1 //=- AArch64InstrAtomics.td - AArch64 Atomic codegen support -*- tablegen -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // AArch64 Atomic operand code-gen constructs.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------
15 //===----------------------------------
16 let AddedComplexity = 15, Size = 0 in
17 def CompilerBarrier : Pseudo<(outs), (ins i32imm:$ordering),
18 [(atomic_fence timm:$ordering, 0)]>, Sched<[]>;
19 def : Pat<(atomic_fence (i64 4), (timm)), (DMB (i32 0x9))>;
20 def : Pat<(atomic_fence (timm), (timm)), (DMB (i32 0xb))>;
22 //===----------------------------------
24 //===----------------------------------
26 // When they're actually atomic, only one addressing mode (GPR64sp) is
27 // supported, but when they're relaxed and anything can be used, all the
28 // standard modes would be valid and may give efficiency gains.
30 // A atomic load operation that actually needs acquire semantics.
31 class acquiring_load<PatFrag base>
32 : PatFrag<(ops node:$ptr), (base node:$ptr)> {
34 let IsAtomicOrderingAcquireOrStronger = 1;
37 // An atomic load operation that does not need either acquire or release
39 class relaxed_load<PatFrag base>
40 : PatFrag<(ops node:$ptr), (base node:$ptr)> {
42 let IsAtomicOrderingAcquireOrStronger = 0;
46 def : Pat<(acquiring_load<atomic_load_8> GPR64sp:$ptr), (LDARB GPR64sp:$ptr)>;
47 def : Pat<(relaxed_load<atomic_load_8> (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm,
48 ro_Wextend8:$offset)),
49 (LDRBBroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$offset)>;
50 def : Pat<(relaxed_load<atomic_load_8> (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm,
51 ro_Xextend8:$offset)),
52 (LDRBBroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$offset)>;
53 def : Pat<(relaxed_load<atomic_load_8> (am_indexed8 GPR64sp:$Rn,
55 (LDRBBui GPR64sp:$Rn, uimm12s1:$offset)>;
56 def : Pat<(relaxed_load<atomic_load_8>
57 (am_unscaled8 GPR64sp:$Rn, simm9:$offset)),
58 (LDURBBi GPR64sp:$Rn, simm9:$offset)>;
61 def : Pat<(acquiring_load<atomic_load_16> GPR64sp:$ptr), (LDARH GPR64sp:$ptr)>;
62 def : Pat<(relaxed_load<atomic_load_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
63 ro_Wextend16:$extend)),
64 (LDRHHroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
65 def : Pat<(relaxed_load<atomic_load_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
66 ro_Xextend16:$extend)),
67 (LDRHHroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
68 def : Pat<(relaxed_load<atomic_load_16> (am_indexed16 GPR64sp:$Rn,
70 (LDRHHui GPR64sp:$Rn, uimm12s2:$offset)>;
71 def : Pat<(relaxed_load<atomic_load_16>
72 (am_unscaled16 GPR64sp:$Rn, simm9:$offset)),
73 (LDURHHi GPR64sp:$Rn, simm9:$offset)>;
76 def : Pat<(acquiring_load<atomic_load_32> GPR64sp:$ptr), (LDARW GPR64sp:$ptr)>;
77 def : Pat<(relaxed_load<atomic_load_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
78 ro_Wextend32:$extend)),
79 (LDRWroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
80 def : Pat<(relaxed_load<atomic_load_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
81 ro_Xextend32:$extend)),
82 (LDRWroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
83 def : Pat<(relaxed_load<atomic_load_32> (am_indexed32 GPR64sp:$Rn,
85 (LDRWui GPR64sp:$Rn, uimm12s4:$offset)>;
86 def : Pat<(relaxed_load<atomic_load_32>
87 (am_unscaled32 GPR64sp:$Rn, simm9:$offset)),
88 (LDURWi GPR64sp:$Rn, simm9:$offset)>;
91 def : Pat<(acquiring_load<atomic_load_64> GPR64sp:$ptr), (LDARX GPR64sp:$ptr)>;
92 def : Pat<(relaxed_load<atomic_load_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
93 ro_Wextend64:$extend)),
94 (LDRXroW GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
95 def : Pat<(relaxed_load<atomic_load_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
96 ro_Xextend64:$extend)),
97 (LDRXroX GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
98 def : Pat<(relaxed_load<atomic_load_64> (am_indexed64 GPR64sp:$Rn,
100 (LDRXui GPR64sp:$Rn, uimm12s8:$offset)>;
101 def : Pat<(relaxed_load<atomic_load_64>
102 (am_unscaled64 GPR64sp:$Rn, simm9:$offset)),
103 (LDURXi GPR64sp:$Rn, simm9:$offset)>;
105 //===----------------------------------
107 //===----------------------------------
109 // When they're actually atomic, only one addressing mode (GPR64sp) is
110 // supported, but when they're relaxed and anything can be used, all the
111 // standard modes would be valid and may give efficiency gains.
