[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Object / IRSymtab.cpp
blob746b008671573e7c6d0153a970d84fceb968aca9
1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/ADT/Triple.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Bitcode/BitcodeReader.h"
26 #include "llvm/MC/StringTableBuilder.h"
27 #include "llvm/Object/IRObjectFile.h"
28 #include "llvm/Object/ModuleSymbolTable.h"
29 #include "llvm/Object/SymbolicFile.h"
30 #include "llvm/Support/Allocator.h"
31 #include "llvm/Support/Casting.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/StringSaver.h"
34 #include "llvm/Support/VCSRevision.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include <cassert>
37 #include <string>
38 #include <utility>
39 #include <vector>
41 using namespace llvm;
42 using namespace irsymtab;
44 static const char *LibcallRoutineNames[] = {
45 #define HANDLE_LIBCALL(code, name) name,
46 #include "llvm/IR/RuntimeLibcalls.def"
47 #undef HANDLE_LIBCALL
50 namespace {
52 const char *getExpectedProducerName() {
53 static char DefaultName[] = LLVM_VERSION_STRING
54 #ifdef LLVM_REVISION
55 " " LLVM_REVISION
56 #endif
58 // Allows for testing of the irsymtab writer and upgrade mechanism. This
59 // environment variable should not be set by users.
60 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
61 return OverrideName;
62 return DefaultName;
65 const char *kExpectedProducerName = getExpectedProducerName();
67 /// Stores the temporary state that is required to build an IR symbol table.
68 struct Builder {
69 SmallVector<char, 0> &Symtab;
70 StringTableBuilder &StrtabBuilder;
71 StringSaver Saver;
73 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
74 // The StringTableBuilder does not create a copy of any strings added to it,
75 // so this provides somewhere to store any strings that we create.
76 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
77 BumpPtrAllocator &Alloc)
78 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
80 DenseMap<const Comdat *, int> ComdatMap;
81 Mangler Mang;
82 Triple TT;
84 std::vector<storage::Comdat> Comdats;
85 std::vector<storage::Module> Mods;
86 std::vector<storage::Symbol> Syms;
87 std::vector<storage::Uncommon> Uncommons;
89 std::string COFFLinkerOpts;
90 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
92 std::vector<storage::Str> DependentLibraries;
94 void setStr(storage::Str &S, StringRef Value) {
95 S.Offset = StrtabBuilder.add(Value);
96 S.Size = Value.size();
99 template <typename T>
100 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
101 R.Offset = Symtab.size();
102 R.Size = Objs.size();
103 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
104 reinterpret_cast<const char *>(Objs.data() + Objs.size()));
107 Expected<int> getComdatIndex(const Comdat *C, const Module *M);
109 Error addModule(Module *M);
110 Error addSymbol(const ModuleSymbolTable &Msymtab,
111 const SmallPtrSet<GlobalValue *, 4> &Used,
112 ModuleSymbolTable::Symbol Sym);
114 Error build(ArrayRef<Module *> Mods);
117 Error Builder::addModule(Module *M) {
118 if (M->getDataLayoutStr().empty())
119 return make_error<StringError>("input module has no datalayout",
120 inconvertibleErrorCode());
122 // Symbols in the llvm.used list will get the FB_Used bit and will not be
123 // internalized. We do this for llvm.compiler.used as well:
125 // IR symbol table tracks module-level asm symbol references but not inline
126 // asm. A symbol only referenced by inline asm is not in the IR symbol table,
127 // so we may not know that the definition (in another translation unit) is
128 // referenced. That definition may have __attribute__((used)) (which lowers to
129 // llvm.compiler.used on ELF targets) to communicate to the compiler that it
130 // may be used by inline asm. The usage is perfectly fine, so we treat
131 // llvm.compiler.used conservatively as llvm.used to work around our own
132 // limitation.
