1 //===-- AArch64ISelDAGToDAG.cpp - A dag to dag inst selector for AArch64 --===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines an instruction selector for the AArch64 target.
11 //===----------------------------------------------------------------------===//
13 #include "AArch64MachineFunctionInfo.h"
14 #include "AArch64TargetMachine.h"
15 #include "MCTargetDesc/AArch64AddressingModes.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/CodeGen/SelectionDAGISel.h"
18 #include "llvm/IR/Function.h" // To access function attributes.
19 #include "llvm/IR/GlobalValue.h"
20 #include "llvm/IR/Intrinsics.h"
21 #include "llvm/IR/IntrinsicsAArch64.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/KnownBits.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/raw_ostream.h"
30 #define DEBUG_TYPE "aarch64-isel"
32 //===--------------------------------------------------------------------===//
33 /// AArch64DAGToDAGISel - AArch64 specific code to select AArch64 machine
34 /// instructions for SelectionDAG operations.
38 class AArch64DAGToDAGISel
: public SelectionDAGISel
{
40 /// Subtarget - Keep a pointer to the AArch64Subtarget around so that we can
41 /// make the right decision when generating code for different targets.
42 const AArch64Subtarget
*Subtarget
;
45 explicit AArch64DAGToDAGISel(AArch64TargetMachine
&tm
,
46 CodeGenOpt::Level OptLevel
)
47 : SelectionDAGISel(tm
, OptLevel
), Subtarget(nullptr) {}
49 StringRef
getPassName() const override
{
50 return "AArch64 Instruction Selection";
53 bool runOnMachineFunction(MachineFunction
&MF
) override
{
54 Subtarget
= &MF
.getSubtarget
<AArch64Subtarget
>();
55 return SelectionDAGISel::runOnMachineFunction(MF
);
58 void Select(SDNode
*Node
) override
;
60 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
61 /// inline asm expressions.
62 bool SelectInlineAsmMemoryOperand(const SDValue
&Op
,
63 unsigned ConstraintID
,
64 std::vector
<SDValue
> &OutOps
) override
;
66 template <signed Low
, signed High
, signed Scale
>
67 bool SelectRDVLImm(SDValue N
, SDValue
&Imm
);
69 bool tryMLAV64LaneV128(SDNode
*N
);
70 bool tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
);
71 bool SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
);
72 bool SelectArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
73 bool SelectNegArithImmed(SDValue N
, SDValue
&Val
, SDValue
&Shift
);
74 bool SelectArithShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
75 return SelectShiftedRegister(N
, false, Reg
, Shift
);
77 bool SelectLogicalShiftedRegister(SDValue N
, SDValue
&Reg
, SDValue
&Shift
) {
78 return SelectShiftedRegister(N
, true, Reg
, Shift
);
80 bool SelectAddrModeIndexed7S8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
81 return SelectAddrModeIndexed7S(N
, 1, Base
, OffImm
);
83 bool SelectAddrModeIndexed7S16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
84 return SelectAddrModeIndexed7S(N
, 2, Base
, OffImm
);
86 bool SelectAddrModeIndexed7S32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
87 return SelectAddrModeIndexed7S(N
, 4, Base
, OffImm
);
89 bool SelectAddrModeIndexed7S64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
90 return SelectAddrModeIndexed7S(N
, 8, Base
, OffImm
);
92 bool SelectAddrModeIndexed7S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
93 return SelectAddrModeIndexed7S(N
, 16, Base
, OffImm
);
95 bool SelectAddrModeIndexedS9S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
96 return SelectAddrModeIndexedBitWidth(N
, true, 9, 16, Base
, OffImm
);
98 bool SelectAddrModeIndexedU6S128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
99 return SelectAddrModeIndexedBitWidth(N
, false, 6, 16, Base
, OffImm
);
101 bool SelectAddrModeIndexed8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
102 return SelectAddrModeIndexed(N
, 1, Base
, OffImm
);
104 bool SelectAddrModeIndexed16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
105 return SelectAddrModeIndexed(N
, 2, Base
, OffImm
);
107 bool SelectAddrModeIndexed32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
108 return SelectAddrModeIndexed(N
, 4, Base
, OffImm
);
110 bool SelectAddrModeIndexed64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
111 return SelectAddrModeIndexed(N
, 8, Base
, OffImm
);
113 bool SelectAddrModeIndexed128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
114 return SelectAddrModeIndexed(N
, 16, Base
, OffImm
);
116 bool SelectAddrModeUnscaled8(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
117 return SelectAddrModeUnscaled(N
, 1, Base
, OffImm
);
119 bool SelectAddrModeUnscaled16(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
120 return SelectAddrModeUnscaled(N
, 2, Base
, OffImm
);
122 bool SelectAddrModeUnscaled32(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
123 return SelectAddrModeUnscaled(N
, 4, Base
, OffImm
);
125 bool SelectAddrModeUnscaled64(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
126 return SelectAddrModeUnscaled(N
, 8, Base
, OffImm
);
128 bool SelectAddrModeUnscaled128(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
129 return SelectAddrModeUnscaled(N
, 16, Base
, OffImm
);
131 template <unsigned Size
, unsigned Max
>
132 bool SelectAddrModeIndexedUImm(SDValue N
, SDValue
&Base
, SDValue
&OffImm
) {
133 // Test if there is an appropriate addressing mode and check if the
135 bool Found
= SelectAddrModeIndexed(N
, Size
, Base
, OffImm
);
137 if (auto *CI
= dyn_cast
<ConstantSDNode
>(OffImm
)) {
138 int64_t C
= CI
->getSExtValue();
144 // Otherwise, base only, materialize address in register.
146 OffImm
= CurDAG
->getTargetConstant(0, SDLoc(N
), MVT::i64
);
151 bool SelectAddrModeWRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
152 SDValue
&SignExtend
, SDValue
&DoShift
) {
153 return SelectAddrModeWRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
157 bool SelectAddrModeXRO(SDValue N
, SDValue
&Base
, SDValue
&Offset
,
158 SDValue
&SignExtend
, SDValue
&DoShift
) {
159 return SelectAddrModeXRO(N
, Width
/ 8, Base
, Offset
, SignExtend
, DoShift
);
162 bool SelectDupZeroOrUndef(SDValue N
) {
163 switch(N
->getOpcode()) {
166 case AArch64ISD::DUP
:
167 case ISD::SPLAT_VECTOR
: {
168 auto Opnd0
= N
->getOperand(0);
169 if (auto CN
= dyn_cast
<ConstantSDNode
>(Opnd0
))
170 if (CN
->isNullValue())
172 if (auto CN
= dyn_cast
<ConstantFPSDNode
>(Opnd0
))
184 bool SelectDupZero(SDValue N
) {
185 switch(N
->getOpcode()) {
186 case AArch64ISD::DUP
:
187 case ISD::SPLAT_VECTOR
: {
188 auto Opnd0
= N
->getOperand(0);
189 if (auto CN
= dyn_cast
<ConstantSDNode
>(Opnd0
))
190 if (CN
->isNullValue())
192 if (auto CN
= dyn_cast
<ConstantFPSDNode
>(Opnd0
))
202 template<MVT::SimpleValueType VT
>
203 bool SelectSVEAddSubImm(SDValue N
, SDValue
&Imm
, SDValue
&Shift
) {
204 return SelectSVEAddSubImm(N
, VT
, Imm
, Shift
);
207 template <MVT::SimpleValueType VT
, bool Invert
= false>
208 bool SelectSVELogicalImm(SDValue N
, SDValue
&Imm
) {
209 return SelectSVELogicalImm(N
, VT
, Imm
, Invert
);
212 template <MVT::SimpleValueType VT
>
213 bool SelectSVEArithImm(SDValue N
, SDValue
&Imm
) {
214 return SelectSVEArithImm(N
, VT
, Imm
);
217 template <unsigned Low
, unsigned High
, bool AllowSaturation
= false>
218 bool SelectSVEShiftImm(SDValue N
, SDValue
&Imm
) {
219 return SelectSVEShiftImm(N
, Low
, High
, AllowSaturation
, Imm
);
222 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
223 template<signed Min
, signed Max
, signed Scale
, bool Shift
>
224 bool SelectCntImm(SDValue N
, SDValue
&Imm
) {
225 if (!isa
<ConstantSDNode
>(N
))
228 int64_t MulImm
= cast
<ConstantSDNode
>(N
)->getSExtValue();
230 MulImm
= 1LL << MulImm
;
232 if ((MulImm
% std::abs(Scale
)) != 0)
236 if ((MulImm
>= Min
) && (MulImm
<= Max
)) {
237 Imm
= CurDAG
->getTargetConstant(MulImm
, SDLoc(N
), MVT::i32
);
244 template <signed Max
, signed Scale
>
245 bool SelectEXTImm(SDValue N
, SDValue
&Imm
) {
246 if (!isa
<ConstantSDNode
>(N
))
249 int64_t MulImm
= cast
<ConstantSDNode
>(N
)->getSExtValue();
251 if (MulImm
>= 0 && MulImm
<= Max
) {
253 Imm
= CurDAG
->getTargetConstant(MulImm
, SDLoc(N
), MVT::i32
);
260 /// Form sequences of consecutive 64/128-bit registers for use in NEON
261 /// instructions making use of a vector-list (e.g. ldN, tbl). Vecs must have
262 /// between 1 and 4 elements. If it contains a single element that is returned
263 /// unchanged; otherwise a REG_SEQUENCE value is returned.
264 SDValue
createDTuple(ArrayRef
<SDValue
> Vecs
);
265 SDValue
createQTuple(ArrayRef
<SDValue
> Vecs
);
266 // Form a sequence of SVE registers for instructions using list of vectors,
267 // e.g. structured loads and stores (ldN, stN).
268 SDValue
createZTuple(ArrayRef
<SDValue
> Vecs
);
270 /// Generic helper for the createDTuple/createQTuple
271 /// functions. Those should almost always be called instead.
272 SDValue
createTuple(ArrayRef
<SDValue
> Vecs
, const unsigned RegClassIDs
[],
273 const unsigned SubRegs
[]);
275 void SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
, bool isExt
);
277 bool tryIndexedLoad(SDNode
*N
);
279 bool trySelectStackSlotTagP(SDNode
*N
);
280 void SelectTagP(SDNode
*N
);
282 void SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
284 void SelectPostLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
286 void SelectLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
287 void SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
288 void SelectPredicatedLoad(SDNode
*N
, unsigned NumVecs
, unsigned Scale
,
289 unsigned Opc_rr
, unsigned Opc_ri
);
291 bool SelectAddrModeFrameIndexSVE(SDValue N
, SDValue
&Base
, SDValue
&OffImm
);
292 /// SVE Reg+Imm addressing mode.
293 template <int64_t Min
, int64_t Max
>
294 bool SelectAddrModeIndexedSVE(SDNode
*Root
, SDValue N
, SDValue
&Base
,
296 /// SVE Reg+Reg address mode.
297 template <unsigned Scale
>
298 bool SelectSVERegRegAddrMode(SDValue N
, SDValue
&Base
, SDValue
&Offset
) {
299 return SelectSVERegRegAddrMode(N
, Scale
, Base
, Offset
);
302 void SelectStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
303 void SelectPostStore(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
304 void SelectStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
305 void SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
, unsigned Opc
);
306 void SelectPredicatedStore(SDNode
*N
, unsigned NumVecs
, unsigned Scale
,
307 unsigned Opc_rr
, unsigned Opc_ri
);
308 std::tuple
<unsigned, SDValue
, SDValue
>
309 findAddrModeSVELoadStore(SDNode
*N
, unsigned Opc_rr
, unsigned Opc_ri
,
310 const SDValue
&OldBase
, const SDValue
&OldOffset
,
313 bool tryBitfieldExtractOp(SDNode
*N
);
314 bool tryBitfieldExtractOpFromSExt(SDNode
*N
);
315 bool tryBitfieldInsertOp(SDNode
*N
);
316 bool tryBitfieldInsertInZeroOp(SDNode
*N
);
317 bool tryShiftAmountMod(SDNode
*N
);
318 bool tryHighFPExt(SDNode
*N
);
320 bool tryReadRegister(SDNode
*N
);
321 bool tryWriteRegister(SDNode
*N
);
323 // Include the pieces autogenerated from the target description.
324 #include "AArch64GenDAGISel.inc"
327 bool SelectShiftedRegister(SDValue N
, bool AllowROR
, SDValue
&Reg
,
329 bool SelectAddrModeIndexed7S(SDValue N
, unsigned Size
, SDValue
&Base
,
331 return SelectAddrModeIndexedBitWidth(N
, true, 7, Size
, Base
, OffImm
);
333 bool SelectAddrModeIndexedBitWidth(SDValue N
, bool IsSignedImm
, unsigned BW
,
334 unsigned Size
, SDValue
&Base
,
336 bool SelectAddrModeIndexed(SDValue N
, unsigned Size
, SDValue
&Base
,
338 bool SelectAddrModeUnscaled(SDValue N
, unsigned Size
, SDValue
&Base
,
340 bool SelectAddrModeWRO(SDValue N
, unsigned Size
, SDValue
&Base
,
341 SDValue
&Offset
, SDValue
&SignExtend
,
343 bool SelectAddrModeXRO(SDValue N
, unsigned Size
, SDValue
&Base
,
344 SDValue
&Offset
, SDValue
&SignExtend
,
346 bool isWorthFolding(SDValue V
) const;
347 bool SelectExtendedSHL(SDValue N
, unsigned Size
, bool WantExtend
,
348 SDValue
&Offset
, SDValue
&SignExtend
);
350 template<unsigned RegWidth
>
351 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
) {
352 return SelectCVTFixedPosOperand(N
, FixedPos
, RegWidth
);
355 bool SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
, unsigned Width
);
357 bool SelectCMP_SWAP(SDNode
*N
);
359 bool SelectSVE8BitLslImm(SDValue N
, SDValue
&Imm
, SDValue
&Shift
);
361 bool SelectSVEAddSubImm(SDValue N
, MVT VT
, SDValue
&Imm
, SDValue
&Shift
);
363 bool SelectSVELogicalImm(SDValue N
, MVT VT
, SDValue
&Imm
, bool Invert
);
365 bool SelectSVESignedArithImm(SDValue N
, SDValue
&Imm
);
366 bool SelectSVEShiftImm(SDValue N
, uint64_t Low
, uint64_t High
,
367 bool AllowSaturation
, SDValue
&Imm
);
369 bool SelectSVEArithImm(SDValue N
, MVT VT
, SDValue
&Imm
);
370 bool SelectSVERegRegAddrMode(SDValue N
, unsigned Scale
, SDValue
&Base
,
373 bool SelectAllActivePredicate(SDValue N
);
375 } // end anonymous namespace
377 /// isIntImmediate - This method tests to see if the node is a constant
378 /// operand. If so Imm will receive the 32-bit value.
379 static bool isIntImmediate(const SDNode
*N
, uint64_t &Imm
) {
380 if (const ConstantSDNode
*C
= dyn_cast
<const ConstantSDNode
>(N
)) {
381 Imm
= C
->getZExtValue();
387 // isIntImmediate - This method tests to see if a constant operand.
388 // If so Imm will receive the value.
389 static bool isIntImmediate(SDValue N
, uint64_t &Imm
) {
390 return isIntImmediate(N
.getNode(), Imm
);
393 // isOpcWithIntImmediate - This method tests to see if the node is a specific
394 // opcode and that it has a immediate integer right operand.
395 // If so Imm will receive the 32 bit value.
396 static bool isOpcWithIntImmediate(const SDNode
*N
, unsigned Opc
,
398 return N
->getOpcode() == Opc
&&
399 isIntImmediate(N
->getOperand(1).getNode(), Imm
);
402 bool AArch64DAGToDAGISel::SelectInlineAsmMemoryOperand(
403 const SDValue
&Op
, unsigned ConstraintID
, std::vector
<SDValue
> &OutOps
) {
404 switch(ConstraintID
) {
406 llvm_unreachable("Unexpected asm memory constraint");
407 case InlineAsm::Constraint_m
:
408 case InlineAsm::Constraint_o
:
409 case InlineAsm::Constraint_Q
:
410 // We need to make sure that this one operand does not end up in XZR, thus
411 // require the address to be in a PointerRegClass register.
412 const TargetRegisterInfo
*TRI
= Subtarget
->getRegisterInfo();
413 const TargetRegisterClass
*TRC
= TRI
->getPointerRegClass(*MF
);
415 SDValue RC
= CurDAG
->getTargetConstant(TRC
->getID(), dl
, MVT::i64
);
417 SDValue(CurDAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
,
418 dl
, Op
.getValueType(),
420 OutOps
.push_back(NewOp
);
426 /// SelectArithImmed - Select an immediate value that can be represented as
427 /// a 12-bit value shifted left by either 0 or 12. If so, return true with
428 /// Val set to the 12-bit value and Shift set to the shifter operand.
429 bool AArch64DAGToDAGISel::SelectArithImmed(SDValue N
, SDValue
&Val
,
431 // This function is called from the addsub_shifted_imm ComplexPattern,
432 // which lists [imm] as the list of opcode it's interested in, however
433 // we still need to check whether the operand is actually an immediate
434 // here because the ComplexPattern opcode list is only used in
435 // root-level opcode matching.
436 if (!isa
<ConstantSDNode
>(N
.getNode()))
439 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
442 if (Immed
>> 12 == 0) {
444 } else if ((Immed
& 0xfff) == 0 && Immed
>> 24 == 0) {
450 unsigned ShVal
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, ShiftAmt
);
452 Val
= CurDAG
->getTargetConstant(Immed
, dl
, MVT::i32
);
453 Shift
= CurDAG
->getTargetConstant(ShVal
, dl
, MVT::i32
);
457 /// SelectNegArithImmed - As above, but negates the value before trying to
459 bool AArch64DAGToDAGISel::SelectNegArithImmed(SDValue N
, SDValue
&Val
,
461 // This function is called from the addsub_shifted_imm ComplexPattern,
462 // which lists [imm] as the list of opcode it's interested in, however
463 // we still need to check whether the operand is actually an immediate
464 // here because the ComplexPattern opcode list is only used in
465 // root-level opcode matching.
466 if (!isa
<ConstantSDNode
>(N
.getNode()))
469 // The immediate operand must be a 24-bit zero-extended immediate.
470 uint64_t Immed
= cast
<ConstantSDNode
>(N
.getNode())->getZExtValue();
472 // This negation is almost always valid, but "cmp wN, #0" and "cmn wN, #0"
473 // have the opposite effect on the C flag, so this pattern mustn't match under
474 // those circumstances.
478 if (N
.getValueType() == MVT::i32
)
479 Immed
= ~((uint32_t)Immed
) + 1;
481 Immed
= ~Immed
+ 1ULL;
482 if (Immed
& 0xFFFFFFFFFF000000ULL
)
485 Immed
&= 0xFFFFFFULL
;
486 return SelectArithImmed(CurDAG
->getConstant(Immed
, SDLoc(N
), MVT::i32
), Val
,
490 /// getShiftTypeForNode - Translate a shift node to the corresponding
492 static AArch64_AM::ShiftExtendType
getShiftTypeForNode(SDValue N
) {
493 switch (N
.getOpcode()) {
495 return AArch64_AM::InvalidShiftExtend
;
497 return AArch64_AM::LSL
;
499 return AArch64_AM::LSR
;
501 return AArch64_AM::ASR
;
503 return AArch64_AM::ROR
;
507 /// Determine whether it is worth it to fold SHL into the addressing
509 static bool isWorthFoldingSHL(SDValue V
) {
510 assert(V
.getOpcode() == ISD::SHL
&& "invalid opcode");
511 // It is worth folding logical shift of up to three places.
512 auto *CSD
= dyn_cast
<ConstantSDNode
>(V
.getOperand(1));
515 unsigned ShiftVal
= CSD
->getZExtValue();
519 // Check if this particular node is reused in any non-memory related
520 // operation. If yes, do not try to fold this node into the address
521 // computation, since the computation will be kept.
522 const SDNode
*Node
= V
.getNode();
523 for (SDNode
*UI
: Node
->uses())
524 if (!isa
<MemSDNode
>(*UI
))
525 for (SDNode
*UII
: UI
->uses())
526 if (!isa
<MemSDNode
>(*UII
))
531 /// Determine whether it is worth to fold V into an extended register.
532 bool AArch64DAGToDAGISel::isWorthFolding(SDValue V
) const {
533 // Trivial if we are optimizing for code size or if there is only
534 // one use of the value.
535 if (CurDAG
->shouldOptForSize() || V
.hasOneUse())
537 // If a subtarget has a fastpath LSL we can fold a logical shift into
538 // the addressing mode and save a cycle.
539 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::SHL
&&
540 isWorthFoldingSHL(V
))
542 if (Subtarget
->hasLSLFast() && V
.getOpcode() == ISD::ADD
) {
543 const SDValue LHS
= V
.getOperand(0);
544 const SDValue RHS
= V
.getOperand(1);
545 if (LHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(LHS
))
547 if (RHS
.getOpcode() == ISD::SHL
&& isWorthFoldingSHL(RHS
))
551 // It hurts otherwise, since the value will be reused.
555 /// SelectShiftedRegister - Select a "shifted register" operand. If the value
556 /// is not shifted, set the Shift operand to default of "LSL 0". The logical
557 /// instructions allow the shifted register to be rotated, but the arithmetic
558 /// instructions do not. The AllowROR parameter specifies whether ROR is
560 bool AArch64DAGToDAGISel::SelectShiftedRegister(SDValue N
, bool AllowROR
,
561 SDValue
&Reg
, SDValue
&Shift
) {
562 AArch64_AM::ShiftExtendType ShType
= getShiftTypeForNode(N
);
563 if (ShType
== AArch64_AM::InvalidShiftExtend
)
565 if (!AllowROR
&& ShType
== AArch64_AM::ROR
)
568 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
569 unsigned BitSize
= N
.getValueSizeInBits();
570 unsigned Val
= RHS
->getZExtValue() & (BitSize
- 1);
571 unsigned ShVal
= AArch64_AM::getShifterImm(ShType
, Val
);
573 Reg
= N
.getOperand(0);
574 Shift
= CurDAG
->getTargetConstant(ShVal
, SDLoc(N
), MVT::i32
);
575 return isWorthFolding(N
);
581 /// getExtendTypeForNode - Translate an extend node to the corresponding
582 /// ExtendType value.
583 static AArch64_AM::ShiftExtendType
584 getExtendTypeForNode(SDValue N
, bool IsLoadStore
= false) {
585 if (N
.getOpcode() == ISD::SIGN_EXTEND
||
586 N
.getOpcode() == ISD::SIGN_EXTEND_INREG
) {
588 if (N
.getOpcode() == ISD::SIGN_EXTEND_INREG
)
589 SrcVT
= cast
<VTSDNode
>(N
.getOperand(1))->getVT();
591 SrcVT
= N
.getOperand(0).getValueType();
593 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
594 return AArch64_AM::SXTB
;
595 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
596 return AArch64_AM::SXTH
;
597 else if (SrcVT
== MVT::i32
)
598 return AArch64_AM::SXTW
;
599 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
601 return AArch64_AM::InvalidShiftExtend
;
602 } else if (N
.getOpcode() == ISD::ZERO_EXTEND
||
603 N
.getOpcode() == ISD::ANY_EXTEND
) {
604 EVT SrcVT
= N
.getOperand(0).getValueType();
605 if (!IsLoadStore
&& SrcVT
== MVT::i8
)
606 return AArch64_AM::UXTB
;
607 else if (!IsLoadStore
&& SrcVT
== MVT::i16
)
608 return AArch64_AM::UXTH
;
609 else if (SrcVT
== MVT::i32
)
610 return AArch64_AM::UXTW
;
611 assert(SrcVT
!= MVT::i64
&& "extend from 64-bits?");
613 return AArch64_AM::InvalidShiftExtend
;
614 } else if (N
.getOpcode() == ISD::AND
) {
615 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
617 return AArch64_AM::InvalidShiftExtend
;
618 uint64_t AndMask
= CSD
->getZExtValue();
622 return AArch64_AM::InvalidShiftExtend
;
624 return !IsLoadStore
? AArch64_AM::UXTB
: AArch64_AM::InvalidShiftExtend
;
626 return !IsLoadStore
? AArch64_AM::UXTH
: AArch64_AM::InvalidShiftExtend
;
628 return AArch64_AM::UXTW
;
632 return AArch64_AM::InvalidShiftExtend
;
635 // Helper for SelectMLAV64LaneV128 - Recognize high lane extracts.