113 // A store operation that actually needs release semantics.
114 class releasing_store<PatFrag base>
115 : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
117 let IsAtomicOrderingReleaseOrStronger = 1;
120 // An atomic store operation that doesn't actually need to be atomic on AArch64.
121 class relaxed_store<PatFrag base>
122 : PatFrag<(ops node:$ptr, node:$val), (base node:$ptr, node:$val)> {
124 let IsAtomicOrderingReleaseOrStronger = 0;
128 def : Pat<(releasing_store<atomic_store_8> GPR64sp:$ptr, GPR32:$val),
129 (STLRB GPR32:$val, GPR64sp:$ptr)>;
130 def : Pat<(relaxed_store<atomic_store_8>
131 (ro_Windexed8 GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend),
133 (STRBBroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend8:$extend)>;
134 def : Pat<(relaxed_store<atomic_store_8>
135 (ro_Xindexed8 GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend),
137 (STRBBroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend8:$extend)>;
138 def : Pat<(relaxed_store<atomic_store_8>
139 (am_indexed8 GPR64sp:$Rn, uimm12s1:$offset), GPR32:$val),
140 (STRBBui GPR32:$val, GPR64sp:$Rn, uimm12s1:$offset)>;
141 def : Pat<(relaxed_store<atomic_store_8>
142 (am_unscaled8 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
143 (STURBBi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
146 def : Pat<(releasing_store<atomic_store_16> GPR64sp:$ptr, GPR32:$val),
147 (STLRH GPR32:$val, GPR64sp:$ptr)>;
148 def : Pat<(relaxed_store<atomic_store_16> (ro_Windexed16 GPR64sp:$Rn, GPR32:$Rm,
149 ro_Wextend16:$extend),
151 (STRHHroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend16:$extend)>;
152 def : Pat<(relaxed_store<atomic_store_16> (ro_Xindexed16 GPR64sp:$Rn, GPR64:$Rm,
153 ro_Xextend16:$extend),
155 (STRHHroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend16:$extend)>;
156 def : Pat<(relaxed_store<atomic_store_16>
157 (am_indexed16 GPR64sp:$Rn, uimm12s2:$offset), GPR32:$val),
158 (STRHHui GPR32:$val, GPR64sp:$Rn, uimm12s2:$offset)>;
159 def : Pat<(relaxed_store<atomic_store_16>
160 (am_unscaled16 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
161 (STURHHi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
164 def : Pat<(releasing_store<atomic_store_32> GPR64sp:$ptr, GPR32:$val),
165 (STLRW GPR32:$val, GPR64sp:$ptr)>;
166 def : Pat<(relaxed_store<atomic_store_32> (ro_Windexed32 GPR64sp:$Rn, GPR32:$Rm,
167 ro_Wextend32:$extend),
169 (STRWroW GPR32:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend32:$extend)>;
170 def : Pat<(relaxed_store<atomic_store_32> (ro_Xindexed32 GPR64sp:$Rn, GPR64:$Rm,
171 ro_Xextend32:$extend),
173 (STRWroX GPR32:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend32:$extend)>;
174 def : Pat<(relaxed_store<atomic_store_32>
175 (am_indexed32 GPR64sp:$Rn, uimm12s4:$offset), GPR32:$val),
176 (STRWui GPR32:$val, GPR64sp:$Rn, uimm12s4:$offset)>;
177 def : Pat<(relaxed_store<atomic_store_32>
178 (am_unscaled32 GPR64sp:$Rn, simm9:$offset), GPR32:$val),
179 (STURWi GPR32:$val, GPR64sp:$Rn, simm9:$offset)>;
182 def : Pat<(releasing_store<atomic_store_64> GPR64sp:$ptr, GPR64:$val),
183 (STLRX GPR64:$val, GPR64sp:$ptr)>;
184 def : Pat<(relaxed_store<atomic_store_64> (ro_Windexed64 GPR64sp:$Rn, GPR32:$Rm,
185 ro_Wextend16:$extend),
187 (STRXroW GPR64:$val, GPR64sp:$Rn, GPR32:$Rm, ro_Wextend64:$extend)>;
188 def : Pat<(relaxed_store<atomic_store_64> (ro_Xindexed64 GPR64sp:$Rn, GPR64:$Rm,
189 ro_Xextend16:$extend),
191 (STRXroX GPR64:$val, GPR64sp:$Rn, GPR64:$Rm, ro_Xextend64:$extend)>;
192 def : Pat<(relaxed_store<atomic_store_64>
193 (am_indexed64 GPR64sp:$Rn, uimm12s8:$offset), GPR64:$val),
194 (STRXui GPR64:$val, GPR64sp:$Rn, uimm12s8:$offset)>;
