[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / InterfaceStub / ELFObjHandler.cpp
blob112c1cea354ac208a4f7a0dbd923ee8cf6673c42
1 //===- ELFObjHandler.cpp --------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===-----------------------------------------------------------------------===/
9 #include "llvm/InterfaceStub/ELFObjHandler.h"
10 #include "llvm/InterfaceStub/IFSStub.h"
11 #include "llvm/MC/StringTableBuilder.h"
12 #include "llvm/Object/Binary.h"
13 #include "llvm/Object/ELFObjectFile.h"
14 #include "llvm/Object/ELFTypes.h"
15 #include "llvm/Support/Errc.h"
16 #include "llvm/Support/Error.h"
17 #include "llvm/Support/FileOutputBuffer.h"
18 #include "llvm/Support/MathExtras.h"
19 #include "llvm/Support/MemoryBuffer.h"
20 #include "llvm/Support/Process.h"
22 using llvm::MemoryBufferRef;
23 using llvm::object::ELFObjectFile;
25 using namespace llvm;
26 using namespace llvm::object;
27 using namespace llvm::ELF;
29 namespace llvm {
30 namespace ifs {
32 // Simple struct to hold relevant .dynamic entries.
33 struct DynamicEntries {
34 uint64_t StrTabAddr = 0;
35 uint64_t StrSize = 0;
36 Optional<uint64_t> SONameOffset;
37 std::vector<uint64_t> NeededLibNames;
38 // Symbol table:
39 uint64_t DynSymAddr = 0;
40 // Hash tables:
41 Optional<uint64_t> ElfHash;
42 Optional<uint64_t> GnuHash;
45 /// This initializes an ELF file header with information specific to a binary
46 /// dynamic shared object.
47 /// Offsets, indexes, links, etc. for section and program headers are just
48 /// zero-initialized as they will be updated elsewhere.
49 ///
50 /// @param ElfHeader Target ELFT::Ehdr to populate.
51 /// @param Machine Target architecture (e_machine from ELF specifications).
52 template <class ELFT>
53 static void initELFHeader(typename ELFT::Ehdr &ElfHeader, uint16_t Machine) {
54 memset(&ElfHeader, 0, sizeof(ElfHeader));
55 // ELF identification.
56 ElfHeader.e_ident[EI_MAG0] = ElfMagic[EI_MAG0];
57 ElfHeader.e_ident[EI_MAG1] = ElfMagic[EI_MAG1];
58 ElfHeader.e_ident[EI_MAG2] = ElfMagic[EI_MAG2];
59 ElfHeader.e_ident[EI_MAG3] = ElfMagic[EI_MAG3];
60 ElfHeader.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
61 bool IsLittleEndian = ELFT::TargetEndianness == support::little;
62 ElfHeader.e_ident[EI_DATA] = IsLittleEndian ? ELFDATA2LSB : ELFDATA2MSB;
63 ElfHeader.e_ident[EI_VERSION] = EV_CURRENT;
64 ElfHeader.e_ident[EI_OSABI] = ELFOSABI_NONE;
66 // Remainder of ELF header.
67 ElfHeader.e_type = ET_DYN;
68 ElfHeader.e_machine = Machine;
69 ElfHeader.e_version = EV_CURRENT;
70 ElfHeader.e_ehsize = sizeof(typename ELFT::Ehdr);
71 ElfHeader.e_phentsize = sizeof(typename ELFT::Phdr);
72 ElfHeader.e_shentsize = sizeof(typename ELFT::Shdr);
75 namespace {
76 template <class ELFT> struct OutputSection {
77 using Elf_Shdr = typename ELFT::Shdr;
78 std::string Name;
79 Elf_Shdr Shdr;
80 uint64_t Addr;
81 uint64_t Offset;
82 uint64_t Size;
83 uint64_t Align;
84 uint32_t Index;
85 bool NoBits = true;
88 template <class T, class ELFT>
89 struct ContentSection : public OutputSection<ELFT> {
90 T Content;
91 ContentSection() { this->NoBits = false; }
94 // This class just wraps StringTableBuilder for the purpose of adding a
95 // default constructor.
