[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64AsmPrinter.cpp
blob3ab9b250749ac060a6822fa942f11b3196ac1fe4
1 //===- AArch64AsmPrinter.cpp - AArch64 LLVM assembly writer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a printer that converts from our internal representation
10 // of machine-dependent LLVM code to the AArch64 assembly language.
12 //===----------------------------------------------------------------------===//
14 #include "AArch64.h"
15 #include "AArch64MCInstLower.h"
16 #include "AArch64MachineFunctionInfo.h"
17 #include "AArch64RegisterInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "AArch64TargetObjectFile.h"
20 #include "MCTargetDesc/AArch64AddressingModes.h"
21 #include "MCTargetDesc/AArch64InstPrinter.h"
22 #include "MCTargetDesc/AArch64MCExpr.h"
23 #include "MCTargetDesc/AArch64MCTargetDesc.h"
24 #include "MCTargetDesc/AArch64TargetStreamer.h"
25 #include "TargetInfo/AArch64TargetInfo.h"
26 #include "Utils/AArch64BaseInfo.h"
27 #include "llvm/ADT/SmallString.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Triple.h"
31 #include "llvm/ADT/Twine.h"
32 #include "llvm/BinaryFormat/COFF.h"
33 #include "llvm/BinaryFormat/ELF.h"
34 #include "llvm/CodeGen/AsmPrinter.h"
35 #include "llvm/CodeGen/FaultMaps.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineInstr.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/StackMaps.h"
43 #include "llvm/CodeGen/TargetRegisterInfo.h"
44 #include "llvm/IR/DataLayout.h"
45 #include "llvm/IR/DebugInfoMetadata.h"
46 #include "llvm/MC/MCAsmInfo.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCInst.h"
49 #include "llvm/MC/MCInstBuilder.h"
50 #include "llvm/MC/MCSectionELF.h"
51 #include "llvm/MC/MCStreamer.h"
52 #include "llvm/MC/MCSymbol.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/TargetRegistry.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetMachine.h"
58 #include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
59 #include <algorithm>
60 #include <cassert>
61 #include <cstdint>
62 #include <map>
63 #include <memory>
65 using namespace llvm;
67 #define DEBUG_TYPE "asm-printer"
69 namespace {
71 class AArch64AsmPrinter : public AsmPrinter {
72 AArch64MCInstLower MCInstLowering;
73 StackMaps SM;
74 FaultMaps FM;
75 const AArch64Subtarget *STI;
77 public:
78 AArch64AsmPrinter(TargetMachine &TM, std::unique_ptr<MCStreamer> Streamer)
79 : AsmPrinter(TM, std::move(Streamer)), MCInstLowering(OutContext, *this),
80 SM(*this), FM(*this) {}
82 StringRef getPassName() const override { return "AArch64 Assembly Printer"; }
84 /// Wrapper for MCInstLowering.lowerOperand() for the
85 /// tblgen'erated pseudo lowering.
86 bool lowerOperand(const MachineOperand &MO, MCOperand &MCOp) const {
87 return MCInstLowering.lowerOperand(MO, MCOp);
90 void emitStartOfAsmFile(Module &M) override;
91 void emitJumpTableInfo() override;
93 void emitFunctionEntryLabel() override;
95 void LowerJumpTableDest(MCStreamer &OutStreamer, const MachineInstr &MI);
97 void LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
98 const MachineInstr &MI);
99 void LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
100 const MachineInstr &MI);
101 void LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM,
102 const MachineInstr &MI);
103 void LowerFAULTING_OP(const MachineInstr &MI);
105 void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI);
106 void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI);
107 void LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI);
109 typedef std::tuple<unsigned, bool, uint32_t> HwasanMemaccessTuple;
110 std::map<HwasanMemaccessTuple, MCSymbol *> HwasanMemaccessSymbols;
111 void LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI);
112 void emitHwasanMemaccessSymbols(Module &M);
114 void emitSled(const MachineInstr &MI, SledKind Kind);
116 /// tblgen'erated driver function for lowering simple MI->MC
117 /// pseudo instructions.
118 bool emitPseudoExpansionLowering(MCStreamer &OutStreamer,
119 const MachineInstr *MI);
121 void emitInstruction(const MachineInstr *MI) override;
123 void emitFunctionHeaderComment() override;
125 void getAnalysisUsage(AnalysisUsage &AU) const override {
126 AsmPrinter::getAnalysisUsage(AU);
127 AU.setPreservesAll();
130 bool runOnMachineFunction(MachineFunction &MF) override {
131 AArch64FI = MF.getInfo<AArch64FunctionInfo>();
132 STI = static_cast<const AArch64Subtarget*>(&MF.getSubtarget());
134 SetupMachineFunction(MF);
136 if (STI->isTargetCOFF()) {
137 bool Internal = MF.getFunction().hasInternalLinkage();
138 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
139 : COFF::IMAGE_SYM_CLASS_EXTERNAL;
140 int Type =
141 COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
143 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
144 OutStreamer->EmitCOFFSymbolStorageClass(Scl);
145 OutStreamer->EmitCOFFSymbolType(Type);
146 OutStreamer->EndCOFFSymbolDef();
149 // Emit the rest of the function body.
150 emitFunctionBody();
152 // Emit the XRay table for this function.
153 emitXRayTable();
155 // We didn't modify anything.
156 return false;
159 private:
160 void printOperand(const MachineInstr *MI, unsigned OpNum, raw_ostream &O);
161 bool printAsmMRegister(const MachineOperand &MO, char Mode, raw_ostream &O);
162 bool printAsmRegInClass(const MachineOperand &MO,
163 const TargetRegisterClass *RC, unsigned AltName,
164 raw_ostream &O);
166 bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
167 const char *ExtraCode, raw_ostream &O) override;
168 bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
169 const char *ExtraCode, raw_ostream &O) override;
171 void PrintDebugValueComment(const MachineInstr *MI, raw_ostream &OS);
173 void emitFunctionBodyEnd() override;
175 MCSymbol *GetCPISymbol(unsigned CPID) const override;
176 void emitEndOfAsmFile(Module &M) override;
178 AArch64FunctionInfo *AArch64FI = nullptr;
180 /// Emit the LOHs contained in AArch64FI.
181 void emitLOHs();
183 /// Emit instruction to set float register to zero.
184 void emitFMov0(const MachineInstr &MI);
186 using MInstToMCSymbol = std::map<const MachineInstr *, MCSymbol *>;
188 MInstToMCSymbol LOHInstToLabel;
191 } // end anonymous namespace
193 void AArch64AsmPrinter::emitStartOfAsmFile(Module &M) {
194 const Triple &TT = TM.getTargetTriple();
196 if (TT.isOSBinFormatCOFF()) {
197 // Emit an absolute @feat.00 symbol. This appears to be some kind of
198 // compiler features bitfield read by link.exe.
199 MCSymbol *S = MMI->getContext().getOrCreateSymbol(StringRef("@feat.00"));
200 OutStreamer->BeginCOFFSymbolDef(S);
201 OutStreamer->EmitCOFFSymbolStorageClass(COFF::IMAGE_SYM_CLASS_STATIC);
202 OutStreamer->EmitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_NULL);
203 OutStreamer->EndCOFFSymbolDef();
204 int64_t Feat00Flags = 0;
206 if (M.getModuleFlag("cfguard")) {
207 Feat00Flags |= 0x800; // Object is CFG-aware.
210 if (M.getModuleFlag("ehcontguard")) {
211 Feat00Flags |= 0x4000; // Object also has EHCont.
214 OutStreamer->emitSymbolAttribute(S, MCSA_Global);
215 OutStreamer->emitAssignment(
216 S, MCConstantExpr::create(Feat00Flags, MMI->getContext()));
219 if (!TT.isOSBinFormatELF())
220 return;
222 // Assemble feature flags that may require creation of a note section.
