1 //===- Type.cpp - Implement the Type class --------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/TypeSize.h"
29 #include "llvm/Support/raw_ostream.h"
35 //===----------------------------------------------------------------------===//
36 // Type Class Implementation
37 //===----------------------------------------------------------------------===//
39 Type
*Type::getPrimitiveType(LLVMContext
&C
, TypeID IDNumber
) {
41 case VoidTyID
: return getVoidTy(C
);
42 case HalfTyID
: return getHalfTy(C
);
43 case BFloatTyID
: return getBFloatTy(C
);
44 case FloatTyID
: return getFloatTy(C
);
45 case DoubleTyID
: return getDoubleTy(C
);
46 case X86_FP80TyID
: return getX86_FP80Ty(C
);
47 case FP128TyID
: return getFP128Ty(C
);
48 case PPC_FP128TyID
: return getPPC_FP128Ty(C
);
49 case LabelTyID
: return getLabelTy(C
);
50 case MetadataTyID
: return getMetadataTy(C
);
51 case X86_MMXTyID
: return getX86_MMXTy(C
);
52 case X86_AMXTyID
: return getX86_AMXTy(C
);
53 case TokenTyID
: return getTokenTy(C
);
59 bool Type::isIntegerTy(unsigned Bitwidth
) const {
60 return isIntegerTy() && cast
<IntegerType
>(this)->getBitWidth() == Bitwidth
;
63 bool Type::isOpaquePointerTy() const {
64 if (auto *PTy
= dyn_cast
<PointerType
>(this))
65 return PTy
->isOpaque();
69 bool Type::canLosslesslyBitCastTo(Type
*Ty
) const {
70 // Identity cast means no change so return true
74 // They are not convertible unless they are at least first class types
75 if (!this->isFirstClassType() || !Ty
->isFirstClassType())
78 // Vector -> Vector conversions are always lossless if the two vector types
79 // have the same size, otherwise not.
80 if (isa
<VectorType
>(this) && isa
<VectorType
>(Ty
))
81 return getPrimitiveSizeInBits() == Ty
->getPrimitiveSizeInBits();
83 // 64-bit fixed width vector types can be losslessly converted to x86mmx.
84 if (((isa
<FixedVectorType
>(this)) && Ty
->isX86_MMXTy()) &&
85 getPrimitiveSizeInBits().getFixedSize() == 64)
87 if ((isX86_MMXTy() && isa
<FixedVectorType
>(Ty
)) &&
88 Ty
->getPrimitiveSizeInBits().getFixedSize() == 64)
91 // 8192-bit fixed width vector types can be losslessly converted to x86amx.
92 if (((isa
<FixedVectorType
>(this)) && Ty
->isX86_AMXTy()) &&
93 getPrimitiveSizeInBits().getFixedSize() == 8192)
95 if ((isX86_AMXTy() && isa
<FixedVectorType
>(Ty
)) &&
96 Ty
->getPrimitiveSizeInBits().getFixedSize() == 8192)
99 // At this point we have only various mismatches of the first class types
100 // remaining and ptr->ptr. Just select the lossless conversions. Everything
101 // else is not lossless. Conservatively assume we can't losslessly convert
102 // between pointers with different address spaces.
