1 //===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the AArch64 implementation of TargetFrameLowering class.
11 // On AArch64, stack frames are structured as follows:
13 // The stack grows downward.
15 // All of the individual frame areas on the frame below are optional, i.e. it's
16 // possible to create a function so that the particular area isn't present
19 // At function entry, the "frame" looks as follows:
22 // |-----------------------------------|
24 // | arguments passed on the stack |
26 // |-----------------------------------| <- sp
30 // After the prologue has run, the frame has the following general structure.
31 // Note that this doesn't depict the case where a red-zone is used. Also,
32 // technically the last frame area (VLAs) doesn't get created until in the
33 // main function body, after the prologue is run. However, it's depicted here
37 // |-----------------------------------|
39 // | arguments passed on the stack |
41 // |-----------------------------------|
43 // | (Win64 only) varargs from reg |
45 // |-----------------------------------|
47 // | callee-saved gpr registers | <--.
48 // | | | On Darwin platforms these
49 // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped,
50 // | prev_lr | | (frame record first)
52 // | async context if needed |
53 // | (a.k.a. "frame record") |
54 // |-----------------------------------| <- fp(=x29)
56 // | callee-saved fp/simd/SVE regs |
58 // |-----------------------------------|
60 // | SVE stack objects |
62 // |-----------------------------------|
63 // |.empty.space.to.make.part.below....|
64 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
65 // |.the.standard.16-byte.alignment....| compile time; if present)
66 // |-----------------------------------|
68 // | local variables of fixed size |
69 // | including spill slots |
70 // |-----------------------------------| <- bp(not defined by ABI,
71 // |.variable-sized.local.variables....| LLVM chooses X19)
72 // |.(VLAs)............................| (size of this area is unknown at
73 // |...................................| compile time)
74 // |-----------------------------------| <- sp
78 // To access the data in a frame, at-compile time, a constant offset must be
79 // computable from one of the pointers (fp, bp, sp) to access it. The size
80 // of the areas with a dotted background cannot be computed at compile-time
81 // if they are present, making it required to have all three of fp, bp and
82 // sp to be set up to be able to access all contents in the frame areas,
83 // assuming all of the frame areas are non-empty.
85 // For most functions, some of the frame areas are empty. For those functions,
86 // it may not be necessary to set up fp or bp:
87 // * A base pointer is definitely needed when there are both VLAs and local
88 // variables with more-than-default alignment requirements.
89 // * A frame pointer is definitely needed when there are local variables with
90 // more-than-default alignment requirements.
92 // For Darwin platforms the frame-record (fp, lr) is stored at the top of the
93 // callee-saved area, since the unwind encoding does not allow for encoding
94 // this dynamically and existing tools depend on this layout. For other
95 // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved
96 // area to allow SVE stack objects (allocated directly below the callee-saves,
97 // if available) to be accessed directly from the framepointer.
98 // The SVE spill/fill instructions have VL-scaled addressing modes such
100 // ldr z8, [fp, #-7 mul vl]
101 // For SVE the size of the vector length (VL) is not known at compile-time, so
102 // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this
103 // layout, we don't need to add an unscaled offset to the framepointer before
104 // accessing the SVE object in the frame.
106 // In some cases when a base pointer is not strictly needed, it is generated
107 // anyway when offsets from the frame pointer to access local variables become
108 // so large that the offset can't be encoded in the immediate fields of loads
111 // Outgoing function arguments must be at the bottom of the stack frame when
112 // calling another function. If we do not have variable-sized stack objects, we
113 // can allocate a "reserved call frame" area at the bottom of the local
114 // variable area, large enough for all outgoing calls. If we do have VLAs, then
115 // the stack pointer must be decremented and incremented around each call to
116 // make space for the arguments below the VLAs.
118 // FIXME: also explain the redzone concept.
120 //===----------------------------------------------------------------------===//
122 #include "AArch64FrameLowering.h"
123 #include "AArch64InstrInfo.h"
124 #include "AArch64MachineFunctionInfo.h"
125 #include "AArch64RegisterInfo.h"
126 #include "AArch64Subtarget.h"
127 #include "AArch64TargetMachine.h"
128 #include "MCTargetDesc/AArch64AddressingModes.h"
129 #include "llvm/ADT/ScopeExit.h"
130 #include "llvm/ADT/SmallVector.h"
131 #include "llvm/ADT/Statistic.h"
132 #include "llvm/CodeGen/LivePhysRegs.h"
133 #include "llvm/CodeGen/MachineBasicBlock.h"
134 #include "llvm/CodeGen/MachineFrameInfo.h"
135 #include "llvm/CodeGen/MachineFunction.h"
136 #include "llvm/CodeGen/MachineInstr.h"
137 #include "llvm/CodeGen/MachineInstrBuilder.h"
138 #include "llvm/CodeGen/MachineMemOperand.h"
139 #include "llvm/CodeGen/MachineModuleInfo.h"
140 #include "llvm/CodeGen/MachineOperand.h"
141 #include "llvm/CodeGen/MachineRegisterInfo.h"
142 #include "llvm/CodeGen/RegisterScavenging.h"
143 #include "llvm/CodeGen/TargetInstrInfo.h"
144 #include "llvm/CodeGen/TargetRegisterInfo.h"
145 #include "llvm/CodeGen/TargetSubtargetInfo.h"
146 #include "llvm/CodeGen/WinEHFuncInfo.h"
147 #include "llvm/IR/Attributes.h"
148 #include "llvm/IR/CallingConv.h"
149 #include "llvm/IR/DataLayout.h"
150 #include "llvm/IR/DebugLoc.h"
151 #include "llvm/IR/Function.h"
152 #include "llvm/MC/MCAsmInfo.h"
153 #include "llvm/MC/MCDwarf.h"
154 #include "llvm/Support/CommandLine.h"
155 #include "llvm/Support/Debug.h"
156 #include "llvm/Support/ErrorHandling.h"
157 #include "llvm/Support/LEB128.h"
158 #include "llvm/Support/MathExtras.h"
159 #include "llvm/Support/raw_ostream.h"
160 #include "llvm/Target/TargetMachine.h"
161 #include "llvm/Target/TargetOptions.h"
167 using namespace llvm
;
169 #define DEBUG_TYPE "frame-info"
171 static cl::opt
<bool> EnableRedZone("aarch64-redzone",
172 cl::desc("enable use of redzone on AArch64"),
173 cl::init(false), cl::Hidden
);
176 ReverseCSRRestoreSeq("reverse-csr-restore-seq",
177 cl::desc("reverse the CSR restore sequence"),
178 cl::init(false), cl::Hidden
);
180 static cl::opt
<bool> StackTaggingMergeSetTag(
181 "stack-tagging-merge-settag",
182 cl::desc("merge settag instruction in function epilog"), cl::init(true),
185 static cl::opt
<bool> OrderFrameObjects("aarch64-order-frame-objects",
186 cl::desc("sort stack allocations"),
187 cl::init(true), cl::Hidden
);
189 cl::opt
<bool> EnableHomogeneousPrologEpilog(
190 "homogeneous-prolog-epilog", cl::init(false), cl::ZeroOrMore
, cl::Hidden
,
191 cl::desc("Emit homogeneous prologue and epilogue for the size "
192 "optimization (default = off)"));
194 STATISTIC(NumRedZoneFunctions
, "Number of functions using red zone");
196 /// Returns how much of the incoming argument stack area (in bytes) we should
197 /// clean up in an epilogue. For the C calling convention this will be 0, for
198 /// guaranteed tail call conventions it can be positive (a normal return or a
199 /// tail call to a function that uses less stack space for arguments) or
200 /// negative (for a tail call to a function that needs more stack space than us
202 static int64_t getArgumentStackToRestore(MachineFunction
&MF
,
203 MachineBasicBlock
&MBB
) {
204 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
205 bool IsTailCallReturn
= false;
206 if (MBB
.end() != MBBI
) {
207 unsigned RetOpcode
= MBBI
->getOpcode();
208 IsTailCallReturn
= RetOpcode
== AArch64::TCRETURNdi
||
209 RetOpcode
== AArch64::TCRETURNri
||
210 RetOpcode
== AArch64::TCRETURNriBTI
;
212 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
214 int64_t ArgumentPopSize
= 0;
215 if (IsTailCallReturn
) {
216 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
218 // For a tail-call in a callee-pops-arguments environment, some or all of
219 // the stack may actually be in use for the call's arguments, this is
220 // calculated during LowerCall and consumed here...
221 ArgumentPopSize
= StackAdjust
.getImm();
223 // ... otherwise the amount to pop is *all* of the argument space,
224 // conveniently stored in the MachineFunctionInfo by
225 // LowerFormalArguments. This will, of course, be zero for the C calling
227 ArgumentPopSize
= AFI
->getArgumentStackToRestore();
230 return ArgumentPopSize
;
233 static bool produceCompactUnwindFrame(MachineFunction
&MF
);
234 static bool needsWinCFI(const MachineFunction
&MF
);
235 static StackOffset
getSVEStackSize(const MachineFunction
&MF
);
237 /// Returns true if a homogeneous prolog or epilog code can be emitted
238 /// for the size optimization. If possible, a frame helper call is injected.
239 /// When Exit block is given, this check is for epilog.
240 bool AArch64FrameLowering::homogeneousPrologEpilog(
241 MachineFunction
&MF
, MachineBasicBlock
*Exit
) const {
242 if (!MF
.getFunction().hasMinSize())
244 if (!EnableHomogeneousPrologEpilog
)
246 if (ReverseCSRRestoreSeq
)
251 // TODO: Window is supported yet.
254 // TODO: SVE is not supported yet.
255 if (getSVEStackSize(MF
))
258 // Bail on stack adjustment needed on return for simplicity.
259 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
260 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
261 if (MFI
.hasVarSizedObjects() || RegInfo
->hasStackRealignment(MF
))
263 if (Exit
&& getArgumentStackToRestore(MF
, *Exit
))
269 /// Returns true if CSRs should be paired.
270 bool AArch64FrameLowering::producePairRegisters(MachineFunction
&MF
) const {
271 return produceCompactUnwindFrame(MF
) || homogeneousPrologEpilog(MF
);
274 /// This is the biggest offset to the stack pointer we can encode in aarch64
275 /// instructions (without using a separate calculation and a temp register).
276 /// Note that the exception here are vector stores/loads which cannot encode any
277 /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()).
278 static const unsigned DefaultSafeSPDisplacement
= 255;
280 /// Look at each instruction that references stack frames and return the stack
281 /// size limit beyond which some of these instructions will require a scratch
282 /// register during their expansion later.
283 static unsigned estimateRSStackSizeLimit(MachineFunction
&MF
) {
284 // FIXME: For now, just conservatively guestimate based on unscaled indexing
285 // range. We'll end up allocating an unnecessary spill slot a lot, but
286 // realistically that's not a big deal at this stage of the game.
287 for (MachineBasicBlock
&MBB
: MF
) {
288 for (MachineInstr
&MI
: MBB
) {
289 if (MI
.isDebugInstr() || MI
.isPseudo() ||
290 MI
.getOpcode() == AArch64::ADDXri
||
291 MI
.getOpcode() == AArch64::ADDSXri
)
294 for (const MachineOperand
&MO
: MI
.operands()) {
299 if (isAArch64FrameOffsetLegal(MI
, Offset
, nullptr, nullptr, nullptr) ==
300 AArch64FrameOffsetCannotUpdate
)
305 return DefaultSafeSPDisplacement
;
309 AArch64FrameLowering::getStackIDForScalableVectors() const {
310 return TargetStackID::ScalableVector
;
313 /// Returns the size of the fixed object area (allocated next to sp on entry)
314 /// On Win64 this may include a var args area and an UnwindHelp object for EH.
315 static unsigned getFixedObjectSize(const MachineFunction
&MF
,
316 const AArch64FunctionInfo
*AFI
, bool IsWin64
,
318 if (!IsWin64
|| IsFunclet
) {
319 return AFI
->getTailCallReservedStack();
321 if (AFI
->getTailCallReservedStack() != 0)
322 report_fatal_error("cannot generate ABI-changing tail call for Win64");
323 // Var args are stored here in the primary function.
324 const unsigned VarArgsArea
= AFI
->getVarArgsGPRSize();
325 // To support EH funclets we allocate an UnwindHelp object
326 const unsigned UnwindHelpObject
= (MF
.hasEHFunclets() ? 8 : 0);
327 return alignTo(VarArgsArea
+ UnwindHelpObject
, 16);
331 /// Returns the size of the entire SVE stackframe (calleesaves + spills).
332 static StackOffset
getSVEStackSize(const MachineFunction
&MF
) {
333 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
334 return StackOffset::getScalable((int64_t)AFI
->getStackSizeSVE());
337 bool AArch64FrameLowering::canUseRedZone(const MachineFunction
&MF
) const {
341 // Don't use the red zone if the function explicitly asks us not to.
342 // This is typically used for kernel code.
343 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
344 const unsigned RedZoneSize
=
345 Subtarget
.getTargetLowering()->getRedZoneSize(MF
.getFunction());
349 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
350 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
351 uint64_t NumBytes
= AFI
->getLocalStackSize();
353 return !(MFI
.hasCalls() || hasFP(MF
) || NumBytes
> RedZoneSize
||
354 getSVEStackSize(MF
));
357 /// hasFP - Return true if the specified function should have a dedicated frame
358 /// pointer register.
359 bool AArch64FrameLowering::hasFP(const MachineFunction
&MF
) const {
360 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
361 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
362 // Win64 EH requires a frame pointer if funclets are present, as the locals
363 // are accessed off the frame pointer in both the parent function and the
365 if (MF
.hasEHFunclets())
367 // Retain behavior of always omitting the FP for leaf functions when possible.
368 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
))
370 if (MFI
.hasVarSizedObjects() || MFI
.isFrameAddressTaken() ||
371 MFI
.hasStackMap() || MFI
.hasPatchPoint() ||
372 RegInfo
->hasStackRealignment(MF
))
374 // With large callframes around we may need to use FP to access the scavenging
375 // emergency spillslot.
377 // Unfortunately some calls to hasFP() like machine verifier ->
378 // getReservedReg() -> hasFP in the middle of global isel are too early
379 // to know the max call frame size. Hopefully conservatively returning "true"
380 // in those cases is fine.
381 // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs.
382 if (!MFI
.isMaxCallFrameSizeComputed() ||
383 MFI
.getMaxCallFrameSize() > DefaultSafeSPDisplacement
)
389 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
390 /// not required, we reserve argument space for call sites in the function
391 /// immediately on entry to the current function. This eliminates the need for
392 /// add/sub sp brackets around call sites. Returns true if the call frame is
393 /// included as part of the stack frame.
395 AArch64FrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
396 return !MF
.getFrameInfo().hasVarSizedObjects();
399 MachineBasicBlock::iterator
AArch64FrameLowering::eliminateCallFramePseudoInstr(
400 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
401 MachineBasicBlock::iterator I
) const {
402 const AArch64InstrInfo
*TII
=
403 static_cast<const AArch64InstrInfo
*>(MF
.getSubtarget().getInstrInfo());
404 DebugLoc DL
= I
->getDebugLoc();
405 unsigned Opc
= I
->getOpcode();
406 bool IsDestroy
= Opc
== TII
->getCallFrameDestroyOpcode();
407 uint64_t CalleePopAmount
= IsDestroy
? I
->getOperand(1).getImm() : 0;
409 if (!hasReservedCallFrame(MF
)) {
410 int64_t Amount
= I
->getOperand(0).getImm();
411 Amount
= alignTo(Amount
, getStackAlign());
415 // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it
416 // doesn't have to pop anything), then the first operand will be zero too so
417 // this adjustment is a no-op.
418 if (CalleePopAmount
== 0) {
419 // FIXME: in-function stack adjustment for calls is limited to 24-bits
420 // because there's no guaranteed temporary register available.
422 // ADD/SUB (immediate) has only LSL #0 and LSL #12 available.
423 // 1) For offset <= 12-bit, we use LSL #0
424 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses
425 // LSL #0, and the other uses LSL #12.
427 // Most call frames will be allocated at the start of a function so
428 // this is OK, but it is a limitation that needs dealing with.
429 assert(Amount
> -0xffffff && Amount
< 0xffffff && "call frame too large");
430 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
,
431 StackOffset::getFixed(Amount
), TII
);
433 } else if (CalleePopAmount
!= 0) {
434 // If the calling convention demands that the callee pops arguments from the
435 // stack, we want to add it back if we have a reserved call frame.
436 assert(CalleePopAmount
< 0xffffff && "call frame too large");
437 emitFrameOffset(MBB
, I
, DL
, AArch64::SP
, AArch64::SP
,
438 StackOffset::getFixed(-(int64_t)CalleePopAmount
), TII
);
443 // Convenience function to create a DWARF expression for
444 // Expr + NumBytes + NumVGScaledBytes * AArch64::VG
445 static void appendVGScaledOffsetExpr(SmallVectorImpl
<char> &Expr
,
446 int NumBytes
, int NumVGScaledBytes
, unsigned VG
,
447 llvm::raw_string_ostream
&Comment
) {
451 Expr
.push_back(dwarf::DW_OP_consts
);
452 Expr
.append(buffer
, buffer
+ encodeSLEB128(NumBytes
, buffer
));
453 Expr
.push_back((uint8_t)dwarf::DW_OP_plus
);
454 Comment
<< (NumBytes
< 0 ? " - " : " + ") << std::abs(NumBytes
);
457 if (NumVGScaledBytes
) {
458 Expr
.push_back((uint8_t)dwarf::DW_OP_consts
);
459 Expr
.append(buffer
, buffer
+ encodeSLEB128(NumVGScaledBytes
, buffer
));
461 Expr
.push_back((uint8_t)dwarf::DW_OP_bregx
);
462 Expr
.append(buffer
, buffer
+ encodeULEB128(VG
, buffer
));
465 Expr
.push_back((uint8_t)dwarf::DW_OP_mul
);
466 Expr
.push_back((uint8_t)dwarf::DW_OP_plus
);
468 Comment
<< (NumVGScaledBytes
< 0 ? " - " : " + ")
469 << std::abs(NumVGScaledBytes
) << " * VG";
473 // Creates an MCCFIInstruction:
474 // { DW_CFA_def_cfa_expression, ULEB128 (sizeof expr), expr }
475 MCCFIInstruction
AArch64FrameLowering::createDefCFAExpressionFromSP(
476 const TargetRegisterInfo
&TRI
, const StackOffset
&OffsetFromSP
) const {
477 int64_t NumBytes
, NumVGScaledBytes
;
478 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(OffsetFromSP
, NumBytes
,
481 std::string CommentBuffer
= "sp";
482 llvm::raw_string_ostream
Comment(CommentBuffer
);
484 // Build up the expression (SP + NumBytes + NumVGScaledBytes * AArch64::VG)
485 SmallString
<64> Expr
;
486 Expr
.push_back((uint8_t)(dwarf::DW_OP_breg0
+ /*SP*/ 31));
488 appendVGScaledOffsetExpr(Expr
, NumBytes
, NumVGScaledBytes
,
489 TRI
.getDwarfRegNum(AArch64::VG
, true), Comment
);
491 // Wrap this into DW_CFA_def_cfa.