223 unsigned Flags = 0;
224 if (const auto *BTE = mdconst::extract_or_null<ConstantInt>(
225 M.getModuleFlag("branch-target-enforcement")))
226 if (BTE->getZExtValue())
227 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_BTI;
229 if (const auto *Sign = mdconst::extract_or_null<ConstantInt>(
230 M.getModuleFlag("sign-return-address")))
231 if (Sign->getZExtValue())
232 Flags |= ELF::GNU_PROPERTY_AARCH64_FEATURE_1_PAC;
234 if (Flags == 0)
235 return;
237 // Emit a .note.gnu.property section with the flags.
238 if (auto *TS = static_cast<AArch64TargetStreamer *>(
239 OutStreamer->getTargetStreamer()))
240 TS->emitNoteSection(Flags);
243 void AArch64AsmPrinter::emitFunctionHeaderComment() {
244 const AArch64FunctionInfo *FI = MF->getInfo<AArch64FunctionInfo>();
245 Optional<std::string> OutlinerString = FI->getOutliningStyle();
246 if (OutlinerString != None)
247 OutStreamer->GetCommentOS() << ' ' << OutlinerString;
250 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr &MI)
252 const Function &F = MF->getFunction();
253 if (F.hasFnAttribute("patchable-function-entry")) {
254 unsigned Num;
255 if (F.getFnAttribute("patchable-function-entry")
256 .getValueAsString()
257 .getAsInteger(10, Num))
258 return;
259 emitNops(Num);
260 return;
263 emitSled(MI, SledKind::FUNCTION_ENTER);
266 void AArch64AsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr &MI) {
267 emitSled(MI, SledKind::FUNCTION_EXIT);
270 void AArch64AsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr &MI) {
271 emitSled(MI, SledKind::TAIL_CALL);
274 void AArch64AsmPrinter::emitSled(const MachineInstr &MI, SledKind Kind) {
275 static const int8_t NoopsInSledCount = 7;
276 // We want to emit the following pattern:
278 // .Lxray_sled_N:
279 // ALIGN
280 // B #32
281 // ; 7 NOP instructions (28 bytes)
282 // .tmpN
284 // We need the 28 bytes (7 instructions) because at runtime, we'd be patching
285 // over the full 32 bytes (8 instructions) with the following pattern:
287 // STP X0, X30, [SP, #-16]! ; push X0 and the link register to the stack
288 // LDR W0, #12 ; W0 := function ID
289 // LDR X16,#12 ; X16 := addr of __xray_FunctionEntry or __xray_FunctionExit
290 // BLR X16 ; call the tracing trampoline
291 // ;DATA: 32 bits of function ID
292 // ;DATA: lower 32 bits of the address of the trampoline
293 // ;DATA: higher 32 bits of the address of the trampoline
294 // LDP X0, X30, [SP], #16 ; pop X0 and the link register from the stack
296 OutStreamer->emitCodeAlignment(4);
297 auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
298 OutStreamer->emitLabel(CurSled);
299 auto Target = OutContext.createTempSymbol();
301 // Emit "B #32" instruction, which jumps over the next 28 bytes.
302 // The operand has to be the number of 4-byte instructions to jump over,
303 // including the current instruction.
304 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::B).addImm(8));
306 for (int8_t I = 0; I < NoopsInSledCount; I++)
307 EmitToStreamer(*OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
309 OutStreamer->emitLabel(Target);
310 recordSled(CurSled, MI, Kind, 2);
313 void AArch64AsmPrinter::LowerHWASAN_CHECK_MEMACCESS(const MachineInstr &MI) {
314 Register Reg = MI.getOperand(0).getReg();
315 bool IsShort =
316 MI.getOpcode() == AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES;
317 uint32_t AccessInfo = MI.getOperand(1).getImm();
318 MCSymbol *&Sym =
319 HwasanMemaccessSymbols[HwasanMemaccessTuple(Reg, IsShort, AccessInfo)];
320 if (!Sym) {
321 // FIXME: Make this work on non-ELF.
322 if (!TM.getTargetTriple().isOSBinFormatELF())
323 report_fatal_error("llvm.hwasan.check.memaccess only supported on ELF");
325 std::string SymName = "__hwasan_check_x" + utostr(Reg - AArch64::X0) + "_" +
326 utostr(AccessInfo);
327 if (IsShort)
328 SymName += "_short_v2";
329 Sym = OutContext.getOrCreateSymbol(SymName);
332 EmitToStreamer(*OutStreamer,
333 MCInstBuilder(AArch64::BL)
334 .addExpr(MCSymbolRefExpr::create(Sym, OutContext)));
337 void AArch64AsmPrinter::emitHwasanMemaccessSymbols(Module &M) {
338 if (HwasanMemaccessSymbols.empty())
339 return;
341 const Triple &TT = TM.getTargetTriple();
342 assert(TT.isOSBinFormatELF());
343 std::unique_ptr<MCSubtargetInfo> STI(
344 TM.getTarget().createMCSubtargetInfo(TT.str(), "", ""));
345 assert(STI && "Unable to create subtarget info");
347 MCSymbol *HwasanTagMismatchV1Sym =
348 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch");
349 MCSymbol *HwasanTagMismatchV2Sym =
350 OutContext.getOrCreateSymbol("__hwasan_tag_mismatch_v2");
352 const MCSymbolRefExpr *HwasanTagMismatchV1Ref =
353 MCSymbolRefExpr::create(HwasanTagMismatchV1Sym, OutContext);
354 const MCSymbolRefExpr *HwasanTagMismatchV2Ref =
355 MCSymbolRefExpr::create(HwasanTagMismatchV2Sym, OutContext);
357 for (auto &P : HwasanMemaccessSymbols) {
358 unsigned Reg = std::get<0>(P.first);
359 bool IsShort = std::get<1>(P.first);
360 uint32_t AccessInfo = std::get<2>(P.first);
361 const MCSymbolRefExpr *HwasanTagMismatchRef =
362 IsShort ? HwasanTagMismatchV2Ref : HwasanTagMismatchV1Ref;
363 MCSymbol *Sym = P.second;
365 bool HasMatchAllTag =
366 (AccessInfo >> HWASanAccessInfo::HasMatchAllShift) & 1;
367 uint8_t MatchAllTag =
368 (AccessInfo >> HWASanAccessInfo::MatchAllShift) & 0xff;
369 unsigned Size =
370 1 << ((AccessInfo >> HWASanAccessInfo::AccessSizeShift) & 0xf);
371 bool CompileKernel =
372 (AccessInfo >> HWASanAccessInfo::CompileKernelShift) & 1;
374 OutStreamer->SwitchSection(OutContext.getELFSection(
375 ".text.hot", ELF::SHT_PROGBITS,
376 ELF::SHF_EXECINSTR | ELF::SHF_ALLOC | ELF::SHF_GROUP, 0,
377 Sym->getName(), /*IsComdat=*/true));
379 OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
380 OutStreamer->emitSymbolAttribute(Sym, MCSA_Weak);
381 OutStreamer->emitSymbolAttribute(Sym, MCSA_Hidden);
382 OutStreamer->emitLabel(Sym);
384 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SBFMXri)
385 .addReg(AArch64::X16)
386 .addReg(Reg)
387 .addImm(4)
388 .addImm(55),
389 *STI);
390 OutStreamer->emitInstruction(
391 MCInstBuilder(AArch64::LDRBBroX)
392 .addReg(AArch64::W16)
393 .addReg(IsShort ? AArch64::X20 : AArch64::X9)
394 .addReg(AArch64::X16)
395 .addImm(0)
396 .addImm(0),
397 *STI);
398 OutStreamer->emitInstruction(
399 MCInstBuilder(AArch64::SUBSXrs)
400 .addReg(AArch64::XZR)
401 .addReg(AArch64::X16)
402 .addReg(Reg)
