[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / ProfileData / InstrProf.cpp
bloba83b56ed67f1502ac622530b5faa80593d1c5898
1 //===- InstrProf.cpp - Instrumented profiling format support --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for clang's instrumentation based PGO and
10 // coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/InstrProf.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/Triple.h"
21 #include "llvm/Config/config.h"
22 #include "llvm/IR/Constant.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instruction.h"
28 #include "llvm/IR/LLVMContext.h"
29 #include "llvm/IR/MDBuilder.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/ProfileData/InstrProfReader.h"
34 #include "llvm/Support/Casting.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Compiler.h"
37 #include "llvm/Support/Compression.h"
38 #include "llvm/Support/Endian.h"
39 #include "llvm/Support/Error.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/LEB128.h"
42 #include "llvm/Support/ManagedStatic.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/Path.h"
45 #include "llvm/Support/SwapByteOrder.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstddef>
49 #include <cstdint>
50 #include <cstring>
51 #include <memory>
52 #include <string>
53 #include <system_error>
54 #include <utility>
55 #include <vector>
57 using namespace llvm;
59 static cl::opt<bool> StaticFuncFullModulePrefix(
60 "static-func-full-module-prefix", cl::init(true), cl::Hidden,
61 cl::desc("Use full module build paths in the profile counter names for "
62 "static functions."));
64 // This option is tailored to users that have different top-level directory in
65 // profile-gen and profile-use compilation. Users need to specific the number
66 // of levels to strip. A value larger than the number of directories in the
67 // source file will strip all the directory names and only leave the basename.
69 // Note current ThinLTO module importing for the indirect-calls assumes
70 // the source directory name not being stripped. A non-zero option value here
71 // can potentially prevent some inter-module indirect-call-promotions.
72 static cl::opt<unsigned> StaticFuncStripDirNamePrefix(
73 "static-func-strip-dirname-prefix", cl::init(0), cl::Hidden,
74 cl::desc("Strip specified level of directory name from source path in "
75 "the profile counter name for static functions."));
77 static std::string getInstrProfErrString(instrprof_error Err) {
78 switch (Err) {
79 case instrprof_error::success:
80 return "success";
81 case instrprof_error::eof:
82 return "end of File";
83 case instrprof_error::unrecognized_format:
84 return "unrecognized instrumentation profile encoding format";
85 case instrprof_error::bad_magic:
86 return "invalid instrumentation profile data (bad magic)";
87 case instrprof_error::bad_header:
88 return "invalid instrumentation profile data (file header is corrupt)";
89 case instrprof_error::unsupported_version:
90 return "unsupported instrumentation profile format version";
91 case instrprof_error::unsupported_hash_type:
92 return "unsupported instrumentation profile hash type";
93 case instrprof_error::too_large:
94 return "too much profile data";
95 case instrprof_error::truncated:
96 return "truncated profile data";
97 case instrprof_error::malformed:
98 return "malformed instrumentation profile data";
99 case instrprof_error::invalid_prof:
100 return "invalid profile created. Please file a bug "
101 "at: " BUG_REPORT_URL
102 " and include the profraw files that caused this error.";
103 case instrprof_error::unknown_function:
104 return "no profile data available for function";
105 case instrprof_error::hash_mismatch:
106 return "function control flow change detected (hash mismatch)";
107 case instrprof_error::count_mismatch:
108 return "function basic block count change detected (counter mismatch)";
109 case instrprof_error::counter_overflow:
110 return "counter overflow";
111 case instrprof_error::value_site_count_mismatch:
112 return "function value site count change detected (counter mismatch)";
113 case instrprof_error::compress_failed:
114 return "failed to compress data (zlib)";
115 case instrprof_error::uncompress_failed:
116 return "failed to uncompress data (zlib)";
117 case instrprof_error::empty_raw_profile:
118 return "empty raw profile file";
119 case instrprof_error::zlib_unavailable:
120 return "profile uses zlib compression but the profile reader was built "
121 "without zlib support";
123 llvm_unreachable("A value of instrprof_error has no message.");
126 namespace {
128 // FIXME: This class is only here to support the transition to llvm::Error. It
129 // will be removed once this transition is complete. Clients should prefer to
130 // deal with the Error value directly, rather than converting to error_code.
131 class InstrProfErrorCategoryType : public std::error_category {
132 const char *name() const noexcept override { return "llvm.instrprof"; }
134 std::string message(int IE) const override {
135 return getInstrProfErrString(static_cast<instrprof_error>(IE));
139 } // end anonymous namespace
141 static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
143 const std::error_category &llvm::instrprof_category() {
144 return *ErrorCategory;
147 namespace {
149 const char *InstrProfSectNameCommon[] = {
150 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
151 SectNameCommon,
152 #include "llvm/ProfileData/InstrProfData.inc"
155 const char *InstrProfSectNameCoff[] = {
156 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
157 SectNameCoff,
158 #include "llvm/ProfileData/InstrProfData.inc"
161 const char *InstrProfSectNamePrefix[] = {
162 #define INSTR_PROF_SECT_ENTRY(Kind, SectNameCommon, SectNameCoff, Prefix) \
163 Prefix,
164 #include "llvm/ProfileData/InstrProfData.inc"
167 } // namespace
169 namespace llvm {
171 cl::opt<bool> DoInstrProfNameCompression(
172 "enable-name-compression",
173 cl::desc("Enable name/filename string compression"), cl::init(true));
175 std::string getInstrProfSectionName(InstrProfSectKind IPSK,
176 Triple::ObjectFormatType OF,
177 bool AddSegmentInfo) {
178 std::string SectName;
180 if (OF == Triple::MachO && AddSegmentInfo)
181 SectName = InstrProfSectNamePrefix[IPSK];
183 if (OF == Triple::COFF)
184 SectName += InstrProfSectNameCoff[IPSK];
185 else
186 SectName += InstrProfSectNameCommon[IPSK];
188 if (OF == Triple::MachO && IPSK == IPSK_data && AddSegmentInfo)
189 SectName += ",regular,live_support";
191 return SectName;
194 void SoftInstrProfErrors::addError(instrprof_error IE) {
195 if (IE == instrprof_error::success)
196 return;
198 if (FirstError == instrprof_error::success)
199 FirstError = IE;
201 switch (IE) {
202 case instrprof_error::hash_mismatch:
203 ++NumHashMismatches;
204 break;
205 case instrprof_error::count_mismatch:
206 ++NumCountMismatches;
207 break;
208 case instrprof_error::counter_overflow:
209 ++NumCounterOverflows;
210 break;
211 case instrprof_error::value_site_count_mismatch:
212 ++NumValueSiteCountMismatches;
213 break;
214 default:
215 llvm_unreachable("Not a soft error");
219 std::string InstrProfError::message() const {
220 return getInstrProfErrString(Err);
223 char InstrProfError::ID = 0;
225 std::string getPGOFuncName(StringRef RawFuncName,
226 GlobalValue::LinkageTypes Linkage,
227 StringRef FileName,
228 uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
229 return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
232 // Strip NumPrefix level of directory name from PathNameStr. If the number of
233 // directory separators is less than NumPrefix, strip all the directories and
234 // leave base file name only.
