[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Support / FoldingSet.cpp
blobe3d7168305af5e9a846fb58dc472c232c05d90ba
1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a hash set that can be used to remove duplication of
10 // nodes in a graph.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ADT/FoldingSet.h"
15 #include "llvm/ADT/Hashing.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/Host.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <cstring>
23 using namespace llvm;
25 //===----------------------------------------------------------------------===//
26 // FoldingSetNodeIDRef Implementation
28 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
29 /// used to lookup the node in the FoldingSetBase.
30 unsigned FoldingSetNodeIDRef::ComputeHash() const {
31 return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
34 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
35 if (Size != RHS.Size) return false;
36 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
39 /// Used to compare the "ordering" of two nodes as defined by the
40 /// profiled bits and their ordering defined by memcmp().
41 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
42 if (Size != RHS.Size)
43 return Size < RHS.Size;
44 return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
47 //===----------------------------------------------------------------------===//
48 // FoldingSetNodeID Implementation
50 /// Add* - Add various data types to Bit data.
51 ///
52 void FoldingSetNodeID::AddPointer(const void *Ptr) {
53 // Note: this adds pointers to the hash using sizes and endianness that
54 // depend on the host. It doesn't matter, however, because hashing on
55 // pointer values is inherently unstable. Nothing should depend on the
56 // ordering of nodes in the folding set.
57 static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
58 "unexpected pointer size");
59 AddInteger(reinterpret_cast<uintptr_t>(Ptr));
61 void FoldingSetNodeID::AddInteger(signed I) {
62 Bits.push_back(I);
64 void FoldingSetNodeID::AddInteger(unsigned I) {
65 Bits.push_back(I);
67 void FoldingSetNodeID::AddInteger(long I) {
68 AddInteger((unsigned long)I);
70 void FoldingSetNodeID::AddInteger(unsigned long I) {
71 if (sizeof(long) == sizeof(int))
72 AddInteger(unsigned(I));
73 else if (sizeof(long) == sizeof(long long)) {
74 AddInteger((unsigned long long)I);
75 } else {
76 llvm_unreachable("unexpected sizeof(long)");
79 void FoldingSetNodeID::AddInteger(long long I) {
80 AddInteger((unsigned long long)I);
82 void FoldingSetNodeID::AddInteger(unsigned long long I) {
83 AddInteger(unsigned(I));
84 AddInteger(unsigned(I >> 32));
87 void FoldingSetNodeID::AddString(StringRef String) {
88 unsigned Size = String.size();
90 unsigned NumInserts = 1 + divideCeil(Size, 4);
91 Bits.reserve(Bits.size() + NumInserts);
93 Bits.push_back(Size);
94 if (!Size) return;
96 unsigned Units = Size / 4;
97 unsigned Pos = 0;
98 const unsigned *Base = (const unsigned*) String.data();
100 // If the string is aligned do a bulk transfer.
101 if (!((intptr_t)Base & 3)) {
102 Bits.append(Base, Base + Units);
103 Pos = (Units + 1) * 4;
104 } else {
105 // Otherwise do it the hard way.
106 // To be compatible with above bulk transfer, we need to take endianness
107 // into account.
108 static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
109 "Unexpected host endianness");
110 if (sys::IsBigEndianHost) {
111 for (Pos += 4; Pos <= Size; Pos += 4) {
112 unsigned V = ((unsigned char)String[Pos - 4] << 24) |
113 ((unsigned char)String[Pos - 3] << 16) |
114 ((unsigned char)String[Pos - 2] << 8) |
115 (unsigned char)String[Pos - 1];
116 Bits.push_back(V);
118 } else { // Little-endian host
119 for (Pos += 4; Pos <= Size; Pos += 4) {
120 unsigned V = ((unsigned char)String[Pos - 1] << 24) |
121 ((unsigned char)String[Pos - 2] << 16) |
122 ((unsigned char)String[Pos - 3] << 8) |
123 (unsigned char)String[Pos - 4];
124 Bits.push_back(V);
129 // With the leftover bits.
130 unsigned V = 0;
131 // Pos will have overshot size by 4 - #bytes left over.
132 // No need to take endianness into account here - this is always executed.
133 switch (Pos - Size) {
134 case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
135 case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
136 case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
137 default: return; // Nothing left.
140 Bits.push_back(V);
143 // AddNodeID - Adds the Bit data of another ID to *this.
144 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
145 Bits.append(ID.Bits.begin(), ID.Bits.end());
148 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to
149 /// lookup the node in the FoldingSetBase.
150 unsigned FoldingSetNodeID::ComputeHash() const {
151 return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
154 /// operator== - Used to compare two nodes to each other.
156 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
157 return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
160 /// operator== - Used to compare two nodes to each other.
162 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
163 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
166 /// Used to compare the "ordering" of two nodes as defined by the
167 /// profiled bits and their ordering defined by memcmp().
168 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
169 return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
172 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
173 return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
176 /// Intern - Copy this node's data to a memory region allocated from the
177 /// given allocator and return a FoldingSetNodeIDRef describing the
178 /// interned data.
