[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / MC / MCAssembler.cpp
blob9ed8d1083a403106d346a8f24f35477bb48c67cf
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/MC/MCAssembler.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Statistic.h"
14 #include "llvm/ADT/StringRef.h"
15 #include "llvm/ADT/Twine.h"
16 #include "llvm/MC/MCAsmBackend.h"
17 #include "llvm/MC/MCAsmInfo.h"
18 #include "llvm/MC/MCAsmLayout.h"
19 #include "llvm/MC/MCCodeEmitter.h"
20 #include "llvm/MC/MCCodeView.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/MC/MCDwarf.h"
23 #include "llvm/MC/MCExpr.h"
24 #include "llvm/MC/MCFixup.h"
25 #include "llvm/MC/MCFixupKindInfo.h"
26 #include "llvm/MC/MCFragment.h"
27 #include "llvm/MC/MCInst.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSection.h"
30 #include "llvm/MC/MCSectionELF.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/MC/MCValue.h"
33 #include "llvm/Support/Alignment.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/EndianStream.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/LEB128.h"
39 #include "llvm/Support/MathExtras.h"
40 #include "llvm/Support/raw_ostream.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <cstring>
44 #include <tuple>
45 #include <utility>
47 using namespace llvm;
49 #define DEBUG_TYPE "assembler"
51 namespace {
52 namespace stats {
54 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
55 STATISTIC(EmittedRelaxableFragments,
56 "Number of emitted assembler fragments - relaxable");
57 STATISTIC(EmittedDataFragments,
58 "Number of emitted assembler fragments - data");
59 STATISTIC(EmittedCompactEncodedInstFragments,
60 "Number of emitted assembler fragments - compact encoded inst");
61 STATISTIC(EmittedAlignFragments,
62 "Number of emitted assembler fragments - align");
63 STATISTIC(EmittedFillFragments,
64 "Number of emitted assembler fragments - fill");
65 STATISTIC(EmittedNopsFragments, "Number of emitted assembler fragments - nops");
66 STATISTIC(EmittedOrgFragments, "Number of emitted assembler fragments - org");
67 STATISTIC(evaluateFixup, "Number of evaluated fixups");
68 STATISTIC(FragmentLayouts, "Number of fragment layouts");
69 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
70 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
71 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
73 } // end namespace stats
74 } // end anonymous namespace
76 // FIXME FIXME FIXME: There are number of places in this file where we convert
77 // what is a 64-bit assembler value used for computation into a value in the
78 // object file, which may truncate it. We should detect that truncation where
79 // invalid and report errors back.
81 /* *** */
83 MCAssembler::MCAssembler(MCContext &Context,
84 std::unique_ptr<MCAsmBackend> Backend,
85 std::unique_ptr<MCCodeEmitter> Emitter,
86 std::unique_ptr<MCObjectWriter> Writer)
87 : Context(Context), Backend(std::move(Backend)),
88 Emitter(std::move(Emitter)), Writer(std::move(Writer)),
89 BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
90 IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
91 VersionInfo.Major = 0; // Major version == 0 for "none specified"
94 MCAssembler::~MCAssembler() = default;
96 void MCAssembler::reset() {
97 Sections.clear();
98 Symbols.clear();
99 IndirectSymbols.clear();
100 DataRegions.clear();
101 LinkerOptions.clear();
102 FileNames.clear();
103 ThumbFuncs.clear();
104 BundleAlignSize = 0;
105 RelaxAll = false;
106 SubsectionsViaSymbols = false;
107 IncrementalLinkerCompatible = false;
108 ELFHeaderEFlags = 0;
109 LOHContainer.reset();
110 VersionInfo.Major = 0;
111 VersionInfo.SDKVersion = VersionTuple();
113 // reset objects owned by us
114 if (getBackendPtr())
115 getBackendPtr()->reset();
116 if (getEmitterPtr())
117 getEmitterPtr()->reset();
118 if (getWriterPtr())
119 getWriterPtr()->reset();
120 getLOHContainer().reset();
123 bool MCAssembler::registerSection(MCSection &Section) {
124 if (Section.isRegistered())
125 return false;
126 Sections.push_back(&Section);
127 Section.setIsRegistered(true);
128 return true;
131 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
132 if (ThumbFuncs.count(Symbol))
133 return true;
135 if (!Symbol->isVariable())
136 return false;
138 const MCExpr *Expr = Symbol->getVariableValue();
140 MCValue V;
141 if (!Expr->evaluateAsRelocatable(V, nullptr, nullptr))
142 return false;
144 if (V.getSymB() || V.getRefKind() != MCSymbolRefExpr::VK_None)
145 return false;
147 const MCSymbolRefExpr *Ref = V.getSymA();
148 if (!Ref)
149 return false;
151 if (Ref->getKind() != MCSymbolRefExpr::VK_None)
152 return false;
154 const MCSymbol &Sym = Ref->getSymbol();
155 if (!isThumbFunc(&Sym))
156 return false;
158 ThumbFuncs.insert(Symbol); // Cache it.
159 return true;
162 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
163 // Non-temporary labels should always be visible to the linker.
164 if (!Symbol.isTemporary())
165 return true;
167 if (Symbol.isUsedInReloc())
168 return true;
170 return false;
173 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
174 // Linker visible symbols define atoms.
175 if (isSymbolLinkerVisible(S))
176 return &S;
178 // Absolute and undefined symbols have no defining atom.
179 if (!S.isInSection())
180 return nullptr;
182 // Non-linker visible symbols in sections which can't be atomized have no
183 // defining atom.
184 if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
185 *S.getFragment()->getParent()))
186 return nullptr;
188 // Otherwise, return the atom for the containing fragment.