96 class ELFStringTableBuilder : public StringTableBuilder {
97 public:
98 ELFStringTableBuilder() : StringTableBuilder(StringTableBuilder::ELF) {}
101 template <class ELFT> class ELFSymbolTableBuilder {
102 public:
103 using Elf_Sym = typename ELFT::Sym;
105 ELFSymbolTableBuilder() { Symbols.push_back({}); }
107 void add(size_t StNameOffset, uint64_t StSize, uint8_t StBind, uint8_t StType,
108 uint8_t StOther, uint16_t StShndx) {
109 Elf_Sym S{};
110 S.st_name = StNameOffset;
111 S.st_size = StSize;
112 S.st_info = (StBind << 4) | (StType & 0xf);
113 S.st_other = StOther;
114 S.st_shndx = StShndx;
115 Symbols.push_back(S);
118 size_t getSize() const { return Symbols.size() * sizeof(Elf_Sym); }
120 void write(uint8_t *Buf) const {
121 memcpy(Buf, Symbols.data(), sizeof(Elf_Sym) * Symbols.size());
124 private:
125 llvm::SmallVector<Elf_Sym, 8> Symbols;
128 template <class ELFT> class ELFDynamicTableBuilder {
129 public:
130 using Elf_Dyn = typename ELFT::Dyn;
132 size_t addAddr(uint64_t Tag, uint64_t Addr) {
133 Elf_Dyn Entry;
134 Entry.d_tag = Tag;
135 Entry.d_un.d_ptr = Addr;
136 Entries.push_back(Entry);
137 return Entries.size() - 1;
140 void modifyAddr(size_t Index, uint64_t Addr) {
141 Entries[Index].d_un.d_ptr = Addr;
144 size_t addValue(uint64_t Tag, uint64_t Value) {
145 Elf_Dyn Entry;
146 Entry.d_tag = Tag;
147 Entry.d_un.d_val = Value;
148 Entries.push_back(Entry);
149 return Entries.size() - 1;
152 void modifyValue(size_t Index, uint64_t Value) {
153 Entries[Index].d_un.d_val = Value;
156 size_t getSize() const {
157 // Add DT_NULL entry at the end.
158 return (Entries.size() + 1) * sizeof(Elf_Dyn);
161 void write(uint8_t *Buf) const {
162 memcpy(Buf, Entries.data(), sizeof(Elf_Dyn) * Entries.size());
163 // Add DT_NULL entry at the end.
164 memset(Buf + sizeof(Elf_Dyn) * Entries.size(), 0, sizeof(Elf_Dyn));
167 private:
168 llvm::SmallVector<Elf_Dyn, 8> Entries;
171 template <class ELFT> class ELFStubBuilder {
172 public:
173 using Elf_Ehdr = typename ELFT::Ehdr;
174 using Elf_Shdr = typename ELFT::Shdr;
175 using Elf_Phdr = typename ELFT::Phdr;
176 using Elf_Sym = typename ELFT::Sym;
177 using Elf_Addr = typename ELFT::Addr;
178 using Elf_Dyn = typename ELFT::Dyn;
180 ELFStubBuilder(const ELFStubBuilder &) = delete;
181 ELFStubBuilder(ELFStubBuilder &&) = default;
183 explicit ELFStubBuilder(const IFSStub &Stub) {
184 DynSym.Name = ".dynsym";
185 DynSym.Align = sizeof(Elf_Addr);
186 DynStr.Name = ".dynstr";
187 DynStr.Align = 1;
188 DynTab.Name = ".dynamic";
189 DynTab.Align = sizeof(Elf_Addr);
190 ShStrTab.Name = ".shstrtab";
191 ShStrTab.Align = 1;
193 // Populate string tables.
194 for (const IFSSymbol &Sym : Stub.Symbols)
195 DynStr.Content.add(Sym.Name);
196 for (const std::string &Lib : Stub.NeededLibs)
197 DynStr.Content.add(Lib);
198 if (Stub.SoName)
199 DynStr.Content.add(Stub.SoName.getValue());
201 std::vector<OutputSection<ELFT> *> Sections = {&DynSym, &DynStr, &DynTab,
202 &ShStrTab};
203 const OutputSection<ELFT> *LastSection = Sections.back();
204 // Now set the Index and put sections names into ".shstrtab".
