1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Linker/IRMover.h"
10 #include "LinkDiagnosticInfo.h"
11 #include "llvm/ADT/SetVector.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DebugInfo.h"
16 #include "llvm/IR/DiagnosticPrinter.h"
17 #include "llvm/IR/GVMaterializer.h"
18 #include "llvm/IR/Intrinsics.h"
19 #include "llvm/IR/PseudoProbe.h"
20 #include "llvm/IR/TypeFinder.h"
21 #include "llvm/Object/ModuleSymbolTable.h"
22 #include "llvm/Support/Error.h"
23 #include "llvm/Transforms/Utils/Cloning.h"
27 //===----------------------------------------------------------------------===//
28 // TypeMap implementation.
29 //===----------------------------------------------------------------------===//
32 class TypeMapTy
: public ValueMapTypeRemapper
{
33 /// This is a mapping from a source type to a destination type to use.
34 DenseMap
<Type
*, Type
*> MappedTypes
;
36 /// When checking to see if two subgraphs are isomorphic, we speculatively
37 /// add types to MappedTypes, but keep track of them here in case we need to
39 SmallVector
<Type
*, 16> SpeculativeTypes
;
41 SmallVector
<StructType
*, 16> SpeculativeDstOpaqueTypes
;
43 /// This is a list of non-opaque structs in the source module that are mapped
44 /// to an opaque struct in the destination module.
45 SmallVector
<StructType
*, 16> SrcDefinitionsToResolve
;
47 /// This is the set of opaque types in the destination modules who are
48 /// getting a body from the source module.
49 SmallPtrSet
<StructType
*, 16> DstResolvedOpaqueTypes
;
52 TypeMapTy(IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
)
53 : DstStructTypesSet(DstStructTypesSet
) {}
55 IRMover::IdentifiedStructTypeSet
&DstStructTypesSet
;
56 /// Indicate that the specified type in the destination module is conceptually
57 /// equivalent to the specified type in the source module.
58 void addTypeMapping(Type
*DstTy
, Type
*SrcTy
);
60 /// Produce a body for an opaque type in the dest module from a type
61 /// definition in the source module.
62 void linkDefinedTypeBodies();
64 /// Return the mapped type to use for the specified input type from the
66 Type
*get(Type
*SrcTy
);
67 Type
*get(Type
*SrcTy
, SmallPtrSet
<StructType
*, 8> &Visited
);
69 void finishType(StructType
*DTy
, StructType
*STy
, ArrayRef
<Type
*> ETypes
);
71 FunctionType
*get(FunctionType
*T
) {
72 return cast
<FunctionType
>(get((Type
*)T
));
76 Type
*remapType(Type
*SrcTy
) override
{ return get(SrcTy
); }
78 bool areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
);
82 void TypeMapTy::addTypeMapping(Type
*DstTy
, Type
*SrcTy
) {
83 assert(SpeculativeTypes
.empty());
84 assert(SpeculativeDstOpaqueTypes
.empty());
86 // Check to see if these types are recursively isomorphic and establish a
87 // mapping between them if so.
88 if (!areTypesIsomorphic(DstTy
, SrcTy
)) {
89 // Oops, they aren't isomorphic. Just discard this request by rolling out
90 // any speculative mappings we've established.
91 for (Type
*Ty
: SpeculativeTypes
)
92 MappedTypes
.erase(Ty
);
94 SrcDefinitionsToResolve
.resize(SrcDefinitionsToResolve
.size() -
95 SpeculativeDstOpaqueTypes
.size());
96 for (StructType
*Ty
: SpeculativeDstOpaqueTypes
)
97 DstResolvedOpaqueTypes
.erase(Ty
);
99 // SrcTy and DstTy are recursively ismorphic. We clear names of SrcTy
100 // and all its descendants to lower amount of renaming in LLVM context
101 // Renaming occurs because we load all source modules to the same context
102 // and declaration with existing name gets renamed (i.e Foo -> Foo.42).
103 // As a result we may get several different types in the destination
104 // module, which are in fact the same.
105 for (Type
*Ty
: SpeculativeTypes
)
106 if (auto *STy
= dyn_cast
<StructType
>(Ty
))
110 SpeculativeTypes
.clear();
111 SpeculativeDstOpaqueTypes
.clear();
114 /// Recursively walk this pair of types, returning true if they are isomorphic,
115 /// false if they are not.
116 bool TypeMapTy::areTypesIsomorphic(Type
*DstTy
, Type
*SrcTy
) {
117 // Two types with differing kinds are clearly not isomorphic.
118 if (DstTy
->getTypeID() != SrcTy
->getTypeID())
121 // If we have an entry in the MappedTypes table, then we have our answer.
122 Type
*&Entry
= MappedTypes
[SrcTy
];
124 return Entry
== DstTy
;
126 // Two identical types are clearly isomorphic. Remember this
127 // non-speculatively.
128 if (DstTy
== SrcTy
) {
133 // Okay, we have two types with identical kinds that we haven't seen before.
135 // If this is an opaque struct type, special case it.
136 if (StructType
*SSTy
= dyn_cast
<StructType
>(SrcTy
)) {
137 // Mapping an opaque type to any struct, just keep the dest struct.
138 if (SSTy
->isOpaque()) {
140 SpeculativeTypes
.push_back(SrcTy
);
144 // Mapping a non-opaque source type to an opaque dest. If this is the first
145 // type that we're mapping onto this destination type then we succeed. Keep
146 // the dest, but fill it in later. If this is the second (different) type
147 // that we're trying to map onto the same opaque type then we fail.
148 if (cast
<StructType
>(DstTy
)->isOpaque()) {
149 // We can only map one source type onto the opaque destination type.
150 if (!DstResolvedOpaqueTypes
.insert(cast
<StructType
>(DstTy
)).second
)
152 SrcDefinitionsToResolve
.push_back(SSTy
);
153 SpeculativeTypes
.push_back(SrcTy
);
154 SpeculativeDstOpaqueTypes
.push_back(cast
<StructType
>(DstTy
));
160 // If the number of subtypes disagree between the two types, then we fail.
161 if (SrcTy
->getNumContainedTypes() != DstTy
->getNumContainedTypes())
164 // Fail if any of the extra properties (e.g. array size) of the type disagree.
165 if (isa
<IntegerType
>(DstTy
))
166 return false; // bitwidth disagrees.
167 if (PointerType
*PT
= dyn_cast
<PointerType
>(DstTy
)) {
168 if (PT
->getAddressSpace() != cast
<PointerType
>(SrcTy
)->getAddressSpace())
170 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(DstTy
)) {
171 if (FT
->isVarArg() != cast
<FunctionType
>(SrcTy
)->isVarArg())
173 } else if (StructType
*DSTy
= dyn_cast
<StructType
>(DstTy
)) {
174 StructType
*SSTy
= cast
<StructType
>(SrcTy
);
175 if (DSTy
->isLiteral() != SSTy
->isLiteral() ||
176 DSTy
->isPacked() != SSTy
->isPacked())
178 } else if (auto *DArrTy
= dyn_cast
<ArrayType
>(DstTy
)) {
179 if (DArrTy
->getNumElements() != cast
<ArrayType
>(SrcTy
)->getNumElements())
181 } else if (auto *DVecTy
= dyn_cast
<VectorType
>(DstTy
)) {
182 if (DVecTy
->getElementCount() != cast
<VectorType
>(SrcTy
)->getElementCount())
186 // Otherwise, we speculate that these two types will line up and recursively
187 // check the subelements.
189 SpeculativeTypes
.push_back(SrcTy
);
191 for (unsigned I
= 0, E
= SrcTy
->getNumContainedTypes(); I
!= E
; ++I
)
192 if (!areTypesIsomorphic(DstTy
->getContainedType(I
),
193 SrcTy
->getContainedType(I
)))
196 // If everything seems to have lined up, then everything is great.
200 void TypeMapTy::linkDefinedTypeBodies() {
201 SmallVector
<Type
*, 16> Elements
;
202 for (StructType
*SrcSTy
: SrcDefinitionsToResolve
) {
203 StructType
*DstSTy
= cast
<StructType
>(MappedTypes
[SrcSTy
]);
204 assert(DstSTy
->isOpaque());
206 // Map the body of the source type over to a new body for the dest type.