189 return S.getFragment()->getAtom();
192 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
193 const MCFixup &Fixup, const MCFragment *DF,
194 MCValue &Target, uint64_t &Value,
195 bool &WasForced) const {
196 ++stats::evaluateFixup;
198 // FIXME: This code has some duplication with recordRelocation. We should
199 // probably merge the two into a single callback that tries to evaluate a
200 // fixup and records a relocation if one is needed.
202 // On error claim to have completely evaluated the fixup, to prevent any
203 // further processing from being done.
204 const MCExpr *Expr = Fixup.getValue();
205 MCContext &Ctx = getContext();
206 Value = 0;
207 WasForced = false;
208 if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
209 Ctx.reportError(Fixup.getLoc(), "expected relocatable expression");
210 return true;
212 if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
213 if (RefB->getKind() != MCSymbolRefExpr::VK_None) {
214 Ctx.reportError(Fixup.getLoc(),
215 "unsupported subtraction of qualified symbol");
216 return true;
220 assert(getBackendPtr() && "Expected assembler backend");
221 bool IsTarget = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
222 MCFixupKindInfo::FKF_IsTarget;
224 if (IsTarget)
225 return getBackend().evaluateTargetFixup(*this, Layout, Fixup, DF, Target,
226 Value, WasForced);
228 unsigned FixupFlags = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags;
229 bool IsPCRel = getBackendPtr()->getFixupKindInfo(Fixup.getKind()).Flags &
230 MCFixupKindInfo::FKF_IsPCRel;
232 bool IsResolved = false;
233 if (IsPCRel) {
234 if (Target.getSymB()) {
235 IsResolved = false;
236 } else if (!Target.getSymA()) {
237 IsResolved = false;
238 } else {
239 const MCSymbolRefExpr *A = Target.getSymA();
240 const MCSymbol &SA = A->getSymbol();
241 if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
242 IsResolved = false;
243 } else if (auto *Writer = getWriterPtr()) {
244 IsResolved = (FixupFlags & MCFixupKindInfo::FKF_Constant) ||
245 Writer->isSymbolRefDifferenceFullyResolvedImpl(
246 *this, SA, *DF, false, true);
249 } else {
250 IsResolved = Target.isAbsolute();
253 Value = Target.getConstant();
255 if (const MCSymbolRefExpr *A = Target.getSymA()) {
256 const MCSymbol &Sym = A->getSymbol();
257 if (Sym.isDefined())
258 Value += Layout.getSymbolOffset(Sym);
260 if (const MCSymbolRefExpr *B = Target.getSymB()) {
261 const MCSymbol &Sym = B->getSymbol();
262 if (Sym.isDefined())
263 Value -= Layout.getSymbolOffset(Sym);
266 bool ShouldAlignPC = getBackend().getFixupKindInfo(Fixup.getKind()).Flags &
267 MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
268 assert((ShouldAlignPC ? IsPCRel : true) &&
269 "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
271 if (IsPCRel) {
272 uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
274 // A number of ARM fixups in Thumb mode require that the effective PC
275 // address be determined as the 32-bit aligned version of the actual offset.
276 if (ShouldAlignPC) Offset &= ~0x3;
277 Value -= Offset;
280 // Let the backend force a relocation if needed.
281 if (IsResolved && getBackend().shouldForceRelocation(*this, Fixup, Target)) {
282 IsResolved = false;
283 WasForced = true;
286 return IsResolved;
289 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
290 const MCFragment &F) const {
291 assert(getBackendPtr() && "Requires assembler backend");
292 switch (F.getKind()) {
293 case MCFragment::FT_Data:
294 return cast<MCDataFragment>(F).getContents().size();
295 case MCFragment::FT_Relaxable:
296 return cast<MCRelaxableFragment>(F).getContents().size();
297 case MCFragment::FT_CompactEncodedInst:
298 return cast<MCCompactEncodedInstFragment>(F).getContents().size();
299 case MCFragment::FT_Fill: {
300 auto &FF = cast<MCFillFragment>(F);
301 int64_t NumValues = 0;
302 if (!FF.getNumValues().evaluateAsAbsolute(NumValues, Layout)) {
303 getContext().reportError(FF.getLoc(),
304 "expected assembly-time absolute expression");
305 return 0;
307 int64_t Size = NumValues * FF.getValueSize();
308 if (Size < 0) {
309 getContext().reportError(FF.getLoc(), "invalid number of bytes");
310 return 0;
312 return Size;
315 case MCFragment::FT_Nops:
316 return cast<MCNopsFragment>(F).getNumBytes();
318 case MCFragment::FT_LEB:
319 return cast<MCLEBFragment>(F).getContents().size();
321 case MCFragment::FT_BoundaryAlign:
322 return cast<MCBoundaryAlignFragment>(F).getSize();
324 case MCFragment::FT_SymbolId:
325 return 4;
327 case MCFragment::FT_Align: {
328 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
329 unsigned Offset = Layout.getFragmentOffset(&AF);
330 unsigned Size = offsetToAlignment(Offset, Align(AF.getAlignment()));
332 // Insert extra Nops for code alignment if the target define
333 // shouldInsertExtraNopBytesForCodeAlign target hook.
334 if (AF.getParent()->UseCodeAlign() && AF.hasEmitNops() &&
335 getBackend().shouldInsertExtraNopBytesForCodeAlign(AF, Size))
336 return Size;
338 // If we are padding with nops, force the padding to be larger than the
339 // minimum nop size.