636 static bool checkHighLaneIndex(SDNode
*DL
, SDValue
&LaneOp
, int &LaneIdx
) {
637 if (DL
->getOpcode() != AArch64ISD::DUPLANE16
&&
638 DL
->getOpcode() != AArch64ISD::DUPLANE32
)
641 SDValue SV
= DL
->getOperand(0);
642 if (SV
.getOpcode() != ISD::INSERT_SUBVECTOR
)
645 SDValue EV
= SV
.getOperand(1);
646 if (EV
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
649 ConstantSDNode
*DLidx
= cast
<ConstantSDNode
>(DL
->getOperand(1).getNode());
650 ConstantSDNode
*EVidx
= cast
<ConstantSDNode
>(EV
.getOperand(1).getNode());
651 LaneIdx
= DLidx
->getSExtValue() + EVidx
->getSExtValue();
652 LaneOp
= EV
.getOperand(0);
657 // Helper for SelectOpcV64LaneV128 - Recognize operations where one operand is a
658 // high lane extract.
659 static bool checkV64LaneV128(SDValue Op0
, SDValue Op1
, SDValue
&StdOp
,
660 SDValue
&LaneOp
, int &LaneIdx
) {
662 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
)) {
664 if (!checkHighLaneIndex(Op0
.getNode(), LaneOp
, LaneIdx
))
671 /// SelectMLAV64LaneV128 - AArch64 supports vector MLAs where one multiplicand
672 /// is a lane in the upper half of a 128-bit vector. Recognize and select this
673 /// so that we don't emit unnecessary lane extracts.
674 bool AArch64DAGToDAGISel::tryMLAV64LaneV128(SDNode
*N
) {
676 SDValue Op0
= N
->getOperand(0);
677 SDValue Op1
= N
->getOperand(1);
678 SDValue MLAOp1
; // Will hold ordinary multiplicand for MLA.
679 SDValue MLAOp2
; // Will hold lane-accessed multiplicand for MLA.
680 int LaneIdx
= -1; // Will hold the lane index.
682 if (Op1
.getOpcode() != ISD::MUL
||
683 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
686 if (Op1
.getOpcode() != ISD::MUL
||
687 !checkV64LaneV128(Op1
.getOperand(0), Op1
.getOperand(1), MLAOp1
, MLAOp2
,
692 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
694 SDValue Ops
[] = { Op0
, MLAOp1
, MLAOp2
, LaneIdxVal
};
696 unsigned MLAOpc
= ~0U;
698 switch (N
->getSimpleValueType(0).SimpleTy
) {
700 llvm_unreachable("Unrecognized MLA.");
702 MLAOpc
= AArch64::MLAv4i16_indexed
;
705 MLAOpc
= AArch64::MLAv8i16_indexed
;
708 MLAOpc
= AArch64::MLAv2i32_indexed
;
711 MLAOpc
= AArch64::MLAv4i32_indexed
;
715 ReplaceNode(N
, CurDAG
->getMachineNode(MLAOpc
, dl
, N
->getValueType(0), Ops
));
719 bool AArch64DAGToDAGISel::tryMULLV64LaneV128(unsigned IntNo
, SDNode
*N
) {
725 if (!checkV64LaneV128(N
->getOperand(1), N
->getOperand(2), SMULLOp0
, SMULLOp1
,
729 SDValue LaneIdxVal
= CurDAG
->getTargetConstant(LaneIdx
, dl
, MVT::i64
);
731 SDValue Ops
[] = { SMULLOp0
, SMULLOp1
, LaneIdxVal
};
733 unsigned SMULLOpc
= ~0U;
735 if (IntNo
== Intrinsic::aarch64_neon_smull
) {
736 switch (N
->getSimpleValueType(0).SimpleTy
) {
738 llvm_unreachable("Unrecognized SMULL.");
740 SMULLOpc
= AArch64::SMULLv4i16_indexed
;
743 SMULLOpc
= AArch64::SMULLv2i32_indexed
;
746 } else if (IntNo
== Intrinsic::aarch64_neon_umull
) {
747 switch (N
->getSimpleValueType(0).SimpleTy
) {
749 llvm_unreachable("Unrecognized SMULL.");
751 SMULLOpc
= AArch64::UMULLv4i16_indexed
;
754 SMULLOpc
= AArch64::UMULLv2i32_indexed
;
758 llvm_unreachable("Unrecognized intrinsic.");
760 ReplaceNode(N
, CurDAG
->getMachineNode(SMULLOpc
, dl
, N
->getValueType(0), Ops
));
764 /// Instructions that accept extend modifiers like UXTW expect the register
765 /// being extended to be a GPR32, but the incoming DAG might be acting on a
766 /// GPR64 (either via SEXT_INREG or AND). Extract the appropriate low bits if
767 /// this is the case.
768 static SDValue
narrowIfNeeded(SelectionDAG
*CurDAG
, SDValue N
) {
769 if (N
.getValueType() == MVT::i32
)
773 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
774 MachineSDNode
*Node
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
775 dl
, MVT::i32
, N
, SubReg
);
776 return SDValue(Node
, 0);
779 // Returns a suitable CNT/INC/DEC/RDVL multiplier to calculate VSCALE*N.
780 template<signed Low
, signed High
, signed Scale
>
781 bool AArch64DAGToDAGISel::SelectRDVLImm(SDValue N
, SDValue
&Imm
) {
782 if (!isa
<ConstantSDNode
>(N
))
785 int64_t MulImm
= cast
<ConstantSDNode
>(N
)->getSExtValue();
786 if ((MulImm
% std::abs(Scale
)) == 0) {
787 int64_t RDVLImm
= MulImm
/ Scale
;
788 if ((RDVLImm
>= Low
) && (RDVLImm
<= High
)) {
789 Imm
= CurDAG
->getTargetConstant(RDVLImm
, SDLoc(N
), MVT::i32
);
797 /// SelectArithExtendedRegister - Select a "extended register" operand. This
798 /// operand folds in an extend followed by an optional left shift.
799 bool AArch64DAGToDAGISel::SelectArithExtendedRegister(SDValue N
, SDValue
&Reg
,
801 unsigned ShiftVal
= 0;
802 AArch64_AM::ShiftExtendType Ext
;
804 if (N
.getOpcode() == ISD::SHL
) {
805 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
808 ShiftVal
= CSD
->getZExtValue();
812 Ext
= getExtendTypeForNode(N
.getOperand(0));
813 if (Ext
== AArch64_AM::InvalidShiftExtend
)
816 Reg
= N
.getOperand(0).getOperand(0);
818 Ext
= getExtendTypeForNode(N
);
819 if (Ext
== AArch64_AM::InvalidShiftExtend
)
822 Reg
= N
.getOperand(0);
824 // Don't match if free 32-bit -> 64-bit zext can be used instead.
825 if (Ext
== AArch64_AM::UXTW
&&
826 Reg
->getValueType(0).getSizeInBits() == 32 && isDef32(*Reg
.getNode()))
830 // AArch64 mandates that the RHS of the operation must use the smallest
831 // register class that could contain the size being extended from. Thus,
832 // if we're folding a (sext i8), we need the RHS to be a GPR32, even though
833 // there might not be an actual 32-bit value in the program. We can
834 // (harmlessly) synthesize one by injected an EXTRACT_SUBREG here.
835 assert(Ext
!= AArch64_AM::UXTX
&& Ext
!= AArch64_AM::SXTX
);
836 Reg
= narrowIfNeeded(CurDAG
, Reg
);
837 Shift
= CurDAG
->getTargetConstant(getArithExtendImm(Ext
, ShiftVal
), SDLoc(N
),
839 return isWorthFolding(N
);
842 /// If there's a use of this ADDlow that's not itself a load/store then we'll
843 /// need to create a real ADD instruction from it anyway and there's no point in
844 /// folding it into the mem op. Theoretically, it shouldn't matter, but there's
845 /// a single pseudo-instruction for an ADRP/ADD pair so over-aggressive folding
846 /// leads to duplicated ADRP instructions.
847 static bool isWorthFoldingADDlow(SDValue N
) {
848 for (auto Use
: N
->uses()) {
849 if (Use
->getOpcode() != ISD::LOAD
&& Use
->getOpcode() != ISD::STORE
&&
850 Use
->getOpcode() != ISD::ATOMIC_LOAD
&&
851 Use
->getOpcode() != ISD::ATOMIC_STORE
)
854 // ldar and stlr have much more restrictive addressing modes (just a
856 if (isStrongerThanMonotonic(cast
<MemSDNode
>(Use
)->getSuccessOrdering()))
863 /// SelectAddrModeIndexedBitWidth - Select a "register plus scaled (un)signed BW-bit
864 /// immediate" address. The "Size" argument is the size in bytes of the memory
865 /// reference, which determines the scale.
866 bool AArch64DAGToDAGISel::SelectAddrModeIndexedBitWidth(SDValue N
, bool IsSignedImm
,
867 unsigned BW
, unsigned Size
,
871 const DataLayout
&DL
= CurDAG
->getDataLayout();
872 const TargetLowering
*TLI
= getTargetLowering();
873 if (N
.getOpcode() == ISD::FrameIndex
) {
874 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
875 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
876 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
880 // As opposed to the (12-bit) Indexed addressing mode below, the 7/9-bit signed
881 // selected here doesn't support labels/immediates, only base+offset.
882 if (CurDAG
->isBaseWithConstantOffset(N
)) {
883 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
885 int64_t RHSC
= RHS
->getSExtValue();
886 unsigned Scale
= Log2_32(Size
);
887 int64_t Range
= 0x1LL
<< (BW
- 1);
889 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= -(Range
<< Scale
) &&
890 RHSC
< (Range
<< Scale
)) {
891 Base
= N
.getOperand(0);
892 if (Base
.getOpcode() == ISD::FrameIndex
) {
893 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
894 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
896 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
900 // unsigned Immediate
901 uint64_t RHSC
= RHS
->getZExtValue();
902 unsigned Scale
= Log2_32(Size
);
903 uint64_t Range
= 0x1ULL
<< BW
;
905 if ((RHSC
& (Size
- 1)) == 0 && RHSC
< (Range
<< Scale
)) {
906 Base
= N
.getOperand(0);
907 if (Base
.getOpcode() == ISD::FrameIndex
) {
908 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
909 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
911 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
917 // Base only. The address will be materialized into a register before
918 // the memory is accessed.
919 // add x0, Xbase, #offset
922 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
926 /// SelectAddrModeIndexed - Select a "register plus scaled unsigned 12-bit
927 /// immediate" address. The "Size" argument is the size in bytes of the memory
928 /// reference, which determines the scale.
929 bool AArch64DAGToDAGISel::SelectAddrModeIndexed(SDValue N
, unsigned Size
,
930 SDValue
&Base
, SDValue
&OffImm
) {
932 const DataLayout
&DL
= CurDAG
->getDataLayout();
933 const TargetLowering
*TLI
= getTargetLowering();
934 if (N
.getOpcode() == ISD::FrameIndex
) {
935 int FI
= cast
<FrameIndexSDNode
>(N
)->getIndex();
936 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
937 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
941 if (N
.getOpcode() == AArch64ISD::ADDlow
&& isWorthFoldingADDlow(N
)) {
942 GlobalAddressSDNode
*GAN
=
943 dyn_cast
<GlobalAddressSDNode
>(N
.getOperand(1).getNode());
944 Base
= N
.getOperand(0);
945 OffImm
= N
.getOperand(1);
949 if (GAN
->getOffset() % Size
== 0 &&
950 GAN
->getGlobal()->getPointerAlignment(DL
) >= Size
)
954 if (CurDAG
->isBaseWithConstantOffset(N
)) {
955 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
956 int64_t RHSC
= (int64_t)RHS
->getZExtValue();
957 unsigned Scale
= Log2_32(Size
);
958 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 && RHSC
< (0x1000 << Scale
)) {
959 Base
= N
.getOperand(0);
960 if (Base
.getOpcode() == ISD::FrameIndex
) {
961 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
962 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
964 OffImm
= CurDAG
->getTargetConstant(RHSC
>> Scale
, dl
, MVT::i64
);
970 // Before falling back to our general case, check if the unscaled
971 // instructions can handle this. If so, that's preferable.
972 if (SelectAddrModeUnscaled(N
, Size
, Base
, OffImm
))
975 // Base only. The address will be materialized into a register before
976 // the memory is accessed.
977 // add x0, Xbase, #offset
980 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
984 /// SelectAddrModeUnscaled - Select a "register plus unscaled signed 9-bit
985 /// immediate" address. This should only match when there is an offset that
986 /// is not valid for a scaled immediate addressing mode. The "Size" argument
987 /// is the size in bytes of the memory reference, which is needed here to know
988 /// what is valid for a scaled immediate.
989 bool AArch64DAGToDAGISel::SelectAddrModeUnscaled(SDValue N
, unsigned Size
,
992 if (!CurDAG
->isBaseWithConstantOffset(N
))
994 if (ConstantSDNode
*RHS
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1))) {
995 int64_t RHSC
= RHS
->getSExtValue();
996 // If the offset is valid as a scaled immediate, don't match here.
997 if ((RHSC
& (Size
- 1)) == 0 && RHSC
>= 0 &&
998 RHSC
< (0x1000 << Log2_32(Size
)))
1000 if (RHSC
>= -256 && RHSC
< 256) {
1001 Base
= N
.getOperand(0);
1002 if (Base
.getOpcode() == ISD::FrameIndex
) {
1003 int FI
= cast
<FrameIndexSDNode
>(Base
)->getIndex();
1004 const TargetLowering
*TLI
= getTargetLowering();
1005 Base
= CurDAG
->getTargetFrameIndex(
1006 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
1008 OffImm
= CurDAG
->getTargetConstant(RHSC
, SDLoc(N
), MVT::i64
);
1015 static SDValue
Widen(SelectionDAG
*CurDAG
, SDValue N
) {
1017 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1018 SDValue ImpDef
= SDValue(
1019 CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, dl
, MVT::i64
), 0);
1020 MachineSDNode
*Node
= CurDAG
->getMachineNode(
1021 TargetOpcode::INSERT_SUBREG
, dl
, MVT::i64
, ImpDef
, N
, SubReg
);
1022 return SDValue(Node
, 0);
1025 /// Check if the given SHL node (\p N), can be used to form an
1026 /// extended register for an addressing mode.
1027 bool AArch64DAGToDAGISel::SelectExtendedSHL(SDValue N
, unsigned Size
,
1028 bool WantExtend
, SDValue
&Offset
,
1029 SDValue
&SignExtend
) {
1030 assert(N
.getOpcode() == ISD::SHL
&& "Invalid opcode.");
1031 ConstantSDNode
*CSD
= dyn_cast
<ConstantSDNode
>(N
.getOperand(1));
1032 if (!CSD
|| (CSD
->getZExtValue() & 0x7) != CSD
->getZExtValue())
1037 AArch64_AM::ShiftExtendType Ext
=
1038 getExtendTypeForNode(N
.getOperand(0), true);
1039 if (Ext
== AArch64_AM::InvalidShiftExtend
)
1042 Offset
= narrowIfNeeded(CurDAG
, N
.getOperand(0).getOperand(0));
1043 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
1046 Offset
= N
.getOperand(0);
1047 SignExtend
= CurDAG
->getTargetConstant(0, dl
, MVT::i32
);
1050 unsigned LegalShiftVal
= Log2_32(Size
);
1051 unsigned ShiftVal
= CSD
->getZExtValue();
1053 if (ShiftVal
!= 0 && ShiftVal
!= LegalShiftVal
)
1056 return isWorthFolding(N
);
1059 bool AArch64DAGToDAGISel::SelectAddrModeWRO(SDValue N
, unsigned Size
,
1060 SDValue
&Base
, SDValue
&Offset
,
1061 SDValue
&SignExtend
,
1063 if (N
.getOpcode() != ISD::ADD
)
1065 SDValue LHS
= N
.getOperand(0);
1066 SDValue RHS
= N
.getOperand(1);
1069 // We don't want to match immediate adds here, because they are better lowered
1070 // to the register-immediate addressing modes.
1071 if (isa
<ConstantSDNode
>(LHS
) || isa
<ConstantSDNode
>(RHS
))
1074 // Check if this particular node is reused in any non-memory related
1075 // operation. If yes, do not try to fold this node into the address
1076 // computation, since the computation will be kept.
1077 const SDNode
*Node
= N
.getNode();
1078 for (SDNode
*UI
: Node
->uses()) {
1079 if (!isa
<MemSDNode
>(*UI
))
1083 // Remember if it is worth folding N when it produces extended register.
1084 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
1086 // Try to match a shifted extend on the RHS.
1087 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
1088 SelectExtendedSHL(RHS
, Size
, true, Offset
, SignExtend
)) {
1090 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
1094 // Try to match a shifted extend on the LHS.
1095 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
1096 SelectExtendedSHL(LHS
, Size
, true, Offset
, SignExtend
)) {
1098 DoShift
= CurDAG
->getTargetConstant(true, dl
, MVT::i32
);
1102 // There was no shift, whatever else we find.
1103 DoShift
= CurDAG
->getTargetConstant(false, dl
, MVT::i32
);
1105 AArch64_AM::ShiftExtendType Ext
= AArch64_AM::InvalidShiftExtend
;
1106 // Try to match an unshifted extend on the LHS.
1107 if (IsExtendedRegisterWorthFolding
&&
1108 (Ext
= getExtendTypeForNode(LHS
, true)) !=
1109 AArch64_AM::InvalidShiftExtend
) {
1111 Offset
= narrowIfNeeded(CurDAG
, LHS
.getOperand(0));
1112 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
1114 if (isWorthFolding(LHS
))
1118 // Try to match an unshifted extend on the RHS.
1119 if (IsExtendedRegisterWorthFolding
&&
1120 (Ext
= getExtendTypeForNode(RHS
, true)) !=
1121 AArch64_AM::InvalidShiftExtend
) {
1123 Offset
= narrowIfNeeded(CurDAG
, RHS
.getOperand(0));
1124 SignExtend
= CurDAG
->getTargetConstant(Ext
== AArch64_AM::SXTW
, dl
,
1126 if (isWorthFolding(RHS
))
1133 // Check if the given immediate is preferred by ADD. If an immediate can be
1134 // encoded in an ADD, or it can be encoded in an "ADD LSL #12" and can not be
1135 // encoded by one MOVZ, return true.
1136 static bool isPreferredADD(int64_t ImmOff
) {
1137 // Constant in [0x0, 0xfff] can be encoded in ADD.
1138 if ((ImmOff
& 0xfffffffffffff000LL
) == 0x0LL
)
1140 // Check if it can be encoded in an "ADD LSL #12".
1141 if ((ImmOff
& 0xffffffffff000fffLL
) == 0x0LL
)
1142 // As a single MOVZ is faster than a "ADD of LSL #12", ignore such constant.
1143 return (ImmOff
& 0xffffffffff00ffffLL
) != 0x0LL
&&
1144 (ImmOff
& 0xffffffffffff0fffLL
) != 0x0LL
;
1148 bool AArch64DAGToDAGISel::SelectAddrModeXRO(SDValue N
, unsigned Size
,
1149 SDValue
&Base
, SDValue
&Offset
,
1150 SDValue
&SignExtend
,
1152 if (N
.getOpcode() != ISD::ADD
)
1154 SDValue LHS
= N
.getOperand(0);
1155 SDValue RHS
= N
.getOperand(1);
1158 // Check if this particular node is reused in any non-memory related
1159 // operation. If yes, do not try to fold this node into the address
1160 // computation, since the computation will be kept.
1161 const SDNode
*Node
= N
.getNode();
1162 for (SDNode
*UI
: Node
->uses()) {
1163 if (!isa
<MemSDNode
>(*UI
))
1167 // Watch out if RHS is a wide immediate, it can not be selected into
1168 // [BaseReg+Imm] addressing mode. Also it may not be able to be encoded into
1169 // ADD/SUB. Instead it will use [BaseReg + 0] address mode and generate
1170 // instructions like:
1171 // MOV X0, WideImmediate
1172 // ADD X1, BaseReg, X0
1174 // For such situation, using [BaseReg, XReg] addressing mode can save one
1176 // MOV X0, WideImmediate
1177 // LDR X2, [BaseReg, X0]
1178 if (isa
<ConstantSDNode
>(RHS
)) {
1179 int64_t ImmOff
= (int64_t)cast
<ConstantSDNode
>(RHS
)->getZExtValue();
1180 unsigned Scale
= Log2_32(Size
);
1181 // Skip the immediate can be selected by load/store addressing mode.
1182 // Also skip the immediate can be encoded by a single ADD (SUB is also
1183 // checked by using -ImmOff).
1184 if ((ImmOff
% Size
== 0 && ImmOff
>= 0 && ImmOff
< (0x1000 << Scale
)) ||
1185 isPreferredADD(ImmOff
) || isPreferredADD(-ImmOff
))
1188 SDValue Ops
[] = { RHS
};
1190 CurDAG
->getMachineNode(AArch64::MOVi64imm
, DL
, MVT::i64
, Ops
);
1191 SDValue MOVIV
= SDValue(MOVI
, 0);
1192 // This ADD of two X register will be selected into [Reg+Reg] mode.
1193 N
= CurDAG
->getNode(ISD::ADD
, DL
, MVT::i64
, LHS
, MOVIV
);
1196 // Remember if it is worth folding N when it produces extended register.
1197 bool IsExtendedRegisterWorthFolding
= isWorthFolding(N
);
1199 // Try to match a shifted extend on the RHS.
1200 if (IsExtendedRegisterWorthFolding
&& RHS
.getOpcode() == ISD::SHL
&&
1201 SelectExtendedSHL(RHS
, Size
, false, Offset
, SignExtend
)) {
1203 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1207 // Try to match a shifted extend on the LHS.
1208 if (IsExtendedRegisterWorthFolding
&& LHS
.getOpcode() == ISD::SHL
&&
1209 SelectExtendedSHL(LHS
, Size
, false, Offset
, SignExtend
)) {
1211 DoShift
= CurDAG
->getTargetConstant(true, DL
, MVT::i32
);
1215 // Match any non-shifted, non-extend, non-immediate add expression.
1218 SignExtend
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1219 DoShift
= CurDAG
->getTargetConstant(false, DL
, MVT::i32
);
1220 // Reg1 + Reg2 is free: no check needed.
1224 SDValue
AArch64DAGToDAGISel::createDTuple(ArrayRef
<SDValue
> Regs
) {
1225 static const unsigned RegClassIDs
[] = {
1226 AArch64::DDRegClassID
, AArch64::DDDRegClassID
, AArch64::DDDDRegClassID
};
1227 static const unsigned SubRegs
[] = {AArch64::dsub0
, AArch64::dsub1
,
1228 AArch64::dsub2
, AArch64::dsub3
};
1230 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1233 SDValue
AArch64DAGToDAGISel::createQTuple(ArrayRef
<SDValue
> Regs
) {
1234 static const unsigned RegClassIDs
[] = {
1235 AArch64::QQRegClassID
, AArch64::QQQRegClassID
, AArch64::QQQQRegClassID
};
1236 static const unsigned SubRegs
[] = {AArch64::qsub0
, AArch64::qsub1
,
1237 AArch64::qsub2
, AArch64::qsub3
};
1239 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1242 SDValue
AArch64DAGToDAGISel::createZTuple(ArrayRef
<SDValue
> Regs
) {
1243 static const unsigned RegClassIDs
[] = {AArch64::ZPR2RegClassID
,
1244 AArch64::ZPR3RegClassID
,
1245 AArch64::ZPR4RegClassID
};
1246 static const unsigned SubRegs
[] = {AArch64::zsub0
, AArch64::zsub1
,
1247 AArch64::zsub2
, AArch64::zsub3
};
1249 return createTuple(Regs
, RegClassIDs
, SubRegs
);
1252 SDValue
AArch64DAGToDAGISel::createTuple(ArrayRef
<SDValue
> Regs
,
1253 const unsigned RegClassIDs
[],
1254 const unsigned SubRegs
[]) {
1255 // There's no special register-class for a vector-list of 1 element: it's just
1257 if (Regs
.size() == 1)
1260 assert(Regs
.size() >= 2 && Regs
.size() <= 4);
1264 SmallVector
<SDValue
, 4> Ops
;
1266 // First operand of REG_SEQUENCE is the desired RegClass.
