[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Support / YAMLParser.cpp
blobf68ba0d065c1d31bbf10ab29ed72360754b9966b
1 //===- YAMLParser.cpp - Simple YAML parser --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a YAML parser.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Support/YAMLParser.h"
14 #include "llvm/ADT/AllocatorList.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Support/Compiler.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/MemoryBuffer.h"
26 #include "llvm/Support/SMLoc.h"
27 #include "llvm/Support/SourceMgr.h"
28 #include "llvm/Support/Unicode.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <map>
35 #include <memory>
36 #include <string>
37 #include <system_error>
38 #include <utility>
40 using namespace llvm;
41 using namespace yaml;
43 enum UnicodeEncodingForm {
44 UEF_UTF32_LE, ///< UTF-32 Little Endian
45 UEF_UTF32_BE, ///< UTF-32 Big Endian
46 UEF_UTF16_LE, ///< UTF-16 Little Endian
47 UEF_UTF16_BE, ///< UTF-16 Big Endian
48 UEF_UTF8, ///< UTF-8 or ascii.
49 UEF_Unknown ///< Not a valid Unicode encoding.
52 /// EncodingInfo - Holds the encoding type and length of the byte order mark if
53 /// it exists. Length is in {0, 2, 3, 4}.
54 using EncodingInfo = std::pair<UnicodeEncodingForm, unsigned>;
56 /// getUnicodeEncoding - Reads up to the first 4 bytes to determine the Unicode
57 /// encoding form of \a Input.
58 ///
59 /// @param Input A string of length 0 or more.
60 /// @returns An EncodingInfo indicating the Unicode encoding form of the input
61 /// and how long the byte order mark is if one exists.
62 static EncodingInfo getUnicodeEncoding(StringRef Input) {
63 if (Input.empty())
64 return std::make_pair(UEF_Unknown, 0);
66 switch (uint8_t(Input[0])) {
67 case 0x00:
68 if (Input.size() >= 4) {
69 if ( Input[1] == 0
70 && uint8_t(Input[2]) == 0xFE
71 && uint8_t(Input[3]) == 0xFF)
72 return std::make_pair(UEF_UTF32_BE, 4);
73 if (Input[1] == 0 && Input[2] == 0 && Input[3] != 0)
74 return std::make_pair(UEF_UTF32_BE, 0);
77 if (Input.size() >= 2 && Input[1] != 0)
78 return std::make_pair(UEF_UTF16_BE, 0);
79 return std::make_pair(UEF_Unknown, 0);
80 case 0xFF:
81 if ( Input.size() >= 4
82 && uint8_t(Input[1]) == 0xFE
83 && Input[2] == 0
84 && Input[3] == 0)
85 return std::make_pair(UEF_UTF32_LE, 4);
87 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFE)
88 return std::make_pair(UEF_UTF16_LE, 2);
89 return std::make_pair(UEF_Unknown, 0);
90 case 0xFE:
91 if (Input.size() >= 2 && uint8_t(Input[1]) == 0xFF)
92 return std::make_pair(UEF_UTF16_BE, 2);
93 return std::make_pair(UEF_Unknown, 0);
94 case 0xEF:
95 if ( Input.size() >= 3
96 && uint8_t(Input[1]) == 0xBB
97 && uint8_t(Input[2]) == 0xBF)
98 return std::make_pair(UEF_UTF8, 3);
99 return std::make_pair(UEF_Unknown, 0);
102 // It could still be utf-32 or utf-16.
103 if (Input.size() >= 4 && Input[1] == 0 && Input[2] == 0 && Input[3] == 0)
104 return std::make_pair(UEF_UTF32_LE, 0);
106 if (Input.size() >= 2 && Input[1] == 0)
107 return std::make_pair(UEF_UTF16_LE, 0);
109 return std::make_pair(UEF_UTF8, 0);
112 /// Pin the vtables to this file.
113 void Node::anchor() {}
114 void NullNode::anchor() {}
115 void ScalarNode::anchor() {}
116 void BlockScalarNode::anchor() {}
117 void KeyValueNode::anchor() {}
118 void MappingNode::anchor() {}
119 void SequenceNode::anchor() {}
120 void AliasNode::anchor() {}
122 namespace llvm {
123 namespace yaml {
125 /// Token - A single YAML token.
126 struct Token {
127 enum TokenKind {
128 TK_Error, // Uninitialized token.
129 TK_StreamStart,
130 TK_StreamEnd,
131 TK_VersionDirective,
132 TK_TagDirective,
133 TK_DocumentStart,
134 TK_DocumentEnd,
135 TK_BlockEntry,
136 TK_BlockEnd,
137 TK_BlockSequenceStart,
138 TK_BlockMappingStart,
139 TK_FlowEntry,
140 TK_FlowSequenceStart,
141 TK_FlowSequenceEnd,
142 TK_FlowMappingStart,
143 TK_FlowMappingEnd,
144 TK_Key,
145 TK_Value,
146 TK_Scalar,
147 TK_BlockScalar,
148 TK_Alias,
149 TK_Anchor,
150 TK_Tag
151 } Kind = TK_Error;
153 /// A string of length 0 or more whose begin() points to the logical location
154 /// of the token in the input.
155 StringRef Range;
157 /// The value of a block scalar node.
158 std::string Value;
160 Token() = default;
163 } // end namespace yaml
164 } // end namespace llvm
166 using TokenQueueT = BumpPtrList<Token>;
168 namespace {
170 /// This struct is used to track simple keys.
172 /// Simple keys are handled by creating an entry in SimpleKeys for each Token
173 /// which could legally be the start of a simple key. When peekNext is called,
174 /// if the Token To be returned is referenced by a SimpleKey, we continue
175 /// tokenizing until that potential simple key has either been found to not be
176 /// a simple key (we moved on to the next line or went further than 1024 chars).
177 /// Or when we run into a Value, and then insert a Key token (and possibly
178 /// others) before the SimpleKey's Tok.
179 struct SimpleKey {
180 TokenQueueT::iterator Tok;
181 unsigned Column = 0;
182 unsigned Line = 0;
183 unsigned FlowLevel = 0;
184 bool IsRequired = false;
186 bool operator ==(const SimpleKey &Other) {
187 return Tok == Other.Tok;
191 } // end anonymous namespace
193 /// The Unicode scalar value of a UTF-8 minimal well-formed code unit
194 /// subsequence and the subsequence's length in code units (uint8_t).
195 /// A length of 0 represents an error.
196 using UTF8Decoded = std::pair<uint32_t, unsigned>;
198 static UTF8Decoded decodeUTF8(StringRef Range) {
199 StringRef::iterator Position= Range.begin();
200 StringRef::iterator End = Range.end();
201 // 1 byte: [0x00, 0x7f]
202 // Bit pattern: 0xxxxxxx
203 if (Position < End && (*Position & 0x80) == 0) {
204 return std::make_pair(*Position, 1);
206 // 2 bytes: [0x80, 0x7ff]
207 // Bit pattern: 110xxxxx 10xxxxxx
208 if (Position + 1 < End && ((*Position & 0xE0) == 0xC0) &&
209 ((*(Position + 1) & 0xC0) == 0x80)) {
210 uint32_t codepoint = ((*Position & 0x1F) << 6) |
211 (*(Position + 1) & 0x3F);
212 if (codepoint >= 0x80)
213 return std::make_pair(codepoint, 2);
215 // 3 bytes: [0x8000, 0xffff]
216 // Bit pattern: 1110xxxx 10xxxxxx 10xxxxxx
217 if (Position + 2 < End && ((*Position & 0xF0) == 0xE0) &&
218 ((*(Position + 1) & 0xC0) == 0x80) &&
219 ((*(Position + 2) & 0xC0) == 0x80)) {
220 uint32_t codepoint = ((*Position & 0x0F) << 12) |
221 ((*(Position + 1) & 0x3F) << 6) |
222 (*(Position + 2) & 0x3F);
223 // Codepoints between 0xD800 and 0xDFFF are invalid, as
224 // they are high / low surrogate halves used by UTF-16.
225 if (codepoint >= 0x800 &&
226 (codepoint < 0xD800 || codepoint > 0xDFFF))
227 return std::make_pair(codepoint, 3);
229 // 4 bytes: [0x10000, 0x10FFFF]
230 // Bit pattern: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
231 if (Position + 3 < End && ((*Position & 0xF8) == 0xF0) &&
232 ((*(Position + 1) & 0xC0) == 0x80) &&
233 ((*(Position + 2) & 0xC0) == 0x80) &&
234 ((*(Position + 3) & 0xC0) == 0x80)) {
235 uint32_t codepoint = ((*Position & 0x07) << 18) |
236 ((*(Position + 1) & 0x3F) << 12) |
237 ((*(Position + 2) & 0x3F) << 6) |
238 (*(Position + 3) & 0x3F);
239 if (codepoint >= 0x10000 && codepoint <= 0x10FFFF)
240 return std::make_pair(codepoint, 4);
242 return std::make_pair(0, 0);
245 namespace llvm {
246 namespace yaml {
248 /// Scans YAML tokens from a MemoryBuffer.
249 class Scanner {
250 public:
251 Scanner(StringRef Input, SourceMgr &SM, bool ShowColors = true,
252 std::error_code *EC = nullptr);
253 Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors = true,
254 std::error_code *EC = nullptr);
256 /// Parse the next token and return it without popping it.
257 Token &peekNext();
259 /// Parse the next token and pop it from the queue.
260 Token getNext();
262 void printError(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Message,
263 ArrayRef<SMRange> Ranges = None) {
264 SM.PrintMessage(Loc, Kind, Message, Ranges, /* FixIts= */ None, ShowColors);
267 void setError(const Twine &Message, StringRef::iterator Position) {
268 if (Position >= End)
269 Position = End - 1;
271 // propagate the error if possible
272 if (EC)
273 *EC = make_error_code(std::errc::invalid_argument);
275 // Don't print out more errors after the first one we encounter. The rest
276 // are just the result of the first, and have no meaning.
277 if (!Failed)
278 printError(SMLoc::getFromPointer(Position), SourceMgr::DK_Error, Message);
279 Failed = true;
282 /// Returns true if an error occurred while parsing.
283 bool failed() {
284 return Failed;
287 private:
288 void init(MemoryBufferRef Buffer);
290 StringRef currentInput() {
291 return StringRef(Current, End - Current);
294 /// Decode a UTF-8 minimal well-formed code unit subsequence starting
295 /// at \a Position.
297 /// If the UTF-8 code units starting at Position do not form a well-formed
298 /// code unit subsequence, then the Unicode scalar value is 0, and the length
299 /// is 0.