235 static StringRef stripDirPrefix(StringRef PathNameStr, uint32_t NumPrefix) {
236 uint32_t Count = NumPrefix;
237 uint32_t Pos = 0, LastPos = 0;
238 for (auto & CI : PathNameStr) {
239 ++Pos;
240 if (llvm::sys::path::is_separator(CI)) {
241 LastPos = Pos;
242 --Count;
244 if (Count == 0)
245 break;
247 return PathNameStr.substr(LastPos);
250 // Return the PGOFuncName. This function has some special handling when called
251 // in LTO optimization. The following only applies when calling in LTO passes
252 // (when \c InLTO is true): LTO's internalization privatizes many global linkage
253 // symbols. This happens after value profile annotation, but those internal
254 // linkage functions should not have a source prefix.
255 // Additionally, for ThinLTO mode, exported internal functions are promoted
256 // and renamed. We need to ensure that the original internal PGO name is
257 // used when computing the GUID that is compared against the profiled GUIDs.
258 // To differentiate compiler generated internal symbols from original ones,
259 // PGOFuncName meta data are created and attached to the original internal
260 // symbols in the value profile annotation step
261 // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
262 // data, its original linkage must be non-internal.
263 std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
264 if (!InLTO) {
265 StringRef FileName(F.getParent()->getSourceFileName());
266 uint32_t StripLevel = StaticFuncFullModulePrefix ? 0 : (uint32_t)-1;
267 if (StripLevel < StaticFuncStripDirNamePrefix)
268 StripLevel = StaticFuncStripDirNamePrefix;
269 if (StripLevel)
270 FileName = stripDirPrefix(FileName, StripLevel);
271 return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version);
274 // In LTO mode (when InLTO is true), first check if there is a meta data.
275 if (MDNode *MD = getPGOFuncNameMetadata(F)) {
276 StringRef S = cast<MDString>(MD->getOperand(0))->getString();
277 return S.str();
280 // If there is no meta data, the function must be a global before the value
281 // profile annotation pass. Its current linkage may be internal if it is
282 // internalized in LTO mode.
283 return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
286 StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
287 if (FileName.empty())
288 return PGOFuncName;
289 // Drop the file name including ':'. See also getPGOFuncName.
290 if (PGOFuncName.startswith(FileName))
291 PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
292 return PGOFuncName;
295 // \p FuncName is the string used as profile lookup key for the function. A
296 // symbol is created to hold the name. Return the legalized symbol name.
297 std::string getPGOFuncNameVarName(StringRef FuncName,
298 GlobalValue::LinkageTypes Linkage) {
299 std::string VarName = std::string(getInstrProfNameVarPrefix());
300 VarName += FuncName;
302 if (!GlobalValue::isLocalLinkage(Linkage))
303 return VarName;
305 // Now fix up illegal chars in local VarName that may upset the assembler.
306 const char *InvalidChars = "-:<>/\"'";
307 size_t found = VarName.find_first_of(InvalidChars);
308 while (found != std::string::npos) {
309 VarName[found] = '_';
310 found = VarName.find_first_of(InvalidChars, found + 1);
312 return VarName;
315 GlobalVariable *createPGOFuncNameVar(Module &M,
316 GlobalValue::LinkageTypes Linkage,
317 StringRef PGOFuncName) {
318 // We generally want to match the function's linkage, but available_externally
319 // and extern_weak both have the wrong semantics, and anything that doesn't
320 // need to link across compilation units doesn't need to be visible at all.
321 if (Linkage == GlobalValue::ExternalWeakLinkage)
322 Linkage = GlobalValue::LinkOnceAnyLinkage;
323 else if (Linkage == GlobalValue::AvailableExternallyLinkage)
324 Linkage = GlobalValue::LinkOnceODRLinkage;
325 else if (Linkage == GlobalValue::InternalLinkage ||
326 Linkage == GlobalValue::ExternalLinkage)
327 Linkage = GlobalValue::PrivateLinkage;
329 auto *Value =
330 ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
331 auto FuncNameVar =
332 new GlobalVariable(M, Value->getType(), true, Linkage, Value,
333 getPGOFuncNameVarName(PGOFuncName, Linkage));
335 // Hide the symbol so that we correctly get a copy for each executable.
336 if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
337 FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
339 return FuncNameVar;
342 GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
343 return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
346 Error InstrProfSymtab::create(Module &M, bool InLTO) {
347 for (Function &F : M) {
348 // Function may not have a name: like using asm("") to overwrite the name.
