst::CreateFree(Value *Source,
798 ArrayRef<OperandBundleDef> Bundles,
799 Instruction *InsertBefore) {
800 return createFree(Source, Bundles, InsertBefore, nullptr);
803 /// CreateFree - Generate the IR for a call to the builtin free function.
804 /// Note: This function does not add the call to the basic block, that is the
805 /// responsibility of the caller.
806 Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
807 Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
808 assert(FreeCall && "CreateFree did not create a CallInst");
809 return FreeCall;
811 Instruction *CallInst::CreateFree(Value *Source,
812 ArrayRef<OperandBundleDef> Bundles,
813 BasicBlock *InsertAtEnd) {
814 Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
815 assert(FreeCall && "CreateFree did not create a CallInst");
816 return FreeCall;
819 //===----------------------------------------------------------------------===//
820 // InvokeInst Implementation
821 //===----------------------------------------------------------------------===//
823 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
824 BasicBlock *IfException, ArrayRef<Value *> Args,
825 ArrayRef<OperandBundleDef> Bundles,
826 const Twine &NameStr) {
827 this->FTy = FTy;
829 assert((int)getNumOperands() ==
830 ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
831 "NumOperands not set up?");
833 #ifndef NDEBUG
834 assert(((Args.size() == FTy->getNumParams()) ||
835 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
836 "Invoking a function with bad signature");
838 for (unsigned i = 0, e = Args.size(); i != e; i++)
839 assert((i >= FTy->getNumParams() ||
840 FTy->getParamType(i) == Args[i]->getType()) &&
841 "Invoking a function with a bad signature!");
842 #endif
844 // Set operands in order of their index to match use-list-order
845 // prediction.
846 llvm::copy(Args, op_begin());
847 setNormalDest(IfNormal);
848 setUnwindDest(IfException);
849 setCalledOperand(Fn);
851 auto It = populateBundleOperandInfos(Bundles, Args.size());
852 (void)It;
853 assert(It + 3 == op_end() && "Should add up!");
855 setName(NameStr);
858 InvokeInst::InvokeInst(const InvokeInst &II)
859 : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
860 OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
861 II.getNumOperands()) {
862 setCallingConv(II.getCallingConv());
863 std::copy(II.op_begin(), II.op_end(), op_begin());
864 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
865 bundle_op_info_begin());
866 SubclassOptionalData = II.SubclassOptionalData;
869 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
870 Instruction *InsertPt) {
871 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
873 auto *NewII = InvokeInst::Create(
874 II->getFunctionType(), II->getCalledOperand(), II->getNormalDest(),
875 II->getUnwindDest(), Args, OpB, II->getName(), InsertPt);
876 NewII->setCallingConv(II->getCallingConv());
877 NewII->SubclassOptionalData = II->SubclassOptionalData;
878 NewII->setAttributes(II->getAttributes());
879 NewII->setDebugLoc(II->getDebugLoc());
880 return NewII;
883 LandingPadInst *InvokeInst::getLandingPadInst() const {
884 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
887 //===----------------------------------------------------------------------===//
888 // CallBrInst Implementation
889 //===----------------------------------------------------------------------===//
891 void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
892 ArrayRef<BasicBlock *> IndirectDests,
893 ArrayRef<Value *> Args,
894 ArrayRef<OperandBundleDef> Bundles,
895 const Twine &NameStr) {
896 this->FTy = FTy;
898 assert((int)getNumOperands() ==
899 ComputeNumOperands(Args.size(), IndirectDests.size(),
900 CountBundleInputs(Bundles)) &&
901 "NumOperands not set up?");
903 #ifndef NDEBUG
904 assert(((Args.size() == FTy->getNumParams()) ||
905 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
906 "Calling a function with bad signature");
908 for (unsigned i = 0, e = Args.size(); i != e; i++)
909 assert((i >= FTy->getNumParams() ||
910 FTy->getParamType(i) == Args[i]->getType()) &&
911 "Calling a function with a bad signature!");
912 #endif
914 // Set operands in order of their index to match use-list-order
915 // prediction.
916 std::copy(Args.begin(), Args.end(), op_begin());
917 NumIndirectDests = IndirectDests.size();
918 setDefaultDest(Fallthrough);
919 for (unsigned i = 0; i != NumIndirectDests; ++i)
920 setIndirectDest(i, IndirectDests[i]);
921 setCalledOperand(Fn);
923 auto It = populateBundleOperandInfos(Bundles, Args.size());
924 (void)It;
925 assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
927 setName(NameStr);
930 void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) {
931 assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr");
932 if (BasicBlock *OldBB = getIndirectDest(i)) {
933 BlockAddress *Old = BlockAddress::get(OldBB);
934 BlockAddress *New = BlockAddress::get(B);
935 for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo)
936 if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old)
937 setArgOperand(ArgNo, New);
941 CallBrInst::CallBrInst(const CallBrInst &CBI)
942 : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
943 OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
944 CBI.getNumOperands()) {
945 setCallingConv(CBI.getCallingConv());
946 std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
947 std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
948 bundle_op_info_begin());
949 SubclassOptionalData = CBI.SubclassOptionalData;
950 NumIndirectDests = CBI.NumIndirectDests;
953 CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
954 Instruction *InsertPt) {
955 std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
957 auto *NewCBI = CallBrInst::Create(
958 CBI->getFunctionType(), CBI->getCalledOperand(), CBI->getDefaultDest(),
959 CBI->getIndirectDests(), Args, OpB, CBI->getName(), InsertPt);
960 NewCBI->setCallingConv(CBI->getCallingConv());
961 NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
962 NewCBI->setAttributes(CBI->getAttributes());
963 NewCBI->setDebugLoc(CBI->getDebugLoc());
964 NewCBI->NumIndirectDests = CBI->NumIndirectDests;
965 return NewCBI;
968 //===----------------------------------------------------------------------===//
969 // ReturnInst Implementation
970 //===----------------------------------------------------------------------===//
972 ReturnInst::ReturnInst(const ReturnInst &RI)
973 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
974 OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
975 RI.getNumOperands()) {
976 if (RI.getNumOperands())
977 Op<0>() = RI.Op<0>();
978 SubclassOptionalData = RI.SubclassOptionalData;
981 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
982 : Instruction(Type::getVoidTy(C), Instruction::Ret,
983 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
984 InsertBefore) {
985 if (retVal)
986 Op<0>() = retVal;
989 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
990 : Instruction(Type::getVoidTy(C), Instruction::Ret,
991 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
992 InsertAtEnd) {
993 if (retVal)
994 Op<0>() = retVal;
997 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
998 : Instruction(Type::getVoidTy(Context), Instruction::Ret,
999 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
1001 //===----------------------------------------------------------------------===//
1002 // ResumeInst Implementation
1003 //===----------------------------------------------------------------------===//
1005 ResumeInst::ResumeInst(const ResumeInst &RI)
1006 : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
1007 OperandTraits<ResumeInst>::op_begin(this), 1) {
1008 Op<0>() = RI.Op<0>();
1011 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
1012 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1013 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
1014 Op<0>() = Exn;
1017 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
1018 : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
1019 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
1020 Op<0>() = Exn;
1023 //===----------------------------------------------------------------------===//
1024 // CleanupReturnInst Implementation
1025 //===----------------------------------------------------------------------===//
1027 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
1028 : Instruction(CRI.getType(), Instruction::CleanupRet,
1029 OperandTraits<CleanupReturnInst>::op_end(this) -
1030 CRI.getNumOperands(),
1031 CRI.getNumOperands()) {
1032 setSubclassData<Instruction::OpaqueField>(
1033 CRI.getSubclassData<Instruction::OpaqueField>());
1034 Op<0>() = CRI.Op<0>();
1035 if (CRI.hasUnwindDest())
1036 Op<1>() = CRI.Op<1>();
1039 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
1040 if (UnwindBB)
1041 setSubclassData<UnwindDestField>(true);
1043 Op<0>() = CleanupPad;
1044 if (UnwindBB)
1045 Op<1>() = UnwindBB;
1048 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1049 unsigned Values, Instruction *InsertBefore)
1050 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1051 Instruction::CleanupRet,
1052 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1053 Values, InsertBefore) {
1054 init(CleanupPad, UnwindBB);
1057 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
1058 unsigned Values, BasicBlock *InsertAtEnd)
1059 : Instruction(Type::getVoidTy(CleanupPad->getContext()),
1060 Instruction::CleanupRet,
1061 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
1062 Values, InsertAtEnd) {
1063 init(CleanupPad, UnwindBB);
1066 //===----------------------------------------------------------------------===//
1067 // CatchReturnInst Implementation
1068 //===----------------------------------------------------------------------===//
1069 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
1070 Op<0>() = CatchPad;
1071 Op<1>() = BB;
1074 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
1075 : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
1076 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
1077 Op<0>() = CRI.Op<0>();
1078 Op<1>() = CRI.Op<1>();
1081 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1082 Instruction *InsertBefore)
1083 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1084 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1085 InsertBefore) {
1086 init(CatchPad, BB);
1089 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
1090 BasicBlock *InsertAtEnd)
1091 : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
1092 OperandTraits<CatchReturnInst>::op_begin(this), 2,
1093 InsertAtEnd) {
1094 init(CatchPad, BB);
1097 //===----------------------------------------------------------------------===//
1098 // CatchSwitchInst Implementation
1099 //===----------------------------------------------------------------------===//
1101 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1102 unsigned NumReservedValues,
1103 const Twine &NameStr,
1104 Instruction *InsertBefore)
1105 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1106 InsertBefore) {
1107 if (UnwindDest)
1108 ++NumReservedValues;
1109 init(ParentPad, UnwindDest, NumReservedValues + 1);
1110 setName(NameStr);
1113 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
1114 unsigned NumReservedValues,
1115 const Twine &NameStr, BasicBlock *InsertAtEnd)
1116 : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
1117 InsertAtEnd) {
1118 if (UnwindDest)
1119 ++NumReservedValues;
1120 init(ParentPad, UnwindDest, NumReservedValues + 1);
1121 setName(NameStr);
1124 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
1125 : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
1126 CSI.getNumOperands()) {
1127 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
1128 setNumHungOffUseOperands(ReservedSpace);
1129 Use *OL = getOperandList();
1130 const Use *InOL = CSI.getOperandList();
1131 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
1132 OL[I] = InOL[I];
1135 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
1136 unsigned NumReservedValues) {
1137 assert(ParentPad && NumReservedValues);
1139 ReservedSpace = NumReservedValues;
1140 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
1141 allocHungoffUses(ReservedSpace);
1143 Op<0>() = ParentPad;
1144 if (UnwindDest) {
1145 setSubclassData<UnwindDestField>(true);
1146 setUnwindDest(UnwindDest);
1150 /// growOperands - grow operands - This grows the operand list in response to a
1151 /// push_back style of operation. This grows the number of ops by 2 times.
1152 void CatchSwitchInst::growOperands(unsigned Size) {
1153 unsigned NumOperands = getNumOperands();
1154 assert(NumOperands >= 1);
1155 if (ReservedSpace >= NumOperands + Size)
1156 return;
1157 ReservedSpace = (NumOperands + Size / 2) * 2;
1158 growHungoffUses(ReservedSpace);
1161 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
1162 unsigned OpNo = getNumOperands();
1163 growOperands(1);
1164 assert(OpNo < ReservedSpace && "Growing didn't work!");
1165 setNumHungOffUseOperands(getNumOperands() + 1);
1166 getOperandList()[OpNo] = Handler;
1169 void CatchSwitchInst::removeHandler(handler_iterator HI) {
1170 // Move all subsequent handlers up one.
1171 Use *EndDst = op_end() - 1;
1172 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
1173 *CurDst = *(CurDst + 1);
1174 // Null out the last handler use.
1175 *EndDst = nullptr;
1177 setNumHungOffUseOperands(getNumOperands() - 1);
1180 //===----------------------------------------------------------------------===//
1181 // FuncletPadInst Implementation
1182 //===----------------------------------------------------------------------===//
1183 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
1184 const Twine &NameStr) {
1185 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
1186 llvm::copy(Args, op_begin());
1187 setParentPad(ParentPad);
1188 setName(NameStr);
1191 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
1192 : Instruction(FPI.getType(), FPI.getOpcode(),
1193 OperandTraits<FuncletPadInst>::op_end(this) -
1194 FPI.getNumOperands(),
1195 FPI.getNumOperands()) {
1196 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
1197 setParentPad(FPI.getParentPad());
1200 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1201 ArrayRef<Value *> Args, unsigned Values,
1202 const Twine &NameStr, Instruction *InsertBefore)
1203 : Instruction(ParentPad->getType(), Op,
1204 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1205 InsertBefore) {
1206 init(ParentPad, Args, NameStr);
1209 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
1210 ArrayRef<Value *> Args, unsigned Values,
1211 const Twine &NameStr, BasicBlock *InsertAtEnd)
1212 : Instruction(ParentPad->getType(), Op,
1213 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
1214 InsertAtEnd) {
1215 init(ParentPad, Args, NameStr);
1218 //===----------------------------------------------------------------------===//
1219 // UnreachableInst Implementation
1220 //===----------------------------------------------------------------------===//
1222 UnreachableInst::UnreachableInst(LLVMContext &Context,
1223 Instruction *InsertBefore)
1224 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1225 0, InsertBefore) {}
1226 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
1227 : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
1228 0, InsertAtEnd) {}
1230 //===----------------------------------------------------------------------===//
1231 // BranchInst Implementation
1232 //===----------------------------------------------------------------------===//
1234 void BranchInst::AssertOK() {
1235 if (isConditional())
1236 assert(getCondition()->getType()->isIntegerTy(1) &&
1237 "May only branch on boolean predicates!");
1240 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1241 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1242 OperandTraits<BranchInst>::op_end(this) - 1, 1,
1243 InsertBefore) {
1244 assert(IfTrue && "Branch destination may not be null!");
1245 Op<-1>() = IfTrue;
1248 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1249 Instruction *InsertBefore)
1250 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1251 OperandTraits<BranchInst>::op_end(this) - 3, 3,
1252 InsertBefore) {
1253 // Assign in order of operand index to make use-list order predictable.
1254 Op<-3>() = Cond;
1255 Op<-2>() = IfFalse;
1256 Op<-1>() = IfTrue;
1257 #ifndef NDEBUG
1258 AssertOK();
1259 #endif
1262 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1263 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1264 OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
1265 assert(IfTrue && "Branch destination may not be null!");
1266 Op<-1>() = IfTrue;
1269 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1270 BasicBlock *InsertAtEnd)
1271 : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1272 OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
1273 // Assign in order of operand index to make use-list order predictable.
1274 Op<-3>() = Cond;
1275 Op<-2>() = IfFalse;
1276 Op<-1>() = IfTrue;
1277 #ifndef NDEBUG
1278 AssertOK();
1279 #endif
1282 BranchInst::BranchInst(const BranchInst &BI)
1283 : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
1284 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1285 BI.getNumOperands()) {
1286 // Assign in order of operand index to make use-list order predictable.