492 SmallString
<64> DefCfaExpr
;
493 DefCfaExpr
.push_back(dwarf::DW_CFA_def_cfa_expression
);
495 DefCfaExpr
.append(buffer
,
496 buffer
+ encodeULEB128(Expr
.size(), buffer
));
497 DefCfaExpr
.append(Expr
.str());
498 return MCCFIInstruction::createEscape(nullptr, DefCfaExpr
.str(),
502 MCCFIInstruction
AArch64FrameLowering::createCfaOffset(
503 const TargetRegisterInfo
&TRI
, unsigned Reg
,
504 const StackOffset
&OffsetFromDefCFA
) const {
505 int64_t NumBytes
, NumVGScaledBytes
;
506 AArch64InstrInfo::decomposeStackOffsetForDwarfOffsets(
507 OffsetFromDefCFA
, NumBytes
, NumVGScaledBytes
);
509 unsigned DwarfReg
= TRI
.getDwarfRegNum(Reg
, true);
511 // Non-scalable offsets can use DW_CFA_offset directly.
512 if (!NumVGScaledBytes
)
513 return MCCFIInstruction::createOffset(nullptr, DwarfReg
, NumBytes
);
515 std::string CommentBuffer
;
516 llvm::raw_string_ostream
Comment(CommentBuffer
);
517 Comment
<< printReg(Reg
, &TRI
) << " @ cfa";
519 // Build up expression (NumBytes + NumVGScaledBytes * AArch64::VG)
520 SmallString
<64> OffsetExpr
;
521 appendVGScaledOffsetExpr(OffsetExpr
, NumBytes
, NumVGScaledBytes
,
522 TRI
.getDwarfRegNum(AArch64::VG
, true), Comment
);
524 // Wrap this into DW_CFA_expression
525 SmallString
<64> CfaExpr
;
526 CfaExpr
.push_back(dwarf::DW_CFA_expression
);
528 CfaExpr
.append(buffer
, buffer
+ encodeULEB128(DwarfReg
, buffer
));
529 CfaExpr
.append(buffer
, buffer
+ encodeULEB128(OffsetExpr
.size(), buffer
));
530 CfaExpr
.append(OffsetExpr
.str());
532 return MCCFIInstruction::createEscape(nullptr, CfaExpr
.str(), Comment
.str());
535 void AArch64FrameLowering::emitCalleeSavedFrameMoves(
536 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
) const {
537 MachineFunction
&MF
= *MBB
.getParent();
538 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
539 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
540 const TargetRegisterInfo
*TRI
= STI
.getRegisterInfo();
541 const TargetInstrInfo
*TII
= STI
.getInstrInfo();
542 DebugLoc DL
= MBB
.findDebugLoc(MBBI
);
544 // Add callee saved registers to move list.
545 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
549 for (const auto &Info
: CSI
) {
550 unsigned Reg
= Info
.getReg();
552 // Not all unwinders may know about SVE registers, so assume the lowest
553 // common demoninator.
555 if (static_cast<const AArch64RegisterInfo
*>(TRI
)->regNeedsCFI(Reg
, NewReg
))
561 if (MFI
.getStackID(Info
.getFrameIdx()) == TargetStackID::ScalableVector
) {
562 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
564 StackOffset::getScalable(MFI
.getObjectOffset(Info
.getFrameIdx())) -
565 StackOffset::getFixed(AFI
->getCalleeSavedStackSize(MFI
));
567 Offset
= StackOffset::getFixed(MFI
.getObjectOffset(Info
.getFrameIdx()) -
568 getOffsetOfLocalArea());
570 unsigned CFIIndex
= MF
.addFrameInst(createCfaOffset(*TRI
, Reg
, Offset
));
571 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
572 .addCFIIndex(CFIIndex
)
573 .setMIFlags(MachineInstr::FrameSetup
);
577 // Find a scratch register that we can use at the start of the prologue to
578 // re-align the stack pointer. We avoid using callee-save registers since they
579 // may appear to be free when this is called from canUseAsPrologue (during
580 // shrink wrapping), but then no longer be free when this is called from
583 // FIXME: This is a bit conservative, since in the above case we could use one
584 // of the callee-save registers as a scratch temp to re-align the stack pointer,
585 // but we would then have to make sure that we were in fact saving at least one
586 // callee-save register in the prologue, which is additional complexity that
587 // doesn't seem worth the benefit.
588 static unsigned findScratchNonCalleeSaveRegister(MachineBasicBlock
*MBB
) {
589 MachineFunction
*MF
= MBB
->getParent();
591 // If MBB is an entry block, use X9 as the scratch register
592 if (&MF
->front() == MBB
)
595 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
596 const AArch64RegisterInfo
&TRI
= *Subtarget
.getRegisterInfo();
597 LivePhysRegs
LiveRegs(TRI
);
598 LiveRegs
.addLiveIns(*MBB
);
600 // Mark callee saved registers as used so we will not choose them.
601 const MCPhysReg
*CSRegs
= MF
->getRegInfo().getCalleeSavedRegs();
602 for (unsigned i
= 0; CSRegs
[i
]; ++i
)
603 LiveRegs
.addReg(CSRegs
[i
]);
605 // Prefer X9 since it was historically used for the prologue scratch reg.
606 const MachineRegisterInfo
&MRI
= MF
->getRegInfo();
607 if (LiveRegs
.available(MRI
, AArch64::X9
))
610 for (unsigned Reg
: AArch64::GPR64RegClass
) {
611 if (LiveRegs
.available(MRI
, Reg
))
614 return AArch64::NoRegister
;
617 bool AArch64FrameLowering::canUseAsPrologue(
618 const MachineBasicBlock
&MBB
) const {
619 const MachineFunction
*MF
= MBB
.getParent();
620 MachineBasicBlock
*TmpMBB
= const_cast<MachineBasicBlock
*>(&MBB
);
621 const AArch64Subtarget
&Subtarget
= MF
->getSubtarget
<AArch64Subtarget
>();
622 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
624 // Don't need a scratch register if we're not going to re-align the stack.
625 if (!RegInfo
->hasStackRealignment(*MF
))
627 // Otherwise, we can use any block as long as it has a scratch register
629 return findScratchNonCalleeSaveRegister(TmpMBB
) != AArch64::NoRegister
;
632 static bool windowsRequiresStackProbe(MachineFunction
&MF
,
633 uint64_t StackSizeInBytes
) {
634 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
635 if (!Subtarget
.isTargetWindows())
637 const Function
&F
= MF
.getFunction();
638 // TODO: When implementing stack protectors, take that into account
639 // for the probe threshold.
640 unsigned StackProbeSize
= 4096;
641 if (F
.hasFnAttribute("stack-probe-size"))
642 F
.getFnAttribute("stack-probe-size")
644 .getAsInteger(0, StackProbeSize
);
645 return (StackSizeInBytes
>= StackProbeSize
) &&
646 !F
.hasFnAttribute("no-stack-arg-probe");
649 static bool needsWinCFI(const MachineFunction
&MF
) {
650 const Function
&F
= MF
.getFunction();
651 return MF
.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
652 F
.needsUnwindTableEntry();
655 bool AArch64FrameLowering::shouldCombineCSRLocalStackBump(
656 MachineFunction
&MF
, uint64_t StackBumpBytes
) const {
657 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
658 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
659 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
660 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
661 if (homogeneousPrologEpilog(MF
))
664 if (AFI
->getLocalStackSize() == 0)
667 // For WinCFI, if optimizing for size, prefer to not combine the stack bump
668 // (to force a stp with predecrement) to match the packed unwind format,
669 // provided that there actually are any callee saved registers to merge the
671 // This is potentially marginally slower, but allows using the packed
672 // unwind format for functions that both have a local area and callee saved
673 // registers. Using the packed unwind format notably reduces the size of
675 if (needsWinCFI(MF
) && AFI
->getCalleeSavedStackSize() > 0 &&
676 MF
.getFunction().hasOptSize())
679 // 512 is the maximum immediate for stp/ldp that will be used for
680 // callee-save save/restores
681 if (StackBumpBytes
>= 512 || windowsRequiresStackProbe(MF
, StackBumpBytes
))
684 if (MFI
.hasVarSizedObjects())
687 if (RegInfo
->hasStackRealignment(MF
))
690 // This isn't strictly necessary, but it simplifies things a bit since the
691 // current RedZone handling code assumes the SP is adjusted by the
692 // callee-save save/restore code.
693 if (canUseRedZone(MF
))
696 // When there is an SVE area on the stack, always allocate the
697 // callee-saves and spills/locals separately.
698 if (getSVEStackSize(MF
))
704 bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue(
705 MachineBasicBlock
&MBB
, unsigned StackBumpBytes
) const {
706 if (!shouldCombineCSRLocalStackBump(*MBB
.getParent(), StackBumpBytes
))
712 // Disable combined SP bump if the last instruction is an MTE tag store. It
713 // is almost always better to merge SP adjustment into those instructions.
714 MachineBasicBlock::iterator LastI
= MBB
.getFirstTerminator();
715 MachineBasicBlock::iterator Begin
= MBB
.begin();
716 while (LastI
!= Begin
) {
718 if (LastI
->isTransient())
720 if (!LastI
->getFlag(MachineInstr::FrameDestroy
))
723 switch (LastI
->getOpcode()) {
724 case AArch64::STGloop
:
725 case AArch64::STZGloop
:
726 case AArch64::STGOffset
:
727 case AArch64::STZGOffset
:
728 case AArch64::ST2GOffset
:
729 case AArch64::STZ2GOffset
:
734 llvm_unreachable("unreachable");
737 // Given a load or a store instruction, generate an appropriate unwinding SEH
739 static MachineBasicBlock::iterator
InsertSEH(MachineBasicBlock::iterator MBBI
,
740 const TargetInstrInfo
&TII
,
741 MachineInstr::MIFlag Flag
) {
742 unsigned Opc
= MBBI
->getOpcode();
743 MachineBasicBlock
*MBB
= MBBI
->getParent();
744 MachineFunction
&MF
= *MBB
->getParent();
745 DebugLoc DL
= MBBI
->getDebugLoc();
746 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
747 int Imm
= MBBI
->getOperand(ImmIdx
).getImm();
748 MachineInstrBuilder MIB
;
749 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
750 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
754 llvm_unreachable("No SEH Opcode for this instruction");
755 case AArch64::LDPDpost
:
758 case AArch64::STPDpre
: {
759 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
760 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(2).getReg());
761 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP_X
))
768 case AArch64::LDPXpost
:
771 case AArch64::STPXpre
: {
772 Register Reg0
= MBBI
->getOperand(1).getReg();
773 Register Reg1
= MBBI
->getOperand(2).getReg();
774 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
775 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR_X
))
779 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP_X
))
780 .addImm(RegInfo
->getSEHRegNum(Reg0
))
781 .addImm(RegInfo
->getSEHRegNum(Reg1
))
786 case AArch64::LDRDpost
:
789 case AArch64::STRDpre
: {
790 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
791 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg_X
))
797 case AArch64::LDRXpost
:
800 case AArch64::STRXpre
: {
801 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
802 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg_X
))
809 case AArch64::LDPDi
: {
810 unsigned Reg0
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
811 unsigned Reg1
= RegInfo
->getSEHRegNum(MBBI
->getOperand(1).getReg());
812 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFRegP
))
820 case AArch64::LDPXi
: {
821 Register Reg0
= MBBI
->getOperand(0).getReg();
822 Register Reg1
= MBBI
->getOperand(1).getReg();
823 if (Reg0
== AArch64::FP
&& Reg1
== AArch64::LR
)
824 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFPLR
))
828 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveRegP
))
829 .addImm(RegInfo
->getSEHRegNum(Reg0
))
830 .addImm(RegInfo
->getSEHRegNum(Reg1
))
835 case AArch64::STRXui
:
836 case AArch64::LDRXui
: {
837 int Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
838 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveReg
))
844 case AArch64::STRDui
:
845 case AArch64::LDRDui
: {
846 unsigned Reg
= RegInfo
->getSEHRegNum(MBBI
->getOperand(0).getReg());
847 MIB
= BuildMI(MF
, DL
, TII
.get(AArch64::SEH_SaveFReg
))
854 auto I
= MBB
->insertAfter(MBBI
, MIB
);
858 // Fix up the SEH opcode associated with the save/restore instruction.
859 static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI
,
860 unsigned LocalStackSize
) {
861 MachineOperand
*ImmOpnd
= nullptr;
862 unsigned ImmIdx
= MBBI
->getNumOperands() - 1;
863 switch (MBBI
->getOpcode()) {
865 llvm_unreachable("Fix the offset in the SEH instruction");
866 case AArch64::SEH_SaveFPLR
:
867 case AArch64::SEH_SaveRegP
:
868 case AArch64::SEH_SaveReg
:
869 case AArch64::SEH_SaveFRegP
:
870 case AArch64::SEH_SaveFReg
:
871 ImmOpnd
= &MBBI
->getOperand(ImmIdx
);
875 ImmOpnd
->setImm(ImmOpnd
->getImm() + LocalStackSize
);
878 // Convert callee-save register save/restore instruction to do stack pointer
879 // decrement/increment to allocate/deallocate the callee-save stack area by
880 // converting store/load to use pre/post increment version.
881 static MachineBasicBlock::iterator
convertCalleeSaveRestoreToSPPrePostIncDec(
882 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MBBI
,
883 const DebugLoc
&DL
, const TargetInstrInfo
*TII
, int CSStackSizeInc
,
884 bool NeedsWinCFI
, bool *HasWinCFI
, bool InProlog
= true) {
885 // Ignore instructions that do not operate on SP, i.e. shadow call stack
886 // instructions and associated CFI instruction.
887 while (MBBI
->getOpcode() == AArch64::STRXpost
||
888 MBBI
->getOpcode() == AArch64::LDRXpre
||
889 MBBI
->getOpcode() == AArch64::CFI_INSTRUCTION
) {
890 if (MBBI
->getOpcode() != AArch64::CFI_INSTRUCTION
)
891 assert(MBBI
->getOperand(0).getReg() != AArch64::SP
);
895 switch (MBBI
->getOpcode()) {
897 llvm_unreachable("Unexpected callee-save save/restore opcode!");
899 NewOpc
= AArch64::STPXpre
;
902 NewOpc
= AArch64::STPDpre
;
905 NewOpc
= AArch64::STPQpre
;
907 case AArch64::STRXui
:
908 NewOpc
= AArch64::STRXpre
;
910 case AArch64::STRDui
:
911 NewOpc
= AArch64::STRDpre
;
913 case AArch64::STRQui
:
914 NewOpc
= AArch64::STRQpre
;
917 NewOpc
= AArch64::LDPXpost
;
920 NewOpc
= AArch64::LDPDpost
;
923 NewOpc
= AArch64::LDPQpost
;
925 case AArch64::LDRXui
:
926 NewOpc
= AArch64::LDRXpost
;
928 case AArch64::LDRDui
:
929 NewOpc
= AArch64::LDRDpost
;
931 case AArch64::LDRQui
:
932 NewOpc
= AArch64::LDRQpost
;
935 // Get rid of the SEH code associated with the old instruction.
937 auto SEH
= std::next(MBBI
);
938 if (AArch64InstrInfo::isSEHInstruction(*SEH
))
939 SEH
->eraseFromParent();
942 TypeSize Scale
= TypeSize::Fixed(1);
944 int64_t MinOffset
, MaxOffset
;
945 bool Success
= static_cast<const AArch64InstrInfo
*>(TII
)->getMemOpInfo(
946 NewOpc
, Scale
, Width
, MinOffset
, MaxOffset
);
948 assert(Success
&& "unknown load/store opcode");
950 // If the first store isn't right where we want SP then we can't fold the
951 // update in so create a normal arithmetic instruction instead.
952 if (MBBI
->getOperand(MBBI
->getNumOperands() - 1).getImm() != 0 ||
953 CSStackSizeInc
< MinOffset
|| CSStackSizeInc
> MaxOffset
) {
954 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
955 StackOffset::getFixed(CSStackSizeInc
), TII
,
956 InProlog
? MachineInstr::FrameSetup
957 : MachineInstr::FrameDestroy
);
958 return std::prev(MBBI
);
961 MachineInstrBuilder MIB
= BuildMI(MBB
, MBBI
, DL
, TII
->get(NewOpc
));
962 MIB
.addReg(AArch64::SP
, RegState::Define
);
964 // Copy all operands other than the immediate offset.
965 unsigned OpndIdx
= 0;
966 for (unsigned OpndEnd
= MBBI
->getNumOperands() - 1; OpndIdx
< OpndEnd
;
968 MIB
.add(MBBI
->getOperand(OpndIdx
));
970 assert(MBBI
->getOperand(OpndIdx
).getImm() == 0 &&
971 "Unexpected immediate offset in first/last callee-save save/restore "
973 assert(MBBI
->getOperand(OpndIdx
- 1).getReg() == AArch64::SP
&&
974 "Unexpected base register in callee-save save/restore instruction!");
975 assert(CSStackSizeInc
% Scale
== 0);
976 MIB
.addImm(CSStackSizeInc
/ (int)Scale
);
978 MIB
.setMIFlags(MBBI
->getFlags());
979 MIB
.setMemRefs(MBBI
->memoperands());
981 // Generate a new SEH code that corresponds to the new instruction.
984 InsertSEH(*MIB
, *TII
,
985 InProlog
? MachineInstr::FrameSetup
: MachineInstr::FrameDestroy
);
988 return std::prev(MBB
.erase(MBBI
));
991 // Fixup callee-save register save/restore instructions to take into account
992 // combined SP bump by adding the local stack size to the stack offsets.
993 static void fixupCalleeSaveRestoreStackOffset(MachineInstr
&MI
,
994 uint64_t LocalStackSize
,
997 if (AArch64InstrInfo::isSEHInstruction(MI
))
1000 unsigned Opc
= MI
.getOpcode();
1002 // Ignore instructions that do not operate on SP, i.e. shadow call stack
1003 // instructions and associated CFI instruction.