207 Elements
.resize(SrcSTy
->getNumElements());
208 for (unsigned I
= 0, E
= Elements
.size(); I
!= E
; ++I
)
209 Elements
[I
] = get(SrcSTy
->getElementType(I
));
211 DstSTy
->setBody(Elements
, SrcSTy
->isPacked());
212 DstStructTypesSet
.switchToNonOpaque(DstSTy
);
214 SrcDefinitionsToResolve
.clear();
215 DstResolvedOpaqueTypes
.clear();
218 void TypeMapTy::finishType(StructType
*DTy
, StructType
*STy
,
219 ArrayRef
<Type
*> ETypes
) {
220 DTy
->setBody(ETypes
, STy
->isPacked());
223 if (STy
->hasName()) {
224 SmallString
<16> TmpName
= STy
->getName();
226 DTy
->setName(TmpName
);
229 DstStructTypesSet
.addNonOpaque(DTy
);
232 Type
*TypeMapTy::get(Type
*Ty
) {
233 SmallPtrSet
<StructType
*, 8> Visited
;
234 return get(Ty
, Visited
);
237 Type
*TypeMapTy::get(Type
*Ty
, SmallPtrSet
<StructType
*, 8> &Visited
) {
238 // If we already have an entry for this type, return it.
239 Type
**Entry
= &MappedTypes
[Ty
];
243 // These are types that LLVM itself will unique.
244 bool IsUniqued
= !isa
<StructType
>(Ty
) || cast
<StructType
>(Ty
)->isLiteral();
248 for (auto &Pair
: MappedTypes
) {
249 assert(!(Pair
.first
!= Ty
&& Pair
.second
== Ty
) &&
250 "mapping to a source type");
254 if (!Visited
.insert(cast
<StructType
>(Ty
)).second
) {
255 StructType
*DTy
= StructType::create(Ty
->getContext());
260 // If this is not a recursive type, then just map all of the elements and
261 // then rebuild the type from inside out.
262 SmallVector
<Type
*, 4> ElementTypes
;
264 // If there are no element types to map, then the type is itself. This is
265 // true for the anonymous {} struct, things like 'float', integers, etc.
266 if (Ty
->getNumContainedTypes() == 0 && IsUniqued
)
269 // Remap all of the elements, keeping track of whether any of them change.
270 bool AnyChange
= false;
271 ElementTypes
.resize(Ty
->getNumContainedTypes());
272 for (unsigned I
= 0, E
= Ty
->getNumContainedTypes(); I
!= E
; ++I
) {
273 ElementTypes
[I
] = get(Ty
->getContainedType(I
), Visited
);
274 AnyChange
|= ElementTypes
[I
] != Ty
->getContainedType(I
);
277 // If we found our type while recursively processing stuff, just use it.
278 Entry
= &MappedTypes
[Ty
];
280 if (auto *DTy
= dyn_cast
<StructType
>(*Entry
)) {
281 if (DTy
->isOpaque()) {
282 auto *STy
= cast
<StructType
>(Ty
);
283 finishType(DTy
, STy
, ElementTypes
);
289 // If all of the element types mapped directly over and the type is not
290 // a named struct, then the type is usable as-is.
291 if (!AnyChange
&& IsUniqued
)
294 // Otherwise, rebuild a modified type.
295 switch (Ty
->getTypeID()) {
297 llvm_unreachable("unknown derived type to remap");
298 case Type::ArrayTyID
:
299 return *Entry
= ArrayType::get(ElementTypes
[0],
300 cast
<ArrayType
>(Ty
)->getNumElements());
301 case Type::ScalableVectorTyID
:
302 case Type::FixedVectorTyID
:
303 return *Entry
= VectorType::get(ElementTypes
[0],
304 cast
<VectorType
>(Ty
)->getElementCount());
305 case Type::PointerTyID
:
306 return *Entry
= PointerType::get(ElementTypes
[0],
307 cast
<PointerType
>(Ty
)->getAddressSpace());
308 case Type::FunctionTyID
:
309 return *Entry
= FunctionType::get(ElementTypes
[0],
310 makeArrayRef(ElementTypes
).slice(1),
311 cast
<FunctionType
>(Ty
)->isVarArg());
312 case Type::StructTyID
: {
313 auto *STy
= cast
<StructType
>(Ty
);
314 bool IsPacked
= STy
->isPacked();
316 return *Entry
= StructType::get(Ty
->getContext(), ElementTypes
, IsPacked
);
318 // If the type is opaque, we can just use it directly.
319 if (STy
->isOpaque()) {
320 DstStructTypesSet
.addOpaque(STy
);
324 if (StructType
*OldT
=
325 DstStructTypesSet
.findNonOpaque(ElementTypes
, IsPacked
)) {
327 return *Entry
= OldT
;
331 DstStructTypesSet
.addNonOpaque(STy
);
335 StructType
*DTy
= StructType::create(Ty
->getContext());
336 finishType(DTy
, STy
, ElementTypes
);
342 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity
,
344 : DiagnosticInfo(DK_Linker
, Severity
), Msg(Msg
) {}
345 void LinkDiagnosticInfo::print(DiagnosticPrinter
&DP
) const { DP
<< Msg
; }
347 //===----------------------------------------------------------------------===//
348 // IRLinker implementation.
349 //===----------------------------------------------------------------------===//
354 /// Creates prototypes for functions that are lazily linked on the fly. This
355 /// speeds up linking for modules with many/ lazily linked functions of which
357 class GlobalValueMaterializer final
: public ValueMaterializer
{
358 IRLinker
&TheIRLinker
;
361 GlobalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
362 Value
*materialize(Value
*V
) override
;
365 class LocalValueMaterializer final
: public ValueMaterializer
{
366 IRLinker
&TheIRLinker
;
369 LocalValueMaterializer(IRLinker
&TheIRLinker
) : TheIRLinker(TheIRLinker
) {}
370 Value
*materialize(Value
*V
) override
;
373 /// Type of the Metadata map in \a ValueToValueMapTy.
374 typedef DenseMap
<const Metadata
*, TrackingMDRef
> MDMapT
;
376 /// This is responsible for keeping track of the state used for moving data
377 /// from SrcM to DstM.
380 std::unique_ptr
<Module
> SrcM
;
382 /// See IRMover::move().
383 std::function
<void(GlobalValue
&, IRMover::ValueAdder
)> AddLazyFor
;
386 GlobalValueMaterializer GValMaterializer
;
387 LocalValueMaterializer LValMaterializer
;
389 /// A metadata map that's shared between IRLinker instances.
392 /// Mapping of values from what they used to be in Src, to what they are now
393 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
394 /// due to the use of Value handles which the Linker doesn't actually need,
395 /// but this allows us to reuse the ValueMapper code.
396 ValueToValueMapTy ValueMap
;
397 ValueToValueMapTy IndirectSymbolValueMap
;
399 DenseSet
<GlobalValue
*> ValuesToLink
;
400 std::vector
<GlobalValue
*> Worklist
;
401 std::vector
<std::pair
<GlobalValue
*, Value
*>> RAUWWorklist
;
403 void maybeAdd(GlobalValue
*GV
) {
404 if (ValuesToLink
.insert(GV
).second
)
405 Worklist
.push_back(GV
);
408 /// Whether we are importing globals for ThinLTO, as opposed to linking the
409 /// source module. If this flag is set, it means that we can rely on some
410 /// other object file to define any non-GlobalValue entities defined by the
411 /// source module. This currently causes us to not link retained types in
412 /// debug info metadata and module inline asm.
413 bool IsPerformingImport
;
415 /// Set to true when all global value body linking is complete (including
416 /// lazy linking). Used to prevent metadata linking from creating new
418 bool DoneLinkingBodies
= false;
420 /// The Error encountered during materialization. We use an Optional here to
421 /// avoid needing to manage an unconsumed success value.
422 Optional
<Error
> FoundError
;
423 void setError(Error E
) {
425 FoundError
= std::move(E
);
428 /// Most of the errors produced by this module are inconvertible StringErrors.
429 /// This convenience function lets us return one of those more easily.
430 Error
stringErr(const Twine
&T
) {
431 return make_error
<StringError
>(T
, inconvertibleErrorCode());
434 /// Entry point for mapping values and alternate context for mapping aliases.
436 unsigned IndirectSymbolMCID
;
438 /// Handles cloning of a global values from the source module into
439 /// the destination module, including setting the attributes and visibility.
