[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Support / YAMLTraits.cpp
blobaa6163a761614b6f0e1a8588ee8a5255067eb35a
1 //===- lib/Support/YAMLTraits.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Support/YAMLTraits.h"
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/StringRef.h"
14 #include "llvm/ADT/Twine.h"
15 #include "llvm/Support/Casting.h"
16 #include "llvm/Support/Errc.h"
17 #include "llvm/Support/ErrorHandling.h"
18 #include "llvm/Support/Format.h"
19 #include "llvm/Support/LineIterator.h"
20 #include "llvm/Support/MemoryBuffer.h"
21 #include "llvm/Support/Unicode.h"
22 #include "llvm/Support/YAMLParser.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 #include <cassert>
26 #include <cstdint>
27 #include <cstdlib>
28 #include <cstring>
29 #include <string>
30 #include <vector>
32 using namespace llvm;
33 using namespace yaml;
35 //===----------------------------------------------------------------------===//
36 // IO
37 //===----------------------------------------------------------------------===//
39 IO::IO(void *Context) : Ctxt(Context) {}
41 IO::~IO() = default;
43 void *IO::getContext() const {
44 return Ctxt;
47 void IO::setContext(void *Context) {
48 Ctxt = Context;
51 void IO::setAllowUnknownKeys(bool Allow) {
52 llvm_unreachable("Only supported for Input");
55 //===----------------------------------------------------------------------===//
56 // Input
57 //===----------------------------------------------------------------------===//
59 Input::Input(StringRef InputContent, void *Ctxt,
60 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
61 : IO(Ctxt), Strm(new Stream(InputContent, SrcMgr, false, &EC)) {
62 if (DiagHandler)
63 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
64 DocIterator = Strm->begin();
67 Input::Input(MemoryBufferRef Input, void *Ctxt,
68 SourceMgr::DiagHandlerTy DiagHandler, void *DiagHandlerCtxt)
69 : IO(Ctxt), Strm(new Stream(Input, SrcMgr, false, &EC)) {
70 if (DiagHandler)
71 SrcMgr.setDiagHandler(DiagHandler, DiagHandlerCtxt);
72 DocIterator = Strm->begin();
75 Input::~Input() = default;
77 std::error_code Input::error() { return EC; }
79 // Pin the vtables to this file.
80 void Input::HNode::anchor() {}
81 void Input::EmptyHNode::anchor() {}
82 void Input::ScalarHNode::anchor() {}
83 void Input::MapHNode::anchor() {}
84 void Input::SequenceHNode::anchor() {}
86 bool Input::outputting() const {
87 return false;
90 bool Input::setCurrentDocument() {
91 if (DocIterator != Strm->end()) {
92 Node *N = DocIterator->getRoot();
93 if (!N) {
94 EC = make_error_code(errc::invalid_argument);
95 return false;
98 if (isa<NullNode>(N)) {
99 // Empty files are allowed and ignored
100 ++DocIterator;
101 return setCurrentDocument();
103 TopNode = createHNodes(N);
104 CurrentNode = TopNode.get();
105 return true;
107 return false;
110 bool Input::nextDocument() {
111 return ++DocIterator != Strm->end();
114 const Node *Input::getCurrentNode() const {
115 return CurrentNode ? CurrentNode->_node : nullptr;
118 bool Input::mapTag(StringRef Tag, bool Default) {
119 // CurrentNode can be null if setCurrentDocument() was unable to
120 // parse the document because it was invalid or empty.
121 if (!CurrentNode)
122 return false;
124 std::string foundTag = CurrentNode->_node->getVerbatimTag();
125 if (foundTag.empty()) {
126 // If no tag found and 'Tag' is the default, say it was found.
127 return Default;
129 // Return true iff found tag matches supplied tag.
130 return Tag.equals(foundTag);
133 void Input::beginMapping() {
134 if (EC)
135 return;
136 // CurrentNode can be null if the document is empty.
137 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
138 if (MN) {
139 MN->ValidKeys.clear();
143 std::vector<StringRef> Input::keys() {
144 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
145 std::vector<StringRef> Ret;
146 if (!MN) {
147 setError(CurrentNode, "not a mapping");
148 return Ret;
150 for (auto &P : MN->Mapping)
151 Ret.push_back(P.first());
152 return Ret;
155 bool Input::preflightKey(const char *Key, bool Required, bool, bool &UseDefault,
156 void *&SaveInfo) {
157 UseDefault = false;
158 if (EC)
159 return false;
161 // CurrentNode is null for empty documents, which is an error in case required
162 // nodes are present.