340 if (Size > 0 && AF.hasEmitNops()) {
341 while (Size % getBackend().getMinimumNopSize())
342 Size += AF.getAlignment();
344 if (Size > AF.getMaxBytesToEmit())
345 return 0;
346 return Size;
349 case MCFragment::FT_Org: {
350 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
351 MCValue Value;
352 if (!OF.getOffset().evaluateAsValue(Value, Layout)) {
353 getContext().reportError(OF.getLoc(),
354 "expected assembly-time absolute expression");
355 return 0;
358 uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
359 int64_t TargetLocation = Value.getConstant();
360 if (const MCSymbolRefExpr *A = Value.getSymA()) {
361 uint64_t Val;
362 if (!Layout.getSymbolOffset(A->getSymbol(), Val)) {
363 getContext().reportError(OF.getLoc(), "expected absolute expression");
364 return 0;
366 TargetLocation += Val;
368 int64_t Size = TargetLocation - FragmentOffset;
369 if (Size < 0 || Size >= 0x40000000) {
370 getContext().reportError(
371 OF.getLoc(), "invalid .org offset '" + Twine(TargetLocation) +
372 "' (at offset '" + Twine(FragmentOffset) + "')");
373 return 0;
375 return Size;
378 case MCFragment::FT_Dwarf:
379 return cast<MCDwarfLineAddrFragment>(F).getContents().size();
380 case MCFragment::FT_DwarfFrame:
381 return cast<MCDwarfCallFrameFragment>(F).getContents().size();
382 case MCFragment::FT_CVInlineLines:
383 return cast<MCCVInlineLineTableFragment>(F).getContents().size();
384 case MCFragment::FT_CVDefRange:
385 return cast<MCCVDefRangeFragment>(F).getContents().size();
386 case MCFragment::FT_PseudoProbe:
387 return cast<MCPseudoProbeAddrFragment>(F).getContents().size();
388 case MCFragment::FT_Dummy:
389 llvm_unreachable("Should not have been added");
392 llvm_unreachable("invalid fragment kind");
395 void MCAsmLayout::layoutFragment(MCFragment *F) {
396 MCFragment *Prev = F->getPrevNode();
398 // We should never try to recompute something which is valid.
399 assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
400 // We should never try to compute the fragment layout if its predecessor
401 // isn't valid.
402 assert((!Prev || isFragmentValid(Prev)) &&
403 "Attempt to compute fragment before its predecessor!");
405 assert(!F->IsBeingLaidOut && "Already being laid out!");
406 F->IsBeingLaidOut = true;
408 ++stats::FragmentLayouts;
410 // Compute fragment offset and size.
411 if (Prev)
412 F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
413 else
414 F->Offset = 0;
415 F->IsBeingLaidOut = false;
416 LastValidFragment[F->getParent()] = F;
418 // If bundling is enabled and this fragment has instructions in it, it has to
419 // obey the bundling restrictions. With padding, we'll have:
422 // BundlePadding
423 // |||
424 // -------------------------------------
425 // Prev |##########| F |
426 // -------------------------------------
427 // ^
428 // |
429 // F->Offset
431 // The fragment's offset will point to after the padding, and its computed
432 // size won't include the padding.
434 // When the -mc-relax-all flag is used, we optimize bundling by writting the
435 // padding directly into fragments when the instructions are emitted inside
436 // the streamer. When the fragment is larger than the bundle size, we need to
437 // ensure that it's bundle aligned. This means that if we end up with
438 // multiple fragments, we must emit bundle padding between fragments.
440 // ".align N" is an example of a directive that introduces multiple
441 // fragments. We could add a special case to handle ".align N" by emitting
442 // within-fragment padding (which would produce less padding when N is less
443 // than the bundle size), but for now we don't.
445 if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
446 assert(isa<MCEncodedFragment>(F) &&
447 "Only MCEncodedFragment implementations have instructions");
448 MCEncodedFragment *EF = cast<MCEncodedFragment>(F);
449 uint64_t FSize = Assembler.computeFragmentSize(*this, *EF);
451 if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
452 report_fatal_error("Fragment can't be larger than a bundle size");
454 uint64_t RequiredBundlePadding =
455 computeBundlePadding(Assembler, EF, EF->Offset, FSize);
456 if (RequiredBundlePadding > UINT8_MAX)
457 report_fatal_error("Padding cannot exceed 255 bytes");
458 EF->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
459 EF->Offset += RequiredBundlePadding;
463 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
464 bool New = !Symbol.isRegistered();
465 if (Created)
466 *Created = New;
467 if (New) {
468 Symbol.setIsRegistered(true);
469 Symbols.push_back(&Symbol);
473 void MCAssembler::writeFragmentPadding(raw_ostream &OS,
474 const MCEncodedFragment &EF,
475 uint64_t FSize) const {
476 assert(getBackendPtr() && "Expected assembler backend");
477 // Should NOP padding be written out before this fragment?
478 unsigned BundlePadding = EF.getBundlePadding();
479 if (BundlePadding > 0) {
480 assert(isBundlingEnabled() &&
481 "Writing bundle padding with disabled bundling");
482 assert(EF.hasInstructions() &&
483 "Writing bundle padding for a fragment without instructions");
485 unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
486 if (EF.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
487 // If the padding itself crosses a bundle boundary, it must be emitted
488 // in 2 pieces, since even nop instructions must not cross boundaries.
489 // v--------------v <- BundleAlignSize
490 // v---------v <- BundlePadding
491 // ----------------------------
492 // | Prev |####|####| F |
493 // ----------------------------
494 // ^-------------------^ <- TotalLength
495 unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
496 if (!getBackend().writeNopData(OS, DistanceToBoundary))
497 report_fatal_error("unable to write NOP sequence of " +
498 Twine(DistanceToBoundary) + " bytes");
499 BundlePadding -= DistanceToBoundary;
501 if (!getBackend().writeNopData(OS, BundlePadding))
502 report_fatal_error("unable to write NOP sequence of " +
503 Twine(BundlePadding) + " bytes");
507 /// Write the fragment \p F to the output file.
