1 //=- AArch64SchedCyclone.td - Cyclone Scheduling Definitions -*- tablegen -*-=//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the machine model for AArch64 Cyclone to support
10 // instruction scheduling and other instruction cost heuristics.
12 //===----------------------------------------------------------------------===//
14 def CycloneModel : SchedMachineModel {
15 let IssueWidth = 6; // 6 micro-ops are dispatched per cycle.
16 let MicroOpBufferSize = 192; // Based on the reorder buffer.
17 let LoadLatency = 4; // Optimistic load latency.
18 let MispredictPenalty = 16; // 14-19 cycles are typical.
19 let CompleteModel = 1;
21 list<Predicate> UnsupportedFeatures = !listconcat(SVEUnsupported.F,
26 //===----------------------------------------------------------------------===//
27 // Define each kind of processor resource and number available on Cyclone.
30 def CyUnitI : ProcResource<4> {
34 // 2 branch units: I[0..1]
35 def CyUnitB : ProcResource<2> {
40 // 1 indirect-branch unit: I[0]
41 def CyUnitBR : ProcResource<1> {
45 // 2 shifter pipes: I[2..3]
46 // When an instruction consumes a CyUnitIS, it also consumes a CyUnitI
47 def CyUnitIS : ProcResource<2> {
53 def CyUnitIM : ProcResource<1> {
59 def CyUnitID : ProcResource<1> {
64 // 1 integer division unit. This is driven by the ID pipe, but only
65 // consumes the pipe for one cycle at issue and another cycle at writeback.
66 def CyUnitIntDiv : ProcResource<1>;
69 def CyUnitLS : ProcResource<2> {
74 def CyUnitV : ProcResource<3> {
77 // 2 fp/vector arithmetic and multiply pipes: V[0-1]
78 def CyUnitVM : ProcResource<2> {
82 // 1 fp/vector division/sqrt pipe: V[2]
83 def CyUnitVD : ProcResource<1> {
87 // 1 fp compare pipe: V[0]
88 def CyUnitVC : ProcResource<1> {
93 // 2 fp division/square-root units. These are driven by the VD pipe,
94 // but only consume the pipe for one cycle at issue and a cycle at writeback.
95 def CyUnitFloatDiv : ProcResource<2>;
97 //===----------------------------------------------------------------------===//
98 // Define scheduler read/write resources and latency on Cyclone.
99 // This mirrors sections 7.7-7.9 of the Tuning Guide v1.0.1.
101 let SchedModel = CycloneModel in {
107 // A single nop micro-op (uX).
108 def WriteX : SchedWriteRes<[]> { let Latency = 0; }
110 // Move zero is a register rename (to machine register zero).
111 // The move is replaced by a single nop micro-op.
114 def WriteZPred : SchedPredicate<[{TII->isGPRZero(*MI)}]>;
115 def WriteImmZ : SchedWriteVariant<[
116 SchedVar<WriteZPred, [WriteX]>,
117 SchedVar<NoSchedPred, [WriteImm]>]>;
118 def : InstRW<[WriteImmZ], (instrs MOVZWi,MOVZXi,ANDWri,ANDXri)>;
120 // Move GPR is a register rename and single nop micro-op.
123 def WriteIMovPred : SchedPredicate<[{TII->isGPRCopy(*MI)}]>;
124 def WriteVMovPred : SchedPredicate<[{TII->isFPRCopy(*MI)}]>;
125 def WriteMov : SchedWriteVariant<[
126 SchedVar<WriteIMovPred, [WriteX]>,
127 SchedVar<WriteVMovPred, [WriteX]>,
128 SchedVar<NoSchedPred, [WriteI]>]>;
129 def : InstRW<[WriteMov], (instrs COPY,ORRXrr,ADDXrr)>;
131 // Move non-zero immediate is an integer ALU op.