163 if (!CurrentNode) {
164 if (Required)
165 EC = make_error_code(errc::invalid_argument);
166 return false;
169 MapHNode *MN = dyn_cast<MapHNode>(CurrentNode);
170 if (!MN) {
171 if (Required || !isa<EmptyHNode>(CurrentNode))
172 setError(CurrentNode, "not a mapping");
173 else
174 UseDefault = true;
175 return false;
177 MN->ValidKeys.push_back(Key);
178 HNode *Value = MN->Mapping[Key].first.get();
179 if (!Value) {
180 if (Required)
181 setError(CurrentNode, Twine("missing required key '") + Key + "'");
182 else
183 UseDefault = true;
184 return false;
186 SaveInfo = CurrentNode;
187 CurrentNode = Value;
188 return true;
191 void Input::postflightKey(void *saveInfo) {
192 CurrentNode = reinterpret_cast<HNode *>(saveInfo);
195 void Input::endMapping() {
196 if (EC)
197 return;
198 // CurrentNode can be null if the document is empty.
199 MapHNode *MN = dyn_cast_or_null<MapHNode>(CurrentNode);
200 if (!MN)
201 return;
202 for (const auto &NN : MN->Mapping) {
203 if (!is_contained(MN->ValidKeys, NN.first())) {
204 const SMRange &ReportLoc = NN.second.second;
205 if (!AllowUnknownKeys) {
206 setError(ReportLoc, Twine("unknown key '") + NN.first() + "'");
207 break;
208 } else
209 reportWarning(ReportLoc, Twine("unknown key '") + NN.first() + "'");
214 void Input::beginFlowMapping() { beginMapping(); }
216 void Input::endFlowMapping() { endMapping(); }
218 unsigned Input::beginSequence() {
219 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode))
220 return SQ->Entries.size();
221 if (isa<EmptyHNode>(CurrentNode))
222 return 0;
223 // Treat case where there's a scalar "null" value as an empty sequence.
224 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
225 if (isNull(SN->value()))
226 return 0;
228 // Any other type of HNode is an error.
229 setError(CurrentNode, "not a sequence");
230 return 0;
233 void Input::endSequence() {
236 bool Input::preflightElement(unsigned Index, void *&SaveInfo) {
237 if (EC)
238 return false;
239 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
240 SaveInfo = CurrentNode;
241 CurrentNode = SQ->Entries[Index].get();
242 return true;
244 return false;
247 void Input::postflightElement(void *SaveInfo) {
248 CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
251 unsigned Input::beginFlowSequence() { return beginSequence(); }
253 bool Input::preflightFlowElement(unsigned index, void *&SaveInfo) {
254 if (EC)
255 return false;
256 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
257 SaveInfo = CurrentNode;
258 CurrentNode = SQ->Entries[index].get();
259 return true;
261 return false;
264 void Input::postflightFlowElement(void *SaveInfo) {
265 CurrentNode = reinterpret_cast<HNode *>(SaveInfo);
268 void Input::endFlowSequence() {
271 void Input::beginEnumScalar() {
272 ScalarMatchFound = false;
275 bool Input::matchEnumScalar(const char *Str, bool) {
276 if (ScalarMatchFound)
277 return false;
278 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
279 if (SN->value().equals(Str)) {
280 ScalarMatchFound = true;
281 return true;
284 return false;
287 bool Input::matchEnumFallback() {
288 if (ScalarMatchFound)
289 return false;
290 ScalarMatchFound = true;
291 return true;
294 void Input::endEnumScalar() {
295 if (!ScalarMatchFound) {
296 setError(CurrentNode, "unknown enumerated scalar");
300 bool Input::beginBitSetScalar(bool &DoClear) {
301 BitValuesUsed.clear();
302 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
303 BitValuesUsed.insert(BitValuesUsed.begin(), SQ->Entries.size(), false);
304 } else {
305 setError(CurrentNode, "expected sequence of bit values");
307 DoClear = true;
308 return true;
311 bool Input::bitSetMatch(const char *Str, bool) {
312 if (EC)
313 return false;