205 uint64_t Index = 1;
206 for (OutputSection<ELFT> *Sec : Sections) {
207 Sec->Index = Index++;
208 ShStrTab.Content.add(Sec->Name);
210 ShStrTab.Content.finalize();
211 ShStrTab.Size = ShStrTab.Content.getSize();
212 DynStr.Content.finalize();
213 DynStr.Size = DynStr.Content.getSize();
215 // Populate dynamic symbol table.
216 for (const IFSSymbol &Sym : Stub.Symbols) {
217 uint8_t Bind = Sym.Weak ? STB_WEAK : STB_GLOBAL;
218 // For non-undefined symbols, value of the shndx is not relevant at link
219 // time as long as it is not SHN_UNDEF. Set shndx to 1, which
220 // points to ".dynsym".
221 uint16_t Shndx = Sym.Undefined ? SHN_UNDEF : 1;
222 DynSym.Content.add(DynStr.Content.getOffset(Sym.Name), Sym.Size, Bind,
223 convertIFSSymbolTypeToELF(Sym.Type), 0, Shndx);
225 DynSym.Size = DynSym.Content.getSize();
227 // Poplulate dynamic table.
228 size_t DynSymIndex = DynTab.Content.addAddr(DT_SYMTAB, 0);
229 size_t DynStrIndex = DynTab.Content.addAddr(DT_STRTAB, 0);
230 for (const std::string &Lib : Stub.NeededLibs)
231 DynTab.Content.addValue(DT_NEEDED, DynStr.Content.getOffset(Lib));
232 if (Stub.SoName)
233 DynTab.Content.addValue(DT_SONAME,
234 DynStr.Content.getOffset(Stub.SoName.getValue()));
235 DynTab.Size = DynTab.Content.getSize();
236 // Calculate sections' addresses and offsets.
237 uint64_t CurrentOffset = sizeof(Elf_Ehdr);
238 for (OutputSection<ELFT> *Sec : Sections) {
239 Sec->Offset = alignTo(CurrentOffset, Sec->Align);
240 Sec->Addr = Sec->Offset;
241 CurrentOffset = Sec->Offset + Sec->Size;
243 // Fill Addr back to dynamic table.
244 DynTab.Content.modifyAddr(DynSymIndex, DynSym.Addr);
245 DynTab.Content.modifyAddr(DynStrIndex, DynStr.Addr);
246 // Write section headers of string tables.
247 fillSymTabShdr(DynSym, SHT_DYNSYM);
248 fillStrTabShdr(DynStr, SHF_ALLOC);
249 fillDynTabShdr(DynTab);
250 fillStrTabShdr(ShStrTab);
252 // Finish initializing the ELF header.
253 initELFHeader<ELFT>(ElfHeader,
254 static_cast<uint16_t>(Stub.Target.Arch.getValue()));
255 ElfHeader.e_shstrndx = ShStrTab.Index;
256 ElfHeader.e_shnum = LastSection->Index + 1;
257 ElfHeader.e_shoff =
258 alignTo(LastSection->Offset + LastSection->Size, sizeof(Elf_Addr));
261 size_t getSize() const {
262 return ElfHeader.e_shoff + ElfHeader.e_shnum * sizeof(Elf_Shdr);
265 void write(uint8_t *Data) const {
266 write(Data, ElfHeader);
267 DynSym.Content.write(Data + DynSym.Shdr.sh_offset);
268 DynStr.Content.write(Data + DynStr.Shdr.sh_offset);
269 DynTab.Content.write(Data + DynTab.Shdr.sh_offset);
270 ShStrTab.Content.write(Data + ShStrTab.Shdr.sh_offset);
271 writeShdr(Data, DynSym);
272 writeShdr(Data, DynStr);
273 writeShdr(Data, DynTab);
274 writeShdr(Data, ShStrTab);
277 private:
278 Elf_Ehdr ElfHeader;
279 ContentSection<ELFStringTableBuilder, ELFT> DynStr;
280 ContentSection<ELFStringTableBuilder, ELFT> ShStrTab;
281 ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> DynSym;
282 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> DynTab;
284 template <class T> static void write(uint8_t *Data, const T &Value) {
285 *reinterpret_cast<T *>(Data) = Value;
288 void fillStrTabShdr(ContentSection<ELFStringTableBuilder, ELFT> &StrTab,
289 uint32_t ShFlags = 0) const {
290 StrTab.Shdr.sh_type = SHT_STRTAB;