103 if (auto *PTy
= dyn_cast
<PointerType
>(this)) {
104 if (auto *OtherPTy
= dyn_cast
<PointerType
>(Ty
))
105 return PTy
->getAddressSpace() == OtherPTy
->getAddressSpace();
108 return false; // Other types have no identity values
111 bool Type::isEmptyTy() const {
112 if (auto *ATy
= dyn_cast
<ArrayType
>(this)) {
113 unsigned NumElements
= ATy
->getNumElements();
114 return NumElements
== 0 || ATy
->getElementType()->isEmptyTy();
117 if (auto *STy
= dyn_cast
<StructType
>(this)) {
118 unsigned NumElements
= STy
->getNumElements();
119 for (unsigned i
= 0; i
< NumElements
; ++i
)
120 if (!STy
->getElementType(i
)->isEmptyTy())
128 TypeSize
Type::getPrimitiveSizeInBits() const {
129 switch (getTypeID()) {
130 case Type::HalfTyID
: return TypeSize::Fixed(16);
131 case Type::BFloatTyID
: return TypeSize::Fixed(16);
132 case Type::FloatTyID
: return TypeSize::Fixed(32);
133 case Type::DoubleTyID
: return TypeSize::Fixed(64);
134 case Type::X86_FP80TyID
: return TypeSize::Fixed(80);
135 case Type::FP128TyID
: return TypeSize::Fixed(128);
136 case Type::PPC_FP128TyID
: return TypeSize::Fixed(128);
137 case Type::X86_MMXTyID
: return TypeSize::Fixed(64);
138 case Type::X86_AMXTyID
: return TypeSize::Fixed(8192);
139 case Type::IntegerTyID
:
140 return TypeSize::Fixed(cast
<IntegerType
>(this)->getBitWidth());
141 case Type::FixedVectorTyID
:
142 case Type::ScalableVectorTyID
: {
143 const VectorType
*VTy
= cast
<VectorType
>(this);
144 ElementCount EC
= VTy
->getElementCount();
145 TypeSize ETS
= VTy
->getElementType()->getPrimitiveSizeInBits();
146 assert(!ETS
.isScalable() && "Vector type should have fixed-width elements");
147 return {ETS
.getFixedSize() * EC
.getKnownMinValue(), EC
.isScalable()};
149 default: return TypeSize::Fixed(0);
153 unsigned Type::getScalarSizeInBits() const {
154 // It is safe to assume that the scalar types have a fixed size.
155 return getScalarType()->getPrimitiveSizeInBits().getFixedSize();
158 int Type::getFPMantissaWidth() const {
159 if (auto *VTy
= dyn_cast
<VectorType
>(this))
160 return VTy
->getElementType()->getFPMantissaWidth();
161 assert(isFloatingPointTy() && "Not a floating point type!");
162 if (getTypeID() == HalfTyID
) return 11;
163 if (getTypeID() == BFloatTyID
) return 8;
164 if (getTypeID() == FloatTyID
) return 24;
165 if (getTypeID() == DoubleTyID
) return 53;
166 if (getTypeID() == X86_FP80TyID
) return 64;
167 if (getTypeID() == FP128TyID
) return 113;
168 assert(getTypeID() == PPC_FP128TyID
&& "unknown fp type");
172 bool Type::isSizedDerivedType(SmallPtrSetImpl
<Type
*> *Visited
) const {
173 if (auto *ATy
= dyn_cast
<ArrayType
>(this))
174 return ATy
->getElementType()->isSized(Visited
);
176 if (auto *VTy
= dyn_cast
<VectorType
>(this))
177 return VTy
->getElementType()->isSized(Visited
);
179 return cast
<StructType
>(this)->isSized(Visited
);
182 //===----------------------------------------------------------------------===//
183 // Primitive 'Type' data
184 //===----------------------------------------------------------------------===//
186 Type
*Type::getVoidTy(LLVMContext
&C
) { return &C
.pImpl
->VoidTy
; }
187 Type
*Type::getLabelTy(LLVMContext
&C
) { return &C
.pImpl
->LabelTy
; }
188 Type
*Type::getHalfTy(LLVMContext
&C
) { return &C
.pImpl
->HalfTy
; }
189 Type
*Type::getBFloatTy(LLVMContext
&C
) { return &C
.pImpl
->BFloatTy
; }
190 Type
*Type::getFloatTy(LLVMContext
&C
) { return &C
.pImpl
->FloatTy
; }
191 Type
*Type::getDoubleTy(LLVMContext
&C
) { return &C
.pImpl
->DoubleTy
; }
192 Type
*Type::getMetadataTy(LLVMContext
&C
) { return &C
.pImpl
->MetadataTy
; }
193 Type
*Type::getTokenTy(LLVMContext