314 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
315 unsigned Index = 0;
316 for (auto &N : SQ->Entries) {
317 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(N.get())) {
318 if (SN->value().equals(Str)) {
319 BitValuesUsed[Index] = true;
320 return true;
322 } else {
323 setError(CurrentNode, "unexpected scalar in sequence of bit values");
325 ++Index;
327 } else {
328 setError(CurrentNode, "expected sequence of bit values");
330 return false;
333 void Input::endBitSetScalar() {
334 if (EC)
335 return;
336 if (SequenceHNode *SQ = dyn_cast<SequenceHNode>(CurrentNode)) {
337 assert(BitValuesUsed.size() == SQ->Entries.size());
338 for (unsigned i = 0; i < SQ->Entries.size(); ++i) {
339 if (!BitValuesUsed[i]) {
340 setError(SQ->Entries[i].get(), "unknown bit value");
341 return;
347 void Input::scalarString(StringRef &S, QuotingType) {
348 if (ScalarHNode *SN = dyn_cast<ScalarHNode>(CurrentNode)) {
349 S = SN->value();
350 } else {
351 setError(CurrentNode, "unexpected scalar");
355 void Input::blockScalarString(StringRef &S) { scalarString(S, QuotingType::None); }
357 void Input::scalarTag(std::string &Tag) {
358 Tag = CurrentNode->_node->getVerbatimTag();
361 void Input::setError(HNode *hnode, const Twine &message) {
362 assert(hnode && "HNode must not be NULL");
363 setError(hnode->_node, message);
366 NodeKind Input::getNodeKind() {
367 if (isa<ScalarHNode>(CurrentNode))
368 return NodeKind::Scalar;
369 else if (isa<MapHNode>(CurrentNode))
370 return NodeKind::Map;
371 else if (isa<SequenceHNode>(CurrentNode))
372 return NodeKind::Sequence;
373 llvm_unreachable("Unsupported node kind");
376 void Input::setError(Node *node, const Twine &message) {
377 Strm->printError(node, message);
378 EC = make_error_code(errc::invalid_argument);
381 void Input::setError(const SMRange &range, const Twine &message) {
382 Strm->printError(range, message);
383 EC = make_error_code(errc::invalid_argument);
386 void Input::reportWarning(HNode *hnode, const Twine &message) {
387 assert(hnode && "HNode must not be NULL");
388 Strm->printError(hnode->_node, message, SourceMgr::DK_Warning);
391 void Input::reportWarning(Node *node, const Twine &message) {
392 Strm->printError(node, message, SourceMgr::DK_Warning);
395 void Input::reportWarning(const SMRange &range, const Twine &message) {
396 Strm->printError(range, message, SourceMgr::DK_Warning);
399 std::unique_ptr<Input::HNode> Input::createHNodes(Node *N) {
400 SmallString<128> StringStorage;
401 if (ScalarNode *SN = dyn_cast<ScalarNode>(N)) {
402 StringRef KeyStr = SN->getValue(StringStorage);
403 if (!StringStorage.empty()) {
404 // Copy string to permanent storage
405 KeyStr = StringStorage.str().copy(StringAllocator);
407 return std::make_unique<ScalarHNode>(N, KeyStr);
408 } else if (BlockScalarNode *BSN = dyn_cast<BlockScalarNode>(N)) {
409 StringRef ValueCopy = BSN->getValue().copy(StringAllocator);
410 return std::make_unique<ScalarHNode>(N, ValueCopy);
411 } else if (SequenceNode *SQ = dyn_cast<SequenceNode>(N)) {
412 auto SQHNode = std::make_unique<SequenceHNode>(N);
413 for (Node &SN : *SQ) {
414 auto Entry = createHNodes(&SN);
415 if (EC)
416 break;
417 SQHNode->Entries.push_back(std::move(Entry));
419 return std::move(SQHNode);
420 } else if (MappingNode *Map = dyn_cast<MappingNode>(N)) {
421 auto mapHNode = std::make_unique<MapHNode>(N);
422 for (KeyValueNode &KVN : *Map) {
423 Node *KeyNode = KVN.getKey();
424 ScalarNode *Key = dyn_cast_or_null<ScalarNode>(KeyNode);
425 Node *Value = KVN.getValue();
426 if (!Key || !Value) {
427 if (!Key)
428 setError(KeyNode, "Map key must be a scalar");
429 if (!Value)
430 setError(KeyNode, "Map value must not be empty");
431 break;
433 StringStorage.clear();
434 StringRef KeyStr = Key->getValue(StringStorage);