291 StrTab.Shdr.sh_flags = ShFlags;
292 StrTab.Shdr.sh_addr = StrTab.Addr;
293 StrTab.Shdr.sh_offset = StrTab.Offset;
294 StrTab.Shdr.sh_info = 0;
295 StrTab.Shdr.sh_size = StrTab.Size;
296 StrTab.Shdr.sh_name = ShStrTab.Content.getOffset(StrTab.Name);
297 StrTab.Shdr.sh_addralign = StrTab.Align;
298 StrTab.Shdr.sh_entsize = 0;
299 StrTab.Shdr.sh_link = 0;
301 void fillSymTabShdr(ContentSection<ELFSymbolTableBuilder<ELFT>, ELFT> &SymTab,
302 uint32_t ShType) const {
303 SymTab.Shdr.sh_type = ShType;
304 SymTab.Shdr.sh_flags = SHF_ALLOC;
305 SymTab.Shdr.sh_addr = SymTab.Addr;
306 SymTab.Shdr.sh_offset = SymTab.Offset;
307 // Only non-local symbols are included in the tbe file, so .dynsym only
308 // contains 1 local symbol (the undefined symbol at index 0). The sh_info
309 // should always be 1.
310 SymTab.Shdr.sh_info = 1;
311 SymTab.Shdr.sh_size = SymTab.Size;
312 SymTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(SymTab.Name);
313 SymTab.Shdr.sh_addralign = SymTab.Align;
314 SymTab.Shdr.sh_entsize = sizeof(Elf_Sym);
315 SymTab.Shdr.sh_link = this->DynStr.Index;
317 void fillDynTabShdr(
318 ContentSection<ELFDynamicTableBuilder<ELFT>, ELFT> &DynTab) const {
319 DynTab.Shdr.sh_type = SHT_DYNAMIC;
320 DynTab.Shdr.sh_flags = SHF_ALLOC;
321 DynTab.Shdr.sh_addr = DynTab.Addr;
322 DynTab.Shdr.sh_offset = DynTab.Offset;
323 DynTab.Shdr.sh_info = 0;
324 DynTab.Shdr.sh_size = DynTab.Size;
325 DynTab.Shdr.sh_name = this->ShStrTab.Content.getOffset(DynTab.Name);
326 DynTab.Shdr.sh_addralign = DynTab.Align;
327 DynTab.Shdr.sh_entsize = sizeof(Elf_Dyn);
328 DynTab.Shdr.sh_link = this->DynStr.Index;
330 uint64_t shdrOffset(const OutputSection<ELFT> &Sec) const {
331 return ElfHeader.e_shoff + Sec.Index * sizeof(Elf_Shdr);
334 void writeShdr(uint8_t *Data, const OutputSection<ELFT> &Sec) const {
335 write(Data + shdrOffset(Sec), Sec.Shdr);
338 } // end anonymous namespace
340 /// This function behaves similarly to StringRef::substr(), but attempts to
341 /// terminate the returned StringRef at the first null terminator. If no null
342 /// terminator is found, an error is returned.
344 /// @param Str Source string to create a substring from.
345 /// @param Offset The start index of the desired substring.
346 static Expected<StringRef> terminatedSubstr(StringRef Str, size_t Offset) {
347 size_t StrEnd = Str.find('\0', Offset);
348 if (StrEnd == StringLiteral::npos) {
349 return createError(
350 "String overran bounds of string table (no null terminator)");
353 size_t StrLen = StrEnd - Offset;
354 return Str.substr(Offset, StrLen);
357 /// This function takes an error, and appends a string of text to the end of
358 /// that error. Since "appending" to an Error isn't supported behavior of an
359 /// Error, this function technically creates a new error with the combined
360 /// message and consumes the old error.
362 /// @param Err Source error.
363 /// @param After Text to append at the end of Err's error message.
364 Error appendToError(Error Err, StringRef After) {
365 std::string Message;
366 raw_string_ostream Stream(Message);
367 Stream << Err;
368 Stream << " " << After;
369 consumeError(std::move(Err));
370 return createError(Stream.str().c_str());
373 /// This function populates a DynamicEntries struct using an ELFT::DynRange.
