[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AArch64 / AArch64RegisterInfo.cpp
blobd1b901e58d2733e20b8a233a9d73247c2b11dacc
1 //===- AArch64RegisterInfo.cpp - AArch64 Register Information -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the AArch64 implementation of the TargetRegisterInfo
10 // class.
12 //===----------------------------------------------------------------------===//
14 #include "AArch64RegisterInfo.h"
15 #include "AArch64FrameLowering.h"
16 #include "AArch64InstrInfo.h"
17 #include "AArch64MachineFunctionInfo.h"
18 #include "AArch64Subtarget.h"
19 #include "MCTargetDesc/AArch64AddressingModes.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/RegisterScavenging.h"
26 #include "llvm/CodeGen/TargetFrameLowering.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DiagnosticInfo.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetOptions.h"
33 using namespace llvm;
35 #define GET_REGINFO_TARGET_DESC
36 #include "AArch64GenRegisterInfo.inc"
38 AArch64RegisterInfo::AArch64RegisterInfo(const Triple &TT)
39 : AArch64GenRegisterInfo(AArch64::LR), TT(TT) {
40 AArch64_MC::initLLVMToCVRegMapping(this);
43 /// Return whether the register needs a CFI entry. Not all unwinders may know
44 /// about SVE registers, so we assume the lowest common denominator, i.e. the
45 /// callee-saves required by the base ABI. For the SVE registers z8-z15 only the
46 /// lower 64-bits (d8-d15) need to be saved. The lower 64-bits subreg is
47 /// returned in \p RegToUseForCFI.
48 bool AArch64RegisterInfo::regNeedsCFI(unsigned Reg,
49 unsigned &RegToUseForCFI) const {
50 if (AArch64::PPRRegClass.contains(Reg))
51 return false;
53 if (AArch64::ZPRRegClass.contains(Reg)) {
54 RegToUseForCFI = getSubReg(Reg, AArch64::dsub);
55 for (int I = 0; CSR_AArch64_AAPCS_SaveList[I]; ++I) {
56 if (CSR_AArch64_AAPCS_SaveList[I] == RegToUseForCFI)
57 return true;
59 return false;
62 RegToUseForCFI = Reg;
63 return true;
66 bool AArch64RegisterInfo::hasSVEArgsOrReturn(const MachineFunction *MF) {
67 const Function &F = MF->getFunction();
68 return isa<ScalableVectorType>(F.getReturnType()) ||
69 any_of(F.args(), [](const Argument &Arg) {
70 return isa<ScalableVectorType>(Arg.getType());
71 });
74 const MCPhysReg *
75 AArch64RegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
76 assert(MF && "Invalid MachineFunction pointer.");
78 if (MF->getFunction().getCallingConv() == CallingConv::GHC)
79 // GHC set of callee saved regs is empty as all those regs are
80 // used for passing STG regs around
81 return CSR_AArch64_NoRegs_SaveList;
82 if (MF->getFunction().getCallingConv() == CallingConv::AnyReg)
83 return CSR_AArch64_AllRegs_SaveList;
85 // Darwin has its own CSR_AArch64_AAPCS_SaveList, which means most CSR save
86 // lists depending on that will need to have their Darwin variant as well.
87 if (MF->getSubtarget<AArch64Subtarget>().isTargetDarwin())
88 return getDarwinCalleeSavedRegs(MF);
90 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
91 return CSR_Win_AArch64_CFGuard_Check_SaveList;
92 if (MF->getSubtarget<AArch64Subtarget>().isTargetWindows())
93 return CSR_Win_AArch64_AAPCS_SaveList;
94 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
95 return CSR_AArch64_AAVPCS_SaveList;
96 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
97 return CSR_AArch64_SVE_AAPCS_SaveList;
98 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
99 ->supportSwiftError() &&
100 MF->getFunction().getAttributes().hasAttrSomewhere(
101 Attribute::SwiftError))
102 return CSR_AArch64_AAPCS_SwiftError_SaveList;
103 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
104 return CSR_AArch64_AAPCS_SwiftTail_SaveList;
105 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
106 return CSR_AArch64_RT_MostRegs_SaveList;
107 if (MF->getFunction().getCallingConv() == CallingConv::Win64)
108 // This is for OSes other than Windows; Windows is a separate case further
109 // above.