435 if (!StringStorage.empty()) {
436 // Copy string to permanent storage
437 KeyStr = StringStorage.str().copy(StringAllocator);
439 auto ValueHNode = createHNodes(Value);
440 if (EC)
441 break;
442 mapHNode->Mapping[KeyStr] =
443 std::make_pair(std::move(ValueHNode), KeyNode->getSourceRange());
445 return std::move(mapHNode);
446 } else if (isa<NullNode>(N)) {
447 return std::make_unique<EmptyHNode>(N);
448 } else {
449 setError(N, "unknown node kind");
450 return nullptr;
454 void Input::setError(const Twine &Message) {
455 setError(CurrentNode, Message);
458 void Input::setAllowUnknownKeys(bool Allow) { AllowUnknownKeys = Allow; }
460 bool Input::canElideEmptySequence() {
461 return false;
464 //===----------------------------------------------------------------------===//
465 // Output
466 //===----------------------------------------------------------------------===//
468 Output::Output(raw_ostream &yout, void *context, int WrapColumn)
469 : IO(context), Out(yout), WrapColumn(WrapColumn) {}
471 Output::~Output() = default;
473 bool Output::outputting() const {
474 return true;
477 void Output::beginMapping() {
478 StateStack.push_back(inMapFirstKey);
479 PaddingBeforeContainer = Padding;
480 Padding = "\n";
483 bool Output::mapTag(StringRef Tag, bool Use) {
484 if (Use) {
485 // If this tag is being written inside a sequence we should write the start
486 // of the sequence before writing the tag, otherwise the tag won't be
487 // attached to the element in the sequence, but rather the sequence itself.
488 bool SequenceElement = false;
489 if (StateStack.size() > 1) {
490 auto &E = StateStack[StateStack.size() - 2];
491 SequenceElement = inSeqAnyElement(E) || inFlowSeqAnyElement(E);
493 if (SequenceElement && StateStack.back() == inMapFirstKey) {
494 newLineCheck();
495 } else {
496 output(" ");
498 output(Tag);
499 if (SequenceElement) {
500 // If we're writing the tag during the first element of a map, the tag
501 // takes the place of the first element in the sequence.
502 if (StateStack.back() == inMapFirstKey) {
503 StateStack.pop_back();
504 StateStack.push_back(inMapOtherKey);
506 // Tags inside maps in sequences should act as keys in the map from a
507 // formatting perspective, so we always want a newline in a sequence.
508 Padding = "\n";
511 return Use;
514 void Output::endMapping() {
515 // If we did not map anything, we should explicitly emit an empty map
516 if (StateStack.back() == inMapFirstKey) {
517 Padding = PaddingBeforeContainer;
518 newLineCheck();
519 output("{}");
520 Padding = "\n";
522 StateStack.pop_back();
525 std::vector<StringRef> Output::keys() {
526 report_fatal_error("invalid call");
529 bool Output::preflightKey(const char *Key, bool Required, bool SameAsDefault,
530 bool &UseDefault, void *&) {
531 UseDefault = false;
532 if (Required || !SameAsDefault || WriteDefaultValues) {
533 auto State = StateStack.back();
534 if (State == inFlowMapFirstKey || State == inFlowMapOtherKey) {
535 flowKey(Key);
536 } else {
537 newLineCheck();
538 paddedKey(Key);
540 return true;
542 return false;
545 void Output::postflightKey(void *) {
546 if (StateStack.back() == inMapFirstKey) {
547 StateStack.pop_back();
548 StateStack.push_back(inMapOtherKey);
549 } else if (StateStack.back() == inFlowMapFirstKey) {
550 StateStack.pop_back();
551 StateStack.push_back(inFlowMapOtherKey);
555 void Output::beginFlowMapping() {
556 StateStack.push_back(inFlowMapFirstKey);
557 newLineCheck();
558 ColumnAtMapFlowStart = Column;
559 output("{ ");
562 void Output::endFlowMapping() {
563 StateStack.pop_back();
564 outputUpToEndOfLine(" }");
567 void Output::beginDocuments() {
568 outputUpToEndOfLine("---");