300 UTF8Decoded decodeUTF8(StringRef::iterator Position) {
301 return ::decodeUTF8(StringRef(Position, End - Position));
304 // The following functions are based on the gramar rules in the YAML spec. The
305 // style of the function names it meant to closely match how they are written
306 // in the spec. The number within the [] is the number of the grammar rule in
307 // the spec.
309 // See 4.2 [Production Naming Conventions] for the meaning of the prefixes.
311 // c-
312 // A production starting and ending with a special character.
313 // b-
314 // A production matching a single line break.
315 // nb-
316 // A production starting and ending with a non-break character.
317 // s-
318 // A production starting and ending with a white space character.
319 // ns-
320 // A production starting and ending with a non-space character.
321 // l-
322 // A production matching complete line(s).
324 /// Skip a single nb-char[27] starting at Position.
326 /// A nb-char is 0x9 | [0x20-0x7E] | 0x85 | [0xA0-0xD7FF] | [0xE000-0xFEFE]
327 /// | [0xFF00-0xFFFD] | [0x10000-0x10FFFF]
329 /// @returns The code unit after the nb-char, or Position if it's not an
330 /// nb-char.
331 StringRef::iterator skip_nb_char(StringRef::iterator Position);
333 /// Skip a single b-break[28] starting at Position.
335 /// A b-break is 0xD 0xA | 0xD | 0xA
337 /// @returns The code unit after the b-break, or Position if it's not a
338 /// b-break.
339 StringRef::iterator skip_b_break(StringRef::iterator Position);
341 /// Skip a single s-space[31] starting at Position.
343 /// An s-space is 0x20
345 /// @returns The code unit after the s-space, or Position if it's not a
346 /// s-space.
347 StringRef::iterator skip_s_space(StringRef::iterator Position);
349 /// Skip a single s-white[33] starting at Position.
351 /// A s-white is 0x20 | 0x9
353 /// @returns The code unit after the s-white, or Position if it's not a
354 /// s-white.
355 StringRef::iterator skip_s_white(StringRef::iterator Position);
357 /// Skip a single ns-char[34] starting at Position.
359 /// A ns-char is nb-char - s-white
361 /// @returns The code unit after the ns-char, or Position if it's not a
362 /// ns-char.
363 StringRef::iterator skip_ns_char(StringRef::iterator Position);
365 using SkipWhileFunc = StringRef::iterator (Scanner::*)(StringRef::iterator);
367 /// Skip minimal well-formed code unit subsequences until Func
368 /// returns its input.
370 /// @returns The code unit after the last minimal well-formed code unit
371 /// subsequence that Func accepted.
372 StringRef::iterator skip_while( SkipWhileFunc Func
373 , StringRef::iterator Position);
375 /// Skip minimal well-formed code unit subsequences until Func returns its
376 /// input.
377 void advanceWhile(SkipWhileFunc Func);
379 /// Scan ns-uri-char[39]s starting at Cur.
381 /// This updates Cur and Column while scanning.
382 void scan_ns_uri_char();
384 /// Consume a minimal well-formed code unit subsequence starting at
385 /// \a Cur. Return false if it is not the same Unicode scalar value as
386 /// \a Expected. This updates \a Column.
387 bool consume(uint32_t Expected);
389 /// Skip \a Distance UTF-8 code units. Updates \a Cur and \a Column.
390 void skip(uint32_t Distance);
392 /// Return true if the minimal well-formed code unit subsequence at
393 /// Pos is whitespace or a new line
394 bool isBlankOrBreak(StringRef::iterator Position);
396 /// Consume a single b-break[28] if it's present at the current position.
398 /// Return false if the code unit at the current position isn't a line break.
399 bool consumeLineBreakIfPresent();
401 /// If IsSimpleKeyAllowed, create and push_back a new SimpleKey.
402 void saveSimpleKeyCandidate( TokenQueueT::iterator Tok
403 , unsigned AtColumn
404 , bool IsRequired);
406 /// Remove simple keys that can no longer be valid simple keys.
408 /// Invalid simple keys are not on the current line or are further than 1024
409 /// columns back.
410 void removeStaleSimpleKeyCandidates();
412 /// Remove all simple keys on FlowLevel \a Level.
413 void removeSimpleKeyCandidatesOnFlowLevel(unsigned Level);
415 /// Unroll indentation in \a Indents back to \a Col. Creates BlockEnd
416 /// tokens if needed.
417 bool unrollIndent(int ToColumn);
419 /// Increase indent to \a Col. Creates \a Kind token at \a InsertPoint
420 /// if needed.
421 bool rollIndent( int ToColumn
422 , Token::TokenKind Kind
423 , TokenQueueT::iterator InsertPoint);
425 /// Skip a single-line comment when the comment starts at the current
426 /// position of the scanner.
427 void skipComment();
429 /// Skip whitespace and comments until the start of the next token.
430 void scanToNextToken();
432 /// Must be the first token generated.
433 bool scanStreamStart();
435 /// Generate tokens needed to close out the stream.
436 bool scanStreamEnd();
438 /// Scan a %BLAH directive.
439 bool scanDirective();
441 /// Scan a ... or ---.
442 bool scanDocumentIndicator(bool IsStart);
444 /// Scan a [ or { and generate the proper flow collection start token.
445 bool scanFlowCollectionStart(bool IsSequence);
447 /// Scan a ] or } and generate the proper flow collection end token.
448 bool scanFlowCollectionEnd(bool IsSequence);
450 /// Scan the , that separates entries in a flow collection.
451 bool scanFlowEntry();
453 /// Scan the - that starts block sequence entries.
454 bool scanBlockEntry();
456 /// Scan an explicit ? indicating a key.
457 bool scanKey();
459 /// Scan an explicit : indicating a value.
460 bool scanValue();
462 /// Scan a quoted scalar.
463 bool scanFlowScalar(bool IsDoubleQuoted);
465 /// Scan an unquoted scalar.
466 bool scanPlainScalar();
468 /// Scan an Alias or Anchor starting with * or &.
469 bool scanAliasOrAnchor(bool IsAlias);
471 /// Scan a block scalar starting with | or >.
472 bool scanBlockScalar(bool IsLiteral);
474 /// Scan a chomping indicator in a block scalar header.
475 char scanBlockChompingIndicator();
477 /// Scan an indentation indicator in a block scalar header.
478 unsigned scanBlockIndentationIndicator();
480 /// Scan a block scalar header.
482 /// Return false if an error occurred.
483 bool scanBlockScalarHeader(char &ChompingIndicator, unsigned &IndentIndicator,
484 bool &IsDone);
486 /// Look for the indentation level of a block scalar.
488 /// Return false if an error occurred.
489 bool findBlockScalarIndent(unsigned &BlockIndent, unsigned BlockExitIndent,
490 unsigned &LineBreaks, bool &IsDone);
492 /// Scan the indentation of a text line in a block scalar.
494 /// Return false if an error occurred.
495 bool scanBlockScalarIndent(unsigned BlockIndent, unsigned BlockExitIndent,
496 bool &IsDone);
498 /// Scan a tag of the form !stuff.
499 bool scanTag();
501 /// Dispatch to the next scanning function based on \a *Cur.
502 bool fetchMoreTokens();
504 /// The SourceMgr used for diagnostics and buffer management.
505 SourceMgr &SM;
507 /// The original input.
508 MemoryBufferRef InputBuffer;
510 /// The current position of the scanner.
511 StringRef::iterator Current;
513 /// The end of the input (one past the last character).
514 StringRef::iterator End;
516 /// Current YAML indentation level in spaces.
517 int Indent;
519 /// Current column number in Unicode code points.
520 unsigned Column;
522 /// Current line number.
523 unsigned Line;
525 /// How deep we are in flow style containers. 0 Means at block level.
526 unsigned FlowLevel;
528 /// Are we at the start of the stream?
529 bool IsStartOfStream;
531 /// Can the next token be the start of a simple key?
532 bool IsSimpleKeyAllowed;
534 /// True if an error has occurred.
535 bool Failed;
537 /// Should colors be used when printing out the diagnostic messages?
538 bool ShowColors;
540 /// Queue of tokens. This is required to queue up tokens while looking
541 /// for the end of a simple key. And for cases where a single character
542 /// can produce multiple tokens (e.g. BlockEnd).
543 TokenQueueT TokenQueue;
545 /// Indentation levels.
546 SmallVector<int, 4> Indents;
548 /// Potential simple keys.
549 SmallVector<SimpleKey, 4> SimpleKeys;
551 std::error_code *EC;
554 } // end namespace yaml
555 } // end namespace llvm
557 /// encodeUTF8 - Encode \a UnicodeScalarValue in UTF-8 and append it to result.
