1 //===- Module.cpp - Implement the Module class ----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Module class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Module.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/StringMap.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Twine.h"
22 #include "llvm/IR/Attributes.h"
23 #include "llvm/IR/Comdat.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DebugInfoMetadata.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GVMaterializer.h"
30 #include "llvm/IR/GlobalAlias.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/GlobalVariable.h"
34 #include "llvm/IR/LLVMContext.h"
35 #include "llvm/IR/Metadata.h"
36 #include "llvm/IR/ModuleSummaryIndex.h"
37 #include "llvm/IR/SymbolTableListTraits.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/TypeFinder.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/CodeGen.h"
45 #include "llvm/Support/Error.h"
46 #include "llvm/Support/MemoryBuffer.h"
47 #include "llvm/Support/Path.h"
48 #include "llvm/Support/RandomNumberGenerator.h"
49 #include "llvm/Support/VersionTuple.h"
59 //===----------------------------------------------------------------------===//
60 // Methods to implement the globals and functions lists.
63 // Explicit instantiations of SymbolTableListTraits since some of the methods
64 // are not in the public header file.
65 template class llvm::SymbolTableListTraits
<Function
>;
66 template class llvm::SymbolTableListTraits
<GlobalVariable
>;
67 template class llvm::SymbolTableListTraits
<GlobalAlias
>;
68 template class llvm::SymbolTableListTraits
<GlobalIFunc
>;
70 //===----------------------------------------------------------------------===//
71 // Primitive Module methods.
74 Module::Module(StringRef MID
, LLVMContext
&C
)
75 : Context(C
), ValSymTab(std::make_unique
<ValueSymbolTable
>(-1)),
76 Materializer(), ModuleID(std::string(MID
)),
77 SourceFileName(std::string(MID
)), DL("") {
78 Context
.addModule(this);
82 Context
.removeModule(this);
90 std::unique_ptr
<RandomNumberGenerator
>
91 Module::createRNG(const StringRef Name
) const {
92 SmallString
<32> Salt(Name
);
94 // This RNG is guaranteed to produce the same random stream only
95 // when the Module ID and thus the input filename is the same. This
96 // might be problematic if the input filename extension changes
97 // (e.g. from .c to .bc or .ll).
99 // We could store this salt in NamedMetadata, but this would make
100 // the parameter non-const. This would unfortunately make this
101 // interface unusable by any Machine passes, since they only have a
102 // const reference to their IR Module. Alternatively we can always
103 // store salt metadata from the Module constructor.
104 Salt
+= sys::path::filename(getModuleIdentifier());
106 return std::unique_ptr
<RandomNumberGenerator
>(
107 new RandomNumberGenerator(Salt
));
110 /// getNamedValue - Return the first global value in the module with
111 /// the specified name, of arbitrary type. This method returns null
112 /// if a global with the specified name is not found.
113 GlobalValue
*Module::getNamedValue(StringRef Name
) const {
114 return cast_or_null
<GlobalValue
>(getValueSymbolTable().lookup(Name
));
117 unsigned Module::getNumNamedValues() const {
118 return getValueSymbolTable().size();
121 /// getMDKindID - Return a unique non-zero ID for the specified metadata kind.
122 /// This ID is uniqued across modules in the current LLVMContext.
123 unsigned Module::getMDKindID(StringRef Name
) const {
124 return Context
.getMDKindID(Name
);
127 /// getMDKindNames - Populate client supplied SmallVector with the name for
128 /// custom metadata IDs registered in this LLVMContext. ID #0 is not used,
129 /// so it is filled in as an empty string.
130 void Module::getMDKindNames(SmallVectorImpl
<StringRef
> &Result
) const {
131 return Context
.getMDKindNames(Result
);
134 void Module::getOperandBundleTags(SmallVectorImpl
<StringRef
> &Result
) const {
135 return Context
.getOperandBundleTags(Result
);
138 //===----------------------------------------------------------------------===//
139 // Methods for easy access to the functions in the module.
142 // getOrInsertFunction - Look up the specified function in the module symbol
143 // table. If it does not exist, add a prototype for the function and return
144 // it. This is nice because it allows most passes to get away with not handling
145 // the symbol table directly for this common task.