571 bool Output::preflightDocument(unsigned index) {
572 if (index > 0)
573 outputUpToEndOfLine("\n---");
574 return true;
577 void Output::postflightDocument() {
580 void Output::endDocuments() {
581 output("\n...\n");
584 unsigned Output::beginSequence() {
585 StateStack.push_back(inSeqFirstElement);
586 PaddingBeforeContainer = Padding;
587 Padding = "\n";
588 return 0;
591 void Output::endSequence() {
592 // If we did not emit anything, we should explicitly emit an empty sequence
593 if (StateStack.back() == inSeqFirstElement) {
594 Padding = PaddingBeforeContainer;
595 newLineCheck(/*EmptySequence=*/true);
596 output("[]");
597 Padding = "\n";
599 StateStack.pop_back();
602 bool Output::preflightElement(unsigned, void *&) {
603 return true;
606 void Output::postflightElement(void *) {
607 if (StateStack.back() == inSeqFirstElement) {
608 StateStack.pop_back();
609 StateStack.push_back(inSeqOtherElement);
610 } else if (StateStack.back() == inFlowSeqFirstElement) {
611 StateStack.pop_back();
612 StateStack.push_back(inFlowSeqOtherElement);
616 unsigned Output::beginFlowSequence() {
617 StateStack.push_back(inFlowSeqFirstElement);
618 newLineCheck();
619 ColumnAtFlowStart = Column;
620 output("[ ");
621 NeedFlowSequenceComma = false;
622 return 0;
625 void Output::endFlowSequence() {
626 StateStack.pop_back();
627 outputUpToEndOfLine(" ]");
630 bool Output::preflightFlowElement(unsigned, void *&) {
631 if (NeedFlowSequenceComma)
632 output(", ");
633 if (WrapColumn && Column > WrapColumn) {
634 output("\n");
635 for (int i = 0; i < ColumnAtFlowStart; ++i)
636 output(" ");
637 Column = ColumnAtFlowStart;
638 output(" ");
640 return true;
643 void Output::postflightFlowElement(void *) {
644 NeedFlowSequenceComma = true;
647 void Output::beginEnumScalar() {
648 EnumerationMatchFound = false;
651 bool Output::matchEnumScalar(const char *Str, bool Match) {
652 if (Match && !EnumerationMatchFound) {
653 newLineCheck();
654 outputUpToEndOfLine(Str);
655 EnumerationMatchFound = true;
657 return false;
660 bool Output::matchEnumFallback() {
661 if (EnumerationMatchFound)
662 return false;
663 EnumerationMatchFound = true;
664 return true;
667 void Output::endEnumScalar() {
668 if (!EnumerationMatchFound)
669 llvm_unreachable("bad runtime enum value");
672 bool Output::beginBitSetScalar(bool &DoClear) {
673 newLineCheck();
674 output("[ ");
675 NeedBitValueComma = false;
676 DoClear = false;
677 return true;
680 bool Output::bitSetMatch(const char *Str, bool Matches) {
681 if (Matches) {
682 if (NeedBitValueComma)
683 output(", ");
684 output(Str);
685 NeedBitValueComma = true;
687 return false;
690 void Output::endBitSetScalar() {
691 outputUpToEndOfLine(" ]");
694 void Output::scalarString(StringRef &S, QuotingType MustQuote) {
695 newLineCheck();
696 if (S.empty()) {
697 // Print '' for the empty string because leaving the field empty is not
698 // allowed.
699 outputUpToEndOfLine("''");
700 return;
702 if (MustQuote == QuotingType::None) {
703 // Only quote if we must.
704 outputUpToEndOfLine(S);
705 return;
708 const char *const Quote = MustQuote == QuotingType::Single ? "'" : "\"";
709 output(Quote); // Starting quote.
711 // When using double-quoted strings (and only in that case), non-printable characters may be
712 // present, and will be escaped using a variety of unicode-scalar and special short-form
713 // escapes. This is handled in yaml::escape.
714 if (MustQuote == QuotingType::Double) {
715 output(yaml::escape(S, /* EscapePrintable= */ false));
716 outputUpToEndOfLine(Quote);
717 return;
720 unsigned i = 0;
721 unsigned j = 0;
722 unsigned End = S.size();
723 const char *Base = S.data();
725 // When using single-quoted strings, any single quote ' must be doubled to be escaped.