349 // Ignore in this case.
350 if (!F.hasName())
351 continue;
352 const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
353 if (Error E = addFuncName(PGOFuncName))
354 return E;
355 MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
356 // In ThinLTO, local function may have been promoted to global and have
357 // suffix ".llvm." added to the function name. We need to add the
358 // stripped function name to the symbol table so that we can find a match
359 // from profile.
361 // We may have other suffixes similar as ".llvm." which are needed to
362 // be stripped before the matching, but ".__uniq." suffix which is used
363 // to differentiate internal linkage functions in different modules
364 // should be kept. Now this is the only suffix with the pattern ".xxx"
365 // which is kept before matching.
366 const std::string UniqSuffix = ".__uniq.";
367 auto pos = PGOFuncName.find(UniqSuffix);
368 // Search '.' after ".__uniq." if ".__uniq." exists, otherwise
369 // search '.' from the beginning.
370 if (pos != std::string::npos)
371 pos += UniqSuffix.length();
372 else
373 pos = 0;
374 pos = PGOFuncName.find('.', pos);
375 if (pos != std::string::npos && pos != 0) {
376 const std::string &OtherFuncName = PGOFuncName.substr(0, pos);
377 if (Error E = addFuncName(OtherFuncName))
378 return E;
379 MD5FuncMap.emplace_back(Function::getGUID(OtherFuncName), &F);
382 Sorted = false;
383 finalizeSymtab();
384 return Error::success();
387 uint64_t InstrProfSymtab::getFunctionHashFromAddress(uint64_t Address) {
388 finalizeSymtab();
389 auto It = partition_point(AddrToMD5Map, [=](std::pair<uint64_t, uint64_t> A) {
390 return A.first < Address;
392 // Raw function pointer collected by value profiler may be from
393 // external functions that are not instrumented. They won't have
394 // mapping data to be used by the deserializer. Force the value to
395 // be 0 in this case.
396 if (It != AddrToMD5Map.end() && It->first == Address)
397 return (uint64_t)It->second;
398 return 0;
401 Error collectPGOFuncNameStrings(ArrayRef<std::string> NameStrs,
402 bool doCompression, std::string &Result) {
403 assert(!NameStrs.empty() && "No name data to emit");
405 uint8_t Header[16], *P = Header;
406 std::string UncompressedNameStrings =
407 join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
409 assert(StringRef(UncompressedNameStrings)
410 .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
411 "PGO name is invalid (contains separator token)");
413 unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
414 P += EncLen;
416 auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) {
417 EncLen = encodeULEB128(CompressedLen, P);
418 P += EncLen;
419 char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
420 unsigned HeaderLen = P - &Header[0];
421 Result.append(HeaderStr, HeaderLen);
422 Result += InputStr;
423 return Error::success();
426 if (!doCompression) {
427 return WriteStringToResult(0, UncompressedNameStrings);
430 SmallString<128> CompressedNameStrings;
431 Error E = zlib::compress(StringRef(UncompressedNameStrings),
432 CompressedNameStrings, zlib::BestSizeCompression);
433 if (E) {
434 consumeError(std::move(E));
435 return make_error<InstrProfError>(instrprof_error::compress_failed);
438 return WriteStringToResult(CompressedNameStrings.size(),
439 CompressedNameStrings);
442 StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
443 auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
444 StringRef NameStr =
445 Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
446 return NameStr;
449 Error collectPGOFuncNameStrings(ArrayRef<GlobalVariable *> NameVars,
450 std::string &Result, bool doCompression) {
451 std::vector<std::string> NameStrs;
452 for (auto *NameVar : NameVars) {
453 NameStrs.push_back(std::string(getPGOFuncNameVarInitializer(NameVar)));
455 return collectPGOFuncNameStrings(
456 NameStrs, zlib::isAvailable() && doCompression, Result);
459 Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
460 const uint8_t *P = NameStrings.bytes_begin();
461 const uint8_t *EndP = NameStrings.bytes_end();
462 while (P < EndP) {
463 uint32_t N;
464 uint64_t UncompressedSize = decodeULEB128(P, &N);
465 P += N;
466 uint64_t CompressedSize = decodeULEB128(P, &N);
467 P += N;
468 bool isCompressed = (CompressedSize != 0);
469 SmallString<128> UncompressedNameStrings;
470 StringRef NameStrings;
471 if (isCompressed) {
472 if (!llvm::zlib::isAvailable())
473 return make_error<InstrProfError>(instrprof_error::zlib_unavailable);
475 StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
476 CompressedSize);
477 if (Error E =
478 zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
479 UncompressedSize)) {
480 consumeError(std::move(E));
481 return make_error<InstrProfError>(instrprof_error::uncompress_failed);
483 P += CompressedSize;
484 NameStrings = StringRef(UncompressedNameStrings.data(),
485 UncompressedNameStrings.size());
486 } else {
487 NameStrings =
488 StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
489 P += UncompressedSize;
491 // Now parse the name strings.