558 static void encodeUTF8( uint32_t UnicodeScalarValue
559 , SmallVectorImpl<char> &Result) {
560 if (UnicodeScalarValue <= 0x7F) {
561 Result.push_back(UnicodeScalarValue & 0x7F);
562 } else if (UnicodeScalarValue <= 0x7FF) {
563 uint8_t FirstByte = 0xC0 | ((UnicodeScalarValue & 0x7C0) >> 6);
564 uint8_t SecondByte = 0x80 | (UnicodeScalarValue & 0x3F);
565 Result.push_back(FirstByte);
566 Result.push_back(SecondByte);
567 } else if (UnicodeScalarValue <= 0xFFFF) {
568 uint8_t FirstByte = 0xE0 | ((UnicodeScalarValue & 0xF000) >> 12);
569 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
570 uint8_t ThirdByte = 0x80 | (UnicodeScalarValue & 0x3F);
571 Result.push_back(FirstByte);
572 Result.push_back(SecondByte);
573 Result.push_back(ThirdByte);
574 } else if (UnicodeScalarValue <= 0x10FFFF) {
575 uint8_t FirstByte = 0xF0 | ((UnicodeScalarValue & 0x1F0000) >> 18);
576 uint8_t SecondByte = 0x80 | ((UnicodeScalarValue & 0x3F000) >> 12);
577 uint8_t ThirdByte = 0x80 | ((UnicodeScalarValue & 0xFC0) >> 6);
578 uint8_t FourthByte = 0x80 | (UnicodeScalarValue & 0x3F);
579 Result.push_back(FirstByte);
580 Result.push_back(SecondByte);
581 Result.push_back(ThirdByte);
582 Result.push_back(FourthByte);
586 bool yaml::dumpTokens(StringRef Input, raw_ostream &OS) {
587 SourceMgr SM;
588 Scanner scanner(Input, SM);
589 while (true) {
590 Token T = scanner.getNext();
591 switch (T.Kind) {
592 case Token::TK_StreamStart:
593 OS << "Stream-Start: ";
594 break;
595 case Token::TK_StreamEnd:
596 OS << "Stream-End: ";
597 break;
598 case Token::TK_VersionDirective:
599 OS << "Version-Directive: ";
600 break;
601 case Token::TK_TagDirective:
602 OS << "Tag-Directive: ";
603 break;
604 case Token::TK_DocumentStart:
605 OS << "Document-Start: ";
606 break;
607 case Token::TK_DocumentEnd:
608 OS << "Document-End: ";
609 break;
610 case Token::TK_BlockEntry:
611 OS << "Block-Entry: ";
612 break;
613 case Token::TK_BlockEnd:
614 OS << "Block-End: ";
615 break;
616 case Token::TK_BlockSequenceStart:
617 OS << "Block-Sequence-Start: ";
618 break;
619 case Token::TK_BlockMappingStart:
620 OS << "Block-Mapping-Start: ";
621 break;
622 case Token::TK_FlowEntry:
623 OS << "Flow-Entry: ";
624 break;
625 case Token::TK_FlowSequenceStart:
626 OS << "Flow-Sequence-Start: ";
627 break;
628 case Token::TK_FlowSequenceEnd:
629 OS << "Flow-Sequence-End: ";
630 break;
631 case Token::TK_FlowMappingStart:
632 OS << "Flow-Mapping-Start: ";
633 break;
634 case Token::TK_FlowMappingEnd:
635 OS << "Flow-Mapping-End: ";
636 break;
637 case Token::TK_Key:
638 OS << "Key: ";
639 break;
640 case Token::TK_Value:
641 OS << "Value: ";
642 break;
643 case Token::TK_Scalar:
644 OS << "Scalar: ";
645 break;
646 case Token::TK_BlockScalar:
647 OS << "Block Scalar: ";
648 break;
649 case Token::TK_Alias:
650 OS << "Alias: ";
651 break;
652 case Token::TK_Anchor:
653 OS << "Anchor: ";
654 break;
655 case Token::TK_Tag:
656 OS << "Tag: ";
657 break;
658 case Token::TK_Error:
659 break;
661 OS << T.Range << "\n";
662 if (T.Kind == Token::TK_StreamEnd)
663 break;
664 else if (T.Kind == Token::TK_Error)
665 return false;
667 return true;
670 bool yaml::scanTokens(StringRef Input) {
671 SourceMgr SM;
672 Scanner scanner(Input, SM);
673 while (true) {
674 Token T = scanner.getNext();
675 if (T.Kind == Token::TK_StreamEnd)
676 break;
677 else if (T.Kind == Token::TK_Error)
678 return false;
680 return true;
683 std::string yaml::escape(StringRef Input, bool EscapePrintable) {
684 std::string EscapedInput;
685 for (StringRef::iterator i = Input.begin(), e = Input.end(); i != e; ++i) {
686 if (*i == '\\')
687 EscapedInput += "\\\\";
688 else if (*i == '"')
689 EscapedInput += "\\\"";
690 else if (*i == 0)
691 EscapedInput += "\\0";
692 else if (*i == 0x07)
693 EscapedInput += "\\a";
694 else if (*i == 0x08)
695 EscapedInput += "\\b";
696 else if (*i == 0x09)
697 EscapedInput += "\\t";
698 else if (*i == 0x0A)
699 EscapedInput += "\\n";
700 else if (*i == 0x0B)
701 EscapedInput += "\\v";
702 else if (*i == 0x0C)
703 EscapedInput += "\\f";
704 else if (*i == 0x0D)
705 EscapedInput += "\\r";
706 else if (*i == 0x1B)
707 EscapedInput += "\\e";
708 else if ((unsigned char)*i < 0x20) { // Control characters not handled above.
709 std::string HexStr = utohexstr(*i);
710 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
711 } else if (*i & 0x80) { // UTF-8 multiple code unit subsequence.
712 UTF8Decoded UnicodeScalarValue
713 = decodeUTF8(StringRef(i, Input.end() - i));
714 if (UnicodeScalarValue.second == 0) {
715 // Found invalid char.
716 SmallString<4> Val;
717 encodeUTF8(0xFFFD, Val);
718 llvm::append_range(EscapedInput, Val);
719 // FIXME: Error reporting.
720 return EscapedInput;
722 if (UnicodeScalarValue.first == 0x85)
723 EscapedInput += "\\N";
724 else if (UnicodeScalarValue.first == 0xA0)
725 EscapedInput += "\\_";
726 else if (UnicodeScalarValue.first == 0x2028)
727 EscapedInput += "\\L";
728 else if (UnicodeScalarValue.first == 0x2029)
729 EscapedInput += "\\P";
730 else if (!EscapePrintable &&
731 sys::unicode::isPrintable(UnicodeScalarValue.first))
732 EscapedInput += StringRef(i, UnicodeScalarValue.second);
733 else {
734 std::string HexStr = utohexstr(UnicodeScalarValue.first);
735 if (HexStr.size() <= 2)
736 EscapedInput += "\\x" + std::string(2 - HexStr.size(), '0') + HexStr;
737 else if (HexStr.size() <= 4)
738 EscapedInput += "\\u" + std::string(4 - HexStr.size(), '0') + HexStr;
739 else if (HexStr.size() <= 8)
740 EscapedInput += "\\U" + std::string(8 - HexStr.size(), '0') + HexStr;
742 i += UnicodeScalarValue.second - 1;
743 } else
744 EscapedInput.push_back(*i);
746 return EscapedInput;
749 llvm::Optional<bool> yaml::parseBool(StringRef S) {
750 switch (S.size()) {
751 case 1:
752 switch (S.front()) {
753 case 'y':
754 case 'Y':
755 return true;
756 case 'n':
757 case 'N':
758 return false;
759 default:
760 return None;
762 case 2:
763 switch (S.front()) {
764 case 'O':
765 if (S[1] == 'N') // ON
766 return true;
767 LLVM_FALLTHROUGH;
768 case 'o':
769 if (S[1] == 'n') //[Oo]n
770 return true;
771 return None;
772 case 'N':
773 if (S[1] == 'O') // NO
774 return false;
775 LLVM_FALLTHROUGH;
776 case 'n':
777 if (S[1] == 'o') //[Nn]o
778 return false;
779 return None;
780 default:
781 return None;
783 case 3:
784 switch (S.front()) {
785 case 'O':
786 if (S.drop_front() == "FF") // OFF
787 return false;
788 LLVM_FALLTHROUGH;
789 case 'o':
790 if (S.drop_front() == "ff") //[Oo]ff
791 return false;
792 return None;
793 case 'Y':
794 if (S.drop_front() == "ES") // YES
795 return true;
796 LLVM_FALLTHROUGH;
797 case 'y':
798 if (S.drop_front() == "es") //[Yy]es
799 return true;
800 return None;
801 default:
802 return None;
804 case 4:
805 switch (S.front()) {
806 case 'T':
807 if (S.drop_front() == "RUE") // TRUE
808 return true;
809 LLVM_FALLTHROUGH;
810 case 't':
811 if (S.drop_front() == "rue") //[Tt]rue
812 return true;
813 return None;
814 default:
815 return None;
817 case 5:
818 switch (S.front()) {
819 case 'F':
820 if (S.drop_front() == "ALSE") // FALSE
821 return false;
822 LLVM_FALLTHROUGH;
823 case 'f':
824 if (S.drop_front() == "alse") //[Ff]alse
825 return false;
826 return None;
827 default:
828 return None;
830 default:
831 return None;
835 Scanner::Scanner(StringRef Input, SourceMgr &sm, bool ShowColors,
836 std::error_code *EC)
837 : SM(sm), ShowColors(ShowColors), EC(EC) {
838 init(MemoryBufferRef(Input, "YAML"));
841 Scanner::Scanner(MemoryBufferRef Buffer, SourceMgr &SM_, bool ShowColors,
842 std::error_code *EC)
843 : SM(SM_), ShowColors(ShowColors), EC(EC) {
844 init(Buffer);
847 void Scanner::init(MemoryBufferRef Buffer) {
848 InputBuffer = Buffer;
849 Current = InputBuffer.getBufferStart();
850 End = InputBuffer.getBufferEnd();
851 Indent = -1;
852 Column = 0;
853 Line = 0;
854 FlowLevel = 0;
855 IsStartOfStream = true;
856 IsSimpleKeyAllowed = true;
857 Failed = false;
858 std::unique_ptr<MemoryBuffer> InputBufferOwner =
859 MemoryBuffer::getMemBuffer(Buffer, /*RequiresNullTerminator=*/false);
860 SM.AddNewSourceBuffer(std::move(InputBufferOwner), SMLoc());
863 Token &Scanner::peekNext() {
864 // If the current token is a possible simple key, keep parsing until we
865 // can confirm.
866 bool NeedMore = false;
867 while (true) {
868 if (TokenQueue.empty() || NeedMore) {
869 if (!fetchMoreTokens()) {
870 TokenQueue.clear();
871 SimpleKeys.clear();
872 TokenQueue.push_back(Token());
873 return TokenQueue.front();
876 assert(!TokenQueue.empty() &&
877 "fetchMoreTokens lied about getting tokens!");
879 removeStaleSimpleKeyCandidates();
880 SimpleKey SK;
881 SK.Tok = TokenQueue.begin();
882 if (!is_contained(SimpleKeys, SK))
883 break;
884 else
885 NeedMore = true;
887 return TokenQueue.front();
890 Token Scanner::getNext() {
891 Token Ret = peekNext();
892 // TokenQueue can be empty if there was an error getting the next token.
893 if (!TokenQueue.empty())
894 TokenQueue.pop_front();
896 // There cannot be any referenced Token's if the TokenQueue is empty. So do a
897 // quick deallocation of them all.
898 if (TokenQueue.empty())
899 TokenQueue.resetAlloc();
901 return Ret;
904 StringRef::iterator Scanner::skip_nb_char(StringRef::iterator Position) {
905 if (Position == End)
906 return Position;
907 // Check 7 bit c-printable - b-char.
908 if ( *Position == 0x09
909 || (*Position >= 0x20 && *Position <= 0x7E))
910 return Position + 1;
912 // Check for valid UTF-8.