147 FunctionCallee
Module::getOrInsertFunction(StringRef Name
, FunctionType
*Ty
,
148 AttributeList AttributeList
) {
149 // See if we have a definition for the specified function already.
150 GlobalValue
*F
= getNamedValue(Name
);
153 Function
*New
= Function::Create(Ty
, GlobalVariable::ExternalLinkage
,
154 DL
.getProgramAddressSpace(), Name
);
155 if (!New
->isIntrinsic()) // Intrinsics get attrs set on construction
156 New
->setAttributes(AttributeList
);
157 FunctionList
.push_back(New
);
158 return {Ty
, New
}; // Return the new prototype.
161 // If the function exists but has the wrong type, return a bitcast to the
163 auto *PTy
= PointerType::get(Ty
, F
->getAddressSpace());
164 if (F
->getType() != PTy
)
165 return {Ty
, ConstantExpr::getBitCast(F
, PTy
)};
167 // Otherwise, we just found the existing function or a prototype.
171 FunctionCallee
Module::getOrInsertFunction(StringRef Name
, FunctionType
*Ty
) {
172 return getOrInsertFunction(Name
, Ty
, AttributeList());
175 // getFunction - Look up the specified function in the module symbol table.
176 // If it does not exist, return null.
178 Function
*Module::getFunction(StringRef Name
) const {
179 return dyn_cast_or_null
<Function
>(getNamedValue(Name
));
182 //===----------------------------------------------------------------------===//
183 // Methods for easy access to the global variables in the module.
186 /// getGlobalVariable - Look up the specified global variable in the module
187 /// symbol table. If it does not exist, return null. The type argument
188 /// should be the underlying type of the global, i.e., it should not have
189 /// the top-level PointerType, which represents the address of the global.
190 /// If AllowLocal is set to true, this function will return types that
191 /// have an local. By default, these types are not returned.
193 GlobalVariable
*Module::getGlobalVariable(StringRef Name
,
194 bool AllowLocal
) const {
195 if (GlobalVariable
*Result
=
196 dyn_cast_or_null
<GlobalVariable
>(getNamedValue(Name
)))
197 if (AllowLocal
|| !Result
->hasLocalLinkage())
202 /// getOrInsertGlobal - Look up the specified global in the module symbol table.
203 /// 1. If it does not exist, add a declaration of the global and return it.
204 /// 2. Else, the global exists but has the wrong type: return the function
205 /// with a constantexpr cast to the right type.
206 /// 3. Finally, if the existing global is the correct declaration, return the
208 Constant
*Module::getOrInsertGlobal(
209 StringRef Name
, Type
*Ty
,
210 function_ref
<GlobalVariable
*()> CreateGlobalCallback
) {
211 // See if we have a definition for the specified global already.
212 GlobalVariable
*GV
= dyn_cast_or_null
<GlobalVariable
>(getNamedValue(Name
));
214 GV
= CreateGlobalCallback();
215 assert(GV
&& "The CreateGlobalCallback is expected to create a global");
217 // If the variable exists but has the wrong type, return a bitcast to the
219 Type
*GVTy
= GV
->getType();
220 PointerType
*PTy
= PointerType::get(Ty
, GVTy
->getPointerAddressSpace());
222 return ConstantExpr::getBitCast(GV
, PTy
);
224 // Otherwise, we just found the existing function or a prototype.
228 // Overload to construct a global variable using its constructor's defaults.
229 Constant
*Module::getOrInsertGlobal(StringRef Name
, Type
*Ty
) {
230 return getOrInsertGlobal(Name
, Ty
, [&] {
231 return new GlobalVariable(*this, Ty
, false, GlobalVariable::ExternalLinkage
,
236 //===----------------------------------------------------------------------===//
237 // Methods for easy access to the global variables in the module.
240 // getNamedAlias - Look up the specified global in the module symbol table.
241 // If it does not exist, return null.
243 GlobalAlias
*Module::getNamedAlias(StringRef Name
) const {
244 return dyn_cast_or_null
<GlobalAlias
>(getNamedValue(Name
));
247 GlobalIFunc
*Module::getNamedIFunc(StringRef Name
) const {
248 return dyn_cast_or_null
<GlobalIFunc
>(getNamedValue(Name
));
251 /// getNamedMetadata - Return the first NamedMDNode in the module with the
252 /// specified name. This method returns null if a NamedMDNode with the
253 /// specified name is not found.