&C
) { return &C
.pImpl
->TokenTy
; }
194 Type
*Type::getX86_FP80Ty(LLVMContext
&C
) { return &C
.pImpl
->X86_FP80Ty
; }
195 Type
*Type::getFP128Ty(LLVMContext
&C
) { return &C
.pImpl
->FP128Ty
; }
196 Type
*Type::getPPC_FP128Ty(LLVMContext
&C
) { return &C
.pImpl
->PPC_FP128Ty
; }
197 Type
*Type::getX86_MMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_MMXTy
; }
198 Type
*Type::getX86_AMXTy(LLVMContext
&C
) { return &C
.pImpl
->X86_AMXTy
; }
200 IntegerType
*Type::getInt1Ty(LLVMContext
&C
) { return &C
.pImpl
->Int1Ty
; }
201 IntegerType
*Type::getInt8Ty(LLVMContext
&C
) { return &C
.pImpl
->Int8Ty
; }
202 IntegerType
*Type::getInt16Ty(LLVMContext
&C
) { return &C
.pImpl
->Int16Ty
; }
203 IntegerType
*Type::getInt32Ty(LLVMContext
&C
) { return &C
.pImpl
->Int32Ty
; }
204 IntegerType
*Type::getInt64Ty(LLVMContext
&C
) { return &C
.pImpl
->Int64Ty
; }
205 IntegerType
*Type::getInt128Ty(LLVMContext
&C
) { return &C
.pImpl
->Int128Ty
; }
207 IntegerType
*Type::getIntNTy(LLVMContext
&C
, unsigned N
) {
208 return IntegerType::get(C
, N
);
211 PointerType
*Type::getHalfPtrTy(LLVMContext
&C
, unsigned AS
) {
212 return getHalfTy(C
)->getPointerTo(AS
);
215 PointerType
*Type::getBFloatPtrTy(LLVMContext
&C
, unsigned AS
) {
216 return getBFloatTy(C
)->getPointerTo(AS
);
219 PointerType
*Type::getFloatPtrTy(LLVMContext
&C
, unsigned AS
) {
220 return getFloatTy(C
)->getPointerTo(AS
);
223 PointerType
*Type::getDoublePtrTy(LLVMContext
&C
, unsigned AS
) {
224 return getDoubleTy(C
)->getPointerTo(AS
);
227 PointerType
*Type::getX86_FP80PtrTy(LLVMContext
&C
, unsigned AS
) {
228 return getX86_FP80Ty(C
)->getPointerTo(AS
);
231 PointerType
*Type::getFP128PtrTy(LLVMContext
&C
, unsigned AS
) {
232 return getFP128Ty(C
)->getPointerTo(AS
);
235 PointerType
*Type::getPPC_FP128PtrTy(LLVMContext
&C
, unsigned AS
) {
236 return getPPC_FP128Ty(C
)->getPointerTo(AS
);
239 PointerType
*Type::getX86_MMXPtrTy(LLVMContext
&C
, unsigned AS
) {
240 return getX86_MMXTy(C
)->getPointerTo(AS
);
243 PointerType
*Type::getX86_AMXPtrTy(LLVMContext
&C
, unsigned AS
) {
244 return getX86_AMXTy(C
)->getPointerTo(AS
);
247 PointerType
*Type::getIntNPtrTy(LLVMContext
&C
, unsigned N
, unsigned AS
) {
248 return getIntNTy(C
, N
)->getPointerTo(AS
);
251 PointerType
*Type::getInt1PtrTy(LLVMContext
&C
, unsigned AS
) {
252 return getInt1Ty(C
)->getPointerTo(AS
);
255 PointerType
*Type::getInt8PtrTy(LLVMContext
&C
, unsigned AS
) {
256 return getInt8Ty(C
)->getPointerTo(AS
);
259 PointerType
*Type::getInt16PtrTy(LLVMContext
&C
, unsigned AS
) {
260 return getInt16Ty(C
)->getPointerTo(AS
);
263 PointerType
*Type::getInt32PtrTy(LLVMContext
&C
, unsigned AS
) {
264 return getInt32Ty(C
)->getPointerTo(AS
);
267 PointerType
*Type::getInt64PtrTy(LLVMContext
&C
, unsigned AS
) {
268 return getInt64Ty(C
)->getPointerTo(AS
);
271 //===----------------------------------------------------------------------===//
272 // IntegerType Implementation
273 //===----------------------------------------------------------------------===//
275 IntegerType
*IntegerType::get(LLVMContext
&C
, unsigned NumBits
) {
276 assert(NumBits
>= MIN_INT_BITS
&& "bitwidth too small");
277 assert(NumBits
<= MAX_INT_BITS
&& "bitwidth too large");
279 // Check for the built-in integer types
281 case 1: return cast
<IntegerType
>(Type::getInt1Ty(C
));
282 case 8: return cast
<IntegerType
>(Type::getInt8Ty(C
));
283 case 16: return cast
<IntegerType
>(Type::getInt16Ty(C
));
284 case 32: return cast
<IntegerType
>(Type::getInt32Ty(C
));
285 case 64: return cast
<IntegerType
>(Type::getInt64Ty(C
));
286 case 128: return cast
<IntegerType