374 /// After populating the struct, the members are validated with
375 /// some basic sanity checks.
377 /// @param Dyn Target DynamicEntries struct to populate.
378 /// @param DynTable Source dynamic table.
379 template <class ELFT>
380 static Error populateDynamic(DynamicEntries &Dyn,
381 typename ELFT::DynRange DynTable) {
382 if (DynTable.empty())
383 return createError("No .dynamic section found");
385 // Search .dynamic for relevant entries.
386 bool FoundDynStr = false;
387 bool FoundDynStrSz = false;
388 bool FoundDynSym = false;
389 for (auto &Entry : DynTable) {
390 switch (Entry.d_tag) {
391 case DT_SONAME:
392 Dyn.SONameOffset = Entry.d_un.d_val;
393 break;
394 case DT_STRTAB:
395 Dyn.StrTabAddr = Entry.d_un.d_ptr;
396 FoundDynStr = true;
397 break;
398 case DT_STRSZ:
399 Dyn.StrSize = Entry.d_un.d_val;
400 FoundDynStrSz = true;
401 break;
402 case DT_NEEDED:
403 Dyn.NeededLibNames.push_back(Entry.d_un.d_val);
404 break;
405 case DT_SYMTAB:
406 Dyn.DynSymAddr = Entry.d_un.d_ptr;
407 FoundDynSym = true;
408 break;
409 case DT_HASH:
410 Dyn.ElfHash = Entry.d_un.d_ptr;
411 break;
412 case DT_GNU_HASH:
413 Dyn.GnuHash = Entry.d_un.d_ptr;
417 if (!FoundDynStr) {
418 return createError(
419 "Couldn't locate dynamic string table (no DT_STRTAB entry)");
421 if (!FoundDynStrSz) {
422 return createError(
423 "Couldn't determine dynamic string table size (no DT_STRSZ entry)");
425 if (!FoundDynSym) {
426 return createError(
427 "Couldn't locate dynamic symbol table (no DT_SYMTAB entry)");
429 if (Dyn.SONameOffset.hasValue() && *Dyn.SONameOffset >= Dyn.StrSize) {
430 return createStringError(object_error::parse_failed,
431 "DT_SONAME string offset (0x%016" PRIx64
432 ") outside of dynamic string table",
433 *Dyn.SONameOffset);
435 for (uint64_t Offset : Dyn.NeededLibNames) {
436 if (Offset >= Dyn.StrSize) {
437 return createStringError(object_error::parse_failed,
438 "DT_NEEDED string offset (0x%016" PRIx64
439 ") outside of dynamic string table",
440 Offset);
444 return Error::success();
447 /// This function creates an IFSSymbol and populates all members using
448 /// information from a binary ELFT::Sym.
450 /// @param SymName The desired name of the IFSSymbol.
451 /// @param RawSym ELFT::Sym to extract symbol information from.
452 template <class ELFT>
453 static IFSSymbol createELFSym(StringRef SymName,
454 const typename ELFT::Sym &RawSym) {
455 IFSSymbol TargetSym{std::string(SymName)};
456 uint8_t Binding = RawSym.getBinding();
457 if (Binding == STB_WEAK)
458 TargetSym.Weak = true;
459 else
460 TargetSym.Weak = false;
462 TargetSym.Undefined = RawSym.isUndefined();
463 TargetSym.Type = convertELFSymbolTypeToIFS(RawSym.st_info);
465 if (TargetSym.Type == IFSSymbolType::Func) {
466 TargetSym.Size = 0;
467 } else {
468 TargetSym.Size = RawSym.st_size;
470 return TargetSym;
473 /// This function populates an IFSStub with symbols using information read
474 /// from an ELF binary.
476 /// @param TargetStub IFSStub to add symbols to.
477 /// @param DynSym Range of dynamic symbols to add to TargetStub.
478 /// @param DynStr StringRef to the dynamic string table.
479 template <class ELFT>
480 static Error populateSymbols(IFSStub &TargetStub,
481 const typename ELFT::SymRange DynSym,
482 StringRef DynStr) {
483 // Skips the first symbol since it's the NULL symbol.
484 for (auto RawSym : DynSym.drop_front(1)) {
485 // If a symbol does not have global or weak binding, ignore it.