913 if (uint8_t(*Position) & 0x80) {
914 UTF8Decoded u8d = decodeUTF8(Position);
915 if ( u8d.second != 0
916 && u8d.first != 0xFEFF
917 && ( u8d.first == 0x85
918 || ( u8d.first >= 0xA0
919 && u8d.first <= 0xD7FF)
920 || ( u8d.first >= 0xE000
921 && u8d.first <= 0xFFFD)
922 || ( u8d.first >= 0x10000
923 && u8d.first <= 0x10FFFF)))
924 return Position + u8d.second;
926 return Position;
929 StringRef::iterator Scanner::skip_b_break(StringRef::iterator Position) {
930 if (Position == End)
931 return Position;
932 if (*Position == 0x0D) {
933 if (Position + 1 != End && *(Position + 1) == 0x0A)
934 return Position + 2;
935 return Position + 1;
938 if (*Position == 0x0A)
939 return Position + 1;
940 return Position;
943 StringRef::iterator Scanner::skip_s_space(StringRef::iterator Position) {
944 if (Position == End)
945 return Position;
946 if (*Position == ' ')
947 return Position + 1;
948 return Position;
951 StringRef::iterator Scanner::skip_s_white(StringRef::iterator Position) {
952 if (Position == End)
953 return Position;
954 if (*Position == ' ' || *Position == '\t')
955 return Position + 1;
956 return Position;
959 StringRef::iterator Scanner::skip_ns_char(StringRef::iterator Position) {
960 if (Position == End)
961 return Position;
962 if (*Position == ' ' || *Position == '\t')
963 return Position;
964 return skip_nb_char(Position);
967 StringRef::iterator Scanner::skip_while( SkipWhileFunc Func
968 , StringRef::iterator Position) {
969 while (true) {
970 StringRef::iterator i = (this->*Func)(Position);
971 if (i == Position)
972 break;
973 Position = i;
975 return Position;
978 void Scanner::advanceWhile(SkipWhileFunc Func) {
979 auto Final = skip_while(Func, Current);
980 Column += Final - Current;
981 Current = Final;
984 static bool is_ns_hex_digit(const char C) { return isAlnum(C); }
986 static bool is_ns_word_char(const char C) { return C == '-' || isAlpha(C); }
988 void Scanner::scan_ns_uri_char() {
989 while (true) {
990 if (Current == End)
991 break;
992 if (( *Current == '%'
993 && Current + 2 < End
994 && is_ns_hex_digit(*(Current + 1))
995 && is_ns_hex_digit(*(Current + 2)))
996 || is_ns_word_char(*Current)
997 || StringRef(Current, 1).find_first_of("#;/?:@&=+$,_.!~*'()[]")
998 != StringRef::npos) {
999 ++Current;
1000 ++Column;
1001 } else
1002 break;
1006 bool Scanner::consume(uint32_t Expected) {
1007 if (Expected >= 0x80) {
1008 setError("Cannot consume non-ascii characters", Current);
1009 return false;
1011 if (Current == End)
1012 return false;
1013 if (uint8_t(*Current) >= 0x80) {
1014 setError("Cannot consume non-ascii characters", Current);
1015 return false;
1017 if (uint8_t(*Current) == Expected) {
1018 ++Current;
1019 ++Column;
1020 return true;
1022 return false;
1025 void Scanner::skip(uint32_t Distance) {
1026 Current += Distance;
1027 Column += Distance;
1028 assert(Current <= End && "Skipped past the end");
1031 bool Scanner::isBlankOrBreak(StringRef::iterator Position) {
1032 if (Position == End)
1033 return false;
1034 return *Position == ' ' || *Position == '\t' || *Position == '\r' ||
1035 *Position == '\n';
1038 bool Scanner::consumeLineBreakIfPresent() {
1039 auto Next = skip_b_break(Current);
1040 if (Next == Current)
1041 return false;
1042 Column = 0;
1043 ++Line;
1044 Current = Next;
1045 return true;
1048 void Scanner::saveSimpleKeyCandidate( TokenQueueT::iterator Tok
1049 , unsigned AtColumn
1050 , bool IsRequired) {
1051 if (IsSimpleKeyAllowed) {
1052 SimpleKey SK;
1053 SK.Tok = Tok;
1054 SK.Line = Line;
1055 SK.Column = AtColumn;
1056 SK.IsRequired = IsRequired;
1057 SK.FlowLevel = FlowLevel;
1058 SimpleKeys.push_back(SK);
1062 void Scanner::removeStaleSimpleKeyCandidates() {
1063 for (SmallVectorImpl<SimpleKey>::iterator i = SimpleKeys.begin();
1064 i != SimpleKeys.end();) {
1065 if (i->Line != Line || i->Column + 1024 < Column) {
1066 if (i->IsRequired)
1067 setError( "Could not find expected : for simple key"
1068 , i->Tok->Range.begin());
1069 i = SimpleKeys.erase(i);
1070 } else
1071 ++i;
1075 void Scanner::removeSimpleKeyCandidatesOnFlowLevel(unsigned Level) {
1076 if (!SimpleKeys.empty() && (SimpleKeys.end() - 1)->FlowLevel == Level)
1077 SimpleKeys.pop_back();
1080 bool Scanner::unrollIndent(int ToColumn) {
1081 Token T;
1082 // Indentation is ignored in flow.
1083 if (FlowLevel != 0)
1084 return true;
1086 while (Indent > ToColumn) {
1087 T.Kind = Token::TK_BlockEnd;
1088 T.Range = StringRef(Current, 1);
1089 TokenQueue.push_back(T);
1090 Indent = Indents.pop_back_val();
1093 return true;
1096 bool Scanner::rollIndent( int ToColumn
1097 , Token::TokenKind Kind
1098 , TokenQueueT::iterator InsertPoint) {
1099 if (FlowLevel)
1100 return true;
1101 if (Indent < ToColumn) {
1102 Indents.push_back(Indent);
1103 Indent = ToColumn;
1105 Token T;
1106 T.Kind = Kind;
1107 T.Range = StringRef(Current, 0);
1108 TokenQueue.insert(InsertPoint, T);
1110 return true;
1113 void Scanner::skipComment() {
1114 if (Current == End || *Current != '#')
1115 return;
1116 while (true) {
1117 // This may skip more than one byte, thus Column is only incremented
1118 // for code points.
1119 StringRef::iterator I = skip_nb_char(Current);
1120 if (I == Current)
1121 break;
1122 Current = I;
1123 ++Column;
1127 void Scanner::scanToNextToken() {
1128 while (true) {
1129 while (Current != End && (*Current == ' ' || *Current == '\t')) {
1130 skip(1);
1133 skipComment();
1135 // Skip EOL.
1136 StringRef::iterator i = skip_b_break(Current);
1137 if (i == Current)
1138 break;
1139 Current = i;
1140 ++Line;
1141 Column = 0;
1142 // New lines may start a simple key.
1143 if (!FlowLevel)
1144 IsSimpleKeyAllowed = true;
1148 bool Scanner::scanStreamStart() {
1149 IsStartOfStream = false;
1151 EncodingInfo EI = getUnicodeEncoding(currentInput());
1153 Token T;
1154 T.Kind = Token::TK_StreamStart;
1155 T.Range = StringRef(Current, EI.second);
1156 TokenQueue.push_back(T);
1157 Current += EI.second;
1158 return true;
1161 bool Scanner::scanStreamEnd() {
1162 // Force an ending new line if one isn't present.
1163 if (Column != 0) {
1164 Column = 0;
1165 ++Line;
1168 unrollIndent(-1);
1169 SimpleKeys.clear();
1170 IsSimpleKeyAllowed = false;
1172 Token T;
1173 T.Kind = Token::TK_StreamEnd;
1174 T.Range = StringRef(Current, 0);
1175 TokenQueue.push_back(T);
1176 return true;
1179 bool Scanner::scanDirective() {
1180 // Reset the indentation level.
1181 unrollIndent(-1);
1182 SimpleKeys.clear();
1183 IsSimpleKeyAllowed = false;
1185 StringRef::iterator Start = Current;
1186 consume('%');
1187 StringRef::iterator NameStart = Current;
1188 Current = skip_while(&Scanner::skip_ns_char, Current);
1189 StringRef Name(NameStart, Current - NameStart);
1190 Current = skip_while(&Scanner::skip_s_white, Current);
1192 Token T;
1193 if (Name == "YAML") {
1194 Current = skip_while(&Scanner::skip_ns_char, Current);
1195 T.Kind = Token::TK_VersionDirective;
1196 T.Range = StringRef(Start, Current - Start);
1197 TokenQueue.push_back(T);
1198 return true;
1199 } else if(Name == "TAG") {
1200 Current = skip_while(&Scanner::skip_ns_char, Current);
1201 Current = skip_while(&Scanner::skip_s_white, Current);
1202 Current = skip_while(&Scanner::skip_ns_char, Current);
1203 T.Kind = Token::TK_TagDirective;
1204 T.Range = StringRef(Start, Current - Start);
1205 TokenQueue.push_back(T);
1206 return true;
1208 return false;
1211 bool Scanner::scanDocumentIndicator(bool IsStart) {
1212 unrollIndent(-1);
1213 SimpleKeys.clear();
1214 IsSimpleKeyAllowed = false;
1216 Token T;
1217 T.Kind = IsStart ? Token::TK_DocumentStart : Token::TK_DocumentEnd;
1218 T.Range = StringRef(Current, 3);
1219 skip(3);
1220 TokenQueue.push_back(T);
1221 return true;
1224 bool Scanner::scanFlowCollectionStart(bool IsSequence) {
1225 Token T;
1226 T.Kind = IsSequence ? Token::TK_FlowSequenceStart
1227 : Token::TK_FlowMappingStart;
1228 T.Range = StringRef(Current, 1);
1229 skip(1);
1230 TokenQueue.push_back(T);
1232 // [ and { may begin a simple key.
1233 saveSimpleKeyCandidate(--TokenQueue.end(), Column - 1, false);
1235 // And may also be followed by a simple key.
1236 IsSimpleKeyAllowed = true;
1237 ++FlowLevel;
1238 return true;
1241 bool Scanner::scanFlowCollectionEnd(bool IsSequence) {
1242 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1243 IsSimpleKeyAllowed = false;
1244 Token T;
1245 T.Kind = IsSequence ? Token::TK_FlowSequenceEnd
1246 : Token::TK_FlowMappingEnd;
1247 T.Range = StringRef(Current, 1);
1248 skip(1);
1249 TokenQueue.push_back(T);
1250 if (FlowLevel)
1251 --FlowLevel;
1252 return true;
1255 bool Scanner::scanFlowEntry() {
1256 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1257 IsSimpleKeyAllowed = true;
1258 Token T;
1259 T.Kind = Token::TK_FlowEntry;
1260 T.Range = StringRef(Current, 1);
1261 skip(1);
1262 TokenQueue.push_back(T);
1263 return true;
1266 bool Scanner::scanBlockEntry() {
1267 rollIndent(Column, Token::TK_BlockSequenceStart, TokenQueue.end());
1268 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1269 IsSimpleKeyAllowed = true;
1270 Token T;
1271 T.Kind = Token::TK_BlockEntry;
1272 T.Range = StringRef(Current, 1);
1273 skip(1);
1274 TokenQueue.push_back(T);
1275 return true;
1278 bool Scanner::scanKey() {
1279 if (!FlowLevel)
1280 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1282 removeSimpleKeyCandidatesOnFlowLevel(FlowLevel);
1283 IsSimpleKeyAllowed = !FlowLevel;
1285 Token T;
1286 T.Kind = Token::TK_Key;
1287 T.Range = StringRef(Current, 1);
1288 skip(1);
1289 TokenQueue.push_back(T);
1290 return true;
1293 bool Scanner::scanValue() {
1294 // If the previous token could have been a simple key, insert the key token
1295 // into the token queue.