254 NamedMDNode
*Module::getNamedMetadata(const Twine
&Name
) const {
255 SmallString
<256> NameData
;
256 StringRef NameRef
= Name
.toStringRef(NameData
);
257 return NamedMDSymTab
.lookup(NameRef
);
260 /// getOrInsertNamedMetadata - Return the first named MDNode in the module
261 /// with the specified name. This method returns a new NamedMDNode if a
262 /// NamedMDNode with the specified name is not found.
263 NamedMDNode
*Module::getOrInsertNamedMetadata(StringRef Name
) {
264 NamedMDNode
*&NMD
= NamedMDSymTab
[Name
];
266 NMD
= new NamedMDNode(Name
);
267 NMD
->setParent(this);
268 NamedMDList
.push_back(NMD
);
273 /// eraseNamedMetadata - Remove the given NamedMDNode from this module and
275 void Module::eraseNamedMetadata(NamedMDNode
*NMD
) {
276 NamedMDSymTab
.erase(NMD
->getName());
277 NamedMDList
.erase(NMD
->getIterator());
280 bool Module::isValidModFlagBehavior(Metadata
*MD
, ModFlagBehavior
&MFB
) {
281 if (ConstantInt
*Behavior
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
)) {
282 uint64_t Val
= Behavior
->getLimitedValue();
283 if (Val
>= ModFlagBehaviorFirstVal
&& Val
<= ModFlagBehaviorLastVal
) {
284 MFB
= static_cast<ModFlagBehavior
>(Val
);
291 bool Module::isValidModuleFlag(const MDNode
&ModFlag
, ModFlagBehavior
&MFB
,
292 MDString
*&Key
, Metadata
*&Val
) {
293 if (ModFlag
.getNumOperands() < 3)
295 if (!isValidModFlagBehavior(ModFlag
.getOperand(0), MFB
))
297 MDString
*K
= dyn_cast_or_null
<MDString
>(ModFlag
.getOperand(1));
301 Val
= ModFlag
.getOperand(2);
305 /// getModuleFlagsMetadata - Returns the module flags in the provided vector.
307 getModuleFlagsMetadata(SmallVectorImpl
<ModuleFlagEntry
> &Flags
) const {
308 const NamedMDNode
*ModFlags
= getModuleFlagsMetadata();
309 if (!ModFlags
) return;
311 for (const MDNode
*Flag
: ModFlags
->operands()) {
313 MDString
*Key
= nullptr;
314 Metadata
*Val
= nullptr;
315 if (isValidModuleFlag(*Flag
, MFB
, Key
, Val
)) {
316 // Check the operands of the MDNode before accessing the operands.
317 // The verifier will actually catch these failures.
318 Flags
.push_back(ModuleFlagEntry(MFB
, Key
, Val
));
323 /// Return the corresponding value if Key appears in module flags, otherwise
325 Metadata
*Module::getModuleFlag(StringRef Key
) const {
326 SmallVector
<Module::ModuleFlagEntry
, 8> ModuleFlags
;
327 getModuleFlagsMetadata(ModuleFlags
);
328 for (const ModuleFlagEntry
&MFE
: ModuleFlags
) {
329 if (Key
== MFE
.Key
->getString())
335 /// getModuleFlagsMetadata - Returns the NamedMDNode in the module that
336 /// represents module-level flags. This method returns null if there are no
337 /// module-level flags.
338 NamedMDNode
*Module::getModuleFlagsMetadata() const {
339 return getNamedMetadata("llvm.module.flags");
342 /// getOrInsertModuleFlagsMetadata - Returns the NamedMDNode in the module that
343 /// represents module-level flags. If module-level flags aren't found, it
344 /// creates the named metadata that contains them.