440 GlobalValue
*copyGlobalValueProto(const GlobalValue
*SGV
, bool ForDefinition
);
442 void emitWarning(const Twine
&Message
) {
443 SrcM
->getContext().diagnose(LinkDiagnosticInfo(DS_Warning
, Message
));
446 /// Given a global in the source module, return the global in the
447 /// destination module that is being linked to, if any.
448 GlobalValue
*getLinkedToGlobal(const GlobalValue
*SrcGV
) {
449 // If the source has no name it can't link. If it has local linkage,
450 // there is no name match-up going on.
451 if (!SrcGV
->hasName() || SrcGV
->hasLocalLinkage())
454 // Otherwise see if we have a match in the destination module's symtab.
455 GlobalValue
*DGV
= DstM
.getNamedValue(SrcGV
->getName());
459 // If we found a global with the same name in the dest module, but it has
460 // internal linkage, we are really not doing any linkage here.
461 if (DGV
->hasLocalLinkage())
464 // If we found an intrinsic declaration with mismatching prototypes, we
465 // probably had a nameclash. Don't use that version.
466 if (auto *FDGV
= dyn_cast
<Function
>(DGV
))
467 if (FDGV
->isIntrinsic())
468 if (const auto *FSrcGV
= dyn_cast
<Function
>(SrcGV
))
469 if (FDGV
->getFunctionType() != TypeMap
.get(FSrcGV
->getFunctionType()))
472 // Otherwise, we do in fact link to the destination global.
476 void computeTypeMapping();
478 Expected
<Constant
*> linkAppendingVarProto(GlobalVariable
*DstGV
,
479 const GlobalVariable
*SrcGV
);
481 /// Given the GlobaValue \p SGV in the source module, and the matching
482 /// GlobalValue \p DGV (if any), return true if the linker will pull \p SGV
483 /// into the destination module.
485 /// Note this code may call the client-provided \p AddLazyFor.
486 bool shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
);
487 Expected
<Constant
*> linkGlobalValueProto(GlobalValue
*GV
,
488 bool ForIndirectSymbol
);
490 Error
linkModuleFlagsMetadata();
492 void linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
);
493 Error
linkFunctionBody(Function
&Dst
, Function
&Src
);
494 void linkIndirectSymbolBody(GlobalIndirectSymbol
&Dst
,
495 GlobalIndirectSymbol
&Src
);
496 Error
linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
);
498 /// Replace all types in the source AttributeList with the
499 /// corresponding destination type.
500 AttributeList
mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
);
502 /// Functions that take care of cloning a specific global value type
503 /// into the destination module.
504 GlobalVariable
*copyGlobalVariableProto(const GlobalVariable
*SGVar
);
505 Function
*copyFunctionProto(const Function
*SF
);
506 GlobalValue
*copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol
*SGIS
);
508 /// Perform "replace all uses with" operations. These work items need to be
509 /// performed as part of materialization, but we postpone them to happen after
510 /// materialization is done. The materializer called by ValueMapper is not
511 /// expected to delete constants, as ValueMapper is holding pointers to some
512 /// of them, but constant destruction may be indirectly triggered by RAUW.
513 /// Hence, the need to move this out of the materialization call chain.
514 void flushRAUWWorklist();
516 /// When importing for ThinLTO, prevent importing of types listed on
517 /// the DICompileUnit that we don't need a copy of in the importing
519 void prepareCompileUnitsForImport();
520 void linkNamedMDNodes();
523 IRLinker(Module
&DstM
, MDMapT
&SharedMDs
,
524 IRMover::IdentifiedStructTypeSet
&Set
, std::unique_ptr
<Module
> SrcM
,
525 ArrayRef
<GlobalValue
*> ValuesToLink
,
526 std::function
<void(GlobalValue
&, IRMover::ValueAdder
)> AddLazyFor
,
527 bool IsPerformingImport
)
528 : DstM(DstM
), SrcM(std::move(SrcM
)), AddLazyFor(std::move(AddLazyFor
)),
529 TypeMap(Set
), GValMaterializer(*this), LValMaterializer(*this),
530 SharedMDs(SharedMDs
), IsPerformingImport(IsPerformingImport
),
531 Mapper(ValueMap
, RF_ReuseAndMutateDistinctMDs
| RF_IgnoreMissingLocals
,
532 &TypeMap
, &GValMaterializer
),
533 IndirectSymbolMCID(Mapper
.registerAlternateMappingContext(
534 IndirectSymbolValueMap
, &LValMaterializer
)) {
535 ValueMap
.getMDMap() = std::move(SharedMDs
);
536 for (GlobalValue
*GV
: ValuesToLink
)
538 if (IsPerformingImport
)
539 prepareCompileUnitsForImport();
541 ~IRLinker() { SharedMDs
= std::move(*ValueMap
.getMDMap()); }
544 Value
*materialize(Value
*V
, bool ForIndirectSymbol
);
548 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
549 /// table. This is good for all clients except for us. Go through the trouble
550 /// to force this back.
551 static void forceRenaming(GlobalValue
*GV
, StringRef Name
) {
552 // If the global doesn't force its name or if it already has the right name,
553 // there is nothing for us to do.
554 if (GV
->hasLocalLinkage() || GV
->getName() == Name
)
557 Module
*M
= GV
->getParent();
559 // If there is a conflict, rename the conflict.
560 if (GlobalValue
*ConflictGV
= M
->getNamedValue(Name
)) {
561 GV
->takeName(ConflictGV
);
562 ConflictGV
->setName(Name
); // This will cause ConflictGV to get renamed
563 assert(ConflictGV
->getName() != Name
&& "forceRenaming didn't work");
565 GV
->setName(Name
); // Force the name back
569 Value
*GlobalValueMaterializer::materialize(Value
*SGV
) {
570 return TheIRLinker
.materialize(SGV
, false);
573 Value
*LocalValueMaterializer::materialize(Value
*SGV
) {
574 return TheIRLinker
.materialize(SGV
, true);
577 Value
*IRLinker::materialize(Value
*V
, bool ForIndirectSymbol
) {
578 auto *SGV
= dyn_cast
<GlobalValue
>(V
);
582 // When linking a global from other modules than source & dest, skip
583 // materializing it because it would be mapped later when its containing
584 // module is linked. Linking it now would potentially pull in many types that
585 // may not be mapped properly.
586 if (SGV
->getParent() != &DstM
&& SGV
->getParent() != SrcM
.get())
589 Expected
<Constant
*> NewProto
= linkGlobalValueProto(SGV
, ForIndirectSymbol
);
591 setError(NewProto
.takeError());
597 GlobalValue
*New
= dyn_cast
<GlobalValue
>(*NewProto
);
601 // If we already created the body, just return.
602 if (auto *F
= dyn_cast
<Function
>(New
)) {
603 if (!F
->isDeclaration())
605 } else if (auto *V
= dyn_cast
<GlobalVariable
>(New
)) {
606 if (V
->hasInitializer() || V
->hasAppendingLinkage())
609 auto *IS
= cast
<GlobalIndirectSymbol
>(New
);
610 if (IS
->getIndirectSymbol())
614 // If the global is being linked for an indirect symbol, it may have already
615 // been scheduled to satisfy a regular symbol. Similarly, a global being linked
616 // for a regular symbol may have already been scheduled for an indirect
617 // symbol. Check for these cases by looking in the other value map and
618 // confirming the same value has been scheduled. If there is an entry in the
619 // ValueMap but the value is different, it means that the value already had a
620 // definition in the destination module (linkonce for instance), but we need a
621 // new definition for the indirect symbol ("New" will be different).
622 if ((ForIndirectSymbol
&& ValueMap
.lookup(SGV
) == New
) ||
623 (!ForIndirectSymbol
&& IndirectSymbolValueMap
.lookup(SGV
) == New
))
626 if (ForIndirectSymbol
|| shouldLink(New
, *SGV
))
627 setError(linkGlobalValueBody(*New
, *SGV
));
632 /// Loop through the global variables in the src module and merge them into the
634 GlobalVariable
*IRLinker::copyGlobalVariableProto(const GlobalVariable
*SGVar
) {
635 // No linking to be performed or linking from the source: simply create an
636 // identical version of the symbol over in the dest module... the
637 // initializer will be filled in later by LinkGlobalInits.