1296 if (!SimpleKeys.empty()) {
1297 SimpleKey SK = SimpleKeys.pop_back_val();
1298 Token T;
1299 T.Kind = Token::TK_Key;
1300 T.Range = SK.Tok->Range;
1301 TokenQueueT::iterator i, e;
1302 for (i = TokenQueue.begin(), e = TokenQueue.end(); i != e; ++i) {
1303 if (i == SK.Tok)
1304 break;
1306 if (i == e) {
1307 Failed = true;
1308 return false;
1310 i = TokenQueue.insert(i, T);
1312 // We may also need to add a Block-Mapping-Start token.
1313 rollIndent(SK.Column, Token::TK_BlockMappingStart, i);
1315 IsSimpleKeyAllowed = false;
1316 } else {
1317 if (!FlowLevel)
1318 rollIndent(Column, Token::TK_BlockMappingStart, TokenQueue.end());
1319 IsSimpleKeyAllowed = !FlowLevel;
1322 Token T;
1323 T.Kind = Token::TK_Value;
1324 T.Range = StringRef(Current, 1);
1325 skip(1);
1326 TokenQueue.push_back(T);
1327 return true;
1330 // Forbidding inlining improves performance by roughly 20%.
1331 // FIXME: Remove once llvm optimizes this to the faster version without hints.
1332 LLVM_ATTRIBUTE_NOINLINE static bool
1333 wasEscaped(StringRef::iterator First, StringRef::iterator Position);
1335 // Returns whether a character at 'Position' was escaped with a leading '\'.
1336 // 'First' specifies the position of the first character in the string.
1337 static bool wasEscaped(StringRef::iterator First,
1338 StringRef::iterator Position) {
1339 assert(Position - 1 >= First);
1340 StringRef::iterator I = Position - 1;
1341 // We calculate the number of consecutive '\'s before the current position
1342 // by iterating backwards through our string.
1343 while (I >= First && *I == '\\') --I;
1344 // (Position - 1 - I) now contains the number of '\'s before the current
1345 // position. If it is odd, the character at 'Position' was escaped.
1346 return (Position - 1 - I) % 2 == 1;
1349 bool Scanner::scanFlowScalar(bool IsDoubleQuoted) {
1350 StringRef::iterator Start = Current;
1351 unsigned ColStart = Column;
1352 if (IsDoubleQuoted) {
1353 do {
1354 ++Current;
1355 while (Current != End && *Current != '"')
1356 ++Current;
1357 // Repeat until the previous character was not a '\' or was an escaped
1358 // backslash.
1359 } while ( Current != End
1360 && *(Current - 1) == '\\'
1361 && wasEscaped(Start + 1, Current));
1362 } else {
1363 skip(1);
1364 while (Current != End) {
1365 // Skip a ' followed by another '.
1366 if (Current + 1 < End && *Current == '\'' && *(Current + 1) == '\'') {
1367 skip(2);
1368 continue;
1369 } else if (*Current == '\'')
1370 break;
1371 StringRef::iterator i = skip_nb_char(Current);
1372 if (i == Current) {
1373 i = skip_b_break(Current);
1374 if (i == Current)
1375 break;
1376 Current = i;
1377 Column = 0;
1378 ++Line;
1379 } else {
1380 if (i == End)
1381 break;
1382 Current = i;
1383 ++Column;
1388 if (Current == End) {
1389 setError("Expected quote at end of scalar", Current);
1390 return false;
1393 skip(1); // Skip ending quote.
1394 Token T;
1395 T.Kind = Token::TK_Scalar;
1396 T.Range = StringRef(Start, Current - Start);
1397 TokenQueue.push_back(T);
1399 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1401 IsSimpleKeyAllowed = false;
1403 return true;
1406 bool Scanner::scanPlainScalar() {
1407 StringRef::iterator Start = Current;
1408 unsigned ColStart = Column;
1409 unsigned LeadingBlanks = 0;
1410 assert(Indent >= -1 && "Indent must be >= -1 !");
1411 unsigned indent = static_cast<unsigned>(Indent + 1);
1412 while (Current != End) {
1413 if (*Current == '#')
1414 break;
1416 while (Current != End && !isBlankOrBreak(Current)) {
1417 if (FlowLevel && *Current == ':' &&
1418 (Current + 1 == End ||
1419 !(isBlankOrBreak(Current + 1) || *(Current + 1) == ','))) {
1420 setError("Found unexpected ':' while scanning a plain scalar", Current);
1421 return false;
1424 // Check for the end of the plain scalar.
1425 if ( (*Current == ':' && isBlankOrBreak(Current + 1))
1426 || ( FlowLevel
1427 && (StringRef(Current, 1).find_first_of(",:?[]{}")
1428 != StringRef::npos)))
1429 break;
1431 StringRef::iterator i = skip_nb_char(Current);
1432 if (i == Current)
1433 break;
1434 Current = i;
1435 ++Column;
1438 // Are we at the end?
1439 if (!isBlankOrBreak(Current))
1440 break;
1442 // Eat blanks.
1443 StringRef::iterator Tmp = Current;
1444 while (isBlankOrBreak(Tmp)) {
1445 StringRef::iterator i = skip_s_white(Tmp);
1446 if (i != Tmp) {
1447 if (LeadingBlanks && (Column < indent) && *Tmp == '\t') {
1448 setError("Found invalid tab character in indentation", Tmp);
1449 return false;
1451 Tmp = i;
1452 ++Column;
1453 } else {
1454 i = skip_b_break(Tmp);
1455 if (!LeadingBlanks)
1456 LeadingBlanks = 1;
1457 Tmp = i;
1458 Column = 0;
1459 ++Line;
1463 if (!FlowLevel && Column < indent)
1464 break;
1466 Current = Tmp;
1468 if (Start == Current) {
1469 setError("Got empty plain scalar", Start);
1470 return false;
1472 Token T;
1473 T.Kind = Token::TK_Scalar;
1474 T.Range = StringRef(Start, Current - Start);
1475 TokenQueue.push_back(T);
1477 // Plain scalars can be simple keys.
1478 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1480 IsSimpleKeyAllowed = false;
1482 return true;
1485 bool Scanner::scanAliasOrAnchor(bool IsAlias) {
1486 StringRef::iterator Start = Current;
1487 unsigned ColStart = Column;
1488 skip(1);
1489 while (Current != End) {
1490 if ( *Current == '[' || *Current == ']'
1491 || *Current == '{' || *Current == '}'
1492 || *Current == ','
1493 || *Current == ':')
1494 break;
1495 StringRef::iterator i = skip_ns_char(Current);
1496 if (i == Current)
1497 break;
1498 Current = i;
1499 ++Column;
1502 if (Start + 1 == Current) {
1503 setError("Got empty alias or anchor", Start);
1504 return false;
1507 Token T;
1508 T.Kind = IsAlias ? Token::TK_Alias : Token::TK_Anchor;
1509 T.Range = StringRef(Start, Current - Start);
1510 TokenQueue.push_back(T);
1512 // Alias and anchors can be simple keys.
1513 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1515 IsSimpleKeyAllowed = false;
1517 return true;
1520 char Scanner::scanBlockChompingIndicator() {
1521 char Indicator = ' ';
1522 if (Current != End && (*Current == '+' || *Current == '-')) {
1523 Indicator = *Current;
1524 skip(1);
1526 return Indicator;
1529 /// Get the number of line breaks after chomping.
1531 /// Return the number of trailing line breaks to emit, depending on
1532 /// \p ChompingIndicator.
1533 static unsigned getChompedLineBreaks(char ChompingIndicator,
1534 unsigned LineBreaks, StringRef Str) {
1535 if (ChompingIndicator == '-') // Strip all line breaks.
1536 return 0;
1537 if (ChompingIndicator == '+') // Keep all line breaks.
1538 return LineBreaks;
1539 // Clip trailing lines.
1540 return Str.empty() ? 0 : 1;
1543 unsigned Scanner::scanBlockIndentationIndicator() {
1544 unsigned Indent = 0;
1545 if (Current != End && (*Current >= '1' && *Current <= '9')) {
1546 Indent = unsigned(*Current - '0');
1547 skip(1);
1549 return Indent;
1552 bool Scanner::scanBlockScalarHeader(char &ChompingIndicator,
1553 unsigned &IndentIndicator, bool &IsDone) {
1554 auto Start = Current;
1556 ChompingIndicator = scanBlockChompingIndicator();
1557 IndentIndicator = scanBlockIndentationIndicator();
1558 // Check for the chomping indicator once again.
1559 if (ChompingIndicator == ' ')
1560 ChompingIndicator = scanBlockChompingIndicator();
1561 Current = skip_while(&Scanner::skip_s_white, Current);
1562 skipComment();
1564 if (Current == End) { // EOF, we have an empty scalar.
1565 Token T;
1566 T.Kind = Token::TK_BlockScalar;
1567 T.Range = StringRef(Start, Current - Start);
1568 TokenQueue.push_back(T);
1569 IsDone = true;
1570 return true;
1573 if (!consumeLineBreakIfPresent()) {
1574 setError("Expected a line break after block scalar header", Current);
1575 return false;
1577 return true;
1580 bool Scanner::findBlockScalarIndent(unsigned &BlockIndent,
1581 unsigned BlockExitIndent,
1582 unsigned &LineBreaks, bool &IsDone) {
1583 unsigned MaxAllSpaceLineCharacters = 0;
1584 StringRef::iterator LongestAllSpaceLine;
1586 while (true) {
1587 advanceWhile(&Scanner::skip_s_space);
1588 if (skip_nb_char(Current) != Current) {
1589 // This line isn't empty, so try and find the indentation.
1590 if (Column <= BlockExitIndent) { // End of the block literal.
