[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / IR / Value.cpp
blobda67da1ac6c597864a12ec847885f166681f240c
1 //===-- Value.cpp - Implement the Value class -----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Value, ValueHandle, and User classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Value.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/IR/Constant.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfo.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/DerivedUser.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/InstrTypes.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueHandle.h"
31 #include "llvm/IR/ValueSymbolTable.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
39 using namespace llvm;
41 static cl::opt<unsigned> UseDerefAtPointSemantics(
42 "use-dereferenceable-at-point-semantics", cl::Hidden, cl::init(false),
43 cl::desc("Deref attributes and metadata infer facts at definition only"));
45 //===----------------------------------------------------------------------===//
46 // Value Class
47 //===----------------------------------------------------------------------===//
48 static inline Type *checkType(Type *Ty) {
49 assert(Ty && "Value defined with a null type: Error!");
50 return Ty;
53 Value::Value(Type *ty, unsigned scid)
54 : VTy(checkType(ty)), UseList(nullptr), SubclassID(scid), HasValueHandle(0),
55 SubclassOptionalData(0), SubclassData(0), NumUserOperands(0),
56 IsUsedByMD(false), HasName(false), HasMetadata(false) {
57 static_assert(ConstantFirstVal == 0, "!(SubclassID < ConstantFirstVal)");
58 // FIXME: Why isn't this in the subclass gunk??
59 // Note, we cannot call isa<CallInst> before the CallInst has been
60 // constructed.
61 unsigned OpCode = 0;
62 if (SubclassID >= InstructionVal)
63 OpCode = SubclassID - InstructionVal;
64 if (OpCode == Instruction::Call || OpCode == Instruction::Invoke ||
65 OpCode == Instruction::CallBr)
66 assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) &&
67 "invalid CallBase type!");
68 else if (SubclassID != BasicBlockVal &&
69 (/*SubclassID < ConstantFirstVal ||*/ SubclassID > ConstantLastVal))
70 assert((VTy->isFirstClassType() || VTy->isVoidTy()) &&
71 "Cannot create non-first-class values except for constants!");
72 static_assert(sizeof(Value) == 2 * sizeof(void *) + 2 * sizeof(unsigned),
73 "Value too big");
76 Value::~Value() {
77 // Notify all ValueHandles (if present) that this value is going away.
78 if (HasValueHandle)
79 ValueHandleBase::ValueIsDeleted(this);
80 if (isUsedByMetadata())
81 ValueAsMetadata::handleDeletion(this);
83 // Remove associated metadata from context.
84 if (HasMetadata)
85 clearMetadata();
87 #ifndef NDEBUG // Only in -g mode...
88 // Check to make sure that there are no uses of this value that are still
89 // around when the value is destroyed. If there are, then we have a dangling
90 // reference and something is wrong. This code is here to print out where
91 // the value is still being referenced.
93 // Note that use_empty() cannot be called here, as it eventually downcasts
94 // 'this' to GlobalValue (derived class of Value), but GlobalValue has already
95 // been destructed, so accessing it is UB.
97 if (!materialized_use_empty()) {
98 dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n";
99 for (auto *U : users())
100 dbgs() << "Use still stuck around after Def is destroyed:" << *U << "\n";
102 #endif
103 assert(materialized_use_empty() && "Uses remain when a value is destroyed!");
105 // If this value is named, destroy the name. This should not be in a symtab
106 // at this point.
107 destroyValueName();
110 void Value::deleteValue() {
111 switch (getValueID()) {
112 #define HANDLE_VALUE(Name) \
113 case Value::Name##Val: \
114 delete static_cast<Name *>(this); \
115 break;
116 #define HANDLE_MEMORY_VALUE(Name) \
117 case Value::Name##Val: \
118 static_cast<DerivedUser *>(this)->DeleteValue( \
119 static_cast<DerivedUser *>(this)); \
120 break;
121 #define HANDLE_CONSTANT(Name) \
122 case Value::Name##Val: \
123 llvm_unreachable("constants should be destroyed with destroyConstant"); \
124 break;
125 #define HANDLE_INSTRUCTION(Name) /* nothing */
126 #include "llvm/IR/Value.def"
128 #define HANDLE_INST(N, OPC, CLASS) \
129 case Value::InstructionVal + Instruction::OPC: \
130 delete static_cast<CLASS *>(this); \
131 break;
132 #define HANDLE_USER_INST(N, OPC, CLASS)
133 #include "llvm/IR/Instruction.def"
135 default:
136 llvm_unreachable("attempting to delete unknown value kind");
140 void Value::destroyValueName() {
141 ValueName *Name = getValueName();
142 if (Name) {
143 MallocAllocator Allocator;
144 Name->Destroy(Allocator);
146 setValueName(nullptr);
149 bool Value::hasNUses(unsigned N) const {
150 return hasNItems(use_begin(), use_end(), N);
153 bool Value::hasNUsesOrMore(unsigned N) const {
154 return hasNItemsOrMore(use_begin(), use_end(), N);
157 bool Value::hasOneUser() const {
158 if (use_empty())
159 return false;
160 if (hasOneUse())
161 return true;
162 return std::equal(++user_begin(), user_end(), user_begin());