638 GlobalVariable
*NewDGV
=
639 new GlobalVariable(DstM
, TypeMap
.get(SGVar
->getValueType()),
640 SGVar
->isConstant(), GlobalValue::ExternalLinkage
,
641 /*init*/ nullptr, SGVar
->getName(),
642 /*insertbefore*/ nullptr, SGVar
->getThreadLocalMode(),
643 SGVar
->getAddressSpace());
644 NewDGV
->setAlignment(MaybeAlign(SGVar
->getAlignment()));
645 NewDGV
->copyAttributesFrom(SGVar
);
649 AttributeList
IRLinker::mapAttributeTypes(LLVMContext
&C
, AttributeList Attrs
) {
650 for (unsigned i
= 0; i
< Attrs
.getNumAttrSets(); ++i
) {
651 for (Attribute::AttrKind TypedAttr
:
652 {Attribute::ByVal
, Attribute::StructRet
, Attribute::ByRef
,
653 Attribute::InAlloca
}) {
654 if (Attrs
.hasAttribute(i
, TypedAttr
)) {
655 if (Type
*Ty
= Attrs
.getAttribute(i
, TypedAttr
).getValueAsType()) {
656 Attrs
= Attrs
.replaceAttributeType(C
, i
, TypedAttr
, TypeMap
.get(Ty
));
665 /// Link the function in the source module into the destination module if
666 /// needed, setting up mapping information.
667 Function
*IRLinker::copyFunctionProto(const Function
*SF
) {
668 // If there is no linkage to be performed or we are linking from the source,
670 auto *F
= Function::Create(TypeMap
.get(SF
->getFunctionType()),
671 GlobalValue::ExternalLinkage
,
672 SF
->getAddressSpace(), SF
->getName(), &DstM
);
673 F
->copyAttributesFrom(SF
);
674 F
->setAttributes(mapAttributeTypes(F
->getContext(), F
->getAttributes()));
678 /// Set up prototypes for any indirect symbols that come over from the source
681 IRLinker::copyGlobalIndirectSymbolProto(const GlobalIndirectSymbol
*SGIS
) {
682 // If there is no linkage to be performed or we're linking from the source,
684 auto *Ty
= TypeMap
.get(SGIS
->getValueType());
685 GlobalIndirectSymbol
*GIS
;
686 if (isa
<GlobalAlias
>(SGIS
))
687 GIS
= GlobalAlias::create(Ty
, SGIS
->getAddressSpace(),
688 GlobalValue::ExternalLinkage
, SGIS
->getName(),
691 GIS
= GlobalIFunc::create(Ty
, SGIS
->getAddressSpace(),
692 GlobalValue::ExternalLinkage
, SGIS
->getName(),
694 GIS
->copyAttributesFrom(SGIS
);
698 GlobalValue
*IRLinker::copyGlobalValueProto(const GlobalValue
*SGV
,
699 bool ForDefinition
) {
701 if (auto *SGVar
= dyn_cast
<GlobalVariable
>(SGV
)) {
702 NewGV
= copyGlobalVariableProto(SGVar
);
703 } else if (auto *SF
= dyn_cast
<Function
>(SGV
)) {
704 NewGV
= copyFunctionProto(SF
);
707 NewGV
= copyGlobalIndirectSymbolProto(cast
<GlobalIndirectSymbol
>(SGV
));
708 else if (SGV
->getValueType()->isFunctionTy())
710 Function::Create(cast
<FunctionType
>(TypeMap
.get(SGV
->getValueType())),
711 GlobalValue::ExternalLinkage
, SGV
->getAddressSpace(),
712 SGV
->getName(), &DstM
);
715 new GlobalVariable(DstM
, TypeMap
.get(SGV
->getValueType()),
716 /*isConstant*/ false, GlobalValue::ExternalLinkage
,
717 /*init*/ nullptr, SGV
->getName(),
718 /*insertbefore*/ nullptr,
719 SGV
->getThreadLocalMode(), SGV
->getAddressSpace());
723 NewGV
->setLinkage(SGV
->getLinkage());
724 else if (SGV
->hasExternalWeakLinkage())
725 NewGV
->setLinkage(GlobalValue::ExternalWeakLinkage
);
727 if (auto *NewGO
= dyn_cast
<GlobalObject
>(NewGV
)) {
728 // Metadata for global variables and function declarations is copied eagerly.
729 if (isa
<GlobalVariable
>(SGV
) || SGV
->isDeclaration())
730 NewGO
->copyMetadata(cast
<GlobalObject
>(SGV
), 0);
733 // Remove these copied constants in case this stays a declaration, since
734 // they point to the source module. If the def is linked the values will
735 // be mapped in during linkFunctionBody.
736 if (auto *NewF
= dyn_cast
<Function
>(NewGV
)) {
737 NewF
->setPersonalityFn(nullptr);
738 NewF
->setPrefixData(nullptr);
739 NewF
->setPrologueData(nullptr);
745 static StringRef
getTypeNamePrefix(StringRef Name
) {
746 size_t DotPos
= Name
.rfind('.');
747 return (DotPos
== 0 || DotPos
== StringRef::npos
|| Name
.back() == '.' ||
748 !isdigit(static_cast<unsigned char>(Name
[DotPos
+ 1])))
750 : Name
.substr(0, DotPos
);
753 /// Loop over all of the linked values to compute type mappings. For example,
754 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
755 /// types 'Foo' but one got renamed when the module was loaded into the same
757 void IRLinker::computeTypeMapping() {
758 for (GlobalValue
&SGV
: SrcM
->globals()) {
759 GlobalValue
*DGV
= getLinkedToGlobal(&SGV
);
763 if (!DGV
->hasAppendingLinkage() || !SGV
.hasAppendingLinkage()) {
764 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
768 // Unify the element type of appending arrays.
769 ArrayType
*DAT
= cast
<ArrayType
>(DGV
->getValueType());
770 ArrayType
*SAT
= cast
<ArrayType
>(SGV
.getValueType());
771 TypeMap
.addTypeMapping(DAT
->getElementType(), SAT
->getElementType());
774 for (GlobalValue
&SGV
: *SrcM
)
775 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
)) {
776 if (DGV
->getType() == SGV
.getType()) {
777 // If the types of DGV and SGV are the same, it means that DGV is from
778 // the source module and got added to DstM from a shared metadata. We
779 // shouldn't map this type to itself in case the type's components get
780 // remapped to a new type from DstM (for instance, during the loop over
781 // SrcM->getIdentifiedStructTypes() below).
785 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
788 for (GlobalValue
&SGV
: SrcM
->aliases())
789 if (GlobalValue
*DGV
= getLinkedToGlobal(&SGV
))
790 TypeMap
.addTypeMapping(DGV
->getType(), SGV
.getType());
792 // Incorporate types by name, scanning all the types in the source module.
793 // At this point, the destination module may have a type "%foo = { i32 }" for
794 // example. When the source module got loaded into the same LLVMContext, if
795 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
796 std::vector
<StructType
*> Types
= SrcM
->getIdentifiedStructTypes();
797 for (StructType
*ST
: Types
) {
801 if (TypeMap
.DstStructTypesSet
.hasType(ST
)) {
802 // This is actually a type from the destination module.
803 // getIdentifiedStructTypes() can have found it by walking debug info
804 // metadata nodes, some of which get linked by name when ODR Type Uniquing
805 // is enabled on the Context, from the source to the destination module.
809 auto STTypePrefix
= getTypeNamePrefix(ST
->getName());
810 if (STTypePrefix
.size() == ST
->getName().size())
813 // Check to see if the destination module has a struct with the prefix name.
814 StructType
*DST
= StructType::getTypeByName(ST
->getContext(), STTypePrefix
);
818 // Don't use it if this actually came from the source module. They're in
819 // the same LLVMContext after all. Also don't use it unless the type is
820 // actually used in the destination module. This can happen in situations
825 // %Z = type { %A } %B = type { %C.1 }
826 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
827 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
828 // %C = type { i8* } %B.3 = type { %C.1 }
830 // When we link Module B with Module A, the '%B' in Module B is
831 // used. However, that would then use '%C.1'. But when we process '%C.1',
832 // we prefer to take the '%C' version. So we are then left with both
833 // '%C.1' and '%C' being used for the same types. This leads to some
834 // variables using one type and some using the other.
835 if (TypeMap
.DstStructTypesSet
.hasType(DST
))
836 TypeMap
.addTypeMapping(DST
, ST
);
839 // Now that we have discovered all of the type equivalences, get a body for
840 // any 'opaque' types in the dest module that are now resolved.