1287 if (BI.getNumOperands() != 1) {
1288 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1289 Op<-3>() = BI.Op<-3>();
1290 Op<-2>() = BI.Op<-2>();
1292 Op<-1>() = BI.Op<-1>();
1293 SubclassOptionalData = BI.SubclassOptionalData;
1296 void BranchInst::swapSuccessors() {
1297 assert(isConditional() &&
1298 "Cannot swap successors of an unconditional branch");
1299 Op<-1>().swap(Op<-2>());
1301 // Update profile metadata if present and it matches our structural
1302 // expectations.
1303 swapProfMetadata();
1306 //===----------------------------------------------------------------------===//
1307 // AllocaInst Implementation
1308 //===----------------------------------------------------------------------===//
1310 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1311 if (!Amt)
1312 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1313 else {
1314 assert(!isa<BasicBlock>(Amt) &&
1315 "Passed basic block into allocation size parameter! Use other ctor");
1316 assert(Amt->getType()->isIntegerTy() &&
1317 "Allocation array size is not an integer!");
1319 return Amt;
1322 static Align computeAllocaDefaultAlign(Type *Ty, BasicBlock *BB) {
1323 assert(BB && "Insertion BB cannot be null when alignment not provided!");
1324 assert(BB->getParent() &&
1325 "BB must be in a Function when alignment not provided!");
1326 const DataLayout &DL = BB->getModule()->getDataLayout();
1327 return DL.getPrefTypeAlign(Ty);
1330 static Align computeAllocaDefaultAlign(Type *Ty, Instruction *I) {
1331 assert(I && "Insertion position cannot be null when alignment not provided!");
1332 return computeAllocaDefaultAlign(Ty, I->getParent());
1335 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1336 Instruction *InsertBefore)
1337 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1339 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
1340 BasicBlock *InsertAtEnd)
1341 : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1343 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1344 const Twine &Name, Instruction *InsertBefore)
1345 : AllocaInst(Ty, AddrSpace, ArraySize,
1346 computeAllocaDefaultAlign(Ty, InsertBefore), Name,
1347 InsertBefore) {}
1349 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1350 const Twine &Name, BasicBlock *InsertAtEnd)
1351 : AllocaInst(Ty, AddrSpace, ArraySize,
1352 computeAllocaDefaultAlign(Ty, InsertAtEnd), Name,
1353 InsertAtEnd) {}
1355 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1356 Align Align, const Twine &Name,
1357 Instruction *InsertBefore)
1358 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1359 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1360 AllocatedType(Ty) {
1361 setAlignment(Align);
1362 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1363 setName(Name);
1366 AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
1367 Align Align, const Twine &Name, BasicBlock *InsertAtEnd)
1368 : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
1369 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1370 AllocatedType(Ty) {
1371 setAlignment(Align);
1372 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1373 setName(Name);
1377 bool AllocaInst::isArrayAllocation() const {
1378 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1379 return !CI->isOne();
1380 return true;
1383 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1384 /// function and is a constant size. If so, the code generator will fold it
1385 /// into the prolog/epilog code, so it is basically free.
1386 bool AllocaInst::isStaticAlloca() const {
1387 // Must be constant size.
1388 if (!isa<ConstantInt>(getArraySize())) return false;
1390 // Must be in the entry block.
1391 const BasicBlock *Parent = getParent();
1392 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1395 //===----------------------------------------------------------------------===//
1396 // LoadInst Implementation
1397 //===----------------------------------------------------------------------===//
1399 void LoadInst::AssertOK() {
1400 assert(getOperand(0)->getType()->isPointerTy() &&
1401 "Ptr must have pointer type.");
1402 assert(!(isAtomic() && getAlignment() == 0) &&
1403 "Alignment required for atomic load");
1406 static Align computeLoadStoreDefaultAlign(Type *Ty, BasicBlock *BB) {
1407 assert(BB && "Insertion BB cannot be null when alignment not provided!");
1408 assert(BB->getParent() &&
1409 "BB must be in a Function when alignment not provided!");
1410 const DataLayout &DL = BB->getModule()->getDataLayout();
1411 return DL.getABITypeAlign(Ty);
1414 static Align computeLoadStoreDefaultAlign(Type *Ty, Instruction *I) {
1415 assert(I && "Insertion position cannot be null when alignment not provided!");
1416 return computeLoadStoreDefaultAlign(Ty, I->getParent());
1419 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1420 Instruction *InsertBef)
1421 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1423 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
1424 BasicBlock *InsertAE)
1425 : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1427 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1428 Instruction *InsertBef)
1429 : LoadInst(Ty, Ptr, Name, isVolatile,
1430 computeLoadStoreDefaultAlign(Ty, InsertBef), InsertBef) {}
1432 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1433 BasicBlock *InsertAE)
1434 : LoadInst(Ty, Ptr, Name, isVolatile,
1435 computeLoadStoreDefaultAlign(Ty, InsertAE), InsertAE) {}
1437 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1438 Align Align, Instruction *InsertBef)
1439 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1440 SyncScope::System, InsertBef) {}
1442 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1443 Align Align, BasicBlock *InsertAE)
1444 : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
1445 SyncScope::System, InsertAE) {}
1447 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1448 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1449 Instruction *InsertBef)
1450 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1451 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1452 setVolatile(isVolatile);
1453 setAlignment(Align);
1454 setAtomic(Order, SSID);
1455 AssertOK();
1456 setName(Name);
1459 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1460 Align Align, AtomicOrdering Order, SyncScope::ID SSID,
1461 BasicBlock *InsertAE)
1462 : UnaryInstruction(Ty, Load, Ptr, InsertAE) {
1463 assert(cast<PointerType>(Ptr->getType())->isOpaqueOrPointeeTypeMatches(Ty));
1464 setVolatile(isVolatile);
1465 setAlignment(Align);
1466 setAtomic(Order, SSID);
1467 AssertOK();
1468 setName(Name);
1471 //===----------------------------------------------------------------------===//
1472 // StoreInst Implementation
1473 //===----------------------------------------------------------------------===//
1475 void StoreInst::AssertOK() {
1476 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1477 assert(getOperand(1)->getType()->isPointerTy() &&
1478 "Ptr must have pointer type!");
1479 assert(cast<PointerType>(getOperand(1)->getType())
1480 ->isOpaqueOrPointeeTypeMatches(getOperand(0)->getType()) &&
1481 "Ptr must be a pointer to Val type!");
1482 assert(!(isAtomic() && getAlignment() == 0) &&
1483 "Alignment required for atomic store");
1486 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1487 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1489 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1490 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1492 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1493 Instruction *InsertBefore)
1494 : StoreInst(val, addr, isVolatile,
1495 computeLoadStoreDefaultAlign(val->getType(), InsertBefore),
1496 InsertBefore) {}
1498 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1499 BasicBlock *InsertAtEnd)
1500 : StoreInst(val, addr, isVolatile,
1501 computeLoadStoreDefaultAlign(val->getType(), InsertAtEnd),
1502 InsertAtEnd) {}
1504 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1505 Instruction *InsertBefore)
1506 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1507 SyncScope::System, InsertBefore) {}
1509 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1510 BasicBlock *InsertAtEnd)
1511 : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
1512 SyncScope::System, InsertAtEnd) {}
1514 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1515 AtomicOrdering Order, SyncScope::ID SSID,
1516 Instruction *InsertBefore)
1517 : Instruction(Type::getVoidTy(val->getContext()), Store,
1518 OperandTraits<StoreInst>::op_begin(this),
1519 OperandTraits<StoreInst>::operands(this), InsertBefore) {
1520 Op<0>() = val;
1521 Op<1>() = addr;
1522 setVolatile(isVolatile);
1523 setAlignment(Align);
1524 setAtomic(Order, SSID);
1525 AssertOK();
1528 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, Align Align,
1529 AtomicOrdering Order, SyncScope::ID SSID,
1530 BasicBlock *InsertAtEnd)
1531 : Instruction(Type::getVoidTy(val->getContext()), Store,
1532 OperandTraits<StoreInst>::op_begin(this),
1533 OperandTraits<StoreInst>::operands(this), InsertAtEnd) {
1534 Op<0>() = val;
1535 Op<1>() = addr;
1536 setVolatile(isVolatile);
1537 setAlignment(Align);
1538 setAtomic(Order, SSID);
1539 AssertOK();
1543 //===----------------------------------------------------------------------===//
1544 // AtomicCmpXchgInst Implementation
1545 //===----------------------------------------------------------------------===//
1547 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1548 Align Alignment, AtomicOrdering SuccessOrdering,
1549 AtomicOrdering FailureOrdering,
1550 SyncScope::ID SSID) {
1551 Op<0>() = Ptr;
1552 Op<1>() = Cmp;
1553 Op<2>() = NewVal;
1554 setSuccessOrdering(SuccessOrdering);
1555 setFailureOrdering(FailureOrdering);
1556 setSyncScopeID(SSID);
1557 setAlignment(Alignment);
1559 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1560 "All operands must be non-null!");
1561 assert(getOperand(0)->getType()->isPointerTy() &&
1562 "Ptr must have pointer type!");
1563 assert(cast<PointerType>(getOperand(0)->getType())
1564 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1565 "Ptr must be a pointer to Cmp type!");
1566 assert(cast<PointerType>(getOperand(0)->getType())
1567 ->isOpaqueOrPointeeTypeMatches(getOperand(2)->getType()) &&
1568 "Ptr must be a pointer to NewVal type!");
1569 assert(getOperand(1)->getType() == getOperand(2)->getType() &&
1570 "Cmp type and NewVal type must be same!");
1573 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1574 Align Alignment,
1575 AtomicOrdering SuccessOrdering,
1576 AtomicOrdering FailureOrdering,
1577 SyncScope::ID SSID,
1578 Instruction *InsertBefore)
1579 : Instruction(
1580 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1581 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1582 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1583 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1586 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1587 Align Alignment,
1588 AtomicOrdering SuccessOrdering,
1589 AtomicOrdering FailureOrdering,
1590 SyncScope::ID SSID,
1591 BasicBlock *InsertAtEnd)
1592 : Instruction(
1593 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
1594 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1595 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1596 Init(Ptr, Cmp, NewVal, Alignment, SuccessOrdering, FailureOrdering, SSID);
1599 //===----------------------------------------------------------------------===//
1600 // AtomicRMWInst Implementation
1601 //===----------------------------------------------------------------------===//
1603 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1604 Align Alignment, AtomicOrdering Ordering,
1605 SyncScope::ID SSID) {
1606 Op<0>() = Ptr;
1607 Op<1>() = Val;
1608 setOperation(Operation);
1609 setOrdering(Ordering);
1610 setSyncScopeID(SSID);
1611 setAlignment(Alignment);
1613 assert(getOperand(0) && getOperand(1) &&
1614 "All operands must be non-null!");
1615 assert(getOperand(0)->getType()->isPointerTy() &&
1616 "Ptr must have pointer type!");
1617 assert(cast<PointerType>(getOperand(0)->getType())
1618 ->isOpaqueOrPointeeTypeMatches(getOperand(1)->getType()) &&
1619 "Ptr must be a pointer to Val type!");
1620 assert(Ordering != AtomicOrdering::NotAtomic &&
1621 "AtomicRMW instructions must be atomic!");
1624 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1625 Align Alignment, AtomicOrdering Ordering,
1626 SyncScope::ID SSID, Instruction *InsertBefore)
1627 : Instruction(Val->getType(), AtomicRMW,
1628 OperandTraits<AtomicRMWInst>::op_begin(this),
1629 OperandTraits<AtomicRMWInst>::operands(this), InsertBefore) {
1630 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1633 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1634 Align Alignment, AtomicOrdering Ordering,
1635 SyncScope::ID SSID, BasicBlock *InsertAtEnd)
1636 : Instruction(Val->getType(), AtomicRMW,
1637 OperandTraits<AtomicRMWInst>::op_begin(this),
1638 OperandTraits<AtomicRMWInst>::operands(this), InsertAtEnd) {
1639 Init(Operation, Ptr, Val, Alignment, Ordering, SSID);
1642 StringRef AtomicRMWInst::getOperationName(BinOp Op) {
1643 switch (Op) {
1644 case AtomicRMWInst::Xchg:
1645 return "xchg";
1646 case AtomicRMWInst::Add:
1647 return "add";
1648 case AtomicRMWInst::Sub:
1649 return "sub";
1650 case AtomicRMWInst::And:
1651 return "and";
1652 case AtomicRMWInst::Nand:
1653 return "nand";
1654 case AtomicRMWInst::Or:
1655 return "or";
1656 case AtomicRMWInst::Xor:
1657 return "xor";
1658 case AtomicRMWInst::Max:
1659 return "max";
1660 case AtomicRMWInst::Min:
1661 return "min";
1662 case AtomicRMWInst::UMax:
1663 return "umax";
1664 case AtomicRMWInst::UMin:
1665 return "umin";
1666 case AtomicRMWInst::FAdd:
1667 return "fadd";
1668 case AtomicRMWInst::FSub:
1669 return "fsub";
1670 case AtomicRMWInst::BAD_BINOP:
1671 return "<invalid operation>";
1674 llvm_unreachable("invalid atomicrmw operation");
1677 //===----------------------------------------------------------------------===//
1678 // FenceInst Implementation
1679 //===----------------------------------------------------------------------===//
1681 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1682 SyncScope::ID SSID,
1683 Instruction *InsertBefore)
1684 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1685 setOrdering(Ordering);
1686 setSyncScopeID(SSID);
1689 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1690 SyncScope::ID SSID,
1691 BasicBlock *InsertAtEnd)
1692 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1693 setOrdering(Ordering);
1694 setSyncScopeID(SSID);
1697 //===----------------------------------------------------------------------===//
1698 // GetElementPtrInst Implementation
1699 //===----------------------------------------------------------------------===//
1701 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1702 const Twine &Name) {
1703 assert(getNumOperands() == 1 + IdxList.size() &&
1704 "NumOperands not initialized?");
1705 Op<0>() = Ptr;
1706 llvm::copy(IdxList, op_begin() + 1);
1707 setName(Name);
1710 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1711 : Instruction(GEPI.getType(), GetElementPtr,
1712 OperandTraits<GetElementPtrInst>::op_end(this) -
1713 GEPI.getNumOperands(),
1714 GEPI.getNumOperands()),
1715 SourceElementType(GEPI.SourceElementType),
1716 ResultElementType(GEPI.ResultElementType) {
1717 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1718 SubclassOptionalData = GEPI.SubclassOptionalData;
1721 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, Value *Idx) {
1722 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1723 if (!Struct->indexValid(Idx))
1724 return nullptr;
1725 return Struct->getTypeAtIndex(Idx);
1727 if (!Idx->getType()->isIntOrIntVectorTy())
1728 return nullptr;
1729 if (auto *Array = dyn_cast<ArrayType>(Ty))
1730 return Array->getElementType();
1731 if (auto *Vector = dyn_cast<VectorType>(Ty))
1732 return Vector->getElementType();
1733 return nullptr;
1736 Type *GetElementPtrInst::getTypeAtIndex(Type *Ty, uint64_t Idx) {
1737 if (auto *Struct = dyn_cast<StructType>(Ty)) {
1738 if (Idx >= Struct->getNumElements())
1739 return nullptr;
1740 return Struct->getElementType(Idx);
1742 if (auto *Array = dyn_cast<ArrayType>(Ty))
1743 return Array->getElementType();
1744 if (auto *Vector = dyn_cast<VectorType>(Ty))
1745 return Vector->getElementType();
1746 return nullptr;
1749 template <typename IndexTy>
1750 static Type *getIndexedTypeInternal(Type *Ty, ArrayRef<IndexTy> IdxList) {
1751 if (IdxList.empty())
1752 return Ty;
1753 for (IndexTy V : IdxList.slice(1)) {
1754 Ty = GetElementPtrInst::getTypeAtIndex(Ty, V);
1755 if (!Ty)
1756 return Ty;
1758 return Ty;
1761 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1762 return getIndexedTypeInternal(Ty, IdxList);
1765 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1766 ArrayRef<Constant *> IdxList) {
1767 return getIndexedTypeInternal(Ty, IdxList);
1770 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1771 return getIndexedTypeInternal(Ty, IdxList);
1774 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1775 /// zeros. If so, the result pointer and the first operand have the same
1776 /// value, just potentially different types.
