[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / Type.cpp
bloba21998976066c253b8dbe7da4f2787f7741e2f72
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/TypeSize.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <cassert>
31 #include <utility>
33 using namespace llvm;
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
39 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
40 switch (IDNumber) {
41 case VoidTyID : return getVoidTy(C);
42 case HalfTyID : return getHalfTy(C);
43 case BFloatTyID : return getBFloatTy(C);
44 case FloatTyID : return getFloatTy(C);
45 case DoubleTyID : return getDoubleTy(C);
46 case X86_FP80TyID : return getX86_FP80Ty(C);
47 case FP128TyID : return getFP128Ty(C);
48 case PPC_FP128TyID : return getPPC_FP128Ty(C);
49 case LabelTyID : return getLabelTy(C);
50 case MetadataTyID : return getMetadataTy(C);
51 case X86_MMXTyID : return getX86_MMXTy(C);
52 case X86_AMXTyID : return getX86_AMXTy(C);
53 case TokenTyID : return getTokenTy(C);
54 default:
55 return nullptr;
59 bool Type::isIntegerTy(unsigned Bitwidth) const {
60 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
63 bool Type::isOpaquePointerTy() const {
64 if (auto *PTy = dyn_cast<PointerType>(this))
65 return PTy->isOpaque();
66 return false;
69 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
70 // Identity cast means no change so return true
71 if (this == Ty)
72 return true;
74 // They are not convertible unless they are at least first class types
75 if (!this->isFirstClassType() || !Ty->isFirstClassType())
76 return false;
78 // Vector -> Vector conversions are always lossless if the two vector types
79 // have the same size, otherwise not.
80 if (isa<VectorType>(this) && isa<VectorType>(Ty))
81 return getPrimitiveSizeInBits() == Ty->getPrimitiveSizeInBits();
83 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
84 if (((isa<FixedVectorType>(this)) && Ty->isX86_MMXTy()) &&
85 getPrimitiveSizeInBits().getFixedSize() == 64)
86 return true;
87 if ((isX86_MMXTy() && isa<FixedVectorType>(Ty)) &&
88 Ty->getPrimitiveSizeInBits().getFixedSize() == 64)
89 return true;
91 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
92 if (((isa<FixedVectorType>(this)) && Ty->isX86_AMXTy()) &&
93 getPrimitiveSizeInBits().getFixedSize() == 8192)
94 return true;
95 if ((isX86_AMXTy() && isa<FixedVectorType>(Ty)) &&
96 Ty->getPrimitiveSizeInBits().getFixedSize() == 8192)
97 return true;
99 // At this point we have only various mismatches of the first class types
100 // remaining and ptr->ptr. Just select the lossless conversions. Everything
101 // else is not lossless. Conservatively assume we can't losslessly convert
102 // between pointers with different address spaces.
103 if (auto *PTy = dyn_cast<PointerType>(this)) {
104 if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
105 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
106 return false;
108 return false; // Other types have no identity values
111 bool Type::isEmptyTy() const {
112 if (auto *ATy = dyn_cast<ArrayType>(this)) {
113 unsigned NumElements = ATy->getNumElements();
114 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
117 if (auto *STy = dyn_cast<StructType>(this)) {
118 unsigned NumElements = STy->getNumElements();
119 for (unsigned i = 0; i < NumElements; ++i)
120 if (!STy->getElementType(i)->isEmptyTy())
121 return false;
122 return true;
125 return false;
128 TypeSize Type::getPrimitiveSizeInBits() const {
129 switch (getTypeID()) {
130 case Type::HalfTyID: return TypeSize::Fixed(16);
131 case Type::BFloatTyID: return TypeSize::Fixed(16);
132 case Type::FloatTyID: return TypeSize::Fixed(32);
133 case Type::DoubleTyID: return TypeSize::Fixed(64);
134 case Type::X86_FP80TyID: return TypeSize::Fixed(80);
135 case Type::FP128TyID: return TypeSize::Fixed(128);
136 case Type::PPC_FP128TyID: return TypeSize::Fixed(128);
137 case Type::X86_MMXTyID: return TypeSize::Fixed(64);
138 case Type::X86_AMXTyID: return TypeSize::Fixed(8192);
139 case Type::IntegerTyID:
140 return TypeSize::Fixed(cast<IntegerType>(this)->getBitWidth());
141 case Type::FixedVectorTyID:
142 case Type::ScalableVectorTyID: {
143 const VectorType *VTy = cast<VectorType>(this);
144 ElementCount EC = VTy->getElementCount();
145 TypeSize ETS = VTy->getElementType()->getPrimitiveSizeInBits();
146 assert(!ETS.isScalable() && "Vector type should have fixed-width elements");
147 return {ETS.getFixedSize() * EC.getKnownMinValue(), EC.isScalable()};
149 default: return TypeSize::Fixed(0);
153 unsigned Type::getScalarSizeInBits() const {
154 // It is safe to assume that the scalar types have a fixed size.