195 def : Pat<(relaxed_store<atomic_store_64>
196 (am_unscaled64 GPR64sp:$Rn, simm9:$offset), GPR64:$val),
197 (STURXi GPR64:$val, GPR64sp:$Rn, simm9:$offset)>;
199 //===----------------------------------
200 // Low-level exclusive operations
201 //===----------------------------------
205 def ldxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
206 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
208 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
211 def ldxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
212 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
214 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
217 def ldxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
218 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
220 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
223 def ldxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldxr node:$ptr), [{
224 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
226 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
229 def : Pat<(ldxr_1 GPR64sp:$addr),
230 (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
231 def : Pat<(ldxr_2 GPR64sp:$addr),
232 (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
233 def : Pat<(ldxr_4 GPR64sp:$addr),
234 (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
235 def : Pat<(ldxr_8 GPR64sp:$addr), (LDXRX GPR64sp:$addr)>;
237 def : Pat<(and (ldxr_1 GPR64sp:$addr), 0xff),
238 (SUBREG_TO_REG (i64 0), (LDXRB GPR64sp:$addr), sub_32)>;
239 def : Pat<(and (ldxr_2 GPR64sp:$addr), 0xffff),
240 (SUBREG_TO_REG (i64 0), (LDXRH GPR64sp:$addr), sub_32)>;
241 def : Pat<(and (ldxr_4 GPR64sp:$addr), 0xffffffff),
242 (SUBREG_TO_REG (i64 0), (LDXRW GPR64sp:$addr), sub_32)>;
246 def ldaxr_1 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
247 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
249 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
252 def ldaxr_2 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
253 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
255 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
258 def ldaxr_4 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
259 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
261 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
264 def ldaxr_8 : PatFrag<(ops node:$ptr), (int_aarch64_ldaxr node:$ptr), [{
265 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
267 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
270 def : Pat<(ldaxr_1 GPR64sp:$addr),
271 (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
272 def : Pat<(ldaxr_2 GPR64sp:$addr),
273 (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
274 def : Pat<(ldaxr_4 GPR64sp:$addr),
275 (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
276 def : Pat<(ldaxr_8 GPR64sp:$addr), (LDAXRX GPR64sp:$addr)>;
278 def : Pat<(and (ldaxr_1 GPR64sp:$addr), 0xff),
279 (SUBREG_TO_REG (i64 0), (LDAXRB GPR64sp:$addr), sub_32)>;
280 def : Pat<(and (ldaxr_2 GPR64sp:$addr), 0xffff),
281 (SUBREG_TO_REG (i64 0), (LDAXRH GPR64sp:$addr), sub_32)>;
282 def : Pat<(and (ldaxr_4 GPR64sp:$addr), 0xffffffff),
283 (SUBREG_TO_REG (i64 0), (LDAXRW GPR64sp:$addr), sub_32)>;
287 def stxr_1 : PatFrag<(ops node:$val, node:$ptr),
288 (int_aarch64_stxr node:$val, node:$ptr), [{
289 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
291 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
294 def stxr_2 : PatFrag<(ops node:$val, node:$ptr),
295 (int_aarch64_stxr node:$val, node:$ptr), [{
296 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
298 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
301 def stxr_4 : PatFrag<(ops node:$val, node:$ptr),