1777 bool GetElementPtrInst::hasAllZeroIndices() const {
1778 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1779 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1780 if (!CI->isZero()) return false;
1781 } else {
1782 return false;
1785 return true;
1788 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1789 /// constant integers. If so, the result pointer and the first operand have
1790 /// a constant offset between them.
1791 bool GetElementPtrInst::hasAllConstantIndices() const {
1792 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1793 if (!isa<ConstantInt>(getOperand(i)))
1794 return false;
1796 return true;
1799 void GetElementPtrInst::setIsInBounds(bool B) {
1800 cast<GEPOperator>(this)->setIsInBounds(B);
1803 bool GetElementPtrInst::isInBounds() const {
1804 return cast<GEPOperator>(this)->isInBounds();
1807 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1808 APInt &Offset) const {
1809 // Delegate to the generic GEPOperator implementation.
1810 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1813 bool GetElementPtrInst::collectOffset(
1814 const DataLayout &DL, unsigned BitWidth,
1815 MapVector<Value *, APInt> &VariableOffsets,
1816 APInt &ConstantOffset) const {
1817 // Delegate to the generic GEPOperator implementation.
1818 return cast<GEPOperator>(this)->collectOffset(DL, BitWidth, VariableOffsets,
1819 ConstantOffset);
1822 //===----------------------------------------------------------------------===//
1823 // ExtractElementInst Implementation
1824 //===----------------------------------------------------------------------===//
1826 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1827 const Twine &Name,
1828 Instruction *InsertBef)
1829 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1830 ExtractElement,
1831 OperandTraits<ExtractElementInst>::op_begin(this),
1832 2, InsertBef) {
1833 assert(isValidOperands(Val, Index) &&
1834 "Invalid extractelement instruction operands!");
1835 Op<0>() = Val;
1836 Op<1>() = Index;
1837 setName(Name);
1840 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1841 const Twine &Name,
1842 BasicBlock *InsertAE)
1843 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1844 ExtractElement,
1845 OperandTraits<ExtractElementInst>::op_begin(this),
1846 2, InsertAE) {
1847 assert(isValidOperands(Val, Index) &&
1848 "Invalid extractelement instruction operands!");
1850 Op<0>() = Val;
1851 Op<1>() = Index;
1852 setName(Name);
1855 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1856 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1857 return false;
1858 return true;
1861 //===----------------------------------------------------------------------===//
1862 // InsertElementInst Implementation
1863 //===----------------------------------------------------------------------===//
1865 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1866 const Twine &Name,
1867 Instruction *InsertBef)
1868 : Instruction(Vec->getType(), InsertElement,
1869 OperandTraits<InsertElementInst>::op_begin(this),
1870 3, InsertBef) {
1871 assert(isValidOperands(Vec, Elt, Index) &&
1872 "Invalid insertelement instruction operands!");
1873 Op<0>() = Vec;
1874 Op<1>() = Elt;
1875 Op<2>() = Index;
1876 setName(Name);
1879 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1880 const Twine &Name,
1881 BasicBlock *InsertAE)
1882 : Instruction(Vec->getType(), InsertElement,
1883 OperandTraits<InsertElementInst>::op_begin(this),
1884 3, InsertAE) {
1885 assert(isValidOperands(Vec, Elt, Index) &&
1886 "Invalid insertelement instruction operands!");
1888 Op<0>() = Vec;
1889 Op<1>() = Elt;
1890 Op<2>() = Index;
1891 setName(Name);
1894 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1895 const Value *Index) {
1896 if (!Vec->getType()->isVectorTy())
1897 return false; // First operand of insertelement must be vector type.
1899 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1900 return false;// Second operand of insertelement must be vector element type.
1902 if (!Index->getType()->isIntegerTy())
1903 return false; // Third operand of insertelement must be i32.
1904 return true;
1907 //===----------------------------------------------------------------------===//
1908 // ShuffleVectorInst Implementation
1909 //===----------------------------------------------------------------------===//
1911 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1912 const Twine &Name,
1913 Instruction *InsertBefore)
1914 : Instruction(
1915 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1916 cast<VectorType>(Mask->getType())->getElementCount()),
1917 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1918 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1919 assert(isValidOperands(V1, V2, Mask) &&
1920 "Invalid shuffle vector instruction operands!");
1922 Op<0>() = V1;
1923 Op<1>() = V2;
1924 SmallVector<int, 16> MaskArr;
1925 getShuffleMask(cast<Constant>(Mask), MaskArr);
1926 setShuffleMask(MaskArr);
1927 setName(Name);
1930 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1931 const Twine &Name, BasicBlock *InsertAtEnd)
1932 : Instruction(
1933 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1934 cast<VectorType>(Mask->getType())->getElementCount()),
1935 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1936 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1937 assert(isValidOperands(V1, V2, Mask) &&
1938 "Invalid shuffle vector instruction operands!");
1940 Op<0>() = V1;
1941 Op<1>() = V2;
1942 SmallVector<int, 16> MaskArr;
1943 getShuffleMask(cast<Constant>(Mask), MaskArr);
1944 setShuffleMask(MaskArr);
1945 setName(Name);
1948 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1949 const Twine &Name,
1950 Instruction *InsertBefore)
1951 : Instruction(
1952 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1953 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1954 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1955 OperandTraits<ShuffleVectorInst>::operands(this), InsertBefore) {
1956 assert(isValidOperands(V1, V2, Mask) &&
1957 "Invalid shuffle vector instruction operands!");
1958 Op<0>() = V1;
1959 Op<1>() = V2;
1960 setShuffleMask(Mask);
1961 setName(Name);
1964 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, ArrayRef<int> Mask,
1965 const Twine &Name, BasicBlock *InsertAtEnd)
1966 : Instruction(
1967 VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1968 Mask.size(), isa<ScalableVectorType>(V1->getType())),
1969 ShuffleVector, OperandTraits<ShuffleVectorInst>::op_begin(this),
1970 OperandTraits<ShuffleVectorInst>::operands(this), InsertAtEnd) {
1971 assert(isValidOperands(V1, V2, Mask) &&
1972 "Invalid shuffle vector instruction operands!");
1974 Op<0>() = V1;
1975 Op<1>() = V2;
1976 setShuffleMask(Mask);
1977 setName(Name);
1980 void ShuffleVectorInst::commute() {
1981 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
1982 int NumMaskElts = ShuffleMask.size();
1983 SmallVector<int, 16> NewMask(NumMaskElts);
1984 for (int i = 0; i != NumMaskElts; ++i) {
1985 int MaskElt = getMaskValue(i);
1986 if (MaskElt == UndefMaskElem) {
1987 NewMask[i] = UndefMaskElem;
1988 continue;
1990 assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask");
1991 MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts;
1992 NewMask[i] = MaskElt;
1994 setShuffleMask(NewMask);
1995 Op<0>().swap(Op<1>());
1998 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1999 ArrayRef<int> Mask) {
2000 // V1 and V2 must be vectors of the same type.
2001 if (!isa<VectorType>(V1->getType()) || V1->getType() != V2->getType())
2002 return false;
2004 // Make sure the mask elements make sense.
2005 int V1Size =
2006 cast<VectorType>(V1->getType())->getElementCount().getKnownMinValue();
2007 for (int Elem : Mask)
2008 if (Elem != UndefMaskElem && Elem >= V1Size * 2)
2009 return false;
2011 if (isa<ScalableVectorType>(V1->getType()))
2012 if ((Mask[0] != 0 && Mask[0] != UndefMaskElem) || !is_splat(Mask))
2013 return false;
2015 return true;
2018 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
2019 const Value *Mask) {
2020 // V1 and V2 must be vectors of the same type.
2021 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
2022 return false;
2024 // Mask must be vector of i32, and must be the same kind of vector as the
2025 // input vectors
2026 auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
2027 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32) ||
2028 isa<ScalableVectorType>(MaskTy) != isa<ScalableVectorType>(V1->getType()))
2029 return false;
2031 // Check to see if Mask is valid.
2032 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
2033 return true;
2035 if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
2036 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2037 for (Value *Op : MV->operands()) {
2038 if (auto *CI = dyn_cast<ConstantInt>(Op)) {
2039 if (CI->uge(V1Size*2))
2040 return false;
2041 } else if (!isa<UndefValue>(Op)) {
2042 return false;
2045 return true;
2048 if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2049 unsigned V1Size = cast<FixedVectorType>(V1->getType())->getNumElements();
2050 for (unsigned i = 0, e = cast<FixedVectorType>(MaskTy)->getNumElements();
2051 i != e; ++i)
2052 if (CDS->getElementAsInteger(i) >= V1Size*2)
2053 return false;
2054 return true;
2057 return false;
2060 void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
2061 SmallVectorImpl<int> &Result) {
2062 ElementCount EC = cast<VectorType>(Mask->getType())->getElementCount();
2064 if (isa<ConstantAggregateZero>(Mask)) {
2065 Result.resize(EC.getKnownMinValue(), 0);
2066 return;
2069 Result.reserve(EC.getKnownMinValue());
2071 if (EC.isScalable()) {
2072 assert((isa<ConstantAggregateZero>(Mask) || isa<UndefValue>(Mask)) &&
2073 "Scalable vector shuffle mask must be undef or zeroinitializer");
2074 int MaskVal = isa<UndefValue>(Mask) ? -1 : 0;
2075 for (unsigned I = 0; I < EC.getKnownMinValue(); ++I)
2076 Result.emplace_back(MaskVal);
2077 return;
2080 unsigned NumElts = EC.getKnownMinValue();
2082 if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
2083 for (unsigned i = 0; i != NumElts; ++i)
2084 Result.push_back(CDS->getElementAsInteger(i));
2085 return;
2087 for (unsigned i = 0; i != NumElts; ++i) {
2088 Constant *C = Mask->getAggregateElement(i);
2089 Result.push_back(isa<UndefValue>(C) ? -1 :
2090 cast<ConstantInt>(C)->getZExtValue());
2094 void ShuffleVectorInst::setShuffleMask(ArrayRef<int> Mask) {
2095 ShuffleMask.assign(Mask.begin(), Mask.end());
2096 ShuffleMaskForBitcode = convertShuffleMaskForBitcode(Mask, getType());
2099 Constant *ShuffleVectorInst::convertShuffleMaskForBitcode(ArrayRef<int> Mask,
2100 Type *ResultTy) {
2101 Type *Int32Ty = Type::getInt32Ty(ResultTy->getContext());
2102 if (isa<ScalableVectorType>(ResultTy)) {
2103 assert(is_splat(Mask) && "Unexpected shuffle");
2104 Type *VecTy = VectorType::get(Int32Ty, Mask.size(), true);
2105 if (Mask[0] == 0)
2106 return Constant::getNullValue(VecTy);
2107 return UndefValue::get(VecTy);
2109 SmallVector<Constant *, 16> MaskConst;
2110 for (int Elem : Mask) {
2111 if (Elem == UndefMaskElem)
2112 MaskConst.push_back(UndefValue::get(Int32Ty));
2113 else
2114 MaskConst.push_back(ConstantInt::get(Int32Ty, Elem));
2116 return ConstantVector::get(MaskConst);
2119 static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2120 assert(!Mask.empty() && "Shuffle mask must contain elements");
2121 bool UsesLHS = false;
2122 bool UsesRHS = false;
2123 for (int I : Mask) {
2124 if (I == -1)
2125 continue;
2126 assert(I >= 0 && I < (NumOpElts * 2) &&
2127 "Out-of-bounds shuffle mask element");
2128 UsesLHS |= (I < NumOpElts);
2129 UsesRHS |= (I >= NumOpElts);
2130 if (UsesLHS && UsesRHS)
2131 return false;
2133 // Allow for degenerate case: completely undef mask means neither source is used.
2134 return UsesLHS || UsesRHS;
2137 bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
2138 // We don't have vector operand size information, so assume operands are the
2139 // same size as the mask.
2140 return isSingleSourceMaskImpl(Mask, Mask.size());
2143 static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
2144 if (!isSingleSourceMaskImpl(Mask, NumOpElts))
2145 return false;
2146 for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
2147 if (Mask[i] == -1)
2148 continue;
2149 if (Mask[i] != i && Mask[i] != (NumOpElts + i))
2150 return false;
2152 return true;
2155 bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
2156 // We don't have vector operand size information, so assume operands are the
2157 // same size as the mask.
2158 return isIdentityMaskImpl(Mask, Mask.size());
2161 bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
2162 if (!isSingleSourceMask(Mask))
2163 return false;
2164 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2165 if (Mask[i] == -1)
2166 continue;
2167 if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
2168 return false;
2170 return true;
2173 bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
2174 if (!isSingleSourceMask(Mask))
2175 return false;
2176 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2177 if (Mask[i] == -1)
2178 continue;
2179 if (Mask[i] != 0 && Mask[i] != NumElts)
2180 return false;
2182 return true;
2185 bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
2186 // Select is differentiated from identity. It requires using both sources.