841 TypeMap
.linkDefinedTypeBodies();
844 static void getArrayElements(const Constant
*C
,
845 SmallVectorImpl
<Constant
*> &Dest
) {
846 unsigned NumElements
= cast
<ArrayType
>(C
->getType())->getNumElements();
848 for (unsigned i
= 0; i
!= NumElements
; ++i
)
849 Dest
.push_back(C
->getAggregateElement(i
));
852 /// If there were any appending global variables, link them together now.
854 IRLinker::linkAppendingVarProto(GlobalVariable
*DstGV
,
855 const GlobalVariable
*SrcGV
) {
856 // Check that both variables have compatible properties.
857 if (DstGV
&& !DstGV
->isDeclaration() && !SrcGV
->isDeclaration()) {
858 if (!SrcGV
->hasAppendingLinkage() || !DstGV
->hasAppendingLinkage())
860 "Linking globals named '" + SrcGV
->getName() +
861 "': can only link appending global with another appending "
864 if (DstGV
->isConstant() != SrcGV
->isConstant())
865 return stringErr("Appending variables linked with different const'ness!");
867 if (DstGV
->getAlignment() != SrcGV
->getAlignment())
869 "Appending variables with different alignment need to be linked!");
871 if (DstGV
->getVisibility() != SrcGV
->getVisibility())
873 "Appending variables with different visibility need to be linked!");
875 if (DstGV
->hasGlobalUnnamedAddr() != SrcGV
->hasGlobalUnnamedAddr())
877 "Appending variables with different unnamed_addr need to be linked!");
879 if (DstGV
->getSection() != SrcGV
->getSection())
881 "Appending variables with different section name need to be linked!");
884 // Do not need to do anything if source is a declaration.
885 if (SrcGV
->isDeclaration())
888 Type
*EltTy
= cast
<ArrayType
>(TypeMap
.get(SrcGV
->getValueType()))
891 // FIXME: This upgrade is done during linking to support the C API. Once the
892 // old form is deprecated, we should move this upgrade to
893 // llvm::UpgradeGlobalVariable() and simplify the logic here and in
894 // Mapper::mapAppendingVariable() in ValueMapper.cpp.
895 StringRef Name
= SrcGV
->getName();
896 bool IsNewStructor
= false;
897 bool IsOldStructor
= false;
898 if (Name
== "llvm.global_ctors" || Name
== "llvm.global_dtors") {
899 if (cast
<StructType
>(EltTy
)->getNumElements() == 3)
900 IsNewStructor
= true;
902 IsOldStructor
= true;
905 PointerType
*VoidPtrTy
= Type::getInt8Ty(SrcGV
->getContext())->getPointerTo();
907 auto &ST
= *cast
<StructType
>(EltTy
);
908 Type
*Tys
[3] = {ST
.getElementType(0), ST
.getElementType(1), VoidPtrTy
};
909 EltTy
= StructType::get(SrcGV
->getContext(), Tys
, false);
912 uint64_t DstNumElements
= 0;
913 if (DstGV
&& !DstGV
->isDeclaration()) {
914 ArrayType
*DstTy
= cast
<ArrayType
>(DstGV
->getValueType());
915 DstNumElements
= DstTy
->getNumElements();
917 // Check to see that they two arrays agree on type.
918 if (EltTy
!= DstTy
->getElementType())
919 return stringErr("Appending variables with different element types!");
922 SmallVector
<Constant
*, 16> SrcElements
;
923 getArrayElements(SrcGV
->getInitializer(), SrcElements
);
926 erase_if(SrcElements
, [this](Constant
*E
) {
928 dyn_cast
<GlobalValue
>(E
->getAggregateElement(2)->stripPointerCasts());
931 GlobalValue
*DGV
= getLinkedToGlobal(Key
);
932 return !shouldLink(DGV
, *Key
);
935 uint64_t NewSize
= DstNumElements
+ SrcElements
.size();
936 ArrayType
*NewType
= ArrayType::get(EltTy
, NewSize
);
938 // Create the new global variable.
939 GlobalVariable
*NG
= new GlobalVariable(
940 DstM
, NewType
, SrcGV
->isConstant(), SrcGV
->getLinkage(),
941 /*init*/ nullptr, /*name*/ "", DstGV
, SrcGV
->getThreadLocalMode(),
942 SrcGV
->getAddressSpace());
944 NG
->copyAttributesFrom(SrcGV
);
945 forceRenaming(NG
, SrcGV
->getName());
947 Constant
*Ret
= ConstantExpr::getBitCast(NG
, TypeMap
.get(SrcGV
->getType()));
949 Mapper
.scheduleMapAppendingVariable(
951 (DstGV
&& !DstGV
->isDeclaration()) ? DstGV
->getInitializer() : nullptr,
952 IsOldStructor
, SrcElements
);
954 // Replace any uses of the two global variables with uses of the new
957 RAUWWorklist
.push_back(
958 std::make_pair(DstGV
, ConstantExpr::getBitCast(NG
, DstGV
->getType())));
964 bool IRLinker::shouldLink(GlobalValue
*DGV
, GlobalValue
&SGV
) {
965 if (ValuesToLink
.count(&SGV
) || SGV
.hasLocalLinkage())
968 if (DGV
&& !DGV
->isDeclarationForLinker())
971 if (SGV
.isDeclaration() || DoneLinkingBodies
)
974 // Callback to the client to give a chance to lazily add the Global to the
975 // list of value to link.
976 bool LazilyAdded
= false;
977 AddLazyFor(SGV
, [this, &LazilyAdded
](GlobalValue
&GV
) {
984 Expected
<Constant
*> IRLinker::linkGlobalValueProto(GlobalValue
*SGV
,
985 bool ForIndirectSymbol
) {
986 GlobalValue
*DGV
= getLinkedToGlobal(SGV
);
988 bool ShouldLink
= shouldLink(DGV
, *SGV
);
990 // just missing from map
992 auto I
= ValueMap
.find(SGV
);
993 if (I
!= ValueMap
.end())
994 return cast
<Constant
>(I
->second
);
996 I
= IndirectSymbolValueMap
.find(SGV
);
997 if (I
!= IndirectSymbolValueMap
.end())
998 return cast
<Constant
>(I
->second
);
1001 if (!ShouldLink
&& ForIndirectSymbol
)
1004 // Handle the ultra special appending linkage case first.
1005 if (SGV
->hasAppendingLinkage() || (DGV
&& DGV
->hasAppendingLinkage()))
1006 return linkAppendingVarProto(cast_or_null
<GlobalVariable
>(DGV
),
1007 cast
<GlobalVariable
>(SGV
));
1009 bool NeedsRenaming
= false;
1011 if (DGV
&& !ShouldLink
) {
1014 // If we are done linking global value bodies (i.e. we are performing
1015 // metadata linking), don't link in the global value due to this
1016 // reference, simply map it to null.
1017 if (DoneLinkingBodies
)
1020 NewGV
= copyGlobalValueProto(SGV
, ShouldLink
|| ForIndirectSymbol
);
1021 if (ShouldLink
|| !ForIndirectSymbol
)
1022 NeedsRenaming
= true;
1025 // Overloaded intrinsics have overloaded types names as part of their
1026 // names. If we renamed overloaded types we should rename the intrinsic
1028 if (Function
*F
= dyn_cast
<Function
>(NewGV
))
1029 if (auto Remangled
= Intrinsic::remangleIntrinsicFunction(F
)) {
1030 NewGV
->eraseFromParent();
1031 NewGV
= Remangled
.getValue();
1032 NeedsRenaming
= false;
1036 forceRenaming(NewGV
, SGV
->getName());
1038 if (ShouldLink
|| ForIndirectSymbol
) {
1039 if (const Comdat
*SC
= SGV
->getComdat()) {
1040 if (auto *GO
= dyn_cast
<GlobalObject
>(NewGV
)) {
1041 Comdat
*DC
= DstM
.getOrInsertComdat(SC
->getName());
1042 DC
->setSelectionKind(SC
->getSelectionKind());
1048 if (!ShouldLink
&& ForIndirectSymbol
)
1049 NewGV
->setLinkage(GlobalValue::InternalLinkage
);
1051 Constant
*C
= NewGV
;
1052 // Only create a bitcast if necessary. In particular, with
1053 // DebugTypeODRUniquing we may reach metadata in the destination module
1054 // containing a GV from the source module, in which case SGV will be
1055 // the same as DGV and NewGV, and TypeMap.get() will assert since it
1056 // assumes it is being invoked on a type in the source module.