726 while (j < End) {
727 if (S[j] == '\'') { // Escape quotes.
728 output(StringRef(&Base[i], j - i)); // "flush".
729 output(StringLiteral("''")); // Print it as ''
730 i = j + 1;
732 ++j;
734 output(StringRef(&Base[i], j - i));
735 outputUpToEndOfLine(Quote); // Ending quote.
738 void Output::blockScalarString(StringRef &S) {
739 if (!StateStack.empty())
740 newLineCheck();
741 output(" |");
742 outputNewLine();
744 unsigned Indent = StateStack.empty() ? 1 : StateStack.size();
746 auto Buffer = MemoryBuffer::getMemBuffer(S, "", false);
747 for (line_iterator Lines(*Buffer, false); !Lines.is_at_end(); ++Lines) {
748 for (unsigned I = 0; I < Indent; ++I) {
749 output(" ");
751 output(*Lines);
752 outputNewLine();
756 void Output::scalarTag(std::string &Tag) {
757 if (Tag.empty())
758 return;
759 newLineCheck();
760 output(Tag);
761 output(" ");
764 void Output::setError(const Twine &message) {
767 bool Output::canElideEmptySequence() {
768 // Normally, with an optional key/value where the value is an empty sequence,
769 // the whole key/value can be not written. But, that produces wrong yaml
770 // if the key/value is the only thing in the map and the map is used in
771 // a sequence. This detects if the this sequence is the first key/value
772 // in map that itself is embedded in a sequence.
773 if (StateStack.size() < 2)
774 return true;
775 if (StateStack.back() != inMapFirstKey)
776 return true;
777 return !inSeqAnyElement(StateStack[StateStack.size() - 2]);
780 void Output::output(StringRef s) {
781 Column += s.size();
782 Out << s;
785 void Output::outputUpToEndOfLine(StringRef s) {
786 output(s);
787 if (StateStack.empty() || (!inFlowSeqAnyElement(StateStack.back()) &&
788 !inFlowMapAnyKey(StateStack.back())))
789 Padding = "\n";
792 void Output::outputNewLine() {
793 Out << "\n";
794 Column = 0;
797 // if seq at top, indent as if map, then add "- "
798 // if seq in middle, use "- " if firstKey, else use " "
801 void Output::newLineCheck(bool EmptySequence) {
802 if (Padding != "\n") {
803 output(Padding);
804 Padding = {};
805 return;
807 outputNewLine();
808 Padding = {};
810 if (StateStack.size() == 0 || EmptySequence)
811 return;
813 unsigned Indent = StateStack.size() - 1;
814 bool OutputDash = false;
816 if (StateStack.back() == inSeqFirstElement ||
817 StateStack.back() == inSeqOtherElement) {
818 OutputDash = true;
819 } else if ((StateStack.size() > 1) &&
820 ((StateStack.back() == inMapFirstKey) ||
821 inFlowSeqAnyElement(StateStack.back()) ||
822 (StateStack.back() == inFlowMapFirstKey)) &&
823 inSeqAnyElement(StateStack[StateStack.size() - 2])) {
824 --Indent;
825 OutputDash = true;
828 for (unsigned i = 0; i < Indent; ++i) {
829 output(" ");
831 if (OutputDash) {
832 output("- ");
836 void Output::paddedKey(StringRef key) {
837 output(key);
838 output(":");
839 const char *spaces = " ";
840 if (key.size() < strlen(spaces))
841 Padding = &spaces[key.size()];
842 else
843 Padding = " ";
846 void Output::flowKey(StringRef Key) {
847 if (StateStack.back() == inFlowMapOtherKey)
848 output(", ");
849 if (WrapColumn && Column > WrapColumn) {
850 output("\n");
851 for (int I = 0; I < ColumnAtMapFlowStart; ++I)
852 output(" ");
853 Column = ColumnAtMapFlowStart;
854 output(" ");
856 output(Key);
857 output(": ");
860 NodeKind Output::getNodeKind() { report_fatal_error("invalid call"); }
862 bool Output::inSeqAnyElement(InState State) {
863 return State == inSeqFirstElement || State == inSeqOtherElement;
866 bool Output::inFlowSeqAnyElement(InState State) {