133 SmallVector<GlobalValue *, 4> UsedV;
134 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
135 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
136 SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
138 ModuleSymbolTable Msymtab;
139 Msymtab.addModule(M);
141 storage::Module Mod;
142 Mod.Begin = Syms.size();
143 Mod.End = Syms.size() + Msymtab.symbols().size();
144 Mod.UncBegin = Uncommons.size();
145 Mods.push_back(Mod);
147 if (TT.isOSBinFormatCOFF()) {
148 if (auto E = M->materializeMetadata())
149 return E;
150 if (NamedMDNode *LinkerOptions =
151 M->getNamedMetadata("llvm.linker.options")) {
152 for (MDNode *MDOptions : LinkerOptions->operands())
153 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
154 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
158 if (TT.isOSBinFormatELF()) {
159 if (auto E = M->materializeMetadata())
160 return E;
161 if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
162 for (MDNode *MDOptions : N->operands()) {
163 const auto OperandStr =
164 cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
165 storage::Str Specifier;
166 setStr(Specifier, OperandStr);
167 DependentLibraries.emplace_back(Specifier);
172 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
173 if (Error Err = addSymbol(Msymtab, Used, Msym))
174 return Err;
176 return Error::success();
179 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
180 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
181 if (P.second) {
182 std::string Name;
183 if (TT.isOSBinFormatCOFF()) {
184 const GlobalValue *GV = M->getNamedValue(C->getName());
185 if (!GV)
186 return make_error<StringError>("Could not find leader",
187 inconvertibleErrorCode());
188 // Internal leaders do not affect symbol resolution, therefore they do not
189 // appear in the symbol table.
190 if (GV->hasLocalLinkage()) {
191 P.first->second = -1;
192 return -1;
194 llvm::raw_string_ostream OS(Name);
195 Mang.getNameWithPrefix(OS, GV, false);
196 } else {
197 Name = std::string(C->getName());
200 storage::Comdat Comdat;
201 setStr(Comdat.Name, Saver.save(Name));
202 Comdat.SelectionKind = C->getSelectionKind();
203 Comdats.push_back(Comdat);
206 return P.first->second;
209 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
210 const SmallPtrSet<GlobalValue *, 4> &Used,
211 ModuleSymbolTable::Symbol Msym) {
212 Syms.emplace_back();
213 storage::Symbol &Sym = Syms.back();
214 Sym = {};
216 storage::Uncommon *Unc = nullptr;
217 auto Uncommon = [&]() -> storage::Uncommon & {
218 if (Unc)
219 return *Unc;
220 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
221 Uncommons.emplace_back();
222 Unc = &Uncommons.back();
223 *Unc = {};
224 setStr(Unc->COFFWeakExternFallbackName, "");
225 setStr(Unc->SectionName, "");
226 return *Unc;
229 SmallString<64> Name;
231 raw_svector_ostream OS(Name);
232 Msymtab.printSymbolName(OS, Msym);
234 setStr(Sym.Name, Saver.save(Name.str()));
236 auto Flags = Msymtab.getSymbolFlags(Msym);
237 if (Flags & object::BasicSymbolRef::SF_Undefined)
238 Sym.Flags |= 1 << storage::Symbol::FB_undefined;
239 if (Flags & object::BasicSymbolRef::SF_Weak)
240 Sym.Flags |= 1 << storage::Symbol::FB_weak;
241 if (Flags & object::BasicSymbolRef::SF_Common)
242 Sym.Flags |= 1 << storage::Symbol::FB_common;
243 if (Flags & object::BasicSymbolRef::SF_Indirect)
244 Sym.Flags |= 1 << storage::Symbol::FB_indirect;
245 if (Flags & object::BasicSymbolRef::SF_Global)
246 Sym.Flags |= 1 << storage::Symbol::FB_global;
247 if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
248 Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
249 if (Flags & object::BasicSymbolRef::SF_Executable)
250 Sym.Flags |= 1 << storage::Symbol::FB_executable;
252 Sym.ComdatIndex = -1;
253 auto *GV = Msym.dyn_cast<GlobalValue *>();
254 if (!GV) {
255 // Undefined module asm symbols act as GC roots and are implicitly used.