1268 CurDAG
->getTargetConstant(RegClassIDs
[Regs
.size() - 2], DL
, MVT::i32
));
1270 // Then we get pairs of source & subregister-position for the components.
1271 for (unsigned i
= 0; i
< Regs
.size(); ++i
) {
1272 Ops
.push_back(Regs
[i
]);
1273 Ops
.push_back(CurDAG
->getTargetConstant(SubRegs
[i
], DL
, MVT::i32
));
1277 CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
, MVT::Untyped
, Ops
);
1278 return SDValue(N
, 0);
1281 void AArch64DAGToDAGISel::SelectTable(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1284 EVT VT
= N
->getValueType(0);
1286 unsigned ExtOff
= isExt
;
1288 // Form a REG_SEQUENCE to force register allocation.
1289 unsigned Vec0Off
= ExtOff
+ 1;
1290 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + Vec0Off
,
1291 N
->op_begin() + Vec0Off
+ NumVecs
);
1292 SDValue RegSeq
= createQTuple(Regs
);
1294 SmallVector
<SDValue
, 6> Ops
;
1296 Ops
.push_back(N
->getOperand(1));
1297 Ops
.push_back(RegSeq
);
1298 Ops
.push_back(N
->getOperand(NumVecs
+ ExtOff
+ 1));
1299 ReplaceNode(N
, CurDAG
->getMachineNode(Opc
, dl
, VT
, Ops
));
1302 bool AArch64DAGToDAGISel::tryIndexedLoad(SDNode
*N
) {
1303 LoadSDNode
*LD
= cast
<LoadSDNode
>(N
);
1304 if (LD
->isUnindexed())
1306 EVT VT
= LD
->getMemoryVT();
1307 EVT DstVT
= N
->getValueType(0);
1308 ISD::MemIndexedMode AM
= LD
->getAddressingMode();
1309 bool IsPre
= AM
== ISD::PRE_INC
|| AM
== ISD::PRE_DEC
;
1311 // We're not doing validity checking here. That was done when checking
1312 // if we should mark the load as indexed or not. We're just selecting
1313 // the right instruction.
1314 unsigned Opcode
= 0;
1316 ISD::LoadExtType ExtType
= LD
->getExtensionType();
1317 bool InsertTo64
= false;
1319 Opcode
= IsPre
? AArch64::LDRXpre
: AArch64::LDRXpost
;
1320 else if (VT
== MVT::i32
) {
1321 if (ExtType
== ISD::NON_EXTLOAD
)
1322 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1323 else if (ExtType
== ISD::SEXTLOAD
)
1324 Opcode
= IsPre
? AArch64::LDRSWpre
: AArch64::LDRSWpost
;
1326 Opcode
= IsPre
? AArch64::LDRWpre
: AArch64::LDRWpost
;
1328 // The result of the load is only i32. It's the subreg_to_reg that makes
1332 } else if (VT
== MVT::i16
) {
1333 if (ExtType
== ISD::SEXTLOAD
) {
1334 if (DstVT
== MVT::i64
)
1335 Opcode
= IsPre
? AArch64::LDRSHXpre
: AArch64::LDRSHXpost
;
1337 Opcode
= IsPre
? AArch64::LDRSHWpre
: AArch64::LDRSHWpost
;
1339 Opcode
= IsPre
? AArch64::LDRHHpre
: AArch64::LDRHHpost
;
1340 InsertTo64
= DstVT
== MVT::i64
;
1341 // The result of the load is only i32. It's the subreg_to_reg that makes
1345 } else if (VT
== MVT::i8
) {
1346 if (ExtType
== ISD::SEXTLOAD
) {
1347 if (DstVT
== MVT::i64
)
1348 Opcode
= IsPre
? AArch64::LDRSBXpre
: AArch64::LDRSBXpost
;
1350 Opcode
= IsPre
? AArch64::LDRSBWpre
: AArch64::LDRSBWpost
;
1352 Opcode
= IsPre
? AArch64::LDRBBpre
: AArch64::LDRBBpost
;
1353 InsertTo64
= DstVT
== MVT::i64
;
1354 // The result of the load is only i32. It's the subreg_to_reg that makes
1358 } else if (VT
== MVT::f16
) {
1359 Opcode
= IsPre
? AArch64::LDRHpre
: AArch64::LDRHpost
;
1360 } else if (VT
== MVT::bf16
) {
1361 Opcode
= IsPre
? AArch64::LDRHpre
: AArch64::LDRHpost
;
1362 } else if (VT
== MVT::f32
) {
1363 Opcode
= IsPre
? AArch64::LDRSpre
: AArch64::LDRSpost
;
1364 } else if (VT
== MVT::f64
|| VT
.is64BitVector()) {
1365 Opcode
= IsPre
? AArch64::LDRDpre
: AArch64::LDRDpost
;
1366 } else if (VT
.is128BitVector()) {
1367 Opcode
= IsPre
? AArch64::LDRQpre
: AArch64::LDRQpost
;
1370 SDValue Chain
= LD
->getChain();
1371 SDValue Base
= LD
->getBasePtr();
1372 ConstantSDNode
*OffsetOp
= cast
<ConstantSDNode
>(LD
->getOffset());
1373 int OffsetVal
= (int)OffsetOp
->getZExtValue();
1375 SDValue Offset
= CurDAG
->getTargetConstant(OffsetVal
, dl
, MVT::i64
);
1376 SDValue Ops
[] = { Base
, Offset
, Chain
};
1377 SDNode
*Res
= CurDAG
->getMachineNode(Opcode
, dl
, MVT::i64
, DstVT
,
1380 // Transfer memoperands.
1381 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
1382 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Res
), {MemOp
});
1384 // Either way, we're replacing the node, so tell the caller that.
1385 SDValue LoadedVal
= SDValue(Res
, 1);
1387 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
1389 SDValue(CurDAG
->getMachineNode(
1390 AArch64::SUBREG_TO_REG
, dl
, MVT::i64
,
1391 CurDAG
->getTargetConstant(0, dl
, MVT::i64
), LoadedVal
,
1396 ReplaceUses(SDValue(N
, 0), LoadedVal
);
1397 ReplaceUses(SDValue(N
, 1), SDValue(Res
, 0));
1398 ReplaceUses(SDValue(N
, 2), SDValue(Res
, 2));
1399 CurDAG
->RemoveDeadNode(N
);
1403 void AArch64DAGToDAGISel::SelectLoad(SDNode
*N
, unsigned NumVecs
, unsigned Opc
,
1404 unsigned SubRegIdx
) {
1406 EVT VT
= N
->getValueType(0);
1407 SDValue Chain
= N
->getOperand(0);
1409 SDValue Ops
[] = {N
->getOperand(2), // Mem operand;
1412 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1414 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1415 SDValue SuperReg
= SDValue(Ld
, 0);
1416 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1417 ReplaceUses(SDValue(N
, i
),
1418 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1420 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1422 // Transfer memoperands. In the case of AArch64::LD64B, there won't be one,
1423 // because it's too simple to have needed special treatment during lowering.
1424 if (auto *MemIntr
= dyn_cast
<MemIntrinsicSDNode
>(N
)) {
1425 MachineMemOperand
*MemOp
= MemIntr
->getMemOperand();
1426 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
1429 CurDAG
->RemoveDeadNode(N
);
1432 void AArch64DAGToDAGISel::SelectPostLoad(SDNode
*N
, unsigned NumVecs
,
1433 unsigned Opc
, unsigned SubRegIdx
) {
1435 EVT VT
= N
->getValueType(0);
1436 SDValue Chain
= N
->getOperand(0);
1438 SDValue Ops
[] = {N
->getOperand(1), // Mem operand
1439 N
->getOperand(2), // Incremental
1442 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1443 MVT::Untyped
, MVT::Other
};
1445 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1447 // Update uses of write back register
1448 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1450 // Update uses of vector list
1451 SDValue SuperReg
= SDValue(Ld
, 1);
1453 ReplaceUses(SDValue(N
, 0), SuperReg
);
1455 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1456 ReplaceUses(SDValue(N
, i
),
1457 CurDAG
->getTargetExtractSubreg(SubRegIdx
+ i
, dl
, VT
, SuperReg
));
1460 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1461 CurDAG
->RemoveDeadNode(N
);
1464 /// Optimize \param OldBase and \param OldOffset selecting the best addressing
1465 /// mode. Returns a tuple consisting of an Opcode, an SDValue representing the
1466 /// new Base and an SDValue representing the new offset.
1467 std::tuple
<unsigned, SDValue
, SDValue
>
1468 AArch64DAGToDAGISel::findAddrModeSVELoadStore(SDNode
*N
, unsigned Opc_rr
,
1470 const SDValue
&OldBase
,
1471 const SDValue
&OldOffset
,
1473 SDValue NewBase
= OldBase
;
1474 SDValue NewOffset
= OldOffset
;
1475 // Detect a possible Reg+Imm addressing mode.
1476 const bool IsRegImm
= SelectAddrModeIndexedSVE
</*Min=*/-8, /*Max=*/7>(
1477 N
, OldBase
, NewBase
, NewOffset
);
1479 // Detect a possible reg+reg addressing mode, but only if we haven't already
1480 // detected a Reg+Imm one.
1481 const bool IsRegReg
=
1482 !IsRegImm
&& SelectSVERegRegAddrMode(OldBase
, Scale
, NewBase
, NewOffset
);
1484 // Select the instruction.
1485 return std::make_tuple(IsRegReg
? Opc_rr
: Opc_ri
, NewBase
, NewOffset
);
1488 void AArch64DAGToDAGISel::SelectPredicatedLoad(SDNode
*N
, unsigned NumVecs
,
1489 unsigned Scale
, unsigned Opc_ri
,
1491 assert(Scale
< 4 && "Invalid scaling value.");
1493 EVT VT
= N
->getValueType(0);
1494 SDValue Chain
= N
->getOperand(0);
1496 // Optimize addressing mode.
1497 SDValue Base
, Offset
;
1499 std::tie(Opc
, Base
, Offset
) = findAddrModeSVELoadStore(
1500 N
, Opc_rr
, Opc_ri
, N
->getOperand(2),
1501 CurDAG
->getTargetConstant(0, DL
, MVT::i64
), Scale
);
1503 SDValue Ops
[] = {N
->getOperand(1), // Predicate
1504 Base
, // Memory operand
1507 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1509 SDNode
*Load
= CurDAG
->getMachineNode(Opc
, DL
, ResTys
, Ops
);
1510 SDValue SuperReg
= SDValue(Load
, 0);
1511 for (unsigned i
= 0; i
< NumVecs
; ++i
)
1512 ReplaceUses(SDValue(N
, i
), CurDAG
->getTargetExtractSubreg(
1513 AArch64::zsub0
+ i
, DL
, VT
, SuperReg
));
1516 unsigned ChainIdx
= NumVecs
;
1517 ReplaceUses(SDValue(N
, ChainIdx
), SDValue(Load
, 1));
1518 CurDAG
->RemoveDeadNode(N
);
1521 void AArch64DAGToDAGISel::SelectStore(SDNode
*N
, unsigned NumVecs
,
1524 EVT VT
= N
->getOperand(2)->getValueType(0);
1526 // Form a REG_SEQUENCE to force register allocation.
1527 bool Is128Bit
= VT
.getSizeInBits() == 128;
1528 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1529 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1531 SDValue Ops
[] = {RegSeq
, N
->getOperand(NumVecs
+ 2), N
->getOperand(0)};
1532 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, N
->getValueType(0), Ops
);
1534 // Transfer memoperands.
1535 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1536 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1541 void AArch64DAGToDAGISel::SelectPredicatedStore(SDNode
*N
, unsigned NumVecs
,
1542 unsigned Scale
, unsigned Opc_rr
,
1546 // Form a REG_SEQUENCE to force register allocation.
1547 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1548 SDValue RegSeq
= createZTuple(Regs
);
1550 // Optimize addressing mode.
1552 SDValue Offset
, Base
;
1553 std::tie(Opc
, Base
, Offset
) = findAddrModeSVELoadStore(
1554 N
, Opc_rr
, Opc_ri
, N
->getOperand(NumVecs
+ 3),
1555 CurDAG
->getTargetConstant(0, dl
, MVT::i64
), Scale
);
1557 SDValue Ops
[] = {RegSeq
, N
->getOperand(NumVecs
+ 2), // predicate
1560 N
->getOperand(0)}; // chain
1561 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, N
->getValueType(0), Ops
);
1566 bool AArch64DAGToDAGISel::SelectAddrModeFrameIndexSVE(SDValue N
, SDValue
&Base
,
1569 const DataLayout
&DL
= CurDAG
->getDataLayout();
1570 const TargetLowering
*TLI
= getTargetLowering();
1572 // Try to match it for the frame address
1573 if (auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
)) {
1574 int FI
= FINode
->getIndex();
1575 Base
= CurDAG
->getTargetFrameIndex(FI
, TLI
->getPointerTy(DL
));
1576 OffImm
= CurDAG
->getTargetConstant(0, dl
, MVT::i64
);
1583 void AArch64DAGToDAGISel::SelectPostStore(SDNode
*N
, unsigned NumVecs
,
1586 EVT VT
= N
->getOperand(2)->getValueType(0);
1587 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1588 MVT::Other
}; // Type for the Chain
1590 // Form a REG_SEQUENCE to force register allocation.
1591 bool Is128Bit
= VT
.getSizeInBits() == 128;
1592 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1593 SDValue RegSeq
= Is128Bit
? createQTuple(Regs
) : createDTuple(Regs
);
1595 SDValue Ops
[] = {RegSeq
,
1596 N
->getOperand(NumVecs
+ 1), // base register
1597 N
->getOperand(NumVecs
+ 2), // Incremental
1598 N
->getOperand(0)}; // Chain
1599 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1605 /// WidenVector - Given a value in the V64 register class, produce the
1606 /// equivalent value in the V128 register class.
1611 WidenVector(SelectionDAG
&DAG
) : DAG(DAG
) {}
1613 SDValue
operator()(SDValue V64Reg
) {
1614 EVT VT
= V64Reg
.getValueType();
1615 unsigned NarrowSize
= VT
.getVectorNumElements();
1616 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1617 MVT WideTy
= MVT::getVectorVT(EltTy
, 2 * NarrowSize
);
1621 SDValue(DAG
.getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, WideTy
), 0);
1622 return DAG
.getTargetInsertSubreg(AArch64::dsub
, DL
, WideTy
, Undef
, V64Reg
);
1627 /// NarrowVector - Given a value in the V128 register class, produce the
1628 /// equivalent value in the V64 register class.
1629 static SDValue
NarrowVector(SDValue V128Reg
, SelectionDAG
&DAG
) {
1630 EVT VT
= V128Reg
.getValueType();
1631 unsigned WideSize
= VT
.getVectorNumElements();
1632 MVT EltTy
= VT
.getVectorElementType().getSimpleVT();
1633 MVT NarrowTy
= MVT::getVectorVT(EltTy
, WideSize
/ 2);
1635 return DAG
.getTargetExtractSubreg(AArch64::dsub
, SDLoc(V128Reg
), NarrowTy
,
1639 void AArch64DAGToDAGISel::SelectLoadLane(SDNode
*N
, unsigned NumVecs
,
1642 EVT VT
= N
->getValueType(0);
1643 bool Narrow
= VT
.getSizeInBits() == 64;
1645 // Form a REG_SEQUENCE to force register allocation.
1646 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1649 transform(Regs
, Regs
.begin(),
1650 WidenVector(*CurDAG
));
1652 SDValue RegSeq
= createQTuple(Regs
);
1654 const EVT ResTys
[] = {MVT::Untyped
, MVT::Other
};
1657 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1659 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1660 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1661 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1662 SDValue SuperReg
= SDValue(Ld
, 0);
1664 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1665 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1666 AArch64::qsub2
, AArch64::qsub3
};
1667 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1668 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
, SuperReg
);
1670 NV
= NarrowVector(NV
, *CurDAG
);
1671 ReplaceUses(SDValue(N
, i
), NV
);
1674 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 1));
1675 CurDAG
->RemoveDeadNode(N
);
1678 void AArch64DAGToDAGISel::SelectPostLoadLane(SDNode
*N
, unsigned NumVecs
,
1681 EVT VT
= N
->getValueType(0);
1682 bool Narrow
= VT
.getSizeInBits() == 64;
1684 // Form a REG_SEQUENCE to force register allocation.
1685 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1688 transform(Regs
, Regs
.begin(),
1689 WidenVector(*CurDAG
));
1691 SDValue RegSeq
= createQTuple(Regs
);
1693 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1694 RegSeq
->getValueType(0), MVT::Other
};
1697 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1699 SDValue Ops
[] = {RegSeq
,
1700 CurDAG
->getTargetConstant(LaneNo
, dl
,
1701 MVT::i64
), // Lane Number
1702 N
->getOperand(NumVecs
+ 2), // Base register
1703 N
->getOperand(NumVecs
+ 3), // Incremental
1705 SDNode
*Ld
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1707 // Update uses of the write back register
1708 ReplaceUses(SDValue(N
, NumVecs
), SDValue(Ld
, 0));
1710 // Update uses of the vector list
1711 SDValue SuperReg
= SDValue(Ld
, 1);
1713 ReplaceUses(SDValue(N
, 0),
1714 Narrow
? NarrowVector(SuperReg
, *CurDAG
) : SuperReg
);
1716 EVT WideVT
= RegSeq
.getOperand(1)->getValueType(0);
1717 static const unsigned QSubs
[] = { AArch64::qsub0
, AArch64::qsub1
,
1718 AArch64::qsub2
, AArch64::qsub3
};
1719 for (unsigned i
= 0; i
< NumVecs
; ++i
) {
1720 SDValue NV
= CurDAG
->getTargetExtractSubreg(QSubs
[i
], dl
, WideVT
,
1723 NV
= NarrowVector(NV
, *CurDAG
);
1724 ReplaceUses(SDValue(N
, i
), NV
);
1729 ReplaceUses(SDValue(N
, NumVecs
+ 1), SDValue(Ld
, 2));
1730 CurDAG
->RemoveDeadNode(N
);
1733 void AArch64DAGToDAGISel::SelectStoreLane(SDNode
*N
, unsigned NumVecs
,
1736 EVT VT
= N
->getOperand(2)->getValueType(0);
1737 bool Narrow
= VT
.getSizeInBits() == 64;
1739 // Form a REG_SEQUENCE to force register allocation.
1740 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 2, N
->op_begin() + 2 + NumVecs
);
1743 transform(Regs
, Regs
.begin(),
1744 WidenVector(*CurDAG
));
1746 SDValue RegSeq
= createQTuple(Regs
);
1749 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 2))->getZExtValue();
1751 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1752 N
->getOperand(NumVecs
+ 3), N
->getOperand(0)};
1753 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, MVT::Other
, Ops
);
1755 // Transfer memoperands.
1756 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1757 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1762 void AArch64DAGToDAGISel::SelectPostStoreLane(SDNode
*N
, unsigned NumVecs
,
1765 EVT VT
= N
->getOperand(2)->getValueType(0);
1766 bool Narrow
= VT
.getSizeInBits() == 64;
1768 // Form a REG_SEQUENCE to force register allocation.
1769 SmallVector
<SDValue
, 4> Regs(N
->op_begin() + 1, N
->op_begin() + 1 + NumVecs
);
1772 transform(Regs
, Regs
.begin(),
1773 WidenVector(*CurDAG
));
1775 SDValue RegSeq
= createQTuple(Regs
);
1777 const EVT ResTys
[] = {MVT::i64
, // Type of the write back register
1781 cast
<ConstantSDNode
>(N
->getOperand(NumVecs
+ 1))->getZExtValue();
1783 SDValue Ops
[] = {RegSeq
, CurDAG
->getTargetConstant(LaneNo
, dl
, MVT::i64
),
1784 N
->getOperand(NumVecs
+ 2), // Base Register
1785 N
->getOperand(NumVecs
+ 3), // Incremental
1787 SDNode
*St
= CurDAG
->getMachineNode(Opc
, dl
, ResTys
, Ops
);
1789 // Transfer memoperands.
1790 MachineMemOperand
*MemOp
= cast
<MemIntrinsicSDNode
>(N
)->getMemOperand();
1791 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
1796 static bool isBitfieldExtractOpFromAnd(SelectionDAG
*CurDAG
, SDNode
*N
,
1797 unsigned &Opc
, SDValue
&Opd0
,
1798 unsigned &LSB
, unsigned &MSB
,
1799 unsigned NumberOfIgnoredLowBits
,
1800 bool BiggerPattern
) {
1801 assert(N
->getOpcode() == ISD::AND
&&
1802 "N must be a AND operation to call this function");
1804 EVT VT
= N
->getValueType(0);
1806 // Here we can test the type of VT and return false when the type does not
1807 // match, but since it is done prior to that call in the current context
1808 // we turned that into an assert to avoid redundant code.
1809 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1810 "Type checking must have been done before calling this function");
1812 // FIXME: simplify-demanded-bits in DAGCombine will probably have
1813 // changed the AND node to a 32-bit mask operation. We'll have to
1814 // undo that as part of the transform here if we want to catch all
1815 // the opportunities.
1816 // Currently the NumberOfIgnoredLowBits argument helps to recover
1817 // form these situations when matching bigger pattern (bitfield insert).
1819 // For unsigned extracts, check for a shift right and mask
1820 uint64_t AndImm
= 0;
1821 if (!isOpcWithIntImmediate(N
, ISD::AND
, AndImm
))
1824 const SDNode
*Op0
= N
->getOperand(0).getNode();
1826 // Because of simplify-demanded-bits in DAGCombine, the mask may have been
1827 // simplified. Try to undo that
1828 AndImm
|= maskTrailingOnes
<uint64_t>(NumberOfIgnoredLowBits
);
1830 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
1831 if (AndImm
& (AndImm
+ 1))
1834 bool ClampMSB
= false;
1835 uint64_t SrlImm
= 0;
1836 // Handle the SRL + ANY_EXTEND case.
1837 if (VT
== MVT::i64
&& Op0
->getOpcode() == ISD::ANY_EXTEND
&&
1838 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
, SrlImm
)) {
1839 // Extend the incoming operand of the SRL to 64-bit.
1840 Opd0
= Widen(CurDAG
, Op0
->getOperand(0).getOperand(0));
1841 // Make sure to clamp the MSB so that we preserve the semantics of the
1842 // original operations.
1844 } else if (VT
== MVT::i32
&& Op0
->getOpcode() == ISD::TRUNCATE
&&
1845 isOpcWithIntImmediate(Op0
->getOperand(0).getNode(), ISD::SRL
,
1847 // If the shift result was truncated, we can still combine them.
1848 Opd0
= Op0
->getOperand(0).getOperand(0);
1850 // Use the type of SRL node.
1851 VT
= Opd0
->getValueType(0);
1852 } else if (isOpcWithIntImmediate(Op0
, ISD::SRL
, SrlImm
)) {
1853 Opd0
= Op0
->getOperand(0);
1854 } else if (BiggerPattern
) {
1855 // Let's pretend a 0 shift right has been performed.
1856 // The resulting code will be at least as good as the original one
1857 // plus it may expose more opportunities for bitfield insert pattern.
1858 // FIXME: Currently we limit this to the bigger pattern, because
1859 // some optimizations expect AND and not UBFM.
1860 Opd0
= N
->getOperand(0);
1864 // Bail out on large immediates. This happens when no proper
1865 // combining/constant folding was performed.