345 NamedMDNode
*Module::getOrInsertModuleFlagsMetadata() {
346 return getOrInsertNamedMetadata("llvm.module.flags");
349 /// addModuleFlag - Add a module-level flag to the module-level flags
350 /// metadata. It will create the module-level flags named metadata if it doesn't
352 void Module::addModuleFlag(ModFlagBehavior Behavior
, StringRef Key
,
354 Type
*Int32Ty
= Type::getInt32Ty(Context
);
356 ConstantAsMetadata::get(ConstantInt::get(Int32Ty
, Behavior
)),
357 MDString::get(Context
, Key
), Val
};
358 getOrInsertModuleFlagsMetadata()->addOperand(MDNode::get(Context
, Ops
));
360 void Module::addModuleFlag(ModFlagBehavior Behavior
, StringRef Key
,
362 addModuleFlag(Behavior
, Key
, ConstantAsMetadata::get(Val
));
364 void Module::addModuleFlag(ModFlagBehavior Behavior
, StringRef Key
,
366 Type
*Int32Ty
= Type::getInt32Ty(Context
);
367 addModuleFlag(Behavior
, Key
, ConstantInt::get(Int32Ty
, Val
));
369 void Module::addModuleFlag(MDNode
*Node
) {
370 assert(Node
->getNumOperands() == 3 &&
371 "Invalid number of operands for module flag!");
372 assert(mdconst::hasa
<ConstantInt
>(Node
->getOperand(0)) &&
373 isa
<MDString
>(Node
->getOperand(1)) &&
374 "Invalid operand types for module flag!");
375 getOrInsertModuleFlagsMetadata()->addOperand(Node
);
378 void Module::setModuleFlag(ModFlagBehavior Behavior
, StringRef Key
,
380 NamedMDNode
*ModFlags
= getOrInsertModuleFlagsMetadata();
381 // Replace the flag if it already exists.
382 for (unsigned I
= 0, E
= ModFlags
->getNumOperands(); I
!= E
; ++I
) {
383 MDNode
*Flag
= ModFlags
->getOperand(I
);
385 MDString
*K
= nullptr;
386 Metadata
*V
= nullptr;
387 if (isValidModuleFlag(*Flag
, MFB
, K
, V
) && K
->getString() == Key
) {
388 Flag
->replaceOperandWith(2, Val
);
392 addModuleFlag(Behavior
, Key
, Val
);
395 void Module::setDataLayout(StringRef Desc
) {
399 void Module::setDataLayout(const DataLayout
&Other
) { DL
= Other
; }
401 const DataLayout
&Module::getDataLayout() const { return DL
; }
403 DICompileUnit
*Module::debug_compile_units_iterator::operator*() const {
404 return cast
<DICompileUnit
>(CUs
->getOperand(Idx
));
406 DICompileUnit
*Module::debug_compile_units_iterator::operator->() const {
407 return cast
<DICompileUnit
>(CUs
->getOperand(Idx
));
410 void Module::debug_compile_units_iterator::SkipNoDebugCUs() {
411 while (CUs
&& (Idx
< CUs
->getNumOperands()) &&
412 ((*this)->getEmissionKind() == DICompileUnit::NoDebug
))
416 iterator_range
<Module::global_object_iterator
> Module::global_objects() {
417 return concat
<GlobalObject
>(functions(), globals());
419 iterator_range
<Module::const_global_object_iterator
>
420 Module::global_objects() const {
421 return concat
<const GlobalObject
>(functions(), globals());
424 iterator_range
<Module::global_value_iterator
> Module::global_values() {
425 return concat
<GlobalValue
>(functions(), globals(), aliases(), ifuncs());
427 iterator_range
<Module::const_global_value_iterator
>
428 Module::global_values() const {
429 return concat
<const GlobalValue
>(functions(), globals(), aliases(), ifuncs());
432 //===----------------------------------------------------------------------===//
433 // Methods to control the materialization of GlobalValues in the Module.
435 void Module::setMaterializer(GVMaterializer
*GVM
) {
436 assert(!Materializer
&&
437 "Module already has a GVMaterializer. Call materializeAll"
438 " to clear it out before setting another one.");
439 Materializer
.reset(GVM
);
442 Error
Module::materialize(GlobalValue
*GV
) {
444 return Error::success();
446 return Materializer
->materialize(GV
);
449 Error
Module::materializeAll() {
451 return Error::success();
452 std::unique_ptr
<GVMaterializer
> M
= std::move(Materializer
);
453 return M
->materializeModule();
456 Error
Module::materializeMetadata() {
458 return Error::success();
459 return Materializer
->materializeMetadata();
462 //===----------------------------------------------------------------------===//
463 // Other module related stuff.