110 return CSR_AArch64_AAPCS_X18_SaveList;
111 if (hasSVEArgsOrReturn(MF))
112 return CSR_AArch64_SVE_AAPCS_SaveList;
113 return CSR_AArch64_AAPCS_SaveList;
116 const MCPhysReg *
117 AArch64RegisterInfo::getDarwinCalleeSavedRegs(const MachineFunction *MF) const {
118 assert(MF && "Invalid MachineFunction pointer.");
119 assert(MF->getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
120 "Invalid subtarget for getDarwinCalleeSavedRegs");
122 if (MF->getFunction().getCallingConv() == CallingConv::CFGuard_Check)
123 report_fatal_error(
124 "Calling convention CFGuard_Check is unsupported on Darwin.");
125 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_VectorCall)
126 return CSR_Darwin_AArch64_AAVPCS_SaveList;
127 if (MF->getFunction().getCallingConv() == CallingConv::AArch64_SVE_VectorCall)
128 report_fatal_error(
129 "Calling convention SVE_VectorCall is unsupported on Darwin.");
130 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS)
131 return MF->getInfo<AArch64FunctionInfo>()->isSplitCSR()
132 ? CSR_Darwin_AArch64_CXX_TLS_PE_SaveList
133 : CSR_Darwin_AArch64_CXX_TLS_SaveList;
134 if (MF->getSubtarget<AArch64Subtarget>().getTargetLowering()
135 ->supportSwiftError() &&
136 MF->getFunction().getAttributes().hasAttrSomewhere(
137 Attribute::SwiftError))
138 return CSR_Darwin_AArch64_AAPCS_SwiftError_SaveList;
139 if (MF->getFunction().getCallingConv() == CallingConv::SwiftTail)
140 return CSR_Darwin_AArch64_AAPCS_SwiftTail_SaveList;
141 if (MF->getFunction().getCallingConv() == CallingConv::PreserveMost)
142 return CSR_Darwin_AArch64_RT_MostRegs_SaveList;
143 return CSR_Darwin_AArch64_AAPCS_SaveList;
146 const MCPhysReg *AArch64RegisterInfo::getCalleeSavedRegsViaCopy(
147 const MachineFunction *MF) const {
148 assert(MF && "Invalid MachineFunction pointer.");
149 if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
150 MF->getInfo<AArch64FunctionInfo>()->isSplitCSR())
151 return CSR_Darwin_AArch64_CXX_TLS_ViaCopy_SaveList;
152 return nullptr;
155 void AArch64RegisterInfo::UpdateCustomCalleeSavedRegs(
156 MachineFunction &MF) const {
157 const MCPhysReg *CSRs = getCalleeSavedRegs(&MF);
158 SmallVector<MCPhysReg, 32> UpdatedCSRs;
159 for (const MCPhysReg *I = CSRs; *I; ++I)
160 UpdatedCSRs.push_back(*I);
162 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
163 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
164 UpdatedCSRs.push_back(AArch64::GPR64commonRegClass.getRegister(i));
167 // Register lists are zero-terminated.
168 UpdatedCSRs.push_back(0);
169 MF.getRegInfo().setCalleeSavedRegs(UpdatedCSRs);
172 const TargetRegisterClass *
173 AArch64RegisterInfo::getSubClassWithSubReg(const TargetRegisterClass *RC,
174 unsigned Idx) const {
175 // edge case for GPR/FPR register classes
176 if (RC == &AArch64::GPR32allRegClass && Idx == AArch64::hsub)
177 return &AArch64::FPR32RegClass;
178 else if (RC == &AArch64::GPR64allRegClass && Idx == AArch64::hsub)
179 return &AArch64::FPR64RegClass;
181 // Forward to TableGen's default version.