867 return State == inFlowSeqFirstElement || State == inFlowSeqOtherElement;
870 bool Output::inMapAnyKey(InState State) {
871 return State == inMapFirstKey || State == inMapOtherKey;
874 bool Output::inFlowMapAnyKey(InState State) {
875 return State == inFlowMapFirstKey || State == inFlowMapOtherKey;
878 //===----------------------------------------------------------------------===//
879 // traits for built-in types
880 //===----------------------------------------------------------------------===//
882 void ScalarTraits<bool>::output(const bool &Val, void *, raw_ostream &Out) {
883 Out << (Val ? "true" : "false");
886 StringRef ScalarTraits<bool>::input(StringRef Scalar, void *, bool &Val) {
887 if (llvm::Optional<bool> Parsed = parseBool(Scalar)) {
888 Val = *Parsed;
889 return StringRef();
891 return "invalid boolean";
894 void ScalarTraits<StringRef>::output(const StringRef &Val, void *,
895 raw_ostream &Out) {
896 Out << Val;
899 StringRef ScalarTraits<StringRef>::input(StringRef Scalar, void *,
900 StringRef &Val) {
901 Val = Scalar;
902 return StringRef();
905 void ScalarTraits<std::string>::output(const std::string &Val, void *,
906 raw_ostream &Out) {
907 Out << Val;
910 StringRef ScalarTraits<std::string>::input(StringRef Scalar, void *,
911 std::string &Val) {
912 Val = Scalar.str();
913 return StringRef();
916 void ScalarTraits<uint8_t>::output(const uint8_t &Val, void *,
917 raw_ostream &Out) {
918 // use temp uin32_t because ostream thinks uint8_t is a character
919 uint32_t Num = Val;
920 Out << Num;
923 StringRef ScalarTraits<uint8_t>::input(StringRef Scalar, void *, uint8_t &Val) {
924 unsigned long long n;
925 if (getAsUnsignedInteger(Scalar, 0, n))
926 return "invalid number";
927 if (n > 0xFF)
928 return "out of range number";
929 Val = n;
930 return StringRef();
933 void ScalarTraits<uint16_t>::output(const uint16_t &Val, void *,
934 raw_ostream &Out) {
935 Out << Val;
938 StringRef ScalarTraits<uint16_t>::input(StringRef Scalar, void *,
939 uint16_t &Val) {
940 unsigned long long n;
941 if (getAsUnsignedInteger(Scalar, 0, n))
942 return "invalid number";
943 if (n > 0xFFFF)
944 return "out of range number";
945 Val = n;
946 return StringRef();
949 void ScalarTraits<uint32_t>::output(const uint32_t &Val, void *,
950 raw_ostream &Out) {
951 Out << Val;
954 StringRef ScalarTraits<uint32_t>::input(StringRef Scalar, void *,
955 uint32_t &Val) {
956 unsigned long long n;
957 if (getAsUnsignedInteger(Scalar, 0, n))
958 return "invalid number";
959 if (n > 0xFFFFFFFFUL)
960 return "out of range number";
961 Val = n;
962 return StringRef();
965 void ScalarTraits<uint64_t>::output(const uint64_t &Val, void *,
966 raw_ostream &Out) {
967 Out << Val;
970 StringRef ScalarTraits<uint64_t>::input(StringRef Scalar, void *,
971 uint64_t &Val) {
972 unsigned long long N;
973 if (getAsUnsignedInteger(Scalar, 0, N))
974 return "invalid number";
975 Val = N;
976 return StringRef();
979 void ScalarTraits<int8_t>::output(const int8_t &Val, void *, raw_ostream &Out) {
980 // use temp in32_t because ostream thinks int8_t is a character
981 int32_t Num = Val;
982 Out << Num;
985 StringRef ScalarTraits<int8_t>::input(StringRef Scalar, void *, int8_t &Val) {
986 long long N;
987 if (getAsSignedInteger(Scalar, 0, N))
988 return "invalid number";
989 if ((N > 127) || (N < -128))
990 return "out of range number";
991 Val = N;
992 return StringRef();
995 void ScalarTraits<int16_t>::output(const int16_t &Val, void *,
996 raw_ostream &Out) {
997 Out << Val;
1000 StringRef ScalarTraits<int16_t>::input(StringRef Scalar, void *, int16_t &Val) {