508 static void writeFragment(raw_ostream &OS, const MCAssembler &Asm,
509 const MCAsmLayout &Layout, const MCFragment &F) {
510 // FIXME: Embed in fragments instead?
511 uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
513 support::endianness Endian = Asm.getBackend().Endian;
515 if (const MCEncodedFragment *EF = dyn_cast<MCEncodedFragment>(&F))
516 Asm.writeFragmentPadding(OS, *EF, FragmentSize);
518 // This variable (and its dummy usage) is to participate in the assert at
519 // the end of the function.
520 uint64_t Start = OS.tell();
521 (void) Start;
523 ++stats::EmittedFragments;
525 switch (F.getKind()) {
526 case MCFragment::FT_Align: {
527 ++stats::EmittedAlignFragments;
528 const MCAlignFragment &AF = cast<MCAlignFragment>(F);
529 assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
531 uint64_t Count = FragmentSize / AF.getValueSize();
533 // FIXME: This error shouldn't actually occur (the front end should emit
534 // multiple .align directives to enforce the semantics it wants), but is
535 // severe enough that we want to report it. How to handle this?
536 if (Count * AF.getValueSize() != FragmentSize)
537 report_fatal_error("undefined .align directive, value size '" +
538 Twine(AF.getValueSize()) +
539 "' is not a divisor of padding size '" +
540 Twine(FragmentSize) + "'");
542 // See if we are aligning with nops, and if so do that first to try to fill
543 // the Count bytes. Then if that did not fill any bytes or there are any
544 // bytes left to fill use the Value and ValueSize to fill the rest.
545 // If we are aligning with nops, ask that target to emit the right data.
546 if (AF.hasEmitNops()) {
547 if (!Asm.getBackend().writeNopData(OS, Count))
548 report_fatal_error("unable to write nop sequence of " +
549 Twine(Count) + " bytes");
550 break;
553 // Otherwise, write out in multiples of the value size.
554 for (uint64_t i = 0; i != Count; ++i) {
555 switch (AF.getValueSize()) {
556 default: llvm_unreachable("Invalid size!");
557 case 1: OS << char(AF.getValue()); break;
558 case 2:
559 support::endian::write<uint16_t>(OS, AF.getValue(), Endian);
560 break;
561 case 4:
562 support::endian::write<uint32_t>(OS, AF.getValue(), Endian);
563 break;
564 case 8:
565 support::endian::write<uint64_t>(OS, AF.getValue(), Endian);
566 break;
569 break;
572 case MCFragment::FT_Data:
573 ++stats::EmittedDataFragments;
574 OS << cast<MCDataFragment>(F).getContents();
575 break;
577 case MCFragment::FT_Relaxable:
578 ++stats::EmittedRelaxableFragments;
579 OS << cast<MCRelaxableFragment>(F).getContents();
580 break;
582 case MCFragment::FT_CompactEncodedInst:
583 ++stats::EmittedCompactEncodedInstFragments;
584 OS << cast<MCCompactEncodedInstFragment>(F).getContents();
585 break;
587 case MCFragment::FT_Fill: {
588 ++stats::EmittedFillFragments;
589 const MCFillFragment &FF = cast<MCFillFragment>(F);
590 uint64_t V = FF.getValue();
591 unsigned VSize = FF.getValueSize();
592 const unsigned MaxChunkSize = 16;
593 char Data[MaxChunkSize];
594 assert(0 < VSize && VSize <= MaxChunkSize && "Illegal fragment fill size");
595 // Duplicate V into Data as byte vector to reduce number of
596 // writes done. As such, do endian conversion here.
597 for (unsigned I = 0; I != VSize; ++I) {
598 unsigned index = Endian == support::little ? I : (VSize - I - 1);
599 Data[I] = uint8_t(V >> (index * 8));
601 for (unsigned I = VSize; I < MaxChunkSize; ++I)
602 Data[I] = Data[I - VSize];
604 // Set to largest multiple of VSize in Data.
605 const unsigned NumPerChunk = MaxChunkSize / VSize;
606 // Set ChunkSize to largest multiple of VSize in Data
607 const unsigned ChunkSize = VSize * NumPerChunk;
609 // Do copies by chunk.
610 StringRef Ref(Data, ChunkSize);
611 for (uint64_t I = 0, E = FragmentSize / ChunkSize; I != E; ++I)
612 OS << Ref;
614 // do remainder if needed.
615 unsigned TrailingCount = FragmentSize % ChunkSize;
616 if (TrailingCount)
617 OS.write(Data, TrailingCount);
618 break;
621 case MCFragment::FT_Nops: {
622 ++stats::EmittedNopsFragments;
623 const MCNopsFragment &NF = cast<MCNopsFragment>(F);
624 int64_t NumBytes = NF.getNumBytes();
625 int64_t ControlledNopLength = NF.getControlledNopLength();
626 int64_t MaximumNopLength = Asm.getBackend().getMaximumNopSize();
628 assert(NumBytes > 0 && "Expected positive NOPs fragment size");
629 assert(ControlledNopLength >= 0 && "Expected non-negative NOP size");
631 if (ControlledNopLength > MaximumNopLength) {
632 Asm.getContext().reportError(NF.getLoc(),
633 "illegal NOP size " +
634 std::to_string(ControlledNopLength) +
635 ". (expected within [0, " +
636 std::to_string(MaximumNopLength) + "])");
637 // Clamp the NOP length as reportError does not stop the execution
638 // immediately.