256 if (Flags & object::BasicSymbolRef::SF_Undefined)
257 Sym.Flags |= 1 << storage::Symbol::FB_used;
258 setStr(Sym.IRName, "");
259 return Error::success();
262 setStr(Sym.IRName, GV->getName());
264 bool IsBuiltinFunc = llvm::is_contained(LibcallRoutineNames, GV->getName());
266 if (Used.count(GV) || IsBuiltinFunc)
267 Sym.Flags |= 1 << storage::Symbol::FB_used;
268 if (GV->isThreadLocal())
269 Sym.Flags |= 1 << storage::Symbol::FB_tls;
270 if (GV->hasGlobalUnnamedAddr())
271 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
272 if (GV->canBeOmittedFromSymbolTable())
273 Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
274 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
276 if (Flags & object::BasicSymbolRef::SF_Common) {
277 auto *GVar = dyn_cast<GlobalVariable>(GV);
278 if (!GVar)
279 return make_error<StringError>("Only variables can have common linkage!",
280 inconvertibleErrorCode());
281 Uncommon().CommonSize =
282 GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType());
283 Uncommon().CommonAlign = GVar->getAlignment();
286 const GlobalObject *Base = GV->getBaseObject();
287 if (!Base)
288 return make_error<StringError>("Unable to determine comdat of alias!",
289 inconvertibleErrorCode());
290 if (const Comdat *C = Base->getComdat()) {
291 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
292 if (!ComdatIndexOrErr)
293 return ComdatIndexOrErr.takeError();
294 Sym.ComdatIndex = *ComdatIndexOrErr;
297 if (TT.isOSBinFormatCOFF()) {
298 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
300 if ((Flags & object::BasicSymbolRef::SF_Weak) &&
301 (Flags & object::BasicSymbolRef::SF_Indirect)) {
302 auto *Fallback = dyn_cast<GlobalValue>(
303 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
304 if (!Fallback)
305 return make_error<StringError>("Invalid weak external",
306 inconvertibleErrorCode());
307 std::string FallbackName;
308 raw_string_ostream OS(FallbackName);
309 Msymtab.printSymbolName(OS, Fallback);
310 OS.flush();
311 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
315 if (!Base->getSection().empty())
316 setStr(Uncommon().SectionName, Saver.save(Base->getSection()));
318 return Error::success();
321 Error Builder::build(ArrayRef<Module *> IRMods) {
322 storage::Header Hdr;
324 assert(!IRMods.empty());
325 Hdr.Version = storage::Header::kCurrentVersion;
326 setStr(Hdr.Producer, kExpectedProducerName);
327 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
328 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
329 TT = Triple(IRMods[0]->getTargetTriple());
331 for (auto *M : IRMods)
332 if (Error Err = addModule(M))
333 return Err;
335 COFFLinkerOptsOS.flush();
336 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
338 // We are about to fill in the header's range fields, so reserve space for it
339 // and copy it in afterwards.
340 Symtab.resize(sizeof(storage::Header));
341 writeRange(Hdr.Modules, Mods);
342 writeRange(Hdr.Comdats, Comdats);
343 writeRange(Hdr.Symbols, Syms);
344 writeRange(Hdr.Uncommons, Uncommons);
345 writeRange(Hdr.DependentLibraries, DependentLibraries);
346 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
347 return Error::success();
350 } // end anonymous namespace
352 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
353 StringTableBuilder &StrtabBuilder,
354 BumpPtrAllocator &Alloc) {
355 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
358 // Upgrade a vector of bitcode modules created by an old version of LLVM by
359 // creating an irsymtab for them in the current format.
360 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
361 FileContents FC;
363 LLVMContext Ctx;
364 std::vector<Module *> Mods;
365 std::vector<std::unique_ptr<Module>> OwnedMods;
366 for (auto BM : BMs) {
367 Expected<std::unique_ptr<Module>> MOrErr =
368 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
369 /*IsImporting*/ false);
370 if (!MOrErr)
371 return MOrErr.takeError();
373 Mods.push_back(MOrErr->get());
374 OwnedMods.push_back(std::move(*MOrErr));
377 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
378 BumpPtrAllocator Alloc;
379 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
380 return std::move(E);
382 StrtabBuilder.finalizeInOrder();
383 FC.Strtab.resize(StrtabBuilder.getSize());
384 StrtabBuilder.write((uint8_t *)FC.Strtab.data());
386 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
387 {FC.Strtab.data(), FC.Strtab.size()}};
388 return std::move(FC);
391 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
392 if (BFC.Mods.empty())
393 return make_error<StringError>("Bitcode file does not contain any modules",
394 inconvertibleErrorCode());
396 if (BFC.StrtabForSymtab.empty() ||
397 BFC.Symtab.size() < sizeof(storage::Header))
398 return upgrade(BFC.Mods);
400 // We cannot use the regular reader to read the version and producer, because
401 // it will expect the header to be in the current format. The only thing we
402 // can rely on is that the version and producer will be present as the first
403 // struct elements.
404 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
405 unsigned Version = Hdr->Version;
406 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
407 if (Version != storage::Header::kCurrentVersion ||
408 Producer != kExpectedProducerName)
409 return upgrade(BFC.Mods);
411 FileContents FC;
412 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
413 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
415 // Finally, make sure that the number of modules in the symbol table matches
416 // the number of modules in the bitcode file. If they differ, it may mean that
417 // the bitcode file was created by binary concatenation, so we need to create
418 // a new symbol table from scratch.
419 if (FC.TheReader.getNumModules() != BFC.Mods.size())
420 return upgrade(std::move(BFC.Mods));
422 return std::move(FC);