>(Type::getInt128Ty(C
));
291 IntegerType
*&Entry
= C
.pImpl
->IntegerTypes
[NumBits
];
294 Entry
= new (C
.pImpl
->Alloc
) IntegerType(C
, NumBits
);
299 APInt
IntegerType::getMask() const {
300 return APInt::getAllOnesValue(getBitWidth());
303 //===----------------------------------------------------------------------===//
304 // FunctionType Implementation
305 //===----------------------------------------------------------------------===//
307 FunctionType::FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
,
309 : Type(Result
->getContext(), FunctionTyID
) {
310 Type
**SubTys
= reinterpret_cast<Type
**>(this+1);
311 assert(isValidReturnType(Result
) && "invalid return type for function");
312 setSubclassData(IsVarArgs
);
316 for (unsigned i
= 0, e
= Params
.size(); i
!= e
; ++i
) {
317 assert(isValidArgumentType(Params
[i
]) &&
318 "Not a valid type for function argument!");
319 SubTys
[i
+1] = Params
[i
];
322 ContainedTys
= SubTys
;
323 NumContainedTys
= Params
.size() + 1; // + 1 for result type
326 // This is the factory function for the FunctionType class.
327 FunctionType
*FunctionType::get(Type
*ReturnType
,
328 ArrayRef
<Type
*> Params
, bool isVarArg
) {
329 LLVMContextImpl
*pImpl
= ReturnType
->getContext().pImpl
;
330 const FunctionTypeKeyInfo::KeyTy
Key(ReturnType
, Params
, isVarArg
);
332 // Since we only want to allocate a fresh function type in case none is found
333 // and we don't want to perform two lookups (one for checking if existent and
334 // one for inserting the newly allocated one), here we instead lookup based on
335 // Key and update the reference to the function type in-place to a newly
336 // allocated one if not found.
337 auto Insertion
= pImpl
->FunctionTypes
.insert_as(nullptr, Key
);
338 if (Insertion
.second
) {
339 // The function type was not found. Allocate one and update FunctionTypes
341 FT
= (FunctionType
*)pImpl
->Alloc
.Allocate(
342 sizeof(FunctionType
) + sizeof(Type
*) * (Params
.size() + 1),
343 alignof(FunctionType
));
344 new (FT
) FunctionType(ReturnType
, Params
, isVarArg
);
345 *Insertion
.first
= FT
;
347 // The function type was found. Just return it.
348 FT
= *Insertion
.first
;
353 FunctionType
*FunctionType::get(Type
*Result
, bool isVarArg
) {
354 return get(Result
, None
, isVarArg
);
357 bool FunctionType::isValidReturnType(Type
*RetTy
) {
358 return !RetTy
->isFunctionTy() && !RetTy
->isLabelTy() &&
359 !RetTy
->isMetadataTy();
362 bool FunctionType::isValidArgumentType(Type
*ArgTy
) {
363 return ArgTy
->isFirstClassType();
366 //===----------------------------------------------------------------------===//
367 // StructType Implementation
368 //===----------------------------------------------------------------------===//
370 // Primitive Constructors.
372 StructType
*StructType::get(LLVMContext
&Context
, ArrayRef
<Type
*> ETypes
,
374 LLVMContextImpl
*pImpl
= Context
.pImpl
;
375 const AnonStructTypeKeyInfo::KeyTy
Key(ETypes
, isPacked
);
378 // Since we only want to allocate a fresh struct type in case none is found
379 // and we don't want to perform two lookups (one for checking if existent and
380 // one for inserting the newly allocated one), here we instead lookup based on
381 // Key and update the reference to the struct type in-place to a newly
382 // allocated one if not found.
383 auto Insertion
= pImpl
->AnonStructTypes
.insert_as(nullptr, Key
);
384 if (Insertion
.second
) {
385 // The struct type was not found. Allocate one and update AnonStructTypes
387 ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
388 ST
->setSubclassData(SCDB_IsLiteral
); // Literal struct.