403 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)),
404 *STI);
405 MCSymbol *HandleMismatchOrPartialSym = OutContext.createTempSymbol();
406 OutStreamer->emitInstruction(
407 MCInstBuilder(AArch64::Bcc)
408 .addImm(AArch64CC::NE)
409 .addExpr(MCSymbolRefExpr::create(HandleMismatchOrPartialSym,
410 OutContext)),
411 *STI);
412 MCSymbol *ReturnSym = OutContext.createTempSymbol();
413 OutStreamer->emitLabel(ReturnSym);
414 OutStreamer->emitInstruction(
415 MCInstBuilder(AArch64::RET).addReg(AArch64::LR), *STI);
416 OutStreamer->emitLabel(HandleMismatchOrPartialSym);
418 if (HasMatchAllTag) {
419 OutStreamer->emitInstruction(MCInstBuilder(AArch64::UBFMXri)
420 .addReg(AArch64::X16)
421 .addReg(Reg)
422 .addImm(56)
423 .addImm(63),
424 *STI);
425 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSXri)
426 .addReg(AArch64::XZR)
427 .addReg(AArch64::X16)
428 .addImm(MatchAllTag)
429 .addImm(0),
430 *STI);
431 OutStreamer->emitInstruction(
432 MCInstBuilder(AArch64::Bcc)
433 .addImm(AArch64CC::EQ)
434 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)),
435 *STI);
438 if (IsShort) {
439 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWri)
440 .addReg(AArch64::WZR)
441 .addReg(AArch64::W16)
442 .addImm(15)
443 .addImm(0),
444 *STI);
445 MCSymbol *HandleMismatchSym = OutContext.createTempSymbol();
446 OutStreamer->emitInstruction(
447 MCInstBuilder(AArch64::Bcc)
448 .addImm(AArch64CC::HI)
449 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)),
450 *STI);
452 OutStreamer->emitInstruction(
453 MCInstBuilder(AArch64::ANDXri)
454 .addReg(AArch64::X17)
455 .addReg(Reg)
456 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)),
457 *STI);
458 if (Size != 1)
459 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ADDXri)
460 .addReg(AArch64::X17)
461 .addReg(AArch64::X17)
462 .addImm(Size - 1)
463 .addImm(0),
464 *STI);
465 OutStreamer->emitInstruction(MCInstBuilder(AArch64::SUBSWrs)
466 .addReg(AArch64::WZR)
467 .addReg(AArch64::W16)
468 .addReg(AArch64::W17)
469 .addImm(0),
470 *STI);
471 OutStreamer->emitInstruction(
472 MCInstBuilder(AArch64::Bcc)
473 .addImm(AArch64CC::LS)
474 .addExpr(MCSymbolRefExpr::create(HandleMismatchSym, OutContext)),
475 *STI);
477 OutStreamer->emitInstruction(
478 MCInstBuilder(AArch64::ORRXri)
479 .addReg(AArch64::X16)
480 .addReg(Reg)
481 .addImm(AArch64_AM::encodeLogicalImmediate(0xf, 64)),
482 *STI);
483 OutStreamer->emitInstruction(MCInstBuilder(AArch64::LDRBBui)
484 .addReg(AArch64::W16)
485 .addReg(AArch64::X16)
486 .addImm(0),
487 *STI);
488 OutStreamer->emitInstruction(
489 MCInstBuilder(AArch64::SUBSXrs)
490 .addReg(AArch64::XZR)
491 .addReg(AArch64::X16)
492 .addReg(Reg)
493 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSR, 56)),
494 *STI);
495 OutStreamer->emitInstruction(
496 MCInstBuilder(AArch64::Bcc)
497 .addImm(AArch64CC::EQ)
498 .addExpr(MCSymbolRefExpr::create(ReturnSym, OutContext)),
499 *STI);
501 OutStreamer->emitLabel(HandleMismatchSym);
504 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXpre)
505 .addReg(AArch64::SP)
506 .addReg(AArch64::X0)
507 .addReg(AArch64::X1)
508 .addReg(AArch64::SP)
509 .addImm(-32),
510 *STI);
511 OutStreamer->emitInstruction(MCInstBuilder(AArch64::STPXi)
512 .addReg(AArch64::FP)
513 .addReg(AArch64::LR)
514 .addReg(AArch64::SP)
515 .addImm(29),
516 *STI);
518 if (Reg != AArch64::X0)
519 OutStreamer->emitInstruction(MCInstBuilder(AArch64::ORRXrs)
520 .addReg(AArch64::X0)
521 .addReg(AArch64::XZR)
522 .addReg(Reg)
523 .addImm(0),
524 *STI);
525 OutStreamer->emitInstruction(
526 MCInstBuilder(AArch64::MOVZXi)
527 .addReg(AArch64::X1)
528 .addImm(AccessInfo & HWASanAccessInfo::RuntimeMask)
529 .addImm(0),
530 *STI);
532 if (CompileKernel) {
533 // The Linux kernel's dynamic loader doesn't support GOT relative
534 // relocations, but it doesn't support late binding either, so just call
535 // the function directly.
536 OutStreamer->emitInstruction(
537 MCInstBuilder(AArch64::B).addExpr(HwasanTagMismatchRef), *STI);
538 } else {
539 // Intentionally load the GOT entry and branch to it, rather than possibly
540 // late binding the function, which may clobber the registers before we
541 // have a chance to save them.
542 OutStreamer->emitInstruction(
543 MCInstBuilder(AArch64::ADRP)
544 .addReg(AArch64::X16)
545 .addExpr(AArch64MCExpr::create(
546 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_PAGE,
547 OutContext)),
548 *STI);
549 OutStreamer->emitInstruction(
550 MCInstBuilder(AArch64::LDRXui)
551 .addReg(AArch64::X16)
552 .addReg(AArch64::X16)
553 .addExpr(AArch64MCExpr::create(
554 HwasanTagMismatchRef, AArch64MCExpr::VariantKind::VK_GOT_LO12,
555 OutContext)),
556 *STI);
557 OutStreamer->emitInstruction(
558 MCInstBuilder(AArch64::BR).addReg(AArch64::X16), *STI);
563 void AArch64AsmPrinter::emitEndOfAsmFile(Module &M) {
564 emitHwasanMemaccessSymbols(M);
566 const Triple &TT = TM.getTargetTriple();
567 if (TT.isOSBinFormatMachO()) {
568 // Funny Darwin hack: This flag tells the linker that no global symbols
569 // contain code that falls through to other global symbols (e.g. the obvious
570 // implementation of multiple entry points). If this doesn't occur, the
571 // linker can safely perform dead code stripping. Since LLVM never
572 // generates code that does this, it is always safe to set.
573 OutStreamer->emitAssemblerFlag(MCAF_SubsectionsViaSymbols);
576 // Emit stack and fault map information.
577 emitStackMaps(SM);
578 FM.serializeToFaultMapSection();
582 void AArch64AsmPrinter::emitLOHs() {
583 SmallVector<MCSymbol *, 3> MCArgs;
585 for (const auto &D : AArch64FI->getLOHContainer()) {
586 for (const MachineInstr *MI : D.getArgs()) {
587 MInstToMCSymbol::iterator LabelIt = LOHInstToLabel.find(MI);
588 assert(LabelIt != LOHInstToLabel.end() &&
589 "Label hasn't been inserted for LOH related instruction");
590 MCArgs.push_back(LabelIt->second);
592 OutStreamer->emitLOHDirective(D.getKind(), MCArgs);
593 MCArgs.clear();
597 void AArch64AsmPrinter::emitFunctionBodyEnd() {
598 if (!AArch64FI->getLOHRelated().empty())
599 emitLOHs();
602 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
603 MCSymbol *AArch64AsmPrinter::GetCPISymbol(unsigned CPID) const {
604 // Darwin uses a linker-private symbol name for constant-pools (to
605 // avoid addends on the relocation?), ELF has no such concept and
606 // uses a normal private symbol.