466 std::vector
<StructType
*> Module::getIdentifiedStructTypes() const {
467 // If we have a materializer, it is possible that some unread function
468 // uses a type that is currently not visible to a TypeFinder, so ask
469 // the materializer which types it created.
471 return Materializer
->getIdentifiedStructTypes();
473 std::vector
<StructType
*> Ret
;
474 TypeFinder SrcStructTypes
;
475 SrcStructTypes
.run(*this, true);
476 Ret
.assign(SrcStructTypes
.begin(), SrcStructTypes
.end());
480 std::string
Module::getUniqueIntrinsicName(StringRef BaseName
, Intrinsic::ID Id
,
481 const FunctionType
*Proto
) {
482 auto Encode
= [&BaseName
](unsigned Suffix
) {
483 return (Twine(BaseName
) + "." + Twine(Suffix
)).str();
487 // fast path - the prototype is already known
488 auto UinItInserted
= UniquedIntrinsicNames
.insert({{Id
, Proto
}, 0});
489 if (!UinItInserted
.second
)
490 return Encode(UinItInserted
.first
->second
);
493 // Not known yet. A new entry was created with index 0. Check if there already
494 // exists a matching declaration, or select a new entry.
496 // Start looking for names with the current known maximum count (or 0).
497 auto NiidItInserted
= CurrentIntrinsicIds
.insert({BaseName
, 0});
498 unsigned Count
= NiidItInserted
.first
->second
;
500 // This might be slow if a whole population of intrinsics already existed, but
501 // we cache the values for later usage.
504 NewName
= Encode(Count
);
505 GlobalValue
*F
= getNamedValue(NewName
);
507 // Reserve this entry for the new proto
508 UniquedIntrinsicNames
[{Id
, Proto
}] = Count
;
512 // A declaration with this name already exists. Remember it.
513 FunctionType
*FT
= dyn_cast
<FunctionType
>(F
->getValueType());
514 auto UinItInserted
= UniquedIntrinsicNames
.insert({{Id
, FT
}, Count
});
516 // It was a declaration for our prototype. This entry was allocated in the
517 // beginning. Update the count to match the existing declaration.
518 UinItInserted
.first
->second
= Count
;
525 NiidItInserted
.first
->second
= Count
+ 1;
530 // dropAllReferences() - This function causes all the subelements to "let go"
531 // of all references that they are maintaining. This allows one to 'delete' a
532 // whole module at a time, even though there may be circular references... first
533 // all references are dropped, and all use counts go to zero. Then everything
534 // is deleted for real. Note that no operations are valid on an object that
535 // has "dropped all references", except operator delete.
537 void Module::dropAllReferences() {
538 for (Function
&F
: *this)
539 F
.dropAllReferences();
541 for (GlobalVariable
&GV
: globals())
542 GV
.dropAllReferences();
544 for (GlobalAlias
&GA
: aliases())
545 GA
.dropAllReferences();
547 for (GlobalIFunc
&GIF
: ifuncs())
548 GIF
.dropAllReferences();
551 unsigned Module::getNumberRegisterParameters() const {
553 cast_or_null
<ConstantAsMetadata
>(getModuleFlag("NumRegisterParameters"));
556 return cast
<ConstantInt
>(Val
->getValue())->getZExtValue();
559 unsigned Module::getDwarfVersion() const {
560 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("Dwarf Version"));
563 return cast
<ConstantInt
>(Val
->getValue())->getZExtValue();
566 bool Module::isDwarf64() const {
567 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("DWARF64"));
568 return Val
&& cast
<ConstantInt
>(Val
->getValue())->isOne();
571 unsigned Module::getCodeViewFlag() const {
572 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("CodeView"));
575 return cast
<ConstantInt
>(Val
->getValue())->getZExtValue();
578 unsigned Module::getInstructionCount() const {
579 unsigned NumInstrs
= 0;
580 for (const Function
&F
: FunctionList
)
581 NumInstrs
+= F
.getInstructionCount();
585 Comdat
*Module::getOrInsertComdat(StringRef Name
) {
586 auto &Entry
= *ComdatSymTab
.insert(std::make_pair(Name
, Comdat())).first
;
587 Entry
.second
.Name
= &Entry
;
588 return &Entry
.second
;
591 PICLevel::Level
Module::getPICLevel() const {
592 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("PIC Level"));
595 return PICLevel::NotPIC
;
597 return static_cast<PICLevel::Level
>(
598 cast
<ConstantInt
>(Val
->getValue())->getZExtValue());
601 void Module::setPICLevel(PICLevel::Level PL
) {
602 addModuleFlag(ModFlagBehavior::Max
, "PIC Level", PL
);
605 PIELevel::Level
Module::getPIELevel() const {
606 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("PIE Level"));
609 return PIELevel::Default
;
611 return static_cast<PIELevel::Level
>(
612 cast
<ConstantInt
>(Val
->getValue())->getZExtValue());
615 void Module::setPIELevel(PIELevel::Level PL
) {
616 addModuleFlag(ModFlagBehavior::Max
, "PIE Level", PL
);
619 Optional
<CodeModel::Model
> Module::getCodeModel() const {
620 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("Code Model"));
625 return static_cast<CodeModel::Model
>(
626 cast
<ConstantInt
>(Val
->getValue())->getZExtValue());
629 void Module::setCodeModel(CodeModel::Model CL
) {
630 // Linking object files with different code models is undefined behavior
631 // because the compiler would have to generate additional code (to span
632 // longer jumps) if a larger code model is used with a smaller one.