492 SmallVector<StringRef, 0> Names;
493 NameStrings.split(Names, getInstrProfNameSeparator());
494 for (StringRef &Name : Names)
495 if (Error E = Symtab.addFuncName(Name))
496 return E;
498 while (P < EndP && *P == 0)
499 P++;
501 return Error::success();
504 void InstrProfRecord::accumulateCounts(CountSumOrPercent &Sum) const {
505 uint64_t FuncSum = 0;
506 Sum.NumEntries += Counts.size();
507 for (size_t F = 0, E = Counts.size(); F < E; ++F)
508 FuncSum += Counts[F];
509 Sum.CountSum += FuncSum;
511 for (uint32_t VK = IPVK_First; VK <= IPVK_Last; ++VK) {
512 uint64_t KindSum = 0;
513 uint32_t NumValueSites = getNumValueSites(VK);
514 for (size_t I = 0; I < NumValueSites; ++I) {
515 uint32_t NV = getNumValueDataForSite(VK, I);
516 std::unique_ptr<InstrProfValueData[]> VD = getValueForSite(VK, I);
517 for (uint32_t V = 0; V < NV; V++)
518 KindSum += VD[V].Count;
520 Sum.ValueCounts[VK] += KindSum;
524 void InstrProfValueSiteRecord::overlap(InstrProfValueSiteRecord &Input,
525 uint32_t ValueKind,
526 OverlapStats &Overlap,
527 OverlapStats &FuncLevelOverlap) {
528 this->sortByTargetValues();
529 Input.sortByTargetValues();
530 double Score = 0.0f, FuncLevelScore = 0.0f;
531 auto I = ValueData.begin();
532 auto IE = ValueData.end();
533 auto J = Input.ValueData.begin();
534 auto JE = Input.ValueData.end();
535 while (I != IE && J != JE) {
536 if (I->Value == J->Value) {
537 Score += OverlapStats::score(I->Count, J->Count,
538 Overlap.Base.ValueCounts[ValueKind],
539 Overlap.Test.ValueCounts[ValueKind]);
540 FuncLevelScore += OverlapStats::score(
541 I->Count, J->Count, FuncLevelOverlap.Base.ValueCounts[ValueKind],
542 FuncLevelOverlap.Test.ValueCounts[ValueKind]);
543 ++I;
544 } else if (I->Value < J->Value) {
545 ++I;
546 continue;
548 ++J;
550 Overlap.Overlap.ValueCounts[ValueKind] += Score;
551 FuncLevelOverlap.Overlap.ValueCounts[ValueKind] += FuncLevelScore;
554 // Return false on mismatch.
555 void InstrProfRecord::overlapValueProfData(uint32_t ValueKind,
556 InstrProfRecord &Other,
557 OverlapStats &Overlap,
558 OverlapStats &FuncLevelOverlap) {
559 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
560 assert(ThisNumValueSites == Other.getNumValueSites(ValueKind));
561 if (!ThisNumValueSites)
562 return;
564 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
565 getOrCreateValueSitesForKind(ValueKind);
566 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
567 Other.getValueSitesForKind(ValueKind);
568 for (uint32_t I = 0; I < ThisNumValueSites; I++)
569 ThisSiteRecords[I].overlap(OtherSiteRecords[I], ValueKind, Overlap,
570 FuncLevelOverlap);
573 void InstrProfRecord::overlap(InstrProfRecord &Other, OverlapStats &Overlap,
574 OverlapStats &FuncLevelOverlap,
575 uint64_t ValueCutoff) {
576 // FuncLevel CountSum for other should already computed and nonzero.
577 assert(FuncLevelOverlap.Test.CountSum >= 1.0f);
578 accumulateCounts(FuncLevelOverlap.Base);
579 bool Mismatch = (Counts.size() != Other.Counts.size());
581 // Check if the value profiles mismatch.
582 if (!Mismatch) {
583 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) {
584 uint32_t ThisNumValueSites = getNumValueSites(Kind);
585 uint32_t OtherNumValueSites = Other.getNumValueSites(Kind);
586 if (ThisNumValueSites != OtherNumValueSites) {
587 Mismatch = true;
588 break;
592 if (Mismatch) {
593 Overlap.addOneMismatch(FuncLevelOverlap.Test);
594 return;
597 // Compute overlap for value counts.
598 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
599 overlapValueProfData(Kind, Other, Overlap, FuncLevelOverlap);
601 double Score = 0.0;
602 uint64_t MaxCount = 0;
603 // Compute overlap for edge counts.
604 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
605 Score += OverlapStats::score(Counts[I], Other.Counts[I],
606 Overlap.Base.CountSum, Overlap.Test.CountSum);
607 MaxCount = std::max(Other.Counts[I], MaxCount);
609 Overlap.Overlap.CountSum += Score;
610 Overlap.Overlap.NumEntries += 1;
612 if (MaxCount >= ValueCutoff) {
613 double FuncScore = 0.0;
614 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I)
615 FuncScore += OverlapStats::score(Counts[I], Other.Counts[I],
616 FuncLevelOverlap.Base.CountSum,
617 FuncLevelOverlap.Test.CountSum);
618 FuncLevelOverlap.Overlap.CountSum = FuncScore;
619 FuncLevelOverlap.Overlap.NumEntries = Other.Counts.size();
620 FuncLevelOverlap.Valid = true;
624 void InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
625 uint64_t Weight,
626 function_ref<void(instrprof_error)> Warn) {
627 this->sortByTargetValues();
628 Input.sortByTargetValues();
629 auto I = ValueData.begin();
630 auto IE = ValueData.end();
631 for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
632 ++J) {
633 while (I != IE && I->Value < J->Value)
634 ++I;
635 if (I != IE && I->Value == J->Value) {
636 bool Overflowed;
637 I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
638 if (Overflowed)
639 Warn(instrprof_error::counter_overflow);
640 ++I;
641 continue;
643 ValueData.insert(I, *J);
647 void InstrProfValueSiteRecord::scale(uint64_t N, uint64_t D,
648 function_ref<void(instrprof_error)> Warn) {
649 for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
650 bool Overflowed;
651 I->Count = SaturatingMultiply(I->Count, N, &Overflowed) / D;
652 if (Overflowed)
653 Warn(instrprof_error::counter_overflow);
657 // Merge Value Profile data from Src record to this record for ValueKind.
658 // Scale merged value counts by \p Weight.