486 uint8_t Binding = RawSym.getBinding();
487 if (!(Binding == STB_GLOBAL || Binding == STB_WEAK))
488 continue;
489 // If a symbol doesn't have default or protected visibility, ignore it.
490 uint8_t Visibility = RawSym.getVisibility();
491 if (!(Visibility == STV_DEFAULT || Visibility == STV_PROTECTED))
492 continue;
493 // Create an IFSSymbol and populate it with information from the symbol
494 // table entry.
495 Expected<StringRef> SymName = terminatedSubstr(DynStr, RawSym.st_name);
496 if (!SymName)
497 return SymName.takeError();
498 IFSSymbol Sym = createELFSym<ELFT>(*SymName, RawSym);
499 TargetStub.Symbols.push_back(std::move(Sym));
500 // TODO: Populate symbol warning.
502 return Error::success();
505 /// Returns a new IFSStub with all members populated from an ELFObjectFile.
506 /// @param ElfObj Source ELFObjectFile.
507 template <class ELFT>
508 static Expected<std::unique_ptr<IFSStub>>
509 buildStub(const ELFObjectFile<ELFT> &ElfObj) {
510 using Elf_Dyn_Range = typename ELFT::DynRange;
511 using Elf_Phdr_Range = typename ELFT::PhdrRange;
512 using Elf_Sym_Range = typename ELFT::SymRange;
513 using Elf_Sym = typename ELFT::Sym;
514 std::unique_ptr<IFSStub> DestStub = std::make_unique<IFSStub>();
515 const ELFFile<ELFT> &ElfFile = ElfObj.getELFFile();
516 // Fetch .dynamic table.
517 Expected<Elf_Dyn_Range> DynTable = ElfFile.dynamicEntries();
518 if (!DynTable) {
519 return DynTable.takeError();
522 // Fetch program headers.
523 Expected<Elf_Phdr_Range> PHdrs = ElfFile.program_headers();
524 if (!PHdrs) {
525 return PHdrs.takeError();
528 // Collect relevant .dynamic entries.
529 DynamicEntries DynEnt;
530 if (Error Err = populateDynamic<ELFT>(DynEnt, *DynTable))
531 return std::move(Err);
533 // Get pointer to in-memory location of .dynstr section.
534 Expected<const uint8_t *> DynStrPtr = ElfFile.toMappedAddr(DynEnt.StrTabAddr);
535 if (!DynStrPtr)
536 return appendToError(DynStrPtr.takeError(),
537 "when locating .dynstr section contents");
539 StringRef DynStr(reinterpret_cast<const char *>(DynStrPtr.get()),
540 DynEnt.StrSize);
542 // Populate Arch from ELF header.
543 DestStub->Target.Arch = static_cast<IFSArch>(ElfFile.getHeader().e_machine);
544 DestStub->Target.BitWidth =
545 convertELFBitWidthToIFS(ElfFile.getHeader().e_ident[EI_CLASS]);
546 DestStub->Target.Endianness =
547 convertELFEndiannessToIFS(ElfFile.getHeader().e_ident[EI_DATA]);
548 DestStub->Target.ObjectFormat = "ELF";
550 // Populate SoName from .dynamic entries and dynamic string table.
551 if (DynEnt.SONameOffset.hasValue()) {
552 Expected<StringRef> NameOrErr =
553 terminatedSubstr(DynStr, *DynEnt.SONameOffset);
554 if (!NameOrErr) {
555 return appendToError(NameOrErr.takeError(), "when reading DT_SONAME");
557 DestStub->SoName = std::string(*NameOrErr);
560 // Populate NeededLibs from .dynamic entries and dynamic string table.
561 for (uint64_t NeededStrOffset : DynEnt.NeededLibNames) {
562 Expected<StringRef> LibNameOrErr =
563 terminatedSubstr(DynStr, NeededStrOffset);
564 if (!LibNameOrErr) {
565 return appendToError(LibNameOrErr.takeError(), "when reading DT_NEEDED");
567 DestStub->NeededLibs.push_back(std::string(*LibNameOrErr));
570 // Populate Symbols from .dynsym table and dynamic string table.
571 Expected<uint64_t> SymCount = ElfFile.getDynSymtabSize();
572 if (!SymCount)
573 return SymCount.takeError();
574 if (*SymCount > 0) {
575 // Get pointer to in-memory location of .dynsym section.