179 FoldingSetNodeIDRef
180 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
181 unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
182 std::uninitialized_copy(Bits.begin(), Bits.end(), New);
183 return FoldingSetNodeIDRef(New, Bits.size());
186 //===----------------------------------------------------------------------===//
187 /// Helper functions for FoldingSetBase.
189 /// GetNextPtr - In order to save space, each bucket is a
190 /// singly-linked-list. In order to make deletion more efficient, we make
191 /// the list circular, so we can delete a node without computing its hash.
192 /// The problem with this is that the start of the hash buckets are not
193 /// Nodes. If NextInBucketPtr is a bucket pointer, this method returns null:
194 /// use GetBucketPtr when this happens.
195 static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
196 // The low bit is set if this is the pointer back to the bucket.
197 if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
198 return nullptr;
200 return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
204 /// testing.
205 static void **GetBucketPtr(void *NextInBucketPtr) {
206 intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
207 assert((Ptr & 1) && "Not a bucket pointer");
208 return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
211 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
212 /// the specified ID.
213 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
214 // NumBuckets is always a power of 2.
215 unsigned BucketNum = Hash & (NumBuckets-1);
216 return Buckets + BucketNum;
219 /// AllocateBuckets - Allocated initialized bucket memory.
220 static void **AllocateBuckets(unsigned NumBuckets) {
221 void **Buckets = static_cast<void**>(safe_calloc(NumBuckets + 1,
222 sizeof(void*)));
223 // Set the very last bucket to be a non-null "pointer".
224 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
225 return Buckets;
228 //===----------------------------------------------------------------------===//
229 // FoldingSetBase Implementation
231 FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
232 assert(5 < Log2InitSize && Log2InitSize < 32 &&
233 "Initial hash table size out of range");
234 NumBuckets = 1 << Log2InitSize;
235 Buckets = AllocateBuckets(NumBuckets);
236 NumNodes = 0;
239 FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
240 : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
241 Arg.Buckets = nullptr;
242 Arg.NumBuckets = 0;
243 Arg.NumNodes = 0;
246 FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
247 free(Buckets); // This may be null if the set is in a moved-from state.
248 Buckets = RHS.Buckets;
249 NumBuckets = RHS.NumBuckets;
250 NumNodes = RHS.NumNodes;
251 RHS.Buckets = nullptr;
252 RHS.NumBuckets = 0;
253 RHS.NumNodes = 0;
254 return *this;
257 FoldingSetBase::~FoldingSetBase() {
258 free(Buckets);
261 void FoldingSetBase::clear() {
262 // Set all but the last bucket to null pointers.
263 memset(Buckets, 0, NumBuckets*sizeof(void*));
265 // Set the very last bucket to be a non-null "pointer".
266 Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
268 // Reset the node count to zero.
269 NumNodes = 0;
272 void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount,
273 const FoldingSetInfo &Info) {
274 assert((NewBucketCount > NumBuckets) &&
275 "Can't shrink a folding set with GrowBucketCount");
276 assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
277 void **OldBuckets = Buckets;
278 unsigned OldNumBuckets = NumBuckets;
280 // Clear out new buckets.
281 Buckets = AllocateBuckets(NewBucketCount);
282 // Set NumBuckets only if allocation of new buckets was successful.
283 NumBuckets = NewBucketCount;
284 NumNodes = 0;
286 // Walk the old buckets, rehashing nodes into their new place.
287 FoldingSetNodeID TempID;
288 for (unsigned i = 0; i != OldNumBuckets; ++i) {
289 void *Probe = OldBuckets[i];
290 if (!Probe) continue;
291 while (Node *NodeInBucket = GetNextPtr(Probe)) {
292 // Figure out the next link, remove NodeInBucket from the old link.
293 Probe = NodeInBucket->getNextInBucket();
294 NodeInBucket->SetNextInBucket(nullptr);
296 // Insert the node into the new bucket, after recomputing the hash.
297 InsertNode(NodeInBucket,
298 GetBucketFor(Info.ComputeNodeHash(this, NodeInBucket, TempID),
299 Buckets, NumBuckets),
300 Info);
301 TempID.clear();
305 free(OldBuckets);
308 /// GrowHashTable - Double the size of the hash table and rehash everything.
310 void FoldingSetBase::GrowHashTable(const FoldingSetInfo &Info) {
311 GrowBucketCount(NumBuckets * 2, Info);
314 void FoldingSetBase::reserve(unsigned EltCount, const FoldingSetInfo &Info) {
315 // This will give us somewhere between EltCount / 2 and
316 // EltCount buckets. This puts us in the load factor
317 // range of 1.0 - 2.0.
318 if(EltCount < capacity())
319 return;
320 GrowBucketCount(PowerOf2Floor(EltCount), Info);
323 /// FindNodeOrInsertPos - Look up the node specified by ID. If it exists,
324 /// return it. If not, return the insertion token that will make insertion
325 /// faster.