165 static bool isUnDroppableUser(const User *U) { return !U->isDroppable(); }
167 Use *Value::getSingleUndroppableUse() {
168 Use *Result = nullptr;
169 for (Use &U : uses()) {
170 if (!U.getUser()->isDroppable()) {
171 if (Result)
172 return nullptr;
173 Result = &U;
176 return Result;
179 bool Value::hasNUndroppableUses(unsigned int N) const {
180 return hasNItems(user_begin(), user_end(), N, isUnDroppableUser);
183 bool Value::hasNUndroppableUsesOrMore(unsigned int N) const {
184 return hasNItemsOrMore(user_begin(), user_end(), N, isUnDroppableUser);
187 void Value::dropDroppableUses(
188 llvm::function_ref<bool(const Use *)> ShouldDrop) {
189 SmallVector<Use *, 8> ToBeEdited;
190 for (Use &U : uses())
191 if (U.getUser()->isDroppable() && ShouldDrop(&U))
192 ToBeEdited.push_back(&U);
193 for (Use *U : ToBeEdited)
194 dropDroppableUse(*U);
197 void Value::dropDroppableUsesIn(User &Usr) {
198 assert(Usr.isDroppable() && "Expected a droppable user!");
199 for (Use &UsrOp : Usr.operands()) {
200 if (UsrOp.get() == this)
201 dropDroppableUse(UsrOp);
205 void Value::dropDroppableUse(Use &U) {
206 U.removeFromList();
207 if (auto *Assume = dyn_cast<AssumeInst>(U.getUser())) {
208 unsigned OpNo = U.getOperandNo();
209 if (OpNo == 0)
210 U.set(ConstantInt::getTrue(Assume->getContext()));
211 else {
212 U.set(UndefValue::get(U.get()->getType()));
213 CallInst::BundleOpInfo &BOI = Assume->getBundleOpInfoForOperand(OpNo);
214 BOI.Tag = Assume->getContext().pImpl->getOrInsertBundleTag("ignore");
216 return;
219 llvm_unreachable("unkown droppable use");
222 bool Value::isUsedInBasicBlock(const BasicBlock *BB) const {
223 // This can be computed either by scanning the instructions in BB, or by
224 // scanning the use list of this Value. Both lists can be very long, but
225 // usually one is quite short.
227 // Scan both lists simultaneously until one is exhausted. This limits the
228 // search to the shorter list.
229 BasicBlock::const_iterator BI = BB->begin(), BE = BB->end();
230 const_user_iterator UI = user_begin(), UE = user_end();
231 for (; BI != BE && UI != UE; ++BI, ++UI) {
232 // Scan basic block: Check if this Value is used by the instruction at BI.
233 if (is_contained(BI->operands(), this))
234 return true;
235 // Scan use list: Check if the use at UI is in BB.
236 const auto *User = dyn_cast<Instruction>(*UI);
237 if (User && User->getParent() == BB)
238 return true;
240 return false;
243 unsigned Value::getNumUses() const {
244 return (unsigned)std::distance(use_begin(), use_end());
247 static bool getSymTab(Value *V, ValueSymbolTable *&ST) {
248 ST = nullptr;
249 if (Instruction *I = dyn_cast<Instruction>(V)) {
250 if (BasicBlock *P = I->getParent())
251 if (Function *PP = P->getParent())
252 ST = PP->getValueSymbolTable();
253 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) {
254 if (Function *P = BB->getParent())
255 ST = P->getValueSymbolTable();
256 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
257 if (Module *P = GV->getParent())
258 ST = &P->getValueSymbolTable();
259 } else if (Argument *A = dyn_cast<Argument>(V)) {
260 if (Function *P = A->getParent())
261 ST = P->getValueSymbolTable();
262 } else {
263 assert(isa<Constant>(V) && "Unknown value type!");
264 return true; // no name is setable for this.
266 return false;
269 ValueName *Value::getValueName() const {
270 if (!HasName) return nullptr;
272 LLVMContext &Ctx = getContext();
273 auto I = Ctx.pImpl->ValueNames.find(this);
274 assert(I != Ctx.pImpl->ValueNames.end() &&
275 "No name entry found!");
277 return I->second;
280 void Value::setValueName(ValueName *VN) {
281 LLVMContext &Ctx = getContext();
283 assert(HasName == Ctx.pImpl->ValueNames.count(this) &&
284 "HasName bit out of sync!");
286 if (!VN) {
287 if (HasName)
288 Ctx.pImpl->ValueNames.erase(this);
289 HasName = false;
290 return;
293 HasName = true;
294 Ctx.pImpl->ValueNames[this] = VN;
297 StringRef Value::getName() const {
298 // Make sure the empty string is still a C string. For historical reasons,
299 // some clients want to call .data() on the result and expect it to be null
300 // terminated.
301 if (!hasName())
302 return StringRef("", 0);
303 return getValueName()->getKey();
306 void Value::setNameImpl(const Twine &NewName) {
307 // Fast-path: LLVMContext can be set to strip out non-GlobalValue names
308 if (getContext().shouldDiscardValueNames() && !isa<GlobalValue>(this))
309 return;
311 // Fast path for common IRBuilder case of setName("") when there is no name.
312 if (NewName.isTriviallyEmpty() && !hasName())
313 return;
315 SmallString<256> NameData;
316 StringRef NameRef = NewName.toStringRef(NameData);
317 assert(NameRef.find_first_of(0) == StringRef::npos &&
318 "Null bytes are not allowed in names");
320 // Name isn't changing?
321 if (getName() == NameRef)
322 return;
324 assert(!getType()->isVoidTy() && "Cannot assign a name to void values!");
326 // Get the symbol table to update for this object.
327 ValueSymbolTable *ST;
328 if (getSymTab(this, ST))
329 return; // Cannot set a name on this value (e.g. constant).
331 if (!ST) { // No symbol table to update? Just do the change.