639 ControlledNopLength = MaximumNopLength;
642 // Use maximum value if the size of each NOP is not specified
643 if (!ControlledNopLength)
644 ControlledNopLength = MaximumNopLength;
646 while (NumBytes) {
647 uint64_t NumBytesToEmit =
648 (uint64_t)std::min(NumBytes, ControlledNopLength);
649 assert(NumBytesToEmit && "try to emit empty NOP instruction");
650 if (!Asm.getBackend().writeNopData(OS, NumBytesToEmit)) {
651 report_fatal_error("unable to write nop sequence of the remaining " +
652 Twine(NumBytesToEmit) + " bytes");
653 break;
655 NumBytes -= NumBytesToEmit;
657 break;
660 case MCFragment::FT_LEB: {
661 const MCLEBFragment &LF = cast<MCLEBFragment>(F);
662 OS << LF.getContents();
663 break;
666 case MCFragment::FT_BoundaryAlign: {
667 if (!Asm.getBackend().writeNopData(OS, FragmentSize))
668 report_fatal_error("unable to write nop sequence of " +
669 Twine(FragmentSize) + " bytes");
670 break;
673 case MCFragment::FT_SymbolId: {
674 const MCSymbolIdFragment &SF = cast<MCSymbolIdFragment>(F);
675 support::endian::write<uint32_t>(OS, SF.getSymbol()->getIndex(), Endian);
676 break;
679 case MCFragment::FT_Org: {
680 ++stats::EmittedOrgFragments;
681 const MCOrgFragment &OF = cast<MCOrgFragment>(F);
683 for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
684 OS << char(OF.getValue());
686 break;
689 case MCFragment::FT_Dwarf: {
690 const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
691 OS << OF.getContents();
692 break;
694 case MCFragment::FT_DwarfFrame: {
695 const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
696 OS << CF.getContents();
697 break;
699 case MCFragment::FT_CVInlineLines: {
700 const auto &OF = cast<MCCVInlineLineTableFragment>(F);
701 OS << OF.getContents();
702 break;
704 case MCFragment::FT_CVDefRange: {
705 const auto &DRF = cast<MCCVDefRangeFragment>(F);
706 OS << DRF.getContents();
707 break;
709 case MCFragment::FT_PseudoProbe: {
710 const MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(F);
711 OS << PF.getContents();
712 break;
714 case MCFragment::FT_Dummy:
715 llvm_unreachable("Should not have been added");
718 assert(OS.tell() - Start == FragmentSize &&
719 "The stream should advance by fragment size");
722 void MCAssembler::writeSectionData(raw_ostream &OS, const MCSection *Sec,
723 const MCAsmLayout &Layout) const {
724 assert(getBackendPtr() && "Expected assembler backend");
726 // Ignore virtual sections.
727 if (Sec->isVirtualSection()) {
728 assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
730 // Check that contents are only things legal inside a virtual section.
731 for (const MCFragment &F : *Sec) {
732 switch (F.getKind()) {
733 default: llvm_unreachable("Invalid fragment in virtual section!");
734 case MCFragment::FT_Data: {
735 // Check that we aren't trying to write a non-zero contents (or fixups)
736 // into a virtual section. This is to support clients which use standard
737 // directives to fill the contents of virtual sections.
738 const MCDataFragment &DF = cast<MCDataFragment>(F);
739 if (DF.fixup_begin() != DF.fixup_end())
740 getContext().reportError(SMLoc(), Sec->getVirtualSectionKind() +
741 " section '" + Sec->getName() +
742 "' cannot have fixups");
743 for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
744 if (DF.getContents()[i]) {
745 getContext().reportError(SMLoc(),
746 Sec->getVirtualSectionKind() +
747 " section '" + Sec->getName() +
748 "' cannot have non-zero initializers");
749 break;
751 break;
753 case MCFragment::FT_Align:
754 // Check that we aren't trying to write a non-zero value into a virtual
755 // section.
756 assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
757 cast<MCAlignFragment>(F).getValue() == 0) &&
758 "Invalid align in virtual section!");
759 break;
760 case MCFragment::FT_Fill:
761 assert((cast<MCFillFragment>(F).getValue() == 0) &&
762 "Invalid fill in virtual section!");
763 break;
764 case MCFragment::FT_Org:
765 break;
769 return;
772 uint64_t Start = OS.tell();
773 (void)Start;
775 for (const MCFragment &F : *Sec)
776 writeFragment(OS, *this, Layout, F);
778 assert(getContext().hadError() ||
779 OS.tell() - Start == Layout.getSectionAddressSize(Sec));
782 std::tuple<MCValue, uint64_t, bool>
783 MCAssembler::handleFixup(const MCAsmLayout &Layout, MCFragment &F,
784 const MCFixup &Fixup) {
785 // Evaluate the fixup.
786 MCValue Target;
787 uint64_t FixedValue;
788 bool WasForced;
789 bool IsResolved = evaluateFixup(Layout, Fixup, &F, Target, FixedValue,
790 WasForced);
791 if (!IsResolved) {
792 // The fixup was unresolved, we need a relocation. Inform the object
793 // writer of the relocation, and give it an opportunity to adjust the
794 // fixup value if need be.
795 getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, FixedValue);
797 return std::make_tuple(Target, FixedValue, IsResolved);
800 void MCAssembler::layout(MCAsmLayout &Layout) {
801 assert(getBackendPtr() && "Expected assembler backend");
802 DEBUG_WITH_TYPE("mc-dump", {
803 errs() << "assembler backend - pre-layout\n--\n";
804 dump(); });
806 // Create dummy fragments and assign section ordinals.
807 unsigned SectionIndex = 0;
808 for (MCSection &Sec : *this) {
809 // Create dummy fragments to eliminate any empty sections, this simplifies
810 // layout.