576 Expected<const uint8_t *> DynSymPtr =
577 ElfFile.toMappedAddr(DynEnt.DynSymAddr);
578 if (!DynSymPtr)
579 return appendToError(DynSymPtr.takeError(),
580 "when locating .dynsym section contents");
581 Elf_Sym_Range DynSyms = ArrayRef<Elf_Sym>(
582 reinterpret_cast<const Elf_Sym *>(*DynSymPtr), *SymCount);
583 Error SymReadError = populateSymbols<ELFT>(*DestStub, DynSyms, DynStr);
584 if (SymReadError)
585 return appendToError(std::move(SymReadError),
586 "when reading dynamic symbols");
589 return std::move(DestStub);
592 /// This function opens a file for writing and then writes a binary ELF stub to
593 /// the file.
595 /// @param FilePath File path for writing the ELF binary.
596 /// @param Stub Source InterFace Stub to generate a binary ELF stub from.
597 template <class ELFT>
598 static Error writeELFBinaryToFile(StringRef FilePath, const IFSStub &Stub,
599 bool WriteIfChanged) {
600 ELFStubBuilder<ELFT> Builder{Stub};
601 // Write Stub to memory first.
602 std::vector<uint8_t> Buf(Builder.getSize());
603 Builder.write(Buf.data());
605 if (WriteIfChanged) {
606 if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrError =
607 MemoryBuffer::getFile(FilePath)) {
608 // Compare Stub output with existing Stub file.
609 // If Stub file unchanged, abort updating.
610 if ((*BufOrError)->getBufferSize() == Builder.getSize() &&
611 !memcmp((*BufOrError)->getBufferStart(), Buf.data(),
612 Builder.getSize()))
613 return Error::success();
617 Expected<std::unique_ptr<FileOutputBuffer>> BufOrError =
618 FileOutputBuffer::create(FilePath, Builder.getSize());
619 if (!BufOrError)
620 return createStringError(errc::invalid_argument,
621 toString(BufOrError.takeError()) +
622 " when trying to open `" + FilePath +
623 "` for writing");
625 // Write binary to file.
626 std::unique_ptr<FileOutputBuffer> FileBuf = std::move(*BufOrError);
627 memcpy(FileBuf->getBufferStart(), Buf.data(), Buf.size());
629 return FileBuf->commit();
632 Expected<std::unique_ptr<IFSStub>> readELFFile(MemoryBufferRef Buf) {
633 Expected<std::unique_ptr<Binary>> BinOrErr = createBinary(Buf);
634 if (!BinOrErr) {
635 return BinOrErr.takeError();
638 Binary *Bin = BinOrErr->get();
639 if (auto Obj = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
640 return buildStub(*Obj);
641 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
642 return buildStub(*Obj);
643 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
644 return buildStub(*Obj);
645 } else if (auto Obj = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
646 return buildStub(*Obj);
648 return createStringError(errc::not_supported, "unsupported binary format");
651 // This function wraps the ELFT writeELFBinaryToFile() so writeBinaryStub()
652 // can be called without having to use ELFType templates directly.
653 Error writeBinaryStub(StringRef FilePath, const IFSStub &Stub,
654 bool WriteIfChanged) {
655 assert(Stub.Target.Arch);
656 assert(Stub.Target.BitWidth);
657 assert(Stub.Target.Endianness);
658 if (Stub.Target.BitWidth == IFSBitWidthType::IFS32) {
659 if (Stub.Target.Endianness == IFSEndiannessType::Little) {
660 return writeELFBinaryToFile<ELF32LE>(FilePath, Stub, WriteIfChanged);
661 } else {
662 return writeELFBinaryToFile<ELF32BE>(FilePath, Stub, WriteIfChanged);
664 } else {
665 if (Stub.Target.Endianness == IFSEndiannessType::Little) {
666 return writeELFBinaryToFile<ELF64LE>(FilePath, Stub, WriteIfChanged);
667 } else {
668 return writeELFBinaryToFile<ELF64BE>(FilePath, Stub, WriteIfChanged);
671 llvm_unreachable("invalid binary output target");
674 } // end namespace ifs
675 } // end namespace llvm