633 // Therefore we will treat attempts to mix code models as an error.
634 addModuleFlag(ModFlagBehavior::Error
, "Code Model", CL
);
637 void Module::setProfileSummary(Metadata
*M
, ProfileSummary::Kind Kind
) {
638 if (Kind
== ProfileSummary::PSK_CSInstr
)
639 setModuleFlag(ModFlagBehavior::Error
, "CSProfileSummary", M
);
641 setModuleFlag(ModFlagBehavior::Error
, "ProfileSummary", M
);
644 Metadata
*Module::getProfileSummary(bool IsCS
) const {
645 return (IsCS
? getModuleFlag("CSProfileSummary")
646 : getModuleFlag("ProfileSummary"));
649 bool Module::getSemanticInterposition() const {
650 Metadata
*MF
= getModuleFlag("SemanticInterposition");
652 auto *Val
= cast_or_null
<ConstantAsMetadata
>(MF
);
656 return cast
<ConstantInt
>(Val
->getValue())->getZExtValue();
659 void Module::setSemanticInterposition(bool SI
) {
660 addModuleFlag(ModFlagBehavior::Error
, "SemanticInterposition", SI
);
663 void Module::setOwnedMemoryBuffer(std::unique_ptr
<MemoryBuffer
> MB
) {
664 OwnedMemoryBuffer
= std::move(MB
);
667 bool Module::getRtLibUseGOT() const {
668 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("RtLibUseGOT"));
669 return Val
&& (cast
<ConstantInt
>(Val
->getValue())->getZExtValue() > 0);
672 void Module::setRtLibUseGOT() {
673 addModuleFlag(ModFlagBehavior::Max
, "RtLibUseGOT", 1);
676 bool Module::getUwtable() const {
677 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("uwtable"));
678 return Val
&& (cast
<ConstantInt
>(Val
->getValue())->getZExtValue() > 0);
681 void Module::setUwtable() { addModuleFlag(ModFlagBehavior::Max
, "uwtable", 1); }
683 FramePointerKind
Module::getFramePointer() const {
684 auto *Val
= cast_or_null
<ConstantAsMetadata
>(getModuleFlag("frame-pointer"));
685 return static_cast<FramePointerKind
>(
686 Val
? cast
<ConstantInt
>(Val
->getValue())->getZExtValue() : 0);
689 void Module::setFramePointer(FramePointerKind Kind
) {
690 addModuleFlag(ModFlagBehavior::Max
, "frame-pointer", static_cast<int>(Kind
));
693 StringRef
Module::getStackProtectorGuard() const {
694 Metadata
*MD
= getModuleFlag("stack-protector-guard");
695 if (auto *MDS
= dyn_cast_or_null
<MDString
>(MD
))
696 return MDS
->getString();
700 void Module::setStackProtectorGuard(StringRef Kind
) {
701 MDString
*ID
= MDString::get(getContext(), Kind
);
702 addModuleFlag(ModFlagBehavior::Error
, "stack-protector-guard", ID
);
705 StringRef
Module::getStackProtectorGuardReg() const {
706 Metadata
*MD
= getModuleFlag("stack-protector-guard-reg");
707 if (auto *MDS
= dyn_cast_or_null
<MDString
>(MD
))
708 return MDS
->getString();
712 void Module::setStackProtectorGuardReg(StringRef Reg
) {
713 MDString
*ID
= MDString::get(getContext(), Reg
);
714 addModuleFlag(ModFlagBehavior::Error
, "stack-protector-guard-reg", ID
);
717 int Module::getStackProtectorGuardOffset() const {
718 Metadata
*MD
= getModuleFlag("stack-protector-guard-offset");