182 return AArch64GenRegisterInfo::getSubClassWithSubReg(RC, Idx);
185 const uint32_t *
186 AArch64RegisterInfo::getDarwinCallPreservedMask(const MachineFunction &MF,
187 CallingConv::ID CC) const {
188 assert(MF.getSubtarget<AArch64Subtarget>().isTargetDarwin() &&
189 "Invalid subtarget for getDarwinCallPreservedMask");
191 if (CC == CallingConv::CXX_FAST_TLS)
192 return CSR_Darwin_AArch64_CXX_TLS_RegMask;
193 if (CC == CallingConv::AArch64_VectorCall)
194 return CSR_Darwin_AArch64_AAVPCS_RegMask;
195 if (CC == CallingConv::AArch64_SVE_VectorCall)
196 report_fatal_error(
197 "Calling convention SVE_VectorCall is unsupported on Darwin.");
198 if (CC == CallingConv::CFGuard_Check)
199 report_fatal_error(
200 "Calling convention CFGuard_Check is unsupported on Darwin.");
201 if (MF.getSubtarget<AArch64Subtarget>()
202 .getTargetLowering()
203 ->supportSwiftError() &&
204 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
205 return CSR_Darwin_AArch64_AAPCS_SwiftError_RegMask;
206 if (CC == CallingConv::SwiftTail)
207 return CSR_Darwin_AArch64_AAPCS_SwiftTail_RegMask;
208 if (CC == CallingConv::PreserveMost)
209 return CSR_Darwin_AArch64_RT_MostRegs_RegMask;
210 return CSR_Darwin_AArch64_AAPCS_RegMask;
213 const uint32_t *
214 AArch64RegisterInfo::getCallPreservedMask(const MachineFunction &MF,
215 CallingConv::ID CC) const {
216 bool SCS = MF.getFunction().hasFnAttribute(Attribute::ShadowCallStack);
217 if (CC == CallingConv::GHC)
218 // This is academic because all GHC calls are (supposed to be) tail calls
219 return SCS ? CSR_AArch64_NoRegs_SCS_RegMask : CSR_AArch64_NoRegs_RegMask;
220 if (CC == CallingConv::AnyReg)
221 return SCS ? CSR_AArch64_AllRegs_SCS_RegMask : CSR_AArch64_AllRegs_RegMask;
223 // All the following calling conventions are handled differently on Darwin.
224 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin()) {
225 if (SCS)
226 report_fatal_error("ShadowCallStack attribute not supported on Darwin.");
227 return getDarwinCallPreservedMask(MF, CC);
230 if (CC == CallingConv::AArch64_VectorCall)
231 return SCS ? CSR_AArch64_AAVPCS_SCS_RegMask : CSR_AArch64_AAVPCS_RegMask;
232 if (CC == CallingConv::AArch64_SVE_VectorCall)
233 return SCS ? CSR_AArch64_SVE_AAPCS_SCS_RegMask
234 : CSR_AArch64_SVE_AAPCS_RegMask;
235 if (CC == CallingConv::CFGuard_Check)
236 return CSR_Win_AArch64_CFGuard_Check_RegMask;
237 if (MF.getSubtarget<AArch64Subtarget>().getTargetLowering()
238 ->supportSwiftError() &&
239 MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
240 return SCS ? CSR_AArch64_AAPCS_SwiftError_SCS_RegMask
241 : CSR_AArch64_AAPCS_SwiftError_RegMask;
242 if (CC == CallingConv::SwiftTail) {
243 if (SCS)
244 report_fatal_error("ShadowCallStack attribute not supported with swifttail");
245 return CSR_AArch64_AAPCS_SwiftTail_RegMask;
247 if (CC == CallingConv::PreserveMost)
248 return SCS ? CSR_AArch64_RT_MostRegs_SCS_RegMask
249 : CSR_AArch64_RT_MostRegs_RegMask;
250 else
251 return SCS ? CSR_AArch64_AAPCS_SCS_RegMask : CSR_AArch64_AAPCS_RegMask;
254 const uint32_t *AArch64RegisterInfo::getCustomEHPadPreservedMask(
255 const MachineFunction &MF) const {
256 if (MF.getSubtarget<AArch64Subtarget>().isTargetLinux())
257 return CSR_AArch64_AAPCS_RegMask;
259 return nullptr;
262 const uint32_t *AArch64RegisterInfo::getTLSCallPreservedMask() const {
263 if (TT.isOSDarwin())
264 return CSR_Darwin_AArch64_TLS_RegMask;
266 assert(TT.isOSBinFormatELF() && "Invalid target");
267 return CSR_AArch64_TLS_ELF_RegMask;
270 void AArch64RegisterInfo::UpdateCustomCallPreservedMask(MachineFunction &MF,
271 const uint32_t **Mask) const {
272 uint32_t *UpdatedMask = MF.allocateRegMask();
273 unsigned RegMaskSize = MachineOperand::getRegMaskSize(getNumRegs());
274 memcpy(UpdatedMask, *Mask, sizeof(UpdatedMask[0]) * RegMaskSize);
276 for (size_t i = 0; i < AArch64::GPR64commonRegClass.getNumRegs(); ++i) {
277 if (MF.getSubtarget<AArch64Subtarget>().isXRegCustomCalleeSaved(i)) {
278 for (MCSubRegIterator SubReg(AArch64::GPR64commonRegClass.getRegister(i),
279 this, true);
280 SubReg.isValid(); ++SubReg) {
281 // See TargetRegisterInfo::getCallPreservedMask for how to interpret the
282 // register mask.