155 return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
158 int Type::getFPMantissaWidth() const {
159 if (auto *VTy = dyn_cast<VectorType>(this))
160 return VTy->getElementType()->getFPMantissaWidth();
161 assert(isFloatingPointTy() && "Not a floating point type!");
162 if (getTypeID() == HalfTyID) return 11;
163 if (getTypeID() == BFloatTyID) return 8;
164 if (getTypeID() == FloatTyID) return 24;
165 if (getTypeID() == DoubleTyID) return 53;
166 if (getTypeID() == X86_FP80TyID) return 64;
167 if (getTypeID() == FP128TyID) return 113;
168 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
169 return -1;
172 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
173 if (auto *ATy = dyn_cast<ArrayType>(this))
174 return ATy->getElementType()->isSized(Visited);
176 if (auto *VTy = dyn_cast<VectorType>(this))
177 return VTy->getElementType()->isSized(Visited);
179 return cast<StructType>(this)->isSized(Visited);
182 //===----------------------------------------------------------------------===//
183 // Primitive 'Type' data
184 //===----------------------------------------------------------------------===//
186 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
187 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
188 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
189 Type *Type::getBFloatTy(LLVMContext &C) { return &C.pImpl->BFloatTy; }
190 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
191 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
192 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
193 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
194 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
195 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
196 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
197 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
198 Type *Type::getX86_AMXTy(LLVMContext &C) { return &C.pImpl->X86_AMXTy; }
200 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
201 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
202 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
203 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
204 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
205 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
207 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
208 return IntegerType::get(C, N);
211 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
212 return getHalfTy(C)->getPointerTo(AS);
215 PointerType *Type::getBFloatPtrTy(LLVMContext &C, unsigned AS) {
216 return getBFloatTy(C)->getPointerTo(AS);
219 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
220 return getFloatTy(C)->getPointerTo(AS);
223 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
224 return getDoubleTy(C)->getPointerTo(AS);
227 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
228 return getX86_FP80Ty(C)->getPointerTo(AS);
231 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
232 return getFP128Ty(C)->getPointerTo(AS);
235 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
236 return getPPC_FP128Ty(C)->getPointerTo(AS);
239 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
240 return getX86_MMXTy(C)->getPointerTo(AS);
243 PointerType *Type::getX86_AMXPtrTy(LLVMContext &C, unsigned AS) {
244 return getX86_AMXTy(C)->getPointerTo(AS);
247 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
248 return getIntNTy(C, N)->getPointerTo(AS);
251 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
252 return getInt1Ty(C)->getPointerTo(AS);
255 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
256 return getInt8Ty(C)->getPointerTo(AS);
259 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
260 return getInt16Ty(C)->getPointerTo(AS);
263 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
264 return getInt32Ty(C)->getPointerTo(AS);
267 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
268 return getInt64Ty(C)->getPointerTo(AS);
271 //===----------------------------------------------------------------------===//
272 // IntegerType Implementation
273 //===----------------------------------------------------------------------===//
275 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
276 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
277 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
279 // Check for the built-in integer types
280 switch (NumBits) {
281 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
282 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
283 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
284 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
285 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
286 case 128: return cast<IntegerType>(Type::getInt128Ty(C));
287 default:
288 break;
291 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
293 if (!Entry)
294 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
296 return Entry;
299 APInt IntegerType::getMask() const {
300 return APInt::getAllOnesValue(getBitWidth());
303 //===----------------------------------------------------------------------===//
304 // FunctionType Implementation
305 //===----------------------------------------------------------------------===//
307 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
308 bool IsVarArgs)
309 : Type(Result->getContext(), FunctionTyID) {
310 Type **SubTys = reinterpret_cast<Type**>(this+1);
311 assert(isValidReturnType(Result) && "invalid return type for function");
312 setSubclassData(IsVarArgs);
314 SubTys[0] = Result;
316 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
317 assert(isValidArgumentType(Params[i]) &&
318 "Not a valid type for function argument!");
319 SubTys[i+1] = Params[i];
322 ContainedTys = SubTys;
323 NumContainedTys = Params.size() + 1; // + 1 for result type
326 // This is the factory function for the FunctionType class.