659 void InstrProfRecord::mergeValueProfData(
660 uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight,
661 function_ref<void(instrprof_error)> Warn) {
662 uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
663 uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
664 if (ThisNumValueSites != OtherNumValueSites) {
665 Warn(instrprof_error::value_site_count_mismatch);
666 return;
668 if (!ThisNumValueSites)
669 return;
670 std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
671 getOrCreateValueSitesForKind(ValueKind);
672 MutableArrayRef<InstrProfValueSiteRecord> OtherSiteRecords =
673 Src.getValueSitesForKind(ValueKind);
674 for (uint32_t I = 0; I < ThisNumValueSites; I++)
675 ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight, Warn);
678 void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight,
679 function_ref<void(instrprof_error)> Warn) {
680 // If the number of counters doesn't match we either have bad data
681 // or a hash collision.
682 if (Counts.size() != Other.Counts.size()) {
683 Warn(instrprof_error::count_mismatch);
684 return;
687 for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
688 bool Overflowed;
689 Counts[I] =
690 SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
691 if (Overflowed)
692 Warn(instrprof_error::counter_overflow);
695 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
696 mergeValueProfData(Kind, Other, Weight, Warn);
699 void InstrProfRecord::scaleValueProfData(
700 uint32_t ValueKind, uint64_t N, uint64_t D,
701 function_ref<void(instrprof_error)> Warn) {
702 for (auto &R : getValueSitesForKind(ValueKind))
703 R.scale(N, D, Warn);
706 void InstrProfRecord::scale(uint64_t N, uint64_t D,
707 function_ref<void(instrprof_error)> Warn) {
708 assert(D != 0 && "D cannot be 0");
709 for (auto &Count : this->Counts) {
710 bool Overflowed;
711 Count = SaturatingMultiply(Count, N, &Overflowed) / D;
712 if (Overflowed)
713 Warn(instrprof_error::counter_overflow);
715 for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
716 scaleValueProfData(Kind, N, D, Warn);
719 // Map indirect call target name hash to name string.
720 uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
721 InstrProfSymtab *SymTab) {
722 if (!SymTab)
723 return Value;
725 if (ValueKind == IPVK_IndirectCallTarget)
726 return SymTab->getFunctionHashFromAddress(Value);
728 return Value;
731 void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
732 InstrProfValueData *VData, uint32_t N,
733 InstrProfSymtab *ValueMap) {
734 for (uint32_t I = 0; I < N; I++) {
735 VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
737 std::vector<InstrProfValueSiteRecord> &ValueSites =
738 getOrCreateValueSitesForKind(ValueKind);
739 if (N == 0)
740 ValueSites.emplace_back();
741 else
742 ValueSites.emplace_back(VData, VData + N);
745 #define INSTR_PROF_COMMON_API_IMPL
746 #include "llvm/ProfileData/InstrProfData.inc"
749 * ValueProfRecordClosure Interface implementation for InstrProfRecord
750 * class. These C wrappers are used as adaptors so that C++ code can be
751 * invoked as callbacks.
753 uint32_t getNumValueKindsInstrProf(const void *Record) {
754 return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
757 uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
758 return reinterpret_cast<const InstrProfRecord *>(Record)
759 ->getNumValueSites(VKind);
762 uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
763 return reinterpret_cast<const InstrProfRecord *>(Record)
764 ->getNumValueData(VKind);
767 uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
768 uint32_t S) {
769 return reinterpret_cast<const InstrProfRecord *>(R)
770 ->getNumValueDataForSite(VK, S);
773 void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
774 uint32_t K, uint32_t S) {
775 reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
778 ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
779 ValueProfData *VD =
780 (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
781 memset(VD, 0, TotalSizeInBytes);
782 return VD;
785 static ValueProfRecordClosure InstrProfRecordClosure = {
786 nullptr,
787 getNumValueKindsInstrProf,
788 getNumValueSitesInstrProf,
789 getNumValueDataInstrProf,
790 getNumValueDataForSiteInstrProf,
791 nullptr,
792 getValueForSiteInstrProf,
793 allocValueProfDataInstrProf};
795 // Wrapper implementation using the closure mechanism.
796 uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
797 auto Closure = InstrProfRecordClosure;
798 Closure.Record = &Record;
799 return getValueProfDataSize(&Closure);
802 // Wrapper implementation using the closure mechanism.
803 std::unique_ptr<ValueProfData>
804 ValueProfData::serializeFrom(const InstrProfRecord &Record) {
805 InstrProfRecordClosure.Record = &Record;
807 std::unique_ptr<ValueProfData> VPD(
808 serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
809 return VPD;
812 void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
813 InstrProfSymtab *SymTab) {
814 Record.reserveSites(Kind, NumValueSites);
816 InstrProfValueData *ValueData = getValueProfRecordValueData(this);
817 for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
818 uint8_t ValueDataCount = this->SiteCountArray[VSite];
819 Record.addValueData(Kind, VSite, ValueData, ValueDataCount, SymTab);
820 ValueData += ValueDataCount;
824 // For writing/serializing, Old is the host endianness, and New is
825 // byte order intended on disk. For Reading/deserialization, Old
826 // is the on-disk source endianness, and New is the host endianness.
827 void ValueProfRecord::swapBytes(support::endianness Old,
828 support::endianness New) {
829 using namespace support;
831 if (Old == New)
832 return;
834 if (getHostEndianness() != Old) {
835 sys::swapByteOrder<uint32_t>(NumValueSites);
836 sys::swapByteOrder<uint32_t>(Kind);
838 uint32_t ND = getValueProfRecordNumValueData(this);
839 InstrProfValueData *VD = getValueProfRecordValueData(this);
841 // No need to swap byte array: SiteCountArrray.