332 if (NameRef.empty()) {
333 // Free the name for this value.
334 destroyValueName();
335 return;
338 // NOTE: Could optimize for the case the name is shrinking to not deallocate
339 // then reallocated.
340 destroyValueName();
342 // Create the new name.
343 MallocAllocator Allocator;
344 setValueName(ValueName::Create(NameRef, Allocator));
345 getValueName()->setValue(this);
346 return;
349 // NOTE: Could optimize for the case the name is shrinking to not deallocate
350 // then reallocated.
351 if (hasName()) {
352 // Remove old name.
353 ST->removeValueName(getValueName());
354 destroyValueName();
356 if (NameRef.empty())
357 return;
360 // Name is changing to something new.
361 setValueName(ST->createValueName(NameRef, this));
364 void Value::setName(const Twine &NewName) {
365 setNameImpl(NewName);
366 if (Function *F = dyn_cast<Function>(this))
367 F->recalculateIntrinsicID();
370 void Value::takeName(Value *V) {
371 ValueSymbolTable *ST = nullptr;
372 // If this value has a name, drop it.
373 if (hasName()) {
374 // Get the symtab this is in.
375 if (getSymTab(this, ST)) {
376 // We can't set a name on this value, but we need to clear V's name if
377 // it has one.
378 if (V->hasName()) V->setName("");
379 return; // Cannot set a name on this value (e.g. constant).
382 // Remove old name.
383 if (ST)
384 ST->removeValueName(getValueName());
385 destroyValueName();
388 // Now we know that this has no name.
390 // If V has no name either, we're done.
391 if (!V->hasName()) return;
393 // Get this's symtab if we didn't before.
394 if (!ST) {
395 if (getSymTab(this, ST)) {
396 // Clear V's name.
397 V->setName("");
398 return; // Cannot set a name on this value (e.g. constant).
402 // Get V's ST, this should always succed, because V has a name.
403 ValueSymbolTable *VST;
404 bool Failure = getSymTab(V, VST);
405 assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
407 // If these values are both in the same symtab, we can do this very fast.
408 // This works even if both values have no symtab yet.
409 if (ST == VST) {
410 // Take the name!
411 setValueName(V->getValueName());
412 V->setValueName(nullptr);
413 getValueName()->setValue(this);
414 return;
417 // Otherwise, things are slightly more complex. Remove V's name from VST and
418 // then reinsert it into ST.
420 if (VST)
421 VST->removeValueName(V->getValueName());
422 setValueName(V->getValueName());
423 V->setValueName(nullptr);
424 getValueName()->setValue(this);
426 if (ST)
427 ST->reinsertValue(this);
430 #ifndef NDEBUG
431 std::string Value::getNameOrAsOperand() const {
432 if (!getName().empty())
433 return std::string(getName());
435 std::string BBName;
436 raw_string_ostream OS(BBName);
437 printAsOperand(OS, false);
438 return OS.str();
440 #endif
442 void Value::assertModuleIsMaterializedImpl() const {
443 #ifndef NDEBUG
444 const GlobalValue *GV = dyn_cast<GlobalValue>(this);
445 if (!GV)
446 return;
447 const Module *M = GV->getParent();
448 if (!M)
449 return;
450 assert(M->isMaterialized());
451 #endif
454 #ifndef NDEBUG
455 static bool contains(SmallPtrSetImpl<ConstantExpr *> &Cache, ConstantExpr *Expr,
456 Constant *C) {
457 if (!Cache.insert(Expr).second)
458 return false;
460 for (auto &O : Expr->operands()) {
461 if (O == C)
462 return true;
463 auto *CE = dyn_cast<ConstantExpr>(O);
464 if (!CE)
465 continue;
466 if (contains(Cache, CE, C))
467 return true;
469 return false;
472 static bool contains(Value *Expr, Value *V) {
473 if (Expr == V)
474 return true;
476 auto *C = dyn_cast<Constant>(V);
477 if (!C)
478 return false;
480 auto *CE = dyn_cast<ConstantExpr>(Expr);
481 if (!CE)
482 return false;
484 SmallPtrSet<ConstantExpr *, 4> Cache;
485 return contains(Cache, CE, C);
487 #endif // NDEBUG
489 void Value::doRAUW(Value *New, ReplaceMetadataUses ReplaceMetaUses) {
490 assert(New && "Value::replaceAllUsesWith(<null>) is invalid!");
491 assert(!contains(New, this) &&
492 "this->replaceAllUsesWith(expr(this)) is NOT valid!");
493 assert(New->getType() == getType() &&
494 "replaceAllUses of value with new value of different type!");
496 // Notify all ValueHandles (if present) that this value is going away.
497 if (HasValueHandle)
498 ValueHandleBase::ValueIsRAUWd(this, New);
499 if (ReplaceMetaUses == ReplaceMetadataUses::Yes && isUsedByMetadata())
500 ValueAsMetadata::handleRAUW(this, New);
502 while (!materialized_use_empty()) {
503 Use &U = *UseList;
504 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
505 // constant because they are uniqued.