327 FunctionType *FunctionType::get(Type *ReturnType,
328 ArrayRef<Type*> Params, bool isVarArg) {
329 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
330 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
331 FunctionType *FT;
332 // Since we only want to allocate a fresh function type in case none is found
333 // and we don't want to perform two lookups (one for checking if existent and
334 // one for inserting the newly allocated one), here we instead lookup based on
335 // Key and update the reference to the function type in-place to a newly
336 // allocated one if not found.
337 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
338 if (Insertion.second) {
339 // The function type was not found. Allocate one and update FunctionTypes
340 // in-place.
341 FT = (FunctionType *)pImpl->Alloc.Allocate(
342 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
343 alignof(FunctionType));
344 new (FT) FunctionType(ReturnType, Params, isVarArg);
345 *Insertion.first = FT;
346 } else {
347 // The function type was found. Just return it.
348 FT = *Insertion.first;
350 return FT;
353 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
354 return get(Result, None, isVarArg);
357 bool FunctionType::isValidReturnType(Type *RetTy) {
358 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
359 !RetTy->isMetadataTy();
362 bool FunctionType::isValidArgumentType(Type *ArgTy) {
363 return ArgTy->isFirstClassType();
366 //===----------------------------------------------------------------------===//
367 // StructType Implementation
368 //===----------------------------------------------------------------------===//
370 // Primitive Constructors.
372 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
373 bool isPacked) {
374 LLVMContextImpl *pImpl = Context.pImpl;
375 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
377 StructType *ST;
378 // Since we only want to allocate a fresh struct type in case none is found
379 // and we don't want to perform two lookups (one for checking if existent and
380 // one for inserting the newly allocated one), here we instead lookup based on
381 // Key and update the reference to the struct type in-place to a newly
382 // allocated one if not found.
383 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
384 if (Insertion.second) {
385 // The struct type was not found. Allocate one and update AnonStructTypes
386 // in-place.
387 ST = new (Context.pImpl->Alloc) StructType(Context);
388 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
389 ST->setBody(ETypes, isPacked);
390 *Insertion.first = ST;
391 } else {
392 // The struct type was found. Just return it.
393 ST = *Insertion.first;
396 return ST;
399 bool StructType::containsScalableVectorType() const {
400 for (Type *Ty : elements()) {
401 if (isa<ScalableVectorType>(Ty))
402 return true;
403 if (auto *STy = dyn_cast<StructType>(Ty))
404 if (STy->containsScalableVectorType())
405 return true;
408 return false;
411 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
412 assert(isOpaque() && "Struct body already set!");
414 setSubclassData(getSubclassData() | SCDB_HasBody);
415 if (isPacked)
416 setSubclassData(getSubclassData() | SCDB_Packed);
418 NumContainedTys = Elements.size();
420 if (Elements.empty()) {
421 ContainedTys = nullptr;
422 return;
425 ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
428 void StructType::setName(StringRef Name) {
429 if (Name == getName()) return;
431 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
433 using EntryTy = StringMap<StructType *>::MapEntryTy;
435 // If this struct already had a name, remove its symbol table entry. Don't
436 // delete the data yet because it may be part of the new name.
437 if (SymbolTableEntry)
438 SymbolTable.remove((EntryTy *)SymbolTableEntry);
440 // If this is just removing the name, we're done.
441 if (Name.empty()) {
442 if (SymbolTableEntry) {
443 // Delete the old string data.
444 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
445 SymbolTableEntry = nullptr;
447 return;
450 // Look up the entry for the name.
451 auto IterBool =
452 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
454 // While we have a name collision, try a random rename.