1004 if (Opc
== AArch64::STRXpost
|| Opc
== AArch64::LDRXpre
||
1005 Opc
== AArch64::CFI_INSTRUCTION
) {
1006 if (Opc
!= AArch64::CFI_INSTRUCTION
)
1007 assert(MI
.getOperand(0).getReg() != AArch64::SP
);
1013 case AArch64::STPXi
:
1014 case AArch64::STRXui
:
1015 case AArch64::STPDi
:
1016 case AArch64::STRDui
:
1017 case AArch64::LDPXi
:
1018 case AArch64::LDRXui
:
1019 case AArch64::LDPDi
:
1020 case AArch64::LDRDui
:
1023 case AArch64::STPQi
:
1024 case AArch64::STRQui
:
1025 case AArch64::LDPQi
:
1026 case AArch64::LDRQui
:
1030 llvm_unreachable("Unexpected callee-save save/restore opcode!");
1033 unsigned OffsetIdx
= MI
.getNumExplicitOperands() - 1;
1034 assert(MI
.getOperand(OffsetIdx
- 1).getReg() == AArch64::SP
&&
1035 "Unexpected base register in callee-save save/restore instruction!");
1036 // Last operand is immediate offset that needs fixing.
1037 MachineOperand
&OffsetOpnd
= MI
.getOperand(OffsetIdx
);
1038 // All generated opcodes have scaled offsets.
1039 assert(LocalStackSize
% Scale
== 0);
1040 OffsetOpnd
.setImm(OffsetOpnd
.getImm() + LocalStackSize
/ Scale
);
1044 auto MBBI
= std::next(MachineBasicBlock::iterator(MI
));
1045 assert(MBBI
!= MI
.getParent()->end() && "Expecting a valid instruction");
1046 assert(AArch64InstrInfo::isSEHInstruction(*MBBI
) &&
1047 "Expecting a SEH instruction");
1048 fixupSEHOpcode(MBBI
, LocalStackSize
);
1052 static void adaptForLdStOpt(MachineBasicBlock
&MBB
,
1053 MachineBasicBlock::iterator FirstSPPopI
,
1054 MachineBasicBlock::iterator LastPopI
) {
1055 // Sometimes (when we restore in the same order as we save), we can end up
1056 // with code like this:
1058 // ldp x26, x25, [sp]
1059 // ldp x24, x23, [sp, #16]
1060 // ldp x22, x21, [sp, #32]
1061 // ldp x20, x19, [sp, #48]
1064 // In this case, it is always better to put the first ldp at the end, so
1065 // that the load-store optimizer can run and merge the ldp and the add into
1066 // a post-index ldp.
1067 // If we managed to grab the first pop instruction, move it to the end.
1068 if (ReverseCSRRestoreSeq
)
1069 MBB
.splice(FirstSPPopI
, &MBB
, LastPopI
);
1070 // We should end up with something like this now:
1072 // ldp x24, x23, [sp, #16]
1073 // ldp x22, x21, [sp, #32]
1074 // ldp x20, x19, [sp, #48]
1075 // ldp x26, x25, [sp]
1078 // and the load-store optimizer can merge the last two instructions into:
1080 // ldp x26, x25, [sp], #64
1084 static bool isTargetWindows(const MachineFunction
&MF
) {
1085 return MF
.getSubtarget
<AArch64Subtarget
>().isTargetWindows();
1088 // Convenience function to determine whether I is an SVE callee save.
1089 static bool IsSVECalleeSave(MachineBasicBlock::iterator I
) {
1090 switch (I
->getOpcode()) {
1093 case AArch64::STR_ZXI
:
1094 case AArch64::STR_PXI
:
1095 case AArch64::LDR_ZXI
:
1096 case AArch64::LDR_PXI
:
1097 return I
->getFlag(MachineInstr::FrameSetup
) ||
1098 I
->getFlag(MachineInstr::FrameDestroy
);
1102 void AArch64FrameLowering::emitPrologue(MachineFunction
&MF
,
1103 MachineBasicBlock
&MBB
) const {
1104 MachineBasicBlock::iterator MBBI
= MBB
.begin();
1105 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1106 const Function
&F
= MF
.getFunction();
1107 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1108 const AArch64RegisterInfo
*RegInfo
= Subtarget
.getRegisterInfo();
1109 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1110 MachineModuleInfo
&MMI
= MF
.getMMI();
1111 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1112 bool needsFrameMoves
=
1113 MF
.needsFrameMoves() && !MF
.getTarget().getMCAsmInfo()->usesWindowsCFI();
1114 bool HasFP
= hasFP(MF
);
1115 bool NeedsWinCFI
= needsWinCFI(MF
);
1116 bool HasWinCFI
= false;
1117 auto Cleanup
= make_scope_exit([&]() { MF
.setHasWinCFI(HasWinCFI
); });
1119 bool IsFunclet
= MBB
.isEHFuncletEntry();
1121 // At this point, we're going to decide whether or not the function uses a
1122 // redzone. In most cases, the function doesn't have a redzone so let's
1123 // assume that's false and set it to true in the case that there's a redzone.
1124 AFI
->setHasRedZone(false);
1126 // Debug location must be unknown since the first debug location is used
1127 // to determine the end of the prologue.
1130 const auto &MFnI
= *MF
.getInfo
<AArch64FunctionInfo
>();
1131 if (MFnI
.shouldSignReturnAddress()) {
1134 if (MFnI
.shouldSignWithBKey()) {
1135 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::EMITBKEY
))
1136 .setMIFlag(MachineInstr::FrameSetup
);
1137 PACI
= Subtarget
.hasPAuth() ? AArch64::PACIB
: AArch64::PACIBSP
;
1139 PACI
= Subtarget
.hasPAuth() ? AArch64::PACIA
: AArch64::PACIASP
;
1142 auto MI
= BuildMI(MBB
, MBBI
, DL
, TII
->get(PACI
));
1143 if (Subtarget
.hasPAuth())
1144 MI
.addReg(AArch64::LR
, RegState::Define
)
1145 .addReg(AArch64::LR
)
1146 .addReg(AArch64::SP
, RegState::InternalRead
);
1147 MI
.setMIFlag(MachineInstr::FrameSetup
);
1150 MF
.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr));
1151 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1152 .addCFIIndex(CFIIndex
)
1153 .setMIFlags(MachineInstr::FrameSetup
);
1156 // We signal the presence of a Swift extended frame to external tools by
1157 // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple
1158 // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI
1159 // bits so that is still true.
1160 if (HasFP
&& AFI
->hasSwiftAsyncContext()) {
1161 // ORR x29, x29, #0x1000_0000_0000_0000
1162 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ORRXri
), AArch64::FP
)
1163 .addUse(AArch64::FP
)
1165 .setMIFlag(MachineInstr::FrameSetup
);
1168 // All calls are tail calls in GHC calling conv, and functions have no
1169 // prologue/epilogue.
1170 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
1173 // Set tagged base pointer to the requested stack slot.
1174 // Ideally it should match SP value after prologue.
1175 Optional
<int> TBPI
= AFI
->getTaggedBasePointerIndex();
1177 AFI
->setTaggedBasePointerOffset(-MFI
.getObjectOffset(*TBPI
));
1179 AFI
->setTaggedBasePointerOffset(MFI
.getStackSize());
1181 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
1183 // getStackSize() includes all the locals in its size calculation. We don't
1184 // include these locals when computing the stack size of a funclet, as they
1185 // are allocated in the parent's stack frame and accessed via the frame
1186 // pointer from the funclet. We only save the callee saved registers in the
1187 // funclet, which are really the callee saved registers of the parent
1188 // function, including the funclet.
1189 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
1190 : MFI
.getStackSize();
1191 if (!AFI
->hasStackFrame() && !windowsRequiresStackProbe(MF
, NumBytes
)) {
1192 assert(!HasFP
&& "unexpected function without stack frame but with FP");
1193 assert(!SVEStackSize
&&
1194 "unexpected function without stack frame but with SVE objects");
1195 // All of the stack allocation is for locals.
1196 AFI
->setLocalStackSize(NumBytes
);
1199 // REDZONE: If the stack size is less than 128 bytes, we don't need
1200 // to actually allocate.
1201 if (canUseRedZone(MF
)) {
1202 AFI
->setHasRedZone(true);
1203 ++NumRedZoneFunctions
;
1205 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1206 StackOffset::getFixed(-NumBytes
), TII
,
1207 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1208 if (!NeedsWinCFI
&& needsFrameMoves
) {
1209 // Label used to tie together the PROLOG_LABEL and the MachineMoves.
1210 MCSymbol
*FrameLabel
= MMI
.getContext().createTempSymbol();
1211 // Encode the stack size of the leaf function.
1212 unsigned CFIIndex
= MF
.addFrameInst(
1213 MCCFIInstruction::cfiDefCfaOffset(FrameLabel
, NumBytes
));
1214 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1215 .addCFIIndex(CFIIndex
)
1216 .setMIFlags(MachineInstr::FrameSetup
);
1222 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1223 .setMIFlag(MachineInstr::FrameSetup
);
1230 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1231 unsigned FixedObject
= getFixedObjectSize(MF
, AFI
, IsWin64
, IsFunclet
);
1233 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
1234 // All of the remaining stack allocations are for locals.
1235 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
1236 bool CombineSPBump
= shouldCombineCSRLocalStackBump(MF
, NumBytes
);
1237 bool HomPrologEpilog
= homogeneousPrologEpilog(MF
);
1238 if (CombineSPBump
) {
1239 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
1240 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::SP
, AArch64::SP
,
1241 StackOffset::getFixed(-NumBytes
), TII
,
1242 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1244 } else if (HomPrologEpilog
) {
1245 // Stack has been already adjusted.
1246 NumBytes
-= PrologueSaveSize
;
1247 } else if (PrologueSaveSize
!= 0) {
1248 MBBI
= convertCalleeSaveRestoreToSPPrePostIncDec(
1249 MBB
, MBBI
, DL
, TII
, -PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
);
1250 NumBytes
-= PrologueSaveSize
;
1252 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
1254 // Move past the saves of the callee-saved registers, fixing up the offsets
1255 // and pre-inc if we decided to combine the callee-save and local stack
1256 // pointer bump above.
1257 MachineBasicBlock::iterator End
= MBB
.end();
1258 while (MBBI
!= End
&& MBBI
->getFlag(MachineInstr::FrameSetup
) &&
1259 !IsSVECalleeSave(MBBI
)) {
1261 fixupCalleeSaveRestoreStackOffset(*MBBI
, AFI
->getLocalStackSize(),
1262 NeedsWinCFI
, &HasWinCFI
);
1266 // For funclets the FP belongs to the containing function.
1267 if (!IsFunclet
&& HasFP
) {
1268 // Only set up FP if we actually need to.
1269 int64_t FPOffset
= AFI
->getCalleeSaveBaseToFrameRecordOffset();
1272 FPOffset
+= AFI
->getLocalStackSize();
1274 if (AFI
->hasSwiftAsyncContext()) {
1275 // Before we update the live FP we have to ensure there's a valid (or
1276 // null) asynchronous context in its slot just before FP in the frame
1277 // record, so store it now.
1278 const auto &Attrs
= MF
.getFunction().getAttributes();
1279 bool HaveInitialContext
= Attrs
.hasAttrSomewhere(Attribute::SwiftAsync
);
1280 if (HaveInitialContext
)
1281 MBB
.addLiveIn(AArch64::X22
);
1282 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::StoreSwiftAsyncContext
))
1283 .addUse(HaveInitialContext
? AArch64::X22
: AArch64::XZR
)
1284 .addUse(AArch64::SP
)
1285 .addImm(FPOffset
- 8)
1286 .setMIFlags(MachineInstr::FrameSetup
);
1289 if (HomPrologEpilog
) {
1292 assert(Prolog
->getOpcode() == AArch64::HOM_Prolog
);
1293 Prolog
->addOperand(MachineOperand::CreateImm(FPOffset
));
1295 // Issue sub fp, sp, FPOffset or
1296 // mov fp,sp when FPOffset is zero.
1297 // Note: All stores of callee-saved registers are marked as "FrameSetup".
1298 // This code marks the instruction(s) that set the FP also.
1299 emitFrameOffset(MBB
, MBBI
, DL
, AArch64::FP
, AArch64::SP
,
1300 StackOffset::getFixed(FPOffset
), TII
,
1301 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1305 if (windowsRequiresStackProbe(MF
, NumBytes
)) {
1306 uint64_t NumWords
= NumBytes
>> 4;
1309 // alloc_l can hold at most 256MB, so assume that NumBytes doesn't
1310 // exceed this amount. We need to move at most 2^24 - 1 into x15.
1311 // This is at most two instructions, MOVZ follwed by MOVK.
1312 // TODO: Fix to use multiple stack alloc unwind codes for stacks
1313 // exceeding 256MB in size.
1314 if (NumBytes
>= (1 << 28))
1315 report_fatal_error("Stack size cannot exceed 256MB for stack "
1316 "unwinding purposes");
1318 uint32_t LowNumWords
= NumWords
& 0xFFFF;
1319 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVZXi
), AArch64::X15
)
1320 .addImm(LowNumWords
)
1321 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0))
1322 .setMIFlag(MachineInstr::FrameSetup
);
1323 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1324 .setMIFlag(MachineInstr::FrameSetup
);
1325 if ((NumWords
& 0xFFFF0000) != 0) {
1326 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVKXi
), AArch64::X15
)
1327 .addReg(AArch64::X15
)
1328 .addImm((NumWords
& 0xFFFF0000) >> 16) // High half
1329 .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL
, 16))
1330 .setMIFlag(MachineInstr::FrameSetup
);
1331 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1332 .setMIFlag(MachineInstr::FrameSetup
);
1335 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVi64imm
), AArch64::X15
)
1337 .setMIFlags(MachineInstr::FrameSetup
);
1340 switch (MF
.getTarget().getCodeModel()) {
1341 case CodeModel::Tiny
:
1342 case CodeModel::Small
:
1343 case CodeModel::Medium
:
1344 case CodeModel::Kernel
:
1345 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::BL
))
1346 .addExternalSymbol("__chkstk")
1347 .addReg(AArch64::X15
, RegState::Implicit
)
1348 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1349 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1350 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1351 .setMIFlags(MachineInstr::FrameSetup
);
1354 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1355 .setMIFlag(MachineInstr::FrameSetup
);
1358 case CodeModel::Large
:
1359 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::MOVaddrEXT
))
1360 .addReg(AArch64::X16
, RegState::Define
)
1361 .addExternalSymbol("__chkstk")
1362 .addExternalSymbol("__chkstk")
1363 .setMIFlags(MachineInstr::FrameSetup
);
1366 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1367 .setMIFlag(MachineInstr::FrameSetup
);
1370 BuildMI(MBB
, MBBI
, DL
, TII
->get(getBLRCallOpcode(MF
)))
1371 .addReg(AArch64::X16
, RegState::Kill
)
1372 .addReg(AArch64::X15
, RegState::Implicit
| RegState::Define
)
1373 .addReg(AArch64::X16
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1374 .addReg(AArch64::X17
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1375 .addReg(AArch64::NZCV
, RegState::Implicit
| RegState::Define
| RegState::Dead
)
1376 .setMIFlags(MachineInstr::FrameSetup
);
1379 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1380 .setMIFlag(MachineInstr::FrameSetup
);
1385 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SUBXrx64
), AArch64::SP
)
1386 .addReg(AArch64::SP
, RegState::Kill
)
1387 .addReg(AArch64::X15
, RegState::Kill
)
1388 .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX
, 4))
1389 .setMIFlags(MachineInstr::FrameSetup
);
1392 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
1394 .setMIFlag(MachineInstr::FrameSetup
);
1399 StackOffset AllocateBefore
= SVEStackSize
, AllocateAfter
= {};
1400 MachineBasicBlock::iterator CalleeSavesBegin
= MBBI
, CalleeSavesEnd
= MBBI
;
1402 // Process the SVE callee-saves to determine what space needs to be
1404 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize()) {
1405 // Find callee save instructions in frame.
1406 CalleeSavesBegin
= MBBI
;
1407 assert(IsSVECalleeSave(CalleeSavesBegin
) && "Unexpected instruction");
1408 while (IsSVECalleeSave(MBBI
) && MBBI
!= MBB
.getFirstTerminator())
1410 CalleeSavesEnd
= MBBI
;
1412 AllocateBefore
= StackOffset::getScalable(CalleeSavedSize
);
1413 AllocateAfter
= SVEStackSize
- AllocateBefore
;
1416 // Allocate space for the callee saves (if any).
1417 emitFrameOffset(MBB
, CalleeSavesBegin
, DL
, AArch64::SP
, AArch64::SP
,
1418 -AllocateBefore
, TII
,
1419 MachineInstr::FrameSetup
);
1421 // Finally allocate remaining SVE stack space.
1422 emitFrameOffset(MBB
, CalleeSavesEnd
, DL
, AArch64::SP
, AArch64::SP
,
1423 -AllocateAfter
, TII
,
1424 MachineInstr::FrameSetup
);
1426 // Allocate space for the rest of the frame.
1428 // Alignment is required for the parent frame, not the funclet
1429 const bool NeedsRealignment
=
1430 !IsFunclet
&& RegInfo
->hasStackRealignment(MF
);
1431 unsigned scratchSPReg
= AArch64::SP
;
1433 if (NeedsRealignment
) {
1434 scratchSPReg
= findScratchNonCalleeSaveRegister(&MBB
);
1435 assert(scratchSPReg
!= AArch64::NoRegister
);
1438 // If we're a leaf function, try using the red zone.
1439 if (!canUseRedZone(MF
))
1440 // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have
1441 // the correct value here, as NumBytes also includes padding bytes,
1442 // which shouldn't be counted here.
1443 emitFrameOffset(MBB
, MBBI
, DL
, scratchSPReg
, AArch64::SP
,
1444 StackOffset::getFixed(-NumBytes
), TII
,
1445 MachineInstr::FrameSetup
, false, NeedsWinCFI
, &HasWinCFI
);
1447 if (NeedsRealignment
) {
1448 const unsigned NrBitsToZero
= Log2(MFI
.getMaxAlign());
1449 assert(NrBitsToZero
> 1);
1450 assert(scratchSPReg
!= AArch64::SP
);
1452 // SUB X9, SP, NumBytes
1453 // -- X9 is temporary register, so shouldn't contain any live data here,
1454 // -- free to use. This is already produced by emitFrameOffset above.
1455 // AND SP, X9, 0b11111...0000
1456 // The logical immediates have a non-trivial encoding. The following
1457 // formula computes the encoded immediate with all ones but
1458 // NrBitsToZero zero bits as least significant bits.