1001 long long N;
1002 if (getAsSignedInteger(Scalar, 0, N))
1003 return "invalid number";
1004 if ((N > INT16_MAX) || (N < INT16_MIN))
1005 return "out of range number";
1006 Val = N;
1007 return StringRef();
1010 void ScalarTraits<int32_t>::output(const int32_t &Val, void *,
1011 raw_ostream &Out) {
1012 Out << Val;
1015 StringRef ScalarTraits<int32_t>::input(StringRef Scalar, void *, int32_t &Val) {
1016 long long N;
1017 if (getAsSignedInteger(Scalar, 0, N))
1018 return "invalid number";
1019 if ((N > INT32_MAX) || (N < INT32_MIN))
1020 return "out of range number";
1021 Val = N;
1022 return StringRef();
1025 void ScalarTraits<int64_t>::output(const int64_t &Val, void *,
1026 raw_ostream &Out) {
1027 Out << Val;
1030 StringRef ScalarTraits<int64_t>::input(StringRef Scalar, void *, int64_t &Val) {
1031 long long N;
1032 if (getAsSignedInteger(Scalar, 0, N))
1033 return "invalid number";
1034 Val = N;
1035 return StringRef();
1038 void ScalarTraits<double>::output(const double &Val, void *, raw_ostream &Out) {
1039 Out << format("%g", Val);
1042 StringRef ScalarTraits<double>::input(StringRef Scalar, void *, double &Val) {
1043 if (to_float(Scalar, Val))
1044 return StringRef();
1045 return "invalid floating point number";
1048 void ScalarTraits<float>::output(const float &Val, void *, raw_ostream &Out) {
1049 Out << format("%g", Val);
1052 StringRef ScalarTraits<float>::input(StringRef Scalar, void *, float &Val) {
1053 if (to_float(Scalar, Val))
1054 return StringRef();
1055 return "invalid floating point number";
1058 void ScalarTraits<Hex8>::output(const Hex8 &Val, void *, raw_ostream &Out) {
1059 Out << format("0x%" PRIX8, (uint8_t)Val);
1062 StringRef ScalarTraits<Hex8>::input(StringRef Scalar, void *, Hex8 &Val) {
1063 unsigned long long n;
1064 if (getAsUnsignedInteger(Scalar, 0, n))
1065 return "invalid hex8 number";
1066 if (n > 0xFF)
1067 return "out of range hex8 number";
1068 Val = n;
1069 return StringRef();
1072 void ScalarTraits<Hex16>::output(const Hex16 &Val, void *, raw_ostream &Out) {
1073 Out << format("0x%" PRIX16, (uint16_t)Val);
1076 StringRef ScalarTraits<Hex16>::input(StringRef Scalar, void *, Hex16 &Val) {
1077 unsigned long long n;
1078 if (getAsUnsignedInteger(Scalar, 0, n))
1079 return "invalid hex16 number";
1080 if (n > 0xFFFF)
1081 return "out of range hex16 number";
1082 Val = n;
1083 return StringRef();
1086 void ScalarTraits<Hex32>::output(const Hex32 &Val, void *, raw_ostream &Out) {
1087 Out << format("0x%" PRIX32, (uint32_t)Val);
1090 StringRef ScalarTraits<Hex32>::input(StringRef Scalar, void *, Hex32 &Val) {
1091 unsigned long long n;
1092 if (getAsUnsignedInteger(Scalar, 0, n))
1093 return "invalid hex32 number";
1094 if (n > 0xFFFFFFFFUL)
1095 return "out of range hex32 number";
1096 Val = n;
1097 return StringRef();
1100 void ScalarTraits<Hex64>::output(const Hex64 &Val, void *, raw_ostream &Out) {
1101 Out << format("0x%" PRIX64, (uint64_t)Val);
1104 StringRef ScalarTraits<Hex64>::input(StringRef Scalar, void *, Hex64 &Val) {
1105 unsigned long long Num;
1106 if (getAsUnsignedInteger(Scalar, 0, Num))
1107 return "invalid hex64 number";
1108 Val = Num;
1109 return StringRef();
1112 void ScalarTraits<VersionTuple>::output(const VersionTuple &Val, void *,
1113 llvm::raw_ostream &Out) {
1114 Out << Val.getAsString();
1117 StringRef ScalarTraits<VersionTuple>::input(StringRef Scalar, void *,
1118 VersionTuple &Val) {
1119 if (Val.tryParse(Scalar))
1120 return "invalid version format";
1121 return StringRef();