2187 if (isSingleSourceMask(Mask))
2188 return false;
2189 for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
2190 if (Mask[i] == -1)
2191 continue;
2192 if (Mask[i] != i && Mask[i] != (NumElts + i))
2193 return false;
2195 return true;
2198 bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
2199 // Example masks that will return true:
2200 // v1 = <a, b, c, d>
2201 // v2 = <e, f, g, h>
2202 // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
2203 // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
2205 // 1. The number of elements in the mask must be a power-of-2 and at least 2.
2206 int NumElts = Mask.size();
2207 if (NumElts < 2 || !isPowerOf2_32(NumElts))
2208 return false;
2210 // 2. The first element of the mask must be either a 0 or a 1.
2211 if (Mask[0] != 0 && Mask[0] != 1)
2212 return false;
2214 // 3. The difference between the first 2 elements must be equal to the
2215 // number of elements in the mask.
2216 if ((Mask[1] - Mask[0]) != NumElts)
2217 return false;
2219 // 4. The difference between consecutive even-numbered and odd-numbered
2220 // elements must be equal to 2.
2221 for (int i = 2; i < NumElts; ++i) {
2222 int MaskEltVal = Mask[i];
2223 if (MaskEltVal == -1)
2224 return false;
2225 int MaskEltPrevVal = Mask[i - 2];
2226 if (MaskEltVal - MaskEltPrevVal != 2)
2227 return false;
2229 return true;
2232 bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
2233 int NumSrcElts, int &Index) {
2234 // Must extract from a single source.
2235 if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
2236 return false;
2238 // Must be smaller (else this is an Identity shuffle).
2239 if (NumSrcElts <= (int)Mask.size())
2240 return false;
2242 // Find start of extraction, accounting that we may start with an UNDEF.
2243 int SubIndex = -1;
2244 for (int i = 0, e = Mask.size(); i != e; ++i) {
2245 int M = Mask[i];
2246 if (M < 0)
2247 continue;
2248 int Offset = (M % NumSrcElts) - i;
2249 if (0 <= SubIndex && SubIndex != Offset)
2250 return false;
2251 SubIndex = Offset;
2254 if (0 <= SubIndex && SubIndex + (int)Mask.size() <= NumSrcElts) {
2255 Index = SubIndex;
2256 return true;
2258 return false;
2261 bool ShuffleVectorInst::isInsertSubvectorMask(ArrayRef<int> Mask,
2262 int NumSrcElts, int &NumSubElts,
2263 int &Index) {
2264 int NumMaskElts = Mask.size();
2266 // Don't try to match if we're shuffling to a smaller size.
2267 if (NumMaskElts < NumSrcElts)
2268 return false;
2270 // TODO: We don't recognize self-insertion/widening.
2271 if (isSingleSourceMaskImpl(Mask, NumSrcElts))
2272 return false;
2274 // Determine which mask elements are attributed to which source.
2275 APInt UndefElts = APInt::getNullValue(NumMaskElts);
2276 APInt Src0Elts = APInt::getNullValue(NumMaskElts);
2277 APInt Src1Elts = APInt::getNullValue(NumMaskElts);
2278 bool Src0Identity = true;
2279 bool Src1Identity = true;
2281 for (int i = 0; i != NumMaskElts; ++i) {
2282 int M = Mask[i];
2283 if (M < 0) {
2284 UndefElts.setBit(i);
2285 continue;
2287 if (M < NumSrcElts) {
2288 Src0Elts.setBit(i);
2289 Src0Identity &= (M == i);
2290 continue;
2292 Src1Elts.setBit(i);
2293 Src1Identity &= (M == (i + NumSrcElts));
2294 continue;
2296 assert((Src0Elts | Src1Elts | UndefElts).isAllOnesValue() &&
2297 "unknown shuffle elements");
2298 assert(!Src0Elts.isNullValue() && !Src1Elts.isNullValue() &&
2299 "2-source shuffle not found");
2301 // Determine lo/hi span ranges.
2302 // TODO: How should we handle undefs at the start of subvector insertions?
2303 int Src0Lo = Src0Elts.countTrailingZeros();
2304 int Src1Lo = Src1Elts.countTrailingZeros();
2305 int Src0Hi = NumMaskElts - Src0Elts.countLeadingZeros();
2306 int Src1Hi = NumMaskElts - Src1Elts.countLeadingZeros();
2308 // If src0 is in place, see if the src1 elements is inplace within its own
2309 // span.
2310 if (Src0Identity) {
2311 int NumSub1Elts = Src1Hi - Src1Lo;
2312 ArrayRef<int> Sub1Mask = Mask.slice(Src1Lo, NumSub1Elts);
2313 if (isIdentityMaskImpl(Sub1Mask, NumSrcElts)) {
2314 NumSubElts = NumSub1Elts;
2315 Index = Src1Lo;
2316 return true;
2320 // If src1 is in place, see if the src0 elements is inplace within its own
2321 // span.
2322 if (Src1Identity) {
2323 int NumSub0Elts = Src0Hi - Src0Lo;
2324 ArrayRef<int> Sub0Mask = Mask.slice(Src0Lo, NumSub0Elts);
2325 if (isIdentityMaskImpl(Sub0Mask, NumSrcElts)) {
2326 NumSubElts = NumSub0Elts;
2327 Index = Src0Lo;
2328 return true;
2332 return false;
2335 bool ShuffleVectorInst::isIdentityWithPadding() const {
2336 if (isa<UndefValue>(Op<2>()))
2337 return false;
2339 // FIXME: Not currently possible to express a shuffle mask for a scalable
2340 // vector for this case.
2341 if (isa<ScalableVectorType>(getType()))
2342 return false;
2344 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2345 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2346 if (NumMaskElts <= NumOpElts)
2347 return false;
2349 // The first part of the mask must choose elements from exactly 1 source op.
2350 ArrayRef<int> Mask = getShuffleMask();
2351 if (!isIdentityMaskImpl(Mask, NumOpElts))
2352 return false;
2354 // All extending must be with undef elements.
2355 for (int i = NumOpElts; i < NumMaskElts; ++i)
2356 if (Mask[i] != -1)
2357 return false;
2359 return true;
2362 bool ShuffleVectorInst::isIdentityWithExtract() const {
2363 if (isa<UndefValue>(Op<2>()))
2364 return false;
2366 // FIXME: Not currently possible to express a shuffle mask for a scalable
2367 // vector for this case.
2368 if (isa<ScalableVectorType>(getType()))
2369 return false;
2371 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2372 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2373 if (NumMaskElts >= NumOpElts)
2374 return false;
2376 return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
2379 bool ShuffleVectorInst::isConcat() const {
2380 // Vector concatenation is differentiated from identity with padding.
2381 if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()) ||
2382 isa<UndefValue>(Op<2>()))
2383 return false;
2385 // FIXME: Not currently possible to express a shuffle mask for a scalable
2386 // vector for this case.
2387 if (isa<ScalableVectorType>(getType()))
2388 return false;
2390 int NumOpElts = cast<FixedVectorType>(Op<0>()->getType())->getNumElements();
2391 int NumMaskElts = cast<FixedVectorType>(getType())->getNumElements();
2392 if (NumMaskElts != NumOpElts * 2)
2393 return false;
2395 // Use the mask length rather than the operands' vector lengths here. We
2396 // already know that the shuffle returns a vector twice as long as the inputs,
2397 // and neither of the inputs are undef vectors. If the mask picks consecutive
2398 // elements from both inputs, then this is a concatenation of the inputs.
2399 return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
2402 //===----------------------------------------------------------------------===//
2403 // InsertValueInst Class
2404 //===----------------------------------------------------------------------===//
2406 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
2407 const Twine &Name) {
2408 assert(getNumOperands() == 2 && "NumOperands not initialized?");
2410 // There's no fundamental reason why we require at least one index
2411 // (other than weirdness with &*IdxBegin being invalid; see
2412 // getelementptr's init routine for example). But there's no
2413 // present need to support it.
2414 assert(!Idxs.empty() && "InsertValueInst must have at least one index");
2416 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
2417 Val->getType() && "Inserted value must match indexed type!");
2418 Op<0>() = Agg;
2419 Op<1>() = Val;
2421 Indices.append(Idxs.begin(), Idxs.end());
2422 setName(Name);
2425 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
2426 : Instruction(IVI.getType(), InsertValue,
2427 OperandTraits<InsertValueInst>::op_begin(this), 2),
2428 Indices(IVI.Indices) {
2429 Op<0>() = IVI.getOperand(0);
2430 Op<1>() = IVI.getOperand(1);
2431 SubclassOptionalData = IVI.SubclassOptionalData;
2434 //===----------------------------------------------------------------------===//
2435 // ExtractValueInst Class
2436 //===----------------------------------------------------------------------===//
2438 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
2439 assert(getNumOperands() == 1 && "NumOperands not initialized?");
2441 // There's no fundamental reason why we require at least one index.
2442 // But there's no present need to support it.
2443 assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
2445 Indices.append(Idxs.begin(), Idxs.end());
2446 setName(Name);
2449 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
2450 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
2451 Indices(EVI.Indices) {
2452 SubclassOptionalData = EVI.SubclassOptionalData;
2455 // getIndexedType - Returns the type of the element that would be extracted
2456 // with an extractvalue instruction with the specified parameters.
2458 // A null type is returned if the indices are invalid for the specified
2459 // pointer type.
2461 Type *ExtractValueInst::getIndexedType(Type *Agg,
2462 ArrayRef<unsigned> Idxs) {
2463 for (unsigned Index : Idxs) {
2464 // We can't use CompositeType::indexValid(Index) here.
2465 // indexValid() always returns true for arrays because getelementptr allows
2466 // out-of-bounds indices. Since we don't allow those for extractvalue and
2467 // insertvalue we need to check array indexing manually.
2468 // Since the only other types we can index into are struct types it's just
2469 // as easy to check those manually as well.
2470 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
2471 if (Index >= AT->getNumElements())
2472 return nullptr;
2473 Agg = AT->getElementType();
2474 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
2475 if (Index >= ST->getNumElements())
2476 return nullptr;
2477 Agg = ST->getElementType(Index);
2478 } else {
2479 // Not a valid type to index into.
2480 return nullptr;
2483 return const_cast<Type*>(Agg);
2486 //===----------------------------------------------------------------------===//
2487 // UnaryOperator Class
2488 //===----------------------------------------------------------------------===//
2490 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2491 Type *Ty, const Twine &Name,
2492 Instruction *InsertBefore)
2493 : UnaryInstruction(Ty, iType, S, InsertBefore) {
2494 Op<0>() = S;
2495 setName(Name);
2496 AssertOK();
2499 UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
2500 Type *Ty, const Twine &Name,
2501 BasicBlock *InsertAtEnd)
2502 : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
2503 Op<0>() = S;
2504 setName(Name);
2505 AssertOK();
2508 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2509 const Twine &Name,
2510 Instruction *InsertBefore) {
2511 return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
2514 UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
2515 const Twine &Name,
2516 BasicBlock *InsertAtEnd) {
2517 UnaryOperator *Res = Create(Op, S, Name);
2518 InsertAtEnd->getInstList().push_back(Res);
2519 return Res;
2522 void UnaryOperator::AssertOK() {
2523 Value *LHS = getOperand(0);
2524 (void)LHS; // Silence warnings.
2525 #ifndef NDEBUG
2526 switch (getOpcode()) {
2527 case FNeg:
2528 assert(getType() == LHS->getType() &&
2529 "Unary operation should return same type as operand!");
2530 assert(getType()->isFPOrFPVectorTy() &&
2531 "Tried to create a floating-point operation on a "
2532 "non-floating-point type!");
2533 break;
2534 default: llvm_unreachable("Invalid opcode provided");
2536 #endif
2539 //===----------------------------------------------------------------------===//
2540 // BinaryOperator Class
2541 //===----------------------------------------------------------------------===//
2543 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2544 Type *Ty, const Twine &Name,
2545 Instruction *InsertBefore)
2546 : Instruction(Ty, iType,
2547 OperandTraits<BinaryOperator>::op_begin(this),
2548 OperandTraits<BinaryOperator>::operands(this),
2549 InsertBefore) {
2550 Op<0>() = S1;
2551 Op<1>() = S2;
2552 setName(Name);
2553 AssertOK();
2556 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
2557 Type *Ty, const Twine &Name,
2558 BasicBlock *InsertAtEnd)
2559 : Instruction(Ty, iType,
2560 OperandTraits<BinaryOperator>::op_begin(this),
2561 OperandTraits<BinaryOperator>::operands(this),
2562 InsertAtEnd) {
2563 Op<0>() = S1;
2564 Op<1>() = S2;
2565 setName(Name);
2566 AssertOK();
2569 void BinaryOperator::AssertOK() {
2570 Value *LHS = getOperand(0), *RHS = getOperand(1);
2571 (void)LHS; (void)RHS; // Silence warnings.
2572 assert(LHS->getType() == RHS->getType() &&
2573 "Binary operator operand types must match!");
2574 #ifndef NDEBUG
2575 switch (getOpcode()) {
2576 case Add: case Sub:
2577 case Mul:
2578 assert(getType() == LHS->getType() &&
2579 "Arithmetic operation should return same type as operands!");
2580 assert(getType()->isIntOrIntVectorTy() &&
2581 "Tried to create an integer operation on a non-integer type!");
2582 break;
2583 case FAdd: case FSub:
2584 case FMul:
2585 assert(getType() == LHS->getType() &&
2586 "Arithmetic operation should return same type as operands!");
2587 assert(getType()->isFPOrFPVectorTy() &&
2588 "Tried to create a floating-point operation on a "
2589 "non-floating-point type!");
2590 break;
2591 case UDiv:
2592 case SDiv:
2593 assert(getType() == LHS->getType() &&
2594 "Arithmetic operation should return same type as operands!");
2595 assert(getType()->isIntOrIntVectorTy() &&
2596 "Incorrect operand type (not integer) for S/UDIV");
2597 break;
2598 case FDiv:
2599 assert(getType() == LHS->getType() &&
2600 "Arithmetic operation should return same type as operands!");
2601 assert(getType()->isFPOrFPVectorTy() &&
2602 "Incorrect operand type (not floating point) for FDIV");
2603 break;
2604 case URem:
2605 case SRem:
2606 assert(getType() == LHS->getType() &&
2607 "Arithmetic operation should return same type as operands!");
2608 assert(getType()->isIntOrIntVectorTy() &&
2609 "Incorrect operand type (not integer) for S/UREM");
2610 break;
2611 case FRem:
2612 assert(getType() == LHS->getType() &&
2613 "Arithmetic operation should return same type as operands!");
2614 assert(getType()->isFPOrFPVectorTy() &&
2615 "Incorrect operand type (not floating point) for FREM");
2616 break;
2617 case Shl:
2618 case LShr:
2619 case AShr:
2620 assert(getType() == LHS->getType() &&
2621 "Shift operation should return same type as operands!");
2622 assert(getType()->isIntOrIntVectorTy() &&
2623 "Tried to create a shift operation on a non-integral type!");
2624 break;
2625 case And: case Or:
2626 case Xor:
2627 assert(getType() == LHS->getType() &&
2628 "Logical operation should return same type as operands!");
2629 assert(getType()->isIntOrIntVectorTy() &&
2630 "Tried to create a logical operation on a non-integral type!");
2631 break;
2632 default: llvm_unreachable("Invalid opcode provided");
2634 #endif
2637 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2638 const Twine &Name,
2639 Instruction *InsertBefore) {
2640 assert(S1->getType() == S2->getType() &&
2641 "Cannot create binary operator with two operands of differing type!");
2642 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2645 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2646 const Twine &Name,
2647 BasicBlock *InsertAtEnd) {
2648 BinaryOperator *Res = Create(Op, S1, S2, Name);
2649 InsertAtEnd->getInstList().push_back(Res);
2650 return Res;
2653 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2654 Instruction *InsertBefore) {
2655 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2656 return new BinaryOperator(Instruction::Sub,
2657 zero, Op,
2658 Op->getType(), Name, InsertBefore);
2661 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2662 BasicBlock *InsertAtEnd) {
2663 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2664 return new BinaryOperator(Instruction::Sub,
2665 zero, Op,
2666 Op->getType(), Name, InsertAtEnd);
2669 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2670 Instruction *InsertBefore) {
2671 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2672 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2675 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2676 BasicBlock *InsertAtEnd) {
2677 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2678 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2681 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2682 Instruction *InsertBefore) {
2683 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2684 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2687 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2688 BasicBlock *InsertAtEnd) {
2689 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2690 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2693 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2694 Instruction *InsertBefore) {
2695 Constant *C = Constant::getAllOnesValue(Op->getType());
2696 return new BinaryOperator(Instruction::Xor, Op, C,
2697 Op->getType(), Name, InsertBefore);
2700 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2701 BasicBlock *InsertAtEnd) {
2702 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2703 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2704 Op->getType(), Name, InsertAtEnd);
2707 // Exchange the two operands to this instruction. This instruction is safe to
2708 // use on any binary instruction and does not modify the semantics of the
2709 // instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
2710 // is changed.