389 ST
->setBody(ETypes
, isPacked
);
390 *Insertion
.first
= ST
;
392 // The struct type was found. Just return it.
393 ST
= *Insertion
.first
;
399 bool StructType::containsScalableVectorType() const {
400 for (Type
*Ty
: elements()) {
401 if (isa
<ScalableVectorType
>(Ty
))
403 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
404 if (STy
->containsScalableVectorType())
411 void StructType::setBody(ArrayRef
<Type
*> Elements
, bool isPacked
) {
412 assert(isOpaque() && "Struct body already set!");
414 setSubclassData(getSubclassData() | SCDB_HasBody
);
416 setSubclassData(getSubclassData() | SCDB_Packed
);
418 NumContainedTys
= Elements
.size();
420 if (Elements
.empty()) {
421 ContainedTys
= nullptr;
425 ContainedTys
= Elements
.copy(getContext().pImpl
->Alloc
).data();
428 void StructType::setName(StringRef Name
) {
429 if (Name
== getName()) return;
431 StringMap
<StructType
*> &SymbolTable
= getContext().pImpl
->NamedStructTypes
;
433 using EntryTy
= StringMap
<StructType
*>::MapEntryTy
;
435 // If this struct already had a name, remove its symbol table entry. Don't
436 // delete the data yet because it may be part of the new name.
437 if (SymbolTableEntry
)
438 SymbolTable
.remove((EntryTy
*)SymbolTableEntry
);
440 // If this is just removing the name, we're done.
442 if (SymbolTableEntry
) {
443 // Delete the old string data.
444 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
445 SymbolTableEntry
= nullptr;
450 // Look up the entry for the name.
452 getContext().pImpl
->NamedStructTypes
.insert(std::make_pair(Name
, this));
454 // While we have a name collision, try a random rename.
455 if (!IterBool
.second
) {
456 SmallString
<64> TempStr(Name
);
457 TempStr
.push_back('.');
458 raw_svector_ostream
TmpStream(TempStr
);
459 unsigned NameSize
= Name
.size();
462 TempStr
.resize(NameSize
+ 1);
463 TmpStream
<< getContext().pImpl
->NamedStructTypesUniqueID
++;
465 IterBool
= getContext().pImpl
->NamedStructTypes
.insert(
466 std::make_pair(TmpStream
.str(), this));
467 } while (!IterBool
.second
);
470 // Delete the old string data.
471 if (SymbolTableEntry
)
472 ((EntryTy
*)SymbolTableEntry
)->Destroy(SymbolTable
.getAllocator());
473 SymbolTableEntry
= &*IterBool
.first
;
476 //===----------------------------------------------------------------------===//
477 // StructType Helper functions.
479 StructType
*StructType::create(LLVMContext
&Context
, StringRef Name
) {
480 StructType
*ST
= new (Context
.pImpl
->Alloc
) StructType(Context
);
486 StructType
*StructType::get(LLVMContext
&Context
, bool isPacked
) {
487 return get(Context
, None
, isPacked
);
490 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
491 StringRef Name
, bool isPacked
) {
492 StructType
*ST
= create(Context
, Name
);
493 ST
->setBody(Elements
, isPacked
);
497 StructType
*StructType::create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
) {
498 return create(Context
, Elements
, StringRef());
501 StructType
*StructType::create(LLVMContext
&Context
) {
502 return create(Context
, StringRef());
505 StructType
*StructType::create(ArrayRef
<Type
*> Elements
, StringRef Name
,
507 assert(!Elements
.empty() &&
508 "This method may not be invoked with an empty list");
509 return create(Elements
[0]->getContext(), Elements
, Name
, isPacked
);
512 StructType
*StructType::create(ArrayRef
<Type
*> Elements
) {
513 assert(!Elements
.empty() &&
514 "This method may not be invoked with an empty list");
515 return create(Elements
[0]->getContext(), Elements
, StringRef());
518 bool StructType::isSized(SmallPtrSetImpl
<Type
*> *Visited
) const {
519 if ((getSubclassData() & SCDB_IsSized
) != 0)
524 if (Visited
&& !Visited
->insert(const_cast<StructType
*>(this)).second
)
527 // Okay, our struct is sized if all of the elements are, but if one of the
528 // elements is opaque, the struct isn't sized *yet*, but may become sized in
529 // the future, so just bail out without caching.