455 if (!IterBool.second) {
456 SmallString<64> TempStr(Name);
457 TempStr.push_back('.');
458 raw_svector_ostream TmpStream(TempStr);
459 unsigned NameSize = Name.size();
461 do {
462 TempStr.resize(NameSize + 1);
463 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
465 IterBool = getContext().pImpl->NamedStructTypes.insert(
466 std::make_pair(TmpStream.str(), this));
467 } while (!IterBool.second);
470 // Delete the old string data.
471 if (SymbolTableEntry)
472 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
473 SymbolTableEntry = &*IterBool.first;
476 //===----------------------------------------------------------------------===//
477 // StructType Helper functions.
479 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
480 StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
481 if (!Name.empty())
482 ST->setName(Name);
483 return ST;
486 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
487 return get(Context, None, isPacked);
490 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
491 StringRef Name, bool isPacked) {
492 StructType *ST = create(Context, Name);
493 ST->setBody(Elements, isPacked);
494 return ST;
497 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
498 return create(Context, Elements, StringRef());
501 StructType *StructType::create(LLVMContext &Context) {
502 return create(Context, StringRef());
505 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
506 bool isPacked) {
507 assert(!Elements.empty() &&
508 "This method may not be invoked with an empty list");
509 return create(Elements[0]->getContext(), Elements, Name, isPacked);
512 StructType *StructType::create(ArrayRef<Type*> Elements) {
513 assert(!Elements.empty() &&
514 "This method may not be invoked with an empty list");
515 return create(Elements[0]->getContext(), Elements, StringRef());
518 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
519 if ((getSubclassData() & SCDB_IsSized) != 0)
520 return true;
521 if (isOpaque())
522 return false;
524 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
525 return false;
527 // Okay, our struct is sized if all of the elements are, but if one of the
528 // elements is opaque, the struct isn't sized *yet*, but may become sized in
529 // the future, so just bail out without caching.
530 for (Type *Ty : elements()) {
531 // If the struct contains a scalable vector type, don't consider it sized.
532 // This prevents it from being used in loads/stores/allocas/GEPs.
533 if (isa<ScalableVectorType>(Ty))
534 return false;
535 if (!Ty->isSized(Visited))
536 return false;
539 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
540 // we find a sized type, as types can only move from opaque to sized, not the
541 // other way.
542 const_cast<StructType*>(this)->setSubclassData(
543 getSubclassData() | SCDB_IsSized);
544 return true;
547 StringRef StructType::getName() const {
548 assert(!isLiteral() && "Literal structs never have names");
549 if (!SymbolTableEntry) return StringRef();
551 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
554 bool StructType::isValidElementType(Type *ElemTy) {
555 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
556 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
557 !ElemTy->isTokenTy();
560 bool StructType::isLayoutIdentical(StructType *Other) const {
561 if (this == Other) return true;
563 if (isPacked() != Other->isPacked())
564 return false;
566 return elements() == Other->elements();
569 Type *StructType::getTypeAtIndex(const Value *V) const {
570 unsigned Idx = (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
571 assert(indexValid(Idx) && "Invalid structure index!");
572 return getElementType(Idx);
575 bool StructType::indexValid(const Value *V) const {
576 // Structure indexes require (vectors of) 32-bit integer constants. In the
577 // vector case all of the indices must be equal.
