[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / ProfileData / ProfileSummaryBuilder.cpp
blob2ab0f0cbc17a58aa1e00a400f20bc8e18ca36cef
1 //=-- ProfilesummaryBuilder.cpp - Profile summary computation ---------------=//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for computing profile summary data.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Attributes.h"
14 #include "llvm/IR/Function.h"
15 #include "llvm/IR/Metadata.h"
16 #include "llvm/IR/Type.h"
17 #include "llvm/ProfileData/InstrProf.h"
18 #include "llvm/ProfileData/ProfileCommon.h"
19 #include "llvm/ProfileData/SampleProf.h"
20 #include "llvm/Support/Casting.h"
21 #include "llvm/Support/CommandLine.h"
23 using namespace llvm;
25 cl::opt<bool> UseContextLessSummary(
26 "profile-summary-contextless", cl::Hidden, cl::init(false), cl::ZeroOrMore,
27 cl::desc("Merge context profiles before calculating thresholds."));
29 // The following two parameters determine the threshold for a count to be
30 // considered hot/cold. These two parameters are percentile values (multiplied
31 // by 10000). If the counts are sorted in descending order, the minimum count to
32 // reach ProfileSummaryCutoffHot gives the threshold to determine a hot count.
33 // Similarly, the minimum count to reach ProfileSummaryCutoffCold gives the
34 // threshold for determining cold count (everything <= this threshold is
35 // considered cold).
36 cl::opt<int> ProfileSummaryCutoffHot(
37 "profile-summary-cutoff-hot", cl::Hidden, cl::init(990000), cl::ZeroOrMore,
38 cl::desc("A count is hot if it exceeds the minimum count to"
39 " reach this percentile of total counts."));
41 cl::opt<int> ProfileSummaryCutoffCold(
42 "profile-summary-cutoff-cold", cl::Hidden, cl::init(999999), cl::ZeroOrMore,
43 cl::desc("A count is cold if it is below the minimum count"
44 " to reach this percentile of total counts."));
46 cl::opt<unsigned> ProfileSummaryHugeWorkingSetSizeThreshold(
47 "profile-summary-huge-working-set-size-threshold", cl::Hidden,
48 cl::init(15000), cl::ZeroOrMore,
49 cl::desc("The code working set size is considered huge if the number of"
50 " blocks required to reach the -profile-summary-cutoff-hot"
51 " percentile exceeds this count."));
53 cl::opt<unsigned> ProfileSummaryLargeWorkingSetSizeThreshold(
54 "profile-summary-large-working-set-size-threshold", cl::Hidden,
55 cl::init(12500), cl::ZeroOrMore,
56 cl::desc("The code working set size is considered large if the number of"
57 " blocks required to reach the -profile-summary-cutoff-hot"
58 " percentile exceeds this count."));
60 // The next two options override the counts derived from summary computation and
61 // are useful for debugging purposes.
62 cl::opt<int> ProfileSummaryHotCount(
63 "profile-summary-hot-count", cl::ReallyHidden, cl::ZeroOrMore,
64 cl::desc("A fixed hot count that overrides the count derived from"
65 " profile-summary-cutoff-hot"));
67 cl::opt<int> ProfileSummaryColdCount(
68 "profile-summary-cold-count", cl::ReallyHidden, cl::ZeroOrMore,
69 cl::desc("A fixed cold count that overrides the count derived from"
70 " profile-summary-cutoff-cold"));
72 // A set of cutoff values. Each value, when divided by ProfileSummary::Scale
73 // (which is 1000000) is a desired percentile of total counts.
74 static const uint32_t DefaultCutoffsData[] = {
75 10000, /* 1% */
76 100000, /* 10% */
77 200000, 300000, 400000, 500000, 600000, 700000, 800000,
78 900000, 950000, 990000, 999000, 999900, 999990, 999999};
79 const ArrayRef<uint32_t> ProfileSummaryBuilder::DefaultCutoffs =
80 DefaultCutoffsData;
82 const ProfileSummaryEntry &
83 ProfileSummaryBuilder::getEntryForPercentile(SummaryEntryVector &DS,
84 uint64_t Percentile) {
85 auto It = partition_point(DS, [=](const ProfileSummaryEntry &Entry) {
86 return Entry.Cutoff < Percentile;
87 });
88 // The required percentile has to be <= one of the percentiles in the
89 // detailed summary.
90 if (It == DS.end())
91 report_fatal_error("Desired percentile exceeds the maximum cutoff");
92 return *It;
95 void InstrProfSummaryBuilder::addRecord(const InstrProfRecord &R) {
96 // The first counter is not necessarily an entry count for IR
97 // instrumentation profiles.
98 // Eventually MaxFunctionCount will become obsolete and this can be
99 // removed.
100 addEntryCount(R.Counts[0]);
101 for (size_t I = 1, E = R.Counts.size(); I < E; ++I)
102 addInternalCount(R.Counts[I]);
105 // To compute the detailed summary, we consider each line containing samples as
106 // equivalent to a block with a count in the instrumented profile.