1866 if (!BiggerPattern
&& (SrlImm
<= 0 || SrlImm
>= VT
.getSizeInBits())) {
1869 << ": Found large shift immediate, this should not happen\n"));
1874 MSB
= SrlImm
+ (VT
== MVT::i32
? countTrailingOnes
<uint32_t>(AndImm
)
1875 : countTrailingOnes
<uint64_t>(AndImm
)) -
1878 // Since we're moving the extend before the right shift operation, we need
1879 // to clamp the MSB to make sure we don't shift in undefined bits instead of
1880 // the zeros which would get shifted in with the original right shift
1882 MSB
= MSB
> 31 ? 31 : MSB
;
1884 Opc
= VT
== MVT::i32
? AArch64::UBFMWri
: AArch64::UBFMXri
;
1888 static bool isBitfieldExtractOpFromSExtInReg(SDNode
*N
, unsigned &Opc
,
1889 SDValue
&Opd0
, unsigned &Immr
,
1891 assert(N
->getOpcode() == ISD::SIGN_EXTEND_INREG
);
1893 EVT VT
= N
->getValueType(0);
1894 unsigned BitWidth
= VT
.getSizeInBits();
1895 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1896 "Type checking must have been done before calling this function");
1898 SDValue Op
= N
->getOperand(0);
1899 if (Op
->getOpcode() == ISD::TRUNCATE
) {
1900 Op
= Op
->getOperand(0);
1901 VT
= Op
->getValueType(0);
1902 BitWidth
= VT
.getSizeInBits();
1906 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRL
, ShiftImm
) &&
1907 !isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
1910 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
1911 if (ShiftImm
+ Width
> BitWidth
)
1914 Opc
= (VT
== MVT::i32
) ? AArch64::SBFMWri
: AArch64::SBFMXri
;
1915 Opd0
= Op
.getOperand(0);
1917 Imms
= ShiftImm
+ Width
- 1;
1921 static bool isSeveralBitsExtractOpFromShr(SDNode
*N
, unsigned &Opc
,
1922 SDValue
&Opd0
, unsigned &LSB
,
1924 // We are looking for the following pattern which basically extracts several
1925 // continuous bits from the source value and places it from the LSB of the
1926 // destination value, all other bits of the destination value or set to zero:
1928 // Value2 = AND Value, MaskImm
1929 // SRL Value2, ShiftImm
1931 // with MaskImm >> ShiftImm to search for the bit width.
1933 // This gets selected into a single UBFM:
1935 // UBFM Value, ShiftImm, BitWide + SrlImm -1
1938 if (N
->getOpcode() != ISD::SRL
)
1941 uint64_t AndMask
= 0;
1942 if (!isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::AND
, AndMask
))
1945 Opd0
= N
->getOperand(0).getOperand(0);
1947 uint64_t SrlImm
= 0;
1948 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
1951 // Check whether we really have several bits extract here.
1952 unsigned BitWide
= 64 - countLeadingOnes(~(AndMask
>> SrlImm
));
1953 if (BitWide
&& isMask_64(AndMask
>> SrlImm
)) {
1954 if (N
->getValueType(0) == MVT::i32
)
1955 Opc
= AArch64::UBFMWri
;
1957 Opc
= AArch64::UBFMXri
;
1960 MSB
= BitWide
+ SrlImm
- 1;
1967 static bool isBitfieldExtractOpFromShr(SDNode
*N
, unsigned &Opc
, SDValue
&Opd0
,
1968 unsigned &Immr
, unsigned &Imms
,
1969 bool BiggerPattern
) {
1970 assert((N
->getOpcode() == ISD::SRA
|| N
->getOpcode() == ISD::SRL
) &&
1971 "N must be a SHR/SRA operation to call this function");
1973 EVT VT
= N
->getValueType(0);
1975 // Here we can test the type of VT and return false when the type does not
1976 // match, but since it is done prior to that call in the current context
1977 // we turned that into an assert to avoid redundant code.
1978 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
1979 "Type checking must have been done before calling this function");
1981 // Check for AND + SRL doing several bits extract.
1982 if (isSeveralBitsExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
))
1985 // We're looking for a shift of a shift.
1986 uint64_t ShlImm
= 0;
1987 uint64_t TruncBits
= 0;
1988 if (isOpcWithIntImmediate(N
->getOperand(0).getNode(), ISD::SHL
, ShlImm
)) {
1989 Opd0
= N
->getOperand(0).getOperand(0);
1990 } else if (VT
== MVT::i32
&& N
->getOpcode() == ISD::SRL
&&
1991 N
->getOperand(0).getNode()->getOpcode() == ISD::TRUNCATE
) {
1992 // We are looking for a shift of truncate. Truncate from i64 to i32 could
1993 // be considered as setting high 32 bits as zero. Our strategy here is to
1994 // always generate 64bit UBFM. This consistency will help the CSE pass
1995 // later find more redundancy.
1996 Opd0
= N
->getOperand(0).getOperand(0);
1997 TruncBits
= Opd0
->getValueType(0).getSizeInBits() - VT
.getSizeInBits();
1998 VT
= Opd0
.getValueType();
1999 assert(VT
== MVT::i64
&& "the promoted type should be i64");
2000 } else if (BiggerPattern
) {
2001 // Let's pretend a 0 shift left has been performed.
2002 // FIXME: Currently we limit this to the bigger pattern case,
2003 // because some optimizations expect AND and not UBFM
2004 Opd0
= N
->getOperand(0);
2008 // Missing combines/constant folding may have left us with strange
2010 if (ShlImm
>= VT
.getSizeInBits()) {
2013 << ": Found large shift immediate, this should not happen\n"));
2017 uint64_t SrlImm
= 0;
2018 if (!isIntImmediate(N
->getOperand(1), SrlImm
))
2021 assert(SrlImm
> 0 && SrlImm
< VT
.getSizeInBits() &&
2022 "bad amount in shift node!");
2023 int immr
= SrlImm
- ShlImm
;
2024 Immr
= immr
< 0 ? immr
+ VT
.getSizeInBits() : immr
;
2025 Imms
= VT
.getSizeInBits() - ShlImm
- TruncBits
- 1;
2026 // SRA requires a signed extraction
2028 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMWri
: AArch64::UBFMWri
;
2030 Opc
= N
->getOpcode() == ISD::SRA
? AArch64::SBFMXri
: AArch64::UBFMXri
;
2034 bool AArch64DAGToDAGISel::tryBitfieldExtractOpFromSExt(SDNode
*N
) {
2035 assert(N
->getOpcode() == ISD::SIGN_EXTEND
);
2037 EVT VT
= N
->getValueType(0);
2038 EVT NarrowVT
= N
->getOperand(0)->getValueType(0);
2039 if (VT
!= MVT::i64
|| NarrowVT
!= MVT::i32
)
2043 SDValue Op
= N
->getOperand(0);
2044 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SRA
, ShiftImm
))
2048 // Extend the incoming operand of the shift to 64-bits.
2049 SDValue Opd0
= Widen(CurDAG
, Op
.getOperand(0));
2050 unsigned Immr
= ShiftImm
;
2051 unsigned Imms
= NarrowVT
.getSizeInBits() - 1;
2052 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
2053 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
2054 CurDAG
->SelectNodeTo(N
, AArch64::SBFMXri
, VT
, Ops
);
2058 /// Try to form fcvtl2 instructions from a floating-point extend of a high-half
2059 /// extract of a subvector.
2060 bool AArch64DAGToDAGISel::tryHighFPExt(SDNode
*N
) {
2061 assert(N
->getOpcode() == ISD::FP_EXTEND
);
2063 // There are 2 forms of fcvtl2 - extend to double or extend to float.
2064 SDValue Extract
= N
->getOperand(0);
2065 EVT VT
= N
->getValueType(0);
2066 EVT NarrowVT
= Extract
.getValueType();
2067 if ((VT
!= MVT::v2f64
|| NarrowVT
!= MVT::v2f32
) &&
2068 (VT
!= MVT::v4f32
|| NarrowVT
!= MVT::v4f16
))
2071 // Optionally look past a bitcast.
2072 Extract
= peekThroughBitcasts(Extract
);
2073 if (Extract
.getOpcode() != ISD::EXTRACT_SUBVECTOR
)
2076 // Match extract from start of high half index.
2077 // Example: v8i16 -> v4i16 means the extract must begin at index 4.
2078 unsigned ExtractIndex
= Extract
.getConstantOperandVal(1);
2079 if (ExtractIndex
!= Extract
.getValueType().getVectorNumElements())
2082 auto Opcode
= VT
== MVT::v2f64
? AArch64::FCVTLv4i32
: AArch64::FCVTLv8i16
;
2083 CurDAG
->SelectNodeTo(N
, Opcode
, VT
, Extract
.getOperand(0));
2087 static bool isBitfieldExtractOp(SelectionDAG
*CurDAG
, SDNode
*N
, unsigned &Opc
,
2088 SDValue
&Opd0
, unsigned &Immr
, unsigned &Imms
,
2089 unsigned NumberOfIgnoredLowBits
= 0,
2090 bool BiggerPattern
= false) {
2091 if (N
->getValueType(0) != MVT::i32
&& N
->getValueType(0) != MVT::i64
)
2094 switch (N
->getOpcode()) {
2096 if (!N
->isMachineOpcode())
2100 return isBitfieldExtractOpFromAnd(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
,
2101 NumberOfIgnoredLowBits
, BiggerPattern
);
2104 return isBitfieldExtractOpFromShr(N
, Opc
, Opd0
, Immr
, Imms
, BiggerPattern
);
2106 case ISD::SIGN_EXTEND_INREG
:
2107 return isBitfieldExtractOpFromSExtInReg(N
, Opc
, Opd0
, Immr
, Imms
);
2110 unsigned NOpc
= N
->getMachineOpcode();
2114 case AArch64::SBFMWri
:
2115 case AArch64::UBFMWri
:
2116 case AArch64::SBFMXri
:
2117 case AArch64::UBFMXri
:
2119 Opd0
= N
->getOperand(0);
2120 Immr
= cast
<ConstantSDNode
>(N
->getOperand(1).getNode())->getZExtValue();
2121 Imms
= cast
<ConstantSDNode
>(N
->getOperand(2).getNode())->getZExtValue();
2128 bool AArch64DAGToDAGISel::tryBitfieldExtractOp(SDNode
*N
) {
2129 unsigned Opc
, Immr
, Imms
;
2131 if (!isBitfieldExtractOp(CurDAG
, N
, Opc
, Opd0
, Immr
, Imms
))
2134 EVT VT
= N
->getValueType(0);
2137 // If the bit extract operation is 64bit but the original type is 32bit, we
2138 // need to add one EXTRACT_SUBREG.
2139 if ((Opc
== AArch64::SBFMXri
|| Opc
== AArch64::UBFMXri
) && VT
== MVT::i32
) {
2140 SDValue Ops64
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, MVT::i64
),
2141 CurDAG
->getTargetConstant(Imms
, dl
, MVT::i64
)};
2143 SDNode
*BFM
= CurDAG
->getMachineNode(Opc
, dl
, MVT::i64
, Ops64
);
2144 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, dl
, MVT::i32
);
2145 ReplaceNode(N
, CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, dl
,
2146 MVT::i32
, SDValue(BFM
, 0), SubReg
));
2150 SDValue Ops
[] = {Opd0
, CurDAG
->getTargetConstant(Immr
, dl
, VT
),
2151 CurDAG
->getTargetConstant(Imms
, dl
, VT
)};
2152 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2156 /// Does DstMask form a complementary pair with the mask provided by
2157 /// BitsToBeInserted, suitable for use in a BFI instruction. Roughly speaking,
2158 /// this asks whether DstMask zeroes precisely those bits that will be set by
2160 static bool isBitfieldDstMask(uint64_t DstMask
, const APInt
&BitsToBeInserted
,
2161 unsigned NumberOfIgnoredHighBits
, EVT VT
) {
2162 assert((VT
== MVT::i32
|| VT
== MVT::i64
) &&
2163 "i32 or i64 mask type expected!");
2164 unsigned BitWidth
= VT
.getSizeInBits() - NumberOfIgnoredHighBits
;
2166 APInt SignificantDstMask
= APInt(BitWidth
, DstMask
);
2167 APInt SignificantBitsToBeInserted
= BitsToBeInserted
.zextOrTrunc(BitWidth
);
2169 return (SignificantDstMask
& SignificantBitsToBeInserted
) == 0 &&
2170 (SignificantDstMask
| SignificantBitsToBeInserted
).isAllOnesValue();
2173 // Look for bits that will be useful for later uses.
2174 // A bit is consider useless as soon as it is dropped and never used
2175 // before it as been dropped.
2176 // E.g., looking for useful bit of x
2179 // After #1, x useful bits are 0x7, then the useful bits of x, live through
2181 // After #2, the useful bits of x are 0x4.
2182 // However, if x is used on an unpredicatable instruction, then all its bits
2188 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
= 0);
2190 static void getUsefulBitsFromAndWithImmediate(SDValue Op
, APInt
&UsefulBits
,
2193 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
2194 Imm
= AArch64_AM::decodeLogicalImmediate(Imm
, UsefulBits
.getBitWidth());
2195 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), Imm
);
2196 getUsefulBits(Op
, UsefulBits
, Depth
+ 1);
2199 static void getUsefulBitsFromBitfieldMoveOpd(SDValue Op
, APInt
&UsefulBits
,
2200 uint64_t Imm
, uint64_t MSB
,
2202 // inherit the bitwidth value
2203 APInt
OpUsefulBits(UsefulBits
);
2207 OpUsefulBits
<<= MSB
- Imm
+ 1;
2209 // The interesting part will be in the lower part of the result
2210 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
2211 // The interesting part was starting at Imm in the argument
2212 OpUsefulBits
<<= Imm
;
2214 OpUsefulBits
<<= MSB
+ 1;
2216 // The interesting part will be shifted in the result
2217 OpUsefulBits
<<= OpUsefulBits
.getBitWidth() - Imm
;
2218 getUsefulBits(Op
, OpUsefulBits
, Depth
+ 1);
2219 // The interesting part was at zero in the argument
2220 OpUsefulBits
.lshrInPlace(OpUsefulBits
.getBitWidth() - Imm
);
2223 UsefulBits
&= OpUsefulBits
;
2226 static void getUsefulBitsFromUBFM(SDValue Op
, APInt
&UsefulBits
,
2229 cast
<const ConstantSDNode
>(Op
.getOperand(1).getNode())->getZExtValue();
2231 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
2233 getUsefulBitsFromBitfieldMoveOpd(Op
, UsefulBits
, Imm
, MSB
, Depth
);
2236 static void getUsefulBitsFromOrWithShiftedReg(SDValue Op
, APInt
&UsefulBits
,
2238 uint64_t ShiftTypeAndValue
=
2239 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
2240 APInt
Mask(UsefulBits
);
2241 Mask
.clearAllBits();
2244 if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSL
) {
2246 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
2248 getUsefulBits(Op
, Mask
, Depth
+ 1);
2249 Mask
.lshrInPlace(ShiftAmt
);
2250 } else if (AArch64_AM::getShiftType(ShiftTypeAndValue
) == AArch64_AM::LSR
) {
2252 // We do not handle AArch64_AM::ASR, because the sign will change the
2253 // number of useful bits
2254 uint64_t ShiftAmt
= AArch64_AM::getShiftValue(ShiftTypeAndValue
);
2255 Mask
.lshrInPlace(ShiftAmt
);
2256 getUsefulBits(Op
, Mask
, Depth
+ 1);
2264 static void getUsefulBitsFromBFM(SDValue Op
, SDValue Orig
, APInt
&UsefulBits
,
2267 cast
<const ConstantSDNode
>(Op
.getOperand(2).getNode())->getZExtValue();
2269 cast
<const ConstantSDNode
>(Op
.getOperand(3).getNode())->getZExtValue();
2271 APInt
OpUsefulBits(UsefulBits
);
2274 APInt
ResultUsefulBits(UsefulBits
.getBitWidth(), 0);
2275 ResultUsefulBits
.flipAllBits();
2276 APInt
Mask(UsefulBits
.getBitWidth(), 0);
2278 getUsefulBits(Op
, ResultUsefulBits
, Depth
+ 1);
2281 // The instruction is a BFXIL.
2282 uint64_t Width
= MSB
- Imm
+ 1;
2285 OpUsefulBits
<<= Width
;
2288 if (Op
.getOperand(1) == Orig
) {
2289 // Copy the low bits from the result to bits starting from LSB.
2290 Mask
= ResultUsefulBits
& OpUsefulBits
;
2294 if (Op
.getOperand(0) == Orig
)
2295 // Bits starting from LSB in the input contribute to the result.
2296 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
2298 // The instruction is a BFI.
2299 uint64_t Width
= MSB
+ 1;
2300 uint64_t LSB
= UsefulBits
.getBitWidth() - Imm
;
2302 OpUsefulBits
<<= Width
;
2304 OpUsefulBits
<<= LSB
;
2306 if (Op
.getOperand(1) == Orig
) {
2307 // Copy the bits from the result to the zero bits.
2308 Mask
= ResultUsefulBits
& OpUsefulBits
;
2309 Mask
.lshrInPlace(LSB
);
2312 if (Op
.getOperand(0) == Orig
)
2313 Mask
|= (ResultUsefulBits
& ~OpUsefulBits
);
2319 static void getUsefulBitsForUse(SDNode
*UserNode
, APInt
&UsefulBits
,
2320 SDValue Orig
, unsigned Depth
) {
2322 // Users of this node should have already been instruction selected
2323 // FIXME: Can we turn that into an assert?
2324 if (!UserNode
->isMachineOpcode())
2327 switch (UserNode
->getMachineOpcode()) {
2330 case AArch64::ANDSWri
:
2331 case AArch64::ANDSXri
:
2332 case AArch64::ANDWri
:
2333 case AArch64::ANDXri
:
2334 // We increment Depth only when we call the getUsefulBits
2335 return getUsefulBitsFromAndWithImmediate(SDValue(UserNode
, 0), UsefulBits
,
2337 case AArch64::UBFMWri
:
2338 case AArch64::UBFMXri
:
2339 return getUsefulBitsFromUBFM(SDValue(UserNode
, 0), UsefulBits
, Depth
);
2341 case AArch64::ORRWrs
:
2342 case AArch64::ORRXrs
:
2343 if (UserNode
->getOperand(0) != Orig
&& UserNode
->getOperand(1) == Orig
)
2344 getUsefulBitsFromOrWithShiftedReg(SDValue(UserNode
, 0), UsefulBits
,
2347 case AArch64::BFMWri
:
2348 case AArch64::BFMXri
:
2349 return getUsefulBitsFromBFM(SDValue(UserNode
, 0), Orig
, UsefulBits
, Depth
);
2351 case AArch64::STRBBui
:
2352 case AArch64::STURBBi
:
2353 if (UserNode
->getOperand(0) != Orig
)
2355 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xff);
2358 case AArch64::STRHHui
:
2359 case AArch64::STURHHi
:
2360 if (UserNode
->getOperand(0) != Orig
)
2362 UsefulBits
&= APInt(UsefulBits
.getBitWidth(), 0xffff);
2367 static void getUsefulBits(SDValue Op
, APInt
&UsefulBits
, unsigned Depth
) {
2368 if (Depth
>= SelectionDAG::MaxRecursionDepth
)
2370 // Initialize UsefulBits
2372 unsigned Bitwidth
= Op
.getScalarValueSizeInBits();
2373 // At the beginning, assume every produced bits is useful
2374 UsefulBits
= APInt(Bitwidth
, 0);
2375 UsefulBits
.flipAllBits();
2377 APInt
UsersUsefulBits(UsefulBits
.getBitWidth(), 0);
2379 for (SDNode
*Node
: Op
.getNode()->uses()) {
2380 // A use cannot produce useful bits
2381 APInt UsefulBitsForUse
= APInt(UsefulBits
);
2382 getUsefulBitsForUse(Node
, UsefulBitsForUse
, Op
, Depth
);
2383 UsersUsefulBits
|= UsefulBitsForUse
;
2385 // UsefulBits contains the produced bits that are meaningful for the
2386 // current definition, thus a user cannot make a bit meaningful at
2388 UsefulBits
&= UsersUsefulBits
;
2391 /// Create a machine node performing a notional SHL of Op by ShlAmount. If
2392 /// ShlAmount is negative, do a (logical) right-shift instead. If ShlAmount is
2393 /// 0, return Op unchanged.
2394 static SDValue
getLeftShift(SelectionDAG
*CurDAG
, SDValue Op
, int ShlAmount
) {
2398 EVT VT
= Op
.getValueType();
2400 unsigned BitWidth
= VT
.getSizeInBits();
2401 unsigned UBFMOpc
= BitWidth
== 32 ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2404 if (ShlAmount
> 0) {
2405 // LSL wD, wN, #Amt == UBFM wD, wN, #32-Amt, #31-Amt
2406 ShiftNode
= CurDAG
->getMachineNode(
2407 UBFMOpc
, dl
, VT
, Op
,
2408 CurDAG
->getTargetConstant(BitWidth
- ShlAmount
, dl
, VT
),
2409 CurDAG
->getTargetConstant(BitWidth
- 1 - ShlAmount
, dl
, VT
));
2411 // LSR wD, wN, #Amt == UBFM wD, wN, #Amt, #32-1
2412 assert(ShlAmount
< 0 && "expected right shift");
2413 int ShrAmount
= -ShlAmount
;
2414 ShiftNode
= CurDAG
->getMachineNode(
2415 UBFMOpc
, dl
, VT
, Op
, CurDAG
->getTargetConstant(ShrAmount
, dl
, VT
),
2416 CurDAG
->getTargetConstant(BitWidth
- 1, dl
, VT
));
2419 return SDValue(ShiftNode
, 0);
2422 /// Does this tree qualify as an attempt to move a bitfield into position,
2423 /// essentially "(and (shl VAL, N), Mask)".
2424 static bool isBitfieldPositioningOp(SelectionDAG
*CurDAG
, SDValue Op
,
2426 SDValue
&Src
, int &ShiftAmount
,
2428 EVT VT
= Op
.getValueType();
2429 unsigned BitWidth
= VT
.getSizeInBits();
2431 assert(BitWidth
== 32 || BitWidth
== 64);
2433 KnownBits Known
= CurDAG
->computeKnownBits(Op
);
2435 // Non-zero in the sense that they're not provably zero, which is the key
2436 // point if we want to use this value
2437 uint64_t NonZeroBits
= (~Known
.Zero
).getZExtValue();
2439 // Discard a constant AND mask if present. It's safe because the node will
2440 // already have been factored into the computeKnownBits calculation above.
2442 if (isOpcWithIntImmediate(Op
.getNode(), ISD::AND
, AndImm
)) {
2443 assert((~APInt(BitWidth
, AndImm
) & ~Known
.Zero
) == 0);
2444 Op
= Op
.getOperand(0);
2447 // Don't match if the SHL has more than one use, since then we'll end up
2448 // generating SHL+UBFIZ instead of just keeping SHL+AND.
2449 if (!BiggerPattern
&& !Op
.hasOneUse())
2453 if (!isOpcWithIntImmediate(Op
.getNode(), ISD::SHL
, ShlImm
))
2455 Op
= Op
.getOperand(0);
2457 if (!isShiftedMask_64(NonZeroBits
))
2460 ShiftAmount
= countTrailingZeros(NonZeroBits
);
2461 MaskWidth
= countTrailingOnes(NonZeroBits
>> ShiftAmount
);
2463 // BFI encompasses sufficiently many nodes that it's worth inserting an extra
2464 // LSL/LSR if the mask in NonZeroBits doesn't quite match up with the ISD::SHL
2465 // amount. BiggerPattern is true when this pattern is being matched for BFI,
2466 // BiggerPattern is false when this pattern is being matched for UBFIZ, in
2467 // which case it is not profitable to insert an extra shift.
2468 if (ShlImm
- ShiftAmount
!= 0 && !BiggerPattern
)
2470 Src
= getLeftShift(CurDAG
, Op
, ShlImm
- ShiftAmount
);
2475 static bool isShiftedMask(uint64_t Mask
, EVT VT
) {
2476 assert(VT
== MVT::i32
|| VT
== MVT::i64
);
2478 return isShiftedMask_32(Mask
);
2479 return isShiftedMask_64(Mask
);
2482 // Generate a BFI/BFXIL from 'or (and X, MaskImm), OrImm' iff the value being
2483 // inserted only sets known zero bits.