283 UpdatedMask[*SubReg / 32] |= 1u << (*SubReg % 32);
287 *Mask = UpdatedMask;
290 const uint32_t *AArch64RegisterInfo::getNoPreservedMask() const {
291 return CSR_AArch64_NoRegs_RegMask;
294 const uint32_t *
295 AArch64RegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
296 CallingConv::ID CC) const {
297 // This should return a register mask that is the same as that returned by
298 // getCallPreservedMask but that additionally preserves the register used for
299 // the first i64 argument (which must also be the register used to return a
300 // single i64 return value)
302 // In case that the calling convention does not use the same register for
303 // both, the function should return NULL (does not currently apply)
304 assert(CC != CallingConv::GHC && "should not be GHC calling convention.");
305 if (MF.getSubtarget<AArch64Subtarget>().isTargetDarwin())
306 return CSR_Darwin_AArch64_AAPCS_ThisReturn_RegMask;
307 return CSR_AArch64_AAPCS_ThisReturn_RegMask;
310 const uint32_t *AArch64RegisterInfo::getWindowsStackProbePreservedMask() const {
311 return CSR_AArch64_StackProbe_Windows_RegMask;
314 BitVector
315 AArch64RegisterInfo::getReservedRegs(const MachineFunction &MF) const {
316 const AArch64FrameLowering *TFI = getFrameLowering(MF);
318 // FIXME: avoid re-calculating this every time.
319 BitVector Reserved(getNumRegs());
320 markSuperRegs(Reserved, AArch64::WSP);
321 markSuperRegs(Reserved, AArch64::WZR);
323 if (TFI->hasFP(MF) || TT.isOSDarwin())
324 markSuperRegs(Reserved, AArch64::W29);
326 for (size_t i = 0; i < AArch64::GPR32commonRegClass.getNumRegs(); ++i) {
327 if (MF.getSubtarget<AArch64Subtarget>().isXRegisterReserved(i))
328 markSuperRegs(Reserved, AArch64::GPR32commonRegClass.getRegister(i));
331 if (hasBasePointer(MF))
332 markSuperRegs(Reserved, AArch64::W19);
334 // SLH uses register W16/X16 as the taint register.
335 if (MF.getFunction().hasFnAttribute(Attribute::SpeculativeLoadHardening))
336 markSuperRegs(Reserved, AArch64::W16);
338 assert(checkAllSuperRegsMarked(Reserved));
339 return Reserved;
342 bool AArch64RegisterInfo::isReservedReg(const MachineFunction &MF,
343 MCRegister Reg) const {
344 return getReservedRegs(MF)[Reg];
347 bool AArch64RegisterInfo::isAnyArgRegReserved(const MachineFunction &MF) const {
348 return llvm::any_of(*AArch64::GPR64argRegClass.MC, [this, &MF](MCPhysReg r) {
349 return isReservedReg(MF, r);
353 void AArch64RegisterInfo::emitReservedArgRegCallError(
354 const MachineFunction &MF) const {
355 const Function &F = MF.getFunction();
356 F.getContext().diagnose(DiagnosticInfoUnsupported{F, ("AArch64 doesn't support"
357 " function calls if any of the argument registers is reserved.")});
360 bool AArch64RegisterInfo::isAsmClobberable(const MachineFunction &MF,
361 MCRegister PhysReg) const {
362 return !isReservedReg(MF, PhysReg);
365 bool AArch64RegisterInfo::isConstantPhysReg(MCRegister PhysReg) const {
366 return PhysReg == AArch64::WZR || PhysReg == AArch64::XZR;
369 const TargetRegisterClass *
370 AArch64RegisterInfo::getPointerRegClass(const MachineFunction &MF,
371 unsigned Kind) const {
372 return &AArch64::GPR64spRegClass;
375 const TargetRegisterClass *
376 AArch64RegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
377 if (RC == &AArch64::CCRRegClass)
378 return &AArch64::GPR64RegClass; // Only MSR & MRS copy NZCV.
379 return RC;
382 unsigned AArch64RegisterInfo::getBaseRegister() const { return AArch64::X19; }
384 bool AArch64RegisterInfo::hasBasePointer(const MachineFunction &MF) const {
385 const MachineFrameInfo &MFI = MF.getFrameInfo();
387 // In the presence of variable sized objects or funclets, if the fixed stack
388 // size is large enough that referencing from the FP won't result in things
389 // being in range relatively often, we can use a base pointer to allow access
390 // from the other direction like the SP normally works.