530 for (Type
*Ty
: elements()) {
531 // If the struct contains a scalable vector type, don't consider it sized.
532 // This prevents it from being used in loads/stores/allocas/GEPs.
533 if (isa
<ScalableVectorType
>(Ty
))
535 if (!Ty
->isSized(Visited
))
539 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
540 // we find a sized type, as types can only move from opaque to sized, not the
542 const_cast<StructType
*>(this)->setSubclassData(
543 getSubclassData() | SCDB_IsSized
);
547 StringRef
StructType::getName() const {
548 assert(!isLiteral() && "Literal structs never have names");
549 if (!SymbolTableEntry
) return StringRef();
551 return ((StringMapEntry
<StructType
*> *)SymbolTableEntry
)->getKey();
554 bool StructType::isValidElementType(Type
*ElemTy
) {
555 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
556 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
557 !ElemTy
->isTokenTy();
560 bool StructType::isLayoutIdentical(StructType
*Other
) const {
561 if (this == Other
) return true;
563 if (isPacked() != Other
->isPacked())
566 return elements() == Other
->elements();
569 Type
*StructType::getTypeAtIndex(const Value
*V
) const {
570 unsigned Idx
= (unsigned)cast
<Constant
>(V
)->getUniqueInteger().getZExtValue();
571 assert(indexValid(Idx
) && "Invalid structure index!");
572 return getElementType(Idx
);
575 bool StructType::indexValid(const Value
*V
) const {
576 // Structure indexes require (vectors of) 32-bit integer constants. In the
577 // vector case all of the indices must be equal.
578 if (!V
->getType()->isIntOrIntVectorTy(32))
580 if (isa
<ScalableVectorType
>(V
->getType()))
582 const Constant
*C
= dyn_cast
<Constant
>(V
);
583 if (C
&& V
->getType()->isVectorTy())
584 C
= C
->getSplatValue();
585 const ConstantInt
*CU
= dyn_cast_or_null
<ConstantInt
>(C
);
586 return CU
&& CU
->getZExtValue() < getNumElements();
589 StructType
*StructType::getTypeByName(LLVMContext
&C
, StringRef Name
) {
590 return C
.pImpl
->NamedStructTypes
.lookup(Name
);
593 //===----------------------------------------------------------------------===//
594 // ArrayType Implementation
595 //===----------------------------------------------------------------------===//
597 ArrayType::ArrayType(Type
*ElType
, uint64_t NumEl
)
598 : Type(ElType
->getContext(), ArrayTyID
), ContainedType(ElType
),
600 ContainedTys
= &ContainedType
;
604 ArrayType
*ArrayType::get(Type
*ElementType
, uint64_t NumElements
) {
605 assert(isValidElementType(ElementType
) && "Invalid type for array element!");
607 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
609 pImpl
->ArrayTypes
[std::make_pair(ElementType
, NumElements
)];
612 Entry
= new (pImpl
->Alloc
) ArrayType(ElementType
, NumElements
);
616 bool ArrayType::isValidElementType(Type
*ElemTy
) {
617 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
618 !ElemTy
->isMetadataTy() && !ElemTy
->isFunctionTy() &&
619 !ElemTy
->isTokenTy() && !ElemTy
->isX86_AMXTy() &&
620 !isa
<ScalableVectorType
>(ElemTy
);
623 //===----------------------------------------------------------------------===//
624 // VectorType Implementation
625 //===----------------------------------------------------------------------===//
627 VectorType::VectorType(Type
*ElType
, unsigned EQ
, Type::TypeID TID
)
628 : Type(ElType
->getContext(), TID
), ContainedType(ElType
),
629 ElementQuantity(EQ
) {
630 ContainedTys
= &ContainedType
;
634 VectorType
*VectorType::get(Type
*ElementType
, ElementCount EC
) {
636 return ScalableVectorType::get(ElementType
, EC
.getKnownMinValue());
638 return FixedVectorType::get(ElementType
, EC
.getKnownMinValue());
641 bool VectorType::isValidElementType(Type
*ElemTy
) {
642 return ElemTy
->isIntegerTy() || ElemTy
->isFloatingPointTy() ||
643 ElemTy
->isPointerTy();