2484 static bool tryBitfieldInsertOpFromOrAndImm(SDNode
*N
, SelectionDAG
*CurDAG
) {
2485 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2487 EVT VT
= N
->getValueType(0);
2488 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2491 unsigned BitWidth
= VT
.getSizeInBits();
2494 if (!isOpcWithIntImmediate(N
, ISD::OR
, OrImm
))
2497 // Skip this transformation if the ORR immediate can be encoded in the ORR.
2498 // Otherwise, we'll trade an AND+ORR for ORR+BFI/BFXIL, which is most likely
2499 // performance neutral.
2500 if (AArch64_AM::isLogicalImmediate(OrImm
, BitWidth
))
2504 SDValue And
= N
->getOperand(0);
2505 // Must be a single use AND with an immediate operand.
2506 if (!And
.hasOneUse() ||
2507 !isOpcWithIntImmediate(And
.getNode(), ISD::AND
, MaskImm
))
2510 // Compute the Known Zero for the AND as this allows us to catch more general
2511 // cases than just looking for AND with imm.
2512 KnownBits Known
= CurDAG
->computeKnownBits(And
);
2514 // Non-zero in the sense that they're not provably zero, which is the key
2515 // point if we want to use this value.
2516 uint64_t NotKnownZero
= (~Known
.Zero
).getZExtValue();
2518 // The KnownZero mask must be a shifted mask (e.g., 1110..011, 11100..00).
2519 if (!isShiftedMask(Known
.Zero
.getZExtValue(), VT
))
2522 // The bits being inserted must only set those bits that are known to be zero.
2523 if ((OrImm
& NotKnownZero
) != 0) {
2524 // FIXME: It's okay if the OrImm sets NotKnownZero bits to 1, but we don't
2525 // currently handle this case.
2529 // BFI/BFXIL dst, src, #lsb, #width.
2530 int LSB
= countTrailingOnes(NotKnownZero
);
2531 int Width
= BitWidth
- APInt(BitWidth
, NotKnownZero
).countPopulation();
2533 // BFI/BFXIL is an alias of BFM, so translate to BFM operands.
2534 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2535 unsigned ImmS
= Width
- 1;
2537 // If we're creating a BFI instruction avoid cases where we need more
2538 // instructions to materialize the BFI constant as compared to the original
2539 // ORR. A BFXIL will use the same constant as the original ORR, so the code
2540 // should be no worse in this case.
2541 bool IsBFI
= LSB
!= 0;
2542 uint64_t BFIImm
= OrImm
>> LSB
;
2543 if (IsBFI
&& !AArch64_AM::isLogicalImmediate(BFIImm
, BitWidth
)) {
2544 // We have a BFI instruction and we know the constant can't be materialized
2545 // with a ORR-immediate with the zero register.
2546 unsigned OrChunks
= 0, BFIChunks
= 0;
2547 for (unsigned Shift
= 0; Shift
< BitWidth
; Shift
+= 16) {
2548 if (((OrImm
>> Shift
) & 0xFFFF) != 0)
2550 if (((BFIImm
>> Shift
) & 0xFFFF) != 0)
2553 if (BFIChunks
> OrChunks
)
2557 // Materialize the constant to be inserted.
2559 unsigned MOVIOpc
= VT
== MVT::i32
? AArch64::MOVi32imm
: AArch64::MOVi64imm
;
2560 SDNode
*MOVI
= CurDAG
->getMachineNode(
2561 MOVIOpc
, DL
, VT
, CurDAG
->getTargetConstant(BFIImm
, DL
, VT
));
2563 // Create the BFI/BFXIL instruction.
2564 SDValue Ops
[] = {And
.getOperand(0), SDValue(MOVI
, 0),
2565 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2566 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2567 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2568 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2572 static bool tryBitfieldInsertOpFromOr(SDNode
*N
, const APInt
&UsefulBits
,
2573 SelectionDAG
*CurDAG
) {
2574 assert(N
->getOpcode() == ISD::OR
&& "Expect a OR operation");
2576 EVT VT
= N
->getValueType(0);
2577 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2580 unsigned BitWidth
= VT
.getSizeInBits();
2582 // Because of simplify-demanded-bits in DAGCombine, involved masks may not
2583 // have the expected shape. Try to undo that.
2585 unsigned NumberOfIgnoredLowBits
= UsefulBits
.countTrailingZeros();
2586 unsigned NumberOfIgnoredHighBits
= UsefulBits
.countLeadingZeros();
2588 // Given a OR operation, check if we have the following pattern
2589 // ubfm c, b, imm, imm2 (or something that does the same jobs, see
2590 // isBitfieldExtractOp)
2591 // d = e & mask2 ; where mask is a binary sequence of 1..10..0 and
2592 // countTrailingZeros(mask2) == imm2 - imm + 1
2594 // if yes, replace the OR instruction with:
2595 // f = BFM Opd0, Opd1, LSB, MSB ; where LSB = imm, and MSB = imm2
2597 // OR is commutative, check all combinations of operand order and values of
2598 // BiggerPattern, i.e.
2599 // Opd0, Opd1, BiggerPattern=false
2600 // Opd1, Opd0, BiggerPattern=false
2601 // Opd0, Opd1, BiggerPattern=true
2602 // Opd1, Opd0, BiggerPattern=true
2603 // Several of these combinations may match, so check with BiggerPattern=false
2604 // first since that will produce better results by matching more instructions
2605 // and/or inserting fewer extra instructions.
2606 for (int I
= 0; I
< 4; ++I
) {
2609 unsigned ImmR
, ImmS
;
2610 bool BiggerPattern
= I
/ 2;
2611 SDValue OrOpd0Val
= N
->getOperand(I
% 2);
2612 SDNode
*OrOpd0
= OrOpd0Val
.getNode();
2613 SDValue OrOpd1Val
= N
->getOperand((I
+ 1) % 2);
2614 SDNode
*OrOpd1
= OrOpd1Val
.getNode();
2618 if (isBitfieldExtractOp(CurDAG
, OrOpd0
, BFXOpc
, Src
, ImmR
, ImmS
,
2619 NumberOfIgnoredLowBits
, BiggerPattern
)) {
2620 // Check that the returned opcode is compatible with the pattern,
2621 // i.e., same type and zero extended (U and not S)
2622 if ((BFXOpc
!= AArch64::UBFMXri
&& VT
== MVT::i64
) ||
2623 (BFXOpc
!= AArch64::UBFMWri
&& VT
== MVT::i32
))
2626 // Compute the width of the bitfield insertion
2628 Width
= ImmS
- ImmR
+ 1;
2629 // FIXME: This constraint is to catch bitfield insertion we may
2630 // want to widen the pattern if we want to grab general bitfied
2635 // If the mask on the insertee is correct, we have a BFXIL operation. We
2636 // can share the ImmR and ImmS values from the already-computed UBFM.
2637 } else if (isBitfieldPositioningOp(CurDAG
, OrOpd0Val
,
2639 Src
, DstLSB
, Width
)) {
2640 ImmR
= (BitWidth
- DstLSB
) % BitWidth
;
2645 // Check the second part of the pattern
2646 EVT VT
= OrOpd1Val
.getValueType();
2647 assert((VT
== MVT::i32
|| VT
== MVT::i64
) && "unexpected OR operand");
2649 // Compute the Known Zero for the candidate of the first operand.
2650 // This allows to catch more general case than just looking for
2651 // AND with imm. Indeed, simplify-demanded-bits may have removed
2652 // the AND instruction because it proves it was useless.
2653 KnownBits Known
= CurDAG
->computeKnownBits(OrOpd1Val
);
2655 // Check if there is enough room for the second operand to appear
2657 APInt BitsToBeInserted
=
2658 APInt::getBitsSet(Known
.getBitWidth(), DstLSB
, DstLSB
+ Width
);
2660 if ((BitsToBeInserted
& ~Known
.Zero
) != 0)
2663 // Set the first operand
2665 if (isOpcWithIntImmediate(OrOpd1
, ISD::AND
, Imm
) &&
2666 isBitfieldDstMask(Imm
, BitsToBeInserted
, NumberOfIgnoredHighBits
, VT
))
2667 // In that case, we can eliminate the AND
2668 Dst
= OrOpd1
->getOperand(0);
2670 // Maybe the AND has been removed by simplify-demanded-bits
2671 // or is useful because it discards more bits
2676 SDValue Ops
[] = {Dst
, Src
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2677 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2678 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2679 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2683 // Generate a BFXIL from 'or (and X, Mask0Imm), (and Y, Mask1Imm)' iff
2684 // Mask0Imm and ~Mask1Imm are equivalent and one of the MaskImms is a shifted
2685 // mask (e.g., 0x000ffff0).
2686 uint64_t Mask0Imm
, Mask1Imm
;
2687 SDValue And0
= N
->getOperand(0);
2688 SDValue And1
= N
->getOperand(1);
2689 if (And0
.hasOneUse() && And1
.hasOneUse() &&
2690 isOpcWithIntImmediate(And0
.getNode(), ISD::AND
, Mask0Imm
) &&
2691 isOpcWithIntImmediate(And1
.getNode(), ISD::AND
, Mask1Imm
) &&
2692 APInt(BitWidth
, Mask0Imm
) == ~APInt(BitWidth
, Mask1Imm
) &&
2693 (isShiftedMask(Mask0Imm
, VT
) || isShiftedMask(Mask1Imm
, VT
))) {
2695 // ORR is commutative, so canonicalize to the form 'or (and X, Mask0Imm),
2696 // (and Y, Mask1Imm)' where Mask1Imm is the shifted mask masking off the
2697 // bits to be inserted.
2698 if (isShiftedMask(Mask0Imm
, VT
)) {
2699 std::swap(And0
, And1
);
2700 std::swap(Mask0Imm
, Mask1Imm
);
2703 SDValue Src
= And1
->getOperand(0);
2704 SDValue Dst
= And0
->getOperand(0);
2705 unsigned LSB
= countTrailingZeros(Mask1Imm
);
2706 int Width
= BitWidth
- APInt(BitWidth
, Mask0Imm
).countPopulation();
2708 // The BFXIL inserts the low-order bits from a source register, so right
2709 // shift the needed bits into place.
2711 unsigned ShiftOpc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2712 SDNode
*LSR
= CurDAG
->getMachineNode(
2713 ShiftOpc
, DL
, VT
, Src
, CurDAG
->getTargetConstant(LSB
, DL
, VT
),
2714 CurDAG
->getTargetConstant(BitWidth
- 1, DL
, VT
));
2716 // BFXIL is an alias of BFM, so translate to BFM operands.
2717 unsigned ImmR
= (BitWidth
- LSB
) % BitWidth
;
2718 unsigned ImmS
= Width
- 1;
2720 // Create the BFXIL instruction.
2721 SDValue Ops
[] = {Dst
, SDValue(LSR
, 0),
2722 CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2723 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2724 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::BFMWri
: AArch64::BFMXri
;
2725 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2732 bool AArch64DAGToDAGISel::tryBitfieldInsertOp(SDNode
*N
) {
2733 if (N
->getOpcode() != ISD::OR
)
2737 getUsefulBits(SDValue(N
, 0), NUsefulBits
);
2739 // If all bits are not useful, just return UNDEF.
2741 CurDAG
->SelectNodeTo(N
, TargetOpcode::IMPLICIT_DEF
, N
->getValueType(0));
2745 if (tryBitfieldInsertOpFromOr(N
, NUsefulBits
, CurDAG
))
2748 return tryBitfieldInsertOpFromOrAndImm(N
, CurDAG
);
2751 /// SelectBitfieldInsertInZeroOp - Match a UBFIZ instruction that is the
2752 /// equivalent of a left shift by a constant amount followed by an and masking
2753 /// out a contiguous set of bits.
2754 bool AArch64DAGToDAGISel::tryBitfieldInsertInZeroOp(SDNode
*N
) {
2755 if (N
->getOpcode() != ISD::AND
)
2758 EVT VT
= N
->getValueType(0);
2759 if (VT
!= MVT::i32
&& VT
!= MVT::i64
)
2764 if (!isBitfieldPositioningOp(CurDAG
, SDValue(N
, 0), /*BiggerPattern=*/false,
2765 Op0
, DstLSB
, Width
))
2768 // ImmR is the rotate right amount.
2769 unsigned ImmR
= (VT
.getSizeInBits() - DstLSB
) % VT
.getSizeInBits();
2770 // ImmS is the most significant bit of the source to be moved.
2771 unsigned ImmS
= Width
- 1;
2774 SDValue Ops
[] = {Op0
, CurDAG
->getTargetConstant(ImmR
, DL
, VT
),
2775 CurDAG
->getTargetConstant(ImmS
, DL
, VT
)};
2776 unsigned Opc
= (VT
== MVT::i32
) ? AArch64::UBFMWri
: AArch64::UBFMXri
;
2777 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2781 /// tryShiftAmountMod - Take advantage of built-in mod of shift amount in
2782 /// variable shift/rotate instructions.
2783 bool AArch64DAGToDAGISel::tryShiftAmountMod(SDNode
*N
) {
2784 EVT VT
= N
->getValueType(0);
2787 switch (N
->getOpcode()) {
2789 Opc
= (VT
== MVT::i32
) ? AArch64::RORVWr
: AArch64::RORVXr
;
2792 Opc
= (VT
== MVT::i32
) ? AArch64::LSLVWr
: AArch64::LSLVXr
;
2795 Opc
= (VT
== MVT::i32
) ? AArch64::LSRVWr
: AArch64::LSRVXr
;
2798 Opc
= (VT
== MVT::i32
) ? AArch64::ASRVWr
: AArch64::ASRVXr
;
2806 if (VT
== MVT::i32
) {
2809 } else if (VT
== MVT::i64
) {
2815 SDValue ShiftAmt
= N
->getOperand(1);
2817 SDValue NewShiftAmt
;
2819 // Skip over an extend of the shift amount.
2820 if (ShiftAmt
->getOpcode() == ISD::ZERO_EXTEND
||
2821 ShiftAmt
->getOpcode() == ISD::ANY_EXTEND
)
2822 ShiftAmt
= ShiftAmt
->getOperand(0);
2824 if (ShiftAmt
->getOpcode() == ISD::ADD
|| ShiftAmt
->getOpcode() == ISD::SUB
) {
2825 SDValue Add0
= ShiftAmt
->getOperand(0);
2826 SDValue Add1
= ShiftAmt
->getOperand(1);
2829 // If we are shifting by X+/-N where N == 0 mod Size, then just shift by X
2830 // to avoid the ADD/SUB.
2831 if (isIntImmediate(Add1
, Add1Imm
) && (Add1Imm
% Size
== 0))
2833 // If we are shifting by N-X where N == 0 mod Size, then just shift by -X to
2834 // generate a NEG instead of a SUB of a constant.
2835 else if (ShiftAmt
->getOpcode() == ISD::SUB
&&
2836 isIntImmediate(Add0
, Add0Imm
) && Add0Imm
!= 0 &&
2837 (Add0Imm
% Size
== 0)) {
2840 EVT SubVT
= ShiftAmt
->getValueType(0);
2841 if (SubVT
== MVT::i32
) {
2842 NegOpc
= AArch64::SUBWrr
;
2843 ZeroReg
= AArch64::WZR
;
2845 assert(SubVT
== MVT::i64
);
2846 NegOpc
= AArch64::SUBXrr
;
2847 ZeroReg
= AArch64::XZR
;
2850 CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
, ZeroReg
, SubVT
);
2851 MachineSDNode
*Neg
=
2852 CurDAG
->getMachineNode(NegOpc
, DL
, SubVT
, Zero
, Add1
);
2853 NewShiftAmt
= SDValue(Neg
, 0);
2857 // If the shift amount is masked with an AND, check that the mask covers the
2858 // bits that are implicitly ANDed off by the above opcodes and if so, skip
2861 if (!isOpcWithIntImmediate(ShiftAmt
.getNode(), ISD::AND
, MaskImm
) &&
2862 !isOpcWithIntImmediate(ShiftAmt
.getNode(), AArch64ISD::ANDS
, MaskImm
))
2865 if (countTrailingOnes(MaskImm
) < Bits
)
2868 NewShiftAmt
= ShiftAmt
->getOperand(0);
2871 // Narrow/widen the shift amount to match the size of the shift operation.
2873 NewShiftAmt
= narrowIfNeeded(CurDAG
, NewShiftAmt
);
2874 else if (VT
== MVT::i64
&& NewShiftAmt
->getValueType(0) == MVT::i32
) {
2875 SDValue SubReg
= CurDAG
->getTargetConstant(AArch64::sub_32
, DL
, MVT::i32
);
2876 MachineSDNode
*Ext
= CurDAG
->getMachineNode(
2877 AArch64::SUBREG_TO_REG
, DL
, VT
,
2878 CurDAG
->getTargetConstant(0, DL
, MVT::i64
), NewShiftAmt
, SubReg
);
2879 NewShiftAmt
= SDValue(Ext
, 0);
2882 SDValue Ops
[] = {N
->getOperand(0), NewShiftAmt
};
2883 CurDAG
->SelectNodeTo(N
, Opc
, VT
, Ops
);
2888 AArch64DAGToDAGISel::SelectCVTFixedPosOperand(SDValue N
, SDValue
&FixedPos
,
2889 unsigned RegWidth
) {
2891 if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(N
))
2892 FVal
= CN
->getValueAPF();
2893 else if (LoadSDNode
*LN
= dyn_cast
<LoadSDNode
>(N
)) {
2894 // Some otherwise illegal constants are allowed in this case.
2895 if (LN
->getOperand(1).getOpcode() != AArch64ISD::ADDlow
||
2896 !isa
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1)))
2899 ConstantPoolSDNode
*CN
=
2900 dyn_cast
<ConstantPoolSDNode
>(LN
->getOperand(1)->getOperand(1));
2901 FVal
= cast
<ConstantFP
>(CN
->getConstVal())->getValueAPF();
2905 // An FCVT[SU] instruction performs: convertToInt(Val * 2^fbits) where fbits
2906 // is between 1 and 32 for a destination w-register, or 1 and 64 for an
2909 // By this stage, we've detected (fp_to_[su]int (fmul Val, THIS_NODE)) so we
2910 // want THIS_NODE to be 2^fbits. This is much easier to deal with using
2914 // fbits is between 1 and 64 in the worst-case, which means the fmul
2915 // could have 2^64 as an actual operand. Need 65 bits of precision.
2916 APSInt
IntVal(65, true);
2917 FVal
.convertToInteger(IntVal
, APFloat::rmTowardZero
, &IsExact
);
2919 // N.b. isPowerOf2 also checks for > 0.
2920 if (!IsExact
|| !IntVal
.isPowerOf2()) return false;
2921 unsigned FBits
= IntVal
.logBase2();
2923 // Checks above should have guaranteed that we haven't lost information in
2924 // finding FBits, but it must still be in range.
2925 if (FBits
== 0 || FBits
> RegWidth
) return false;
2927 FixedPos
= CurDAG
->getTargetConstant(FBits
, SDLoc(N
), MVT::i32
);
2931 // Inspects a register string of the form o0:op1:CRn:CRm:op2 gets the fields
2932 // of the string and obtains the integer values from them and combines these
2933 // into a single value to be used in the MRS/MSR instruction.
2934 static int getIntOperandFromRegisterString(StringRef RegString
) {
2935 SmallVector
<StringRef
, 5> Fields
;
2936 RegString
.split(Fields
, ':');
2938 if (Fields
.size() == 1)
2941 assert(Fields
.size() == 5
2942 && "Invalid number of fields in read register string");
2944 SmallVector
<int, 5> Ops
;
2945 bool AllIntFields
= true;
2947 for (StringRef Field
: Fields
) {
2949 AllIntFields
&= !Field
.getAsInteger(10, IntField
);
2950 Ops
.push_back(IntField
);
2953 assert(AllIntFields
&&
2954 "Unexpected non-integer value in special register string.");
2957 // Need to combine the integer fields of the string into a single value
2958 // based on the bit encoding of MRS/MSR instruction.
2959 return (Ops
[0] << 14) | (Ops
[1] << 11) | (Ops
[2] << 7) |
2960 (Ops
[3] << 3) | (Ops
[4]);
2963 // Lower the read_register intrinsic to an MRS instruction node if the special
2964 // register string argument is either of the form detailed in the ALCE (the
2965 // form described in getIntOperandsFromRegsterString) or is a named register
2966 // known by the MRS SysReg mapper.
2967 bool AArch64DAGToDAGISel::tryReadRegister(SDNode
*N
) {
2968 const auto *MD
= cast
<MDNodeSDNode
>(N
->getOperand(1));
2969 const auto *RegString
= cast
<MDString
>(MD
->getMD()->getOperand(0));
2972 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
2974 ReplaceNode(N
, CurDAG
->getMachineNode(
2975 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2976 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2981 // Use the sysreg mapper to map the remaining possible strings to the
2982 // value for the register to be used for the instruction operand.
2983 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
2984 if (TheReg
&& TheReg
->Readable
&&
2985 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
2986 Reg
= TheReg
->Encoding
;
2988 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
2991 ReplaceNode(N
, CurDAG
->getMachineNode(
2992 AArch64::MRS
, DL
, N
->getSimpleValueType(0), MVT::Other
,
2993 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
2998 if (RegString
->getString() == "pc") {
2999 ReplaceNode(N
, CurDAG
->getMachineNode(
3000 AArch64::ADR
, DL
, N
->getSimpleValueType(0), MVT::Other
,
3001 CurDAG
->getTargetConstant(0, DL
, MVT::i32
),
3009 // Lower the write_register intrinsic to an MSR instruction node if the special
3010 // register string argument is either of the form detailed in the ALCE (the
3011 // form described in getIntOperandsFromRegsterString) or is a named register
3012 // known by the MSR SysReg mapper.
3013 bool AArch64DAGToDAGISel::tryWriteRegister(SDNode
*N
) {
3014 const auto *MD
= cast
<MDNodeSDNode
>(N
->getOperand(1));
3015 const auto *RegString
= cast
<MDString
>(MD
->getMD()->getOperand(0));
3018 int Reg
= getIntOperandFromRegisterString(RegString
->getString());
3021 N
, CurDAG
->getMachineNode(AArch64::MSR
, DL
, MVT::Other
,
3022 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
3023 N
->getOperand(2), N
->getOperand(0)));
3027 // Check if the register was one of those allowed as the pstatefield value in
3028 // the MSR (immediate) instruction. To accept the values allowed in the
3029 // pstatefield for the MSR (immediate) instruction, we also require that an
3030 // immediate value has been provided as an argument, we know that this is
3031 // the case as it has been ensured by semantic checking.
3032 auto PMapper
= AArch64PState::lookupPStateByName(RegString
->getString());
3034 assert (isa
<ConstantSDNode
>(N
->getOperand(2))
3035 && "Expected a constant integer expression.");
3036 unsigned Reg
= PMapper
->Encoding
;
3037 uint64_t Immed
= cast
<ConstantSDNode
>(N
->getOperand(2))->getZExtValue();
3039 if (Reg
== AArch64PState::PAN
|| Reg
== AArch64PState::UAO
|| Reg
== AArch64PState::SSBS
) {
3040 assert(Immed
< 2 && "Bad imm");
3041 State
= AArch64::MSRpstateImm1
;
3043 assert(Immed
< 16 && "Bad imm");
3044 State
= AArch64::MSRpstateImm4
;
3046 ReplaceNode(N
, CurDAG
->getMachineNode(
3047 State
, DL
, MVT::Other
,
3048 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
3049 CurDAG
->getTargetConstant(Immed
, DL
, MVT::i16
),
3054 // Use the sysreg mapper to attempt to map the remaining possible strings
3055 // to the value for the register to be used for the MSR (register)
3056 // instruction operand.
3057 auto TheReg
= AArch64SysReg::lookupSysRegByName(RegString
->getString());
3058 if (TheReg
&& TheReg
->Writeable
&&
3059 TheReg
->haveFeatures(Subtarget
->getFeatureBits()))
3060 Reg
= TheReg
->Encoding
;
3062 Reg
= AArch64SysReg::parseGenericRegister(RegString
->getString());
3064 ReplaceNode(N
, CurDAG
->getMachineNode(
3065 AArch64::MSR
, DL
, MVT::Other
,
3066 CurDAG
->getTargetConstant(Reg
, DL
, MVT::i32
),
3067 N
->getOperand(2), N
->getOperand(0)));
3074 /// We've got special pseudo-instructions for these
3075 bool AArch64DAGToDAGISel::SelectCMP_SWAP(SDNode
*N
) {
3077 EVT MemTy
= cast
<MemSDNode
>(N
)->getMemoryVT();
3079 // Leave IR for LSE if subtarget supports it.