607 if (!getDataLayout().getLinkerPrivateGlobalPrefix().empty())
608 return OutContext.getOrCreateSymbol(
609 Twine(getDataLayout().getLinkerPrivateGlobalPrefix()) + "CPI" +
610 Twine(getFunctionNumber()) + "_" + Twine(CPID));
612 return AsmPrinter::GetCPISymbol(CPID);
615 void AArch64AsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNum,
616 raw_ostream &O) {
617 const MachineOperand &MO = MI->getOperand(OpNum);
618 switch (MO.getType()) {
619 default:
620 llvm_unreachable("<unknown operand type>");
621 case MachineOperand::MO_Register: {
622 Register Reg = MO.getReg();
623 assert(Register::isPhysicalRegister(Reg));
624 assert(!MO.getSubReg() && "Subregs should be eliminated!");
625 O << AArch64InstPrinter::getRegisterName(Reg);
626 break;
628 case MachineOperand::MO_Immediate: {
629 O << MO.getImm();
630 break;
632 case MachineOperand::MO_GlobalAddress: {
633 PrintSymbolOperand(MO, O);
634 break;
636 case MachineOperand::MO_BlockAddress: {
637 MCSymbol *Sym = GetBlockAddressSymbol(MO.getBlockAddress());
638 Sym->print(O, MAI);
639 break;
644 bool AArch64AsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode,
645 raw_ostream &O) {
646 Register Reg = MO.getReg();
647 switch (Mode) {
648 default:
649 return true; // Unknown mode.
650 case 'w':
651 Reg = getWRegFromXReg(Reg);
652 break;
653 case 'x':
654 Reg = getXRegFromWReg(Reg);
655 break;
656 case 't':
657 Reg = getXRegFromXRegTuple(Reg);
658 break;
661 O << AArch64InstPrinter::getRegisterName(Reg);
662 return false;
665 // Prints the register in MO using class RC using the offset in the
666 // new register class. This should not be used for cross class
667 // printing.
668 bool AArch64AsmPrinter::printAsmRegInClass(const MachineOperand &MO,
669 const TargetRegisterClass *RC,
670 unsigned AltName, raw_ostream &O) {
671 assert(MO.isReg() && "Should only get here with a register!");
672 const TargetRegisterInfo *RI = STI->getRegisterInfo();
673 Register Reg = MO.getReg();
674 unsigned RegToPrint = RC->getRegister(RI->getEncodingValue(Reg));
675 if (!RI->regsOverlap(RegToPrint, Reg))
676 return true;
677 O << AArch64InstPrinter::getRegisterName(RegToPrint, AltName);
678 return false;
681 bool AArch64AsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
682 const char *ExtraCode, raw_ostream &O) {
683 const MachineOperand &MO = MI->getOperand(OpNum);
685 // First try the generic code, which knows about modifiers like 'c' and 'n'.
686 if (!AsmPrinter::PrintAsmOperand(MI, OpNum, ExtraCode, O))
687 return false;
689 // Does this asm operand have a single letter operand modifier?
690 if (ExtraCode && ExtraCode[0]) {
691 if (ExtraCode[1] != 0)
692 return true; // Unknown modifier.
694 switch (ExtraCode[0]) {
695 default:
696 return true; // Unknown modifier.
697 case 'w': // Print W register
698 case 'x': // Print X register
699 if (MO.isReg())
700 return printAsmMRegister(MO, ExtraCode[0], O);
701 if (MO.isImm() && MO.getImm() == 0) {
702 unsigned Reg = ExtraCode[0] == 'w' ? AArch64::WZR : AArch64::XZR;
703 O << AArch64InstPrinter::getRegisterName(Reg);
704 return false;
706 printOperand(MI, OpNum, O);
707 return false;
708 case 'b': // Print B register.
709 case 'h': // Print H register.
710 case 's': // Print S register.
711 case 'd': // Print D register.
712 case 'q': // Print Q register.
713 case 'z': // Print Z register.
714 if (MO.isReg()) {
715 const TargetRegisterClass *RC;
716 switch (ExtraCode[0]) {
717 case 'b':
718 RC = &AArch64::FPR8RegClass;
719 break;
720 case 'h':
721 RC = &AArch64::FPR16RegClass;
722 break;
723 case 's':
724 RC = &AArch64::FPR32RegClass;
725 break;
726 case 'd':
727 RC = &AArch64::FPR64RegClass;
728 break;
729 case 'q':
730 RC = &AArch64::FPR128RegClass;
731 break;
732 case 'z':
733 RC = &AArch64::ZPRRegClass;
734 break;
735 default:
736 return true;
738 return printAsmRegInClass(MO, RC, AArch64::NoRegAltName, O);
740 printOperand(MI, OpNum, O);
741 return false;
745 // According to ARM, we should emit x and v registers unless we have a
746 // modifier.
747 if (MO.isReg()) {
748 Register Reg = MO.getReg();
750 // If this is a w or x register, print an x register.
751 if (AArch64::GPR32allRegClass.contains(Reg) ||
752 AArch64::GPR64allRegClass.contains(Reg))
753 return printAsmMRegister(MO, 'x', O);
755 // If this is an x register tuple, print an x register.
756 if (AArch64::GPR64x8ClassRegClass.contains(Reg))
757 return printAsmMRegister(MO, 't', O);
759 unsigned AltName = AArch64::NoRegAltName;
760 const TargetRegisterClass *RegClass;
761 if (AArch64::ZPRRegClass.contains(Reg)) {
762 RegClass = &AArch64::ZPRRegClass;
763 } else if (AArch64::PPRRegClass.contains(Reg)) {
764 RegClass = &AArch64::PPRRegClass;
765 } else {
766 RegClass = &AArch64::FPR128RegClass;
767 AltName = AArch64::vreg;
770 // If this is a b, h, s, d, or q register, print it as a v register.
771 return printAsmRegInClass(MO, RegClass, AltName, O);
774 printOperand(MI, OpNum, O);
775 return false;
778 bool AArch64AsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
779 unsigned OpNum,
780 const char *ExtraCode,
781 raw_ostream &O) {
782 if (ExtraCode && ExtraCode[0] && ExtraCode[0] != 'a')
783 return true; // Unknown modifier.
785 const MachineOperand &MO = MI->getOperand(OpNum);
786 assert(MO.isReg() && "unexpected inline asm memory operand");
787 O << "[" << AArch64InstPrinter::getRegisterName(MO.getReg()) << "]";
788 return false;
791 void AArch64AsmPrinter::PrintDebugValueComment(const MachineInstr *MI,
792 raw_ostream &OS) {
793 unsigned NOps = MI->getNumOperands();
794 assert(NOps == 4);
795 OS << '\t' << MAI->getCommentString() << "DEBUG_VALUE: ";
796 // cast away const; DIetc do not take const operands for some reason.
797 OS << MI->getDebugVariable()->getName();
798 OS << " <- ";
799 // Frame address. Currently handles register +- offset only.
800 assert(MI->isIndirectDebugValue());
801 OS << '[';
802 for (unsigned I = 0, E = std::distance(MI->debug_operands().begin(),
803 MI->debug_operands().end());
804 I < E; ++I) {
805 if (I != 0)
806 OS << ", ";
807 printOperand(MI, I, OS);
809 OS << ']';
810 OS << "+";
811 printOperand(MI, NOps - 2, OS);
814 void AArch64AsmPrinter::emitJumpTableInfo() {
815 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
816 if (!MJTI) return;
818 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
819 if (JT.empty()) return;
821 const Function &F = MF->getFunction();
822 const TargetLoweringObjectFile &TLOF = getObjFileLowering();
823 bool JTInDiffSection =
824 !STI->isTargetCOFF() ||
825 !TLOF.shouldPutJumpTableInFunctionSection(
826 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
828 if (JTInDiffSection) {
829 // Drop it in the readonly section.