1591 IsDone = true;
1592 return true;
1594 // We found the block's indentation.
1595 BlockIndent = Column;
1596 if (MaxAllSpaceLineCharacters > BlockIndent) {
1597 setError(
1598 "Leading all-spaces line must be smaller than the block indent",
1599 LongestAllSpaceLine);
1600 return false;
1602 return true;
1604 if (skip_b_break(Current) != Current &&
1605 Column > MaxAllSpaceLineCharacters) {
1606 // Record the longest all-space line in case it's longer than the
1607 // discovered block indent.
1608 MaxAllSpaceLineCharacters = Column;
1609 LongestAllSpaceLine = Current;
1612 // Check for EOF.
1613 if (Current == End) {
1614 IsDone = true;
1615 return true;
1618 if (!consumeLineBreakIfPresent()) {
1619 IsDone = true;
1620 return true;
1622 ++LineBreaks;
1624 return true;
1627 bool Scanner::scanBlockScalarIndent(unsigned BlockIndent,
1628 unsigned BlockExitIndent, bool &IsDone) {
1629 // Skip the indentation.
1630 while (Column < BlockIndent) {
1631 auto I = skip_s_space(Current);
1632 if (I == Current)
1633 break;
1634 Current = I;
1635 ++Column;
1638 if (skip_nb_char(Current) == Current)
1639 return true;
1641 if (Column <= BlockExitIndent) { // End of the block literal.
1642 IsDone = true;
1643 return true;
1646 if (Column < BlockIndent) {
1647 if (Current != End && *Current == '#') { // Trailing comment.
1648 IsDone = true;
1649 return true;
1651 setError("A text line is less indented than the block scalar", Current);
1652 return false;
1654 return true; // A normal text line.
1657 bool Scanner::scanBlockScalar(bool IsLiteral) {
1658 // Eat '|' or '>'
1659 assert(*Current == '|' || *Current == '>');
1660 skip(1);
1662 char ChompingIndicator;
1663 unsigned BlockIndent;
1664 bool IsDone = false;
1665 if (!scanBlockScalarHeader(ChompingIndicator, BlockIndent, IsDone))
1666 return false;
1667 if (IsDone)
1668 return true;
1670 auto Start = Current;
1671 unsigned BlockExitIndent = Indent < 0 ? 0 : (unsigned)Indent;
1672 unsigned LineBreaks = 0;
1673 if (BlockIndent == 0) {
1674 if (!findBlockScalarIndent(BlockIndent, BlockExitIndent, LineBreaks,
1675 IsDone))
1676 return false;
1679 // Scan the block's scalars body.
1680 SmallString<256> Str;
1681 while (!IsDone) {
1682 if (!scanBlockScalarIndent(BlockIndent, BlockExitIndent, IsDone))
1683 return false;
1684 if (IsDone)
1685 break;
1687 // Parse the current line.
1688 auto LineStart = Current;
1689 advanceWhile(&Scanner::skip_nb_char);
1690 if (LineStart != Current) {
1691 Str.append(LineBreaks, '\n');
1692 Str.append(StringRef(LineStart, Current - LineStart));
1693 LineBreaks = 0;
1696 // Check for EOF.
1697 if (Current == End)
1698 break;
1700 if (!consumeLineBreakIfPresent())
1701 break;
1702 ++LineBreaks;
1705 if (Current == End && !LineBreaks)
1706 // Ensure that there is at least one line break before the end of file.
1707 LineBreaks = 1;
1708 Str.append(getChompedLineBreaks(ChompingIndicator, LineBreaks, Str), '\n');
1710 // New lines may start a simple key.
1711 if (!FlowLevel)
1712 IsSimpleKeyAllowed = true;
1714 Token T;
1715 T.Kind = Token::TK_BlockScalar;
1716 T.Range = StringRef(Start, Current - Start);
1717 T.Value = std::string(Str);
1718 TokenQueue.push_back(T);
1719 return true;
1722 bool Scanner::scanTag() {
1723 StringRef::iterator Start = Current;
1724 unsigned ColStart = Column;
1725 skip(1); // Eat !.
1726 if (Current == End || isBlankOrBreak(Current)); // An empty tag.
1727 else if (*Current == '<') {
1728 skip(1);
1729 scan_ns_uri_char();
1730 if (!consume('>'))
1731 return false;
1732 } else {
1733 // FIXME: Actually parse the c-ns-shorthand-tag rule.
1734 Current = skip_while(&Scanner::skip_ns_char, Current);
1737 Token T;
1738 T.Kind = Token::TK_Tag;
1739 T.Range = StringRef(Start, Current - Start);
1740 TokenQueue.push_back(T);
1742 // Tags can be simple keys.
1743 saveSimpleKeyCandidate(--TokenQueue.end(), ColStart, false);
1745 IsSimpleKeyAllowed = false;
1747 return true;
1750 bool Scanner::fetchMoreTokens() {
1751 if (IsStartOfStream)
1752 return scanStreamStart();
1754 scanToNextToken();
1756 if (Current == End)
1757 return scanStreamEnd();
1759 removeStaleSimpleKeyCandidates();
1761 unrollIndent(Column);
1763 if (Column == 0 && *Current == '%')
1764 return scanDirective();
1766 if (Column == 0 && Current + 4 <= End
1767 && *Current == '-'
1768 && *(Current + 1) == '-'
1769 && *(Current + 2) == '-'
1770 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1771 return scanDocumentIndicator(true);
1773 if (Column == 0 && Current + 4 <= End
1774 && *Current == '.'
1775 && *(Current + 1) == '.'
1776 && *(Current + 2) == '.'
1777 && (Current + 3 == End || isBlankOrBreak(Current + 3)))
1778 return scanDocumentIndicator(false);
1780 if (*Current == '[')
1781 return scanFlowCollectionStart(true);
1783 if (*Current == '{')
1784 return scanFlowCollectionStart(false);
1786 if (*Current == ']')
1787 return scanFlowCollectionEnd(true);
1789 if (*Current == '}')
1790 return scanFlowCollectionEnd(false);
1792 if (*Current == ',')
1793 return scanFlowEntry();
1795 if (*Current == '-' && isBlankOrBreak(Current + 1))
1796 return scanBlockEntry();
1798 if (*Current == '?' && (FlowLevel || isBlankOrBreak(Current + 1)))
1799 return scanKey();
1801 if (*Current == ':' && (FlowLevel || isBlankOrBreak(Current + 1)))
1802 return scanValue();
1804 if (*Current == '*')
1805 return scanAliasOrAnchor(true);
1807 if (*Current == '&')
1808 return scanAliasOrAnchor(false);
1810 if (*Current == '!')
1811 return scanTag();
1813 if (*Current == '|' && !FlowLevel)
1814 return scanBlockScalar(true);
1816 if (*Current == '>' && !FlowLevel)
1817 return scanBlockScalar(false);
1819 if (*Current == '\'')
1820 return scanFlowScalar(false);
1822 if (*Current == '"')
1823 return scanFlowScalar(true);
1825 // Get a plain scalar.
1826 StringRef FirstChar(Current, 1);
1827 if (!(isBlankOrBreak(Current)
1828 || FirstChar.find_first_of("-?:,[]{}#&*!|>'\"%@`") != StringRef::npos)
1829 || (*Current == '-' && !isBlankOrBreak(Current + 1))
1830 || (!FlowLevel && (*Current == '?' || *Current == ':')
1831 && isBlankOrBreak(Current + 1))
1832 || (!FlowLevel && *Current == ':'
1833 && Current + 2 < End
1834 && *(Current + 1) == ':'
1835 && !isBlankOrBreak(Current + 2)))
1836 return scanPlainScalar();
1838 setError("Unrecognized character while tokenizing.", Current);
1839 return false;
1842 Stream::Stream(StringRef Input, SourceMgr &SM, bool ShowColors,
1843 std::error_code *EC)
1844 : scanner(new Scanner(Input, SM, ShowColors, EC)), CurrentDoc() {}
1846 Stream::Stream(MemoryBufferRef InputBuffer, SourceMgr &SM, bool ShowColors,
1847 std::error_code *EC)
1848 : scanner(new Scanner(InputBuffer, SM, ShowColors, EC)), CurrentDoc() {}
1850 Stream::~Stream() = default;
1852 bool Stream::failed() { return scanner->failed(); }
1854 void Stream::printError(Node *N, const Twine &Msg, SourceMgr::DiagKind Kind) {
1855 printError(N ? N->getSourceRange() : SMRange(), Msg, Kind);
1858 void Stream::printError(const SMRange &Range, const Twine &Msg,
1859 SourceMgr::DiagKind Kind) {
1860 scanner->printError(Range.Start, Kind, Msg, Range);
1863 document_iterator Stream::begin() {
1864 if (CurrentDoc)
1865 report_fatal_error("Can only iterate over the stream once");
1867 // Skip Stream-Start.
1868 scanner->getNext();
1870 CurrentDoc.reset(new Document(*this));
1871 return document_iterator(CurrentDoc);
1874 document_iterator Stream::end() {
1875 return document_iterator();
1878 void Stream::skip() {
1879 for (document_iterator i = begin(), e = end(); i != e; ++i)
1880 i->skip();
1883 Node::Node(unsigned int Type, std::unique_ptr<Document> &D, StringRef A,
1884 StringRef T)
1885 : Doc(D), TypeID(Type), Anchor(A), Tag(T) {
1886 SMLoc Start = SMLoc::getFromPointer(peekNext().Range.begin());
1887 SourceRange = SMRange(Start, Start);
1890 std::string Node::getVerbatimTag() const {
1891 StringRef Raw = getRawTag();
1892 if (!Raw.empty() && Raw != "!") {
1893 std::string Ret;
1894 if (Raw.find_last_of('!') == 0) {
1895 Ret = std::string(Doc->getTagMap().find("!")->second);
1896 Ret += Raw.substr(1);
1897 return Ret;
1898 } else if (Raw.startswith("!!")) {
1899 Ret = std::string(Doc->getTagMap().find("!!")->second);
1900 Ret += Raw.substr(2);
1901 return Ret;
1902 } else {
1903 StringRef TagHandle = Raw.substr(0, Raw.find_last_of('!') + 1);
1904 std::map<StringRef, StringRef>::const_iterator It =
1905 Doc->getTagMap().find(TagHandle);
1906 if (It != Doc->getTagMap().end())
1907 Ret = std::string(It->second);
1908 else {
1909 Token T;
1910 T.Kind = Token::TK_Tag;
1911 T.Range = TagHandle;
1912 setError(Twine("Unknown tag handle ") + TagHandle, T);
1914 Ret += Raw.substr(Raw.find_last_of('!') + 1);
1915 return Ret;
1919 switch (getType()) {
1920 case NK_Null:
1921 return "tag:yaml.org,2002:null";
1922 case NK_Scalar:
1923 case NK_BlockScalar:
1924 // TODO: Tag resolution.