2711 bool BinaryOperator::swapOperands() {
2712 if (!isCommutative())
2713 return true; // Can't commute operands
2714 Op<0>().swap(Op<1>());
2715 return false;
2718 //===----------------------------------------------------------------------===//
2719 // FPMathOperator Class
2720 //===----------------------------------------------------------------------===//
2722 float FPMathOperator::getFPAccuracy() const {
2723 const MDNode *MD =
2724 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2725 if (!MD)
2726 return 0.0;
2727 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2728 return Accuracy->getValueAPF().convertToFloat();
2731 //===----------------------------------------------------------------------===//
2732 // CastInst Class
2733 //===----------------------------------------------------------------------===//
2735 // Just determine if this cast only deals with integral->integral conversion.
2736 bool CastInst::isIntegerCast() const {
2737 switch (getOpcode()) {
2738 default: return false;
2739 case Instruction::ZExt:
2740 case Instruction::SExt:
2741 case Instruction::Trunc:
2742 return true;
2743 case Instruction::BitCast:
2744 return getOperand(0)->getType()->isIntegerTy() &&
2745 getType()->isIntegerTy();
2749 bool CastInst::isLosslessCast() const {
2750 // Only BitCast can be lossless, exit fast if we're not BitCast
2751 if (getOpcode() != Instruction::BitCast)
2752 return false;
2754 // Identity cast is always lossless
2755 Type *SrcTy = getOperand(0)->getType();
2756 Type *DstTy = getType();
2757 if (SrcTy == DstTy)
2758 return true;
2760 // Pointer to pointer is always lossless.
2761 if (SrcTy->isPointerTy())
2762 return DstTy->isPointerTy();
2763 return false; // Other types have no identity values
2766 /// This function determines if the CastInst does not require any bits to be
2767 /// changed in order to effect the cast. Essentially, it identifies cases where
2768 /// no code gen is necessary for the cast, hence the name no-op cast. For
2769 /// example, the following are all no-op casts:
2770 /// # bitcast i32* %x to i8*
2771 /// # bitcast <2 x i32> %x to <4 x i16>
2772 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2773 /// Determine if the described cast is a no-op.
2774 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2775 Type *SrcTy,
2776 Type *DestTy,
2777 const DataLayout &DL) {
2778 assert(castIsValid(Opcode, SrcTy, DestTy) && "method precondition");
2779 switch (Opcode) {
2780 default: llvm_unreachable("Invalid CastOp");
2781 case Instruction::Trunc:
2782 case Instruction::ZExt:
2783 case Instruction::SExt:
2784 case Instruction::FPTrunc:
2785 case Instruction::FPExt:
2786 case Instruction::UIToFP:
2787 case Instruction::SIToFP:
2788 case Instruction::FPToUI:
2789 case Instruction::FPToSI:
2790 case Instruction::AddrSpaceCast:
2791 // TODO: Target informations may give a more accurate answer here.
2792 return false;
2793 case Instruction::BitCast:
2794 return true; // BitCast never modifies bits.
2795 case Instruction::PtrToInt:
2796 return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
2797 DestTy->getScalarSizeInBits();
2798 case Instruction::IntToPtr:
2799 return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
2800 SrcTy->getScalarSizeInBits();
2804 bool CastInst::isNoopCast(const DataLayout &DL) const {
2805 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
2808 /// This function determines if a pair of casts can be eliminated and what
2809 /// opcode should be used in the elimination. This assumes that there are two
2810 /// instructions like this:
2811 /// * %F = firstOpcode SrcTy %x to MidTy
2812 /// * %S = secondOpcode MidTy %F to DstTy
2813 /// The function returns a resultOpcode so these two casts can be replaced with:
2814 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2815 /// If no such cast is permitted, the function returns 0.
2816 unsigned CastInst::isEliminableCastPair(
2817 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2818 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2819 Type *DstIntPtrTy) {
2820 // Define the 144 possibilities for these two cast instructions. The values
2821 // in this matrix determine what to do in a given situation and select the
2822 // case in the switch below. The rows correspond to firstOp, the columns
2823 // correspond to secondOp. In looking at the table below, keep in mind
2824 // the following cast properties:
2826 // Size Compare Source Destination
2827 // Operator Src ? Size Type Sign Type Sign
2828 // -------- ------------ ------------------- ---------------------
2829 // TRUNC > Integer Any Integral Any
2830 // ZEXT < Integral Unsigned Integer Any
2831 // SEXT < Integral Signed Integer Any
2832 // FPTOUI n/a FloatPt n/a Integral Unsigned
2833 // FPTOSI n/a FloatPt n/a Integral Signed
2834 // UITOFP n/a Integral Unsigned FloatPt n/a
2835 // SITOFP n/a Integral Signed FloatPt n/a
2836 // FPTRUNC > FloatPt n/a FloatPt n/a
2837 // FPEXT < FloatPt n/a FloatPt n/a
2838 // PTRTOINT n/a Pointer n/a Integral Unsigned
2839 // INTTOPTR n/a Integral Unsigned Pointer n/a
2840 // BITCAST = FirstClass n/a FirstClass n/a
2841 // ADDRSPCST n/a Pointer n/a Pointer n/a
2843 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2844 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2845 // into "fptoui double to i64", but this loses information about the range
2846 // of the produced value (we no longer know the top-part is all zeros).
2847 // Further this conversion is often much more expensive for typical hardware,
2848 // and causes issues when building libgcc. We disallow fptosi+sext for the
2849 // same reason.
2850 const unsigned numCastOps =
2851 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2852 static const uint8_t CastResults[numCastOps][numCastOps] = {
2853 // T F F U S F F P I B A -+
2854 // R Z S P P I I T P 2 N T S |
2855 // U E E 2 2 2 2 R E I T C C +- secondOp
2856 // N X X U S F F N X N 2 V V |
2857 // C T T I I P P C T T P T T -+
2858 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2859 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2860 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2861 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2862 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2863 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2864 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2865 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2866 { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
2867 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2868 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2869 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2870 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2873 // TODO: This logic could be encoded into the table above and handled in the
2874 // switch below.
2875 // If either of the casts are a bitcast from scalar to vector, disallow the
2876 // merging. However, any pair of bitcasts are allowed.
2877 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2878 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2879 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2881 // Check if any of the casts convert scalars <-> vectors.
2882 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2883 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2884 if (!AreBothBitcasts)
2885 return 0;
2887 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2888 [secondOp-Instruction::CastOpsBegin];
2889 switch (ElimCase) {
2890 case 0:
2891 // Categorically disallowed.
2892 return 0;
2893 case 1:
2894 // Allowed, use first cast's opcode.
2895 return firstOp;
2896 case 2:
2897 // Allowed, use second cast's opcode.
2898 return secondOp;
2899 case 3:
2900 // No-op cast in second op implies firstOp as long as the DestTy
2901 // is integer and we are not converting between a vector and a
2902 // non-vector type.
2903 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2904 return firstOp;
2905 return 0;
2906 case 4:
2907 // No-op cast in second op implies firstOp as long as the DestTy
2908 // is floating point.
2909 if (DstTy->isFloatingPointTy())
2910 return firstOp;
2911 return 0;
2912 case 5:
2913 // No-op cast in first op implies secondOp as long as the SrcTy
2914 // is an integer.
2915 if (SrcTy->isIntegerTy())
2916 return secondOp;
2917 return 0;
2918 case 6:
2919 // No-op cast in first op implies secondOp as long as the SrcTy
2920 // is a floating point.
2921 if (SrcTy->isFloatingPointTy())
2922 return secondOp;
2923 return 0;
2924 case 7: {
2925 // Disable inttoptr/ptrtoint optimization if enabled.
2926 if (DisableI2pP2iOpt)
2927 return 0;
2929 // Cannot simplify if address spaces are different!
2930 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2931 return 0;
2933 unsigned MidSize = MidTy->getScalarSizeInBits();
2934 // We can still fold this without knowing the actual sizes as long we
2935 // know that the intermediate pointer is the largest possible
2936 // pointer size.
2937 // FIXME: Is this always true?
2938 if (MidSize == 64)
2939 return Instruction::BitCast;
2941 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2942 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2943 return 0;
2944 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2945 if (MidSize >= PtrSize)
2946 return Instruction::BitCast;
2947 return 0;
2949 case 8: {
2950 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2951 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2952 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2953 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2954 unsigned DstSize = DstTy->getScalarSizeInBits();
2955 if (SrcSize == DstSize)
2956 return Instruction::BitCast;
2957 else if (SrcSize < DstSize)
2958 return firstOp;
2959 return secondOp;
2961 case 9:
2962 // zext, sext -> zext, because sext can't sign extend after zext
2963 return Instruction::ZExt;
2964 case 11: {
2965 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2966 if (!MidIntPtrTy)
2967 return 0;
2968 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2969 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2970 unsigned DstSize = DstTy->getScalarSizeInBits();
2971 if (SrcSize <= PtrSize && SrcSize == DstSize)
2972 return Instruction::BitCast;
2973 return 0;
2975 case 12:
2976 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2977 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2978 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2979 return Instruction::AddrSpaceCast;
2980 return Instruction::BitCast;
2981 case 13:
2982 // FIXME: this state can be merged with (1), but the following assert
2983 // is useful to check the correcteness of the sequence due to semantic
2984 // change of bitcast.
2985 assert(
2986 SrcTy->isPtrOrPtrVectorTy() &&
2987 MidTy->isPtrOrPtrVectorTy() &&
2988 DstTy->isPtrOrPtrVectorTy() &&
2989 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2990 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2991 "Illegal addrspacecast, bitcast sequence!");
2992 // Allowed, use first cast's opcode
2993 return firstOp;
2994 case 14: {
2995 // bitcast, addrspacecast -> addrspacecast if the element type of
2996 // bitcast's source is the same as that of addrspacecast's destination.
2997 PointerType *SrcPtrTy = cast<PointerType>(SrcTy->getScalarType());
2998 PointerType *DstPtrTy = cast<PointerType>(DstTy->getScalarType());
2999 if (SrcPtrTy->hasSameElementTypeAs(DstPtrTy))
3000 return Instruction::AddrSpaceCast;
3001 return 0;
3003 case 15:
3004 // FIXME: this state can be merged with (1), but the following assert
3005 // is useful to check the correcteness of the sequence due to semantic
3006 // change of bitcast.
3007 assert(
3008 SrcTy->isIntOrIntVectorTy() &&
3009 MidTy->isPtrOrPtrVectorTy() &&
3010 DstTy->isPtrOrPtrVectorTy() &&
3011 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
3012 "Illegal inttoptr, bitcast sequence!");
3013 // Allowed, use first cast's opcode
3014 return firstOp;
3015 case 16:
3016 // FIXME: this state can be merged with (2), but the following assert
3017 // is useful to check the correcteness of the sequence due to semantic
3018 // change of bitcast.
3019 assert(
3020 SrcTy->isPtrOrPtrVectorTy() &&
3021 MidTy->isPtrOrPtrVectorTy() &&
3022 DstTy->isIntOrIntVectorTy() &&
3023 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
3024 "Illegal bitcast, ptrtoint sequence!");
3025 // Allowed, use second cast's opcode
3026 return secondOp;
3027 case 17:
3028 // (sitofp (zext x)) -> (uitofp x)
3029 return Instruction::UIToFP;
3030 case 99:
3031 // Cast combination can't happen (error in input). This is for all cases
3032 // where the MidTy is not the same for the two cast instructions.