506 if (auto *C = dyn_cast<Constant>(U.getUser())) {
507 if (!isa<GlobalValue>(C)) {
508 C->handleOperandChange(this, New);
509 continue;
513 U.set(New);
516 if (BasicBlock *BB = dyn_cast<BasicBlock>(this))
517 BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New));
520 void Value::replaceAllUsesWith(Value *New) {
521 doRAUW(New, ReplaceMetadataUses::Yes);
524 void Value::replaceNonMetadataUsesWith(Value *New) {
525 doRAUW(New, ReplaceMetadataUses::No);
528 void Value::replaceUsesWithIf(Value *New,
529 llvm::function_ref<bool(Use &U)> ShouldReplace) {
530 assert(New && "Value::replaceUsesWithIf(<null>) is invalid!");
531 assert(New->getType() == getType() &&
532 "replaceUses of value with new value of different type!");
534 SmallVector<TrackingVH<Constant>, 8> Consts;
535 SmallPtrSet<Constant *, 8> Visited;
537 for (use_iterator UI = use_begin(), E = use_end(); UI != E;) {
538 Use &U = *UI;
539 ++UI;
540 if (!ShouldReplace(U))
541 continue;
542 // Must handle Constants specially, we cannot call replaceUsesOfWith on a
543 // constant because they are uniqued.
544 if (auto *C = dyn_cast<Constant>(U.getUser())) {
545 if (!isa<GlobalValue>(C)) {
546 if (Visited.insert(C).second)
547 Consts.push_back(TrackingVH<Constant>(C));
548 continue;
551 U.set(New);
554 while (!Consts.empty()) {
555 // FIXME: handleOperandChange() updates all the uses in a given Constant,
556 // not just the one passed to ShouldReplace
557 Consts.pop_back_val()->handleOperandChange(this, New);
561 /// Replace llvm.dbg.* uses of MetadataAsValue(ValueAsMetadata(V)) outside BB
562 /// with New.
563 static void replaceDbgUsesOutsideBlock(Value *V, Value *New, BasicBlock *BB) {
564 SmallVector<DbgVariableIntrinsic *> DbgUsers;
565 findDbgUsers(DbgUsers, V);
566 for (auto *DVI : DbgUsers) {
567 if (DVI->getParent() != BB)
568 DVI->replaceVariableLocationOp(V, New);
572 // Like replaceAllUsesWith except it does not handle constants or basic blocks.
573 // This routine leaves uses within BB.
574 void Value::replaceUsesOutsideBlock(Value *New, BasicBlock *BB) {
575 assert(New && "Value::replaceUsesOutsideBlock(<null>, BB) is invalid!");
576 assert(!contains(New, this) &&
577 "this->replaceUsesOutsideBlock(expr(this), BB) is NOT valid!");
578 assert(New->getType() == getType() &&
579 "replaceUses of value with new value of different type!");
580 assert(BB && "Basic block that may contain a use of 'New' must be defined\n");
582 replaceDbgUsesOutsideBlock(this, New, BB);
583 replaceUsesWithIf(New, [BB](Use &U) {
584 auto *I = dyn_cast<Instruction>(U.getUser());
585 // Don't replace if it's an instruction in the BB basic block.
586 return !I || I->getParent() != BB;
590 namespace {
591 // Various metrics for how much to strip off of pointers.
592 enum PointerStripKind {
593 PSK_ZeroIndices,
594 PSK_ZeroIndicesAndAliases,
595 PSK_ZeroIndicesSameRepresentation,
596 PSK_ForAliasAnalysis,
597 PSK_InBoundsConstantIndices,
598 PSK_InBounds
601 template <PointerStripKind StripKind> static void NoopCallback(const Value *) {}
603 template <PointerStripKind StripKind>
604 static const Value *stripPointerCastsAndOffsets(
605 const Value *V,
606 function_ref<void(const Value *)> Func = NoopCallback<StripKind>) {
607 if (!V->getType()->isPointerTy())
608 return V;
610 // Even though we don't look through PHI nodes, we could be called on an
611 // instruction in an unreachable block, which may be on a cycle.
612 SmallPtrSet<const Value *, 4> Visited;
614 Visited.insert(V);
615 do {
616 Func(V);
617 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
618 switch (StripKind) {
619 case PSK_ZeroIndices:
620 case PSK_ZeroIndicesAndAliases:
621 case PSK_ZeroIndicesSameRepresentation:
622 case PSK_ForAliasAnalysis:
623 if (!GEP->hasAllZeroIndices())
624 return V;
625 break;
626 case PSK_InBoundsConstantIndices:
627 if (!GEP->hasAllConstantIndices())
628 return V;
629 LLVM_FALLTHROUGH;
630 case PSK_InBounds:
631 if (!GEP->isInBounds())
632 return V;
633 break;
635 V = GEP->getPointerOperand();
636 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
637 V = cast<Operator>(V)->getOperand(0);
638 if (!V->getType()->isPointerTy())
639 return V;
640 } else if (StripKind != PSK_ZeroIndicesSameRepresentation &&
641 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
642 // TODO: If we know an address space cast will not change the
643 // representation we could look through it here as well.
644 V = cast<Operator>(V)->getOperand(0);
645 } else if (StripKind == PSK_ZeroIndicesAndAliases && isa<GlobalAlias>(V)) {
646 V = cast<GlobalAlias>(V)->getAliasee();
647 } else if (StripKind == PSK_ForAliasAnalysis && isa<PHINode>(V) &&
648 cast<PHINode>(V)->getNumIncomingValues() == 1) {
649 V = cast<PHINode>(V)->getIncomingValue(0);
650 } else {
651 if (const auto *Call = dyn_cast<CallBase>(V)) {
652 if (const Value *RV = Call->getReturnedArgOperand()) {
653 V = RV;
654 continue;
656 // The result of launder.invariant.group must alias it's argument,
657 // but it can't be marked with returned attribute, that's why it needs
658 // special case.