3080 if (Subtarget
->hasLSE()) return false;
3082 if (MemTy
== MVT::i8
)
3083 Opcode
= AArch64::CMP_SWAP_8
;
3084 else if (MemTy
== MVT::i16
)
3085 Opcode
= AArch64::CMP_SWAP_16
;
3086 else if (MemTy
== MVT::i32
)
3087 Opcode
= AArch64::CMP_SWAP_32
;
3088 else if (MemTy
== MVT::i64
)
3089 Opcode
= AArch64::CMP_SWAP_64
;
3091 llvm_unreachable("Unknown AtomicCmpSwap type");
3093 MVT RegTy
= MemTy
== MVT::i64
? MVT::i64
: MVT::i32
;
3094 SDValue Ops
[] = {N
->getOperand(1), N
->getOperand(2), N
->getOperand(3),
3096 SDNode
*CmpSwap
= CurDAG
->getMachineNode(
3098 CurDAG
->getVTList(RegTy
, MVT::i32
, MVT::Other
), Ops
);
3100 MachineMemOperand
*MemOp
= cast
<MemSDNode
>(N
)->getMemOperand();
3101 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(CmpSwap
), {MemOp
});
3103 ReplaceUses(SDValue(N
, 0), SDValue(CmpSwap
, 0));
3104 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 2));
3105 CurDAG
->RemoveDeadNode(N
);
3110 bool AArch64DAGToDAGISel::SelectSVE8BitLslImm(SDValue N
, SDValue
&Base
,
3112 auto C
= dyn_cast
<ConstantSDNode
>(N
);
3116 auto Ty
= N
->getValueType(0);
3118 int64_t Imm
= C
->getSExtValue();
3121 if ((Imm
>= -128) && (Imm
<= 127)) {
3122 Base
= CurDAG
->getTargetConstant(Imm
, DL
, Ty
);
3123 Offset
= CurDAG
->getTargetConstant(0, DL
, Ty
);
3127 if (((Imm
% 256) == 0) && (Imm
>= -32768) && (Imm
<= 32512)) {
3128 Base
= CurDAG
->getTargetConstant(Imm
/256, DL
, Ty
);
3129 Offset
= CurDAG
->getTargetConstant(8, DL
, Ty
);
3136 bool AArch64DAGToDAGISel::SelectSVEAddSubImm(SDValue N
, MVT VT
, SDValue
&Imm
, SDValue
&Shift
) {
3137 if (auto CNode
= dyn_cast
<ConstantSDNode
>(N
)) {
3138 const int64_t ImmVal
= CNode
->getSExtValue();
3141 switch (VT
.SimpleTy
) {
3143 // Can always select i8s, no shift, mask the immediate value to
3144 // deal with sign-extended value from lowering.
3145 Shift
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
3146 Imm
= CurDAG
->getTargetConstant(ImmVal
& 0xFF, DL
, MVT::i32
);
3149 // i16 values get sign-extended to 32-bits during lowering.
3150 if ((ImmVal
& 0xFF) == ImmVal
) {
3151 Shift
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
3152 Imm
= CurDAG
->getTargetConstant(ImmVal
, DL
, MVT::i32
);
3154 } else if ((ImmVal
& 0xFF) == 0) {
3155 Shift
= CurDAG
->getTargetConstant(8, DL
, MVT::i32
);
3156 Imm
= CurDAG
->getTargetConstant((ImmVal
>> 8) & 0xFF, DL
, MVT::i32
);
3162 // Range of immediate won't trigger signedness problems for 32/64b.
3163 if ((ImmVal
& 0xFF) == ImmVal
) {
3164 Shift
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
3165 Imm
= CurDAG
->getTargetConstant(ImmVal
, DL
, MVT::i32
);
3167 } else if ((ImmVal
& 0xFF00) == ImmVal
) {
3168 Shift
= CurDAG
->getTargetConstant(8, DL
, MVT::i32
);
3169 Imm
= CurDAG
->getTargetConstant(ImmVal
>> 8, DL
, MVT::i32
);
3181 bool AArch64DAGToDAGISel::SelectSVESignedArithImm(SDValue N
, SDValue
&Imm
) {
3182 if (auto CNode
= dyn_cast
<ConstantSDNode
>(N
)) {
3183 int64_t ImmVal
= CNode
->getSExtValue();
3185 if (ImmVal
>= -128 && ImmVal
< 128) {
3186 Imm
= CurDAG
->getTargetConstant(ImmVal
, DL
, MVT::i32
);
3193 bool AArch64DAGToDAGISel::SelectSVEArithImm(SDValue N
, MVT VT
, SDValue
&Imm
) {
3194 if (auto CNode
= dyn_cast
<ConstantSDNode
>(N
)) {
3195 uint64_t ImmVal
= CNode
->getZExtValue();
3197 switch (VT
.SimpleTy
) {
3205 ImmVal
&= 0xFFFFFFFF;
3210 llvm_unreachable("Unexpected type");
3214 Imm
= CurDAG
->getTargetConstant(ImmVal
, SDLoc(N
), MVT::i32
);
3221 bool AArch64DAGToDAGISel::SelectSVELogicalImm(SDValue N
, MVT VT
, SDValue
&Imm
,
3223 if (auto CNode
= dyn_cast
<ConstantSDNode
>(N
)) {
3224 uint64_t ImmVal
= CNode
->getZExtValue();
3230 // Shift mask depending on type size.
3231 switch (VT
.SimpleTy
) {
3234 ImmVal
|= ImmVal
<< 8;
3235 ImmVal
|= ImmVal
<< 16;
3236 ImmVal
|= ImmVal
<< 32;
3240 ImmVal
|= ImmVal
<< 16;
3241 ImmVal
|= ImmVal
<< 32;
3244 ImmVal
&= 0xFFFFFFFF;
3245 ImmVal
|= ImmVal
<< 32;
3250 llvm_unreachable("Unexpected type");
3254 if (AArch64_AM::processLogicalImmediate(ImmVal
, 64, encoding
)) {
3255 Imm
= CurDAG
->getTargetConstant(encoding
, DL
, MVT::i64
);
3262 // SVE shift intrinsics allow shift amounts larger than the element's bitwidth.
3263 // Rather than attempt to normalise everything we can sometimes saturate the
3264 // shift amount during selection. This function also allows for consistent
3265 // isel patterns by ensuring the resulting "Imm" node is of the i32 type
3266 // required by the instructions.
3267 bool AArch64DAGToDAGISel::SelectSVEShiftImm(SDValue N
, uint64_t Low
,
3268 uint64_t High
, bool AllowSaturation
,
3270 if (auto *CN
= dyn_cast
<ConstantSDNode
>(N
)) {
3271 uint64_t ImmVal
= CN
->getZExtValue();
3273 // Reject shift amounts that are too small.
3277 // Reject or saturate shift amounts that are too big.
3278 if (ImmVal
> High
) {
3279 if (!AllowSaturation
)
3284 Imm
= CurDAG
->getTargetConstant(ImmVal
, SDLoc(N
), MVT::i32
);
3291 bool AArch64DAGToDAGISel::trySelectStackSlotTagP(SDNode
*N
) {
3292 // tagp(FrameIndex, IRGstack, tag_offset):
3293 // since the offset between FrameIndex and IRGstack is a compile-time
3294 // constant, this can be lowered to a single ADDG instruction.
3295 if (!(isa
<FrameIndexSDNode
>(N
->getOperand(1)))) {
3299 SDValue IRG_SP
= N
->getOperand(2);
3300 if (IRG_SP
->getOpcode() != ISD::INTRINSIC_W_CHAIN
||
3301 cast
<ConstantSDNode
>(IRG_SP
->getOperand(1))->getZExtValue() !=
3302 Intrinsic::aarch64_irg_sp
) {
3306 const TargetLowering
*TLI
= getTargetLowering();
3308 int FI
= cast
<FrameIndexSDNode
>(N
->getOperand(1))->getIndex();
3309 SDValue FiOp
= CurDAG
->getTargetFrameIndex(
3310 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
3311 int TagOffset
= cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue();
3313 SDNode
*Out
= CurDAG
->getMachineNode(
3314 AArch64::TAGPstack
, DL
, MVT::i64
,
3315 {FiOp
, CurDAG
->getTargetConstant(0, DL
, MVT::i64
), N
->getOperand(2),
3316 CurDAG
->getTargetConstant(TagOffset
, DL
, MVT::i64
)});
3317 ReplaceNode(N
, Out
);
3321 void AArch64DAGToDAGISel::SelectTagP(SDNode
*N
) {
3322 assert(isa
<ConstantSDNode
>(N
->getOperand(3)) &&
3323 "llvm.aarch64.tagp third argument must be an immediate");
3324 if (trySelectStackSlotTagP(N
))
3326 // FIXME: above applies in any case when offset between Op1 and Op2 is a
3327 // compile-time constant, not just for stack allocations.
3329 // General case for unrelated pointers in Op1 and Op2.
3331 int TagOffset
= cast
<ConstantSDNode
>(N
->getOperand(3))->getZExtValue();
3332 SDNode
*N1
= CurDAG
->getMachineNode(AArch64::SUBP
, DL
, MVT::i64
,
3333 {N
->getOperand(1), N
->getOperand(2)});
3334 SDNode
*N2
= CurDAG
->getMachineNode(AArch64::ADDXrr
, DL
, MVT::i64
,
3335 {SDValue(N1
, 0), N
->getOperand(2)});
3336 SDNode
*N3
= CurDAG
->getMachineNode(
3337 AArch64::ADDG
, DL
, MVT::i64
,
3338 {SDValue(N2
, 0), CurDAG
->getTargetConstant(0, DL
, MVT::i64
),
3339 CurDAG
->getTargetConstant(TagOffset
, DL
, MVT::i64
)});
3343 // NOTE: We cannot use EXTRACT_SUBREG in all cases because the fixed length
3344 // vector types larger than NEON don't have a matching SubRegIndex.
3345 static SDNode
*extractSubReg(SelectionDAG
*DAG
, EVT VT
, SDValue V
) {
3346 assert(V
.getValueType().isScalableVector() &&
3347 V
.getValueType().getSizeInBits().getKnownMinSize() ==
3348 AArch64::SVEBitsPerBlock
&&
3349 "Expected to extract from a packed scalable vector!");
3350 assert(VT
.isFixedLengthVector() &&
3351 "Expected to extract a fixed length vector!");
3354 switch (VT
.getSizeInBits()) {
3356 auto SubReg
= DAG
->getTargetConstant(AArch64::dsub
, DL
, MVT::i32
);
3357 return DAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, VT
, V
, SubReg
);
3360 auto SubReg
= DAG
->getTargetConstant(AArch64::zsub
, DL
, MVT::i32
);
3361 return DAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
, DL
, VT
, V
, SubReg
);
3364 auto RC
= DAG
->getTargetConstant(AArch64::ZPRRegClassID
, DL
, MVT::i64
);
3365 return DAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
, DL
, VT
, V
, RC
);
3370 // NOTE: We cannot use INSERT_SUBREG in all cases because the fixed length
3371 // vector types larger than NEON don't have a matching SubRegIndex.
3372 static SDNode
*insertSubReg(SelectionDAG
*DAG
, EVT VT
, SDValue V
) {
3373 assert(VT
.isScalableVector() &&
3374 VT
.getSizeInBits().getKnownMinSize() == AArch64::SVEBitsPerBlock
&&
3375 "Expected to insert into a packed scalable vector!");
3376 assert(V
.getValueType().isFixedLengthVector() &&
3377 "Expected to insert a fixed length vector!");
3380 switch (V
.getValueType().getSizeInBits()) {
3382 auto SubReg
= DAG
->getTargetConstant(AArch64::dsub
, DL
, MVT::i32
);
3383 auto Container
= DAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, VT
);
3384 return DAG
->getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
, VT
,
3385 SDValue(Container
, 0), V
, SubReg
);
3388 auto SubReg
= DAG
->getTargetConstant(AArch64::zsub
, DL
, MVT::i32
);
3389 auto Container
= DAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, DL
, VT
);
3390 return DAG
->getMachineNode(TargetOpcode::INSERT_SUBREG
, DL
, VT
,
3391 SDValue(Container
, 0), V
, SubReg
);
3394 auto RC
= DAG
->getTargetConstant(AArch64::ZPRRegClassID
, DL
, MVT::i64
);
3395 return DAG
->getMachineNode(TargetOpcode::COPY_TO_REGCLASS
, DL
, VT
, V
, RC
);
3400 void AArch64DAGToDAGISel::Select(SDNode
*Node
) {
3401 // If we have a custom node, we already have selected!
3402 if (Node
->isMachineOpcode()) {
3403 LLVM_DEBUG(errs() << "== "; Node
->dump(CurDAG
); errs() << "\n");
3404 Node
->setNodeId(-1);
3408 // Few custom selection stuff.
3409 EVT VT
= Node
->getValueType(0);
3411 switch (Node
->getOpcode()) {
3415 case ISD::ATOMIC_CMP_SWAP
:
3416 if (SelectCMP_SWAP(Node
))
3420 case ISD::READ_REGISTER
:
3421 if (tryReadRegister(Node
))
3425 case ISD::WRITE_REGISTER
:
3426 if (tryWriteRegister(Node
))
3431 if (tryMLAV64LaneV128(Node
))
3436 // Try to select as an indexed load. Fall through to normal processing
3438 if (tryIndexedLoad(Node
))
3446 case ISD::SIGN_EXTEND_INREG
:
3447 if (tryBitfieldExtractOp(Node
))
3449 if (tryBitfieldInsertInZeroOp(Node
))
3454 if (tryShiftAmountMod(Node
))
3458 case ISD::SIGN_EXTEND
:
3459 if (tryBitfieldExtractOpFromSExt(Node
))
3463 case ISD::FP_EXTEND
:
3464 if (tryHighFPExt(Node
))
3469 if (tryBitfieldInsertOp(Node
))
3473 case ISD::EXTRACT_SUBVECTOR
: {
3474 // Bail when not a "cast" like extract_subvector.
3475 if (cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue() != 0)
3478 // Bail when normal isel can do the job.
3479 EVT InVT
= Node
->getOperand(0).getValueType();
3480 if (VT
.isScalableVector() || InVT
.isFixedLengthVector())
3483 // NOTE: We can only get here when doing fixed length SVE code generation.
3484 // We do manual selection because the types involved are not linked to real
3485 // registers (despite being legal) and must be coerced into SVE registers.
3487 // NOTE: If the above changes, be aware that selection will still not work
3488 // because the td definition of extract_vector does not support extracting
3489 // a fixed length vector from a scalable vector.
3491 ReplaceNode(Node
, extractSubReg(CurDAG
, VT
, Node
->getOperand(0)));
3495 case ISD::INSERT_SUBVECTOR
: {
3496 // Bail when not a "cast" like insert_subvector.
3497 if (cast
<ConstantSDNode
>(Node
->getOperand(2))->getZExtValue() != 0)
3499 if (!Node
->getOperand(0).isUndef())
3502 // Bail when normal isel should do the job.
3503 EVT InVT
= Node
->getOperand(1).getValueType();
3504 if (VT
.isFixedLengthVector() || InVT
.isScalableVector())
3507 // NOTE: We can only get here when doing fixed length SVE code generation.
3508 // We do manual selection because the types involved are not linked to real
3509 // registers (despite being legal) and must be coerced into SVE registers.
3511 // NOTE: If the above changes, be aware that selection will still not work
3512 // because the td definition of insert_vector does not support inserting a
3513 // fixed length vector into a scalable vector.
3515 ReplaceNode(Node
, insertSubReg(CurDAG
, VT
, Node
->getOperand(1)));
3519 case ISD::Constant
: {
3520 // Materialize zero constants as copies from WZR/XZR. This allows
3521 // the coalescer to propagate these into other instructions.
3522 ConstantSDNode
*ConstNode
= cast
<ConstantSDNode
>(Node
);
3523 if (ConstNode
->isNullValue()) {
3524 if (VT
== MVT::i32
) {
3525 SDValue New
= CurDAG
->getCopyFromReg(
3526 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::WZR
, MVT::i32
);
3527 ReplaceNode(Node
, New
.getNode());
3529 } else if (VT
== MVT::i64
) {
3530 SDValue New
= CurDAG
->getCopyFromReg(
3531 CurDAG
->getEntryNode(), SDLoc(Node
), AArch64::XZR
, MVT::i64
);
3532 ReplaceNode(Node
, New
.getNode());
3539 case ISD::FrameIndex
: {
3540 // Selects to ADDXri FI, 0 which in turn will become ADDXri SP, imm.
3541 int FI
= cast
<FrameIndexSDNode
>(Node
)->getIndex();
3542 unsigned Shifter
= AArch64_AM::getShifterImm(AArch64_AM::LSL
, 0);
3543 const TargetLowering
*TLI
= getTargetLowering();
3544 SDValue TFI
= CurDAG
->getTargetFrameIndex(
3545 FI
, TLI
->getPointerTy(CurDAG
->getDataLayout()));
3547 SDValue Ops
[] = { TFI
, CurDAG
->getTargetConstant(0, DL
, MVT::i32
),
3548 CurDAG
->getTargetConstant(Shifter
, DL
, MVT::i32
) };
3549 CurDAG
->SelectNodeTo(Node
, AArch64::ADDXri
, MVT::i64
, Ops
);
3552 case ISD::INTRINSIC_W_CHAIN
: {
3553 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
3557 case Intrinsic::aarch64_ldaxp
:
3558 case Intrinsic::aarch64_ldxp
: {
3560 IntNo
== Intrinsic::aarch64_ldaxp
? AArch64::LDAXPX
: AArch64::LDXPX
;
3561 SDValue MemAddr
= Node
->getOperand(2);
3563 SDValue Chain
= Node
->getOperand(0);
3565 SDNode
*Ld
= CurDAG
->getMachineNode(Op
, DL
, MVT::i64
, MVT::i64
,
3566 MVT::Other
, MemAddr
, Chain
);
3568 // Transfer memoperands.
3569 MachineMemOperand
*MemOp
=
3570 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
3571 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Ld
), {MemOp
});
3572 ReplaceNode(Node
, Ld
);
3575 case Intrinsic::aarch64_stlxp
:
3576 case Intrinsic::aarch64_stxp
: {
3578 IntNo
== Intrinsic::aarch64_stlxp
? AArch64::STLXPX
: AArch64::STXPX
;
3580 SDValue Chain
= Node
->getOperand(0);
3581 SDValue ValLo
= Node
->getOperand(2);
3582 SDValue ValHi
= Node
->getOperand(3);
3583 SDValue MemAddr
= Node
->getOperand(4);
3585 // Place arguments in the right order.
3586 SDValue Ops
[] = {ValLo
, ValHi
, MemAddr
, Chain
};
3588 SDNode
*St
= CurDAG
->getMachineNode(Op
, DL
, MVT::i32
, MVT::Other
, Ops
);
3589 // Transfer memoperands.