830 MCSection *ReadOnlySec = TLOF.getSectionForJumpTable(F, TM);
831 OutStreamer->SwitchSection(ReadOnlySec);
834 auto AFI = MF->getInfo<AArch64FunctionInfo>();
835 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
836 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
838 // If this jump table was deleted, ignore it.
839 if (JTBBs.empty()) continue;
841 unsigned Size = AFI->getJumpTableEntrySize(JTI);
842 emitAlignment(Align(Size));
843 OutStreamer->emitLabel(GetJTISymbol(JTI));
845 const MCSymbol *BaseSym = AArch64FI->getJumpTableEntryPCRelSymbol(JTI);
846 const MCExpr *Base = MCSymbolRefExpr::create(BaseSym, OutContext);
848 for (auto *JTBB : JTBBs) {
849 const MCExpr *Value =
850 MCSymbolRefExpr::create(JTBB->getSymbol(), OutContext);
852 // Each entry is:
853 // .byte/.hword (LBB - Lbase)>>2
854 // or plain:
855 // .word LBB - Lbase
856 Value = MCBinaryExpr::createSub(Value, Base, OutContext);
857 if (Size != 4)
858 Value = MCBinaryExpr::createLShr(
859 Value, MCConstantExpr::create(2, OutContext), OutContext);
861 OutStreamer->emitValue(Value, Size);
866 void AArch64AsmPrinter::emitFunctionEntryLabel() {
867 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall ||
868 MF->getFunction().getCallingConv() ==
869 CallingConv::AArch64_SVE_VectorCall ||
870 STI->getRegisterInfo()->hasSVEArgsOrReturn(MF)) {
871 auto *TS =
872 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer());
873 TS->emitDirectiveVariantPCS(CurrentFnSym);
876 return AsmPrinter::emitFunctionEntryLabel();
879 /// Small jump tables contain an unsigned byte or half, representing the offset
880 /// from the lowest-addressed possible destination to the desired basic
881 /// block. Since all instructions are 4-byte aligned, this is further compressed
882 /// by counting in instructions rather than bytes (i.e. divided by 4). So, to
883 /// materialize the correct destination we need:
885 /// adr xDest, .LBB0_0
886 /// ldrb wScratch, [xTable, xEntry] (with "lsl #1" for ldrh).
887 /// add xDest, xDest, xScratch (with "lsl #2" for smaller entries)
888 void AArch64AsmPrinter::LowerJumpTableDest(llvm::MCStreamer &OutStreamer,
889 const llvm::MachineInstr &MI) {
890 Register DestReg = MI.getOperand(0).getReg();
891 Register ScratchReg = MI.getOperand(1).getReg();
892 Register ScratchRegW =
893 STI->getRegisterInfo()->getSubReg(ScratchReg, AArch64::sub_32);
894 Register TableReg = MI.getOperand(2).getReg();
895 Register EntryReg = MI.getOperand(3).getReg();
896 int JTIdx = MI.getOperand(4).getIndex();
897 int Size = AArch64FI->getJumpTableEntrySize(JTIdx);
899 // This has to be first because the compression pass based its reachability
900 // calculations on the start of the JumpTableDest instruction.
901 auto Label =
902 MF->getInfo<AArch64FunctionInfo>()->getJumpTableEntryPCRelSymbol(JTIdx);
904 // If we don't already have a symbol to use as the base, use the ADR
905 // instruction itself.
906 if (!Label) {
907 Label = MF->getContext().createTempSymbol();
908 AArch64FI->setJumpTableEntryInfo(JTIdx, Size, Label);
909 OutStreamer.emitLabel(Label);
912 auto LabelExpr = MCSymbolRefExpr::create(Label, MF->getContext());
913 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADR)
914 .addReg(DestReg)
915 .addExpr(LabelExpr));
917 // Load the number of instruction-steps to offset from the label.
918 unsigned LdrOpcode;
919 switch (Size) {
920 case 1: LdrOpcode = AArch64::LDRBBroX; break;
921 case 2: LdrOpcode = AArch64::LDRHHroX; break;
922 case 4: LdrOpcode = AArch64::LDRSWroX; break;
923 default:
924 llvm_unreachable("Unknown jump table size");
927 EmitToStreamer(OutStreamer, MCInstBuilder(LdrOpcode)
928 .addReg(Size == 4 ? ScratchReg : ScratchRegW)
929 .addReg(TableReg)
930 .addReg(EntryReg)
931 .addImm(0)
932 .addImm(Size == 1 ? 0 : 1));
934 // Add to the already materialized base label address, multiplying by 4 if
935 // compressed.
936 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::ADDXrs)
937 .addReg(DestReg)
938 .addReg(DestReg)
939 .addReg(ScratchReg)
940 .addImm(Size == 4 ? 0 : 2));
943 void AArch64AsmPrinter::LowerSTACKMAP(MCStreamer &OutStreamer, StackMaps &SM,
944 const MachineInstr &MI) {
945 unsigned NumNOPBytes = StackMapOpers(&MI).getNumPatchBytes();
947 auto &Ctx = OutStreamer.getContext();
948 MCSymbol *MILabel = Ctx.createTempSymbol();
949 OutStreamer.emitLabel(MILabel);
951 SM.recordStackMap(*MILabel, MI);
952 assert(NumNOPBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
954 // Scan ahead to trim the shadow.
955 const MachineBasicBlock &MBB = *MI.getParent();
956 MachineBasicBlock::const_iterator MII(MI);
957 ++MII;
958 while (NumNOPBytes > 0) {
959 if (MII == MBB.end() || MII->isCall() ||
960 MII->getOpcode() == AArch64::DBG_VALUE ||
961 MII->getOpcode() == TargetOpcode::PATCHPOINT ||
962 MII->getOpcode() == TargetOpcode::STACKMAP)
963 break;
964 ++MII;
965 NumNOPBytes -= 4;
968 // Emit nops.
969 for (unsigned i = 0; i < NumNOPBytes; i += 4)
970 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
973 // Lower a patchpoint of the form:
974 // [<def>], <id>, <numBytes>, <target>, <numArgs>
975 void AArch64AsmPrinter::LowerPATCHPOINT(MCStreamer &OutStreamer, StackMaps &SM,
976 const MachineInstr &MI) {
977 auto &Ctx = OutStreamer.getContext();
978 MCSymbol *MILabel = Ctx.createTempSymbol();
979 OutStreamer.emitLabel(MILabel);
980 SM.recordPatchPoint(*MILabel, MI);
982 PatchPointOpers Opers(&MI);
984 int64_t CallTarget = Opers.getCallTarget().getImm();
985 unsigned EncodedBytes = 0;
986 if (CallTarget) {
987 assert((CallTarget & 0xFFFFFFFFFFFF) == CallTarget &&
988 "High 16 bits of call target should be zero.");
989 Register ScratchReg = MI.getOperand(Opers.getNextScratchIdx()).getReg();
990 EncodedBytes = 16;
991 // Materialize the jump address:
992 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVZXi)
993 .addReg(ScratchReg)
994 .addImm((CallTarget >> 32) & 0xFFFF)
995 .addImm(32));
996 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi)
997 .addReg(ScratchReg)
998 .addReg(ScratchReg)
999 .addImm((CallTarget >> 16) & 0xFFFF)
1000 .addImm(16));
1001 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::MOVKXi)
1002 .addReg(ScratchReg)
1003 .addReg(ScratchReg)
1004 .addImm(CallTarget & 0xFFFF)
1005 .addImm(0));
1006 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::BLR).addReg(ScratchReg));
1008 // Emit padding.