1925 return "tag:yaml.org,2002:str";
1926 case NK_Mapping:
1927 return "tag:yaml.org,2002:map";
1928 case NK_Sequence:
1929 return "tag:yaml.org,2002:seq";
1932 return "";
1935 Token &Node::peekNext() {
1936 return Doc->peekNext();
1939 Token Node::getNext() {
1940 return Doc->getNext();
1943 Node *Node::parseBlockNode() {
1944 return Doc->parseBlockNode();
1947 BumpPtrAllocator &Node::getAllocator() {
1948 return Doc->NodeAllocator;
1951 void Node::setError(const Twine &Msg, Token &Tok) const {
1952 Doc->setError(Msg, Tok);
1955 bool Node::failed() const {
1956 return Doc->failed();
1959 StringRef ScalarNode::getValue(SmallVectorImpl<char> &Storage) const {
1960 // TODO: Handle newlines properly. We need to remove leading whitespace.
1961 if (Value[0] == '"') { // Double quoted.
1962 // Pull off the leading and trailing "s.
1963 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1964 // Search for characters that would require unescaping the value.
1965 StringRef::size_type i = UnquotedValue.find_first_of("\\\r\n");
1966 if (i != StringRef::npos)
1967 return unescapeDoubleQuoted(UnquotedValue, i, Storage);
1968 return UnquotedValue;
1969 } else if (Value[0] == '\'') { // Single quoted.
1970 // Pull off the leading and trailing 's.
1971 StringRef UnquotedValue = Value.substr(1, Value.size() - 2);
1972 StringRef::size_type i = UnquotedValue.find('\'');
1973 if (i != StringRef::npos) {
1974 // We're going to need Storage.
1975 Storage.clear();
1976 Storage.reserve(UnquotedValue.size());
1977 for (; i != StringRef::npos; i = UnquotedValue.find('\'')) {
1978 StringRef Valid(UnquotedValue.begin(), i);
1979 llvm::append_range(Storage, Valid);
1980 Storage.push_back('\'');
1981 UnquotedValue = UnquotedValue.substr(i + 2);
1983 llvm::append_range(Storage, UnquotedValue);
1984 return StringRef(Storage.begin(), Storage.size());
1986 return UnquotedValue;
1988 // Plain or block.
1989 return Value.rtrim(' ');
1992 StringRef ScalarNode::unescapeDoubleQuoted( StringRef UnquotedValue
1993 , StringRef::size_type i
1994 , SmallVectorImpl<char> &Storage)
1995 const {
1996 // Use Storage to build proper value.
1997 Storage.clear();
1998 Storage.reserve(UnquotedValue.size());
1999 for (; i != StringRef::npos; i = UnquotedValue.find_first_of("\\\r\n")) {
2000 // Insert all previous chars into Storage.
2001 StringRef Valid(UnquotedValue.begin(), i);
2002 llvm::append_range(Storage, Valid);
2003 // Chop off inserted chars.
2004 UnquotedValue = UnquotedValue.substr(i);
2006 assert(!UnquotedValue.empty() && "Can't be empty!");
2008 // Parse escape or line break.
2009 switch (UnquotedValue[0]) {
2010 case '\r':
2011 case '\n':
2012 Storage.push_back('\n');
2013 if ( UnquotedValue.size() > 1
2014 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2015 UnquotedValue = UnquotedValue.substr(1);
2016 UnquotedValue = UnquotedValue.substr(1);
2017 break;
2018 default:
2019 if (UnquotedValue.size() == 1) {
2020 Token T;
2021 T.Range = StringRef(UnquotedValue.begin(), 1);
2022 setError("Unrecognized escape code", T);
2023 return "";
2025 UnquotedValue = UnquotedValue.substr(1);
2026 switch (UnquotedValue[0]) {
2027 default: {
2028 Token T;
2029 T.Range = StringRef(UnquotedValue.begin(), 1);
2030 setError("Unrecognized escape code", T);
2031 return "";
2033 case '\r':
2034 case '\n':
2035 // Remove the new line.
2036 if ( UnquotedValue.size() > 1
2037 && (UnquotedValue[1] == '\r' || UnquotedValue[1] == '\n'))
2038 UnquotedValue = UnquotedValue.substr(1);
2039 // If this was just a single byte newline, it will get skipped
2040 // below.
2041 break;
2042 case '0':
2043 Storage.push_back(0x00);
2044 break;
2045 case 'a':
2046 Storage.push_back(0x07);
2047 break;
2048 case 'b':
2049 Storage.push_back(0x08);
2050 break;
2051 case 't':
2052 case 0x09:
2053 Storage.push_back(0x09);
2054 break;
2055 case 'n':
2056 Storage.push_back(0x0A);
2057 break;
2058 case 'v':
2059 Storage.push_back(0x0B);
2060 break;
2061 case 'f':
2062 Storage.push_back(0x0C);
2063 break;
2064 case 'r':
2065 Storage.push_back(0x0D);
2066 break;
2067 case 'e':
2068 Storage.push_back(0x1B);
2069 break;
2070 case ' ':
2071 Storage.push_back(0x20);
2072 break;
2073 case '"':
2074 Storage.push_back(0x22);
2075 break;
2076 case '/':
2077 Storage.push_back(0x2F);
2078 break;
2079 case '\\':
2080 Storage.push_back(0x5C);
2081 break;
2082 case 'N':
2083 encodeUTF8(0x85, Storage);
2084 break;
2085 case '_':
2086 encodeUTF8(0xA0, Storage);
2087 break;
2088 case 'L':
2089 encodeUTF8(0x2028, Storage);
2090 break;
2091 case 'P':
2092 encodeUTF8(0x2029, Storage);
2093 break;
2094 case 'x': {
2095 if (UnquotedValue.size() < 3)
2096 // TODO: Report error.
2097 break;
2098 unsigned int UnicodeScalarValue;
2099 if (UnquotedValue.substr(1, 2).getAsInteger(16, UnicodeScalarValue))
2100 // TODO: Report error.
2101 UnicodeScalarValue = 0xFFFD;
2102 encodeUTF8(UnicodeScalarValue, Storage);
2103 UnquotedValue = UnquotedValue.substr(2);
2104 break;
2106 case 'u': {
2107 if (UnquotedValue.size() < 5)
2108 // TODO: Report error.
2109 break;
2110 unsigned int UnicodeScalarValue;
2111 if (UnquotedValue.substr(1, 4).getAsInteger(16, UnicodeScalarValue))
2112 // TODO: Report error.
2113 UnicodeScalarValue = 0xFFFD;
2114 encodeUTF8(UnicodeScalarValue, Storage);
2115 UnquotedValue = UnquotedValue.substr(4);
2116 break;
2118 case 'U': {
2119 if (UnquotedValue.size() < 9)
2120 // TODO: Report error.
2121 break;
2122 unsigned int UnicodeScalarValue;
2123 if (UnquotedValue.substr(1, 8).getAsInteger(16, UnicodeScalarValue))
2124 // TODO: Report error.
2125 UnicodeScalarValue = 0xFFFD;
2126 encodeUTF8(UnicodeScalarValue, Storage);
2127 UnquotedValue = UnquotedValue.substr(8);
2128 break;
2131 UnquotedValue = UnquotedValue.substr(1);
2134 llvm::append_range(Storage, UnquotedValue);
2135 return StringRef(Storage.begin(), Storage.size());
2138 Node *KeyValueNode::getKey() {
2139 if (Key)
2140 return Key;
2141 // Handle implicit null keys.
2143 Token &t = peekNext();
2144 if ( t.Kind == Token::TK_BlockEnd
2145 || t.Kind == Token::TK_Value
2146 || t.Kind == Token::TK_Error) {
2147 return Key = new (getAllocator()) NullNode(Doc);
2149 if (t.Kind == Token::TK_Key)
2150 getNext(); // skip TK_Key.
2153 // Handle explicit null keys.
2154 Token &t = peekNext();
2155 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Value) {
2156 return Key = new (getAllocator()) NullNode(Doc);
2159 // We've got a normal key.
2160 return Key = parseBlockNode();
2163 Node *KeyValueNode::getValue() {
2164 if (Value)
2165 return Value;
2167 if (Node* Key = getKey())
2168 Key->skip();
2169 else {
2170 setError("Null key in Key Value.", peekNext());
2171 return Value = new (getAllocator()) NullNode(Doc);
2174 if (failed())
2175 return Value = new (getAllocator()) NullNode(Doc);
2177 // Handle implicit null values.
2179 Token &t = peekNext();
2180 if ( t.Kind == Token::TK_BlockEnd
2181 || t.Kind == Token::TK_FlowMappingEnd
2182 || t.Kind == Token::TK_Key
2183 || t.Kind == Token::TK_FlowEntry
2184 || t.Kind == Token::TK_Error) {
2185 return Value = new (getAllocator()) NullNode(Doc);
2188 if (t.Kind != Token::TK_Value) {
2189 setError("Unexpected token in Key Value.", t);
2190 return Value = new (getAllocator()) NullNode(Doc);
2192 getNext(); // skip TK_Value.
2195 // Handle explicit null values.
2196 Token &t = peekNext();
2197 if (t.Kind == Token::TK_BlockEnd || t.Kind == Token::TK_Key) {
2198 return Value = new (getAllocator()) NullNode(Doc);
2201 // We got a normal value.
2202 return Value = parseBlockNode();
2205 void MappingNode::increment() {
2206 if (failed()) {
2207 IsAtEnd = true;
2208 CurrentEntry = nullptr;
2209 return;
2211 if (CurrentEntry) {
2212 CurrentEntry->skip();
2213 if (Type == MT_Inline) {
2214 IsAtEnd = true;
2215 CurrentEntry = nullptr;
2216 return;
2219 Token T = peekNext();
2220 if (T.Kind == Token::TK_Key || T.Kind == Token::TK_Scalar) {
2221 // KeyValueNode eats the TK_Key. That way it can detect null keys.
2222 CurrentEntry = new (getAllocator()) KeyValueNode(Doc);
2223 } else if (Type == MT_Block) {
2224 switch (T.Kind) {
2225 case Token::TK_BlockEnd:
2226 getNext();
2227 IsAtEnd = true;
2228 CurrentEntry = nullptr;
2229 break;
2230 default:
2231 setError("Unexpected token. Expected Key or Block End", T);
2232 LLVM_FALLTHROUGH;
2233 case Token::TK_Error:
2234 IsAtEnd = true;
2235 CurrentEntry = nullptr;
2237 } else {
2238 switch (T.Kind) {
2239 case Token::TK_FlowEntry:
2240 // Eat the flow entry and recurse.