1057 if (DGV
&& NewGV
!= SGV
) {
1058 C
= ConstantExpr::getPointerBitCastOrAddrSpaceCast(
1059 NewGV
, TypeMap
.get(SGV
->getType()));
1062 if (DGV
&& NewGV
!= DGV
) {
1063 // Schedule "replace all uses with" to happen after materializing is
1064 // done. It is not safe to do it now, since ValueMapper may be holding
1065 // pointers to constants that will get deleted if RAUW runs.
1066 RAUWWorklist
.push_back(std::make_pair(
1068 ConstantExpr::getPointerBitCastOrAddrSpaceCast(NewGV
, DGV
->getType())));
1074 /// Update the initializers in the Dest module now that all globals that may be
1075 /// referenced are in Dest.
1076 void IRLinker::linkGlobalVariable(GlobalVariable
&Dst
, GlobalVariable
&Src
) {
1077 // Figure out what the initializer looks like in the dest module.
1078 Mapper
.scheduleMapGlobalInitializer(Dst
, *Src
.getInitializer());
1081 /// Copy the source function over into the dest function and fix up references
1082 /// to values. At this point we know that Dest is an external function, and
1083 /// that Src is not.
1084 Error
IRLinker::linkFunctionBody(Function
&Dst
, Function
&Src
) {
1085 assert(Dst
.isDeclaration() && !Src
.isDeclaration());
1087 // Materialize if needed.
1088 if (Error Err
= Src
.materialize())
1091 // Link in the operands without remapping.
1092 if (Src
.hasPrefixData())
1093 Dst
.setPrefixData(Src
.getPrefixData());
1094 if (Src
.hasPrologueData())
1095 Dst
.setPrologueData(Src
.getPrologueData());
1096 if (Src
.hasPersonalityFn())
1097 Dst
.setPersonalityFn(Src
.getPersonalityFn());
1099 // Copy over the metadata attachments without remapping.
1100 Dst
.copyMetadata(&Src
, 0);
1102 // Steal arguments and splice the body of Src into Dst.
1103 Dst
.stealArgumentListFrom(Src
);
1104 Dst
.getBasicBlockList().splice(Dst
.end(), Src
.getBasicBlockList());
1106 // Everything has been moved over. Remap it.
1107 Mapper
.scheduleRemapFunction(Dst
);
1108 return Error::success();
1111 void IRLinker::linkIndirectSymbolBody(GlobalIndirectSymbol
&Dst
,
1112 GlobalIndirectSymbol
&Src
) {
1113 Mapper
.scheduleMapGlobalIndirectSymbol(Dst
, *Src
.getIndirectSymbol(),
1114 IndirectSymbolMCID
);
1117 Error
IRLinker::linkGlobalValueBody(GlobalValue
&Dst
, GlobalValue
&Src
) {
1118 if (auto *F
= dyn_cast
<Function
>(&Src
))
1119 return linkFunctionBody(cast
<Function
>(Dst
), *F
);
1120 if (auto *GVar
= dyn_cast
<GlobalVariable
>(&Src
)) {
1121 linkGlobalVariable(cast
<GlobalVariable
>(Dst
), *GVar
);
1122 return Error::success();
1124 linkIndirectSymbolBody(cast
<GlobalIndirectSymbol
>(Dst
), cast
<GlobalIndirectSymbol
>(Src
));
1125 return Error::success();
1128 void IRLinker::flushRAUWWorklist() {
1129 for (const auto &Elem
: RAUWWorklist
) {
1132 std::tie(Old
, New
) = Elem
;
1134 Old
->replaceAllUsesWith(New
);
1135 Old
->eraseFromParent();
1137 RAUWWorklist
.clear();
1140 void IRLinker::prepareCompileUnitsForImport() {
1141 NamedMDNode
*SrcCompileUnits
= SrcM
->getNamedMetadata("llvm.dbg.cu");
1142 if (!SrcCompileUnits
)
1144 // When importing for ThinLTO, prevent importing of types listed on
1145 // the DICompileUnit that we don't need a copy of in the importing
1146 // module. They will be emitted by the originating module.
1147 for (unsigned I
= 0, E
= SrcCompileUnits
->getNumOperands(); I
!= E
; ++I
) {
1148 auto *CU
= cast
<DICompileUnit
>(SrcCompileUnits
->getOperand(I
));
1149 assert(CU
&& "Expected valid compile unit");
1150 // Enums, macros, and retained types don't need to be listed on the
1151 // imported DICompileUnit. This means they will only be imported
1152 // if reached from the mapped IR.
1153 CU
->replaceEnumTypes(nullptr);
1154 CU
->replaceMacros(nullptr);
1155 CU
->replaceRetainedTypes(nullptr);
1157 // The original definition (or at least its debug info - if the variable is
1158 // internalized and optimized away) will remain in the source module, so
1159 // there's no need to import them.
1160 // If LLVM ever does more advanced optimizations on global variables
1161 // (removing/localizing write operations, for instance) that can track
1162 // through debug info, this decision may need to be revisited - but do so
1163 // with care when it comes to debug info size. Emitting small CUs containing
1164 // only a few imported entities into every destination module may be very
1165 // size inefficient.
1166 CU
->replaceGlobalVariables(nullptr);
1168 // Imported entities only need to be mapped in if they have local
1169 // scope, as those might correspond to an imported entity inside a
1170 // function being imported (any locally scoped imported entities that
1171 // don't end up referenced by an imported function will not be emitted
1172 // into the object). Imported entities not in a local scope
1173 // (e.g. on the namespace) only need to be emitted by the originating
1174 // module. Create a list of the locally scoped imported entities, and
1175 // replace the source CUs imported entity list with the new list, so
1176 // only those are mapped in.
1177 // FIXME: Locally-scoped imported entities could be moved to the
1178 // functions they are local to instead of listing them on the CU, and
1179 // we would naturally only link in those needed by function importing.
1180 SmallVector
<TrackingMDNodeRef
, 4> AllImportedModules
;
1181 bool ReplaceImportedEntities
= false;
1182 for (auto *IE
: CU
->getImportedEntities()) {
1183 DIScope
*Scope
= IE
->getScope();
1184 assert(Scope
&& "Invalid Scope encoding!");
1185 if (isa
<DILocalScope
>(Scope
))
1186 AllImportedModules
.emplace_back(IE
);
1188 ReplaceImportedEntities
= true;
1190 if (ReplaceImportedEntities
) {
1191 if (!AllImportedModules
.empty())
1192 CU
->replaceImportedEntities(MDTuple::get(
1194 SmallVector
<Metadata
*, 16>(AllImportedModules
.begin(),
1195 AllImportedModules
.end())));
1197 // If there were no local scope imported entities, we can map
1198 // the whole list to nullptr.
1199 CU
->replaceImportedEntities(nullptr);
1204 /// Insert all of the named MDNodes in Src into the Dest module.
1205 void IRLinker::linkNamedMDNodes() {
1206 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1207 for (const NamedMDNode
&NMD
: SrcM
->named_metadata()) {
1208 // Don't link module flags here. Do them separately.
1209 if (&NMD
== SrcModFlags
)
1211 // Don't import pseudo probe descriptors here for thinLTO. They will be
1212 // emitted by the originating module.
1213 if (IsPerformingImport
&& NMD
.getName() == PseudoProbeDescMetadataName
)
1215 NamedMDNode
*DestNMD
= DstM
.getOrInsertNamedMetadata(NMD
.getName());
1216 // Add Src elements into Dest node.
1217 for (const MDNode
*Op
: NMD
.operands())
1218 DestNMD
->addOperand(Mapper
.mapMDNode(*Op
));
1222 /// Merge the linker flags in Src into the Dest module.
1223 Error
IRLinker::linkModuleFlagsMetadata() {
1224 // If the source module has no module flags, we are done.
1225 const NamedMDNode
*SrcModFlags
= SrcM
->getModuleFlagsMetadata();
1227 return Error::success();
1229 // If the destination module doesn't have module flags yet, then just copy
1230 // over the source module's flags.
1231 NamedMDNode
*DstModFlags
= DstM
.getOrInsertModuleFlagsMetadata();
1232 if (DstModFlags
->getNumOperands() == 0) {
1233 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
)
1234 DstModFlags
->addOperand(SrcModFlags
->getOperand(I
));
1236 return Error::success();
1239 // First build a map of the existing module flags and requirements.