659 if (StripKind == PSK_ForAliasAnalysis &&
660 (Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
661 Call->getIntrinsicID() == Intrinsic::strip_invariant_group)) {
662 V = Call->getArgOperand(0);
663 continue;
666 return V;
668 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
669 } while (Visited.insert(V).second);
671 return V;
673 } // end anonymous namespace
675 const Value *Value::stripPointerCasts() const {
676 return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this);
679 const Value *Value::stripPointerCastsAndAliases() const {
680 return stripPointerCastsAndOffsets<PSK_ZeroIndicesAndAliases>(this);
683 const Value *Value::stripPointerCastsSameRepresentation() const {
684 return stripPointerCastsAndOffsets<PSK_ZeroIndicesSameRepresentation>(this);
687 const Value *Value::stripInBoundsConstantOffsets() const {
688 return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this);
691 const Value *Value::stripPointerCastsForAliasAnalysis() const {
692 return stripPointerCastsAndOffsets<PSK_ForAliasAnalysis>(this);
695 const Value *Value::stripAndAccumulateConstantOffsets(
696 const DataLayout &DL, APInt &Offset, bool AllowNonInbounds,
697 function_ref<bool(Value &, APInt &)> ExternalAnalysis) const {
698 if (!getType()->isPtrOrPtrVectorTy())
699 return this;
701 unsigned BitWidth = Offset.getBitWidth();
702 assert(BitWidth == DL.getIndexTypeSizeInBits(getType()) &&
703 "The offset bit width does not match the DL specification.");
705 // Even though we don't look through PHI nodes, we could be called on an
706 // instruction in an unreachable block, which may be on a cycle.
707 SmallPtrSet<const Value *, 4> Visited;
708 Visited.insert(this);
709 const Value *V = this;
710 do {
711 if (auto *GEP = dyn_cast<GEPOperator>(V)) {
712 // If in-bounds was requested, we do not strip non-in-bounds GEPs.
713 if (!AllowNonInbounds && !GEP->isInBounds())
714 return V;
716 // If one of the values we have visited is an addrspacecast, then
717 // the pointer type of this GEP may be different from the type
718 // of the Ptr parameter which was passed to this function. This
719 // means when we construct GEPOffset, we need to use the size
720 // of GEP's pointer type rather than the size of the original
721 // pointer type.
722 APInt GEPOffset(DL.getIndexTypeSizeInBits(V->getType()), 0);
723 if (!GEP->accumulateConstantOffset(DL, GEPOffset, ExternalAnalysis))
724 return V;
726 // Stop traversal if the pointer offset wouldn't fit in the bit-width
727 // provided by the Offset argument. This can happen due to AddrSpaceCast
728 // stripping.
729 if (GEPOffset.getMinSignedBits() > BitWidth)
730 return V;
732 // External Analysis can return a result higher/lower than the value
733 // represents. We need to detect overflow/underflow.
734 APInt GEPOffsetST = GEPOffset.sextOrTrunc(BitWidth);
735 if (!ExternalAnalysis) {
736 Offset += GEPOffsetST;
737 } else {
738 bool Overflow = false;
739 APInt OldOffset = Offset;
740 Offset = Offset.sadd_ov(GEPOffsetST, Overflow);
741 if (Overflow) {
742 Offset = OldOffset;
743 return V;
746 V = GEP->getPointerOperand();
747 } else if (Operator::getOpcode(V) == Instruction::BitCast ||
748 Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
749 V = cast<Operator>(V)->getOperand(0);
750 } else if (auto *GA = dyn_cast<GlobalAlias>(V)) {
751 if (!GA->isInterposable())
752 V = GA->getAliasee();
753 } else if (const auto *Call = dyn_cast<CallBase>(V)) {
754 if (const Value *RV = Call->getReturnedArgOperand())
755 V = RV;
757 assert(V->getType()->isPtrOrPtrVectorTy() && "Unexpected operand type!");
758 } while (Visited.insert(V).second);
760 return V;
763 const Value *
764 Value::stripInBoundsOffsets(function_ref<void(const Value *)> Func) const {
765 return stripPointerCastsAndOffsets<PSK_InBounds>(this, Func);
768 bool Value::canBeFreed() const {
769 assert(getType()->isPointerTy());
771 // Cases that can simply never be deallocated
772 // *) Constants aren't allocated per se, thus not deallocated either.
773 if (isa<Constant>(this))
774 return false;
776 // Handle byval/byref/sret/inalloca/preallocated arguments. The storage
777 // lifetime is guaranteed to be longer than the callee's lifetime.
778 if (auto *A = dyn_cast<Argument>(this)) {
779 if (A->hasPointeeInMemoryValueAttr())
780 return false;
781 // A pointer to an object in a function which neither frees, nor can arrange
782 // for another thread to free on its behalf, can not be freed in the scope
783 // of the function. Note that this logic is restricted to memory
784 // allocations in existance before the call; a nofree function *is* allowed
785 // to free memory it allocated.
786 const Function *F = A->getParent();
787 if (F->doesNotFreeMemory() && F->hasNoSync())
788 return false;
791 const Function *F = nullptr;
792 if (auto *I = dyn_cast<Instruction>(this))
793 F = I->getFunction();
794 if (auto *A = dyn_cast<Argument>(this))
795 F = A->getParent();
797 if (!F)
798 return true;
800 // With garbage collection, deallocation typically occurs solely at or after
801 // safepoints. If we're compiling for a collector which uses the
802 // gc.statepoint infrastructure, safepoints aren't explicitly present
803 // in the IR until after lowering from abstract to physical machine model.
804 // The collector could chose to mix explicit deallocation and gc'd objects
805 // which is why we need the explicit opt in on a per collector basis.