646 //===----------------------------------------------------------------------===//
647 // FixedVectorType Implementation
648 //===----------------------------------------------------------------------===//
650 FixedVectorType
*FixedVectorType::get(Type
*ElementType
, unsigned NumElts
) {
651 assert(NumElts
> 0 && "#Elements of a VectorType must be greater than 0");
652 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
653 "be an integer, floating point, or "
656 auto EC
= ElementCount::getFixed(NumElts
);
658 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
659 VectorType
*&Entry
= ElementType
->getContext()
660 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
663 Entry
= new (pImpl
->Alloc
) FixedVectorType(ElementType
, NumElts
);
664 return cast
<FixedVectorType
>(Entry
);
667 //===----------------------------------------------------------------------===//
668 // ScalableVectorType Implementation
669 //===----------------------------------------------------------------------===//
671 ScalableVectorType
*ScalableVectorType::get(Type
*ElementType
,
672 unsigned MinNumElts
) {
673 assert(MinNumElts
> 0 && "#Elements of a VectorType must be greater than 0");
674 assert(isValidElementType(ElementType
) && "Element type of a VectorType must "
675 "be an integer, floating point, or "
678 auto EC
= ElementCount::getScalable(MinNumElts
);
680 LLVMContextImpl
*pImpl
= ElementType
->getContext().pImpl
;
681 VectorType
*&Entry
= ElementType
->getContext()
682 .pImpl
->VectorTypes
[std::make_pair(ElementType
, EC
)];
685 Entry
= new (pImpl
->Alloc
) ScalableVectorType(ElementType
, MinNumElts
);
686 return cast
<ScalableVectorType
>(Entry
);
689 //===----------------------------------------------------------------------===//
690 // PointerType Implementation
691 //===----------------------------------------------------------------------===//
693 PointerType
*PointerType::get(Type
*EltTy
, unsigned AddressSpace
) {
694 assert(EltTy
&& "Can't get a pointer to <null> type!");
695 assert(isValidElementType(EltTy
) && "Invalid type for pointer element!");
697 LLVMContextImpl
*CImpl
= EltTy
->getContext().pImpl
;
699 // Create opaque pointer for pointer to opaque pointer.
700 if (CImpl
->ForceOpaquePointers
|| EltTy
->isOpaquePointerTy())
701 return get(EltTy
->getContext(), AddressSpace
);
703 // Since AddressSpace #0 is the common case, we special case it.
704 PointerType
*&Entry
= AddressSpace
== 0 ? CImpl
->PointerTypes
[EltTy
]
705 : CImpl
->ASPointerTypes
[std::make_pair(EltTy
, AddressSpace
)];
708 Entry
= new (CImpl
->Alloc
) PointerType(EltTy
, AddressSpace
);
712 PointerType
*PointerType::get(LLVMContext
&C
, unsigned AddressSpace
) {
713 LLVMContextImpl
*CImpl
= C
.pImpl
;
715 // Since AddressSpace #0 is the common case, we special case it.
716 PointerType
*&Entry
=
718 ? CImpl
->PointerTypes
[nullptr]
719 : CImpl
->ASPointerTypes
[std::make_pair(nullptr, AddressSpace
)];
722 Entry
= new (CImpl
->Alloc
) PointerType(C
, AddressSpace
);
726 PointerType::PointerType(Type
*E
, unsigned AddrSpace
)
727 : Type(E
->getContext(), PointerTyID
), PointeeTy(E
) {
728 ContainedTys
= &PointeeTy
;
730 setSubclassData(AddrSpace
);
733 PointerType::PointerType(LLVMContext
&C
, unsigned AddrSpace
)
734 : Type(C
, PointerTyID
), PointeeTy(nullptr) {
735 setSubclassData(AddrSpace
);
738 PointerType
*Type::getPointerTo(unsigned AddrSpace
) const {
739 return PointerType::get(const_cast<Type
*>(this), AddrSpace
);
742 bool PointerType::isValidElementType(Type
*ElemTy
) {
743 return !ElemTy
->isVoidTy() && !ElemTy
->isLabelTy() &&
744 !ElemTy
->isMetadataTy() && !ElemTy
->isTokenTy() &&
745 !ElemTy
->isX86_AMXTy();
748 bool PointerType::isLoadableOrStorableType(Type
*ElemTy
) {
749 return isValidElementType(ElemTy
) && !ElemTy
->isFunctionTy();