392 // Furthermore, if both variable sized objects are present, and the
393 // stack needs to be dynamically re-aligned, the base pointer is the only
394 // reliable way to reference the locals.
395 if (MFI.hasVarSizedObjects() || MF.hasEHFunclets()) {
396 if (hasStackRealignment(MF))
397 return true;
399 if (MF.getSubtarget<AArch64Subtarget>().hasSVE()) {
400 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
401 // Frames that have variable sized objects and scalable SVE objects,
402 // should always use a basepointer.
403 if (!AFI->hasCalculatedStackSizeSVE() || AFI->getStackSizeSVE())
404 return true;
407 // Conservatively estimate whether the negative offset from the frame
408 // pointer will be sufficient to reach. If a function has a smallish
409 // frame, it's less likely to have lots of spills and callee saved
410 // space, so it's all more likely to be within range of the frame pointer.
411 // If it's wrong, we'll materialize the constant and still get to the
412 // object; it's just suboptimal. Negative offsets use the unscaled
413 // load/store instructions, which have a 9-bit signed immediate.
414 return MFI.getLocalFrameSize() >= 256;
417 return false;
420 Register
421 AArch64RegisterInfo::getFrameRegister(const MachineFunction &MF) const {
422 const AArch64FrameLowering *TFI = getFrameLowering(MF);
423 return TFI->hasFP(MF) ? AArch64::FP : AArch64::SP;
426 bool AArch64RegisterInfo::requiresRegisterScavenging(
427 const MachineFunction &MF) const {
428 return true;
431 bool AArch64RegisterInfo::requiresVirtualBaseRegisters(
432 const MachineFunction &MF) const {
433 return true;
436 bool
437 AArch64RegisterInfo::useFPForScavengingIndex(const MachineFunction &MF) const {
438 // This function indicates whether the emergency spillslot should be placed
439 // close to the beginning of the stackframe (closer to FP) or the end
440 // (closer to SP).
442 // The beginning works most reliably if we have a frame pointer.
443 // In the presence of any non-constant space between FP and locals,
444 // (e.g. in case of stack realignment or a scalable SVE area), it is
445 // better to use SP or BP.
446 const AArch64FrameLowering &TFI = *getFrameLowering(MF);
447 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
448 assert((!MF.getSubtarget<AArch64Subtarget>().hasSVE() ||
449 AFI->hasCalculatedStackSizeSVE()) &&
450 "Expected SVE area to be calculated by this point");
451 return TFI.hasFP(MF) && !hasStackRealignment(MF) && !AFI->getStackSizeSVE();
454 bool AArch64RegisterInfo::requiresFrameIndexScavenging(
455 const MachineFunction &MF) const {
456 return true;
459 bool
460 AArch64RegisterInfo::cannotEliminateFrame(const MachineFunction &MF) const {
461 const MachineFrameInfo &MFI = MF.getFrameInfo();
462 if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
463 return true;
464 return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken();
467 /// needsFrameBaseReg - Returns true if the instruction's frame index
468 /// reference would be better served by a base register other than FP
469 /// or SP. Used by LocalStackFrameAllocation to determine which frame index
470 /// references it should create new base registers for.
471 bool AArch64RegisterInfo::needsFrameBaseReg(MachineInstr *MI,
472 int64_t Offset) const {
473 for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i)
474 assert(i < MI->getNumOperands() &&
475 "Instr doesn't have FrameIndex operand!");
477 // It's the load/store FI references that cause issues, as it can be difficult
478 // to materialize the offset if it won't fit in the literal field. Estimate
479 // based on the size of the local frame and some conservative assumptions
480 // about the rest of the stack frame (note, this is pre-regalloc, so
481 // we don't know everything for certain yet) whether this offset is likely
482 // to be out of range of the immediate. Return true if so.
484 // We only generate virtual base registers for loads and stores, so
485 // return false for everything else.
486 if (!MI->mayLoad() && !MI->mayStore())
487 return false;
489 // Without a virtual base register, if the function has variable sized
490 // objects, all fixed-size local references will be via the frame pointer,
491 // Approximate the offset and see if it's legal for the instruction.
492 // Note that the incoming offset is based on the SP value at function entry,
493 // so it'll be negative.
494 MachineFunction &MF = *MI->getParent()->getParent();
495 const AArch64FrameLowering *TFI = getFrameLowering(MF);
496 MachineFrameInfo &MFI = MF.getFrameInfo();
498 // Estimate an offset from the frame pointer.
499 // Conservatively assume all GPR callee-saved registers get pushed.
500 // FP, LR, X19-X28, D8-D15. 64-bits each.