3033 llvm_unreachable("Invalid Cast Combination");
3034 default:
3035 llvm_unreachable("Error in CastResults table!!!");
3039 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3040 const Twine &Name, Instruction *InsertBefore) {
3041 assert(castIsValid(op, S, Ty) && "Invalid cast!");
3042 // Construct and return the appropriate CastInst subclass
3043 switch (op) {
3044 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
3045 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
3046 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
3047 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
3048 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
3049 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
3050 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
3051 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
3052 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
3053 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
3054 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
3055 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
3056 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
3057 default: llvm_unreachable("Invalid opcode provided");
3061 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
3062 const Twine &Name, BasicBlock *InsertAtEnd) {
3063 assert(castIsValid(op, S, Ty) && "Invalid cast!");
3064 // Construct and return the appropriate CastInst subclass
3065 switch (op) {
3066 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
3067 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
3068 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
3069 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
3070 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
3071 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
3072 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
3073 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
3074 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
3075 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
3076 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
3077 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
3078 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
3079 default: llvm_unreachable("Invalid opcode provided");
3083 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3084 const Twine &Name,
3085 Instruction *InsertBefore) {
3086 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3087 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3088 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
3091 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
3092 const Twine &Name,
3093 BasicBlock *InsertAtEnd) {
3094 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3095 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3096 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
3099 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3100 const Twine &Name,
3101 Instruction *InsertBefore) {
3102 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3103 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3104 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
3107 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
3108 const Twine &Name,
3109 BasicBlock *InsertAtEnd) {
3110 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3111 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3112 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
3115 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3116 const Twine &Name,
3117 Instruction *InsertBefore) {
3118 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3119 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3120 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
3123 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
3124 const Twine &Name,
3125 BasicBlock *InsertAtEnd) {
3126 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
3127 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3128 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
3131 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3132 const Twine &Name,
3133 BasicBlock *InsertAtEnd) {
3134 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3135 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3136 "Invalid cast");
3137 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3138 assert((!Ty->isVectorTy() ||
3139 cast<VectorType>(Ty)->getElementCount() ==
3140 cast<VectorType>(S->getType())->getElementCount()) &&
3141 "Invalid cast");
3143 if (Ty->isIntOrIntVectorTy())
3144 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
3146 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
3149 /// Create a BitCast or a PtrToInt cast instruction
3150 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
3151 const Twine &Name,
3152 Instruction *InsertBefore) {
3153 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3154 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
3155 "Invalid cast");
3156 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
3157 assert((!Ty->isVectorTy() ||
3158 cast<VectorType>(Ty)->getElementCount() ==
3159 cast<VectorType>(S->getType())->getElementCount()) &&
3160 "Invalid cast");
3162 if (Ty->isIntOrIntVectorTy())
3163 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3165 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
3168 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3169 Value *S, Type *Ty,
3170 const Twine &Name,
3171 BasicBlock *InsertAtEnd) {
3172 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3173 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3175 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3176 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
3178 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
3181 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
3182 Value *S, Type *Ty,
3183 const Twine &Name,
3184 Instruction *InsertBefore) {
3185 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
3186 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
3188 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
3189 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
3191 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3194 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
3195 const Twine &Name,
3196 Instruction *InsertBefore) {
3197 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
3198 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
3199 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
3200 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
3202 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
3205 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3206 bool isSigned, const Twine &Name,
3207 Instruction *InsertBefore) {
3208 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3209 "Invalid integer cast");
3210 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3211 unsigned DstBits = Ty->getScalarSizeInBits();
3212 Instruction::CastOps opcode =
3213 (SrcBits == DstBits ? Instruction::BitCast :
3214 (SrcBits > DstBits ? Instruction::Trunc :
3215 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3216 return Create(opcode, C, Ty, Name, InsertBefore);
3219 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
3220 bool isSigned, const Twine &Name,
3221 BasicBlock *InsertAtEnd) {
3222 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
3223 "Invalid cast");
3224 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3225 unsigned DstBits = Ty->getScalarSizeInBits();
3226 Instruction::CastOps opcode =
3227 (SrcBits == DstBits ? Instruction::BitCast :
3228 (SrcBits > DstBits ? Instruction::Trunc :
3229 (isSigned ? Instruction::SExt : Instruction::ZExt)));
3230 return Create(opcode, C, Ty, Name, InsertAtEnd);
3233 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3234 const Twine &Name,
3235 Instruction *InsertBefore) {
3236 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3237 "Invalid cast");
3238 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3239 unsigned DstBits = Ty->getScalarSizeInBits();
3240 Instruction::CastOps opcode =
3241 (SrcBits == DstBits ? Instruction::BitCast :
3242 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3243 return Create(opcode, C, Ty, Name, InsertBefore);
3246 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
3247 const Twine &Name,
3248 BasicBlock *InsertAtEnd) {
3249 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
3250 "Invalid cast");
3251 unsigned SrcBits = C->getType()->getScalarSizeInBits();
3252 unsigned DstBits = Ty->getScalarSizeInBits();
3253 Instruction::CastOps opcode =
3254 (SrcBits == DstBits ? Instruction::BitCast :
3255 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
3256 return Create(opcode, C, Ty, Name, InsertAtEnd);
3259 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
3260 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
3261 return false;
3263 if (SrcTy == DestTy)
3264 return true;
3266 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3267 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
3268 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3269 // An element by element cast. Valid if casting the elements is valid.
3270 SrcTy = SrcVecTy->getElementType();
3271 DestTy = DestVecTy->getElementType();
3276 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
3277 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
3278 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
3282 TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3283 TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3285 // Could still have vectors of pointers if the number of elements doesn't
3286 // match
3287 if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0)
3288 return false;
3290 if (SrcBits != DestBits)
3291 return false;
3293 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
3294 return false;
3296 return true;
3299 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
3300 const DataLayout &DL) {
3301 // ptrtoint and inttoptr are not allowed on non-integral pointers
3302 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
3303 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
3304 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3305 !DL.isNonIntegralPointerType(PtrTy));
3306 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
3307 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
3308 return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) &&
3309 !DL.isNonIntegralPointerType(PtrTy));
3311 return isBitCastable(SrcTy, DestTy);
3314 // Provide a way to get a "cast" where the cast opcode is inferred from the
3315 // types and size of the operand. This, basically, is a parallel of the
3316 // logic in the castIsValid function below. This axiom should hold:
3317 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
3318 // should not assert in castIsValid. In other words, this produces a "correct"
3319 // casting opcode for the arguments passed to it.
3320 Instruction::CastOps
3321 CastInst::getCastOpcode(
3322 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
3323 Type *SrcTy = Src->getType();
3325 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
3326 "Only first class types are castable!");
3328 if (SrcTy == DestTy)
3329 return BitCast;
3331 // FIXME: Check address space sizes here
3332 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
3333 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
3334 if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) {
3335 // An element by element cast. Find the appropriate opcode based on the
3336 // element types.
3337 SrcTy = SrcVecTy->getElementType();
3338 DestTy = DestVecTy->getElementType();
3341 // Get the bit sizes, we'll need these
3342 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
3343 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
3345 // Run through the possibilities ...
3346 if (DestTy->isIntegerTy()) { // Casting to integral
3347 if (SrcTy->isIntegerTy()) { // Casting from integral
3348 if (DestBits < SrcBits)
3349 return Trunc; // int -> smaller int
3350 else if (DestBits > SrcBits) { // its an extension
3351 if (SrcIsSigned)
3352 return SExt; // signed -> SEXT
3353 else
3354 return ZExt; // unsigned -> ZEXT
3355 } else {
3356 return BitCast; // Same size, No-op cast
3358 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3359 if (DestIsSigned)
3360 return FPToSI; // FP -> sint
3361 else
3362 return FPToUI; // FP -> uint
3363 } else if (SrcTy->isVectorTy()) {
3364 assert(DestBits == SrcBits &&
3365 "Casting vector to integer of different width");
3366 return BitCast; // Same size, no-op cast
3367 } else {
3368 assert(SrcTy->isPointerTy() &&
3369 "Casting from a value that is not first-class type");
3370 return PtrToInt; // ptr -> int
3372 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
3373 if (SrcTy->isIntegerTy()) { // Casting from integral
3374 if (SrcIsSigned)
3375 return SIToFP; // sint -> FP
3376 else
3377 return UIToFP; // uint -> FP
3378 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
3379 if (DestBits < SrcBits) {
3380 return FPTrunc; // FP -> smaller FP
3381 } else if (DestBits > SrcBits) {
3382 return FPExt; // FP -> larger FP
3383 } else {
3384 return BitCast; // same size, no-op cast
3386 } else if (SrcTy->isVectorTy()) {
3387 assert(DestBits == SrcBits &&
3388 "Casting vector to floating point of different width");
3389 return BitCast; // same size, no-op cast
3391 llvm_unreachable("Casting pointer or non-first class to float");
3392 } else if (DestTy->isVectorTy()) {
3393 assert(DestBits == SrcBits &&
3394 "Illegal cast to vector (wrong type or size)");
3395 return BitCast;
3396 } else if (DestTy->isPointerTy()) {
3397 if (SrcTy->isPointerTy()) {
3398 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
3399 return AddrSpaceCast;
3400 return BitCast; // ptr -> ptr
3401 } else if (SrcTy->isIntegerTy()) {
3402 return IntToPtr; // int -> ptr
3404 llvm_unreachable("Casting pointer to other than pointer or int");
3405 } else if (DestTy->isX86_MMXTy()) {
3406 if (SrcTy->isVectorTy()) {
3407 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
3408 return BitCast; // 64-bit vector to MMX
3410 llvm_unreachable("Illegal cast to X86_MMX");
3412 llvm_unreachable("Casting to type that is not first-class");
3415 //===----------------------------------------------------------------------===//
3416 // CastInst SubClass Constructors
3417 //===----------------------------------------------------------------------===//
3419 /// Check that the construction parameters for a CastInst are correct. This
3420 /// could be broken out into the separate constructors but it is useful to have
3421 /// it in one place and to eliminate the redundant code for getting the sizes
3422 /// of the types involved.
3423 bool
3424 CastInst::castIsValid(Instruction::CastOps op, Type *SrcTy, Type *DstTy) {
3425 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3426 SrcTy->isAggregateType() || DstTy->isAggregateType())
3427 return false;
3429 // Get the size of the types in bits, and whether we are dealing
3430 // with vector types, we'll need this later.
3431 bool SrcIsVec = isa<VectorType>(SrcTy);
3432 bool DstIsVec = isa<VectorType>(DstTy);
3433 unsigned SrcScalarBitSize = SrcTy->getScalarSizeInBits();
3434 unsigned DstScalarBitSize = DstTy->getScalarSizeInBits();
3436 // If these are vector types, get the lengths of the vectors (using zero for
3437 // scalar types means that checking that vector lengths match also checks that
3438 // scalars are not being converted to vectors or vectors to scalars).
3439 ElementCount SrcEC = SrcIsVec ? cast<VectorType>(SrcTy)->getElementCount()
3440 : ElementCount::getFixed(0);
3441 ElementCount DstEC = DstIsVec ? cast<VectorType>(DstTy)->getElementCount()
3442 : ElementCount::getFixed(0);
3444 // Switch on the opcode provided
3445 switch (op) {
3446 default: return false; // This is an input error
3447 case Instruction::Trunc:
3448 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3449 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3450 case Instruction::ZExt:
3451 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3452 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3453 case Instruction::SExt:
3454 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3455 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3456 case Instruction::FPTrunc:
3457 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3458 SrcEC == DstEC && SrcScalarBitSize > DstScalarBitSize;
3459 case Instruction::FPExt:
3460 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3461 SrcEC == DstEC && SrcScalarBitSize < DstScalarBitSize;
3462 case Instruction::UIToFP:
3463 case Instruction::SIToFP:
3464 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3465 SrcEC == DstEC;
3466 case Instruction::FPToUI:
3467 case Instruction::FPToSI:
3468 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3469 SrcEC == DstEC;
3470 case Instruction::PtrToInt:
3471 if (SrcEC != DstEC)
3472 return false;
3473 return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy();
3474 case Instruction::IntToPtr:
3475 if (SrcEC != DstEC)
3476 return false;
3477 return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy();
3478 case Instruction::BitCast: {
3479 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3480 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3482 // BitCast implies a no-op cast of type only. No bits change.
3483 // However, you can't cast pointers to anything but pointers.
3484 if (!SrcPtrTy != !DstPtrTy)
3485 return false;
3487 // For non-pointer cases, the cast is okay if the source and destination bit
3488 // widths are identical.
3489 if (!SrcPtrTy)
3490 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3492 // If both are pointers then the address spaces must match.
3493 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3494 return false;
3496 // A vector of pointers must have the same number of elements.