842 for (uint32_t I = 0; I < ND; I++) {
843 sys::swapByteOrder<uint64_t>(VD[I].Value);
844 sys::swapByteOrder<uint64_t>(VD[I].Count);
846 if (getHostEndianness() == Old) {
847 sys::swapByteOrder<uint32_t>(NumValueSites);
848 sys::swapByteOrder<uint32_t>(Kind);
852 void ValueProfData::deserializeTo(InstrProfRecord &Record,
853 InstrProfSymtab *SymTab) {
854 if (NumValueKinds == 0)
855 return;
857 ValueProfRecord *VR = getFirstValueProfRecord(this);
858 for (uint32_t K = 0; K < NumValueKinds; K++) {
859 VR->deserializeTo(Record, SymTab);
860 VR = getValueProfRecordNext(VR);
864 template <class T>
865 static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
866 using namespace support;
868 if (Orig == little)
869 return endian::readNext<T, little, unaligned>(D);
870 else
871 return endian::readNext<T, big, unaligned>(D);
874 static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
875 return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
876 ValueProfData());
879 Error ValueProfData::checkIntegrity() {
880 if (NumValueKinds > IPVK_Last + 1)
881 return make_error<InstrProfError>(instrprof_error::malformed);
882 // Total size needs to be mulltiple of quadword size.
883 if (TotalSize % sizeof(uint64_t))
884 return make_error<InstrProfError>(instrprof_error::malformed);
886 ValueProfRecord *VR = getFirstValueProfRecord(this);
887 for (uint32_t K = 0; K < this->NumValueKinds; K++) {
888 if (VR->Kind > IPVK_Last)
889 return make_error<InstrProfError>(instrprof_error::malformed);
890 VR = getValueProfRecordNext(VR);
891 if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
892 return make_error<InstrProfError>(instrprof_error::malformed);
894 return Error::success();
897 Expected<std::unique_ptr<ValueProfData>>
898 ValueProfData::getValueProfData(const unsigned char *D,
899 const unsigned char *const BufferEnd,
900 support::endianness Endianness) {
901 using namespace support;
903 if (D + sizeof(ValueProfData) > BufferEnd)
904 return make_error<InstrProfError>(instrprof_error::truncated);
906 const unsigned char *Header = D;
907 uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
908 if (D + TotalSize > BufferEnd)
909 return make_error<InstrProfError>(instrprof_error::too_large);
911 std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
912 memcpy(VPD.get(), D, TotalSize);
913 // Byte swap.
914 VPD->swapBytesToHost(Endianness);
916 Error E = VPD->checkIntegrity();
917 if (E)
918 return std::move(E);
920 return std::move(VPD);
923 void ValueProfData::swapBytesToHost(support::endianness Endianness) {
924 using namespace support;
926 if (Endianness == getHostEndianness())
927 return;
929 sys::swapByteOrder<uint32_t>(TotalSize);
930 sys::swapByteOrder<uint32_t>(NumValueKinds);
932 ValueProfRecord *VR = getFirstValueProfRecord(this);
933 for (uint32_t K = 0; K < NumValueKinds; K++) {
934 VR->swapBytes(Endianness, getHostEndianness());
935 VR = getValueProfRecordNext(VR);
939 void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
940 using namespace support;
942 if (Endianness == getHostEndianness())
943 return;
945 ValueProfRecord *VR = getFirstValueProfRecord(this);
946 for (uint32_t K = 0; K < NumValueKinds; K++) {
947 ValueProfRecord *NVR = getValueProfRecordNext(VR);
948 VR->swapBytes(getHostEndianness(), Endianness);
949 VR = NVR;
951 sys::swapByteOrder<uint32_t>(TotalSize);
952 sys::swapByteOrder<uint32_t>(NumValueKinds);
955 void annotateValueSite(Module &M, Instruction &Inst,
956 const InstrProfRecord &InstrProfR,
957 InstrProfValueKind ValueKind, uint32_t SiteIdx,
958 uint32_t MaxMDCount) {
959 uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
960 if (!NV)
961 return;
963 uint64_t Sum = 0;
964 std::unique_ptr<InstrProfValueData[]> VD =
965 InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
967 ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
968 annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
971 void annotateValueSite(Module &M, Instruction &Inst,
972 ArrayRef<InstrProfValueData> VDs,
973 uint64_t Sum, InstrProfValueKind ValueKind,
974 uint32_t MaxMDCount) {
975 LLVMContext &Ctx = M.getContext();
976 MDBuilder MDHelper(Ctx);
977 SmallVector<Metadata *, 3> Vals;
978 // Tag
979 Vals.push_back(MDHelper.createString("VP"));
980 // Value Kind
981 Vals.push_back(MDHelper.createConstant(
982 ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
983 // Total Count
984 Vals.push_back(
985 MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
987 // Value Profile Data
988 uint32_t MDCount = MaxMDCount;
989 for (auto &VD : VDs) {
990 Vals.push_back(MDHelper.createConstant(
991 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
992 Vals.push_back(MDHelper.createConstant(
993 ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
994 if (--MDCount == 0)
995 break;
997 Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
1000 bool getValueProfDataFromInst(const Instruction &Inst,
1001 InstrProfValueKind ValueKind,
1002 uint32_t MaxNumValueData,
1003 InstrProfValueData ValueData[],
1004 uint32_t &ActualNumValueData, uint64_t &TotalC,
1005 bool GetNoICPValue) {
1006 MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
1007 if (!MD)
1008 return false;
1010 unsigned NOps = MD->getNumOperands();
1012 if (NOps < 5)
1013 return false;
1015 // Operand 0 is a string tag "VP":
1016 MDString *Tag = cast<MDString>(MD->getOperand(0));
1017 if (!Tag)
1018 return false;
1020 if (!Tag->getString().equals("VP"))
1021 return false;
1023 // Now check kind:
1024 ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
1025 if (!KindInt)
1026 return false;
1027 if (KindInt->getZExtValue() != ValueKind)
1028 return false;
1030 // Get total count
1031 ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
1032 if (!TotalCInt)
1033 return false;
1034 TotalC = TotalCInt->getZExtValue();
1036 ActualNumValueData = 0;
1038 for (unsigned I = 3; I < NOps; I += 2) {
1039 if (ActualNumValueData >= MaxNumValueData)
1040 break;
1041 ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
1042 ConstantInt *Count =
1043 mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
1044 if (!Value || !Count)
1045 return false;
1046 uint64_t CntValue = Count->getZExtValue();
1047 if (!GetNoICPValue && (CntValue == NOMORE_ICP_MAGICNUM))
1048 continue;
1049 ValueData[ActualNumValueData].Value = Value->getZExtValue();
1050 ValueData[ActualNumValueData].Count = CntValue;
1051 ActualNumValueData++;
1053 return true;
1056 MDNode *getPGOFuncNameMetadata(const Function &F) {
1057 return F.getMetadata(getPGOFuncNameMetadataName());
1060 void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) {
1061 // Only for internal linkage functions.