3590 MachineMemOperand
*MemOp
=
3591 cast
<MemIntrinsicSDNode
>(Node
)->getMemOperand();
3592 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(St
), {MemOp
});
3594 ReplaceNode(Node
, St
);
3597 case Intrinsic::aarch64_neon_ld1x2
:
3598 if (VT
== MVT::v8i8
) {
3599 SelectLoad(Node
, 2, AArch64::LD1Twov8b
, AArch64::dsub0
);
3601 } else if (VT
== MVT::v16i8
) {
3602 SelectLoad(Node
, 2, AArch64::LD1Twov16b
, AArch64::qsub0
);
3604 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3605 SelectLoad(Node
, 2, AArch64::LD1Twov4h
, AArch64::dsub0
);
3607 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3608 SelectLoad(Node
, 2, AArch64::LD1Twov8h
, AArch64::qsub0
);
3610 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3611 SelectLoad(Node
, 2, AArch64::LD1Twov2s
, AArch64::dsub0
);
3613 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3614 SelectLoad(Node
, 2, AArch64::LD1Twov4s
, AArch64::qsub0
);
3616 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3617 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
3619 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3620 SelectLoad(Node
, 2, AArch64::LD1Twov2d
, AArch64::qsub0
);
3624 case Intrinsic::aarch64_neon_ld1x3
:
3625 if (VT
== MVT::v8i8
) {
3626 SelectLoad(Node
, 3, AArch64::LD1Threev8b
, AArch64::dsub0
);
3628 } else if (VT
== MVT::v16i8
) {
3629 SelectLoad(Node
, 3, AArch64::LD1Threev16b
, AArch64::qsub0
);
3631 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3632 SelectLoad(Node
, 3, AArch64::LD1Threev4h
, AArch64::dsub0
);
3634 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3635 SelectLoad(Node
, 3, AArch64::LD1Threev8h
, AArch64::qsub0
);
3637 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3638 SelectLoad(Node
, 3, AArch64::LD1Threev2s
, AArch64::dsub0
);
3640 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3641 SelectLoad(Node
, 3, AArch64::LD1Threev4s
, AArch64::qsub0
);
3643 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3644 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
3646 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3647 SelectLoad(Node
, 3, AArch64::LD1Threev2d
, AArch64::qsub0
);
3651 case Intrinsic::aarch64_neon_ld1x4
:
3652 if (VT
== MVT::v8i8
) {
3653 SelectLoad(Node
, 4, AArch64::LD1Fourv8b
, AArch64::dsub0
);
3655 } else if (VT
== MVT::v16i8
) {
3656 SelectLoad(Node
, 4, AArch64::LD1Fourv16b
, AArch64::qsub0
);
3658 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3659 SelectLoad(Node
, 4, AArch64::LD1Fourv4h
, AArch64::dsub0
);
3661 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3662 SelectLoad(Node
, 4, AArch64::LD1Fourv8h
, AArch64::qsub0
);
3664 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3665 SelectLoad(Node
, 4, AArch64::LD1Fourv2s
, AArch64::dsub0
);
3667 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3668 SelectLoad(Node
, 4, AArch64::LD1Fourv4s
, AArch64::qsub0
);
3670 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3671 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3673 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3674 SelectLoad(Node
, 4, AArch64::LD1Fourv2d
, AArch64::qsub0
);
3678 case Intrinsic::aarch64_neon_ld2
:
3679 if (VT
== MVT::v8i8
) {
3680 SelectLoad(Node
, 2, AArch64::LD2Twov8b
, AArch64::dsub0
);
3682 } else if (VT
== MVT::v16i8
) {
3683 SelectLoad(Node
, 2, AArch64::LD2Twov16b
, AArch64::qsub0
);
3685 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3686 SelectLoad(Node
, 2, AArch64::LD2Twov4h
, AArch64::dsub0
);
3688 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3689 SelectLoad(Node
, 2, AArch64::LD2Twov8h
, AArch64::qsub0
);
3691 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3692 SelectLoad(Node
, 2, AArch64::LD2Twov2s
, AArch64::dsub0
);
3694 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3695 SelectLoad(Node
, 2, AArch64::LD2Twov4s
, AArch64::qsub0
);
3697 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3698 SelectLoad(Node
, 2, AArch64::LD1Twov1d
, AArch64::dsub0
);
3700 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3701 SelectLoad(Node
, 2, AArch64::LD2Twov2d
, AArch64::qsub0
);
3705 case Intrinsic::aarch64_neon_ld3
:
3706 if (VT
== MVT::v8i8
) {
3707 SelectLoad(Node
, 3, AArch64::LD3Threev8b
, AArch64::dsub0
);
3709 } else if (VT
== MVT::v16i8
) {
3710 SelectLoad(Node
, 3, AArch64::LD3Threev16b
, AArch64::qsub0
);
3712 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3713 SelectLoad(Node
, 3, AArch64::LD3Threev4h
, AArch64::dsub0
);
3715 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3716 SelectLoad(Node
, 3, AArch64::LD3Threev8h
, AArch64::qsub0
);
3718 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3719 SelectLoad(Node
, 3, AArch64::LD3Threev2s
, AArch64::dsub0
);
3721 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3722 SelectLoad(Node
, 3, AArch64::LD3Threev4s
, AArch64::qsub0
);
3724 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3725 SelectLoad(Node
, 3, AArch64::LD1Threev1d
, AArch64::dsub0
);
3727 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3728 SelectLoad(Node
, 3, AArch64::LD3Threev2d
, AArch64::qsub0
);
3732 case Intrinsic::aarch64_neon_ld4
:
3733 if (VT
== MVT::v8i8
) {
3734 SelectLoad(Node
, 4, AArch64::LD4Fourv8b
, AArch64::dsub0
);
3736 } else if (VT
== MVT::v16i8
) {
3737 SelectLoad(Node
, 4, AArch64::LD4Fourv16b
, AArch64::qsub0
);
3739 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3740 SelectLoad(Node
, 4, AArch64::LD4Fourv4h
, AArch64::dsub0
);
3742 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3743 SelectLoad(Node
, 4, AArch64::LD4Fourv8h
, AArch64::qsub0
);
3745 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3746 SelectLoad(Node
, 4, AArch64::LD4Fourv2s
, AArch64::dsub0
);
3748 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3749 SelectLoad(Node
, 4, AArch64::LD4Fourv4s
, AArch64::qsub0
);
3751 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3752 SelectLoad(Node
, 4, AArch64::LD1Fourv1d
, AArch64::dsub0
);
3754 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3755 SelectLoad(Node
, 4, AArch64::LD4Fourv2d
, AArch64::qsub0
);
3759 case Intrinsic::aarch64_neon_ld2r
:
3760 if (VT
== MVT::v8i8
) {
3761 SelectLoad(Node
, 2, AArch64::LD2Rv8b
, AArch64::dsub0
);
3763 } else if (VT
== MVT::v16i8
) {
3764 SelectLoad(Node
, 2, AArch64::LD2Rv16b
, AArch64::qsub0
);
3766 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3767 SelectLoad(Node
, 2, AArch64::LD2Rv4h
, AArch64::dsub0
);
3769 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3770 SelectLoad(Node
, 2, AArch64::LD2Rv8h
, AArch64::qsub0
);
3772 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3773 SelectLoad(Node
, 2, AArch64::LD2Rv2s
, AArch64::dsub0
);
3775 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3776 SelectLoad(Node
, 2, AArch64::LD2Rv4s
, AArch64::qsub0
);
3778 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3779 SelectLoad(Node
, 2, AArch64::LD2Rv1d
, AArch64::dsub0
);
3781 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3782 SelectLoad(Node
, 2, AArch64::LD2Rv2d
, AArch64::qsub0
);
3786 case Intrinsic::aarch64_neon_ld3r
:
3787 if (VT
== MVT::v8i8
) {
3788 SelectLoad(Node
, 3, AArch64::LD3Rv8b
, AArch64::dsub0
);
3790 } else if (VT
== MVT::v16i8
) {
3791 SelectLoad(Node
, 3, AArch64::LD3Rv16b
, AArch64::qsub0
);
3793 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3794 SelectLoad(Node
, 3, AArch64::LD3Rv4h
, AArch64::dsub0
);
3796 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3797 SelectLoad(Node
, 3, AArch64::LD3Rv8h
, AArch64::qsub0
);
3799 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3800 SelectLoad(Node
, 3, AArch64::LD3Rv2s
, AArch64::dsub0
);
3802 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3803 SelectLoad(Node
, 3, AArch64::LD3Rv4s
, AArch64::qsub0
);
3805 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3806 SelectLoad(Node
, 3, AArch64::LD3Rv1d
, AArch64::dsub0
);
3808 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3809 SelectLoad(Node
, 3, AArch64::LD3Rv2d
, AArch64::qsub0
);
3813 case Intrinsic::aarch64_neon_ld4r
:
3814 if (VT
== MVT::v8i8
) {
3815 SelectLoad(Node
, 4, AArch64::LD4Rv8b
, AArch64::dsub0
);
3817 } else if (VT
== MVT::v16i8
) {
3818 SelectLoad(Node
, 4, AArch64::LD4Rv16b
, AArch64::qsub0
);
3820 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
3821 SelectLoad(Node
, 4, AArch64::LD4Rv4h
, AArch64::dsub0
);
3823 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
3824 SelectLoad(Node
, 4, AArch64::LD4Rv8h
, AArch64::qsub0
);
3826 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3827 SelectLoad(Node
, 4, AArch64::LD4Rv2s
, AArch64::dsub0
);
3829 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3830 SelectLoad(Node
, 4, AArch64::LD4Rv4s
, AArch64::qsub0
);
3832 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3833 SelectLoad(Node
, 4, AArch64::LD4Rv1d
, AArch64::dsub0
);
3835 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3836 SelectLoad(Node
, 4, AArch64::LD4Rv2d
, AArch64::qsub0
);
3840 case Intrinsic::aarch64_neon_ld2lane
:
3841 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3842 SelectLoadLane(Node
, 2, AArch64::LD2i8
);
3844 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3845 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
3846 SelectLoadLane(Node
, 2, AArch64::LD2i16
);
3848 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3850 SelectLoadLane(Node
, 2, AArch64::LD2i32
);
3852 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3854 SelectLoadLane(Node
, 2, AArch64::LD2i64
);
3858 case Intrinsic::aarch64_neon_ld3lane
:
3859 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3860 SelectLoadLane(Node
, 3, AArch64::LD3i8
);
3862 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3863 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
3864 SelectLoadLane(Node
, 3, AArch64::LD3i16
);
3866 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3868 SelectLoadLane(Node
, 3, AArch64::LD3i32
);
3870 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3872 SelectLoadLane(Node
, 3, AArch64::LD3i64
);
3876 case Intrinsic::aarch64_neon_ld4lane
:
3877 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
3878 SelectLoadLane(Node
, 4, AArch64::LD4i8
);
3880 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3881 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
3882 SelectLoadLane(Node
, 4, AArch64::LD4i16
);
3884 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
3886 SelectLoadLane(Node
, 4, AArch64::LD4i32
);
3888 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
3890 SelectLoadLane(Node
, 4, AArch64::LD4i64
);
3894 case Intrinsic::aarch64_ld64b
:
3895 SelectLoad(Node
, 8, AArch64::LD64B
, AArch64::x8sub_0
);
3899 case ISD::INTRINSIC_WO_CHAIN
: {
3900 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
3904 case Intrinsic::aarch64_tagp
:
3907 case Intrinsic::aarch64_neon_tbl2
:
3908 SelectTable(Node
, 2,
3909 VT
== MVT::v8i8
? AArch64::TBLv8i8Two
: AArch64::TBLv16i8Two
,
3912 case Intrinsic::aarch64_neon_tbl3
:
3913 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBLv8i8Three
3914 : AArch64::TBLv16i8Three
,
3917 case Intrinsic::aarch64_neon_tbl4
:
3918 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBLv8i8Four
3919 : AArch64::TBLv16i8Four
,
3922 case Intrinsic::aarch64_neon_tbx2
:
3923 SelectTable(Node
, 2,
3924 VT
== MVT::v8i8
? AArch64::TBXv8i8Two
: AArch64::TBXv16i8Two
,
3927 case Intrinsic::aarch64_neon_tbx3
:
3928 SelectTable(Node
, 3, VT
== MVT::v8i8
? AArch64::TBXv8i8Three
3929 : AArch64::TBXv16i8Three
,
3932 case Intrinsic::aarch64_neon_tbx4
:
3933 SelectTable(Node
, 4, VT
== MVT::v8i8
? AArch64::TBXv8i8Four
3934 : AArch64::TBXv16i8Four
,
3937 case Intrinsic::aarch64_neon_smull
:
3938 case Intrinsic::aarch64_neon_umull
:
3939 if (tryMULLV64LaneV128(IntNo
, Node
))
3942 case Intrinsic::swift_async_context_addr
: {
3944 CurDAG
->SelectNodeTo(Node
, AArch64::SUBXri
, MVT::i64
,
3945 CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(), DL
,
3946 AArch64::FP
, MVT::i64
),
3947 CurDAG
->getTargetConstant(8, DL
, MVT::i32
),
3948 CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
3949 auto &MF
= CurDAG
->getMachineFunction();
3950 MF
.getFrameInfo().setFrameAddressIsTaken(true);
3951 MF
.getInfo
<AArch64FunctionInfo
>()->setHasSwiftAsyncContext(true);
3957 case ISD::INTRINSIC_VOID
: {
3958 unsigned IntNo
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
3959 if (Node
->getNumOperands() >= 3)
3960 VT
= Node
->getOperand(2)->getValueType(0);
3964 case Intrinsic::aarch64_neon_st1x2
: {
3965 if (VT
== MVT::v8i8
) {
3966 SelectStore(Node
, 2, AArch64::ST1Twov8b
);
3968 } else if (VT
== MVT::v16i8
) {
3969 SelectStore(Node
, 2, AArch64::ST1Twov16b
);
3971 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
3972 VT
== MVT::v4bf16
) {
3973 SelectStore(Node
, 2, AArch64::ST1Twov4h
);
3975 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
3976 VT
== MVT::v8bf16
) {
3977 SelectStore(Node
, 2, AArch64::ST1Twov8h
);
3979 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
3980 SelectStore(Node
, 2, AArch64::ST1Twov2s
);
3982 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
3983 SelectStore(Node
, 2, AArch64::ST1Twov4s
);
3985 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
3986 SelectStore(Node
, 2, AArch64::ST1Twov2d
);
3988 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
3989 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
3994 case Intrinsic::aarch64_neon_st1x3
: {
3995 if (VT
== MVT::v8i8
) {
3996 SelectStore(Node
, 3, AArch64::ST1Threev8b
);
3998 } else if (VT
== MVT::v16i8
) {
3999 SelectStore(Node
, 3, AArch64::ST1Threev16b
);
4001 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4002 VT
== MVT::v4bf16
) {
4003 SelectStore(Node
, 3, AArch64::ST1Threev4h
);
4005 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
4006 VT
== MVT::v8bf16
) {
4007 SelectStore(Node
, 3, AArch64::ST1Threev8h
);
4009 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4010 SelectStore(Node
, 3, AArch64::ST1Threev2s
);
4012 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4013 SelectStore(Node
, 3, AArch64::ST1Threev4s
);
4015 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4016 SelectStore(Node
, 3, AArch64::ST1Threev2d
);
4018 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4019 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
4024 case Intrinsic::aarch64_neon_st1x4
: {
4025 if (VT
== MVT::v8i8
) {
4026 SelectStore(Node
, 4, AArch64::ST1Fourv8b
);
4028 } else if (VT
== MVT::v16i8
) {
4029 SelectStore(Node
, 4, AArch64::ST1Fourv16b
);
4031 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4032 VT
== MVT::v4bf16
) {
4033 SelectStore(Node
, 4, AArch64::ST1Fourv4h
);
4035 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
4036 VT
== MVT::v8bf16
) {
4037 SelectStore(Node
, 4, AArch64::ST1Fourv8h
);
4039 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4040 SelectStore(Node
, 4, AArch64::ST1Fourv2s
);
4042 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4043 SelectStore(Node
, 4, AArch64::ST1Fourv4s
);
4045 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4046 SelectStore(Node
, 4, AArch64::ST1Fourv2d
);
4048 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4049 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
4054 case Intrinsic::aarch64_neon_st2
: {
4055 if (VT
== MVT::v8i8
) {
4056 SelectStore(Node
, 2, AArch64::ST2Twov8b
);
4058 } else if (VT
== MVT::v16i8
) {
4059 SelectStore(Node
, 2, AArch64::ST2Twov16b
);
4061 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4062 VT
== MVT::v4bf16
) {
4063 SelectStore(Node
, 2, AArch64::ST2Twov4h
);
4065 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
4066 VT
== MVT::v8bf16
) {
4067 SelectStore(Node
, 2, AArch64::ST2Twov8h
);
4069 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4070 SelectStore(Node
, 2, AArch64::ST2Twov2s
);
4072 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4073 SelectStore(Node
, 2, AArch64::ST2Twov4s
);
4075 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4076 SelectStore(Node
, 2, AArch64::ST2Twov2d
);
4078 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4079 SelectStore(Node
, 2, AArch64::ST1Twov1d
);
4084 case Intrinsic::aarch64_neon_st3
: {
4085 if (VT
== MVT::v8i8
) {
4086 SelectStore(Node
, 3, AArch64::ST3Threev8b
);
4088 } else if (VT
== MVT::v16i8
) {
4089 SelectStore(Node
, 3, AArch64::ST3Threev16b
);
4091 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4092 VT
== MVT::v4bf16
) {
4093 SelectStore(Node
, 3, AArch64::ST3Threev4h
);
4095 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
4096 VT
== MVT::v8bf16
) {
4097 SelectStore(Node
, 3, AArch64::ST3Threev8h
);
4099 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4100 SelectStore(Node
, 3, AArch64::ST3Threev2s
);
4102 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4103 SelectStore(Node
, 3, AArch64::ST3Threev4s
);
4105 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4106 SelectStore(Node
, 3, AArch64::ST3Threev2d
);
4108 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4109 SelectStore(Node
, 3, AArch64::ST1Threev1d
);
4114 case Intrinsic::aarch64_neon_st4
: {
4115 if (VT
== MVT::v8i8
) {
4116 SelectStore(Node
, 4, AArch64::ST4Fourv8b
);
4118 } else if (VT
== MVT::v16i8
) {
4119 SelectStore(Node
, 4, AArch64::ST4Fourv16b
);
4121 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4122 VT
== MVT::v4bf16
) {
4123 SelectStore(Node
, 4, AArch64::ST4Fourv4h
);
4125 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
||
4126 VT
== MVT::v8bf16
) {
4127 SelectStore(Node
, 4, AArch64::ST4Fourv8h
);
4129 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4130 SelectStore(Node
, 4, AArch64::ST4Fourv2s
);
4132 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4133 SelectStore(Node
, 4, AArch64::ST4Fourv4s
);
4135 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4136 SelectStore(Node
, 4, AArch64::ST4Fourv2d
);
4138 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4139 SelectStore(Node
, 4, AArch64::ST1Fourv1d
);
4144 case Intrinsic::aarch64_neon_st2lane
: {
4145 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4146 SelectStoreLane(Node
, 2, AArch64::ST2i8
);
4148 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4149 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4150 SelectStoreLane(Node
, 2, AArch64::ST2i16
);
4152 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4154 SelectStoreLane(Node
, 2, AArch64::ST2i32
);
4156 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4158 SelectStoreLane(Node
, 2, AArch64::ST2i64
);
4163 case Intrinsic::aarch64_neon_st3lane
: {
4164 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4165 SelectStoreLane(Node
, 3, AArch64::ST3i8
);
4167 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4168 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4169 SelectStoreLane(Node
, 3, AArch64::ST3i16
);
4171 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4173 SelectStoreLane(Node
, 3, AArch64::ST3i32
);
4175 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4177 SelectStoreLane(Node
, 3, AArch64::ST3i64
);
4182 case Intrinsic::aarch64_neon_st4lane
: {
4183 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4184 SelectStoreLane(Node
, 4, AArch64::ST4i8
);
4186 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4187 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4188 SelectStoreLane(Node
, 4, AArch64::ST4i16
);
4190 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4192 SelectStoreLane(Node
, 4, AArch64::ST4i32
);
4194 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4196 SelectStoreLane(Node
, 4, AArch64::ST4i64
);
4201 case Intrinsic::aarch64_sve_st2
: {
4202 if (VT
== MVT::nxv16i8
) {
4203 SelectPredicatedStore(Node
, 2, 0, AArch64::ST2B
, AArch64::ST2B_IMM
);
4205 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4206 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4207 SelectPredicatedStore(Node
, 2, 1, AArch64::ST2H
, AArch64::ST2H_IMM
);
4209 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4210 SelectPredicatedStore(Node
, 2, 2, AArch64::ST2W
, AArch64::ST2W_IMM
);
4212 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4213 SelectPredicatedStore(Node
, 2, 3, AArch64::ST2D
, AArch64::ST2D_IMM
);
4218 case Intrinsic::aarch64_sve_st3
: {
4219 if (VT
== MVT::nxv16i8
) {
4220 SelectPredicatedStore(Node
, 3, 0, AArch64::ST3B
, AArch64::ST3B_IMM
);
4222 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4223 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4224 SelectPredicatedStore(Node
, 3, 1, AArch64::ST3H
, AArch64::ST3H_IMM
);
4226 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4227 SelectPredicatedStore(Node
, 3, 2, AArch64::ST3W
, AArch64::ST3W_IMM
);
4229 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4230 SelectPredicatedStore(Node
, 3, 3, AArch64::ST3D
, AArch64::ST3D_IMM
);
4235 case Intrinsic::aarch64_sve_st4
: {
4236 if (VT
== MVT::nxv16i8
) {
4237 SelectPredicatedStore(Node
, 4, 0, AArch64::ST4B
, AArch64::ST4B_IMM
);
4239 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4240 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4241 SelectPredicatedStore(Node
, 4, 1, AArch64::ST4H
, AArch64::ST4H_IMM
);
4243 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4244 SelectPredicatedStore(Node
, 4, 2, AArch64::ST4W
, AArch64::ST4W_IMM
);
4246 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4247 SelectPredicatedStore(Node
, 4, 3, AArch64::ST4D
, AArch64::ST4D_IMM
);
4255 case AArch64ISD::LD2post
: {
4256 if (VT
== MVT::v8i8
) {
4257 SelectPostLoad(Node
, 2, AArch64::LD2Twov8b_POST
, AArch64::dsub0
);
4259 } else if (VT
== MVT::v16i8
) {
4260 SelectPostLoad(Node
, 2, AArch64::LD2Twov16b_POST
, AArch64::qsub0
);
4262 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4263 SelectPostLoad(Node
, 2, AArch64::LD2Twov4h_POST
, AArch64::dsub0
);
4265 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4266 SelectPostLoad(Node
, 2, AArch64::LD2Twov8h_POST
, AArch64::qsub0
);
4268 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4269 SelectPostLoad(Node
, 2, AArch64::LD2Twov2s_POST
, AArch64::dsub0
);
4271 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4272 SelectPostLoad(Node
, 2, AArch64::LD2Twov4s_POST
, AArch64::qsub0
);
4274 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4275 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
4277 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4278 SelectPostLoad(Node
, 2, AArch64::LD2Twov2d_POST
, AArch64::qsub0
);
4283 case AArch64ISD::LD3post
: {
4284 if (VT
== MVT::v8i8
) {
4285 SelectPostLoad(Node
, 3, AArch64::LD3Threev8b_POST
, AArch64::dsub0
);
4287 } else if (VT
== MVT::v16i8
) {
4288 SelectPostLoad(Node
, 3, AArch64::LD3Threev16b_POST
, AArch64::qsub0
);
4290 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4291 SelectPostLoad(Node
, 3, AArch64::LD3Threev4h_POST
, AArch64::dsub0
);
4293 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4294 SelectPostLoad(Node
, 3, AArch64::LD3Threev8h_POST
, AArch64::qsub0
);
4296 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4297 SelectPostLoad(Node
, 3, AArch64::LD3Threev2s_POST
, AArch64::dsub0
);
4299 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4300 SelectPostLoad(Node
, 3, AArch64::LD3Threev4s_POST
, AArch64::qsub0
);
4302 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4303 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
4305 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4306 SelectPostLoad(Node
, 3, AArch64::LD3Threev2d_POST
, AArch64::qsub0
);
4311 case AArch64ISD::LD4post
: {
4312 if (VT
== MVT::v8i8
) {
4313 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8b_POST
, AArch64::dsub0
);
4315 } else if (VT
== MVT::v16i8
) {
4316 SelectPostLoad(Node
, 4, AArch64::LD4Fourv16b_POST
, AArch64::qsub0
);
4318 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4319 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4h_POST
, AArch64::dsub0
);
4321 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4322 SelectPostLoad(Node
, 4, AArch64::LD4Fourv8h_POST
, AArch64::qsub0
);
4324 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4325 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2s_POST
, AArch64::dsub0
);
4327 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4328 SelectPostLoad(Node
, 4, AArch64::LD4Fourv4s_POST
, AArch64::qsub0
);
4330 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4331 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
4333 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4334 SelectPostLoad(Node
, 4, AArch64::LD4Fourv2d_POST
, AArch64::qsub0
);
4339 case AArch64ISD::LD1x2post