326 FoldingSetBase::Node *FoldingSetBase::FindNodeOrInsertPos(
327 const FoldingSetNodeID &ID, void *&InsertPos, const FoldingSetInfo &Info) {
328 unsigned IDHash = ID.ComputeHash();
329 void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
330 void *Probe = *Bucket;
332 InsertPos = nullptr;
334 FoldingSetNodeID TempID;
335 while (Node *NodeInBucket = GetNextPtr(Probe)) {
336 if (Info.NodeEquals(this, NodeInBucket, ID, IDHash, TempID))
337 return NodeInBucket;
338 TempID.clear();
340 Probe = NodeInBucket->getNextInBucket();
343 // Didn't find the node, return null with the bucket as the InsertPos.
344 InsertPos = Bucket;
345 return nullptr;
348 /// InsertNode - Insert the specified node into the folding set, knowing that it
349 /// is not already in the map. InsertPos must be obtained from
350 /// FindNodeOrInsertPos.
351 void FoldingSetBase::InsertNode(Node *N, void *InsertPos,
352 const FoldingSetInfo &Info) {
353 assert(!N->getNextInBucket());
354 // Do we need to grow the hashtable?
355 if (NumNodes+1 > capacity()) {
356 GrowHashTable(Info);
357 FoldingSetNodeID TempID;
358 InsertPos = GetBucketFor(Info.ComputeNodeHash(this, N, TempID), Buckets,
359 NumBuckets);
362 ++NumNodes;
364 /// The insert position is actually a bucket pointer.
365 void **Bucket = static_cast<void**>(InsertPos);
367 void *Next = *Bucket;
369 // If this is the first insertion into this bucket, its next pointer will be
370 // null. Pretend as if it pointed to itself, setting the low bit to indicate
371 // that it is a pointer to the bucket.
372 if (!Next)
373 Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
375 // Set the node's next pointer, and make the bucket point to the node.
376 N->SetNextInBucket(Next);
377 *Bucket = N;
380 /// RemoveNode - Remove a node from the folding set, returning true if one was
381 /// removed or false if the node was not in the folding set.
382 bool FoldingSetBase::RemoveNode(Node *N) {
383 // Because each bucket is a circular list, we don't need to compute N's hash
384 // to remove it.
385 void *Ptr = N->getNextInBucket();
386 if (!Ptr) return false; // Not in folding set.
388 --NumNodes;
389 N->SetNextInBucket(nullptr);
391 // Remember what N originally pointed to, either a bucket or another node.
392 void *NodeNextPtr = Ptr;
394 // Chase around the list until we find the node (or bucket) which points to N.
395 while (true) {
396 if (Node *NodeInBucket = GetNextPtr(Ptr)) {
397 // Advance pointer.
398 Ptr = NodeInBucket->getNextInBucket();
400 // We found a node that points to N, change it to point to N's next node,
401 // removing N from the list.
402 if (Ptr == N) {
403 NodeInBucket->SetNextInBucket(NodeNextPtr);
404 return true;
406 } else {
407 void **Bucket = GetBucketPtr(Ptr);
408 Ptr = *Bucket;
410 // If we found that the bucket points to N, update the bucket to point to
411 // whatever is next.
412 if (Ptr == N) {
413 *Bucket = NodeNextPtr;
414 return true;
420 /// GetOrInsertNode - If there is an existing simple Node exactly
421 /// equal to the specified node, return it. Otherwise, insert 'N' and it
422 /// instead.
423 FoldingSetBase::Node *
424 FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N,
425 const FoldingSetInfo &Info) {
426 FoldingSetNodeID ID;
427 Info.GetNodeProfile(this, N, ID);
428 void *IP;
429 if (Node *E = FindNodeOrInsertPos(ID, IP, Info))
430 return E;
431 InsertNode(N, IP, Info);
432 return N;
435 //===----------------------------------------------------------------------===//
436 // FoldingSetIteratorImpl Implementation
438 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
439 // Skip to the first non-null non-self-cycle bucket.
440 while (*Bucket != reinterpret_cast<void*>(-1) &&
441 (!*Bucket || !GetNextPtr(*Bucket)))
442 ++Bucket;
444 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
447 void FoldingSetIteratorImpl::advance() {
448 // If there is another link within this bucket, go to it.
449 void *Probe = NodePtr->getNextInBucket();
451 if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
452 NodePtr = NextNodeInBucket;
453 else {
454 // Otherwise, this is the last link in this bucket.
455 void **Bucket = GetBucketPtr(Probe);
457 // Skip to the next non-null non-self-cycle bucket.
458 do {
459 ++Bucket;
460 } while (*Bucket != reinterpret_cast<void*>(-1) &&
461 (!*Bucket || !GetNextPtr(*Bucket)));
463 NodePtr = static_cast<FoldingSetNode*>(*Bucket);
467 //===----------------------------------------------------------------------===//
468 // FoldingSetBucketIteratorImpl Implementation
470 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
471 Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;