1009 unsigned NumBytes = Opers.getNumPatchBytes();
1010 assert(NumBytes >= EncodedBytes &&
1011 "Patchpoint can't request size less than the length of a call.");
1012 assert((NumBytes - EncodedBytes) % 4 == 0 &&
1013 "Invalid number of NOP bytes requested!");
1014 for (unsigned i = EncodedBytes; i < NumBytes; i += 4)
1015 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
1018 void AArch64AsmPrinter::LowerSTATEPOINT(MCStreamer &OutStreamer, StackMaps &SM,
1019 const MachineInstr &MI) {
1020 StatepointOpers SOpers(&MI);
1021 if (unsigned PatchBytes = SOpers.getNumPatchBytes()) {
1022 assert(PatchBytes % 4 == 0 && "Invalid number of NOP bytes requested!");
1023 for (unsigned i = 0; i < PatchBytes; i += 4)
1024 EmitToStreamer(OutStreamer, MCInstBuilder(AArch64::HINT).addImm(0));
1025 } else {
1026 // Lower call target and choose correct opcode
1027 const MachineOperand &CallTarget = SOpers.getCallTarget();
1028 MCOperand CallTargetMCOp;
1029 unsigned CallOpcode;
1030 switch (CallTarget.getType()) {
1031 case MachineOperand::MO_GlobalAddress:
1032 case MachineOperand::MO_ExternalSymbol:
1033 MCInstLowering.lowerOperand(CallTarget, CallTargetMCOp);
1034 CallOpcode = AArch64::BL;
1035 break;
1036 case MachineOperand::MO_Immediate:
1037 CallTargetMCOp = MCOperand::createImm(CallTarget.getImm());
1038 CallOpcode = AArch64::BL;
1039 break;
1040 case MachineOperand::MO_Register:
1041 CallTargetMCOp = MCOperand::createReg(CallTarget.getReg());
1042 CallOpcode = AArch64::BLR;
1043 break;
1044 default:
1045 llvm_unreachable("Unsupported operand type in statepoint call target");
1046 break;
1049 EmitToStreamer(OutStreamer,
1050 MCInstBuilder(CallOpcode).addOperand(CallTargetMCOp));
1053 auto &Ctx = OutStreamer.getContext();
1054 MCSymbol *MILabel = Ctx.createTempSymbol();
1055 OutStreamer.emitLabel(MILabel);
1056 SM.recordStatepoint(*MILabel, MI);
1059 void AArch64AsmPrinter::LowerFAULTING_OP(const MachineInstr &FaultingMI) {
1060 // FAULTING_LOAD_OP <def>, <faltinf type>, <MBB handler>,
1061 // <opcode>, <operands>
1063 Register DefRegister = FaultingMI.getOperand(0).getReg();
1064 FaultMaps::FaultKind FK =
1065 static_cast<FaultMaps::FaultKind>(FaultingMI.getOperand(1).getImm());
1066 MCSymbol *HandlerLabel = FaultingMI.getOperand(2).getMBB()->getSymbol();
1067 unsigned Opcode = FaultingMI.getOperand(3).getImm();
1068 unsigned OperandsBeginIdx = 4;
1070 auto &Ctx = OutStreamer->getContext();
1071 MCSymbol *FaultingLabel = Ctx.createTempSymbol();
1072 OutStreamer->emitLabel(FaultingLabel);
1074 assert(FK < FaultMaps::FaultKindMax && "Invalid Faulting Kind!");
1075 FM.recordFaultingOp(FK, FaultingLabel, HandlerLabel);
1077 MCInst MI;
1078 MI.setOpcode(Opcode);
1080 if (DefRegister != (Register)0)
1081 MI.addOperand(MCOperand::createReg(DefRegister));
1083 for (auto I = FaultingMI.operands_begin() + OperandsBeginIdx,
1084 E = FaultingMI.operands_end();
1085 I != E; ++I) {
1086 MCOperand Dest;
1087 lowerOperand(*I, Dest);
1088 MI.addOperand(Dest);
1091 OutStreamer->AddComment("on-fault: " + HandlerLabel->getName());
1092 OutStreamer->emitInstruction(MI, getSubtargetInfo());
1095 void AArch64AsmPrinter::emitFMov0(const MachineInstr &MI) {
1096 Register DestReg = MI.getOperand(0).getReg();
1097 if (STI->hasZeroCycleZeroingFP() && !STI->hasZeroCycleZeroingFPWorkaround()) {
1098 // Convert H/S register to corresponding D register
1099 if (AArch64::H0 <= DestReg && DestReg <= AArch64::H31)
1100 DestReg = AArch64::D0 + (DestReg - AArch64::H0);
1101 else if (AArch64::S0 <= DestReg && DestReg <= AArch64::S31)
1102 DestReg = AArch64::D0 + (DestReg - AArch64::S0);
1103 else
1104 assert(AArch64::D0 <= DestReg && DestReg <= AArch64::D31);
1106 MCInst MOVI;
1107 MOVI.setOpcode(AArch64::MOVID);
1108 MOVI.addOperand(MCOperand::createReg(DestReg));
1109 MOVI.addOperand(MCOperand::createImm(0));
1110 EmitToStreamer(*OutStreamer, MOVI);
1111 } else {
1112 MCInst FMov;
1113 switch (MI.getOpcode()) {
1114 default: llvm_unreachable("Unexpected opcode");
1115 case AArch64::FMOVH0:
1116 FMov.setOpcode(AArch64::FMOVWHr);
1117 FMov.addOperand(MCOperand::createReg(DestReg));
1118 FMov.addOperand(MCOperand::createReg(AArch64::WZR));
1119 break;
1120 case AArch64::FMOVS0:
1121 FMov.setOpcode(AArch64::FMOVWSr);
1122 FMov.addOperand(MCOperand::createReg(DestReg));
1123 FMov.addOperand(MCOperand::createReg(AArch64::WZR));
1124 break;
1125 case AArch64::FMOVD0:
1126 FMov.setOpcode(AArch64::FMOVXDr);
1127 FMov.addOperand(MCOperand::createReg(DestReg));
1128 FMov.addOperand(MCOperand::createReg(AArch64::XZR));
1129 break;
1131 EmitToStreamer(*OutStreamer, FMov);
1135 // Simple pseudo-instructions have their lowering (with expansion to real
1136 // instructions) auto-generated.
1137 #include "AArch64GenMCPseudoLowering.inc"
1139 void AArch64AsmPrinter::emitInstruction(const MachineInstr *MI) {
1140 // Do any auto-generated pseudo lowerings.
1141 if (emitPseudoExpansionLowering(*OutStreamer, MI))
1142 return;
1144 if (AArch64FI->getLOHRelated().count(MI)) {
1145 // Generate a label for LOH related instruction
1146 MCSymbol *LOHLabel = createTempSymbol("loh");
1147 // Associate the instruction with the label
1148 LOHInstToLabel[MI] = LOHLabel;
1149 OutStreamer->emitLabel(LOHLabel);
1152 AArch64TargetStreamer *TS =
1153 static_cast<AArch64TargetStreamer *>(OutStreamer->getTargetStreamer());
1154 // Do any manual lowerings.
1155 switch (MI->getOpcode()) {
1156 default:
1157 break;
1158 case AArch64::HINT: {
1159 // CurrentPatchableFunctionEntrySym can be CurrentFnBegin only for
1160 // -fpatchable-function-entry=N,0. The entry MBB is guaranteed to be
1161 // non-empty. If MI is the initial BTI, place the
1162 // __patchable_function_entries label after BTI.