3497 if (SrcIsVec && DstIsVec)
3498 return SrcEC == DstEC;
3499 if (SrcIsVec)
3500 return SrcEC == ElementCount::getFixed(1);
3501 if (DstIsVec)
3502 return DstEC == ElementCount::getFixed(1);
3504 return true;
3506 case Instruction::AddrSpaceCast: {
3507 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3508 if (!SrcPtrTy)
3509 return false;
3511 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3512 if (!DstPtrTy)
3513 return false;
3515 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3516 return false;
3518 return SrcEC == DstEC;
3523 TruncInst::TruncInst(
3524 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3525 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3526 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3529 TruncInst::TruncInst(
3530 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3531 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3532 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3535 ZExtInst::ZExtInst(
3536 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3537 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3538 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3541 ZExtInst::ZExtInst(
3542 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3543 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3544 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3546 SExtInst::SExtInst(
3547 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3548 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3549 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3552 SExtInst::SExtInst(
3553 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3554 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3555 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3558 FPTruncInst::FPTruncInst(
3559 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3560 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3561 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3564 FPTruncInst::FPTruncInst(
3565 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3566 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3567 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3570 FPExtInst::FPExtInst(
3571 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3572 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3573 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3576 FPExtInst::FPExtInst(
3577 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3578 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3579 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3582 UIToFPInst::UIToFPInst(
3583 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3584 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3585 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3588 UIToFPInst::UIToFPInst(
3589 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3590 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3591 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3594 SIToFPInst::SIToFPInst(
3595 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3596 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3597 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3600 SIToFPInst::SIToFPInst(
3601 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3602 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3603 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3606 FPToUIInst::FPToUIInst(
3607 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3608 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3609 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3612 FPToUIInst::FPToUIInst(
3613 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3614 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3615 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3618 FPToSIInst::FPToSIInst(
3619 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3620 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3621 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3624 FPToSIInst::FPToSIInst(
3625 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3626 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3627 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3630 PtrToIntInst::PtrToIntInst(
3631 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3632 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3633 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3636 PtrToIntInst::PtrToIntInst(
3637 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3638 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3639 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3642 IntToPtrInst::IntToPtrInst(
3643 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3644 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3645 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3648 IntToPtrInst::IntToPtrInst(
3649 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3650 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3651 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3654 BitCastInst::BitCastInst(
3655 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3656 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3657 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3660 BitCastInst::BitCastInst(
3661 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3662 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3663 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3666 AddrSpaceCastInst::AddrSpaceCastInst(
3667 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3668 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3669 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3672 AddrSpaceCastInst::AddrSpaceCastInst(
3673 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3674 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3675 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3678 //===----------------------------------------------------------------------===//
3679 // CmpInst Classes
3680 //===----------------------------------------------------------------------===//
3682 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3683 Value *RHS, const Twine &Name, Instruction *InsertBefore,
3684 Instruction *FlagsSource)
3685 : Instruction(ty, op,
3686 OperandTraits<CmpInst>::op_begin(this),
3687 OperandTraits<CmpInst>::operands(this),
3688 InsertBefore) {
3689 Op<0>() = LHS;
3690 Op<1>() = RHS;
3691 setPredicate((Predicate)predicate);
3692 setName(Name);
3693 if (FlagsSource)
3694 copyIRFlags(FlagsSource);
3697 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3698 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3699 : Instruction(ty, op,
3700 OperandTraits<CmpInst>::op_begin(this),
3701 OperandTraits<CmpInst>::operands(this),
3702 InsertAtEnd) {
3703 Op<0>() = LHS;
3704 Op<1>() = RHS;
3705 setPredicate((Predicate)predicate);
3706 setName(Name);
3709 CmpInst *
3710 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3711 const Twine &Name, Instruction *InsertBefore) {
3712 if (Op == Instruction::ICmp) {
3713 if (InsertBefore)
3714 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3715 S1, S2, Name);
3716 else
3717 return new ICmpInst(CmpInst::Predicate(predicate),
3718 S1, S2, Name);
3721 if (InsertBefore)
3722 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3723 S1, S2, Name);
3724 else
3725 return new FCmpInst(CmpInst::Predicate(predicate),
3726 S1, S2, Name);
3729 CmpInst *
3730 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3731 const Twine &Name, BasicBlock *InsertAtEnd) {
3732 if (Op == Instruction::ICmp) {
3733 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3734 S1, S2, Name);
3736 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3737 S1, S2, Name);
3740 void CmpInst::swapOperands() {
3741 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3742 IC->swapOperands();
3743 else
3744 cast<FCmpInst>(this)->swapOperands();
3747 bool CmpInst::isCommutative() const {
3748 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3749 return IC->isCommutative();
3750 return cast<FCmpInst>(this)->isCommutative();
3753 bool CmpInst::isEquality(Predicate P) {
3754 if (ICmpInst::isIntPredicate(P))
3755 return ICmpInst::isEquality(P);
3756 if (FCmpInst::isFPPredicate(P))
3757 return FCmpInst::isEquality(P);
3758 llvm_unreachable("Unsupported predicate kind");
3761 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3762 switch (pred) {
3763 default: llvm_unreachable("Unknown cmp predicate!");
3764 case ICMP_EQ: return ICMP_NE;
3765 case ICMP_NE: return ICMP_EQ;
3766 case ICMP_UGT: return ICMP_ULE;
3767 case ICMP_ULT: return ICMP_UGE;
3768 case ICMP_UGE: return ICMP_ULT;
3769 case ICMP_ULE: return ICMP_UGT;
3770 case ICMP_SGT: return ICMP_SLE;
3771 case ICMP_SLT: return ICMP_SGE;
3772 case ICMP_SGE: return ICMP_SLT;
3773 case ICMP_SLE: return ICMP_SGT;
3775 case FCMP_OEQ: return FCMP_UNE;
3776 case FCMP_ONE: return FCMP_UEQ;
3777 case FCMP_OGT: return FCMP_ULE;
3778 case FCMP_OLT: return FCMP_UGE;
3779 case FCMP_OGE: return FCMP_ULT;
3780 case FCMP_OLE: return FCMP_UGT;
3781 case FCMP_UEQ: return FCMP_ONE;
3782 case FCMP_UNE: return FCMP_OEQ;
3783 case FCMP_UGT: return FCMP_OLE;
3784 case FCMP_ULT: return FCMP_OGE;
3785 case FCMP_UGE: return FCMP_OLT;
3786 case FCMP_ULE: return FCMP_OGT;
3787 case FCMP_ORD: return FCMP_UNO;
3788 case FCMP_UNO: return FCMP_ORD;
3789 case FCMP_TRUE: return FCMP_FALSE;
3790 case FCMP_FALSE: return FCMP_TRUE;
3794 StringRef CmpInst::getPredicateName(Predicate Pred) {
3795 switch (Pred) {
3796 default: return "unknown";
3797 case FCmpInst::FCMP_FALSE: return "false";
3798 case FCmpInst::FCMP_OEQ: return "oeq";
3799 case FCmpInst::FCMP_OGT: return "ogt";
3800 case FCmpInst::FCMP_OGE: return "oge";
3801 case FCmpInst::FCMP_OLT: return "olt";
3802 case FCmpInst::FCMP_OLE: return "ole";
3803 case FCmpInst::FCMP_ONE: return "one";
3804 case FCmpInst::FCMP_ORD: return "ord";
3805 case FCmpInst::FCMP_UNO: return "uno";
3806 case FCmpInst::FCMP_UEQ: return "ueq";
3807 case FCmpInst::FCMP_UGT: return "ugt";
3808 case FCmpInst::FCMP_UGE: return "uge";
3809 case FCmpInst::FCMP_ULT: return "ult";
3810 case FCmpInst::FCMP_ULE: return "ule";
3811 case FCmpInst::FCMP_UNE: return "une";
3812 case FCmpInst::FCMP_TRUE: return "true";
3813 case ICmpInst::ICMP_EQ: return "eq";
3814 case ICmpInst::ICMP_NE: return "ne";
3815 case ICmpInst::ICMP_SGT: return "sgt";
3816 case ICmpInst::ICMP_SGE: return "sge";
3817 case ICmpInst::ICMP_SLT: return "slt";
3818 case ICmpInst::ICMP_SLE: return "sle";
3819 case ICmpInst::ICMP_UGT: return "ugt";
3820 case ICmpInst::ICMP_UGE: return "uge";
3821 case ICmpInst::ICMP_ULT: return "ult";
3822 case ICmpInst::ICMP_ULE: return "ule";
3826 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3827 switch (pred) {
3828 default: llvm_unreachable("Unknown icmp predicate!");
3829 case ICMP_EQ: case ICMP_NE:
3830 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3831 return pred;
3832 case ICMP_UGT: return ICMP_SGT;
3833 case ICMP_ULT: return ICMP_SLT;
3834 case ICMP_UGE: return ICMP_SGE;
3835 case ICMP_ULE: return ICMP_SLE;
3839 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3840 switch (pred) {
3841 default: llvm_unreachable("Unknown icmp predicate!");
3842 case ICMP_EQ: case ICMP_NE:
3843 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3844 return pred;
3845 case ICMP_SGT: return ICMP_UGT;
3846 case ICMP_SLT: return ICMP_ULT;
3847 case ICMP_SGE: return ICMP_UGE;
3848 case ICMP_SLE: return ICMP_ULE;
3852 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3853 switch (pred) {
3854 default: llvm_unreachable("Unknown cmp predicate!");
3855 case ICMP_EQ: case ICMP_NE:
3856 return pred;
3857 case ICMP_SGT: return ICMP_SLT;
3858 case ICMP_SLT: return ICMP_SGT;
3859 case ICMP_SGE: return ICMP_SLE;
3860 case ICMP_SLE: return ICMP_SGE;
3861 case ICMP_UGT: return ICMP_ULT;
3862 case ICMP_ULT: return ICMP_UGT;
3863 case ICMP_UGE: return ICMP_ULE;
3864 case ICMP_ULE: return ICMP_UGE;
3866 case FCMP_FALSE: case FCMP_TRUE:
3867 case FCMP_OEQ: case FCMP_ONE:
3868 case FCMP_UEQ: case FCMP_UNE:
3869 case FCMP_ORD: case FCMP_UNO:
3870 return pred;
3871 case FCMP_OGT: return FCMP_OLT;
3872 case FCMP_OLT: return FCMP_OGT;
3873 case FCMP_OGE: return FCMP_OLE;
3874 case FCMP_OLE: return FCMP_OGE;
3875 case FCMP_UGT: return FCMP_ULT;
3876 case FCMP_ULT: return FCMP_UGT;
3877 case FCMP_UGE: return FCMP_ULE;
3878 case FCMP_ULE: return FCMP_UGE;
3882 bool CmpInst::isNonStrictPredicate(Predicate pred) {
3883 switch (pred) {
3884 case ICMP_SGE:
3885 case ICMP_SLE:
3886 case ICMP_UGE:
3887 case ICMP_ULE:
3888 case FCMP_OGE:
3889 case FCMP_OLE:
3890 case FCMP_UGE:
3891 case FCMP_ULE:
3892 return true;
3893 default:
3894 return false;
3898 bool CmpInst::isStrictPredicate(Predicate pred) {
3899 switch (pred) {
3900 case ICMP_SGT:
3901 case ICMP_SLT:
3902 case ICMP_UGT:
3903 case ICMP_ULT:
3904 case FCMP_OGT:
3905 case FCMP_OLT:
3906 case FCMP_UGT:
3907 case FCMP_ULT:
3908 return true;
3909 default:
3910 return false;
3914 CmpInst::Predicate CmpInst::getStrictPredicate(Predicate pred) {
3915 switch (pred) {
3916 case ICMP_SGE:
3917 return ICMP_SGT;
3918 case ICMP_SLE:
3919 return ICMP_SLT;
3920 case ICMP_UGE:
3921 return ICMP_UGT;
3922 case ICMP_ULE:
3923 return ICMP_ULT;
3924 case FCMP_OGE:
3925 return FCMP_OGT;
3926 case FCMP_OLE:
3927 return FCMP_OLT;
3928 case FCMP_UGE:
3929 return FCMP_UGT;
3930 case FCMP_ULE:
3931 return FCMP_ULT;
3932 default:
3933 return pred;
3937 CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) {
3938 switch (pred) {
3939 case ICMP_SGT:
3940 return ICMP_SGE;
3941 case ICMP_SLT:
3942 return ICMP_SLE;
3943 case ICMP_UGT:
3944 return ICMP_UGE;
3945 case ICMP_ULT:
3946 return ICMP_ULE;
3947 case FCMP_OGT:
3948 return FCMP_OGE;
3949 case FCMP_OLT:
3950 return FCMP_OLE;
3951 case FCMP_UGT:
3952 return FCMP_UGE;
3953 case FCMP_ULT:
3954 return FCMP_ULE;
3955 default:
3956 return pred;
3960 CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) {
3961 assert(CmpInst::isRelational(pred) && "Call only with relational predicate!");
3963 if (isStrictPredicate(pred))
3964 return getNonStrictPredicate(pred);
3965 if (isNonStrictPredicate(pred))
3966 return getStrictPredicate(pred);
3968 llvm_unreachable("Unknown predicate!");
3971 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3972 assert(CmpInst::isUnsigned(pred) && "Call only with unsigned predicates!");
3974 switch (pred) {
3975 default:
3976 llvm_unreachable("Unknown predicate!");
3977 case CmpInst::ICMP_ULT:
3978 return CmpInst::ICMP_SLT;
3979 case CmpInst::ICMP_ULE:
3980 return CmpInst::ICMP_SLE;
3981 case CmpInst::ICMP_UGT:
3982 return CmpInst::ICMP_SGT;
3983 case CmpInst::ICMP_UGE:
3984 return CmpInst::ICMP_SGE;
3988 CmpInst::Predicate CmpInst::getUnsignedPredicate(Predicate pred) {
3989 assert(CmpInst::isSigned(pred) && "Call only with signed predicates!");
3991 switch (pred) {
3992 default:
3993 llvm_unreachable("Unknown predicate!");
3994 case CmpInst::ICMP_SLT:
3995 return CmpInst::ICMP_ULT;
3996 case CmpInst::ICMP_SLE:
3997 return CmpInst::ICMP_ULE;
3998 case CmpInst::ICMP_SGT:
3999 return CmpInst::ICMP_UGT;
4000 case CmpInst::ICMP_SGE:
4001 return CmpInst::ICMP_UGE;
4005 bool CmpInst::isUnsigned(Predicate predicate) {
4006 switch (predicate) {
4007 default: return false;
4008 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
4009 case ICmpInst::ICMP_UGE: return true;
4013 bool CmpInst::isSigned(Predicate predicate) {
4014 switch (predicate) {
4015 default: return false;
4016 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
4017 case ICmpInst::ICMP_SGE: return true;
4021 CmpInst::Predicate CmpInst::getFlippedSignednessPredicate(Predicate pred) {
4022 assert(CmpInst::isRelational(pred) &&
4023 "Call only with non-equality predicates!");
4025 if (isSigned(pred))
4026 return getUnsignedPredicate(pred);
4027 if (isUnsigned(pred))
4028 return getSignedPredicate(pred);
4030 llvm_unreachable("Unknown predicate!");
4033 bool CmpInst::isOrdered(Predicate predicate) {
4034 switch (predicate) {
4035 default: return false;
4036 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
4037 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
4038 case FCmpInst::FCMP_ORD: return true;
4042 bool CmpInst::isUnordered(Predicate predicate) {
4043 switch (predicate) {
4044 default: return false;
4045 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
4046 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
4047 case FCmpInst::FCMP_UNO: return true;
4051 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
4052 switch(predicate) {
4053 default: return false;
4054 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
4055 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
4059 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
4060 switch(predicate) {
4061 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
4062 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
4063 default: return false;
4067 bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4068 // If the predicates match, then we know the first condition implies the
4069 // second is true.
4070 if (Pred1 == Pred2)
4071 return true;
4073 switch (Pred1) {
4074 default:
4075 break;
4076 case ICMP_EQ:
4077 // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true.
4078 return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE ||
4079 Pred2 == ICMP_SLE;
4080 case ICMP_UGT: // A >u B implies A != B and A >=u B are true.
4081 return Pred2 == ICMP_NE || Pred2 == ICMP_UGE;
4082 case ICMP_ULT: // A <u B implies A != B and A <=u B are true.
4083 return Pred2 == ICMP_NE || Pred2 == ICMP_ULE;
4084 case ICMP_SGT: // A >s B implies A != B and A >=s B are true.
4085 return Pred2 == ICMP_NE || Pred2 == ICMP_SGE;
4086 case ICMP_SLT: // A <s B implies A != B and A <=s B are true.
4087 return Pred2 == ICMP_NE || Pred2 == ICMP_SLE;
4089 return false;
4092 bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) {
4093 return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2));
4096 //===----------------------------------------------------------------------===//
4097 // SwitchInst Implementation
4098 //===----------------------------------------------------------------------===//
4100 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
4101 assert(Value && Default && NumReserved);
4102 ReservedSpace = NumReserved;
4103 setNumHungOffUseOperands(2);
4104 allocHungoffUses(ReservedSpace);
4106 Op<0>() = Value;
4107 Op<1>() = Default;
4110 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4111 /// switch on and a default destination. The number of additional cases can
4112 /// be specified here to make memory allocation more efficient. This
4113 /// constructor can also autoinsert before another instruction.
4114 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4115 Instruction *InsertBefore)
4116 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4117 nullptr, 0, InsertBefore) {
4118 init(Value, Default, 2+NumCases*2);
4121 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
4122 /// switch on and a default destination. The number of additional cases can
4123 /// be specified here to make memory allocation more efficient. This
4124 /// constructor also autoinserts at the end of the specified BasicBlock.
4125 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
4126 BasicBlock *InsertAtEnd)
4127 : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch,
4128 nullptr, 0, InsertAtEnd) {
4129 init(Value, Default, 2+NumCases*2);
4132 SwitchInst::SwitchInst(const SwitchInst &SI)
4133 : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) {
4134 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
4135 setNumHungOffUseOperands(SI.getNumOperands());
4136 Use *OL = getOperandList();
4137 const Use *InOL = SI.getOperandList();
4138 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
4139 OL[i] = InOL[i];
4140 OL[i+1] = InOL[i+1];
4142 SubclassOptionalData = SI.SubclassOptionalData;
4145 /// addCase - Add an entry to the switch instruction...