719 if (auto *CI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
))
720 return CI
->getSExtValue();
724 void Module::setStackProtectorGuardOffset(int Offset
) {
725 addModuleFlag(ModFlagBehavior::Error
, "stack-protector-guard-offset", Offset
);
728 unsigned Module::getOverrideStackAlignment() const {
729 Metadata
*MD
= getModuleFlag("override-stack-alignment");
730 if (auto *CI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
))
731 return CI
->getZExtValue();
735 void Module::setOverrideStackAlignment(unsigned Align
) {
736 addModuleFlag(ModFlagBehavior::Error
, "override-stack-alignment", Align
);
739 void Module::setSDKVersion(const VersionTuple
&V
) {
740 SmallVector
<unsigned, 3> Entries
;
741 Entries
.push_back(V
.getMajor());
742 if (auto Minor
= V
.getMinor()) {
743 Entries
.push_back(*Minor
);
744 if (auto Subminor
= V
.getSubminor())
745 Entries
.push_back(*Subminor
);
746 // Ignore the 'build' component as it can't be represented in the object
749 addModuleFlag(ModFlagBehavior::Warning
, "SDK Version",
750 ConstantDataArray::get(Context
, Entries
));
753 VersionTuple
Module::getSDKVersion() const {
754 auto *CM
= dyn_cast_or_null
<ConstantAsMetadata
>(getModuleFlag("SDK Version"));
757 auto *Arr
= dyn_cast_or_null
<ConstantDataArray
>(CM
->getValue());
760 auto getVersionComponent
= [&](unsigned Index
) -> Optional
<unsigned> {
761 if (Index
>= Arr
->getNumElements())
763 return (unsigned)Arr
->getElementAsInteger(Index
);
765 auto Major
= getVersionComponent(0);
768 VersionTuple Result
= VersionTuple(*Major
);
769 if (auto Minor
= getVersionComponent(1)) {
770 Result
= VersionTuple(*Major
, *Minor
);
771 if (auto Subminor
= getVersionComponent(2)) {
772 Result
= VersionTuple(*Major
, *Minor
, *Subminor
);
778 GlobalVariable
*llvm::collectUsedGlobalVariables(
779 const Module
&M
, SmallVectorImpl
<GlobalValue
*> &Vec
, bool CompilerUsed
) {
780 const char *Name
= CompilerUsed
? "llvm.compiler.used" : "llvm.used";
781 GlobalVariable
*GV
= M
.getGlobalVariable(Name
);
782 if (!GV
|| !GV
->hasInitializer())
785 const ConstantArray
*Init
= cast
<ConstantArray
>(GV
->getInitializer());
786 for (Value
*Op
: Init
->operands()) {
787 GlobalValue
*G
= cast
<GlobalValue
>(Op
->stripPointerCasts());
793 void Module::setPartialSampleProfileRatio(const ModuleSummaryIndex
&Index
) {
794 if (auto *SummaryMD
= getProfileSummary(/*IsCS*/ false)) {
795 std::unique_ptr
<ProfileSummary
> ProfileSummary(
796 ProfileSummary::getFromMD(SummaryMD
));
797 if (ProfileSummary
) {
798 if (ProfileSummary
->getKind() != ProfileSummary::PSK_Sample
||
799 !ProfileSummary
->isPartialProfile())
801 uint64_t BlockCount
= Index
.getBlockCount();
802 uint32_t NumCounts
= ProfileSummary
->getNumCounts();
805 double Ratio
= (double)BlockCount
/ NumCounts
;
806 ProfileSummary
->setPartialProfileRatio(Ratio
);
807 setProfileSummary(ProfileSummary
->getMD(getContext()),
808 ProfileSummary::PSK_Sample
);