1459 uint32_t andMaskEncoded
= (1 << 12) // = N
1460 | ((64 - NrBitsToZero
) << 6) // immr
1461 | ((64 - NrBitsToZero
- 1) << 0); // imms
1463 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::ANDXri
), AArch64::SP
)
1464 .addReg(scratchSPReg
, RegState::Kill
)
1465 .addImm(andMaskEncoded
);
1466 AFI
->setStackRealigned(true);
1469 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_StackAlloc
))
1470 .addImm(NumBytes
& andMaskEncoded
)
1471 .setMIFlag(MachineInstr::FrameSetup
);
1476 // If we need a base pointer, set it up here. It's whatever the value of the
1477 // stack pointer is at this point. Any variable size objects will be allocated
1478 // after this, so we can still use the base pointer to reference locals.
1480 // FIXME: Clarify FrameSetup flags here.
1481 // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is
1483 // For funclets the BP belongs to the containing function.
1484 if (!IsFunclet
&& RegInfo
->hasBasePointer(MF
)) {
1485 TII
->copyPhysReg(MBB
, MBBI
, DL
, RegInfo
->getBaseRegister(), AArch64::SP
,
1489 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_Nop
))
1490 .setMIFlag(MachineInstr::FrameSetup
);
1494 // The very last FrameSetup instruction indicates the end of prologue. Emit a
1495 // SEH opcode indicating the prologue end.
1496 if (NeedsWinCFI
&& HasWinCFI
) {
1497 BuildMI(MBB
, MBBI
, DL
, TII
->get(AArch64::SEH_PrologEnd
))
1498 .setMIFlag(MachineInstr::FrameSetup
);
1501 // SEH funclets are passed the frame pointer in X1. If the parent
1502 // function uses the base register, then the base register is used
1503 // directly, and is not retrieved from X1.
1504 if (IsFunclet
&& F
.hasPersonalityFn()) {
1505 EHPersonality Per
= classifyEHPersonality(F
.getPersonalityFn());
1506 if (isAsynchronousEHPersonality(Per
)) {
1507 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::COPY
), AArch64::FP
)
1508 .addReg(AArch64::X1
)
1509 .setMIFlag(MachineInstr::FrameSetup
);
1510 MBB
.addLiveIn(AArch64::X1
);
1514 if (needsFrameMoves
) {
1515 // An example of the prologue:
1522 // .cfi_personality 155, ___gxx_personality_v0
1524 // .cfi_lsda 16, Lexception33
1526 // stp xa,bx, [sp, -#offset]!
1528 // stp x28, x27, [sp, #offset-32]
1529 // stp fp, lr, [sp, #offset-16]
1530 // add fp, sp, #offset - 16
1531 // sub sp, sp, #1360
1534 // +-------------------------------------------+
1535 // 10000 | ........ | ........ | ........ | ........ |
1536 // 10004 | ........ | ........ | ........ | ........ |
1537 // +-------------------------------------------+
1538 // 10008 | ........ | ........ | ........ | ........ |
1539 // 1000c | ........ | ........ | ........ | ........ |
1540 // +===========================================+
1541 // 10010 | X28 Register |
1542 // 10014 | X28 Register |
1543 // +-------------------------------------------+
1544 // 10018 | X27 Register |
1545 // 1001c | X27 Register |
1546 // +===========================================+
1547 // 10020 | Frame Pointer |
1548 // 10024 | Frame Pointer |
1549 // +-------------------------------------------+
1550 // 10028 | Link Register |
1551 // 1002c | Link Register |
1552 // +===========================================+
1553 // 10030 | ........ | ........ | ........ | ........ |
1554 // 10034 | ........ | ........ | ........ | ........ |
1555 // +-------------------------------------------+
1556 // 10038 | ........ | ........ | ........ | ........ |
1557 // 1003c | ........ | ........ | ........ | ........ |
1558 // +-------------------------------------------+
1560 // [sp] = 10030 :: >>initial value<<
1561 // sp = 10020 :: stp fp, lr, [sp, #-16]!
1562 // fp = sp == 10020 :: mov fp, sp
1563 // [sp] == 10020 :: stp x28, x27, [sp, #-16]!
1564 // sp == 10010 :: >>final value<<
1566 // The frame pointer (w29) points to address 10020. If we use an offset of
1567 // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24
1568 // for w27, and -32 for w28:
1571 // .cfi_def_cfa w29, 16
1573 // .cfi_offset w30, -8
1575 // .cfi_offset w29, -16
1577 // .cfi_offset w27, -24
1579 // .cfi_offset w28, -32
1582 const int OffsetToFirstCalleeSaveFromFP
=
1583 AFI
->getCalleeSaveBaseToFrameRecordOffset() -
1584 AFI
->getCalleeSavedStackSize();
1585 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
1587 // Define the current CFA rule to use the provided FP.
1588 unsigned Reg
= RegInfo
->getDwarfRegNum(FramePtr
, true);
1589 unsigned CFIIndex
= MF
.addFrameInst(
1590 MCCFIInstruction::cfiDefCfa(nullptr, Reg
, FixedObject
- OffsetToFirstCalleeSaveFromFP
));
1591 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1592 .addCFIIndex(CFIIndex
)
1593 .setMIFlags(MachineInstr::FrameSetup
);
1597 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
1598 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
1599 StackOffset TotalSize
=
1600 SVEStackSize
+ StackOffset::getFixed((int64_t)MFI
.getStackSize());
1601 CFIIndex
= MF
.addFrameInst(createDefCFAExpressionFromSP(TRI
, TotalSize
));
1603 // Encode the stack size of the leaf function.
1604 CFIIndex
= MF
.addFrameInst(
1605 MCCFIInstruction::cfiDefCfaOffset(nullptr, MFI
.getStackSize()));
1607 BuildMI(MBB
, MBBI
, DL
, TII
->get(TargetOpcode::CFI_INSTRUCTION
))
1608 .addCFIIndex(CFIIndex
)
1609 .setMIFlags(MachineInstr::FrameSetup
);
1612 // Now emit the moves for whatever callee saved regs we have (including FP,
1613 // LR if those are saved).
1614 emitCalleeSavedFrameMoves(MBB
, MBBI
);
1618 static void InsertReturnAddressAuth(MachineFunction
&MF
,
1619 MachineBasicBlock
&MBB
) {
1620 const auto &MFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
1621 if (!MFI
.shouldSignReturnAddress())
1623 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1624 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1626 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
1628 if (MBBI
!= MBB
.end())
1629 DL
= MBBI
->getDebugLoc();
1631 // The AUTIASP instruction assembles to a hint instruction before v8.3a so
1632 // this instruction can safely used for any v8a architecture.
1633 // From v8.3a onwards there are optimised authenticate LR and return
1634 // instructions, namely RETA{A,B}, that can be used instead.
1635 if (Subtarget
.hasPAuth() && MBBI
!= MBB
.end() &&
1636 MBBI
->getOpcode() == AArch64::RET_ReallyLR
) {
1637 BuildMI(MBB
, MBBI
, DL
,
1638 TII
->get(MFI
.shouldSignWithBKey() ? AArch64::RETAB
: AArch64::RETAA
))
1639 .copyImplicitOps(*MBBI
);
1644 TII
->get(MFI
.shouldSignWithBKey() ? AArch64::AUTIBSP
: AArch64::AUTIASP
))
1645 .setMIFlag(MachineInstr::FrameDestroy
);
1649 static bool isFuncletReturnInstr(const MachineInstr
&MI
) {
1650 switch (MI
.getOpcode()) {
1653 case AArch64::CATCHRET
:
1654 case AArch64::CLEANUPRET
:
1659 void AArch64FrameLowering::emitEpilogue(MachineFunction
&MF
,
1660 MachineBasicBlock
&MBB
) const {
1661 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
1662 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1663 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1664 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1666 bool NeedsWinCFI
= needsWinCFI(MF
);
1667 bool HasWinCFI
= false;
1668 bool IsFunclet
= false;
1669 auto WinCFI
= make_scope_exit([&]() { assert(HasWinCFI
== MF
.hasWinCFI()); });
1671 if (MBB
.end() != MBBI
) {
1672 DL
= MBBI
->getDebugLoc();
1673 IsFunclet
= isFuncletReturnInstr(*MBBI
);
1676 int64_t NumBytes
= IsFunclet
? getWinEHFuncletFrameSize(MF
)
1677 : MFI
.getStackSize();
1678 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1680 // All calls are tail calls in GHC calling conv, and functions have no
1681 // prologue/epilogue.
1682 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
1685 // How much of the stack used by incoming arguments this function is expected
1686 // to restore in this particular epilogue.
1687 int64_t ArgumentStackToRestore
= getArgumentStackToRestore(MF
, MBB
);
1689 // The stack frame should be like below,
1691 // ---------------------- ---
1693 // | BytesInStackArgArea| CalleeArgStackSize
1694 // | (NumReusableBytes) | (of tail call)
1697 // ---------------------| --- |
1699 // | CalleeSavedReg | | |
1700 // | (CalleeSavedStackSize)| | |
1702 // ---------------------| | NumBytes
1703 // | | StackSize (StackAdjustUp)
1704 // | LocalStackSize | | |
1705 // | (covering callee | | |
1708 // ---------------------- --- ---
1710 // So NumBytes = StackSize + BytesInStackArgArea - CalleeArgStackSize
1711 // = StackSize + ArgumentPopSize
1713 // AArch64TargetLowering::LowerCall figures out ArgumentPopSize and keeps
1714 // it as the 2nd argument of AArch64ISD::TC_RETURN.
1716 auto Cleanup
= make_scope_exit([&] { InsertReturnAddressAuth(MF
, MBB
); });
1719 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1720 unsigned FixedObject
= getFixedObjectSize(MF
, AFI
, IsWin64
, IsFunclet
);
1722 int64_t AfterCSRPopSize
= ArgumentStackToRestore
;
1723 auto PrologueSaveSize
= AFI
->getCalleeSavedStackSize() + FixedObject
;
1724 // We cannot rely on the local stack size set in emitPrologue if the function
1725 // has funclets, as funclets have different local stack size requirements, and
1726 // the current value set in emitPrologue may be that of the containing
1728 if (MF
.hasEHFunclets())
1729 AFI
->setLocalStackSize(NumBytes
- PrologueSaveSize
);
1730 if (homogeneousPrologEpilog(MF
, &MBB
)) {
1731 assert(!NeedsWinCFI
);
1732 auto LastPopI
= MBB
.getFirstTerminator();
1733 if (LastPopI
!= MBB
.begin()) {
1734 auto HomogeneousEpilog
= std::prev(LastPopI
);
1735 if (HomogeneousEpilog
->getOpcode() == AArch64::HOM_Epilog
)
1736 LastPopI
= HomogeneousEpilog
;
1739 // Adjust local stack
1740 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
1741 StackOffset::getFixed(AFI
->getLocalStackSize()), TII
,
1742 MachineInstr::FrameDestroy
, false, NeedsWinCFI
);
1744 // SP has been already adjusted while restoring callee save regs.
1745 // We've bailed-out the case with adjusting SP for arguments.
1746 assert(AfterCSRPopSize
== 0);
1749 bool CombineSPBump
= shouldCombineCSRLocalStackBumpInEpilogue(MBB
, NumBytes
);
1750 // Assume we can't combine the last pop with the sp restore.
1752 if (!CombineSPBump
&& PrologueSaveSize
!= 0) {
1753 MachineBasicBlock::iterator Pop
= std::prev(MBB
.getFirstTerminator());
1754 while (AArch64InstrInfo::isSEHInstruction(*Pop
))
1755 Pop
= std::prev(Pop
);
1756 // Converting the last ldp to a post-index ldp is valid only if the last
1757 // ldp's offset is 0.
1758 const MachineOperand
&OffsetOp
= Pop
->getOperand(Pop
->getNumOperands() - 1);
1759 // If the offset is 0 and the AfterCSR pop is not actually trying to
1760 // allocate more stack for arguments (in space that an untimely interrupt
1761 // may clobber), convert it to a post-index ldp.
1762 if (OffsetOp
.getImm() == 0 && AfterCSRPopSize
>= 0)
1763 convertCalleeSaveRestoreToSPPrePostIncDec(
1764 MBB
, Pop
, DL
, TII
, PrologueSaveSize
, NeedsWinCFI
, &HasWinCFI
, false);
1766 // If not, make sure to emit an add after the last ldp.
1767 // We're doing this by transfering the size to be restored from the
1768 // adjustment *before* the CSR pops to the adjustment *after* the CSR
1770 AfterCSRPopSize
+= PrologueSaveSize
;
1774 // Move past the restores of the callee-saved registers.
1775 // If we plan on combining the sp bump of the local stack size and the callee
1776 // save stack size, we might need to adjust the CSR save and restore offsets.
1777 MachineBasicBlock::iterator LastPopI
= MBB
.getFirstTerminator();
1778 MachineBasicBlock::iterator Begin
= MBB
.begin();
1779 while (LastPopI
!= Begin
) {
1781 if (!LastPopI
->getFlag(MachineInstr::FrameDestroy
) ||
1782 IsSVECalleeSave(LastPopI
)) {
1785 } else if (CombineSPBump
)
1786 fixupCalleeSaveRestoreStackOffset(*LastPopI
, AFI
->getLocalStackSize(),
1787 NeedsWinCFI
, &HasWinCFI
);
1790 if (MF
.hasWinCFI()) {
1791 // If the prologue didn't contain any SEH opcodes and didn't set the
1792 // MF.hasWinCFI() flag, assume the epilogue won't either, and skip the
1793 // EpilogStart - to avoid generating CFI for functions that don't need it.
1794 // (And as we didn't generate any prologue at all, it would be asymmetrical
1795 // to the epilogue.) By the end of the function, we assert that
1796 // HasWinCFI is equal to MF.hasWinCFI(), to verify this assumption.
1798 BuildMI(MBB
, LastPopI
, DL
, TII
->get(AArch64::SEH_EpilogStart
))
1799 .setMIFlag(MachineInstr::FrameDestroy
);
1802 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext()) {
1803 // We need to reset FP to its untagged state on return. Bit 60 is currently
1804 // used to show the presence of an extended frame.
1806 // BIC x29, x29, #0x1000_0000_0000_0000
1807 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
, TII
->get(AArch64::ANDXri
),
1809 .addUse(AArch64::FP
)
1811 .setMIFlag(MachineInstr::FrameDestroy
);
1814 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
1816 // If there is a single SP update, insert it before the ret and we're done.
1817 if (CombineSPBump
) {
1818 assert(!SVEStackSize
&& "Cannot combine SP bump with SVE");
1819 emitFrameOffset(MBB
, MBB
.getFirstTerminator(), DL
, AArch64::SP
, AArch64::SP
,
1820 StackOffset::getFixed(NumBytes
+ (int64_t)AfterCSRPopSize
),
1821 TII
, MachineInstr::FrameDestroy
, false, NeedsWinCFI
,
1824 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
1825 TII
->get(AArch64::SEH_EpilogEnd
))
1826 .setMIFlag(MachineInstr::FrameDestroy
);
1830 NumBytes
-= PrologueSaveSize
;
1831 assert(NumBytes
>= 0 && "Negative stack allocation size!?");
1833 // Process the SVE callee-saves to determine what space needs to be
1835 StackOffset DeallocateBefore
= {}, DeallocateAfter
= SVEStackSize
;
1836 MachineBasicBlock::iterator RestoreBegin
= LastPopI
, RestoreEnd
= LastPopI
;
1837 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize()) {
1838 RestoreBegin
= std::prev(RestoreEnd
);
1839 while (RestoreBegin
!= MBB
.begin() &&
1840 IsSVECalleeSave(std::prev(RestoreBegin
)))
1843 assert(IsSVECalleeSave(RestoreBegin
) &&
1844 IsSVECalleeSave(std::prev(RestoreEnd
)) && "Unexpected instruction");
1846 StackOffset CalleeSavedSizeAsOffset
=
1847 StackOffset::getScalable(CalleeSavedSize
);
1848 DeallocateBefore
= SVEStackSize
- CalleeSavedSizeAsOffset
;
1849 DeallocateAfter
= CalleeSavedSizeAsOffset
;
1852 // Deallocate the SVE area.
1854 if (AFI
->isStackRealigned()) {
1855 if (int64_t CalleeSavedSize
= AFI
->getSVECalleeSavedStackSize())
1856 // Set SP to start of SVE callee-save area from which they can
1857 // be reloaded. The code below will deallocate the stack space
1858 // space by moving FP -> SP.
1859 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::FP
,
1860 StackOffset::getScalable(-CalleeSavedSize
), TII
,
1861 MachineInstr::FrameDestroy
);
1863 if (AFI
->getSVECalleeSavedStackSize()) {
1864 // Deallocate the non-SVE locals first before we can deallocate (and
1865 // restore callee saves) from the SVE area.
1866 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
1867 StackOffset::getFixed(NumBytes
), TII
,
1868 MachineInstr::FrameDestroy
);
1872 emitFrameOffset(MBB
, RestoreBegin
, DL
, AArch64::SP
, AArch64::SP
,
1873 DeallocateBefore
, TII
, MachineInstr::FrameDestroy
);
1875 emitFrameOffset(MBB
, RestoreEnd
, DL
, AArch64::SP
, AArch64::SP
,
1876 DeallocateAfter
, TII
, MachineInstr::FrameDestroy
);
1881 bool RedZone
= canUseRedZone(MF
);
1882 // If this was a redzone leaf function, we don't need to restore the
1883 // stack pointer (but we may need to pop stack args for fastcc).
1884 if (RedZone
&& AfterCSRPopSize
== 0)
1887 bool NoCalleeSaveRestore
= PrologueSaveSize
== 0;
1888 int64_t StackRestoreBytes
= RedZone
? 0 : NumBytes
;
1889 if (NoCalleeSaveRestore
)
1890 StackRestoreBytes
+= AfterCSRPopSize
;
1892 // If we were able to combine the local stack pop with the argument pop,
1894 bool Done
= NoCalleeSaveRestore
|| AfterCSRPopSize
== 0;
1896 // If we're done after this, make sure to help the load store optimizer.
1898 adaptForLdStOpt(MBB
, MBB
.getFirstTerminator(), LastPopI
);
1900 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
1901 StackOffset::getFixed(StackRestoreBytes
), TII
,
1902 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
1905 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
,
1906 TII
->get(AArch64::SEH_EpilogEnd
))
1907 .setMIFlag(MachineInstr::FrameDestroy
);
1915 // Restore the original stack pointer.
1916 // FIXME: Rather than doing the math here, we should instead just use
1917 // non-post-indexed loads for the restores if we aren't actually going to
1918 // be able to save any instructions.