1062 if (PGOFuncName == F.getName())
1063 return;
1064 // Don't create duplicated meta-data.
1065 if (getPGOFuncNameMetadata(F))
1066 return;
1067 LLVMContext &C = F.getContext();
1068 MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName));
1069 F.setMetadata(getPGOFuncNameMetadataName(), N);
1072 bool needsComdatForCounter(const Function &F, const Module &M) {
1073 if (F.hasComdat())
1074 return true;
1076 if (!Triple(M.getTargetTriple()).supportsCOMDAT())
1077 return false;
1079 // See createPGOFuncNameVar for more details. To avoid link errors, profile
1080 // counters for function with available_externally linkage needs to be changed
1081 // to linkonce linkage. On ELF based systems, this leads to weak symbols to be
1082 // created. Without using comdat, duplicate entries won't be removed by the
1083 // linker leading to increased data segement size and raw profile size. Even
1084 // worse, since the referenced counter from profile per-function data object
1085 // will be resolved to the common strong definition, the profile counts for
1086 // available_externally functions will end up being duplicated in raw profile
1087 // data. This can result in distorted profile as the counts of those dups
1088 // will be accumulated by the profile merger.
1089 GlobalValue::LinkageTypes Linkage = F.getLinkage();
1090 if (Linkage != GlobalValue::ExternalWeakLinkage &&
1091 Linkage != GlobalValue::AvailableExternallyLinkage)
1092 return false;
1094 return true;
1097 // Check if INSTR_PROF_RAW_VERSION_VAR is defined.
1098 bool isIRPGOFlagSet(const Module *M) {
1099 auto IRInstrVar =
1100 M->getNamedGlobal(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1101 if (!IRInstrVar || IRInstrVar->isDeclaration() ||
1102 IRInstrVar->hasLocalLinkage())
1103 return false;
1105 // Check if the flag is set.
1106 if (!IRInstrVar->hasInitializer())
1107 return false;
1109 auto *InitVal = dyn_cast_or_null<ConstantInt>(IRInstrVar->getInitializer());
1110 if (!InitVal)
1111 return false;
1112 return (InitVal->getZExtValue() & VARIANT_MASK_IR_PROF) != 0;
1115 // Check if we can safely rename this Comdat function.
1116 bool canRenameComdatFunc(const Function &F, bool CheckAddressTaken) {
1117 if (F.getName().empty())
1118 return false;
1119 if (!needsComdatForCounter(F, *(F.getParent())))
1120 return false;
1121 // Unsafe to rename the address-taken function (which can be used in
1122 // function comparison).
1123 if (CheckAddressTaken && F.hasAddressTaken())
1124 return false;
1125 // Only safe to do if this function may be discarded if it is not used
1126 // in the compilation unit.
1127 if (!GlobalValue::isDiscardableIfUnused(F.getLinkage()))
1128 return false;
1130 // For AvailableExternallyLinkage functions.
1131 if (!F.hasComdat()) {
1132 assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage);
1133 return true;
1135 return true;
1138 // Create a COMDAT variable INSTR_PROF_RAW_VERSION_VAR to make the runtime
1139 // aware this is an ir_level profile so it can set the version flag.
1140 void createIRLevelProfileFlagVar(Module &M, bool IsCS,
1141 bool InstrEntryBBEnabled) {
1142 const StringRef VarName(INSTR_PROF_QUOTE(INSTR_PROF_RAW_VERSION_VAR));
1143 Type *IntTy64 = Type::getInt64Ty(M.getContext());
1144 uint64_t ProfileVersion = (INSTR_PROF_RAW_VERSION | VARIANT_MASK_IR_PROF);
1145 if (IsCS)
1146 ProfileVersion |= VARIANT_MASK_CSIR_PROF;
1147 if (InstrEntryBBEnabled)
1148 ProfileVersion |= VARIANT_MASK_INSTR_ENTRY;
1149 auto IRLevelVersionVariable = new GlobalVariable(
1150 M, IntTy64, true, GlobalValue::WeakAnyLinkage,
1151 Constant::getIntegerValue(IntTy64, APInt(64, ProfileVersion)), VarName);
1152 IRLevelVersionVariable->setVisibility(GlobalValue::DefaultVisibility);
1153 Triple TT(M.getTargetTriple());
1154 if (TT.supportsCOMDAT()) {
1155 IRLevelVersionVariable->setLinkage(GlobalValue::ExternalLinkage);
1156 IRLevelVersionVariable->setComdat(M.getOrInsertComdat(VarName));
1160 // Create the variable for the profile file name.