811 if (Sec.getFragmentList().empty())
812 new MCDataFragment(&Sec);
814 Sec.setOrdinal(SectionIndex++);
817 // Assign layout order indices to sections and fragments.
818 for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
819 MCSection *Sec = Layout.getSectionOrder()[i];
820 Sec->setLayoutOrder(i);
822 unsigned FragmentIndex = 0;
823 for (MCFragment &Frag : *Sec)
824 Frag.setLayoutOrder(FragmentIndex++);
827 // Layout until everything fits.
828 while (layoutOnce(Layout)) {
829 if (getContext().hadError())
830 return;
831 // Size of fragments in one section can depend on the size of fragments in
832 // another. If any fragment has changed size, we have to re-layout (and
833 // as a result possibly further relax) all.
834 for (MCSection &Sec : *this)
835 Layout.invalidateFragmentsFrom(&*Sec.begin());
838 DEBUG_WITH_TYPE("mc-dump", {
839 errs() << "assembler backend - post-relaxation\n--\n";
840 dump(); });
842 // Finalize the layout, including fragment lowering.
843 finishLayout(Layout);
845 DEBUG_WITH_TYPE("mc-dump", {
846 errs() << "assembler backend - final-layout\n--\n";
847 dump(); });
849 // Allow the object writer a chance to perform post-layout binding (for
850 // example, to set the index fields in the symbol data).
851 getWriter().executePostLayoutBinding(*this, Layout);
853 // Evaluate and apply the fixups, generating relocation entries as necessary.
854 for (MCSection &Sec : *this) {
855 for (MCFragment &Frag : Sec) {
856 ArrayRef<MCFixup> Fixups;
857 MutableArrayRef<char> Contents;
858 const MCSubtargetInfo *STI = nullptr;
860 // Process MCAlignFragment and MCEncodedFragmentWithFixups here.
861 switch (Frag.getKind()) {
862 default:
863 continue;
864 case MCFragment::FT_Align: {
865 MCAlignFragment &AF = cast<MCAlignFragment>(Frag);
866 // Insert fixup type for code alignment if the target define
867 // shouldInsertFixupForCodeAlign target hook.
868 if (Sec.UseCodeAlign() && AF.hasEmitNops())
869 getBackend().shouldInsertFixupForCodeAlign(*this, Layout, AF);
870 continue;
872 case MCFragment::FT_Data: {
873 MCDataFragment &DF = cast<MCDataFragment>(Frag);
874 Fixups = DF.getFixups();
875 Contents = DF.getContents();
876 STI = DF.getSubtargetInfo();
877 assert(!DF.hasInstructions() || STI != nullptr);
878 break;
880 case MCFragment::FT_Relaxable: {
881 MCRelaxableFragment &RF = cast<MCRelaxableFragment>(Frag);
882 Fixups = RF.getFixups();
883 Contents = RF.getContents();
884 STI = RF.getSubtargetInfo();
885 assert(!RF.hasInstructions() || STI != nullptr);
886 break;
888 case MCFragment::FT_CVDefRange: {
889 MCCVDefRangeFragment &CF = cast<MCCVDefRangeFragment>(Frag);
890 Fixups = CF.getFixups();
891 Contents = CF.getContents();
892 break;
894 case MCFragment::FT_Dwarf: {
895 MCDwarfLineAddrFragment &DF = cast<MCDwarfLineAddrFragment>(Frag);
896 Fixups = DF.getFixups();
897 Contents = DF.getContents();
898 break;
900 case MCFragment::FT_DwarfFrame: {
901 MCDwarfCallFrameFragment &DF = cast<MCDwarfCallFrameFragment>(Frag);
902 Fixups = DF.getFixups();
903 Contents = DF.getContents();
904 break;
906 case MCFragment::FT_PseudoProbe: {
907 MCPseudoProbeAddrFragment &PF = cast<MCPseudoProbeAddrFragment>(Frag);
908 Fixups = PF.getFixups();
909 Contents = PF.getContents();
910 break;
913 for (const MCFixup &Fixup : Fixups) {
914 uint64_t FixedValue;
915 bool IsResolved;
916 MCValue Target;
917 std::tie(Target, FixedValue, IsResolved) =
918 handleFixup(Layout, Frag, Fixup);
919 getBackend().applyFixup(*this, Fixup, Target, Contents, FixedValue,
920 IsResolved, STI);
926 void MCAssembler::Finish() {
927 // Create the layout object.
928 MCAsmLayout Layout(*this);
929 layout(Layout);
931 // Write the object file.
932 stats::ObjectBytes += getWriter().writeObject(*this, Layout);
935 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
936 const MCRelaxableFragment *DF,
937 const MCAsmLayout &Layout) const {
938 assert(getBackendPtr() && "Expected assembler backend");
939 MCValue Target;
940 uint64_t Value;
941 bool WasForced;
942 bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value, WasForced);
943 if (Target.getSymA() &&
944 Target.getSymA()->getKind() == MCSymbolRefExpr::VK_X86_ABS8 &&
945 Fixup.getKind() == FK_Data_1)
946 return false;
947 return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
948 Layout, WasForced);
951 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
952 const MCAsmLayout &Layout) const {
953 assert(getBackendPtr() && "Expected assembler backend");
954 // If this inst doesn't ever need relaxation, ignore it. This occurs when we
955 // are intentionally pushing out inst fragments, or because we relaxed a
956 // previous instruction to one that doesn't need relaxation.