1240 DenseMap
<MDString
*, std::pair
<MDNode
*, unsigned>> Flags
;
1241 SmallSetVector
<MDNode
*, 16> Requirements
;
1242 for (unsigned I
= 0, E
= DstModFlags
->getNumOperands(); I
!= E
; ++I
) {
1243 MDNode
*Op
= DstModFlags
->getOperand(I
);
1244 ConstantInt
*Behavior
= mdconst::extract
<ConstantInt
>(Op
->getOperand(0));
1245 MDString
*ID
= cast
<MDString
>(Op
->getOperand(1));
1247 if (Behavior
->getZExtValue() == Module::Require
) {
1248 Requirements
.insert(cast
<MDNode
>(Op
->getOperand(2)));
1250 Flags
[ID
] = std::make_pair(Op
, I
);
1254 // Merge in the flags from the source module, and also collect its set of
1256 for (unsigned I
= 0, E
= SrcModFlags
->getNumOperands(); I
!= E
; ++I
) {
1257 MDNode
*SrcOp
= SrcModFlags
->getOperand(I
);
1258 ConstantInt
*SrcBehavior
=
1259 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(0));
1260 MDString
*ID
= cast
<MDString
>(SrcOp
->getOperand(1));
1263 std::tie(DstOp
, DstIndex
) = Flags
.lookup(ID
);
1264 unsigned SrcBehaviorValue
= SrcBehavior
->getZExtValue();
1266 // If this is a requirement, add it and continue.
1267 if (SrcBehaviorValue
== Module::Require
) {
1268 // If the destination module does not already have this requirement, add
1270 if (Requirements
.insert(cast
<MDNode
>(SrcOp
->getOperand(2)))) {
1271 DstModFlags
->addOperand(SrcOp
);
1276 // If there is no existing flag with this ID, just add it.
1278 Flags
[ID
] = std::make_pair(SrcOp
, DstModFlags
->getNumOperands());
1279 DstModFlags
->addOperand(SrcOp
);
1283 // Otherwise, perform a merge.
1284 ConstantInt
*DstBehavior
=
1285 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(0));
1286 unsigned DstBehaviorValue
= DstBehavior
->getZExtValue();
1288 auto overrideDstValue
= [&]() {
1289 DstModFlags
->setOperand(DstIndex
, SrcOp
);
1290 Flags
[ID
].first
= SrcOp
;
1293 // If either flag has override behavior, handle it first.
1294 if (DstBehaviorValue
== Module::Override
) {
1295 // Diagnose inconsistent flags which both have override behavior.
1296 if (SrcBehaviorValue
== Module::Override
&&
1297 SrcOp
->getOperand(2) != DstOp
->getOperand(2))
1298 return stringErr("linking module flags '" + ID
->getString() +
1299 "': IDs have conflicting override values in '" +
1300 SrcM
->getModuleIdentifier() + "' and '" +
1301 DstM
.getModuleIdentifier() + "'");
1303 } else if (SrcBehaviorValue
== Module::Override
) {
1304 // Update the destination flag to that of the source.
1309 // Diagnose inconsistent merge behavior types.
1310 if (SrcBehaviorValue
!= DstBehaviorValue
) {
1311 bool MaxAndWarn
= (SrcBehaviorValue
== Module::Max
&&
1312 DstBehaviorValue
== Module::Warning
) ||
1313 (DstBehaviorValue
== Module::Max
&&
1314 SrcBehaviorValue
== Module::Warning
);
1316 return stringErr("linking module flags '" + ID
->getString() +
1317 "': IDs have conflicting behaviors in '" +
1318 SrcM
->getModuleIdentifier() + "' and '" +
1319 DstM
.getModuleIdentifier() + "'");
1322 auto replaceDstValue
= [&](MDNode
*New
) {
1323 Metadata
*FlagOps
[] = {DstOp
->getOperand(0), ID
, New
};
1324 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1325 DstModFlags
->setOperand(DstIndex
, Flag
);
1326 Flags
[ID
].first
= Flag
;
1329 // Emit a warning if the values differ and either source or destination
1330 // request Warning behavior.
1331 if ((DstBehaviorValue
== Module::Warning
||
1332 SrcBehaviorValue
== Module::Warning
) &&
1333 SrcOp
->getOperand(2) != DstOp
->getOperand(2)) {
1335 raw_string_ostream(Str
)
1336 << "linking module flags '" << ID
->getString()
1337 << "': IDs have conflicting values ('" << *SrcOp
->getOperand(2)
1338 << "' from " << SrcM
->getModuleIdentifier() << " with '"
1339 << *DstOp
->getOperand(2) << "' from " << DstM
.getModuleIdentifier()
1344 // Choose the maximum if either source or destination request Max behavior.
1345 if (DstBehaviorValue
== Module::Max
|| SrcBehaviorValue
== Module::Max
) {
1346 ConstantInt
*DstValue
=
1347 mdconst::extract
<ConstantInt
>(DstOp
->getOperand(2));
1348 ConstantInt
*SrcValue
=
1349 mdconst::extract
<ConstantInt
>(SrcOp
->getOperand(2));
1351 // The resulting flag should have a Max behavior, and contain the maximum
1352 // value from between the source and destination values.
1353 Metadata
*FlagOps
[] = {
1354 (DstBehaviorValue
!= Module::Max
? SrcOp
: DstOp
)->getOperand(0), ID
,
1355 (SrcValue
->getZExtValue() > DstValue
->getZExtValue() ? SrcOp
: DstOp
)
1357 MDNode
*Flag
= MDNode::get(DstM
.getContext(), FlagOps
);
1358 DstModFlags
->setOperand(DstIndex
, Flag
);
1359 Flags
[ID
].first
= Flag
;
1363 // Perform the merge for standard behavior types.
1364 switch (SrcBehaviorValue
) {
1365 case Module::Require
:
1366 case Module::Override
:
1367 llvm_unreachable("not possible");
1368 case Module::Error
: {
1369 // Emit an error if the values differ.
1370 if (SrcOp
->getOperand(2) != DstOp
->getOperand(2))
1371 return stringErr("linking module flags '" + ID
->getString() +
1372 "': IDs have conflicting values in '" +
1373 SrcM
->getModuleIdentifier() + "' and '" +
1374 DstM
.getModuleIdentifier() + "'");
1377 case Module::Warning
: {
1383 case Module::Append
: {
1384 MDNode
*DstValue
= cast
<MDNode
>(DstOp
->getOperand(2));
1385 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1386 SmallVector
<Metadata
*, 8> MDs
;
1387 MDs
.reserve(DstValue
->getNumOperands() + SrcValue
->getNumOperands());
1388 MDs
.append(DstValue
->op_begin(), DstValue
->op_end());
1389 MDs
.append(SrcValue
->op_begin(), SrcValue
->op_end());
1391 replaceDstValue(MDNode::get(DstM
.getContext(), MDs
));
1394 case Module::AppendUnique
: {
1395 SmallSetVector
<Metadata
*, 16> Elts
;
1396 MDNode
*DstValue
= cast
<MDNode
>(DstOp
->getOperand(2));
1397 MDNode
*SrcValue
= cast
<MDNode
>(SrcOp
->getOperand(2));
1398 Elts
.insert(DstValue
->op_begin(), DstValue
->op_end());
1399 Elts
.insert(SrcValue
->op_begin(), SrcValue
->op_end());
1401 replaceDstValue(MDNode::get(DstM
.getContext(),
1402 makeArrayRef(Elts
.begin(), Elts
.end())));
1409 // Check all of the requirements.
1410 for (unsigned I
= 0, E
= Requirements
.size(); I
!= E
; ++I
) {
1411 MDNode
*Requirement
= Requirements
[I
];
1412 MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1413 Metadata
*ReqValue
= Requirement
->getOperand(1);
1415 MDNode
*Op
= Flags
[Flag
].first
;
1416 if (!Op
|| Op
->getOperand(2) != ReqValue
)
1417 return stringErr("linking module flags '" + Flag
->getString() +
1418 "': does not have the required value");
1420 return Error::success();
1423 /// Return InlineAsm adjusted with target-specific directives if required.
1424 /// For ARM and Thumb, we have to add directives to select the appropriate ISA
1425 /// to support mixing module-level inline assembly from ARM and Thumb modules.