1161 void createProfileFileNameVar(Module &M, StringRef InstrProfileOutput) {
1162 if (InstrProfileOutput.empty())
1163 return;
1164 Constant *ProfileNameConst =
1165 ConstantDataArray::getString(M.getContext(), InstrProfileOutput, true);
1166 GlobalVariable *ProfileNameVar = new GlobalVariable(
1167 M, ProfileNameConst->getType(), true, GlobalValue::WeakAnyLinkage,
1168 ProfileNameConst, INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR));
1169 Triple TT(M.getTargetTriple());
1170 if (TT.supportsCOMDAT()) {
1171 ProfileNameVar->setLinkage(GlobalValue::ExternalLinkage);
1172 ProfileNameVar->setComdat(M.getOrInsertComdat(
1173 StringRef(INSTR_PROF_QUOTE(INSTR_PROF_PROFILE_NAME_VAR))));
1177 Error OverlapStats::accumulateCounts(const std::string &BaseFilename,
1178 const std::string &TestFilename,
1179 bool IsCS) {
1180 auto getProfileSum = [IsCS](const std::string &Filename,
1181 CountSumOrPercent &Sum) -> Error {
1182 auto ReaderOrErr = InstrProfReader::create(Filename);
1183 if (Error E = ReaderOrErr.takeError()) {
1184 return E;
1186 auto Reader = std::move(ReaderOrErr.get());
1187 Reader->accumulateCounts(Sum, IsCS);
1188 return Error::success();
1190 auto Ret = getProfileSum(BaseFilename, Base);
1191 if (Ret)
1192 return Ret;
1193 Ret = getProfileSum(TestFilename, Test);
1194 if (Ret)
1195 return Ret;
1196 this->BaseFilename = &BaseFilename;
1197 this->TestFilename = &TestFilename;
1198 Valid = true;
1199 return Error::success();
1202 void OverlapStats::addOneMismatch(const CountSumOrPercent &MismatchFunc) {
1203 Mismatch.NumEntries += 1;
1204 Mismatch.CountSum += MismatchFunc.CountSum / Test.CountSum;
1205 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1206 if (Test.ValueCounts[I] >= 1.0f)
1207 Mismatch.ValueCounts[I] +=
1208 MismatchFunc.ValueCounts[I] / Test.ValueCounts[I];
1212 void OverlapStats::addOneUnique(const CountSumOrPercent &UniqueFunc) {
1213 Unique.NumEntries += 1;
1214 Unique.CountSum += UniqueFunc.CountSum / Test.CountSum;
1215 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1216 if (Test.ValueCounts[I] >= 1.0f)
1217 Unique.ValueCounts[I] += UniqueFunc.ValueCounts[I] / Test.ValueCounts[I];
1221 void OverlapStats::dump(raw_fd_ostream &OS) const {
1222 if (!Valid)
1223 return;
1225 const char *EntryName =
1226 (Level == ProgramLevel ? "functions" : "edge counters");
1227 if (Level == ProgramLevel) {
1228 OS << "Profile overlap infomation for base_profile: " << *BaseFilename
1229 << " and test_profile: " << *TestFilename << "\nProgram level:\n";
1230 } else {
1231 OS << "Function level:\n"
1232 << " Function: " << FuncName << " (Hash=" << FuncHash << ")\n";
1235 OS << " # of " << EntryName << " overlap: " << Overlap.NumEntries << "\n";
1236 if (Mismatch.NumEntries)
1237 OS << " # of " << EntryName << " mismatch: " << Mismatch.NumEntries
1238 << "\n";
1239 if (Unique.NumEntries)
1240 OS << " # of " << EntryName
1241 << " only in test_profile: " << Unique.NumEntries << "\n";
1243 OS << " Edge profile overlap: " << format("%.3f%%", Overlap.CountSum * 100)
1244 << "\n";
1245 if (Mismatch.NumEntries)
1246 OS << " Mismatched count percentage (Edge): "
1247 << format("%.3f%%", Mismatch.CountSum * 100) << "\n";
1248 if (Unique.NumEntries)
1249 OS << " Percentage of Edge profile only in test_profile: "
1250 << format("%.3f%%", Unique.CountSum * 100) << "\n";
1251 OS << " Edge profile base count sum: " << format("%.0f", Base.CountSum)
1252 << "\n"
1253 << " Edge profile test count sum: " << format("%.0f", Test.CountSum)
1254 << "\n";
1256 for (unsigned I = 0; I < IPVK_Last - IPVK_First + 1; I++) {
1257 if (Base.ValueCounts[I] < 1.0f && Test.ValueCounts[I] < 1.0f)
1258 continue;
1259 char ProfileKindName[20];
1260 switch (I) {
1261 case IPVK_IndirectCallTarget:
1262 strncpy(ProfileKindName, "IndirectCall", 19);
1263 break;
1264 case IPVK_MemOPSize:
1265 strncpy(ProfileKindName, "MemOP", 19);
1266 break;
1267 default:
1268 snprintf(ProfileKindName, 19, "VP[%d]", I);
1269 break;
1271 OS << " " << ProfileKindName
1272 << " profile overlap: " << format("%.3f%%", Overlap.ValueCounts[I] * 100)
1273 << "\n";
1274 if (Mismatch.NumEntries)
1275 OS << " Mismatched count percentage (" << ProfileKindName
1276 << "): " << format("%.3f%%", Mismatch.ValueCounts[I] * 100) << "\n";
1277 if (Unique.NumEntries)
1278 OS << " Percentage of " << ProfileKindName
1279 << " profile only in test_profile: "
1280 << format("%.3f%%", Unique.ValueCounts[I] * 100) << "\n";
1281 OS << " " << ProfileKindName
1282 << " profile base count sum: " << format("%.0f", Base.ValueCounts[I])
1283 << "\n"
1284 << " " << ProfileKindName
1285 << " profile test count sum: " << format("%.0f", Test.ValueCounts[I])
1286 << "\n";
1290 } // end namespace llvm