1163 if (CurrentPatchableFunctionEntrySym &&
1164 CurrentPatchableFunctionEntrySym == CurrentFnBegin &&
1165 MI == &MF->front().front()) {
1166 int64_t Imm = MI->getOperand(0).getImm();
1167 if ((Imm & 32) && (Imm & 6)) {
1168 MCInst Inst;
1169 MCInstLowering.Lower(MI, Inst);
1170 EmitToStreamer(*OutStreamer, Inst);
1171 CurrentPatchableFunctionEntrySym = createTempSymbol("patch");
1172 OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
1173 return;
1176 break;
1178 case AArch64::MOVMCSym: {
1179 Register DestReg = MI->getOperand(0).getReg();
1180 const MachineOperand &MO_Sym = MI->getOperand(1);
1181 MachineOperand Hi_MOSym(MO_Sym), Lo_MOSym(MO_Sym);
1182 MCOperand Hi_MCSym, Lo_MCSym;
1184 Hi_MOSym.setTargetFlags(AArch64II::MO_G1 | AArch64II::MO_S);
1185 Lo_MOSym.setTargetFlags(AArch64II::MO_G0 | AArch64II::MO_NC);
1187 MCInstLowering.lowerOperand(Hi_MOSym, Hi_MCSym);
1188 MCInstLowering.lowerOperand(Lo_MOSym, Lo_MCSym);
1190 MCInst MovZ;
1191 MovZ.setOpcode(AArch64::MOVZXi);
1192 MovZ.addOperand(MCOperand::createReg(DestReg));
1193 MovZ.addOperand(Hi_MCSym);
1194 MovZ.addOperand(MCOperand::createImm(16));
1195 EmitToStreamer(*OutStreamer, MovZ);
1197 MCInst MovK;
1198 MovK.setOpcode(AArch64::MOVKXi);
1199 MovK.addOperand(MCOperand::createReg(DestReg));
1200 MovK.addOperand(MCOperand::createReg(DestReg));
1201 MovK.addOperand(Lo_MCSym);
1202 MovK.addOperand(MCOperand::createImm(0));
1203 EmitToStreamer(*OutStreamer, MovK);
1204 return;
1206 case AArch64::MOVIv2d_ns:
1207 // If the target has <rdar://problem/16473581>, lower this
1208 // instruction to movi.16b instead.
1209 if (STI->hasZeroCycleZeroingFPWorkaround() &&
1210 MI->getOperand(1).getImm() == 0) {
1211 MCInst TmpInst;
1212 TmpInst.setOpcode(AArch64::MOVIv16b_ns);
1213 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1214 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(1).getImm()));
1215 EmitToStreamer(*OutStreamer, TmpInst);
1216 return;
1218 break;
1220 case AArch64::DBG_VALUE:
1221 case AArch64::DBG_VALUE_LIST: {
1222 if (isVerbose() && OutStreamer->hasRawTextSupport()) {
1223 SmallString<128> TmpStr;
1224 raw_svector_ostream OS(TmpStr);
1225 PrintDebugValueComment(MI, OS);
1226 OutStreamer->emitRawText(StringRef(OS.str()));
1228 return;
1230 case AArch64::EMITBKEY: {
1231 ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
1232 if (ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
1233 ExceptionHandlingType != ExceptionHandling::ARM)
1234 return;
1236 if (getFunctionCFISectionType(*MF) == CFISection::None)
1237 return;
1239 OutStreamer->emitCFIBKeyFrame();
1240 return;
1244 // Tail calls use pseudo instructions so they have the proper code-gen
1245 // attributes (isCall, isReturn, etc.). We lower them to the real
1246 // instruction here.
1247 case AArch64::TCRETURNri:
1248 case AArch64::TCRETURNriBTI:
1249 case AArch64::TCRETURNriALL: {
1250 MCInst TmpInst;
1251 TmpInst.setOpcode(AArch64::BR);
1252 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
1253 EmitToStreamer(*OutStreamer, TmpInst);
1254 return;
1256 case AArch64::TCRETURNdi: {
1257 MCOperand Dest;
1258 MCInstLowering.lowerOperand(MI->getOperand(0), Dest);
1259 MCInst TmpInst;
1260 TmpInst.setOpcode(AArch64::B);
1261 TmpInst.addOperand(Dest);
1262 EmitToStreamer(*OutStreamer, TmpInst);
1263 return;
1265 case AArch64::SpeculationBarrierISBDSBEndBB: {
1266 // Print DSB SYS + ISB
1267 MCInst TmpInstDSB;
1268 TmpInstDSB.setOpcode(AArch64::DSB);
1269 TmpInstDSB.addOperand(MCOperand::createImm(0xf));
1270 EmitToStreamer(*OutStreamer, TmpInstDSB);
1271 MCInst TmpInstISB;
1272 TmpInstISB.setOpcode(AArch64::ISB);
1273 TmpInstISB.addOperand(MCOperand::createImm(0xf));
1274 EmitToStreamer(*OutStreamer, TmpInstISB);
1275 return;
1277 case AArch64::SpeculationBarrierSBEndBB: {
1278 // Print SB
1279 MCInst TmpInstSB;
1280 TmpInstSB.setOpcode(AArch64::SB);
1281 EmitToStreamer(*OutStreamer, TmpInstSB);
1282 return;
1284 case AArch64::TLSDESC_CALLSEQ: {
1285 /// lower this to:
1286 /// adrp x0, :tlsdesc:var
1287 /// ldr x1, [x0, #:tlsdesc_lo12:var]
1288 /// add x0, x0, #:tlsdesc_lo12:var
1289 /// .tlsdesccall var
1290 /// blr x1
1291 /// (TPIDR_EL0 offset now in x0)
1292 const MachineOperand &MO_Sym = MI->getOperand(0);
1293 MachineOperand MO_TLSDESC_LO12(MO_Sym), MO_TLSDESC(MO_Sym);
1294 MCOperand Sym, SymTLSDescLo12, SymTLSDesc;
1295 MO_TLSDESC_LO12.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGEOFF);
1296 MO_TLSDESC.setTargetFlags(AArch64II::MO_TLS | AArch64II::MO_PAGE);
1297 MCInstLowering.lowerOperand(MO_Sym, Sym);
1298 MCInstLowering.lowerOperand(MO_TLSDESC_LO12, SymTLSDescLo12);
1299 MCInstLowering.lowerOperand(MO_TLSDESC, SymTLSDesc);
1301 MCInst Adrp;
1302 Adrp.setOpcode(AArch64::ADRP);
1303 Adrp.addOperand(MCOperand::createReg(AArch64::X0));
1304 Adrp.addOperand(SymTLSDesc);
1305 EmitToStreamer(*OutStreamer, Adrp);
1307 MCInst Ldr;
1308 if (STI->isTargetILP32()) {
1309 Ldr.setOpcode(AArch64::LDRWui);
1310 Ldr.addOperand(MCOperand::createReg(AArch64::W1));
1311 } else {
1312 Ldr.setOpcode(AArch64::LDRXui);
1313 Ldr.addOperand(MCOperand::createReg(AArch64::X1));
1315 Ldr.addOperand(MCOperand::createReg(AArch64::X0));
1316 Ldr.addOperand(SymTLSDescLo12);
1317 Ldr.addOperand(MCOperand::createImm(0));
1318 EmitToStreamer(*OutStreamer, Ldr);
1320 MCInst Add;
1321 if (STI->isTargetILP32()) {
1322 Add.setOpcode(AArch64::ADDWri);
1323 Add.addOperand(MCOperand::createReg(AArch64::W0));
1324 Add.addOperand(MCOperand::createReg(AArch64::W0));
1325 } else {
1326 Add.setOpcode(AArch64::ADDXri);
1327 Add.addOperand(MCOperand::createReg(AArch64::X0));
1328 Add.addOperand(MCOperand::createReg(AArch64::X0));
1330 Add.addOperand(SymTLSDescLo12);
1331 Add.addOperand(MCOperand::createImm(AArch64_AM::getShiftValue(0)));
1332 EmitToStreamer(*OutStreamer, Add);
1334 // Emit a relocation-annotation. This expands to no code, but requests
1335 // the following instruction gets an R_AARCH64_TLSDESC_CALL.