107 void SampleProfileSummaryBuilder::addRecord(
108 const sampleprof::FunctionSamples &FS, bool isCallsiteSample) {
109 if (!isCallsiteSample) {
110 NumFunctions++;
111 if (FS.getHeadSamples() > MaxFunctionCount)
112 MaxFunctionCount = FS.getHeadSamples();
114 for (const auto &I : FS.getBodySamples()) {
115 uint64_t Count = I.second.getSamples();
116 addCount(Count);
118 for (const auto &I : FS.getCallsiteSamples())
119 for (const auto &CS : I.second)
120 addRecord(CS.second, true);
123 // The argument to this method is a vector of cutoff percentages and the return
124 // value is a vector of (Cutoff, MinCount, NumCounts) triplets.
125 void ProfileSummaryBuilder::computeDetailedSummary() {
126 if (DetailedSummaryCutoffs.empty())
127 return;
128 llvm::sort(DetailedSummaryCutoffs);
129 auto Iter = CountFrequencies.begin();
130 const auto End = CountFrequencies.end();
132 uint32_t CountsSeen = 0;
133 uint64_t CurrSum = 0, Count = 0;
135 for (const uint32_t Cutoff : DetailedSummaryCutoffs) {
136 assert(Cutoff <= 999999);
137 APInt Temp(128, TotalCount);
138 APInt N(128, Cutoff);
139 APInt D(128, ProfileSummary::Scale);
140 Temp *= N;
141 Temp = Temp.sdiv(D);
142 uint64_t DesiredCount = Temp.getZExtValue();
143 assert(DesiredCount <= TotalCount);
144 while (CurrSum < DesiredCount && Iter != End) {
145 Count = Iter->first;
146 uint32_t Freq = Iter->second;
147 CurrSum += (Count * Freq);
148 CountsSeen += Freq;
149 Iter++;
151 assert(CurrSum >= DesiredCount);
152 ProfileSummaryEntry PSE = {Cutoff, Count, CountsSeen};
153 DetailedSummary.push_back(PSE);
157 uint64_t ProfileSummaryBuilder::getHotCountThreshold(SummaryEntryVector &DS) {
158 auto &HotEntry =
159 ProfileSummaryBuilder::getEntryForPercentile(DS, ProfileSummaryCutoffHot);
160 uint64_t HotCountThreshold = HotEntry.MinCount;
161 if (ProfileSummaryHotCount.getNumOccurrences() > 0)
162 HotCountThreshold = ProfileSummaryHotCount;
163 return HotCountThreshold;
166 uint64_t ProfileSummaryBuilder::getColdCountThreshold(SummaryEntryVector &DS) {
167 auto &ColdEntry = ProfileSummaryBuilder::getEntryForPercentile(
168 DS, ProfileSummaryCutoffCold);
169 uint64_t ColdCountThreshold = ColdEntry.MinCount;
170 if (ProfileSummaryColdCount.getNumOccurrences() > 0)
171 ColdCountThreshold = ProfileSummaryColdCount;
172 return ColdCountThreshold;
175 std::unique_ptr<ProfileSummary> SampleProfileSummaryBuilder::getSummary() {
176 computeDetailedSummary();
177 return std::make_unique<ProfileSummary>(
178 ProfileSummary::PSK_Sample, DetailedSummary, TotalCount, MaxCount, 0,
179 MaxFunctionCount, NumCounts, NumFunctions);
182 std::unique_ptr<ProfileSummary>
183 SampleProfileSummaryBuilder::computeSummaryForProfiles(
184 const StringMap<sampleprof::FunctionSamples> &Profiles) {
185 assert(NumFunctions == 0 &&
186 "This can only be called on an empty summary builder");
187 StringMap<sampleprof::FunctionSamples> ContextLessProfiles;
188 const StringMap<sampleprof::FunctionSamples> *ProfilesToUse = &Profiles;
189 // For CSSPGO, context-sensitive profile effectively split a function profile
190 // into many copies each representing the CFG profile of a particular calling
191 // context. That makes the count distribution looks more flat as we now have
192 // more function profiles each with lower counts, which in turn leads to lower
193 // hot thresholds. To compensate for that, by defauly we merge context
194 // profiles before coumputing profile summary.
195 if (UseContextLessSummary || (sampleprof::FunctionSamples::ProfileIsCS &&
196 !UseContextLessSummary.getNumOccurrences())) {
197 for (const auto &I : Profiles) {
198 ContextLessProfiles[I.second.getName()].merge(I.second);
200 ProfilesToUse = &ContextLessProfiles;
203 for (const auto &I : *ProfilesToUse) {
204 const sampleprof::FunctionSamples &Profile = I.second;
205 addRecord(Profile);
208 return getSummary();
211 std::unique_ptr<ProfileSummary> InstrProfSummaryBuilder::getSummary() {
212 computeDetailedSummary();
213 return std::make_unique<ProfileSummary>(
214 ProfileSummary::PSK_Instr, DetailedSummary, TotalCount, MaxCount,
215 MaxInternalBlockCount, MaxFunctionCount, NumCounts, NumFunctions);
218 void InstrProfSummaryBuilder::addEntryCount(uint64_t Count) {
219 NumFunctions++;
221 // Skip invalid count.
222 if (Count == (uint64_t)-1)
223 return;
225 addCount(Count);
226 if (Count > MaxFunctionCount)
227 MaxFunctionCount = Count;
230 void InstrProfSummaryBuilder::addInternalCount(uint64_t Count) {
231 // Skip invalid count.
232 if (Count == (uint64_t)-1)
233 return;
235 addCount(Count);
236 if (Count > MaxInternalBlockCount)
237 MaxInternalBlockCount = Count;