578 if (!V->getType()->isIntOrIntVectorTy(32))
579 return false;
580 if (isa<ScalableVectorType>(V->getType()))
581 return false;
582 const Constant *C = dyn_cast<Constant>(V);
583 if (C && V->getType()->isVectorTy())
584 C = C->getSplatValue();
585 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
586 return CU && CU->getZExtValue() < getNumElements();
589 StructType *StructType::getTypeByName(LLVMContext &C, StringRef Name) {
590 return C.pImpl->NamedStructTypes.lookup(Name);
593 //===----------------------------------------------------------------------===//
594 // ArrayType Implementation
595 //===----------------------------------------------------------------------===//
597 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
598 : Type(ElType->getContext(), ArrayTyID), ContainedType(ElType),
599 NumElements(NumEl) {
600 ContainedTys = &ContainedType;
601 NumContainedTys = 1;
604 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
605 assert(isValidElementType(ElementType) && "Invalid type for array element!");
607 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
608 ArrayType *&Entry =
609 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
611 if (!Entry)
612 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
613 return Entry;
616 bool ArrayType::isValidElementType(Type *ElemTy) {
617 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
618 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
619 !ElemTy->isTokenTy() && !ElemTy->isX86_AMXTy() &&
620 !isa<ScalableVectorType>(ElemTy);
623 //===----------------------------------------------------------------------===//
624 // VectorType Implementation
625 //===----------------------------------------------------------------------===//
627 VectorType::VectorType(Type *ElType, unsigned EQ, Type::TypeID TID)
628 : Type(ElType->getContext(), TID), ContainedType(ElType),
629 ElementQuantity(EQ) {
630 ContainedTys = &ContainedType;
631 NumContainedTys = 1;
634 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
635 if (EC.isScalable())
636 return ScalableVectorType::get(ElementType, EC.getKnownMinValue());
637 else
638 return FixedVectorType::get(ElementType, EC.getKnownMinValue());
641 bool VectorType::isValidElementType(Type *ElemTy) {
642 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
643 ElemTy->isPointerTy();
646 //===----------------------------------------------------------------------===//
647 // FixedVectorType Implementation
648 //===----------------------------------------------------------------------===//
650 FixedVectorType *FixedVectorType::get(Type *ElementType, unsigned NumElts) {
651 assert(NumElts > 0 && "#Elements of a VectorType must be greater than 0");
652 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
653 "be an integer, floating point, or "
654 "pointer type.");
656 auto EC = ElementCount::getFixed(NumElts);
658 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
659 VectorType *&Entry = ElementType->getContext()
660 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
662 if (!Entry)
663 Entry = new (pImpl->Alloc) FixedVectorType(ElementType, NumElts);
664 return cast<FixedVectorType>(Entry);
667 //===----------------------------------------------------------------------===//
668 // ScalableVectorType Implementation
669 //===----------------------------------------------------------------------===//
671 ScalableVectorType *ScalableVectorType::get(Type *ElementType,
672 unsigned MinNumElts) {
673 assert(MinNumElts > 0 && "#Elements of a VectorType must be greater than 0");
674 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
675 "be an integer, floating point, or "
676 "pointer type.");
678 auto EC = ElementCount::getScalable(MinNumElts);
680 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
681 VectorType *&Entry = ElementType->getContext()
682 .pImpl->VectorTypes[std::make_pair(ElementType, EC)];
684 if (!Entry)
685 Entry = new (pImpl->Alloc) ScalableVectorType(ElementType, MinNumElts);
686 return cast<ScalableVectorType>(Entry);
689 //===----------------------------------------------------------------------===//
690 // PointerType Implementation
691 //===----------------------------------------------------------------------===//
693 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
694 assert(EltTy && "Can't get a pointer to <null> type!");
695 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
697 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
699 // Create opaque pointer for pointer to opaque pointer.
700 if (CImpl->ForceOpaquePointers || EltTy->isOpaquePointerTy())
701 return get(EltTy->getContext(), AddressSpace);
703 // Since AddressSpace #0 is the common case, we special case it.
704 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
705 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
707 if (!Entry)
708 Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
709 return Entry;
712 PointerType *PointerType::get(LLVMContext &C, unsigned AddressSpace) {
713 LLVMContextImpl *CImpl = C.pImpl;
715 // Since AddressSpace #0 is the common case, we special case it.
716 PointerType *&Entry =
717 AddressSpace == 0
718 ? CImpl->PointerTypes[nullptr]
719 : CImpl->ASPointerTypes[std::make_pair(nullptr, AddressSpace)];
721 if (!Entry)
722 Entry = new (CImpl->Alloc) PointerType(C, AddressSpace);
723 return Entry;
726 PointerType::PointerType(Type *E, unsigned AddrSpace)
727 : Type(E->getContext(), PointerTyID), PointeeTy(E) {
728 ContainedTys = &PointeeTy;
729 NumContainedTys = 1;
730 setSubclassData(AddrSpace);
733 PointerType::PointerType(LLVMContext &C, unsigned AddrSpace)
734 : Type(C, PointerTyID), PointeeTy(nullptr) {
735 setSubclassData(AddrSpace);
738 PointerType *Type::getPointerTo(unsigned AddrSpace) const {
739 return PointerType::get(const_cast<Type*>(this), AddrSpace);
742 bool PointerType::isValidElementType(Type *ElemTy) {
743 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
744 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
745 !ElemTy->isX86_AMXTy();
748 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
749 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();