806 if (!F->hasGC())
807 return true;
809 const auto &GCName = F->getGC();
810 if (GCName == "statepoint-example") {
811 auto *PT = cast<PointerType>(this->getType());
812 if (PT->getAddressSpace() != 1)
813 // For the sake of this example GC, we arbitrarily pick addrspace(1) as
814 // our GC managed heap. This must match the same check in
815 // RewriteStatepointsForGC (and probably needs better factored.)
816 return true;
818 // It is cheaper to scan for a declaration than to scan for a use in this
819 // function. Note that gc.statepoint is a type overloaded function so the
820 // usual trick of requesting declaration of the intrinsic from the module
821 // doesn't work.
822 for (auto &Fn : *F->getParent())
823 if (Fn.getIntrinsicID() == Intrinsic::experimental_gc_statepoint)
824 return true;
825 return false;
827 return true;
830 uint64_t Value::getPointerDereferenceableBytes(const DataLayout &DL,
831 bool &CanBeNull,
832 bool &CanBeFreed) const {
833 assert(getType()->isPointerTy() && "must be pointer");
835 uint64_t DerefBytes = 0;
836 CanBeNull = false;
837 CanBeFreed = UseDerefAtPointSemantics && canBeFreed();
838 if (const Argument *A = dyn_cast<Argument>(this)) {
839 DerefBytes = A->getDereferenceableBytes();
840 if (DerefBytes == 0) {
841 // Handle byval/byref/inalloca/preallocated arguments
842 if (Type *ArgMemTy = A->getPointeeInMemoryValueType()) {
843 if (ArgMemTy->isSized()) {
844 // FIXME: Why isn't this the type alloc size?
845 DerefBytes = DL.getTypeStoreSize(ArgMemTy).getKnownMinSize();
850 if (DerefBytes == 0) {
851 DerefBytes = A->getDereferenceableOrNullBytes();
852 CanBeNull = true;
854 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
855 DerefBytes = Call->getRetDereferenceableBytes();
856 if (DerefBytes == 0) {
857 DerefBytes = Call->getRetDereferenceableOrNullBytes();
858 CanBeNull = true;
860 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
861 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_dereferenceable)) {
862 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
863 DerefBytes = CI->getLimitedValue();
865 if (DerefBytes == 0) {
866 if (MDNode *MD =
867 LI->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
868 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
869 DerefBytes = CI->getLimitedValue();
871 CanBeNull = true;
873 } else if (auto *IP = dyn_cast<IntToPtrInst>(this)) {
874 if (MDNode *MD = IP->getMetadata(LLVMContext::MD_dereferenceable)) {
875 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
876 DerefBytes = CI->getLimitedValue();
878 if (DerefBytes == 0) {
879 if (MDNode *MD =
880 IP->getMetadata(LLVMContext::MD_dereferenceable_or_null)) {
881 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
882 DerefBytes = CI->getLimitedValue();
884 CanBeNull = true;
886 } else if (auto *AI = dyn_cast<AllocaInst>(this)) {
887 if (!AI->isArrayAllocation()) {
888 DerefBytes =
889 DL.getTypeStoreSize(AI->getAllocatedType()).getKnownMinSize();
890 CanBeNull = false;
891 CanBeFreed = false;
893 } else if (auto *GV = dyn_cast<GlobalVariable>(this)) {
894 if (GV->getValueType()->isSized() && !GV->hasExternalWeakLinkage()) {
895 // TODO: Don't outright reject hasExternalWeakLinkage but set the
896 // CanBeNull flag.
897 DerefBytes = DL.getTypeStoreSize(GV->getValueType()).getFixedSize();
898 CanBeNull = false;
899 CanBeFreed = false;
902 return DerefBytes;
905 Align Value::getPointerAlignment(const DataLayout &DL) const {
906 assert(getType()->isPointerTy() && "must be pointer");
907 if (auto *GO = dyn_cast<GlobalObject>(this)) {
908 if (isa<Function>(GO)) {
909 Align FunctionPtrAlign = DL.getFunctionPtrAlign().valueOrOne();
910 switch (DL.getFunctionPtrAlignType()) {
911 case DataLayout::FunctionPtrAlignType::Independent:
912 return FunctionPtrAlign;
913 case DataLayout::FunctionPtrAlignType::MultipleOfFunctionAlign:
914 return std::max(FunctionPtrAlign, GO->getAlign().valueOrOne());
916 llvm_unreachable("Unhandled FunctionPtrAlignType");
918 const MaybeAlign Alignment(GO->getAlignment());
919 if (!Alignment) {
920 if (auto *GVar = dyn_cast<GlobalVariable>(GO)) {
921 Type *ObjectType = GVar->getValueType();
922 if (ObjectType->isSized()) {
923 // If the object is defined in the current Module, we'll be giving
924 // it the preferred alignment. Otherwise, we have to assume that it
925 // may only have the minimum ABI alignment.
926 if (GVar->isStrongDefinitionForLinker())
927 return DL.getPreferredAlign(GVar);
928 else
929 return DL.getABITypeAlign(ObjectType);
933 return Alignment.valueOrOne();
934 } else if (const Argument *A = dyn_cast<Argument>(this)) {
935 const MaybeAlign Alignment = A->getParamAlign();
936 if (!Alignment && A->hasStructRetAttr()) {
937 // An sret parameter has at least the ABI alignment of the return type.