2241 getNext();
2242 return increment();
2243 case Token::TK_FlowMappingEnd:
2244 getNext();
2245 LLVM_FALLTHROUGH;
2246 case Token::TK_Error:
2247 // Set this to end iterator.
2248 IsAtEnd = true;
2249 CurrentEntry = nullptr;
2250 break;
2251 default:
2252 setError( "Unexpected token. Expected Key, Flow Entry, or Flow "
2253 "Mapping End."
2254 , T);
2255 IsAtEnd = true;
2256 CurrentEntry = nullptr;
2261 void SequenceNode::increment() {
2262 if (failed()) {
2263 IsAtEnd = true;
2264 CurrentEntry = nullptr;
2265 return;
2267 if (CurrentEntry)
2268 CurrentEntry->skip();
2269 Token T = peekNext();
2270 if (SeqType == ST_Block) {
2271 switch (T.Kind) {
2272 case Token::TK_BlockEntry:
2273 getNext();
2274 CurrentEntry = parseBlockNode();
2275 if (!CurrentEntry) { // An error occurred.
2276 IsAtEnd = true;
2277 CurrentEntry = nullptr;
2279 break;
2280 case Token::TK_BlockEnd:
2281 getNext();
2282 IsAtEnd = true;
2283 CurrentEntry = nullptr;
2284 break;
2285 default:
2286 setError( "Unexpected token. Expected Block Entry or Block End."
2287 , T);
2288 LLVM_FALLTHROUGH;
2289 case Token::TK_Error:
2290 IsAtEnd = true;
2291 CurrentEntry = nullptr;
2293 } else if (SeqType == ST_Indentless) {
2294 switch (T.Kind) {
2295 case Token::TK_BlockEntry:
2296 getNext();
2297 CurrentEntry = parseBlockNode();
2298 if (!CurrentEntry) { // An error occurred.
2299 IsAtEnd = true;
2300 CurrentEntry = nullptr;
2302 break;
2303 default:
2304 case Token::TK_Error:
2305 IsAtEnd = true;
2306 CurrentEntry = nullptr;
2308 } else if (SeqType == ST_Flow) {
2309 switch (T.Kind) {
2310 case Token::TK_FlowEntry:
2311 // Eat the flow entry and recurse.
2312 getNext();
2313 WasPreviousTokenFlowEntry = true;
2314 return increment();
2315 case Token::TK_FlowSequenceEnd:
2316 getNext();
2317 LLVM_FALLTHROUGH;
2318 case Token::TK_Error:
2319 // Set this to end iterator.
2320 IsAtEnd = true;
2321 CurrentEntry = nullptr;
2322 break;
2323 case Token::TK_StreamEnd:
2324 case Token::TK_DocumentEnd:
2325 case Token::TK_DocumentStart:
2326 setError("Could not find closing ]!", T);
2327 // Set this to end iterator.
2328 IsAtEnd = true;
2329 CurrentEntry = nullptr;
2330 break;
2331 default:
2332 if (!WasPreviousTokenFlowEntry) {
2333 setError("Expected , between entries!", T);
2334 IsAtEnd = true;
2335 CurrentEntry = nullptr;
2336 break;
2338 // Otherwise it must be a flow entry.
2339 CurrentEntry = parseBlockNode();
2340 if (!CurrentEntry) {
2341 IsAtEnd = true;
2343 WasPreviousTokenFlowEntry = false;
2344 break;
2349 Document::Document(Stream &S) : stream(S), Root(nullptr) {
2350 // Tag maps starts with two default mappings.
2351 TagMap["!"] = "!";
2352 TagMap["!!"] = "tag:yaml.org,2002:";
2354 if (parseDirectives())
2355 expectToken(Token::TK_DocumentStart);
2356 Token &T = peekNext();
2357 if (T.Kind == Token::TK_DocumentStart)
2358 getNext();
2361 bool Document::skip() {
2362 if (stream.scanner->failed())
2363 return false;
2364 if (!Root && !getRoot())
2365 return false;
2366 Root->skip();
2367 Token &T = peekNext();
2368 if (T.Kind == Token::TK_StreamEnd)
2369 return false;
2370 if (T.Kind == Token::TK_DocumentEnd) {
2371 getNext();
2372 return skip();
2374 return true;
2377 Token &Document::peekNext() {
2378 return stream.scanner->peekNext();
2381 Token Document::getNext() {
2382 return stream.scanner->getNext();
2385 void Document::setError(const Twine &Message, Token &Location) const {
2386 stream.scanner->setError(Message, Location.Range.begin());
2389 bool Document::failed() const {
2390 return stream.scanner->failed();
2393 Node *Document::parseBlockNode() {
2394 Token T = peekNext();
2395 // Handle properties.
2396 Token AnchorInfo;
2397 Token TagInfo;
2398 parse_property:
2399 switch (T.Kind) {
2400 case Token::TK_Alias:
2401 getNext();
2402 return new (NodeAllocator) AliasNode(stream.CurrentDoc, T.Range.substr(1));
2403 case Token::TK_Anchor:
2404 if (AnchorInfo.Kind == Token::TK_Anchor) {
2405 setError("Already encountered an anchor for this node!", T);
2406 return nullptr;
2408 AnchorInfo = getNext(); // Consume TK_Anchor.
2409 T = peekNext();
2410 goto parse_property;
2411 case Token::TK_Tag:
2412 if (TagInfo.Kind == Token::TK_Tag) {
2413 setError("Already encountered a tag for this node!", T);
2414 return nullptr;
2416 TagInfo = getNext(); // Consume TK_Tag.
2417 T = peekNext();
2418 goto parse_property;
2419 default:
2420 break;
2423 switch (T.Kind) {
2424 case Token::TK_BlockEntry:
2425 // We got an unindented BlockEntry sequence. This is not terminated with
2426 // a BlockEnd.
2427 // Don't eat the TK_BlockEntry, SequenceNode needs it.
2428 return new (NodeAllocator) SequenceNode( stream.CurrentDoc
2429 , AnchorInfo.Range.substr(1)
2430 , TagInfo.Range
2431 , SequenceNode::ST_Indentless);
2432 case Token::TK_BlockSequenceStart:
2433 getNext();
2434 return new (NodeAllocator)
2435 SequenceNode( stream.CurrentDoc
2436 , AnchorInfo.Range.substr(1)
2437 , TagInfo.Range
2438 , SequenceNode::ST_Block);
2439 case Token::TK_BlockMappingStart:
2440 getNext();
2441 return new (NodeAllocator)
2442 MappingNode( stream.CurrentDoc
2443 , AnchorInfo.Range.substr(1)
2444 , TagInfo.Range
2445 , MappingNode::MT_Block);
2446 case Token::TK_FlowSequenceStart:
2447 getNext();
2448 return new (NodeAllocator)
2449 SequenceNode( stream.CurrentDoc
2450 , AnchorInfo.Range.substr(1)
2451 , TagInfo.Range
2452 , SequenceNode::ST_Flow);
2453 case Token::TK_FlowMappingStart:
2454 getNext();
2455 return new (NodeAllocator)
2456 MappingNode( stream.CurrentDoc
2457 , AnchorInfo.Range.substr(1)
2458 , TagInfo.Range
2459 , MappingNode::MT_Flow);
2460 case Token::TK_Scalar:
2461 getNext();
2462 return new (NodeAllocator)
2463 ScalarNode( stream.CurrentDoc
2464 , AnchorInfo.Range.substr(1)
2465 , TagInfo.Range
2466 , T.Range);
2467 case Token::TK_BlockScalar: {
2468 getNext();
2469 StringRef NullTerminatedStr(T.Value.c_str(), T.Value.length() + 1);
2470 StringRef StrCopy = NullTerminatedStr.copy(NodeAllocator).drop_back();
2471 return new (NodeAllocator)
2472 BlockScalarNode(stream.CurrentDoc, AnchorInfo.Range.substr(1),
2473 TagInfo.Range, StrCopy, T.Range);
2475 case Token::TK_Key:
2476 // Don't eat the TK_Key, KeyValueNode expects it.
2477 return new (NodeAllocator)
2478 MappingNode( stream.CurrentDoc
2479 , AnchorInfo.Range.substr(1)
2480 , TagInfo.Range
2481 , MappingNode::MT_Inline);
2482 case Token::TK_DocumentStart:
2483 case Token::TK_DocumentEnd:
2484 case Token::TK_StreamEnd:
2485 default:
2486 // TODO: Properly handle tags. "[!!str ]" should resolve to !!str "", not
2487 // !!null null.
2488 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2489 case Token::TK_FlowMappingEnd:
2490 case Token::TK_FlowSequenceEnd:
2491 case Token::TK_FlowEntry: {
2492 if (Root && (isa<MappingNode>(Root) || isa<SequenceNode>(Root)))
2493 return new (NodeAllocator) NullNode(stream.CurrentDoc);
2495 setError("Unexpected token", T);
2496 return nullptr;
2498 case Token::TK_Error:
2499 return nullptr;
2501 llvm_unreachable("Control flow shouldn't reach here.");
2502 return nullptr;
2505 bool Document::parseDirectives() {
2506 bool isDirective = false;
2507 while (true) {
2508 Token T = peekNext();
2509 if (T.Kind == Token::TK_TagDirective) {
2510 parseTAGDirective();
2511 isDirective = true;
2512 } else if (T.Kind == Token::TK_VersionDirective) {
2513 parseYAMLDirective();
2514 isDirective = true;
2515 } else
2516 break;
2518 return isDirective;
2521 void Document::parseYAMLDirective() {
2522 getNext(); // Eat %YAML <version>
2525 void Document::parseTAGDirective() {
2526 Token Tag = getNext(); // %TAG <handle> <prefix>
2527 StringRef T = Tag.Range;
2528 // Strip %TAG
2529 T = T.substr(T.find_first_of(" \t")).ltrim(" \t");
2530 std::size_t HandleEnd = T.find_first_of(" \t");
2531 StringRef TagHandle = T.substr(0, HandleEnd);
2532 StringRef TagPrefix = T.substr(HandleEnd).ltrim(" \t");
2533 TagMap[TagHandle] = TagPrefix;
2536 bool Document::expectToken(int TK) {
2537 Token T = getNext();
2538 if (T.Kind != TK) {
2539 setError("Unexpected token", T);
2540 return false;
2542 return true;