302 (int_aarch64_stxr node:$val, node:$ptr), [{
303 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
305 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
308 def stxr_8 : PatFrag<(ops node:$val, node:$ptr),
309 (int_aarch64_stxr node:$val, node:$ptr), [{
310 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
312 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
316 def : Pat<(stxr_1 GPR64:$val, GPR64sp:$addr),
317 (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
318 def : Pat<(stxr_2 GPR64:$val, GPR64sp:$addr),
319 (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
320 def : Pat<(stxr_4 GPR64:$val, GPR64sp:$addr),
321 (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
322 def : Pat<(stxr_8 GPR64:$val, GPR64sp:$addr),
323 (STXRX GPR64:$val, GPR64sp:$addr)>;
325 def : Pat<(stxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
326 (STXRB GPR32:$val, GPR64sp:$addr)>;
327 def : Pat<(stxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
328 (STXRH GPR32:$val, GPR64sp:$addr)>;
329 def : Pat<(stxr_4 (zext GPR32:$val), GPR64sp:$addr),
330 (STXRW GPR32:$val, GPR64sp:$addr)>;
332 def : Pat<(stxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
333 (STXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
334 def : Pat<(stxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
335 (STXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
336 def : Pat<(stxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
337 (STXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
339 // Store-release-exclusives.
341 def stlxr_1 : PatFrag<(ops node:$val, node:$ptr),
342 (int_aarch64_stlxr node:$val, node:$ptr), [{
343 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i8;
345 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 1); }];
348 def stlxr_2 : PatFrag<(ops node:$val, node:$ptr),
349 (int_aarch64_stlxr node:$val, node:$ptr), [{
350 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i16;
352 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 2); }];
355 def stlxr_4 : PatFrag<(ops node:$val, node:$ptr),
356 (int_aarch64_stlxr node:$val, node:$ptr), [{
357 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i32;
359 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 4); }];
362 def stlxr_8 : PatFrag<(ops node:$val, node:$ptr),
363 (int_aarch64_stlxr node:$val, node:$ptr), [{
364 return cast<MemIntrinsicSDNode>(N)->getMemoryVT() == MVT::i64;
366 let GISelPredicateCode = [{ return isLoadStoreOfNumBytes(MI, 8); }];
370 def : Pat<(stlxr_1 GPR64:$val, GPR64sp:$addr),
371 (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
372 def : Pat<(stlxr_2 GPR64:$val, GPR64sp:$addr),
373 (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
374 def : Pat<(stlxr_4 GPR64:$val, GPR64sp:$addr),
375 (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
376 def : Pat<(stlxr_8 GPR64:$val, GPR64sp:$addr),
377 (STLXRX GPR64:$val, GPR64sp:$addr)>;
379 def : Pat<(stlxr_1 (zext (and GPR32:$val, 0xff)), GPR64sp:$addr),
380 (STLXRB GPR32:$val, GPR64sp:$addr)>;
381 def : Pat<(stlxr_2 (zext (and GPR32:$val, 0xffff)), GPR64sp:$addr),
382 (STLXRH GPR32:$val, GPR64sp:$addr)>;
383 def : Pat<(stlxr_4 (zext GPR32:$val), GPR64sp:$addr),
384 (STLXRW GPR32:$val, GPR64sp:$addr)>;
386 def : Pat<(stlxr_1 (and GPR64:$val, 0xff), GPR64sp:$addr),
387 (STLXRB (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
388 def : Pat<(stlxr_2 (and GPR64:$val, 0xffff), GPR64sp:$addr),
389 (STLXRH (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
390 def : Pat<(stlxr_4 (and GPR64:$val, 0xffffffff), GPR64sp:$addr),
391 (STLXRW (EXTRACT_SUBREG GPR64:$val, sub_32), GPR64sp:$addr)>;
394 // And clear exclusive.