1919 if (!IsFunclet
&& (MFI
.hasVarSizedObjects() || AFI
->isStackRealigned())) {
1921 MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::FP
,
1922 StackOffset::getFixed(-AFI
->getCalleeSaveBaseToFrameRecordOffset()),
1923 TII
, MachineInstr::FrameDestroy
, false, NeedsWinCFI
);
1924 } else if (NumBytes
)
1925 emitFrameOffset(MBB
, LastPopI
, DL
, AArch64::SP
, AArch64::SP
,
1926 StackOffset::getFixed(NumBytes
), TII
,
1927 MachineInstr::FrameDestroy
, false, NeedsWinCFI
);
1929 // This must be placed after the callee-save restore code because that code
1930 // assumes the SP is at the same location as it was after the callee-save save
1931 // code in the prologue.
1932 if (AfterCSRPopSize
) {
1933 assert(AfterCSRPopSize
> 0 && "attempting to reallocate arg stack that an "
1934 "interrupt may have clobbered");
1935 // Find an insertion point for the first ldp so that it goes before the
1936 // shadow call stack epilog instruction. This ensures that the restore of
1937 // lr from x18 is placed after the restore from sp.
1938 auto FirstSPPopI
= MBB
.getFirstTerminator();
1939 while (FirstSPPopI
!= Begin
) {
1940 auto Prev
= std::prev(FirstSPPopI
);
1941 if (Prev
->getOpcode() != AArch64::LDRXpre
||
1942 Prev
->getOperand(0).getReg() == AArch64::SP
)
1947 adaptForLdStOpt(MBB
, FirstSPPopI
, LastPopI
);
1949 emitFrameOffset(MBB
, FirstSPPopI
, DL
, AArch64::SP
, AArch64::SP
,
1950 StackOffset::getFixed(AfterCSRPopSize
), TII
,
1951 MachineInstr::FrameDestroy
, false, NeedsWinCFI
, &HasWinCFI
);
1954 BuildMI(MBB
, MBB
.getFirstTerminator(), DL
, TII
->get(AArch64::SEH_EpilogEnd
))
1955 .setMIFlag(MachineInstr::FrameDestroy
);
1958 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1959 /// debug info. It's the same as what we use for resolving the code-gen
1960 /// references for now. FIXME: This can go wrong when references are
1961 /// SP-relative and simple call frames aren't used.
1963 AArch64FrameLowering::getFrameIndexReference(const MachineFunction
&MF
, int FI
,
1964 Register
&FrameReg
) const {
1965 return resolveFrameIndexReference(
1968 MF
.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress
),
1973 AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction
&MF
,
1975 return StackOffset::getFixed(getSEHFrameIndexOffset(MF
, FI
));
1978 static StackOffset
getFPOffset(const MachineFunction
&MF
,
1979 int64_t ObjectOffset
) {
1980 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
1981 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
1983 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv());
1984 unsigned FixedObject
=
1985 getFixedObjectSize(MF
, AFI
, IsWin64
, /*IsFunclet=*/false);
1986 int64_t CalleeSaveSize
= AFI
->getCalleeSavedStackSize(MF
.getFrameInfo());
1988 CalleeSaveSize
- AFI
->getCalleeSaveBaseToFrameRecordOffset();
1989 return StackOffset::getFixed(ObjectOffset
+ FixedObject
+ FPAdjust
);
1992 static StackOffset
getStackOffset(const MachineFunction
&MF
,
1993 int64_t ObjectOffset
) {
1994 const auto &MFI
= MF
.getFrameInfo();
1995 return StackOffset::getFixed(ObjectOffset
+ (int64_t)MFI
.getStackSize());
1998 // TODO: This function currently does not work for scalable vectors.
1999 int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction
&MF
,
2001 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2002 MF
.getSubtarget().getRegisterInfo());
2003 int ObjectOffset
= MF
.getFrameInfo().getObjectOffset(FI
);
2004 return RegInfo
->getLocalAddressRegister(MF
) == AArch64::FP
2005 ? getFPOffset(MF
, ObjectOffset
).getFixed()
2006 : getStackOffset(MF
, ObjectOffset
).getFixed();
2009 StackOffset
AArch64FrameLowering::resolveFrameIndexReference(
2010 const MachineFunction
&MF
, int FI
, Register
&FrameReg
, bool PreferFP
,
2011 bool ForSimm
) const {
2012 const auto &MFI
= MF
.getFrameInfo();
2013 int64_t ObjectOffset
= MFI
.getObjectOffset(FI
);
2014 bool isFixed
= MFI
.isFixedObjectIndex(FI
);
2015 bool isSVE
= MFI
.getStackID(FI
) == TargetStackID::ScalableVector
;
2016 return resolveFrameOffsetReference(MF
, ObjectOffset
, isFixed
, isSVE
, FrameReg
,
2020 StackOffset
AArch64FrameLowering::resolveFrameOffsetReference(
2021 const MachineFunction
&MF
, int64_t ObjectOffset
, bool isFixed
, bool isSVE
,
2022 Register
&FrameReg
, bool PreferFP
, bool ForSimm
) const {
2023 const auto &MFI
= MF
.getFrameInfo();
2024 const auto *RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2025 MF
.getSubtarget().getRegisterInfo());
2026 const auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2027 const auto &Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2029 int64_t FPOffset
= getFPOffset(MF
, ObjectOffset
).getFixed();
2030 int64_t Offset
= getStackOffset(MF
, ObjectOffset
).getFixed();
2032 !isFixed
&& ObjectOffset
>= -((int)AFI
->getCalleeSavedStackSize(MFI
));
2034 const StackOffset
&SVEStackSize
= getSVEStackSize(MF
);
2036 // Use frame pointer to reference fixed objects. Use it for locals if
2037 // there are VLAs or a dynamically realigned SP (and thus the SP isn't
2038 // reliable as a base). Make sure useFPForScavengingIndex() does the
2039 // right thing for the emergency spill slot.
2041 if (AFI
->hasStackFrame() && !isSVE
) {
2042 // We shouldn't prefer using the FP when there is an SVE area
2043 // in between the FP and the non-SVE locals/spills.
2044 PreferFP
&= !SVEStackSize
;
2046 // Note: Keeping the following as multiple 'if' statements rather than
2047 // merging to a single expression for readability.
2049 // Argument access should always use the FP.
2052 } else if (isCSR
&& RegInfo
->hasStackRealignment(MF
)) {
2053 // References to the CSR area must use FP if we're re-aligning the stack
2054 // since the dynamically-sized alignment padding is between the SP/BP and
2056 assert(hasFP(MF
) && "Re-aligned stack must have frame pointer");
2058 } else if (hasFP(MF
) && !RegInfo
->hasStackRealignment(MF
)) {
2059 // If the FPOffset is negative and we're producing a signed immediate, we
2060 // have to keep in mind that the available offset range for negative
2061 // offsets is smaller than for positive ones. If an offset is available
2062 // via the FP and the SP, use whichever is closest.
2063 bool FPOffsetFits
= !ForSimm
|| FPOffset
>= -256;
2064 PreferFP
|= Offset
> -FPOffset
;
2066 if (MFI
.hasVarSizedObjects()) {
2067 // If we have variable sized objects, we can use either FP or BP, as the
2068 // SP offset is unknown. We can use the base pointer if we have one and
2069 // FP is not preferred. If not, we're stuck with using FP.
2070 bool CanUseBP
= RegInfo
->hasBasePointer(MF
);
2071 if (FPOffsetFits
&& CanUseBP
) // Both are ok. Pick the best.
2073 else if (!CanUseBP
) // Can't use BP. Forced to use FP.
2075 // else we can use BP and FP, but the offset from FP won't fit.
2076 // That will make us scavenge registers which we can probably avoid by
2077 // using BP. If it won't fit for BP either, we'll scavenge anyway.
2078 } else if (FPOffset
>= 0) {
2079 // Use SP or FP, whichever gives us the best chance of the offset
2080 // being in range for direct access. If the FPOffset is positive,
2081 // that'll always be best, as the SP will be even further away.
2083 } else if (MF
.hasEHFunclets() && !RegInfo
->hasBasePointer(MF
)) {
2084 // Funclets access the locals contained in the parent's stack frame
2085 // via the frame pointer, so we have to use the FP in the parent
2089 Subtarget
.isCallingConvWin64(MF
.getFunction().getCallingConv()) &&
2090 "Funclets should only be present on Win64");
2093 // We have the choice between FP and (SP or BP).
2094 if (FPOffsetFits
&& PreferFP
) // If FP is the best fit, use it.
2101 ((isFixed
|| isCSR
) || !RegInfo
->hasStackRealignment(MF
) || !UseFP
) &&
2102 "In the presence of dynamic stack pointer realignment, "
2103 "non-argument/CSR objects cannot be accessed through the frame pointer");
2106 StackOffset FPOffset
=
2107 StackOffset::get(-AFI
->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset
);
2108 StackOffset SPOffset
=
2110 StackOffset::get(MFI
.getStackSize() - AFI
->getCalleeSavedStackSize(),
2112 // Always use the FP for SVE spills if available and beneficial.
2113 if (hasFP(MF
) && (SPOffset
.getFixed() ||
2114 FPOffset
.getScalable() < SPOffset
.getScalable() ||
2115 RegInfo
->hasStackRealignment(MF
))) {
2116 FrameReg
= RegInfo
->getFrameRegister(MF
);
2120 FrameReg
= RegInfo
->hasBasePointer(MF
) ? RegInfo
->getBaseRegister()
2121 : (unsigned)AArch64::SP
;
2125 StackOffset ScalableOffset
= {};
2126 if (UseFP
&& !(isFixed
|| isCSR
))
2127 ScalableOffset
= -SVEStackSize
;
2128 if (!UseFP
&& (isFixed
|| isCSR
))
2129 ScalableOffset
= SVEStackSize
;
2132 FrameReg
= RegInfo
->getFrameRegister(MF
);
2133 return StackOffset::getFixed(FPOffset
) + ScalableOffset
;
2136 // Use the base pointer if we have one.
2137 if (RegInfo
->hasBasePointer(MF
))
2138 FrameReg
= RegInfo
->getBaseRegister();
2140 assert(!MFI
.hasVarSizedObjects() &&
2141 "Can't use SP when we have var sized objects.");
2142 FrameReg
= AArch64::SP
;
2143 // If we're using the red zone for this function, the SP won't actually
2144 // be adjusted, so the offsets will be negative. They're also all
2145 // within range of the signed 9-bit immediate instructions.
2146 if (canUseRedZone(MF
))
2147 Offset
-= AFI
->getLocalStackSize();
2150 return StackOffset::getFixed(Offset
) + ScalableOffset
;
2153 static unsigned getPrologueDeath(MachineFunction
&MF
, unsigned Reg
) {
2154 // Do not set a kill flag on values that are also marked as live-in. This
2155 // happens with the @llvm-returnaddress intrinsic and with arguments passed in
2156 // callee saved registers.
2157 // Omitting the kill flags is conservatively correct even if the live-in
2158 // is not used after all.
2159 bool IsLiveIn
= MF
.getRegInfo().isLiveIn(Reg
);
2160 return getKillRegState(!IsLiveIn
);
2163 static bool produceCompactUnwindFrame(MachineFunction
&MF
) {
2164 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2165 AttributeList Attrs
= MF
.getFunction().getAttributes();
2166 return Subtarget
.isTargetMachO() &&
2167 !(Subtarget
.getTargetLowering()->supportSwiftError() &&
2168 Attrs
.hasAttrSomewhere(Attribute::SwiftError
)) &&
2169 MF
.getFunction().getCallingConv() != CallingConv::SwiftTail
;
2172 static bool invalidateWindowsRegisterPairing(unsigned Reg1
, unsigned Reg2
,
2173 bool NeedsWinCFI
, bool IsFirst
) {
2174 // If we are generating register pairs for a Windows function that requires
2175 // EH support, then pair consecutive registers only. There are no unwind
2176 // opcodes for saves/restores of non-consectuve register pairs.
2177 // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x,
2179 // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling
2181 if (Reg2
== AArch64::FP
)
2185 if (Reg2
== Reg1
+ 1)
2187 // If pairing a GPR with LR, the pair can be described by the save_lrpair
2188 // opcode. If this is the first register pair, it would end up with a
2189 // predecrement, but there's no save_lrpair_x opcode, so we can only do this
2190 // if LR is paired with something else than the first register.
2191 // The save_lrpair opcode requires the first register to be an odd one.
2192 if (Reg1
>= AArch64::X19
&& Reg1
<= AArch64::X27
&&
2193 (Reg1
- AArch64::X19
) % 2 == 0 && Reg2
== AArch64::LR
&& !IsFirst
)
2198 /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction.
2199 /// WindowsCFI requires that only consecutive registers can be paired.
2200 /// LR and FP need to be allocated together when the frame needs to save
2201 /// the frame-record. This means any other register pairing with LR is invalid.
2202 static bool invalidateRegisterPairing(unsigned Reg1
, unsigned Reg2
,
2203 bool UsesWinAAPCS
, bool NeedsWinCFI
,
2204 bool NeedsFrameRecord
, bool IsFirst
) {
2206 return invalidateWindowsRegisterPairing(Reg1
, Reg2
, NeedsWinCFI
, IsFirst
);
2208 // If we need to store the frame record, don't pair any register
2209 // with LR other than FP.
2210 if (NeedsFrameRecord
)
2211 return Reg2
== AArch64::LR
;
2218 struct RegPairInfo
{
2219 unsigned Reg1
= AArch64::NoRegister
;
2220 unsigned Reg2
= AArch64::NoRegister
;
2223 enum RegType
{ GPR
, FPR64
, FPR128
, PPR
, ZPR
} Type
;
2225 RegPairInfo() = default;
2227 bool isPaired() const { return Reg2
!= AArch64::NoRegister
; }
2229 unsigned getScale() const {
2240 llvm_unreachable("Unsupported type");
2243 bool isScalable() const { return Type
== PPR
|| Type
== ZPR
; }
2246 } // end anonymous namespace
2248 static void computeCalleeSaveRegisterPairs(
2249 MachineFunction
&MF
, ArrayRef
<CalleeSavedInfo
> CSI
,
2250 const TargetRegisterInfo
*TRI
, SmallVectorImpl
<RegPairInfo
> &RegPairs
,
2251 bool &NeedShadowCallStackProlog
, bool NeedsFrameRecord
) {
2256 bool IsWindows
= isTargetWindows(MF
);
2257 bool NeedsWinCFI
= needsWinCFI(MF
);
2258 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2259 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2260 CallingConv::ID CC
= MF
.getFunction().getCallingConv();
2261 unsigned Count
= CSI
.size();
2263 // MachO's compact unwind format relies on all registers being stored in
2265 assert((!produceCompactUnwindFrame(MF
) ||
2266 CC
== CallingConv::PreserveMost
||
2267 (Count
& 1) == 0) &&
2268 "Odd number of callee-saved regs to spill!");
2269 int ByteOffset
= AFI
->getCalleeSavedStackSize();
2270 int StackFillDir
= -1;
2272 unsigned FirstReg
= 0;
2274 // For WinCFI, fill the stack from the bottom up.
2277 // As the CSI array is reversed to match PrologEpilogInserter, iterate
2278 // backwards, to pair up registers starting from lower numbered registers.
2280 FirstReg
= Count
- 1;
2282 int ScalableByteOffset
= AFI
->getSVECalleeSavedStackSize();
2283 bool NeedGapToAlignStack
= AFI
->hasCalleeSaveStackFreeSpace();
2285 // When iterating backwards, the loop condition relies on unsigned wraparound.
2286 for (unsigned i
= FirstReg
; i
< Count
; i
+= RegInc
) {
2288 RPI
.Reg1
= CSI
[i
].getReg();
2290 if (AArch64::GPR64RegClass
.contains(RPI
.Reg1
))
2291 RPI
.Type
= RegPairInfo::GPR
;
2292 else if (AArch64::FPR64RegClass
.contains(RPI
.Reg1
))
2293 RPI
.Type
= RegPairInfo::FPR64
;
2294 else if (AArch64::FPR128RegClass
.contains(RPI
.Reg1
))
2295 RPI
.Type
= RegPairInfo::FPR128
;
2296 else if (AArch64::ZPRRegClass
.contains(RPI
.Reg1
))
2297 RPI
.Type
= RegPairInfo::ZPR
;
2298 else if (AArch64::PPRRegClass
.contains(RPI
.Reg1
))
2299 RPI
.Type
= RegPairInfo::PPR
;
2301 llvm_unreachable("Unsupported register class.");
2303 // Add the next reg to the pair if it is in the same register class.
2304 if (unsigned(i
+ RegInc
) < Count
) {
2305 unsigned NextReg
= CSI
[i
+ RegInc
].getReg();
2306 bool IsFirst
= i
== FirstReg
;
2308 case RegPairInfo::GPR
:
2309 if (AArch64::GPR64RegClass
.contains(NextReg
) &&
2310 !invalidateRegisterPairing(RPI
.Reg1
, NextReg
, IsWindows
,
2311 NeedsWinCFI
, NeedsFrameRecord
, IsFirst
))
2314 case RegPairInfo::FPR64
:
2315 if (AArch64::FPR64RegClass
.contains(NextReg
) &&
2316 !invalidateWindowsRegisterPairing(RPI
.Reg1
, NextReg
, NeedsWinCFI
,
2320 case RegPairInfo::FPR128
:
2321 if (AArch64::FPR128RegClass
.contains(NextReg
))
2324 case RegPairInfo::PPR
:
2325 case RegPairInfo::ZPR
:
2330 // If either of the registers to be saved is the lr register, it means that
2331 // we also need to save lr in the shadow call stack.
2332 if ((RPI
.Reg1
== AArch64::LR
|| RPI
.Reg2
== AArch64::LR
) &&
2333 MF
.getFunction().hasFnAttribute(Attribute::ShadowCallStack
)) {
2334 if (!MF
.getSubtarget
<AArch64Subtarget
>().isXRegisterReserved(18))
2335 report_fatal_error("Must reserve x18 to use shadow call stack");
2336 NeedShadowCallStackProlog
= true;
2339 // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI
2340 // list to come in sorted by frame index so that we can issue the store
2341 // pair instructions directly. Assert if we see anything otherwise.
2343 // The order of the registers in the list is controlled by
2344 // getCalleeSavedRegs(), so they will always be in-order, as well.
2345 assert((!RPI
.isPaired() ||
2346 (CSI
[i
].getFrameIdx() + RegInc
== CSI
[i
+ RegInc
].getFrameIdx())) &&
2347 "Out of order callee saved regs!");
2349 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg2
!= AArch64::FP
||
2350 RPI
.Reg1
== AArch64::LR
) &&
2351 "FrameRecord must be allocated together with LR");
2353 // Windows AAPCS has FP and LR reversed.
2354 assert((!RPI
.isPaired() || !NeedsFrameRecord
|| RPI
.Reg1
!= AArch64::FP
||
2355 RPI
.Reg2
== AArch64::LR
) &&
2356 "FrameRecord must be allocated together with LR");
2358 // MachO's compact unwind format relies on all registers being stored in
2359 // adjacent register pairs.