1426 static std::string
adjustInlineAsm(const std::string
&InlineAsm
,
1427 const Triple
&Triple
) {
1428 if (Triple
.getArch() == Triple::thumb
|| Triple
.getArch() == Triple::thumbeb
)
1429 return ".text\n.balign 2\n.thumb\n" + InlineAsm
;
1430 if (Triple
.getArch() == Triple::arm
|| Triple
.getArch() == Triple::armeb
)
1431 return ".text\n.balign 4\n.arm\n" + InlineAsm
;
1435 Error
IRLinker::run() {
1436 // Ensure metadata materialized before value mapping.
1437 if (SrcM
->getMaterializer())
1438 if (Error Err
= SrcM
->getMaterializer()->materializeMetadata())
1441 // Inherit the target data from the source module if the destination module
1442 // doesn't have one already.
1443 if (DstM
.getDataLayout().isDefault())
1444 DstM
.setDataLayout(SrcM
->getDataLayout());
1446 if (SrcM
->getDataLayout() != DstM
.getDataLayout()) {
1447 emitWarning("Linking two modules of different data layouts: '" +
1448 SrcM
->getModuleIdentifier() + "' is '" +
1449 SrcM
->getDataLayoutStr() + "' whereas '" +
1450 DstM
.getModuleIdentifier() + "' is '" +
1451 DstM
.getDataLayoutStr() + "'\n");
1454 // Copy the target triple from the source to dest if the dest's is empty.
1455 if (DstM
.getTargetTriple().empty() && !SrcM
->getTargetTriple().empty())
1456 DstM
.setTargetTriple(SrcM
->getTargetTriple());
1458 Triple
SrcTriple(SrcM
->getTargetTriple()), DstTriple(DstM
.getTargetTriple());
1460 if (!SrcM
->getTargetTriple().empty()&&
1461 !SrcTriple
.isCompatibleWith(DstTriple
))
1462 emitWarning("Linking two modules of different target triples: '" +
1463 SrcM
->getModuleIdentifier() + "' is '" +
1464 SrcM
->getTargetTriple() + "' whereas '" +
1465 DstM
.getModuleIdentifier() + "' is '" + DstM
.getTargetTriple() +
1468 DstM
.setTargetTriple(SrcTriple
.merge(DstTriple
));
1470 // Loop over all of the linked values to compute type mappings.
1471 computeTypeMapping();
1473 std::reverse(Worklist
.begin(), Worklist
.end());
1474 while (!Worklist
.empty()) {
1475 GlobalValue
*GV
= Worklist
.back();
1476 Worklist
.pop_back();
1479 if (ValueMap
.find(GV
) != ValueMap
.end() ||
1480 IndirectSymbolValueMap
.find(GV
) != IndirectSymbolValueMap
.end())
1483 assert(!GV
->isDeclaration());
1484 Mapper
.mapValue(*GV
);
1486 return std::move(*FoundError
);
1487 flushRAUWWorklist();
1490 // Note that we are done linking global value bodies. This prevents
1491 // metadata linking from creating new references.
1492 DoneLinkingBodies
= true;
1493 Mapper
.addFlags(RF_NullMapMissingGlobalValues
);
1495 // Remap all of the named MDNodes in Src into the DstM module. We do this
1496 // after linking GlobalValues so that MDNodes that reference GlobalValues
1497 // are properly remapped.
1500 if (!IsPerformingImport
&& !SrcM
->getModuleInlineAsm().empty()) {
1501 // Append the module inline asm string.
1502 DstM
.appendModuleInlineAsm(adjustInlineAsm(SrcM
->getModuleInlineAsm(),
1504 } else if (IsPerformingImport
) {
1505 // Import any symver directives for symbols in DstM.
1506 ModuleSymbolTable::CollectAsmSymvers(*SrcM
,
1507 [&](StringRef Name
, StringRef Alias
) {
1508 if (DstM
.getNamedValue(Name
)) {
1509 SmallString
<256> S(".symver ");
1513 DstM
.appendModuleInlineAsm(S
);
1518 // Reorder the globals just added to the destination module to match their
1519 // original order in the source module.
1520 Module::GlobalListType
&Globals
= DstM
.getGlobalList();
1521 for (GlobalVariable
&GV
: SrcM
->globals()) {
1522 if (GV
.hasAppendingLinkage())
1524 Value
*NewValue
= Mapper
.mapValue(GV
);
1526 auto *NewGV
= dyn_cast
<GlobalVariable
>(NewValue
->stripPointerCasts());
1528 Globals
.splice(Globals
.end(), Globals
, NewGV
->getIterator());
1532 // Merge the module flags into the DstM module.
1533 return linkModuleFlagsMetadata();
1536 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef
<Type
*> E
, bool P
)
1537 : ETypes(E
), IsPacked(P
) {}
1539 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType
*ST
)
1540 : ETypes(ST
->elements()), IsPacked(ST
->isPacked()) {}
1542 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy
&That
) const {
1543 return IsPacked
== That
.IsPacked
&& ETypes
== That
.ETypes
;
1546 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy
&That
) const {
1547 return !this->operator==(That
);
1550 StructType
*IRMover::StructTypeKeyInfo::getEmptyKey() {
1551 return DenseMapInfo
<StructType
*>::getEmptyKey();
1554 StructType
*IRMover::StructTypeKeyInfo::getTombstoneKey() {
1555 return DenseMapInfo
<StructType
*>::getTombstoneKey();
1558 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy
&Key
) {
1559 return hash_combine(hash_combine_range(Key
.ETypes
.begin(), Key
.ETypes
.end()),
1563 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType
*ST
) {
1564 return getHashValue(KeyTy(ST
));
1567 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy
&LHS
,
1568 const StructType
*RHS
) {
1569 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1571 return LHS
== KeyTy(RHS
);
1574 bool IRMover::StructTypeKeyInfo::isEqual(const StructType
*LHS
,
1575 const StructType
*RHS
) {
1576 if (RHS
== getEmptyKey() || RHS
== getTombstoneKey())
1578 return KeyTy(LHS
) == KeyTy(RHS
);
1581 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType
*Ty
) {
1582 assert(!Ty
->isOpaque());
1583 NonOpaqueStructTypes
.insert(Ty
);
1586 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType
*Ty
) {
1587 assert(!Ty
->isOpaque());
1588 NonOpaqueStructTypes
.insert(Ty
);
1589 bool Removed
= OpaqueStructTypes
.erase(Ty
);
1594 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType
*Ty
) {
1595 assert(Ty
->isOpaque());
1596 OpaqueStructTypes
.insert(Ty
);
1600 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef
<Type
*> ETypes
,
1602 IRMover::StructTypeKeyInfo::KeyTy
Key(ETypes
, IsPacked
);
1603 auto I
= NonOpaqueStructTypes
.find_as(Key
);
1604 return I
== NonOpaqueStructTypes
.end() ? nullptr : *I
;
1607 bool IRMover::IdentifiedStructTypeSet::hasType(StructType
*Ty
) {
1609 return OpaqueStructTypes
.count(Ty
);
1610 auto I
= NonOpaqueStructTypes
.find(Ty
);
1611 return I
== NonOpaqueStructTypes
.end() ? false : *I
== Ty
;
1614 IRMover::IRMover(Module
&M
) : Composite(M
) {
1615 TypeFinder StructTypes
;
1616 StructTypes
.run(M
, /* OnlyNamed */ false);
1617 for (StructType
*Ty
: StructTypes
) {
1619 IdentifiedStructTypes
.addOpaque(Ty
);
1621 IdentifiedStructTypes
.addNonOpaque(Ty
);
1623 // Self-map metadatas in the destination module. This is needed when
1624 // DebugTypeODRUniquing is enabled on the LLVMContext, since metadata in the
1625 // destination module may be reached from the source module.
1626 for (auto *MD
: StructTypes
.getVisitedMetadata()) {
1627 SharedMDs
[MD
].reset(const_cast<MDNode
*>(MD
));
1631 Error
IRMover::move(
1632 std::unique_ptr
<Module
> Src
, ArrayRef
<GlobalValue
*> ValuesToLink
,
1633 std::function
<void(GlobalValue
&, ValueAdder Add
)> AddLazyFor
,
1634 bool IsPerformingImport
) {
1635 IRLinker
TheIRLinker(Composite
, SharedMDs
, IdentifiedStructTypes
,
1636 std::move(Src
), ValuesToLink
, std::move(AddLazyFor
),
1637 IsPerformingImport
);
1638 Error E
= TheIRLinker
.run();
1639 Composite
.dropTriviallyDeadConstantArrays();