501 int64_t FPOffset = Offset - 16 * 20;
502 // Estimate an offset from the stack pointer.
503 // The incoming offset is relating to the SP at the start of the function,
504 // but when we access the local it'll be relative to the SP after local
505 // allocation, so adjust our SP-relative offset by that allocation size.
506 Offset += MFI.getLocalFrameSize();
507 // Assume that we'll have at least some spill slots allocated.
508 // FIXME: This is a total SWAG number. We should run some statistics
509 // and pick a real one.
510 Offset += 128; // 128 bytes of spill slots
512 // If there is a frame pointer, try using it.
513 // The FP is only available if there is no dynamic realignment. We
514 // don't know for sure yet whether we'll need that, so we guess based
515 // on whether there are any local variables that would trigger it.
516 if (TFI->hasFP(MF) && isFrameOffsetLegal(MI, AArch64::FP, FPOffset))
517 return false;
519 // If we can reference via the stack pointer or base pointer, try that.
520 // FIXME: This (and the code that resolves the references) can be improved
521 // to only disallow SP relative references in the live range of
522 // the VLA(s). In practice, it's unclear how much difference that
523 // would make, but it may be worth doing.
524 if (isFrameOffsetLegal(MI, AArch64::SP, Offset))
525 return false;
527 // If even offset 0 is illegal, we don't want a virtual base register.
528 if (!isFrameOffsetLegal(MI, AArch64::SP, 0))
529 return false;
531 // The offset likely isn't legal; we want to allocate a virtual base register.
532 return true;
535 bool AArch64RegisterInfo::isFrameOffsetLegal(const MachineInstr *MI,
536 Register BaseReg,
537 int64_t Offset) const {
538 assert(MI && "Unable to get the legal offset for nil instruction.");
539 StackOffset SaveOffset = StackOffset::getFixed(Offset);
540 return isAArch64FrameOffsetLegal(*MI, SaveOffset) & AArch64FrameOffsetIsLegal;
543 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
544 /// at the beginning of the basic block.
545 Register
546 AArch64RegisterInfo::materializeFrameBaseRegister(MachineBasicBlock *MBB,
547 int FrameIdx,
548 int64_t Offset) const {
549 MachineBasicBlock::iterator Ins = MBB->begin();
550 DebugLoc DL; // Defaults to "unknown"
551 if (Ins != MBB->end())
552 DL = Ins->getDebugLoc();
553 const MachineFunction &MF = *MBB->getParent();
554 const AArch64InstrInfo *TII =
555 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
556 const MCInstrDesc &MCID = TII->get(AArch64::ADDXri);
557 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
558 Register BaseReg = MRI.createVirtualRegister(&AArch64::GPR64spRegClass);
559 MRI.constrainRegClass(BaseReg, TII->getRegClass(MCID, 0, this, MF));
560 unsigned Shifter = AArch64_AM::getShifterImm(AArch64_AM::LSL, 0);
562 BuildMI(*MBB, Ins, DL, MCID, BaseReg)
563 .addFrameIndex(FrameIdx)
564 .addImm(Offset)
565 .addImm(Shifter);
567 return BaseReg;
570 void AArch64RegisterInfo::resolveFrameIndex(MachineInstr &MI, Register BaseReg,
571 int64_t Offset) const {
572 // ARM doesn't need the general 64-bit offsets
573 StackOffset Off = StackOffset::getFixed(Offset);
575 unsigned i = 0;
576 while (!MI.getOperand(i).isFI()) {
577 ++i;
578 assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
581 const MachineFunction *MF = MI.getParent()->getParent();
582 const AArch64InstrInfo *TII =
583 MF->getSubtarget<AArch64Subtarget>().getInstrInfo();
584 bool Done = rewriteAArch64FrameIndex(MI, i, BaseReg, Off, TII);
585 assert(Done && "Unable to resolve frame index!");
586 (void)Done;
589 // Create a scratch register for the frame index elimination in an instruction.
590 // This function has special handling of stack tagging loop pseudos, in which
591 // case it can also change the instruction opcode (but not the operands).
592 static Register
593 createScratchRegisterForInstruction(MachineInstr &MI,
594 const AArch64InstrInfo *TII) {
595 // ST*Gloop have a reserved scratch register in operand 1. Use it, and also
596 // replace the instruction with the writeback variant because it will now
597 // satisfy the operand constraints for it.