2360 assert((!produceCompactUnwindFrame(MF
) ||
2361 CC
== CallingConv::PreserveMost
||
2363 ((RPI
.Reg1
== AArch64::LR
&& RPI
.Reg2
== AArch64::FP
) ||
2364 RPI
.Reg1
+ 1 == RPI
.Reg2
))) &&
2365 "Callee-save registers not saved as adjacent register pair!");
2367 RPI
.FrameIdx
= CSI
[i
].getFrameIdx();
2369 RPI
.isPaired()) // RPI.FrameIdx must be the lower index of the pair
2370 RPI
.FrameIdx
= CSI
[i
+ RegInc
].getFrameIdx();
2372 int Scale
= RPI
.getScale();
2374 int OffsetPre
= RPI
.isScalable() ? ScalableByteOffset
: ByteOffset
;
2375 assert(OffsetPre
% Scale
== 0);
2377 if (RPI
.isScalable())
2378 ScalableByteOffset
+= StackFillDir
* Scale
;
2380 ByteOffset
+= StackFillDir
* (RPI
.isPaired() ? 2 * Scale
: Scale
);
2382 // Swift's async context is directly before FP, so allocate an extra
2384 if (NeedsFrameRecord
&& AFI
->hasSwiftAsyncContext() &&
2385 RPI
.Reg2
== AArch64::FP
)
2386 ByteOffset
+= StackFillDir
* 8;
2388 assert(!(RPI
.isScalable() && RPI
.isPaired()) &&
2389 "Paired spill/fill instructions don't exist for SVE vectors");
2391 // Round up size of non-pair to pair size if we need to pad the
2392 // callee-save area to ensure 16-byte alignment.
2393 if (NeedGapToAlignStack
&& !NeedsWinCFI
&&
2394 !RPI
.isScalable() && RPI
.Type
!= RegPairInfo::FPR128
&&
2395 !RPI
.isPaired() && ByteOffset
% 16 != 0) {
2396 ByteOffset
+= 8 * StackFillDir
;
2397 assert(MFI
.getObjectAlign(RPI
.FrameIdx
) <= Align(16));
2398 // A stack frame with a gap looks like this, bottom up:
2399 // d9, d8. x21, gap, x20, x19.
2400 // Set extra alignment on the x21 object to create the gap above it.
2401 MFI
.setObjectAlignment(RPI
.FrameIdx
, Align(16));
2402 NeedGapToAlignStack
= false;
2405 int OffsetPost
= RPI
.isScalable() ? ScalableByteOffset
: ByteOffset
;
2406 assert(OffsetPost
% Scale
== 0);
2407 // If filling top down (default), we want the offset after incrementing it.
2408 // If fillibg bootom up (WinCFI) we need the original offset.
2409 int Offset
= NeedsWinCFI
? OffsetPre
: OffsetPost
;
2411 // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the
2412 // Swift context can directly precede FP.
2413 if (NeedsFrameRecord
&& AFI
->hasSwiftAsyncContext() &&
2414 RPI
.Reg2
== AArch64::FP
)
2416 RPI
.Offset
= Offset
/ Scale
;
2418 assert(((!RPI
.isScalable() && RPI
.Offset
>= -64 && RPI
.Offset
<= 63) ||
2419 (RPI
.isScalable() && RPI
.Offset
>= -256 && RPI
.Offset
<= 255)) &&
2420 "Offset out of bounds for LDP/STP immediate");
2422 // Save the offset to frame record so that the FP register can point to the
2423 // innermost frame record (spilled FP and LR registers).
2424 if (NeedsFrameRecord
&& ((!IsWindows
&& RPI
.Reg1
== AArch64::LR
&&
2425 RPI
.Reg2
== AArch64::FP
) ||
2426 (IsWindows
&& RPI
.Reg1
== AArch64::FP
&&
2427 RPI
.Reg2
== AArch64::LR
)))
2428 AFI
->setCalleeSaveBaseToFrameRecordOffset(Offset
);
2430 RegPairs
.push_back(RPI
);
2435 // If we need an alignment gap in the stack, align the topmost stack
2436 // object. A stack frame with a gap looks like this, bottom up:
2437 // x19, d8. d9, gap.
2438 // Set extra alignment on the topmost stack object (the first element in
2439 // CSI, which goes top down), to create the gap above it.
2440 if (AFI
->hasCalleeSaveStackFreeSpace())
2441 MFI
.setObjectAlignment(CSI
[0].getFrameIdx(), Align(16));
2442 // We iterated bottom up over the registers; flip RegPairs back to top
2444 std::reverse(RegPairs
.begin(), RegPairs
.end());
2448 bool AArch64FrameLowering::spillCalleeSavedRegisters(
2449 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2450 ArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2451 MachineFunction
&MF
= *MBB
.getParent();
2452 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2453 bool NeedsWinCFI
= needsWinCFI(MF
);
2455 SmallVector
<RegPairInfo
, 8> RegPairs
;
2457 bool NeedShadowCallStackProlog
= false;
2458 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
,
2459 NeedShadowCallStackProlog
, hasFP(MF
));
2460 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2462 if (NeedShadowCallStackProlog
) {
2463 // Shadow call stack prolog: str x30, [x18], #8
2464 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::STRXpost
))
2465 .addReg(AArch64::X18
, RegState::Define
)
2466 .addReg(AArch64::LR
)
2467 .addReg(AArch64::X18
)
2469 .setMIFlag(MachineInstr::FrameSetup
);
2472 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::SEH_Nop
))
2473 .setMIFlag(MachineInstr::FrameSetup
);
2475 if (!MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
)) {
2476 // Emit a CFI instruction that causes 8 to be subtracted from the value of
2477 // x18 when unwinding past this frame.
2478 static const char CFIInst
[] = {
2479 dwarf::DW_CFA_val_expression
,
2482 static_cast<char>(unsigned(dwarf::DW_OP_breg18
)),
2483 static_cast<char>(-8) & 0x7f, // addend (sleb128)
2485 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createEscape(
2486 nullptr, StringRef(CFIInst
, sizeof(CFIInst
))));
2487 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::CFI_INSTRUCTION
))
2488 .addCFIIndex(CFIIndex
)
2489 .setMIFlag(MachineInstr::FrameSetup
);
2492 // This instruction also makes x18 live-in to the entry block.
2493 MBB
.addLiveIn(AArch64::X18
);
2496 if (homogeneousPrologEpilog(MF
)) {
2497 auto MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::HOM_Prolog
))
2498 .setMIFlag(MachineInstr::FrameSetup
);
2500 for (auto &RPI
: RegPairs
) {
2501 MIB
.addReg(RPI
.Reg1
);
2502 MIB
.addReg(RPI
.Reg2
);
2504 // Update register live in.
2505 if (!MRI
.isReserved(RPI
.Reg1
))
2506 MBB
.addLiveIn(RPI
.Reg1
);
2507 if (!MRI
.isReserved(RPI
.Reg2
))
2508 MBB
.addLiveIn(RPI
.Reg2
);
2512 for (auto RPII
= RegPairs
.rbegin(), RPIE
= RegPairs
.rend(); RPII
!= RPIE
;
2514 RegPairInfo RPI
= *RPII
;
2515 unsigned Reg1
= RPI
.Reg1
;
2516 unsigned Reg2
= RPI
.Reg2
;
2519 // Issue sequence of spills for cs regs. The first spill may be converted
2520 // to a pre-decrement store later by emitPrologue if the callee-save stack
2521 // area allocation can't be combined with the local stack area allocation.
2523 // stp x22, x21, [sp, #0] // addImm(+0)
2524 // stp x20, x19, [sp, #16] // addImm(+2)
2525 // stp fp, lr, [sp, #32] // addImm(+4)
2526 // Rationale: This sequence saves uop updates compared to a sequence of
2527 // pre-increment spills like stp xi,xj,[sp,#-16]!
2528 // Note: Similar rationale and sequence for restores in epilog.
2532 case RegPairInfo::GPR
:
2533 StrOpc
= RPI
.isPaired() ? AArch64::STPXi
: AArch64::STRXui
;
2535 Alignment
= Align(8);
2537 case RegPairInfo::FPR64
:
2538 StrOpc
= RPI
.isPaired() ? AArch64::STPDi
: AArch64::STRDui
;
2540 Alignment
= Align(8);
2542 case RegPairInfo::FPR128
:
2543 StrOpc
= RPI
.isPaired() ? AArch64::STPQi
: AArch64::STRQui
;
2545 Alignment
= Align(16);
2547 case RegPairInfo::ZPR
:
2548 StrOpc
= AArch64::STR_ZXI
;
2550 Alignment
= Align(16);
2552 case RegPairInfo::PPR
:
2553 StrOpc
= AArch64::STR_PXI
;
2555 Alignment
= Align(2);
2558 LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1
, TRI
);
2559 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
2560 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
2561 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
2564 assert((!NeedsWinCFI
|| !(Reg1
== AArch64::LR
&& Reg2
== AArch64::FP
)) &&
2565 "Windows unwdinding requires a consecutive (FP,LR) pair");
2566 // Windows unwind codes require consecutive registers if registers are
2567 // paired. Make the switch here, so that the code below will save (x,x+1)
2569 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
2570 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
2571 if (NeedsWinCFI
&& RPI
.isPaired()) {
2572 std::swap(Reg1
, Reg2
);
2573 std::swap(FrameIdxReg1
, FrameIdxReg2
);
2575 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(StrOpc
));
2576 if (!MRI
.isReserved(Reg1
))
2577 MBB
.addLiveIn(Reg1
);
2578 if (RPI
.isPaired()) {
2579 if (!MRI
.isReserved(Reg2
))
2580 MBB
.addLiveIn(Reg2
);
2581 MIB
.addReg(Reg2
, getPrologueDeath(MF
, Reg2
));
2582 MIB
.addMemOperand(MF
.getMachineMemOperand(
2583 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
2584 MachineMemOperand::MOStore
, Size
, Alignment
));
2586 MIB
.addReg(Reg1
, getPrologueDeath(MF
, Reg1
))
2587 .addReg(AArch64::SP
)
2588 .addImm(RPI
.Offset
) // [sp, #offset*scale],
2589 // where factor*scale is implicit
2590 .setMIFlag(MachineInstr::FrameSetup
);
2591 MIB
.addMemOperand(MF
.getMachineMemOperand(
2592 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg1
),
2593 MachineMemOperand::MOStore
, Size
, Alignment
));
2595 InsertSEH(MIB
, TII
, MachineInstr::FrameSetup
);
2597 // Update the StackIDs of the SVE stack slots.
2598 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2599 if (RPI
.Type
== RegPairInfo::ZPR
|| RPI
.Type
== RegPairInfo::PPR
)
2600 MFI
.setStackID(RPI
.FrameIdx
, TargetStackID::ScalableVector
);
2606 bool AArch64FrameLowering::restoreCalleeSavedRegisters(
2607 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
2608 MutableArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
2609 MachineFunction
&MF
= *MBB
.getParent();
2610 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
2612 SmallVector
<RegPairInfo
, 8> RegPairs
;
2613 bool NeedsWinCFI
= needsWinCFI(MF
);
2615 if (MI
!= MBB
.end())
2616 DL
= MI
->getDebugLoc();
2618 bool NeedShadowCallStackProlog
= false;
2619 computeCalleeSaveRegisterPairs(MF
, CSI
, TRI
, RegPairs
,
2620 NeedShadowCallStackProlog
, hasFP(MF
));
2622 auto EmitMI
= [&](const RegPairInfo
&RPI
) {
2623 unsigned Reg1
= RPI
.Reg1
;
2624 unsigned Reg2
= RPI
.Reg2
;
2626 // Issue sequence of restores for cs regs. The last restore may be converted
2627 // to a post-increment load later by emitEpilogue if the callee-save stack
2628 // area allocation can't be combined with the local stack area allocation.
2630 // ldp fp, lr, [sp, #32] // addImm(+4)
2631 // ldp x20, x19, [sp, #16] // addImm(+2)
2632 // ldp x22, x21, [sp, #0] // addImm(+0)
2633 // Note: see comment in spillCalleeSavedRegisters()
2638 case RegPairInfo::GPR
:
2639 LdrOpc
= RPI
.isPaired() ? AArch64::LDPXi
: AArch64::LDRXui
;
2641 Alignment
= Align(8);
2643 case RegPairInfo::FPR64
:
2644 LdrOpc
= RPI
.isPaired() ? AArch64::LDPDi
: AArch64::LDRDui
;
2646 Alignment
= Align(8);
2648 case RegPairInfo::FPR128
:
2649 LdrOpc
= RPI
.isPaired() ? AArch64::LDPQi
: AArch64::LDRQui
;
2651 Alignment
= Align(16);
2653 case RegPairInfo::ZPR
:
2654 LdrOpc
= AArch64::LDR_ZXI
;
2656 Alignment
= Align(16);
2658 case RegPairInfo::PPR
:
2659 LdrOpc
= AArch64::LDR_PXI
;
2661 Alignment
= Align(2);
2664 LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1
, TRI
);
2665 if (RPI
.isPaired()) dbgs() << ", " << printReg(Reg2
, TRI
);
2666 dbgs() << ") -> fi#(" << RPI
.FrameIdx
;
2667 if (RPI
.isPaired()) dbgs() << ", " << RPI
.FrameIdx
+ 1;
2670 // Windows unwind codes require consecutive registers if registers are
2671 // paired. Make the switch here, so that the code below will save (x,x+1)
2673 unsigned FrameIdxReg1
= RPI
.FrameIdx
;
2674 unsigned FrameIdxReg2
= RPI
.FrameIdx
+ 1;
2675 if (NeedsWinCFI
&& RPI
.isPaired()) {
2676 std::swap(Reg1
, Reg2
);
2677 std::swap(FrameIdxReg1
, FrameIdxReg2
);
2679 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(LdrOpc
));
2680 if (RPI
.isPaired()) {
2681 MIB
.addReg(Reg2
, getDefRegState(true));
2682 MIB
.addMemOperand(MF
.getMachineMemOperand(
2683 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg2
),
2684 MachineMemOperand::MOLoad
, Size
, Alignment
));
2686 MIB
.addReg(Reg1
, getDefRegState(true))
2687 .addReg(AArch64::SP
)
2688 .addImm(RPI
.Offset
) // [sp, #offset*scale]
2689 // where factor*scale is implicit
2690 .setMIFlag(MachineInstr::FrameDestroy
);
2691 MIB
.addMemOperand(MF
.getMachineMemOperand(
2692 MachinePointerInfo::getFixedStack(MF
, FrameIdxReg1
),
2693 MachineMemOperand::MOLoad
, Size
, Alignment
));
2695 InsertSEH(MIB
, TII
, MachineInstr::FrameDestroy
);
2698 // SVE objects are always restored in reverse order.
2699 for (const RegPairInfo
&RPI
: reverse(RegPairs
))
2700 if (RPI
.isScalable())
2703 if (ReverseCSRRestoreSeq
) {
2704 for (const RegPairInfo
&RPI
: reverse(RegPairs
))
2705 if (!RPI
.isScalable())
2707 } else if (homogeneousPrologEpilog(MF
, &MBB
)) {
2708 auto MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::HOM_Epilog
))
2709 .setMIFlag(MachineInstr::FrameDestroy
);
2710 for (auto &RPI
: RegPairs
) {
2711 MIB
.addReg(RPI
.Reg1
, RegState::Define
);
2712 MIB
.addReg(RPI
.Reg2
, RegState::Define
);
2716 for (const RegPairInfo
&RPI
: RegPairs
)
2717 if (!RPI
.isScalable())
2720 if (NeedShadowCallStackProlog
) {
2721 // Shadow call stack epilog: ldr x30, [x18, #-8]!
2722 BuildMI(MBB
, MI
, DL
, TII
.get(AArch64::LDRXpre
))
2723 .addReg(AArch64::X18
, RegState::Define
)
2724 .addReg(AArch64::LR
, RegState::Define
)
2725 .addReg(AArch64::X18
)
2727 .setMIFlag(MachineInstr::FrameDestroy
);
2733 void AArch64FrameLowering::determineCalleeSaves(MachineFunction
&MF
,
2734 BitVector
&SavedRegs
,
2735 RegScavenger
*RS
) const {
2736 // All calls are tail calls in GHC calling conv, and functions have no
2737 // prologue/epilogue.
2738 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
2741 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
2742 const AArch64RegisterInfo
*RegInfo
= static_cast<const AArch64RegisterInfo
*>(
2743 MF
.getSubtarget().getRegisterInfo());
2744 const AArch64Subtarget
&Subtarget
= MF
.getSubtarget
<AArch64Subtarget
>();
2745 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2746 unsigned UnspilledCSGPR
= AArch64::NoRegister
;
2747 unsigned UnspilledCSGPRPaired
= AArch64::NoRegister
;
2749 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2750 const MCPhysReg
*CSRegs
= MF
.getRegInfo().getCalleeSavedRegs();
2752 unsigned BasePointerReg
= RegInfo
->hasBasePointer(MF
)
2753 ? RegInfo
->getBaseRegister()
2754 : (unsigned)AArch64::NoRegister
;
2756 unsigned ExtraCSSpill
= 0;
2757 // Figure out which callee-saved registers to save/restore.
2758 for (unsigned i
= 0; CSRegs
[i
]; ++i
) {
2759 const unsigned Reg
= CSRegs
[i
];
2761 // Add the base pointer register to SavedRegs if it is callee-save.
2762 if (Reg
== BasePointerReg
)
2765 bool RegUsed
= SavedRegs
.test(Reg
);
2766 unsigned PairedReg
= AArch64::NoRegister
;
2767 if (AArch64::GPR64RegClass
.contains(Reg
) ||
2768 AArch64::FPR64RegClass
.contains(Reg
) ||
2769 AArch64::FPR128RegClass
.contains(Reg
))
2770 PairedReg
= CSRegs
[i
^ 1];
2773 if (AArch64::GPR64RegClass
.contains(Reg
) &&
2774 !RegInfo
->isReservedReg(MF
, Reg
)) {
2775 UnspilledCSGPR
= Reg
;
2776 UnspilledCSGPRPaired
= PairedReg
;
2781 // MachO's compact unwind format relies on all registers being stored in
2783 // FIXME: the usual format is actually better if unwinding isn't needed.