938 Type *EltTy = A->getParamStructRetType();
939 if (EltTy->isSized())
940 return DL.getABITypeAlign(EltTy);
942 return Alignment.valueOrOne();
943 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(this)) {
944 return AI->getAlign();
945 } else if (const auto *Call = dyn_cast<CallBase>(this)) {
946 MaybeAlign Alignment = Call->getRetAlign();
947 if (!Alignment && Call->getCalledFunction())
948 Alignment = Call->getCalledFunction()->getAttributes().getRetAlignment();
949 return Alignment.valueOrOne();
950 } else if (const LoadInst *LI = dyn_cast<LoadInst>(this)) {
951 if (MDNode *MD = LI->getMetadata(LLVMContext::MD_align)) {
952 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(0));
953 return Align(CI->getLimitedValue());
955 } else if (auto *CstPtr = dyn_cast<Constant>(this)) {
956 if (auto *CstInt = dyn_cast_or_null<ConstantInt>(ConstantExpr::getPtrToInt(
957 const_cast<Constant *>(CstPtr), DL.getIntPtrType(getType()),
958 /*OnlyIfReduced=*/true))) {
959 size_t TrailingZeros = CstInt->getValue().countTrailingZeros();
960 // While the actual alignment may be large, elsewhere we have
961 // an arbitrary upper alignmet limit, so let's clamp to it.
962 return Align(TrailingZeros < Value::MaxAlignmentExponent
963 ? uint64_t(1) << TrailingZeros
964 : Value::MaximumAlignment);
967 return Align(1);
970 const Value *Value::DoPHITranslation(const BasicBlock *CurBB,
971 const BasicBlock *PredBB) const {
972 auto *PN = dyn_cast<PHINode>(this);
973 if (PN && PN->getParent() == CurBB)
974 return PN->getIncomingValueForBlock(PredBB);
975 return this;
978 LLVMContext &Value::getContext() const { return VTy->getContext(); }
980 void Value::reverseUseList() {
981 if (!UseList || !UseList->Next)
982 // No need to reverse 0 or 1 uses.
983 return;
985 Use *Head = UseList;
986 Use *Current = UseList->Next;
987 Head->Next = nullptr;
988 while (Current) {
989 Use *Next = Current->Next;
990 Current->Next = Head;
991 Head->Prev = &Current->Next;
992 Head = Current;
993 Current = Next;
995 UseList = Head;
996 Head->Prev = &UseList;
999 bool Value::isSwiftError() const {
1000 auto *Arg = dyn_cast<Argument>(this);
1001 if (Arg)
1002 return Arg->hasSwiftErrorAttr();
1003 auto *Alloca = dyn_cast<AllocaInst>(this);
1004 if (!Alloca)
1005 return false;
1006 return Alloca->isSwiftError();
1009 bool Value::isTransitiveUsedByMetadataOnly() const {
1010 if (use_empty())
1011 return false;
1012 llvm::SmallVector<const User *, 32> WorkList;
1013 llvm::SmallPtrSet<const User *, 32> Visited;
1014 WorkList.insert(WorkList.begin(), user_begin(), user_end());
1015 while (!WorkList.empty()) {
1016 const User *U = WorkList.back();
1017 WorkList.pop_back();
1018 Visited.insert(U);
1019 // If it is transitively used by a global value or a non-constant value,
1020 // it's obviously not only used by metadata.
1021 if (!isa<Constant>(U) || isa<GlobalValue>(U))
1022 return false;
1023 for (const User *UU : U->users())
1024 if (!Visited.count(UU))
1025 WorkList.push_back(UU);
1027 return true;
1030 //===----------------------------------------------------------------------===//
1031 // ValueHandleBase Class
1032 //===----------------------------------------------------------------------===//
1034 void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) {
1035 assert(List && "Handle list is null?");
1037 // Splice ourselves into the list.
1038 Next = *List;
1039 *List = this;
1040 setPrevPtr(List);
1041 if (Next) {
1042 Next->setPrevPtr(&Next);
1043 assert(getValPtr() == Next->getValPtr() && "Added to wrong list?");
1047 void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) {
1048 assert(List && "Must insert after existing node");
1050 Next = List->Next;
1051 setPrevPtr(&List->Next);
1052 List->Next = this;
1053 if (Next)
1054 Next->setPrevPtr(&Next);
1057 void ValueHandleBase::AddToUseList() {
1058 assert(getValPtr() && "Null pointer doesn't have a use list!");
1060 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1062 if (getValPtr()->HasValueHandle) {
1063 // If this value already has a ValueHandle, then it must be in the
1064 // ValueHandles map already.
1065 ValueHandleBase *&Entry = pImpl->ValueHandles[getValPtr()];
1066 assert(Entry && "Value doesn't have any handles?");
1067 AddToExistingUseList(&Entry);
1068 return;
1071 // Ok, it doesn't have any handles yet, so we must insert it into the
1072 // DenseMap. However, doing this insertion could cause the DenseMap to
1073 // reallocate itself, which would invalidate all of the PrevP pointers that
1074 // point into the old table. Handle this by checking for reallocation and
1075 // updating the stale pointers only if needed.
1076 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1077 const void *OldBucketPtr = Handles.getPointerIntoBucketsArray();
1079 ValueHandleBase *&Entry = Handles[getValPtr()];
1080 assert(!Entry && "Value really did already have handles?");
1081 AddToExistingUseList(&Entry);
1082 getValPtr()->HasValueHandle = true;
1084 // If reallocation didn't happen or if this was the first insertion, don't
1085 // walk the table.
1086 if (Handles.isPointerIntoBucketsArray(OldBucketPtr) ||
1087 Handles.size() == 1) {
1088 return;
1091 // Okay, reallocation did happen. Fix the Prev Pointers.