957 if (!getBackend().mayNeedRelaxation(F->getInst(), *F->getSubtargetInfo()))
958 return false;
960 for (const MCFixup &Fixup : F->getFixups())
961 if (fixupNeedsRelaxation(Fixup, F, Layout))
962 return true;
964 return false;
967 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
968 MCRelaxableFragment &F) {
969 assert(getEmitterPtr() &&
970 "Expected CodeEmitter defined for relaxInstruction");
971 if (!fragmentNeedsRelaxation(&F, Layout))
972 return false;
974 ++stats::RelaxedInstructions;
976 // FIXME-PERF: We could immediately lower out instructions if we can tell
977 // they are fully resolved, to avoid retesting on later passes.
979 // Relax the fragment.
981 MCInst Relaxed = F.getInst();
982 getBackend().relaxInstruction(Relaxed, *F.getSubtargetInfo());
984 // Encode the new instruction.
986 // FIXME-PERF: If it matters, we could let the target do this. It can
987 // probably do so more efficiently in many cases.
988 SmallVector<MCFixup, 4> Fixups;
989 SmallString<256> Code;
990 raw_svector_ostream VecOS(Code);
991 getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, *F.getSubtargetInfo());
993 // Update the fragment.
994 F.setInst(Relaxed);
995 F.getContents() = Code;
996 F.getFixups() = Fixups;
998 return true;
1001 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
1002 uint64_t OldSize = LF.getContents().size();
1003 int64_t Value;
1004 bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
1005 if (!Abs)
1006 report_fatal_error("sleb128 and uleb128 expressions must be absolute");
1007 SmallString<8> &Data = LF.getContents();
1008 Data.clear();
1009 raw_svector_ostream OSE(Data);
1010 // The compiler can generate EH table assembly that is impossible to assemble
1011 // without either adding padding to an LEB fragment or adding extra padding
1012 // to a later alignment fragment. To accommodate such tables, relaxation can
1013 // only increase an LEB fragment size here, not decrease it. See PR35809.
1014 if (LF.isSigned())
1015 encodeSLEB128(Value, OSE, OldSize);
1016 else
1017 encodeULEB128(Value, OSE, OldSize);
1018 return OldSize != LF.getContents().size();
1021 /// Check if the branch crosses the boundary.
1023 /// \param StartAddr start address of the fused/unfused branch.
1024 /// \param Size size of the fused/unfused branch.
1025 /// \param BoundaryAlignment alignment requirement of the branch.
1026 /// \returns true if the branch cross the boundary.
1027 static bool mayCrossBoundary(uint64_t StartAddr, uint64_t Size,
1028 Align BoundaryAlignment) {
1029 uint64_t EndAddr = StartAddr + Size;
1030 return (StartAddr >> Log2(BoundaryAlignment)) !=
1031 ((EndAddr - 1) >> Log2(BoundaryAlignment));
1034 /// Check if the branch is against the boundary.
1036 /// \param StartAddr start address of the fused/unfused branch.
1037 /// \param Size size of the fused/unfused branch.
1038 /// \param BoundaryAlignment alignment requirement of the branch.
1039 /// \returns true if the branch is against the boundary.
1040 static bool isAgainstBoundary(uint64_t StartAddr, uint64_t Size,
1041 Align BoundaryAlignment) {
1042 uint64_t EndAddr = StartAddr + Size;
1043 return (EndAddr & (BoundaryAlignment.value() - 1)) == 0;
1046 /// Check if the branch needs padding.
1048 /// \param StartAddr start address of the fused/unfused branch.
1049 /// \param Size size of the fused/unfused branch.
1050 /// \param BoundaryAlignment alignment requirement of the branch.
1051 /// \returns true if the branch needs padding.
1052 static bool needPadding(uint64_t StartAddr, uint64_t Size,
1053 Align BoundaryAlignment) {
1054 return mayCrossBoundary(StartAddr, Size, BoundaryAlignment) ||
1055 isAgainstBoundary(StartAddr, Size, BoundaryAlignment);
1058 bool MCAssembler::relaxBoundaryAlign(MCAsmLayout &Layout,
1059 MCBoundaryAlignFragment &BF) {
1060 // BoundaryAlignFragment that doesn't need to align any fragment should not be
1061 // relaxed.
1062 if (!BF.getLastFragment())
1063 return false;
1065 uint64_t AlignedOffset = Layout.getFragmentOffset(&BF);
1066 uint64_t AlignedSize = 0;
1067 for (const MCFragment *F = BF.getLastFragment(); F != &BF;
1068 F = F->getPrevNode())
1069 AlignedSize += computeFragmentSize(Layout, *F);
1071 Align BoundaryAlignment = BF.getAlignment();
1072 uint64_t NewSize = needPadding(AlignedOffset, AlignedSize, BoundaryAlignment)
1073 ? offsetToAlignment(AlignedOffset, BoundaryAlignment)
1074 : 0U;
1075 if (NewSize == BF.getSize())
1076 return false;
1077 BF.setSize(NewSize);
1078 Layout.invalidateFragmentsFrom(&BF);
1079 return true;
1082 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1083 MCDwarfLineAddrFragment &DF) {
1085 bool WasRelaxed;
1086 if (getBackend().relaxDwarfLineAddr(DF, Layout, WasRelaxed))
1087 return WasRelaxed;
1089 MCContext &Context = Layout.getAssembler().getContext();
1090 uint64_t OldSize = DF.getContents().size();
1091 int64_t AddrDelta;
1092 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1093 assert(Abs && "We created a line delta with an invalid expression");
1094 (void)Abs;
1095 int64_t LineDelta;
1096 LineDelta = DF.getLineDelta();
1097 SmallVectorImpl<char> &Data = DF.getContents();
1098 Data.clear();
1099 raw_svector_ostream OSE(Data);