2784 if (producePairRegisters(MF
) && PairedReg
!= AArch64::NoRegister
&&
2785 !SavedRegs
.test(PairedReg
)) {
2786 SavedRegs
.set(PairedReg
);
2787 if (AArch64::GPR64RegClass
.contains(PairedReg
) &&
2788 !RegInfo
->isReservedReg(MF
, PairedReg
))
2789 ExtraCSSpill
= PairedReg
;
2793 if (MF
.getFunction().getCallingConv() == CallingConv::Win64
&&
2794 !Subtarget
.isTargetWindows()) {
2795 // For Windows calling convention on a non-windows OS, where X18 is treated
2796 // as reserved, back up X18 when entering non-windows code (marked with the
2797 // Windows calling convention) and restore when returning regardless of
2798 // whether the individual function uses it - it might call other functions
2800 SavedRegs
.set(AArch64::X18
);
2803 // Calculates the callee saved stack size.
2804 unsigned CSStackSize
= 0;
2805 unsigned SVECSStackSize
= 0;
2806 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2807 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
2808 for (unsigned Reg
: SavedRegs
.set_bits()) {
2809 auto RegSize
= TRI
->getRegSizeInBits(Reg
, MRI
) / 8;
2810 if (AArch64::PPRRegClass
.contains(Reg
) ||
2811 AArch64::ZPRRegClass
.contains(Reg
))
2812 SVECSStackSize
+= RegSize
;
2814 CSStackSize
+= RegSize
;
2817 // Save number of saved regs, so we can easily update CSStackSize later.
2818 unsigned NumSavedRegs
= SavedRegs
.count();
2820 // The frame record needs to be created by saving the appropriate registers
2821 uint64_t EstimatedStackSize
= MFI
.estimateStackSize(MF
);
2823 windowsRequiresStackProbe(MF
, EstimatedStackSize
+ CSStackSize
+ 16)) {
2824 SavedRegs
.set(AArch64::FP
);
2825 SavedRegs
.set(AArch64::LR
);
2828 LLVM_DEBUG(dbgs() << "*** determineCalleeSaves\nSaved CSRs:";
2830 : SavedRegs
.set_bits()) dbgs()
2831 << ' ' << printReg(Reg
, RegInfo
);
2834 // If any callee-saved registers are used, the frame cannot be eliminated.
2835 int64_t SVEStackSize
=
2836 alignTo(SVECSStackSize
+ estimateSVEStackObjectOffsets(MFI
), 16);
2837 bool CanEliminateFrame
= (SavedRegs
.count() == 0) && !SVEStackSize
;
2839 // The CSR spill slots have not been allocated yet, so estimateStackSize
2840 // won't include them.
2841 unsigned EstimatedStackSizeLimit
= estimateRSStackSizeLimit(MF
);
2843 // Conservatively always assume BigStack when there are SVE spills.
2844 bool BigStack
= SVEStackSize
||
2845 (EstimatedStackSize
+ CSStackSize
) > EstimatedStackSizeLimit
;
2846 if (BigStack
|| !CanEliminateFrame
|| RegInfo
->cannotEliminateFrame(MF
))
2847 AFI
->setHasStackFrame(true);
2849 // Estimate if we might need to scavenge a register at some point in order
2850 // to materialize a stack offset. If so, either spill one additional
2851 // callee-saved register or reserve a special spill slot to facilitate
2852 // register scavenging. If we already spilled an extra callee-saved register
2853 // above to keep the number of spills even, we don't need to do anything else
2856 if (!ExtraCSSpill
&& UnspilledCSGPR
!= AArch64::NoRegister
) {
2857 LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR
, RegInfo
)
2858 << " to get a scratch register.\n");
2859 SavedRegs
.set(UnspilledCSGPR
);
2860 // MachO's compact unwind format relies on all registers being stored in
2861 // pairs, so if we need to spill one extra for BigStack, then we need to
2863 if (producePairRegisters(MF
))
2864 SavedRegs
.set(UnspilledCSGPRPaired
);
2865 ExtraCSSpill
= UnspilledCSGPR
;
2868 // If we didn't find an extra callee-saved register to spill, create
2869 // an emergency spill slot.
2870 if (!ExtraCSSpill
|| MF
.getRegInfo().isPhysRegUsed(ExtraCSSpill
)) {
2871 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
2872 const TargetRegisterClass
&RC
= AArch64::GPR64RegClass
;
2873 unsigned Size
= TRI
->getSpillSize(RC
);
2874 Align Alignment
= TRI
->getSpillAlign(RC
);
2875 int FI
= MFI
.CreateStackObject(Size
, Alignment
, false);
2876 RS
->addScavengingFrameIndex(FI
);
2877 LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI
2878 << " as the emergency spill slot.\n");
2882 // Adding the size of additional 64bit GPR saves.
2883 CSStackSize
+= 8 * (SavedRegs
.count() - NumSavedRegs
);
2885 // A Swift asynchronous context extends the frame record with a pointer
2886 // directly before FP.
2887 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext())
2890 uint64_t AlignedCSStackSize
= alignTo(CSStackSize
, 16);
2891 LLVM_DEBUG(dbgs() << "Estimated stack frame size: "
2892 << EstimatedStackSize
+ AlignedCSStackSize
2895 assert((!MFI
.isCalleeSavedInfoValid() ||
2896 AFI
->getCalleeSavedStackSize() == AlignedCSStackSize
) &&
2897 "Should not invalidate callee saved info");
2899 // Round up to register pair alignment to avoid additional SP adjustment
2901 AFI
->setCalleeSavedStackSize(AlignedCSStackSize
);
2902 AFI
->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize
!= CSStackSize
);
2903 AFI
->setSVECalleeSavedStackSize(alignTo(SVECSStackSize
, 16));
2906 bool AArch64FrameLowering::assignCalleeSavedSpillSlots(
2907 MachineFunction
&MF
, const TargetRegisterInfo
*RegInfo
,
2908 std::vector
<CalleeSavedInfo
> &CSI
, unsigned &MinCSFrameIndex
,
2909 unsigned &MaxCSFrameIndex
) const {
2910 bool NeedsWinCFI
= needsWinCFI(MF
);
2911 // To match the canonical windows frame layout, reverse the list of
2912 // callee saved registers to get them laid out by PrologEpilogInserter
2913 // in the right order. (PrologEpilogInserter allocates stack objects top
2914 // down. Windows canonical prologs store higher numbered registers at
2915 // the top, thus have the CSI array start from the highest registers.)
2917 std::reverse(CSI
.begin(), CSI
.end());
2920 return true; // Early exit if no callee saved registers are modified!
2922 // Now that we know which registers need to be saved and restored, allocate
2923 // stack slots for them.
2924 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2925 auto *AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2926 for (auto &CS
: CSI
) {
2927 Register Reg
= CS
.getReg();
2928 const TargetRegisterClass
*RC
= RegInfo
->getMinimalPhysRegClass(Reg
);
2930 unsigned Size
= RegInfo
->getSpillSize(*RC
);
2931 Align
Alignment(RegInfo
->getSpillAlign(*RC
));
2932 int FrameIdx
= MFI
.CreateStackObject(Size
, Alignment
, true);
2933 CS
.setFrameIdx(FrameIdx
);
2935 if ((unsigned)FrameIdx
< MinCSFrameIndex
) MinCSFrameIndex
= FrameIdx
;
2936 if ((unsigned)FrameIdx
> MaxCSFrameIndex
) MaxCSFrameIndex
= FrameIdx
;
2938 // Grab 8 bytes below FP for the extended asynchronous frame info.
2939 if (hasFP(MF
) && AFI
->hasSwiftAsyncContext() && Reg
== AArch64::FP
) {
2940 FrameIdx
= MFI
.CreateStackObject(8, Alignment
, true);
2941 AFI
->setSwiftAsyncContextFrameIdx(FrameIdx
);
2942 if ((unsigned)FrameIdx
< MinCSFrameIndex
) MinCSFrameIndex
= FrameIdx
;
2943 if ((unsigned)FrameIdx
> MaxCSFrameIndex
) MaxCSFrameIndex
= FrameIdx
;
2949 bool AArch64FrameLowering::enableStackSlotScavenging(
2950 const MachineFunction
&MF
) const {
2951 const AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
2952 return AFI
->hasCalleeSaveStackFreeSpace();
2955 /// returns true if there are any SVE callee saves.
2956 static bool getSVECalleeSaveSlotRange(const MachineFrameInfo
&MFI
,
2957 int &Min
, int &Max
) {
2958 Min
= std::numeric_limits
<int>::max();
2959 Max
= std::numeric_limits
<int>::min();
2961 if (!MFI
.isCalleeSavedInfoValid())
2964 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
2965 for (auto &CS
: CSI
) {
2966 if (AArch64::ZPRRegClass
.contains(CS
.getReg()) ||
2967 AArch64::PPRRegClass
.contains(CS
.getReg())) {
2968 assert((Max
== std::numeric_limits
<int>::min() ||
2969 Max
+ 1 == CS
.getFrameIdx()) &&
2970 "SVE CalleeSaves are not consecutive");
2972 Min
= std::min(Min
, CS
.getFrameIdx());
2973 Max
= std::max(Max
, CS
.getFrameIdx());
2976 return Min
!= std::numeric_limits
<int>::max();
2979 // Process all the SVE stack objects and determine offsets for each
2980 // object. If AssignOffsets is true, the offsets get assigned.
2981 // Fills in the first and last callee-saved frame indices into
2982 // Min/MaxCSFrameIndex, respectively.
2983 // Returns the size of the stack.
2984 static int64_t determineSVEStackObjectOffsets(MachineFrameInfo
&MFI
,
2985 int &MinCSFrameIndex
,
2986 int &MaxCSFrameIndex
,
2987 bool AssignOffsets
) {
2989 // First process all fixed stack objects.
2990 for (int I
= MFI
.getObjectIndexBegin(); I
!= 0; ++I
)
2991 assert(MFI
.getStackID(I
) != TargetStackID::ScalableVector
&&
2992 "SVE vectors should never be passed on the stack by value, only by "
2996 auto Assign
= [&MFI
](int FI
, int64_t Offset
) {
2997 LLVM_DEBUG(dbgs() << "alloc FI(" << FI
<< ") at SP[" << Offset
<< "]\n");
2998 MFI
.setObjectOffset(FI
, Offset
);
3003 // Then process all callee saved slots.
3004 if (getSVECalleeSaveSlotRange(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
)) {
3005 // Assign offsets to the callee save slots.
3006 for (int I
= MinCSFrameIndex
; I
<= MaxCSFrameIndex
; ++I
) {
3007 Offset
+= MFI
.getObjectSize(I
);
3008 Offset
= alignTo(Offset
, MFI
.getObjectAlign(I
));
3014 // Ensure that the Callee-save area is aligned to 16bytes.
3015 Offset
= alignTo(Offset
, Align(16U));
3017 // Create a buffer of SVE objects to allocate and sort it.
3018 SmallVector
<int, 8> ObjectsToAllocate
;
3019 for (int I
= 0, E
= MFI
.getObjectIndexEnd(); I
!= E
; ++I
) {
3020 unsigned StackID
= MFI
.getStackID(I
);
3021 if (StackID
!= TargetStackID::ScalableVector
)
3023 if (MaxCSFrameIndex
>= I
&& I
>= MinCSFrameIndex
)
3025 if (MFI
.isDeadObjectIndex(I
))
3028 ObjectsToAllocate
.push_back(I
);
3031 // Allocate all SVE locals and spills
3032 for (unsigned FI
: ObjectsToAllocate
) {
3033 Align Alignment
= MFI
.getObjectAlign(FI
);
3034 // FIXME: Given that the length of SVE vectors is not necessarily a power of
3035 // two, we'd need to align every object dynamically at runtime if the
3036 // alignment is larger than 16. This is not yet supported.
3037 if (Alignment
> Align(16))
3039 "Alignment of scalable vectors > 16 bytes is not yet supported");
3041 Offset
= alignTo(Offset
+ MFI
.getObjectSize(FI
), Alignment
);
3043 Assign(FI
, -Offset
);
3049 int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets(
3050 MachineFrameInfo
&MFI
) const {
3051 int MinCSFrameIndex
, MaxCSFrameIndex
;
3052 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
, false);
3055 int64_t AArch64FrameLowering::assignSVEStackObjectOffsets(
3056 MachineFrameInfo
&MFI
, int &MinCSFrameIndex
, int &MaxCSFrameIndex
) const {
3057 return determineSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
,
3061 void AArch64FrameLowering::processFunctionBeforeFrameFinalized(
3062 MachineFunction
&MF
, RegScavenger
*RS
) const {
3063 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3065 assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown
&&
3066 "Upwards growing stack unsupported");
3068 int MinCSFrameIndex
, MaxCSFrameIndex
;
3069 int64_t SVEStackSize
=
3070 assignSVEStackObjectOffsets(MFI
, MinCSFrameIndex
, MaxCSFrameIndex
);
3072 AArch64FunctionInfo
*AFI
= MF
.getInfo
<AArch64FunctionInfo
>();
3073 AFI
->setStackSizeSVE(alignTo(SVEStackSize
, 16U));
3074 AFI
->setMinMaxSVECSFrameIndex(MinCSFrameIndex
, MaxCSFrameIndex
);
3076 // If this function isn't doing Win64-style C++ EH, we don't need to do
3078 if (!MF
.hasEHFunclets())
3080 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
3081 WinEHFuncInfo
&EHInfo
= *MF
.getWinEHFuncInfo();
3083 MachineBasicBlock
&MBB
= MF
.front();
3084 auto MBBI
= MBB
.begin();
3085 while (MBBI
!= MBB
.end() && MBBI
->getFlag(MachineInstr::FrameSetup
))
3088 // Create an UnwindHelp object.
3089 // The UnwindHelp object is allocated at the start of the fixed object area
3090 int64_t FixedObject
=
3091 getFixedObjectSize(MF
, AFI
, /*IsWin64*/ true, /*IsFunclet*/ false);
3092 int UnwindHelpFI
= MFI
.CreateFixedObject(/*Size*/ 8,
3093 /*SPOffset*/ -FixedObject
,
3094 /*IsImmutable=*/false);
3095 EHInfo
.UnwindHelpFrameIdx
= UnwindHelpFI
;
3097 // We need to store -2 into the UnwindHelp object at the start of the
3100 RS
->enterBasicBlockEnd(MBB
);
3101 RS
->backward(std::prev(MBBI
));
3102 unsigned DstReg
= RS
->FindUnusedReg(&AArch64::GPR64commonRegClass
);
3103 assert(DstReg
&& "There must be a free register after frame setup");
3104 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::MOVi64imm
), DstReg
).addImm(-2);
3105 BuildMI(MBB
, MBBI
, DL
, TII
.get(AArch64::STURXi
))
3106 .addReg(DstReg
, getKillRegState(true))
3107 .addFrameIndex(UnwindHelpFI
)
3112 struct TagStoreInstr
{
3114 int64_t Offset
, Size
;
3115 explicit TagStoreInstr(MachineInstr
*MI
, int64_t Offset
, int64_t Size
)
3116 : MI(MI
), Offset(Offset
), Size(Size
) {}
3119 class TagStoreEdit
{
3120 MachineFunction
*MF
;
3121 MachineBasicBlock
*MBB
;
3122 MachineRegisterInfo
*MRI
;
3123 // Tag store instructions that are being replaced.
3124 SmallVector
<TagStoreInstr
, 8> TagStores
;
3125 // Combined memref arguments of the above instructions.
3126 SmallVector
<MachineMemOperand
*, 8> CombinedMemRefs
;
3128 // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg +
3129 // FrameRegOffset + Size) with the address tag of SP.
3131 StackOffset FrameRegOffset
;
3133 // If not None, move FrameReg to (FrameReg + FrameRegUpdate) at the end.
3134 Optional
<int64_t> FrameRegUpdate
;
3135 // MIFlags for any FrameReg updating instructions.
3136 unsigned FrameRegUpdateFlags
;
3138 // Use zeroing instruction variants.
3142 void emitUnrolled(MachineBasicBlock::iterator InsertI
);
3143 void emitLoop(MachineBasicBlock::iterator InsertI
);
3146 TagStoreEdit(MachineBasicBlock
*MBB
, bool ZeroData
)
3147 : MBB(MBB
), ZeroData(ZeroData
) {
3148 MF
= MBB
->getParent();
3149 MRI
= &MF
->getRegInfo();
3151 // Add an instruction to be replaced. Instructions must be added in the
3152 // ascending order of Offset, and have to be adjacent.
3153 void addInstruction(TagStoreInstr I
) {
3154 assert((TagStores
.empty() ||
3155 TagStores
.back().Offset
+ TagStores
.back().Size
== I
.Offset
) &&
3156 "Non-adjacent tag store instructions.");
3157 TagStores
.push_back(I
);
3159 void clear() { TagStores
.clear(); }
3160 // Emit equivalent code at the given location, and erase the current set of
3161 // instructions. May skip if the replacement is not profitable. May invalidate
3162 // the input iterator and replace it with a valid one.
3163 void emitCode(MachineBasicBlock::iterator
&InsertI
,
3164 const AArch64FrameLowering
*TFI
, bool IsLast
);
3167 void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI
) {
3168 const AArch64InstrInfo
*TII
=
3169 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
3171 const int64_t kMinOffset
= -256 * 16;
3172 const int64_t kMaxOffset
= 255 * 16;
3174 Register BaseReg
= FrameReg
;
3175 int64_t BaseRegOffsetBytes
= FrameRegOffset
.getFixed();
3176 if (BaseRegOffsetBytes
< kMinOffset
||
3177 BaseRegOffsetBytes
+ (Size
- Size
% 32) > kMaxOffset
) {
3178 Register ScratchReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3179 emitFrameOffset(*MBB
, InsertI
, DL
, ScratchReg
, BaseReg
,
3180 StackOffset::getFixed(BaseRegOffsetBytes
), TII
);
3181 BaseReg
= ScratchReg
;
3182 BaseRegOffsetBytes
= 0;
3185 MachineInstr
*LastI
= nullptr;
3187 int64_t InstrSize
= (Size
> 16) ? 32 : 16;
3190 ? (ZeroData
? AArch64::STZGOffset
: AArch64::STGOffset
)
3191 : (ZeroData
? AArch64::STZ2GOffset
: AArch64::ST2GOffset
);
3192 MachineInstr
*I
= BuildMI(*MBB
, InsertI
, DL
, TII
->get(Opcode
))
3193 .addReg(AArch64::SP
)
3195 .addImm(BaseRegOffsetBytes
/ 16)
3196 .setMemRefs(CombinedMemRefs
);
3197 // A store to [BaseReg, #0] should go last for an opportunity to fold the
3198 // final SP adjustment in the epilogue.