598 if (MI.getOpcode() == AArch64::STGloop) {
599 MI.setDesc(TII->get(AArch64::STGloop_wback));
600 return MI.getOperand(1).getReg();
601 } else if (MI.getOpcode() == AArch64::STZGloop) {
602 MI.setDesc(TII->get(AArch64::STZGloop_wback));
603 return MI.getOperand(1).getReg();
604 } else {
605 return MI.getMF()->getRegInfo().createVirtualRegister(
606 &AArch64::GPR64RegClass);
610 void AArch64RegisterInfo::getOffsetOpcodes(
611 const StackOffset &Offset, SmallVectorImpl<uint64_t> &Ops) const {
612 // The smallest scalable element supported by scaled SVE addressing
613 // modes are predicates, which are 2 scalable bytes in size. So the scalable
614 // byte offset must always be a multiple of 2.
615 assert(Offset.getScalable() % 2 == 0 && "Invalid frame offset");
617 // Add fixed-sized offset using existing DIExpression interface.
618 DIExpression::appendOffset(Ops, Offset.getFixed());
620 unsigned VG = getDwarfRegNum(AArch64::VG, true);
621 int64_t VGSized = Offset.getScalable() / 2;
622 if (VGSized > 0) {
623 Ops.push_back(dwarf::DW_OP_constu);
624 Ops.push_back(VGSized);
625 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
626 Ops.push_back(dwarf::DW_OP_mul);
627 Ops.push_back(dwarf::DW_OP_plus);
628 } else if (VGSized < 0) {
629 Ops.push_back(dwarf::DW_OP_constu);
630 Ops.push_back(-VGSized);
631 Ops.append({dwarf::DW_OP_bregx, VG, 0ULL});
632 Ops.push_back(dwarf::DW_OP_mul);
633 Ops.push_back(dwarf::DW_OP_minus);
637 void AArch64RegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
638 int SPAdj, unsigned FIOperandNum,
639 RegScavenger *RS) const {
640 assert(SPAdj == 0 && "Unexpected");
642 MachineInstr &MI = *II;
643 MachineBasicBlock &MBB = *MI.getParent();
644 MachineFunction &MF = *MBB.getParent();
645 const MachineFrameInfo &MFI = MF.getFrameInfo();
646 const AArch64InstrInfo *TII =
647 MF.getSubtarget<AArch64Subtarget>().getInstrInfo();
648 const AArch64FrameLowering *TFI = getFrameLowering(MF);
649 int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
650 bool Tagged =
651 MI.getOperand(FIOperandNum).getTargetFlags() & AArch64II::MO_TAGGED;
652 Register FrameReg;
654 // Special handling of dbg_value, stackmap patchpoint statepoint instructions.
655 if (MI.getOpcode() == TargetOpcode::STACKMAP ||
656 MI.getOpcode() == TargetOpcode::PATCHPOINT ||
657 MI.getOpcode() == TargetOpcode::STATEPOINT) {
658 StackOffset Offset =
659 TFI->resolveFrameIndexReference(MF, FrameIndex, FrameReg,
660 /*PreferFP=*/true,
661 /*ForSimm=*/false);
662 Offset += StackOffset::getFixed(MI.getOperand(FIOperandNum + 1).getImm());
663 MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false /*isDef*/);
664 MI.getOperand(FIOperandNum + 1).ChangeToImmediate(Offset.getFixed());
665 return;
668 if (MI.getOpcode() == TargetOpcode::LOCAL_ESCAPE) {
669 MachineOperand &FI = MI.getOperand(FIOperandNum);
670 StackOffset Offset = TFI->getNonLocalFrameIndexReference(MF, FrameIndex);
671 assert(!Offset.getScalable() &&
672 "Frame offsets with a scalable component are not supported");
673 FI.ChangeToImmediate(Offset.getFixed());
674 return;
677 StackOffset Offset;
678 if (MI.getOpcode() == AArch64::TAGPstack) {
679 // TAGPstack must use the virtual frame register in its 3rd operand.
680 const AArch64FunctionInfo *AFI = MF.getInfo<AArch64FunctionInfo>();
681 FrameReg = MI.getOperand(3).getReg();
682 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
683 AFI->getTaggedBasePointerOffset());
684 } else if (Tagged) {
685 StackOffset SPOffset = StackOffset::getFixed(
686 MFI.getObjectOffset(FrameIndex) + (int64_t)MFI.getStackSize());
687 if (MFI.hasVarSizedObjects() ||
688 isAArch64FrameOffsetLegal(MI, SPOffset, nullptr, nullptr, nullptr) !=
689 (AArch64FrameOffsetCanUpdate | AArch64FrameOffsetIsLegal)) {
690 // Can't update to SP + offset in place. Precalculate the tagged pointer
691 // in a scratch register.