396 def : Pat<(int_aarch64_clrex), (CLREX 0xf)>;
398 //===----------------------------------
399 // Atomic cmpxchg for -O0
400 //===----------------------------------
402 // The fast register allocator used during -O0 inserts spills to cover any VRegs
403 // live across basic block boundaries. When this happens between an LDXR and an
404 // STXR it can clear the exclusive monitor, causing all cmpxchg attempts to
407 // Unfortunately, this means we have to have an alternative (expanded
408 // post-regalloc) path for -O0 compilations. Fortunately this path can be
409 // significantly more naive than the standard expansion: we conservatively
410 // assume seq_cst, strong cmpxchg and omit clrex on failure.
412 let Constraints = "@earlyclobber $Rd,@earlyclobber $scratch",
413 mayLoad = 1, mayStore = 1 in {
414 def CMP_SWAP_8 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
415 (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
416 Sched<[WriteAtomic]>;
418 def CMP_SWAP_16 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
419 (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
420 Sched<[WriteAtomic]>;
422 def CMP_SWAP_32 : Pseudo<(outs GPR32:$Rd, GPR32:$scratch),
423 (ins GPR64:$addr, GPR32:$desired, GPR32:$new), []>,
424 Sched<[WriteAtomic]>;
426 def CMP_SWAP_64 : Pseudo<(outs GPR64:$Rd, GPR32:$scratch),
427 (ins GPR64:$addr, GPR64:$desired, GPR64:$new), []>,
428 Sched<[WriteAtomic]>;
431 let Constraints = "@earlyclobber $RdLo,@earlyclobber $RdHi,@earlyclobber $scratch",
432 mayLoad = 1, mayStore = 1 in {
433 class cmp_swap_128 : Pseudo<(outs GPR64:$RdLo, GPR64:$RdHi, GPR32common:$scratch),
434 (ins GPR64:$addr, GPR64:$desiredLo, GPR64:$desiredHi,
435 GPR64:$newLo, GPR64:$newHi), []>,
436 Sched<[WriteAtomic]>;
437 def CMP_SWAP_128 : cmp_swap_128;
438 def CMP_SWAP_128_RELEASE : cmp_swap_128;
439 def CMP_SWAP_128_ACQUIRE : cmp_swap_128;
440 def CMP_SWAP_128_MONOTONIC : cmp_swap_128;
443 // v8.1 Atomic instructions:
444 let Predicates = [HasLSE] in {
445 defm : LDOPregister_patterns<"LDADD", "atomic_load_add">;
446 defm : LDOPregister_patterns<"LDSET", "atomic_load_or">;
447 defm : LDOPregister_patterns<"LDEOR", "atomic_load_xor">;
448 defm : LDOPregister_patterns<"LDCLR", "atomic_load_clr">;
449 defm : LDOPregister_patterns<"LDSMAX", "atomic_load_max">;
450 defm : LDOPregister_patterns<"LDSMIN", "atomic_load_min">;
451 defm : LDOPregister_patterns<"LDUMAX", "atomic_load_umax">;
452 defm : LDOPregister_patterns<"LDUMIN", "atomic_load_umin">;
453 defm : LDOPregister_patterns<"SWP", "atomic_swap">;
454 defm : CASregister_patterns<"CAS", "atomic_cmp_swap">;
456 // These two patterns are only needed for global isel, selection dag isel
457 // converts atomic load-sub into a sub and atomic load-add, and likewise for
459 defm : LDOPregister_patterns_mod<"LDADD", "atomic_load_sub", "SUB">;
460 defm : LDOPregister_patterns_mod<"LDCLR", "atomic_load_and", "ORN">;