1100 DF.getFixups().clear();
1102 MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1103 AddrDelta, OSE);
1104 return OldSize != Data.size();
1107 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1108 MCDwarfCallFrameFragment &DF) {
1109 bool WasRelaxed;
1110 if (getBackend().relaxDwarfCFA(DF, Layout, WasRelaxed))
1111 return WasRelaxed;
1113 MCContext &Context = Layout.getAssembler().getContext();
1114 uint64_t OldSize = DF.getContents().size();
1115 int64_t AddrDelta;
1116 bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1117 assert(Abs && "We created call frame with an invalid expression");
1118 (void) Abs;
1119 SmallVectorImpl<char> &Data = DF.getContents();
1120 Data.clear();
1121 raw_svector_ostream OSE(Data);
1122 DF.getFixups().clear();
1124 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1125 return OldSize != Data.size();
1128 bool MCAssembler::relaxCVInlineLineTable(MCAsmLayout &Layout,
1129 MCCVInlineLineTableFragment &F) {
1130 unsigned OldSize = F.getContents().size();
1131 getContext().getCVContext().encodeInlineLineTable(Layout, F);
1132 return OldSize != F.getContents().size();
1135 bool MCAssembler::relaxCVDefRange(MCAsmLayout &Layout,
1136 MCCVDefRangeFragment &F) {
1137 unsigned OldSize = F.getContents().size();
1138 getContext().getCVContext().encodeDefRange(Layout, F);
1139 return OldSize != F.getContents().size();
1142 bool MCAssembler::relaxPseudoProbeAddr(MCAsmLayout &Layout,
1143 MCPseudoProbeAddrFragment &PF) {
1144 uint64_t OldSize = PF.getContents().size();
1145 int64_t AddrDelta;
1146 bool Abs = PF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1147 assert(Abs && "We created a pseudo probe with an invalid expression");
1148 (void)Abs;
1149 SmallVectorImpl<char> &Data = PF.getContents();
1150 Data.clear();
1151 raw_svector_ostream OSE(Data);
1152 PF.getFixups().clear();
1154 // AddrDelta is a signed integer
1155 encodeSLEB128(AddrDelta, OSE, OldSize);
1156 return OldSize != Data.size();
1159 bool MCAssembler::relaxFragment(MCAsmLayout &Layout, MCFragment &F) {
1160 switch(F.getKind()) {
1161 default:
1162 return false;
1163 case MCFragment::FT_Relaxable:
1164 assert(!getRelaxAll() &&
1165 "Did not expect a MCRelaxableFragment in RelaxAll mode");
1166 return relaxInstruction(Layout, cast<MCRelaxableFragment>(F));
1167 case MCFragment::FT_Dwarf:
1168 return relaxDwarfLineAddr(Layout, cast<MCDwarfLineAddrFragment>(F));
1169 case MCFragment::FT_DwarfFrame:
1170 return relaxDwarfCallFrameFragment(Layout,
1171 cast<MCDwarfCallFrameFragment>(F));
1172 case MCFragment::FT_LEB:
1173 return relaxLEB(Layout, cast<MCLEBFragment>(F));
1174 case MCFragment::FT_BoundaryAlign:
1175 return relaxBoundaryAlign(Layout, cast<MCBoundaryAlignFragment>(F));
1176 case MCFragment::FT_CVInlineLines:
1177 return relaxCVInlineLineTable(Layout, cast<MCCVInlineLineTableFragment>(F));
1178 case MCFragment::FT_CVDefRange:
1179 return relaxCVDefRange(Layout, cast<MCCVDefRangeFragment>(F));
1180 case MCFragment::FT_PseudoProbe:
1181 return relaxPseudoProbeAddr(Layout, cast<MCPseudoProbeAddrFragment>(F));
1185 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1186 // Holds the first fragment which needed relaxing during this layout. It will
1187 // remain NULL if none were relaxed.
1188 // When a fragment is relaxed, all the fragments following it should get
1189 // invalidated because their offset is going to change.
1190 MCFragment *FirstRelaxedFragment = nullptr;
1192 // Attempt to relax all the fragments in the section.
1193 for (MCFragment &Frag : Sec) {
1194 // Check if this is a fragment that needs relaxation.
1195 bool RelaxedFrag = relaxFragment(Layout, Frag);
1196 if (RelaxedFrag && !FirstRelaxedFragment)
1197 FirstRelaxedFragment = &Frag;
1199 if (FirstRelaxedFragment) {
1200 Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1201 return true;
1203 return false;
1206 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1207 ++stats::RelaxationSteps;
1209 bool WasRelaxed = false;
1210 for (MCSection &Sec : *this) {
1211 while (layoutSectionOnce(Layout, Sec))
1212 WasRelaxed = true;
1215 return WasRelaxed;
1218 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1219 assert(getBackendPtr() && "Expected assembler backend");
1220 // The layout is done. Mark every fragment as valid.
1221 for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1222 MCSection &Section = *Layout.getSectionOrder()[i];
1223 Layout.getFragmentOffset(&*Section.getFragmentList().rbegin());
1224 computeFragmentSize(Layout, *Section.getFragmentList().rbegin());
1226 getBackend().finishLayout(*this, Layout);
1229 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1230 LLVM_DUMP_METHOD void MCAssembler::dump() const{
1231 raw_ostream &OS = errs();
1233 OS << "<MCAssembler\n";
1234 OS << " Sections:[\n ";
1235 for (const_iterator it = begin(), ie = end(); it != ie; ++it) {
1236 if (it != begin()) OS << ",\n ";
1237 it->dump();
1239 OS << "],\n";
1240 OS << " Symbols:[";
1242 for (const_symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1243 if (it != symbol_begin()) OS << ",\n ";
1244 OS << "(";
1245 it->dump();
1246 OS << ", Index:" << it->getIndex() << ", ";
1247 OS << ")";
1249 OS << "]>\n";
1251 #endif