692 Offset = TFI->resolveFrameIndexReference(
693 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
694 Register ScratchReg =
695 MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass);
696 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset,
697 TII);
698 BuildMI(MBB, MI, MI.getDebugLoc(), TII->get(AArch64::LDG), ScratchReg)
699 .addReg(ScratchReg)
700 .addReg(ScratchReg)
701 .addImm(0);
702 MI.getOperand(FIOperandNum)
703 .ChangeToRegister(ScratchReg, false, false, true);
704 return;
706 FrameReg = AArch64::SP;
707 Offset = StackOffset::getFixed(MFI.getObjectOffset(FrameIndex) +
708 (int64_t)MFI.getStackSize());
709 } else {
710 Offset = TFI->resolveFrameIndexReference(
711 MF, FrameIndex, FrameReg, /*PreferFP=*/false, /*ForSimm=*/true);
714 // Modify MI as necessary to handle as much of 'Offset' as possible
715 if (rewriteAArch64FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII))
716 return;
718 assert((!RS || !RS->isScavengingFrameIndex(FrameIndex)) &&
719 "Emergency spill slot is out of reach");
721 // If we get here, the immediate doesn't fit into the instruction. We folded
722 // as much as possible above. Handle the rest, providing a register that is
723 // SP+LargeImm.
724 Register ScratchReg = createScratchRegisterForInstruction(MI, TII);
725 emitFrameOffset(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg, Offset, TII);
726 MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false, true);
729 unsigned AArch64RegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
730 MachineFunction &MF) const {
731 const AArch64FrameLowering *TFI = getFrameLowering(MF);
733 switch (RC->getID()) {
734 default:
735 return 0;
736 case AArch64::GPR32RegClassID:
737 case AArch64::GPR32spRegClassID:
738 case AArch64::GPR32allRegClassID:
739 case AArch64::GPR64spRegClassID:
740 case AArch64::GPR64allRegClassID:
741 case AArch64::GPR64RegClassID:
742 case AArch64::GPR32commonRegClassID:
743 case AArch64::GPR64commonRegClassID:
744 return 32 - 1 // XZR/SP
745 - (TFI->hasFP(MF) || TT.isOSDarwin()) // FP
746 - MF.getSubtarget<AArch64Subtarget>().getNumXRegisterReserved()
747 - hasBasePointer(MF); // X19
748 case AArch64::FPR8RegClassID:
749 case AArch64::FPR16RegClassID:
750 case AArch64::FPR32RegClassID:
751 case AArch64::FPR64RegClassID:
752 case AArch64::FPR128RegClassID:
753 return 32;
755 case AArch64::MatrixIndexGPR32_12_15RegClassID:
756 return 4;
758 case AArch64::DDRegClassID:
759 case AArch64::DDDRegClassID:
760 case AArch64::DDDDRegClassID:
761 case AArch64::QQRegClassID:
762 case AArch64::QQQRegClassID:
763 case AArch64::QQQQRegClassID:
764 return 32;
766 case AArch64::FPR128_loRegClassID:
767 case AArch64::FPR64_loRegClassID:
768 case AArch64::FPR16_loRegClassID:
769 return 16;
773 unsigned AArch64RegisterInfo::getLocalAddressRegister(
774 const MachineFunction &MF) const {
775 const auto &MFI = MF.getFrameInfo();
776 if (!MF.hasEHFunclets() && !MFI.hasVarSizedObjects())
777 return AArch64::SP;
778 else if (hasStackRealignment(MF))
779 return getBaseRegister();
780 return getFrameRegister(MF);
783 /// SrcRC and DstRC will be morphed into NewRC if this returns true
784 bool AArch64RegisterInfo::shouldCoalesce(
785 MachineInstr *MI, const TargetRegisterClass *SrcRC, unsigned SubReg,
786 const TargetRegisterClass *DstRC, unsigned DstSubReg,
787 const TargetRegisterClass *NewRC, LiveIntervals &LIS) const {
788 if (MI->isCopy() &&
789 ((DstRC->getID() == AArch64::GPR64RegClassID) ||
790 (DstRC->getID() == AArch64::GPR64commonRegClassID)) &&
791 MI->getOperand(0).getSubReg() && MI->getOperand(1).getSubReg())
792 // Do not coalesce in the case of a 32-bit subregister copy
793 // which implements a 32 to 64 bit zero extension
794 // which relies on the upper 32 bits being zeroed.
795 return false;
796 return true;