1336 MCInst TLSDescCall;
1337 TLSDescCall.setOpcode(AArch64::TLSDESCCALL);
1338 TLSDescCall.addOperand(Sym);
1339 EmitToStreamer(*OutStreamer, TLSDescCall);
1341 MCInst Blr;
1342 Blr.setOpcode(AArch64::BLR);
1343 Blr.addOperand(MCOperand::createReg(AArch64::X1));
1344 EmitToStreamer(*OutStreamer, Blr);
1346 return;
1349 case AArch64::JumpTableDest32:
1350 case AArch64::JumpTableDest16:
1351 case AArch64::JumpTableDest8:
1352 LowerJumpTableDest(*OutStreamer, *MI);
1353 return;
1355 case AArch64::FMOVH0:
1356 case AArch64::FMOVS0:
1357 case AArch64::FMOVD0:
1358 emitFMov0(*MI);
1359 return;
1361 case TargetOpcode::STACKMAP:
1362 return LowerSTACKMAP(*OutStreamer, SM, *MI);
1364 case TargetOpcode::PATCHPOINT:
1365 return LowerPATCHPOINT(*OutStreamer, SM, *MI);
1367 case TargetOpcode::STATEPOINT:
1368 return LowerSTATEPOINT(*OutStreamer, SM, *MI);
1370 case TargetOpcode::FAULTING_OP:
1371 return LowerFAULTING_OP(*MI);
1373 case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
1374 LowerPATCHABLE_FUNCTION_ENTER(*MI);
1375 return;
1377 case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
1378 LowerPATCHABLE_FUNCTION_EXIT(*MI);
1379 return;
1381 case TargetOpcode::PATCHABLE_TAIL_CALL:
1382 LowerPATCHABLE_TAIL_CALL(*MI);
1383 return;
1385 case AArch64::HWASAN_CHECK_MEMACCESS:
1386 case AArch64::HWASAN_CHECK_MEMACCESS_SHORTGRANULES:
1387 LowerHWASAN_CHECK_MEMACCESS(*MI);
1388 return;
1390 case AArch64::SEH_StackAlloc:
1391 TS->emitARM64WinCFIAllocStack(MI->getOperand(0).getImm());
1392 return;
1394 case AArch64::SEH_SaveFPLR:
1395 TS->emitARM64WinCFISaveFPLR(MI->getOperand(0).getImm());
1396 return;
1398 case AArch64::SEH_SaveFPLR_X:
1399 assert(MI->getOperand(0).getImm() < 0 &&
1400 "Pre increment SEH opcode must have a negative offset");
1401 TS->emitARM64WinCFISaveFPLRX(-MI->getOperand(0).getImm());
1402 return;
1404 case AArch64::SEH_SaveReg:
1405 TS->emitARM64WinCFISaveReg(MI->getOperand(0).getImm(),
1406 MI->getOperand(1).getImm());
1407 return;
1409 case AArch64::SEH_SaveReg_X:
1410 assert(MI->getOperand(1).getImm() < 0 &&
1411 "Pre increment SEH opcode must have a negative offset");
1412 TS->emitARM64WinCFISaveRegX(MI->getOperand(0).getImm(),
1413 -MI->getOperand(1).getImm());
1414 return;
1416 case AArch64::SEH_SaveRegP:
1417 if (MI->getOperand(1).getImm() == 30 && MI->getOperand(0).getImm() >= 19 &&
1418 MI->getOperand(0).getImm() <= 28) {
1419 assert((MI->getOperand(0).getImm() - 19) % 2 == 0 &&
1420 "Register paired with LR must be odd");
1421 TS->emitARM64WinCFISaveLRPair(MI->getOperand(0).getImm(),
1422 MI->getOperand(2).getImm());
1423 return;
1425 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
1426 "Non-consecutive registers not allowed for save_regp");
1427 TS->emitARM64WinCFISaveRegP(MI->getOperand(0).getImm(),
1428 MI->getOperand(2).getImm());
1429 return;
1431 case AArch64::SEH_SaveRegP_X:
1432 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
1433 "Non-consecutive registers not allowed for save_regp_x");
1434 assert(MI->getOperand(2).getImm() < 0 &&
1435 "Pre increment SEH opcode must have a negative offset");
1436 TS->emitARM64WinCFISaveRegPX(MI->getOperand(0).getImm(),
1437 -MI->getOperand(2).getImm());
1438 return;
1440 case AArch64::SEH_SaveFReg:
1441 TS->emitARM64WinCFISaveFReg(MI->getOperand(0).getImm(),
1442 MI->getOperand(1).getImm());
1443 return;
1445 case AArch64::SEH_SaveFReg_X:
1446 assert(MI->getOperand(1).getImm() < 0 &&
1447 "Pre increment SEH opcode must have a negative offset");
1448 TS->emitARM64WinCFISaveFRegX(MI->getOperand(0).getImm(),
1449 -MI->getOperand(1).getImm());
1450 return;
1452 case AArch64::SEH_SaveFRegP:
1453 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
1454 "Non-consecutive registers not allowed for save_regp");
1455 TS->emitARM64WinCFISaveFRegP(MI->getOperand(0).getImm(),
1456 MI->getOperand(2).getImm());
1457 return;
1459 case AArch64::SEH_SaveFRegP_X:
1460 assert((MI->getOperand(1).getImm() - MI->getOperand(0).getImm() == 1) &&
1461 "Non-consecutive registers not allowed for save_regp_x");
1462 assert(MI->getOperand(2).getImm() < 0 &&
1463 "Pre increment SEH opcode must have a negative offset");
1464 TS->emitARM64WinCFISaveFRegPX(MI->getOperand(0).getImm(),
1465 -MI->getOperand(2).getImm());
1466 return;
1468 case AArch64::SEH_SetFP:
1469 TS->emitARM64WinCFISetFP();
1470 return;
1472 case AArch64::SEH_AddFP:
1473 TS->emitARM64WinCFIAddFP(MI->getOperand(0).getImm());
1474 return;
1476 case AArch64::SEH_Nop:
1477 TS->emitARM64WinCFINop();
1478 return;
1480 case AArch64::SEH_PrologEnd:
1481 TS->emitARM64WinCFIPrologEnd();
1482 return;
1484 case AArch64::SEH_EpilogStart:
1485 TS->emitARM64WinCFIEpilogStart();
1486 return;
1488 case AArch64::SEH_EpilogEnd:
1489 TS->emitARM64WinCFIEpilogEnd();
1490 return;
1493 // Finally, do the automated lowerings for everything else.
1494 MCInst TmpInst;
1495 MCInstLowering.Lower(MI, TmpInst);
1496 EmitToStreamer(*OutStreamer, TmpInst);
1499 // Force static initialization.
1500 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64AsmPrinter() {
1501 RegisterAsmPrinter<AArch64AsmPrinter> X(getTheAArch64leTarget());
1502 RegisterAsmPrinter<AArch64AsmPrinter> Y(getTheAArch64beTarget());
1503 RegisterAsmPrinter<AArch64AsmPrinter> Z(getTheARM64Target());
1504 RegisterAsmPrinter<AArch64AsmPrinter> W(getTheARM64_32Target());
1505 RegisterAsmPrinter<AArch64AsmPrinter> V(getTheAArch64_32Target());