4147 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
4148 unsigned NewCaseIdx = getNumCases();
4149 unsigned OpNo = getNumOperands();
4150 if (OpNo+2 > ReservedSpace)
4151 growOperands(); // Get more space!
4152 // Initialize some new operands.
4153 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
4154 setNumHungOffUseOperands(OpNo+2);
4155 CaseHandle Case(this, NewCaseIdx);
4156 Case.setValue(OnVal);
4157 Case.setSuccessor(Dest);
4160 /// removeCase - This method removes the specified case and its successor
4161 /// from the switch instruction.
4162 SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) {
4163 unsigned idx = I->getCaseIndex();
4165 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
4167 unsigned NumOps = getNumOperands();
4168 Use *OL = getOperandList();
4170 // Overwrite this case with the end of the list.
4171 if (2 + (idx + 1) * 2 != NumOps) {
4172 OL[2 + idx * 2] = OL[NumOps - 2];
4173 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
4176 // Nuke the last value.
4177 OL[NumOps-2].set(nullptr);
4178 OL[NumOps-2+1].set(nullptr);
4179 setNumHungOffUseOperands(NumOps-2);
4181 return CaseIt(this, idx);
4184 /// growOperands - grow operands - This grows the operand list in response
4185 /// to a push_back style of operation. This grows the number of ops by 3 times.
4187 void SwitchInst::growOperands() {
4188 unsigned e = getNumOperands();
4189 unsigned NumOps = e*3;
4191 ReservedSpace = NumOps;
4192 growHungoffUses(ReservedSpace);
4195 MDNode *
4196 SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) {
4197 if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof))
4198 if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0)))
4199 if (MDName->getString() == "branch_weights")
4200 return ProfileData;
4201 return nullptr;
4204 MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() {
4205 assert(Changed && "called only if metadata has changed");
4207 if (!Weights)
4208 return nullptr;
4210 assert(SI.getNumSuccessors() == Weights->size() &&
4211 "num of prof branch_weights must accord with num of successors");
4213 bool AllZeroes =
4214 all_of(Weights.getValue(), [](uint32_t W) { return W == 0; });
4216 if (AllZeroes || Weights.getValue().size() < 2)
4217 return nullptr;
4219 return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights);
4222 void SwitchInstProfUpdateWrapper::init() {
4223 MDNode *ProfileData = getProfBranchWeightsMD(SI);
4224 if (!ProfileData)
4225 return;
4227 if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) {
4228 llvm_unreachable("number of prof branch_weights metadata operands does "
4229 "not correspond to number of succesors");
4232 SmallVector<uint32_t, 8> Weights;
4233 for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) {
4234 ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI));
4235 uint32_t CW = C->getValue().getZExtValue();
4236 Weights.push_back(CW);
4238 this->Weights = std::move(Weights);
4241 SwitchInst::CaseIt
4242 SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) {
4243 if (Weights) {
4244 assert(SI.getNumSuccessors() == Weights->size() &&
4245 "num of prof branch_weights must accord with num of successors");
4246 Changed = true;
4247 // Copy the last case to the place of the removed one and shrink.
4248 // This is tightly coupled with the way SwitchInst::removeCase() removes
4249 // the cases in SwitchInst::removeCase(CaseIt).
4250 Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back();
4251 Weights.getValue().pop_back();
4253 return SI.removeCase(I);
4256 void SwitchInstProfUpdateWrapper::addCase(
4257 ConstantInt *OnVal, BasicBlock *Dest,
4258 SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4259 SI.addCase(OnVal, Dest);
4261 if (!Weights && W && *W) {
4262 Changed = true;
4263 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4264 Weights.getValue()[SI.getNumSuccessors() - 1] = *W;
4265 } else if (Weights) {
4266 Changed = true;
4267 Weights.getValue().push_back(W ? *W : 0);
4269 if (Weights)
4270 assert(SI.getNumSuccessors() == Weights->size() &&
4271 "num of prof branch_weights must accord with num of successors");
4274 SymbolTableList<Instruction>::iterator
4275 SwitchInstProfUpdateWrapper::eraseFromParent() {
4276 // Instruction is erased. Mark as unchanged to not touch it in the destructor.
4277 Changed = false;
4278 if (Weights)
4279 Weights->resize(0);
4280 return SI.eraseFromParent();
4283 SwitchInstProfUpdateWrapper::CaseWeightOpt
4284 SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) {
4285 if (!Weights)
4286 return None;
4287 return Weights.getValue()[idx];
4290 void SwitchInstProfUpdateWrapper::setSuccessorWeight(
4291 unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) {
4292 if (!W)
4293 return;
4295 if (!Weights && *W)
4296 Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0);
4298 if (Weights) {
4299 auto &OldW = Weights.getValue()[idx];
4300 if (*W != OldW) {
4301 Changed = true;
4302 OldW = *W;
4307 SwitchInstProfUpdateWrapper::CaseWeightOpt
4308 SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI,
4309 unsigned idx) {
4310 if (MDNode *ProfileData = getProfBranchWeightsMD(SI))
4311 if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1)
4312 return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1))
4313 ->getValue()
4314 .getZExtValue();
4316 return None;
4319 //===----------------------------------------------------------------------===//
4320 // IndirectBrInst Implementation
4321 //===----------------------------------------------------------------------===//
4323 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
4324 assert(Address && Address->getType()->isPointerTy() &&
4325 "Address of indirectbr must be a pointer");
4326 ReservedSpace = 1+NumDests;
4327 setNumHungOffUseOperands(1);
4328 allocHungoffUses(ReservedSpace);
4330 Op<0>() = Address;
4334 /// growOperands - grow operands - This grows the operand list in response
4335 /// to a push_back style of operation. This grows the number of ops by 2 times.
4337 void IndirectBrInst::growOperands() {
4338 unsigned e = getNumOperands();
4339 unsigned NumOps = e*2;
4341 ReservedSpace = NumOps;
4342 growHungoffUses(ReservedSpace);
4345 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4346 Instruction *InsertBefore)
4347 : Instruction(Type::getVoidTy(Address->getContext()),
4348 Instruction::IndirectBr, nullptr, 0, InsertBefore) {
4349 init(Address, NumCases);
4352 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
4353 BasicBlock *InsertAtEnd)
4354 : Instruction(Type::getVoidTy(Address->getContext()),
4355 Instruction::IndirectBr, nullptr, 0, InsertAtEnd) {
4356 init(Address, NumCases);
4359 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
4360 : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
4361 nullptr, IBI.getNumOperands()) {
4362 allocHungoffUses(IBI.getNumOperands());
4363 Use *OL = getOperandList();
4364 const Use *InOL = IBI.getOperandList();
4365 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
4366 OL[i] = InOL[i];
4367 SubclassOptionalData = IBI.SubclassOptionalData;
4370 /// addDestination - Add a destination.
4372 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
4373 unsigned OpNo = getNumOperands();
4374 if (OpNo+1 > ReservedSpace)
4375 growOperands(); // Get more space!
4376 // Initialize some new operands.
4377 assert(OpNo < ReservedSpace && "Growing didn't work!");
4378 setNumHungOffUseOperands(OpNo+1);
4379 getOperandList()[OpNo] = DestBB;
4382 /// removeDestination - This method removes the specified successor from the
4383 /// indirectbr instruction.
4384 void IndirectBrInst::removeDestination(unsigned idx) {
4385 assert(idx < getNumOperands()-1 && "Successor index out of range!");
4387 unsigned NumOps = getNumOperands();
4388 Use *OL = getOperandList();
4390 // Replace this value with the last one.
4391 OL[idx+1] = OL[NumOps-1];
4393 // Nuke the last value.
4394 OL[NumOps-1].set(nullptr);
4395 setNumHungOffUseOperands(NumOps-1);
4398 //===----------------------------------------------------------------------===//
4399 // FreezeInst Implementation
4400 //===----------------------------------------------------------------------===//
4402 FreezeInst::FreezeInst(Value *S,
4403 const Twine &Name, Instruction *InsertBefore)
4404 : UnaryInstruction(S->getType(), Freeze, S, InsertBefore) {
4405 setName(Name);
4408 FreezeInst::FreezeInst(Value *S,
4409 const Twine &Name, BasicBlock *InsertAtEnd)
4410 : UnaryInstruction(S->getType(), Freeze, S, InsertAtEnd) {
4411 setName(Name);
4414 //===----------------------------------------------------------------------===//
4415 // cloneImpl() implementations
4416 //===----------------------------------------------------------------------===//
4418 // Define these methods here so vtables don't get emitted into every translation
4419 // unit that uses these classes.
4421 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
4422 return new (getNumOperands()) GetElementPtrInst(*this);
4425 UnaryOperator *UnaryOperator::cloneImpl() const {
4426 return Create(getOpcode(), Op<0>());
4429 BinaryOperator *BinaryOperator::cloneImpl() const {
4430 return Create(getOpcode(), Op<0>(), Op<1>());
4433 FCmpInst *FCmpInst::cloneImpl() const {
4434 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
4437 ICmpInst *ICmpInst::cloneImpl() const {
4438 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
4441 ExtractValueInst *ExtractValueInst::cloneImpl() const {
4442 return new ExtractValueInst(*this);
4445 InsertValueInst *InsertValueInst::cloneImpl() const {
4446 return new InsertValueInst(*this);
4449 AllocaInst *AllocaInst::cloneImpl() const {
4450 AllocaInst *Result =
4451 new AllocaInst(getAllocatedType(), getType()->getAddressSpace(),
4452 getOperand(0), getAlign());
4453 Result->setUsedWithInAlloca(isUsedWithInAlloca());
4454 Result->setSwiftError(isSwiftError());
4455 return Result;
4458 LoadInst *LoadInst::cloneImpl() const {
4459 return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(),
4460 getAlign(), getOrdering(), getSyncScopeID());
4463 StoreInst *StoreInst::cloneImpl() const {
4464 return new StoreInst(getOperand(0), getOperand(1), isVolatile(), getAlign(),
4465 getOrdering(), getSyncScopeID());
4468 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
4469 AtomicCmpXchgInst *Result = new AtomicCmpXchgInst(
4470 getOperand(0), getOperand(1), getOperand(2), getAlign(),
4471 getSuccessOrdering(), getFailureOrdering(), getSyncScopeID());
4472 Result->setVolatile(isVolatile());
4473 Result->setWeak(isWeak());
4474 return Result;
4477 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
4478 AtomicRMWInst *Result =
4479 new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1),
4480 getAlign(), getOrdering(), getSyncScopeID());
4481 Result->setVolatile(isVolatile());
4482 return Result;
4485 FenceInst *FenceInst::cloneImpl() const {
4486 return new FenceInst(getContext(), getOrdering(), getSyncScopeID());
4489 TruncInst *TruncInst::cloneImpl() const {
4490 return new TruncInst(getOperand(0), getType());
4493 ZExtInst *ZExtInst::cloneImpl() const {
4494 return new ZExtInst(getOperand(0), getType());
4497 SExtInst *SExtInst::cloneImpl() const {
4498 return new SExtInst(getOperand(0), getType());
4501 FPTruncInst *FPTruncInst::cloneImpl() const {
4502 return new FPTruncInst(getOperand(0), getType());
4505 FPExtInst *FPExtInst::cloneImpl() const {
4506 return new FPExtInst(getOperand(0), getType());
4509 UIToFPInst *UIToFPInst::cloneImpl() const {
4510 return new UIToFPInst(getOperand(0), getType());
4513 SIToFPInst *SIToFPInst::cloneImpl() const {
4514 return new SIToFPInst(getOperand(0), getType());
4517 FPToUIInst *FPToUIInst::cloneImpl() const {
4518 return new FPToUIInst(getOperand(0), getType());
4521 FPToSIInst *FPToSIInst::cloneImpl() const {
4522 return new FPToSIInst(getOperand(0), getType());
4525 PtrToIntInst *PtrToIntInst::cloneImpl() const {
4526 return new PtrToIntInst(getOperand(0), getType());
4529 IntToPtrInst *IntToPtrInst::cloneImpl() const {
4530 return new IntToPtrInst(getOperand(0), getType());
4533 BitCastInst *BitCastInst::cloneImpl() const {
4534 return new BitCastInst(getOperand(0), getType());
4537 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
4538 return new AddrSpaceCastInst(getOperand(0), getType());
4541 CallInst *CallInst::cloneImpl() const {
4542 if (hasOperandBundles()) {
4543 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4544 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
4546 return new(getNumOperands()) CallInst(*this);
4549 SelectInst *SelectInst::cloneImpl() const {
4550 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
4553 VAArgInst *VAArgInst::cloneImpl() const {
4554 return new VAArgInst(getOperand(0), getType());
4557 ExtractElementInst *ExtractElementInst::cloneImpl() const {
4558 return ExtractElementInst::Create(getOperand(0), getOperand(1));
4561 InsertElementInst *InsertElementInst::cloneImpl() const {
4562 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
4565 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
4566 return new ShuffleVectorInst(getOperand(0), getOperand(1), getShuffleMask());
4569 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
4571 LandingPadInst *LandingPadInst::cloneImpl() const {
4572 return new LandingPadInst(*this);
4575 ReturnInst *ReturnInst::cloneImpl() const {
4576 return new(getNumOperands()) ReturnInst(*this);
4579 BranchInst *BranchInst::cloneImpl() const {
4580 return new(getNumOperands()) BranchInst(*this);
4583 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
4585 IndirectBrInst *IndirectBrInst::cloneImpl() const {
4586 return new IndirectBrInst(*this);
4589 InvokeInst *InvokeInst::cloneImpl() const {
4590 if (hasOperandBundles()) {
4591 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4592 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
4594 return new(getNumOperands()) InvokeInst(*this);
4597 CallBrInst *CallBrInst::cloneImpl() const {
4598 if (hasOperandBundles()) {
4599 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
4600 return new (getNumOperands(), DescriptorBytes) CallBrInst(*this);
4602 return new (getNumOperands()) CallBrInst(*this);
4605 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
4607 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
4608 return new (getNumOperands()) CleanupReturnInst(*this);
4611 CatchReturnInst *CatchReturnInst::cloneImpl() const {
4612 return new (getNumOperands()) CatchReturnInst(*this);
4615 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
4616 return new CatchSwitchInst(*this);
4619 FuncletPadInst *FuncletPadInst::cloneImpl() const {
4620 return new (getNumOperands()) FuncletPadInst(*this);
4623 UnreachableInst *UnreachableInst::cloneImpl() const {
4624 LLVMContext &Context = getContext();
4625 return new UnreachableInst(Context);
4628 FreezeInst *FreezeInst::cloneImpl() const {
4629 return new FreezeInst(getOperand(0));