1092 for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(),
1093 E = Handles.end(); I != E; ++I) {
1094 assert(I->second && I->first == I->second->getValPtr() &&
1095 "List invariant broken!");
1096 I->second->setPrevPtr(&I->second);
1100 void ValueHandleBase::RemoveFromUseList() {
1101 assert(getValPtr() && getValPtr()->HasValueHandle &&
1102 "Pointer doesn't have a use list!");
1104 // Unlink this from its use list.
1105 ValueHandleBase **PrevPtr = getPrevPtr();
1106 assert(*PrevPtr == this && "List invariant broken");
1108 *PrevPtr = Next;
1109 if (Next) {
1110 assert(Next->getPrevPtr() == &Next && "List invariant broken");
1111 Next->setPrevPtr(PrevPtr);
1112 return;
1115 // If the Next pointer was null, then it is possible that this was the last
1116 // ValueHandle watching VP. If so, delete its entry from the ValueHandles
1117 // map.
1118 LLVMContextImpl *pImpl = getValPtr()->getContext().pImpl;
1119 DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles;
1120 if (Handles.isPointerIntoBucketsArray(PrevPtr)) {
1121 Handles.erase(getValPtr());
1122 getValPtr()->HasValueHandle = false;
1126 void ValueHandleBase::ValueIsDeleted(Value *V) {
1127 assert(V->HasValueHandle && "Should only be called if ValueHandles present");
1129 // Get the linked list base, which is guaranteed to exist since the
1130 // HasValueHandle flag is set.
1131 LLVMContextImpl *pImpl = V->getContext().pImpl;
1132 ValueHandleBase *Entry = pImpl->ValueHandles[V];
1133 assert(Entry && "Value bit set but no entries exist");
1135 // We use a local ValueHandleBase as an iterator so that ValueHandles can add
1136 // and remove themselves from the list without breaking our iteration. This
1137 // is not really an AssertingVH; we just have to give ValueHandleBase a kind.
1138 // Note that we deliberately do not the support the case when dropping a value
1139 // handle results in a new value handle being permanently added to the list
1140 // (as might occur in theory for CallbackVH's): the new value handle will not
1141 // be processed and the checking code will mete out righteous punishment if
1142 // the handle is still present once we have finished processing all the other
1143 // value handles (it is fine to momentarily add then remove a value handle).
1144 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1145 Iterator.RemoveFromUseList();
1146 Iterator.AddToExistingUseListAfter(Entry);
1147 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1149 switch (Entry->getKind()) {
1150 case Assert:
1151 break;
1152 case Weak:
1153 case WeakTracking:
1154 // WeakTracking and Weak just go to null, which unlinks them
1155 // from the list.
1156 Entry->operator=(nullptr);
1157 break;
1158 case Callback:
1159 // Forward to the subclass's implementation.
1160 static_cast<CallbackVH*>(Entry)->deleted();
1161 break;
1165 // All callbacks, weak references, and assertingVHs should be dropped by now.
1166 if (V->HasValueHandle) {
1167 #ifndef NDEBUG // Only in +Asserts mode...
1168 dbgs() << "While deleting: " << *V->getType() << " %" << V->getName()
1169 << "\n";
1170 if (pImpl->ValueHandles[V]->getKind() == Assert)
1171 llvm_unreachable("An asserting value handle still pointed to this"
1172 " value!");
1174 #endif
1175 llvm_unreachable("All references to V were not removed?");
1179 void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) {
1180 assert(Old->HasValueHandle &&"Should only be called if ValueHandles present");
1181 assert(Old != New && "Changing value into itself!");
1182 assert(Old->getType() == New->getType() &&
1183 "replaceAllUses of value with new value of different type!");
1185 // Get the linked list base, which is guaranteed to exist since the
1186 // HasValueHandle flag is set.
1187 LLVMContextImpl *pImpl = Old->getContext().pImpl;
1188 ValueHandleBase *Entry = pImpl->ValueHandles[Old];
1190 assert(Entry && "Value bit set but no entries exist");
1192 // We use a local ValueHandleBase as an iterator so that
1193 // ValueHandles can add and remove themselves from the list without
1194 // breaking our iteration. This is not really an AssertingVH; we
1195 // just have to give ValueHandleBase some kind.
1196 for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) {
1197 Iterator.RemoveFromUseList();
1198 Iterator.AddToExistingUseListAfter(Entry);
1199 assert(Entry->Next == &Iterator && "Loop invariant broken.");
1201 switch (Entry->getKind()) {
1202 case Assert:
1203 case Weak:
1204 // Asserting and Weak handles do not follow RAUW implicitly.
1205 break;
1206 case WeakTracking:
1207 // Weak goes to the new value, which will unlink it from Old's list.
1208 Entry->operator=(New);
1209 break;
1210 case Callback:
1211 // Forward to the subclass's implementation.
1212 static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New);
1213 break;
1217 #ifndef NDEBUG
1218 // If any new weak value handles were added while processing the
1219 // list, then complain about it now.
1220 if (Old->HasValueHandle)
1221 for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next)
1222 switch (Entry->getKind()) {
1223 case WeakTracking:
1224 dbgs() << "After RAUW from " << *Old->getType() << " %"
1225 << Old->getName() << " to " << *New->getType() << " %"
1226 << New->getName() << "\n";
1227 llvm_unreachable(
1228 "A weak tracking value handle still pointed to the old value!\n");
1229 default:
1230 break;
1232 #endif
1235 // Pin the vtable to this file.
1236 void CallbackVH::anchor() {}