3199 if (BaseRegOffsetBytes
== 0)
3201 BaseRegOffsetBytes
+= InstrSize
;
3206 MBB
->splice(InsertI
, MBB
, LastI
);
3209 void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI
) {
3210 const AArch64InstrInfo
*TII
=
3211 MF
->getSubtarget
<AArch64Subtarget
>().getInstrInfo();
3213 Register BaseReg
= FrameRegUpdate
3215 : MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3216 Register SizeReg
= MRI
->createVirtualRegister(&AArch64::GPR64RegClass
);
3218 emitFrameOffset(*MBB
, InsertI
, DL
, BaseReg
, FrameReg
, FrameRegOffset
, TII
);
3220 int64_t LoopSize
= Size
;
3221 // If the loop size is not a multiple of 32, split off one 16-byte store at
3222 // the end to fold BaseReg update into.
3223 if (FrameRegUpdate
&& *FrameRegUpdate
)
3224 LoopSize
-= LoopSize
% 32;
3225 MachineInstr
*LoopI
= BuildMI(*MBB
, InsertI
, DL
,
3226 TII
->get(ZeroData
? AArch64::STZGloop_wback
3227 : AArch64::STGloop_wback
))
3232 .setMemRefs(CombinedMemRefs
);
3234 LoopI
->setFlags(FrameRegUpdateFlags
);
3236 int64_t ExtraBaseRegUpdate
=
3237 FrameRegUpdate
? (*FrameRegUpdate
- FrameRegOffset
.getFixed() - Size
) : 0;
3238 if (LoopSize
< Size
) {
3239 assert(FrameRegUpdate
);
3240 assert(Size
- LoopSize
== 16);
3241 // Tag 16 more bytes at BaseReg and update BaseReg.
3242 BuildMI(*MBB
, InsertI
, DL
,
3243 TII
->get(ZeroData
? AArch64::STZGPostIndex
: AArch64::STGPostIndex
))
3247 .addImm(1 + ExtraBaseRegUpdate
/ 16)
3248 .setMemRefs(CombinedMemRefs
)
3249 .setMIFlags(FrameRegUpdateFlags
);
3250 } else if (ExtraBaseRegUpdate
) {
3254 TII
->get(ExtraBaseRegUpdate
> 0 ? AArch64::ADDXri
: AArch64::SUBXri
))
3257 .addImm(std::abs(ExtraBaseRegUpdate
))
3259 .setMIFlags(FrameRegUpdateFlags
);
3263 // Check if *II is a register update that can be merged into STGloop that ends
3264 // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the
3266 bool canMergeRegUpdate(MachineBasicBlock::iterator II
, unsigned Reg
,
3267 int64_t Size
, int64_t *TotalOffset
) {
3268 MachineInstr
&MI
= *II
;
3269 if ((MI
.getOpcode() == AArch64::ADDXri
||
3270 MI
.getOpcode() == AArch64::SUBXri
) &&
3271 MI
.getOperand(0).getReg() == Reg
&& MI
.getOperand(1).getReg() == Reg
) {
3272 unsigned Shift
= AArch64_AM::getShiftValue(MI
.getOperand(3).getImm());
3273 int64_t Offset
= MI
.getOperand(2).getImm() << Shift
;
3274 if (MI
.getOpcode() == AArch64::SUBXri
)
3276 int64_t AbsPostOffset
= std::abs(Offset
- Size
);
3277 const int64_t kMaxOffset
=
3278 0xFFF; // Max encoding for unshifted ADDXri / SUBXri
3279 if (AbsPostOffset
<= kMaxOffset
&& AbsPostOffset
% 16 == 0) {
3280 *TotalOffset
= Offset
;
3287 void mergeMemRefs(const SmallVectorImpl
<TagStoreInstr
> &TSE
,
3288 SmallVectorImpl
<MachineMemOperand
*> &MemRefs
) {
3290 for (auto &TS
: TSE
) {
3291 MachineInstr
*MI
= TS
.MI
;
3292 // An instruction without memory operands may access anything. Be
3293 // conservative and return an empty list.
3294 if (MI
->memoperands_empty()) {
3298 MemRefs
.append(MI
->memoperands_begin(), MI
->memoperands_end());
3302 void TagStoreEdit::emitCode(MachineBasicBlock::iterator
&InsertI
,
3303 const AArch64FrameLowering
*TFI
, bool IsLast
) {
3304 if (TagStores
.empty())
3306 TagStoreInstr
&FirstTagStore
= TagStores
[0];
3307 TagStoreInstr
&LastTagStore
= TagStores
[TagStores
.size() - 1];
3308 Size
= LastTagStore
.Offset
- FirstTagStore
.Offset
+ LastTagStore
.Size
;
3309 DL
= TagStores
[0].MI
->getDebugLoc();
3312 FrameRegOffset
= TFI
->resolveFrameOffsetReference(
3313 *MF
, FirstTagStore
.Offset
, false /*isFixed*/, false /*isSVE*/, Reg
,
3314 /*PreferFP=*/false, /*ForSimm=*/true);
3316 FrameRegUpdate
= None
;
3318 mergeMemRefs(TagStores
, CombinedMemRefs
);
3320 LLVM_DEBUG(dbgs() << "Replacing adjacent STG instructions:\n";
3321 for (const auto &Instr
3322 : TagStores
) { dbgs() << " " << *Instr
.MI
; });
3324 // Size threshold where a loop becomes shorter than a linear sequence of
3325 // tagging instructions.
3326 const int kSetTagLoopThreshold
= 176;
3327 if (Size
< kSetTagLoopThreshold
) {
3328 if (TagStores
.size() < 2)
3330 emitUnrolled(InsertI
);
3332 MachineInstr
*UpdateInstr
= nullptr;
3333 int64_t TotalOffset
;
3335 // See if we can merge base register update into the STGloop.
3336 // This is done in AArch64LoadStoreOptimizer for "normal" stores,
3337 // but STGloop is way too unusual for that, and also it only
3338 // realistically happens in function epilogue. Also, STGloop is expanded
3339 // before that pass.
3340 if (InsertI
!= MBB
->end() &&
3341 canMergeRegUpdate(InsertI
, FrameReg
, FrameRegOffset
.getFixed() + Size
,
3343 UpdateInstr
= &*InsertI
++;
3344 LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n "
3349 if (!UpdateInstr
&& TagStores
.size() < 2)
3353 FrameRegUpdate
= TotalOffset
;
3354 FrameRegUpdateFlags
= UpdateInstr
->getFlags();
3358 UpdateInstr
->eraseFromParent();
3361 for (auto &TS
: TagStores
)
3362 TS
.MI
->eraseFromParent();
3365 bool isMergeableStackTaggingInstruction(MachineInstr
&MI
, int64_t &Offset
,
3366 int64_t &Size
, bool &ZeroData
) {
3367 MachineFunction
&MF
= *MI
.getParent()->getParent();
3368 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3370 unsigned Opcode
= MI
.getOpcode();
3371 ZeroData
= (Opcode
== AArch64::STZGloop
|| Opcode
== AArch64::STZGOffset
||
3372 Opcode
== AArch64::STZ2GOffset
);
3374 if (Opcode
== AArch64::STGloop
|| Opcode
== AArch64::STZGloop
) {
3375 if (!MI
.getOperand(0).isDead() || !MI
.getOperand(1).isDead())
3377 if (!MI
.getOperand(2).isImm() || !MI
.getOperand(3).isFI())
3379 Offset
= MFI
.getObjectOffset(MI
.getOperand(3).getIndex());
3380 Size
= MI
.getOperand(2).getImm();
3384 if (Opcode
== AArch64::STGOffset
|| Opcode
== AArch64::STZGOffset
)
3386 else if (Opcode
== AArch64::ST2GOffset
|| Opcode
== AArch64::STZ2GOffset
)
3391 if (MI
.getOperand(0).getReg() != AArch64::SP
|| !MI
.getOperand(1).isFI())
3394 Offset
= MFI
.getObjectOffset(MI
.getOperand(1).getIndex()) +
3395 16 * MI
.getOperand(2).getImm();
3399 // Detect a run of memory tagging instructions for adjacent stack frame slots,
3400 // and replace them with a shorter instruction sequence:
3401 // * replace STG + STG with ST2G
3402 // * replace STGloop + STGloop with STGloop
3403 // This code needs to run when stack slot offsets are already known, but before
3404 // FrameIndex operands in STG instructions are eliminated.
3405 MachineBasicBlock::iterator
tryMergeAdjacentSTG(MachineBasicBlock::iterator II
,
3406 const AArch64FrameLowering
*TFI
,
3409 int64_t Size
, Offset
;
3410 MachineInstr
&MI
= *II
;
3411 MachineBasicBlock
*MBB
= MI
.getParent();
3412 MachineBasicBlock::iterator NextI
= ++II
;
3413 if (&MI
== &MBB
->instr_back())
3415 if (!isMergeableStackTaggingInstruction(MI
, Offset
, Size
, FirstZeroData
))
3418 SmallVector
<TagStoreInstr
, 4> Instrs
;
3419 Instrs
.emplace_back(&MI
, Offset
, Size
);
3421 constexpr int kScanLimit
= 10;
3423 for (MachineBasicBlock::iterator E
= MBB
->end();
3424 NextI
!= E
&& Count
< kScanLimit
; ++NextI
) {
3425 MachineInstr
&MI
= *NextI
;
3427 int64_t Size
, Offset
;
3428 // Collect instructions that update memory tags with a FrameIndex operand
3429 // and (when applicable) constant size, and whose output registers are dead
3430 // (the latter is almost always the case in practice). Since these
3431 // instructions effectively have no inputs or outputs, we are free to skip
3432 // any non-aliasing instructions in between without tracking used registers.
3433 if (isMergeableStackTaggingInstruction(MI
, Offset
, Size
, ZeroData
)) {
3434 if (ZeroData
!= FirstZeroData
)
3436 Instrs
.emplace_back(&MI
, Offset
, Size
);
3440 // Only count non-transient, non-tagging instructions toward the scan
3442 if (!MI
.isTransient())
3445 // Just in case, stop before the epilogue code starts.
3446 if (MI
.getFlag(MachineInstr::FrameSetup
) ||
3447 MI
.getFlag(MachineInstr::FrameDestroy
))
3450 // Reject anything that may alias the collected instructions.
3451 if (MI
.mayLoadOrStore() || MI
.hasUnmodeledSideEffects())
3455 // New code will be inserted after the last tagging instruction we've found.
3456 MachineBasicBlock::iterator InsertI
= Instrs
.back().MI
;
3459 llvm::stable_sort(Instrs
,
3460 [](const TagStoreInstr
&Left
, const TagStoreInstr
&Right
) {
3461 return Left
.Offset
< Right
.Offset
;
3464 // Make sure that we don't have any overlapping stores.
3465 int64_t CurOffset
= Instrs
[0].Offset
;
3466 for (auto &Instr
: Instrs
) {
3467 if (CurOffset
> Instr
.Offset
)
3469 CurOffset
= Instr
.Offset
+ Instr
.Size
;
3472 // Find contiguous runs of tagged memory and emit shorter instruction
3473 // sequencies for them when possible.
3474 TagStoreEdit
TSE(MBB
, FirstZeroData
);
3475 Optional
<int64_t> EndOffset
;
3476 for (auto &Instr
: Instrs
) {
3477 if (EndOffset
&& *EndOffset
!= Instr
.Offset
) {
3479 TSE
.emitCode(InsertI
, TFI
, /*IsLast = */ false);
3483 TSE
.addInstruction(Instr
);
3484 EndOffset
= Instr
.Offset
+ Instr
.Size
;
3487 TSE
.emitCode(InsertI
, TFI
, /*IsLast = */ true);
3493 void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced(
3494 MachineFunction
&MF
, RegScavenger
*RS
= nullptr) const {
3495 if (StackTaggingMergeSetTag
)
3497 for (MachineBasicBlock::iterator II
= BB
.begin(); II
!= BB
.end();)
3498 II
= tryMergeAdjacentSTG(II
, this, RS
);
3501 /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP
3502 /// before the update. This is easily retrieved as it is exactly the offset
3503 /// that is set in processFunctionBeforeFrameFinalized.
3504 StackOffset
AArch64FrameLowering::getFrameIndexReferencePreferSP(
3505 const MachineFunction
&MF
, int FI
, Register
&FrameReg
,
3506 bool IgnoreSPUpdates
) const {
3507 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3508 if (IgnoreSPUpdates
) {
3509 LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI
<< " is "
3510 << MFI
.getObjectOffset(FI
) << "\n");
3511 FrameReg
= AArch64::SP
;
3512 return StackOffset::getFixed(MFI
.getObjectOffset(FI
));
3515 return getFrameIndexReference(MF
, FI
, FrameReg
);
3518 /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve
3519 /// the parent's frame pointer
3520 unsigned AArch64FrameLowering::getWinEHParentFrameOffset(
3521 const MachineFunction
&MF
) const {
3525 /// Funclets only need to account for space for the callee saved registers,
3526 /// as the locals are accounted for in the parent's stack frame.
3527 unsigned AArch64FrameLowering::getWinEHFuncletFrameSize(
3528 const MachineFunction
&MF
) const {
3529 // This is the size of the pushed CSRs.
3531 MF
.getInfo
<AArch64FunctionInfo
>()->getCalleeSavedStackSize();
3532 // This is the amount of stack a funclet needs to allocate.
3533 return alignTo(CSSize
+ MF
.getFrameInfo().getMaxCallFrameSize(),
3538 struct FrameObject
{
3539 bool IsValid
= false;
3540 // Index of the object in MFI.
3541 int ObjectIndex
= 0;
3542 // Group ID this object belongs to.
3543 int GroupIndex
= -1;
3544 // This object should be placed first (closest to SP).
3545 bool ObjectFirst
= false;
3546 // This object's group (which always contains the object with
3547 // ObjectFirst==true) should be placed first.
3548 bool GroupFirst
= false;
3551 class GroupBuilder
{
3552 SmallVector
<int, 8> CurrentMembers
;
3553 int NextGroupIndex
= 0;
3554 std::vector
<FrameObject
> &Objects
;
3557 GroupBuilder(std::vector
<FrameObject
> &Objects
) : Objects(Objects
) {}
3558 void AddMember(int Index
) { CurrentMembers
.push_back(Index
); }
3559 void EndCurrentGroup() {
3560 if (CurrentMembers
.size() > 1) {
3561 // Create a new group with the current member list. This might remove them
3562 // from their pre-existing groups. That's OK, dealing with overlapping
3563 // groups is too hard and unlikely to make a difference.
3564 LLVM_DEBUG(dbgs() << "group:");
3565 for (int Index
: CurrentMembers
) {
3566 Objects
[Index
].GroupIndex
= NextGroupIndex
;
3567 LLVM_DEBUG(dbgs() << " " << Index
);
3569 LLVM_DEBUG(dbgs() << "\n");
3572 CurrentMembers
.clear();
3576 bool FrameObjectCompare(const FrameObject
&A
, const FrameObject
&B
) {
3577 // Objects at a lower index are closer to FP; objects at a higher index are
3580 // For consistency in our comparison, all invalid objects are placed
3581 // at the end. This also allows us to stop walking when we hit the
3582 // first invalid item after it's all sorted.
3584 // The "first" object goes first (closest to SP), followed by the members of
3585 // the "first" group.
3587 // The rest are sorted by the group index to keep the groups together.
3588 // Higher numbered groups are more likely to be around longer (i.e. untagged
3589 // in the function epilogue and not at some earlier point). Place them closer
3592 // If all else equal, sort by the object index to keep the objects in the
3594 return std::make_tuple(!A
.IsValid
, A
.ObjectFirst
, A
.GroupFirst
, A
.GroupIndex
,
3596 std::make_tuple(!B
.IsValid
, B
.ObjectFirst
, B
.GroupFirst
, B
.GroupIndex
,
3601 void AArch64FrameLowering::orderFrameObjects(
3602 const MachineFunction
&MF
, SmallVectorImpl
<int> &ObjectsToAllocate
) const {
3603 if (!OrderFrameObjects
|| ObjectsToAllocate
.empty())
3606 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3607 std::vector
<FrameObject
> FrameObjects(MFI
.getObjectIndexEnd());
3608 for (auto &Obj
: ObjectsToAllocate
) {
3609 FrameObjects
[Obj
].IsValid
= true;
3610 FrameObjects
[Obj
].ObjectIndex
= Obj
;
3613 // Identify stack slots that are tagged at the same time.
3614 GroupBuilder
GB(FrameObjects
);
3615 for (auto &MBB
: MF
) {
3616 for (auto &MI
: MBB
) {
3617 if (MI
.isDebugInstr())
3620 switch (MI
.getOpcode()) {
3621 case AArch64::STGloop
:
3622 case AArch64::STZGloop
:
3625 case AArch64::STGOffset
:
3626 case AArch64::STZGOffset
:
3627 case AArch64::ST2GOffset
:
3628 case AArch64::STZ2GOffset
:
3637 const MachineOperand
&MO
= MI
.getOperand(OpIndex
);
3639 int FI
= MO
.getIndex();
3640 if (FI
>= 0 && FI
< MFI
.getObjectIndexEnd() &&
3641 FrameObjects
[FI
].IsValid
)
3646 // If this is a stack tagging instruction for a slot that is not part of a
3647 // group yet, either start a new group or add it to the current one.
3649 GB
.AddMember(TaggedFI
);
3651 GB
.EndCurrentGroup();
3653 // Groups should never span multiple basic blocks.
3654 GB
.EndCurrentGroup();
3657 // If the function's tagged base pointer is pinned to a stack slot, we want to
3658 // put that slot first when possible. This will likely place it at SP + 0,
3659 // and save one instruction when generating the base pointer because IRG does
3660 // not allow an immediate offset.
3661 const AArch64FunctionInfo
&AFI
= *MF
.getInfo
<AArch64FunctionInfo
>();
3662 Optional
<int> TBPI
= AFI
.getTaggedBasePointerIndex();
3664 FrameObjects
[*TBPI
].ObjectFirst
= true;
3665 FrameObjects
[*TBPI
].GroupFirst
= true;
3666 int FirstGroupIndex
= FrameObjects
[*TBPI
].GroupIndex
;
3667 if (FirstGroupIndex
>= 0)
3668 for (FrameObject
&Object
: FrameObjects
)
3669 if (Object
.GroupIndex
== FirstGroupIndex
)
3670 Object
.GroupFirst
= true;
3673 llvm::stable_sort(FrameObjects
, FrameObjectCompare
);
3676 for (auto &Obj
: FrameObjects
) {
3677 // All invalid items are sorted at the end, so it's safe to stop.
3680 ObjectsToAllocate
[i
++] = Obj
.ObjectIndex
;
3683 LLVM_DEBUG(dbgs() << "Final frame order:\n"; for (auto &Obj
3687 dbgs() << " " << Obj
.ObjectIndex
<< ": group " << Obj
.GroupIndex
;
3688 if (Obj
.ObjectFirst
)
3689 dbgs() << ", first";
3691 dbgs() << ", group-first";