: {
4340 if (VT
== MVT::v8i8
) {
4341 SelectPostLoad(Node
, 2, AArch64::LD1Twov8b_POST
, AArch64::dsub0
);
4343 } else if (VT
== MVT::v16i8
) {
4344 SelectPostLoad(Node
, 2, AArch64::LD1Twov16b_POST
, AArch64::qsub0
);
4346 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4347 SelectPostLoad(Node
, 2, AArch64::LD1Twov4h_POST
, AArch64::dsub0
);
4349 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4350 SelectPostLoad(Node
, 2, AArch64::LD1Twov8h_POST
, AArch64::qsub0
);
4352 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4353 SelectPostLoad(Node
, 2, AArch64::LD1Twov2s_POST
, AArch64::dsub0
);
4355 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4356 SelectPostLoad(Node
, 2, AArch64::LD1Twov4s_POST
, AArch64::qsub0
);
4358 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4359 SelectPostLoad(Node
, 2, AArch64::LD1Twov1d_POST
, AArch64::dsub0
);
4361 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4362 SelectPostLoad(Node
, 2, AArch64::LD1Twov2d_POST
, AArch64::qsub0
);
4367 case AArch64ISD::LD1x3post
: {
4368 if (VT
== MVT::v8i8
) {
4369 SelectPostLoad(Node
, 3, AArch64::LD1Threev8b_POST
, AArch64::dsub0
);
4371 } else if (VT
== MVT::v16i8
) {
4372 SelectPostLoad(Node
, 3, AArch64::LD1Threev16b_POST
, AArch64::qsub0
);
4374 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4375 SelectPostLoad(Node
, 3, AArch64::LD1Threev4h_POST
, AArch64::dsub0
);
4377 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4378 SelectPostLoad(Node
, 3, AArch64::LD1Threev8h_POST
, AArch64::qsub0
);
4380 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4381 SelectPostLoad(Node
, 3, AArch64::LD1Threev2s_POST
, AArch64::dsub0
);
4383 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4384 SelectPostLoad(Node
, 3, AArch64::LD1Threev4s_POST
, AArch64::qsub0
);
4386 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4387 SelectPostLoad(Node
, 3, AArch64::LD1Threev1d_POST
, AArch64::dsub0
);
4389 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4390 SelectPostLoad(Node
, 3, AArch64::LD1Threev2d_POST
, AArch64::qsub0
);
4395 case AArch64ISD::LD1x4post
: {
4396 if (VT
== MVT::v8i8
) {
4397 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8b_POST
, AArch64::dsub0
);
4399 } else if (VT
== MVT::v16i8
) {
4400 SelectPostLoad(Node
, 4, AArch64::LD1Fourv16b_POST
, AArch64::qsub0
);
4402 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4403 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4h_POST
, AArch64::dsub0
);
4405 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4406 SelectPostLoad(Node
, 4, AArch64::LD1Fourv8h_POST
, AArch64::qsub0
);
4408 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4409 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2s_POST
, AArch64::dsub0
);
4411 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4412 SelectPostLoad(Node
, 4, AArch64::LD1Fourv4s_POST
, AArch64::qsub0
);
4414 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4415 SelectPostLoad(Node
, 4, AArch64::LD1Fourv1d_POST
, AArch64::dsub0
);
4417 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4418 SelectPostLoad(Node
, 4, AArch64::LD1Fourv2d_POST
, AArch64::qsub0
);
4423 case AArch64ISD::LD1DUPpost
: {
4424 if (VT
== MVT::v8i8
) {
4425 SelectPostLoad(Node
, 1, AArch64::LD1Rv8b_POST
, AArch64::dsub0
);
4427 } else if (VT
== MVT::v16i8
) {
4428 SelectPostLoad(Node
, 1, AArch64::LD1Rv16b_POST
, AArch64::qsub0
);
4430 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4431 SelectPostLoad(Node
, 1, AArch64::LD1Rv4h_POST
, AArch64::dsub0
);
4433 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4434 SelectPostLoad(Node
, 1, AArch64::LD1Rv8h_POST
, AArch64::qsub0
);
4436 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4437 SelectPostLoad(Node
, 1, AArch64::LD1Rv2s_POST
, AArch64::dsub0
);
4439 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4440 SelectPostLoad(Node
, 1, AArch64::LD1Rv4s_POST
, AArch64::qsub0
);
4442 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4443 SelectPostLoad(Node
, 1, AArch64::LD1Rv1d_POST
, AArch64::dsub0
);
4445 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4446 SelectPostLoad(Node
, 1, AArch64::LD1Rv2d_POST
, AArch64::qsub0
);
4451 case AArch64ISD::LD2DUPpost
: {
4452 if (VT
== MVT::v8i8
) {
4453 SelectPostLoad(Node
, 2, AArch64::LD2Rv8b_POST
, AArch64::dsub0
);
4455 } else if (VT
== MVT::v16i8
) {
4456 SelectPostLoad(Node
, 2, AArch64::LD2Rv16b_POST
, AArch64::qsub0
);
4458 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4459 SelectPostLoad(Node
, 2, AArch64::LD2Rv4h_POST
, AArch64::dsub0
);
4461 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4462 SelectPostLoad(Node
, 2, AArch64::LD2Rv8h_POST
, AArch64::qsub0
);
4464 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4465 SelectPostLoad(Node
, 2, AArch64::LD2Rv2s_POST
, AArch64::dsub0
);
4467 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4468 SelectPostLoad(Node
, 2, AArch64::LD2Rv4s_POST
, AArch64::qsub0
);
4470 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4471 SelectPostLoad(Node
, 2, AArch64::LD2Rv1d_POST
, AArch64::dsub0
);
4473 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4474 SelectPostLoad(Node
, 2, AArch64::LD2Rv2d_POST
, AArch64::qsub0
);
4479 case AArch64ISD::LD3DUPpost
: {
4480 if (VT
== MVT::v8i8
) {
4481 SelectPostLoad(Node
, 3, AArch64::LD3Rv8b_POST
, AArch64::dsub0
);
4483 } else if (VT
== MVT::v16i8
) {
4484 SelectPostLoad(Node
, 3, AArch64::LD3Rv16b_POST
, AArch64::qsub0
);
4486 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4487 SelectPostLoad(Node
, 3, AArch64::LD3Rv4h_POST
, AArch64::dsub0
);
4489 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4490 SelectPostLoad(Node
, 3, AArch64::LD3Rv8h_POST
, AArch64::qsub0
);
4492 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4493 SelectPostLoad(Node
, 3, AArch64::LD3Rv2s_POST
, AArch64::dsub0
);
4495 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4496 SelectPostLoad(Node
, 3, AArch64::LD3Rv4s_POST
, AArch64::qsub0
);
4498 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4499 SelectPostLoad(Node
, 3, AArch64::LD3Rv1d_POST
, AArch64::dsub0
);
4501 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4502 SelectPostLoad(Node
, 3, AArch64::LD3Rv2d_POST
, AArch64::qsub0
);
4507 case AArch64ISD::LD4DUPpost
: {
4508 if (VT
== MVT::v8i8
) {
4509 SelectPostLoad(Node
, 4, AArch64::LD4Rv8b_POST
, AArch64::dsub0
);
4511 } else if (VT
== MVT::v16i8
) {
4512 SelectPostLoad(Node
, 4, AArch64::LD4Rv16b_POST
, AArch64::qsub0
);
4514 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4515 SelectPostLoad(Node
, 4, AArch64::LD4Rv4h_POST
, AArch64::dsub0
);
4517 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4518 SelectPostLoad(Node
, 4, AArch64::LD4Rv8h_POST
, AArch64::qsub0
);
4520 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4521 SelectPostLoad(Node
, 4, AArch64::LD4Rv2s_POST
, AArch64::dsub0
);
4523 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4524 SelectPostLoad(Node
, 4, AArch64::LD4Rv4s_POST
, AArch64::qsub0
);
4526 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4527 SelectPostLoad(Node
, 4, AArch64::LD4Rv1d_POST
, AArch64::dsub0
);
4529 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4530 SelectPostLoad(Node
, 4, AArch64::LD4Rv2d_POST
, AArch64::qsub0
);
4535 case AArch64ISD::LD1LANEpost
: {
4536 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4537 SelectPostLoadLane(Node
, 1, AArch64::LD1i8_POST
);
4539 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4540 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4541 SelectPostLoadLane(Node
, 1, AArch64::LD1i16_POST
);
4543 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4545 SelectPostLoadLane(Node
, 1, AArch64::LD1i32_POST
);
4547 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4549 SelectPostLoadLane(Node
, 1, AArch64::LD1i64_POST
);
4554 case AArch64ISD::LD2LANEpost
: {
4555 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4556 SelectPostLoadLane(Node
, 2, AArch64::LD2i8_POST
);
4558 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4559 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4560 SelectPostLoadLane(Node
, 2, AArch64::LD2i16_POST
);
4562 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4564 SelectPostLoadLane(Node
, 2, AArch64::LD2i32_POST
);
4566 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4568 SelectPostLoadLane(Node
, 2, AArch64::LD2i64_POST
);
4573 case AArch64ISD::LD3LANEpost
: {
4574 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4575 SelectPostLoadLane(Node
, 3, AArch64::LD3i8_POST
);
4577 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4578 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4579 SelectPostLoadLane(Node
, 3, AArch64::LD3i16_POST
);
4581 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4583 SelectPostLoadLane(Node
, 3, AArch64::LD3i32_POST
);
4585 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4587 SelectPostLoadLane(Node
, 3, AArch64::LD3i64_POST
);
4592 case AArch64ISD::LD4LANEpost
: {
4593 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4594 SelectPostLoadLane(Node
, 4, AArch64::LD4i8_POST
);
4596 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4597 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4598 SelectPostLoadLane(Node
, 4, AArch64::LD4i16_POST
);
4600 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4602 SelectPostLoadLane(Node
, 4, AArch64::LD4i32_POST
);
4604 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4606 SelectPostLoadLane(Node
, 4, AArch64::LD4i64_POST
);
4611 case AArch64ISD::ST2post
: {
4612 VT
= Node
->getOperand(1).getValueType();
4613 if (VT
== MVT::v8i8
) {
4614 SelectPostStore(Node
, 2, AArch64::ST2Twov8b_POST
);
4616 } else if (VT
== MVT::v16i8
) {
4617 SelectPostStore(Node
, 2, AArch64::ST2Twov16b_POST
);
4619 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4620 SelectPostStore(Node
, 2, AArch64::ST2Twov4h_POST
);
4622 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4623 SelectPostStore(Node
, 2, AArch64::ST2Twov8h_POST
);
4625 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4626 SelectPostStore(Node
, 2, AArch64::ST2Twov2s_POST
);
4628 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4629 SelectPostStore(Node
, 2, AArch64::ST2Twov4s_POST
);
4631 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4632 SelectPostStore(Node
, 2, AArch64::ST2Twov2d_POST
);
4634 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4635 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
4640 case AArch64ISD::ST3post
: {
4641 VT
= Node
->getOperand(1).getValueType();
4642 if (VT
== MVT::v8i8
) {
4643 SelectPostStore(Node
, 3, AArch64::ST3Threev8b_POST
);
4645 } else if (VT
== MVT::v16i8
) {
4646 SelectPostStore(Node
, 3, AArch64::ST3Threev16b_POST
);
4648 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4649 SelectPostStore(Node
, 3, AArch64::ST3Threev4h_POST
);
4651 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4652 SelectPostStore(Node
, 3, AArch64::ST3Threev8h_POST
);
4654 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4655 SelectPostStore(Node
, 3, AArch64::ST3Threev2s_POST
);
4657 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4658 SelectPostStore(Node
, 3, AArch64::ST3Threev4s_POST
);
4660 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4661 SelectPostStore(Node
, 3, AArch64::ST3Threev2d_POST
);
4663 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4664 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
4669 case AArch64ISD::ST4post
: {
4670 VT
= Node
->getOperand(1).getValueType();
4671 if (VT
== MVT::v8i8
) {
4672 SelectPostStore(Node
, 4, AArch64::ST4Fourv8b_POST
);
4674 } else if (VT
== MVT::v16i8
) {
4675 SelectPostStore(Node
, 4, AArch64::ST4Fourv16b_POST
);
4677 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4678 SelectPostStore(Node
, 4, AArch64::ST4Fourv4h_POST
);
4680 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4681 SelectPostStore(Node
, 4, AArch64::ST4Fourv8h_POST
);
4683 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4684 SelectPostStore(Node
, 4, AArch64::ST4Fourv2s_POST
);
4686 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4687 SelectPostStore(Node
, 4, AArch64::ST4Fourv4s_POST
);
4689 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4690 SelectPostStore(Node
, 4, AArch64::ST4Fourv2d_POST
);
4692 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4693 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
4698 case AArch64ISD::ST1x2post
: {
4699 VT
= Node
->getOperand(1).getValueType();
4700 if (VT
== MVT::v8i8
) {
4701 SelectPostStore(Node
, 2, AArch64::ST1Twov8b_POST
);
4703 } else if (VT
== MVT::v16i8
) {
4704 SelectPostStore(Node
, 2, AArch64::ST1Twov16b_POST
);
4706 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4707 SelectPostStore(Node
, 2, AArch64::ST1Twov4h_POST
);
4709 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4710 SelectPostStore(Node
, 2, AArch64::ST1Twov8h_POST
);
4712 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4713 SelectPostStore(Node
, 2, AArch64::ST1Twov2s_POST
);
4715 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4716 SelectPostStore(Node
, 2, AArch64::ST1Twov4s_POST
);
4718 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4719 SelectPostStore(Node
, 2, AArch64::ST1Twov1d_POST
);
4721 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4722 SelectPostStore(Node
, 2, AArch64::ST1Twov2d_POST
);
4727 case AArch64ISD::ST1x3post
: {
4728 VT
= Node
->getOperand(1).getValueType();
4729 if (VT
== MVT::v8i8
) {
4730 SelectPostStore(Node
, 3, AArch64::ST1Threev8b_POST
);
4732 } else if (VT
== MVT::v16i8
) {
4733 SelectPostStore(Node
, 3, AArch64::ST1Threev16b_POST
);
4735 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4736 SelectPostStore(Node
, 3, AArch64::ST1Threev4h_POST
);
4738 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4739 SelectPostStore(Node
, 3, AArch64::ST1Threev8h_POST
);
4741 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4742 SelectPostStore(Node
, 3, AArch64::ST1Threev2s_POST
);
4744 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4745 SelectPostStore(Node
, 3, AArch64::ST1Threev4s_POST
);
4747 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4748 SelectPostStore(Node
, 3, AArch64::ST1Threev1d_POST
);
4750 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4751 SelectPostStore(Node
, 3, AArch64::ST1Threev2d_POST
);
4756 case AArch64ISD::ST1x4post
: {
4757 VT
= Node
->getOperand(1).getValueType();
4758 if (VT
== MVT::v8i8
) {
4759 SelectPostStore(Node
, 4, AArch64::ST1Fourv8b_POST
);
4761 } else if (VT
== MVT::v16i8
) {
4762 SelectPostStore(Node
, 4, AArch64::ST1Fourv16b_POST
);
4764 } else if (VT
== MVT::v4i16
|| VT
== MVT::v4f16
|| VT
== MVT::v4bf16
) {
4765 SelectPostStore(Node
, 4, AArch64::ST1Fourv4h_POST
);
4767 } else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
|| VT
== MVT::v8bf16
) {
4768 SelectPostStore(Node
, 4, AArch64::ST1Fourv8h_POST
);
4770 } else if (VT
== MVT::v2i32
|| VT
== MVT::v2f32
) {
4771 SelectPostStore(Node
, 4, AArch64::ST1Fourv2s_POST
);
4773 } else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
) {
4774 SelectPostStore(Node
, 4, AArch64::ST1Fourv4s_POST
);
4776 } else if (VT
== MVT::v1i64
|| VT
== MVT::v1f64
) {
4777 SelectPostStore(Node
, 4, AArch64::ST1Fourv1d_POST
);
4779 } else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
) {
4780 SelectPostStore(Node
, 4, AArch64::ST1Fourv2d_POST
);
4785 case AArch64ISD::ST2LANEpost
: {
4786 VT
= Node
->getOperand(1).getValueType();
4787 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4788 SelectPostStoreLane(Node
, 2, AArch64::ST2i8_POST
);
4790 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4791 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4792 SelectPostStoreLane(Node
, 2, AArch64::ST2i16_POST
);
4794 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4796 SelectPostStoreLane(Node
, 2, AArch64::ST2i32_POST
);
4798 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4800 SelectPostStoreLane(Node
, 2, AArch64::ST2i64_POST
);
4805 case AArch64ISD::ST3LANEpost
: {
4806 VT
= Node
->getOperand(1).getValueType();
4807 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4808 SelectPostStoreLane(Node
, 3, AArch64::ST3i8_POST
);
4810 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4811 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4812 SelectPostStoreLane(Node
, 3, AArch64::ST3i16_POST
);
4814 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4816 SelectPostStoreLane(Node
, 3, AArch64::ST3i32_POST
);
4818 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4820 SelectPostStoreLane(Node
, 3, AArch64::ST3i64_POST
);
4825 case AArch64ISD::ST4LANEpost
: {
4826 VT
= Node
->getOperand(1).getValueType();
4827 if (VT
== MVT::v16i8
|| VT
== MVT::v8i8
) {
4828 SelectPostStoreLane(Node
, 4, AArch64::ST4i8_POST
);
4830 } else if (VT
== MVT::v8i16
|| VT
== MVT::v4i16
|| VT
== MVT::v4f16
||
4831 VT
== MVT::v8f16
|| VT
== MVT::v4bf16
|| VT
== MVT::v8bf16
) {
4832 SelectPostStoreLane(Node
, 4, AArch64::ST4i16_POST
);
4834 } else if (VT
== MVT::v4i32
|| VT
== MVT::v2i32
|| VT
== MVT::v4f32
||
4836 SelectPostStoreLane(Node
, 4, AArch64::ST4i32_POST
);
4838 } else if (VT
== MVT::v2i64
|| VT
== MVT::v1i64
|| VT
== MVT::v2f64
||
4840 SelectPostStoreLane(Node
, 4, AArch64::ST4i64_POST
);
4845 case AArch64ISD::SVE_LD2_MERGE_ZERO
: {
4846 if (VT
== MVT::nxv16i8
) {
4847 SelectPredicatedLoad(Node
, 2, 0, AArch64::LD2B_IMM
, AArch64::LD2B
);
4849 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4850 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4851 SelectPredicatedLoad(Node
, 2, 1, AArch64::LD2H_IMM
, AArch64::LD2H
);
4853 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4854 SelectPredicatedLoad(Node
, 2, 2, AArch64::LD2W_IMM
, AArch64::LD2W
);
4856 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4857 SelectPredicatedLoad(Node
, 2, 3, AArch64::LD2D_IMM
, AArch64::LD2D
);
4862 case AArch64ISD::SVE_LD3_MERGE_ZERO
: {
4863 if (VT
== MVT::nxv16i8
) {
4864 SelectPredicatedLoad(Node
, 3, 0, AArch64::LD3B_IMM
, AArch64::LD3B
);
4866 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4867 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4868 SelectPredicatedLoad(Node
, 3, 1, AArch64::LD3H_IMM
, AArch64::LD3H
);
4870 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4871 SelectPredicatedLoad(Node
, 3, 2, AArch64::LD3W_IMM
, AArch64::LD3W
);
4873 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4874 SelectPredicatedLoad(Node
, 3, 3, AArch64::LD3D_IMM
, AArch64::LD3D
);
4879 case AArch64ISD::SVE_LD4_MERGE_ZERO
: {
4880 if (VT
== MVT::nxv16i8
) {
4881 SelectPredicatedLoad(Node
, 4, 0, AArch64::LD4B_IMM
, AArch64::LD4B
);
4883 } else if (VT
== MVT::nxv8i16
|| VT
== MVT::nxv8f16
||
4884 (VT
== MVT::nxv8bf16
&& Subtarget
->hasBF16())) {
4885 SelectPredicatedLoad(Node
, 4, 1, AArch64::LD4H_IMM
, AArch64::LD4H
);
4887 } else if (VT
== MVT::nxv4i32
|| VT
== MVT::nxv4f32
) {
4888 SelectPredicatedLoad(Node
, 4, 2, AArch64::LD4W_IMM
, AArch64::LD4W
);
4890 } else if (VT
== MVT::nxv2i64
|| VT
== MVT::nxv2f64
) {
4891 SelectPredicatedLoad(Node
, 4, 3, AArch64::LD4D_IMM
, AArch64::LD4D
);
4898 // Select the default instruction
4902 /// createAArch64ISelDag - This pass converts a legalized DAG into a
4903 /// AArch64-specific DAG, ready for instruction scheduling.
4904 FunctionPass
*llvm::createAArch64ISelDag(AArch64TargetMachine
&TM
,
4905 CodeGenOpt::Level OptLevel
) {
4906 return new AArch64DAGToDAGISel(TM
, OptLevel
);
4909 /// When \p PredVT is a scalable vector predicate in the form
4910 /// MVT::nx<M>xi1, it builds the correspondent scalable vector of
4911 /// integers MVT::nx<M>xi<bits> s.t. M x bits = 128. When targeting
4912 /// structured vectors (NumVec >1), the output data type is
4913 /// MVT::nx<M*NumVec>xi<bits> s.t. M x bits = 128. If the input
4914 /// PredVT is not in the form MVT::nx<M>xi1, it returns an invalid
4916 static EVT
getPackedVectorTypeFromPredicateType(LLVMContext
&Ctx
, EVT PredVT
,
4918 assert(NumVec
> 0 && NumVec
< 5 && "Invalid number of vectors.");
4919 if (!PredVT
.isScalableVector() || PredVT
.getVectorElementType() != MVT::i1
)
4922 if (PredVT
!= MVT::nxv16i1
&& PredVT
!= MVT::nxv8i1
&&
4923 PredVT
!= MVT::nxv4i1
&& PredVT
!= MVT::nxv2i1
)
4926 ElementCount EC
= PredVT
.getVectorElementCount();
4928 EVT::getIntegerVT(Ctx
, AArch64::SVEBitsPerBlock
/ EC
.getKnownMinValue());
4929 EVT MemVT
= EVT::getVectorVT(Ctx
, ScalarVT
, EC
* NumVec
);
4934 /// Return the EVT of the data associated to a memory operation in \p
4935 /// Root. If such EVT cannot be retrived, it returns an invalid EVT.
4936 static EVT
getMemVTFromNode(LLVMContext
&Ctx
, SDNode
*Root
) {
4937 if (isa
<MemSDNode
>(Root
))
4938 return cast
<MemSDNode
>(Root
)->getMemoryVT();
4940 if (isa
<MemIntrinsicSDNode
>(Root
))
4941 return cast
<MemIntrinsicSDNode
>(Root
)->getMemoryVT();
4943 const unsigned Opcode
= Root
->getOpcode();
4944 // For custom ISD nodes, we have to look at them individually to extract the
4945 // type of the data moved to/from memory.
4947 case AArch64ISD::LD1_MERGE_ZERO
:
4948 case AArch64ISD::LD1S_MERGE_ZERO
:
4949 case AArch64ISD::LDNF1_MERGE_ZERO
:
4950 case AArch64ISD::LDNF1S_MERGE_ZERO
:
4951 return cast
<VTSDNode
>(Root
->getOperand(3))->getVT();
4952 case AArch64ISD::ST1_PRED
:
4953 return cast
<VTSDNode
>(Root
->getOperand(4))->getVT();
4954 case AArch64ISD::SVE_LD2_MERGE_ZERO
:
4955 return getPackedVectorTypeFromPredicateType(
4956 Ctx
, Root
->getOperand(1)->getValueType(0), /*NumVec=*/2);
4957 case AArch64ISD::SVE_LD3_MERGE_ZERO
:
4958 return getPackedVectorTypeFromPredicateType(
4959 Ctx
, Root
->getOperand(1)->getValueType(0), /*NumVec=*/3);
4960 case AArch64ISD::SVE_LD4_MERGE_ZERO
:
4961 return getPackedVectorTypeFromPredicateType(
4962 Ctx
, Root
->getOperand(1)->getValueType(0), /*NumVec=*/4);
4967 if (Opcode
!= ISD::INTRINSIC_VOID
)
4970 const unsigned IntNo
=
4971 cast
<ConstantSDNode
>(Root
->getOperand(1))->getZExtValue();
4972 if (IntNo
!= Intrinsic::aarch64_sve_prf
)
4975 // We are using an SVE prefetch intrinsic. Type must be inferred
4976 // from the width of the predicate.
4977 return getPackedVectorTypeFromPredicateType(
4978 Ctx
, Root
->getOperand(2)->getValueType(0), /*NumVec=*/1);
4981 /// SelectAddrModeIndexedSVE - Attempt selection of the addressing mode:
4982 /// Base + OffImm * sizeof(MemVT) for Min >= OffImm <= Max
4983 /// where Root is the memory access using N for its address.
4984 template <int64_t Min
, int64_t Max
>
4985 bool AArch64DAGToDAGISel::SelectAddrModeIndexedSVE(SDNode
*Root
, SDValue N
,
4988 const EVT MemVT
= getMemVTFromNode(*(CurDAG
->getContext()), Root
);
4993 if (N
.getOpcode() != ISD::ADD
)
4996 SDValue VScale
= N
.getOperand(1);
4997 if (VScale
.getOpcode() != ISD::VSCALE
)
5000 TypeSize TS
= MemVT
.getSizeInBits();
5001 int64_t MemWidthBytes
= static_cast<int64_t>(TS
.getKnownMinSize()) / 8;
5002 int64_t MulImm
= cast
<ConstantSDNode
>(VScale
.getOperand(0))->getSExtValue();
5004 if ((MulImm
% MemWidthBytes
) != 0)
5007 int64_t Offset
= MulImm
/ MemWidthBytes
;
5008 if (Offset
< Min
|| Offset
> Max
)
5011 Base
= N
.getOperand(0);
5012 OffImm
= CurDAG
->getTargetConstant(Offset
, SDLoc(N
), MVT::i64
);
5016 /// Select register plus register addressing mode for SVE, with scaled
5018 bool AArch64DAGToDAGISel::SelectSVERegRegAddrMode(SDValue N
, unsigned Scale
,
5021 if (N
.getOpcode() != ISD::ADD
)
5024 // Process an ADD node.
5025 const SDValue LHS
= N
.getOperand(0);
5026 const SDValue RHS
= N
.getOperand(1);
5028 // 8 bit data does not come with the SHL node, so it is treated
5036 if (auto C
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5037 int64_t ImmOff
= C
->getSExtValue();
5038 unsigned Size
= 1 << Scale
;
5040 // To use the reg+reg addressing mode, the immediate must be a multiple of
5041 // the vector element's byte size.
5047 Offset
= CurDAG
->getTargetConstant(ImmOff
>> Scale
, DL
, MVT::i64
);
5048 SDValue Ops
[] = {Offset
};
5049 SDNode
*MI
= CurDAG
->getMachineNode(AArch64::MOVi64imm
, DL
, MVT::i64
, Ops
);
5050 Offset
= SDValue(MI
, 0);
5054 // Check if the RHS is a shift node with a constant.
5055 if (RHS
.getOpcode() != ISD::SHL
)
5058 const SDValue ShiftRHS
= RHS
.getOperand(1);
5059 if (auto *C
= dyn_cast
<ConstantSDNode
>(ShiftRHS
))
5060 if (C
->getZExtValue() == Scale
) {
5062 Offset
= RHS
.getOperand(0);
5069 bool AArch64DAGToDAGISel::SelectAllActivePredicate(SDValue N
) {
5070 const AArch64TargetLowering
*TLI
=
5071 static_cast<const AArch64TargetLowering
*>(getTargetLowering());
5073 return TLI
->isAllActivePredicate(N
);