133 def : WriteRes<WriteImm, [CyUnitI]>;
136 // 7.8.2-7.8.5. Arithmetic and Logical, Comparison, Conditional,
137 // Shifts and Bitfield Operations
141 // ADD(S)ri,SUB(S)ri,AND(S)ri,EORri,ORRri
142 // ADD(S)rr,SUB(S)rr,AND(S)rr,BIC(S)rr,EONrr,EORrr,ORNrr,ORRrr
144 // Aliases: CMN, CMP, TST
146 // Conditional operations.
147 // CCMNi,CCMPi,CCMNr,CCMPr,
148 // CSEL,CSINC,CSINV,CSNEG
150 // Bit counting and reversal operations.
151 // CLS,CLZ,RBIT,REV,REV16,REV32
152 def : WriteRes<WriteI, [CyUnitI]>;
154 // ADD with shifted register operand is a single micro-op that
155 // consumes a shift pipeline for two cycles.
156 // ADD(S)rs,SUB(S)rs,AND(S)rs,BIC(S)rs,EONrs,EORrs,ORNrs,ORRrs
157 // EXAMPLE: ADDrs Xn, Xm LSL #imm
158 def : WriteRes<WriteISReg, [CyUnitIS]> {
160 let ResourceCycles = [2];
163 // ADD with extended register operand is the same as shifted reg operand.
165 // EXAMPLE: ADDXre Xn, Xm, UXTB #1
166 def : WriteRes<WriteIEReg, [CyUnitIS]> {
168 let ResourceCycles = [2];
171 // Variable shift and bitfield operations.
172 // ASRV,LSLV,LSRV,RORV,BFM,SBFM,UBFM
173 def : WriteRes<WriteIS, [CyUnitIS]>;
175 // EXTR Shifts a pair of registers and requires two micro-ops.
176 // The second micro-op is delayed, as modeled by ReadExtrHi.
178 def : WriteRes<WriteExtr, [CyUnitIS, CyUnitIS]> {
183 // EXTR's first register read is delayed by one cycle, effectively
184 // shortening its writer's latency.
186 def : ReadAdvance<ReadExtrHi, 1>;
192 // MUL/MNEG are aliases for MADD/MSUB.
193 // MADDW,MSUBW,SMADDL,SMSUBL,UMADDL,UMSUBL
194 def : WriteRes<WriteIM32, [CyUnitIM]> {
197 // MADDX,MSUBX,SMULH,UMULH
198 def : WriteRes<WriteIM64, [CyUnitIM]> {
206 // 32-bit divide takes 7-13 cycles. 10 cycles covers a 20-bit quotient.
207 // The ID pipe is consumed for 2 cycles: issue and writeback.
209 def : WriteRes<WriteID32, [CyUnitID, CyUnitIntDiv]> {
211 let ResourceCycles = [2, 10];
213 // 64-bit divide takes 7-21 cycles. 13 cycles covers a 32-bit quotient.
214 // The ID pipe is consumed for 2 cycles: issue and writeback.
216 def : WriteRes<WriteID64, [CyUnitID, CyUnitIntDiv]> {
218 let ResourceCycles = [2, 13];
222 // 7.8.8,7.8.10. Load/Store, single element
225 // Integer loads take 4 cycles and use one LS unit for one cycle.
226 def : WriteRes<WriteLD, [CyUnitLS]> {
230 // Store-load forwarding is 4 cycles.
232 // Note: The store-exclusive sequence incorporates this
233 // latency. However, general heuristics should not model the
234 // dependence between a store and subsequent may-alias load because
235 // hardware speculation works.
236 def : WriteRes<WriteST, [CyUnitLS]> {
240 // Load from base address plus an optionally scaled register offset.
241 // Rt latency is latency WriteIS + WriteLD.
242 // EXAMPLE: LDR Xn, Xm [, lsl 3]
243 def CyWriteLDIdx : SchedWriteVariant<[
244 SchedVar<ScaledIdxPred, [WriteIS, WriteLD]>, // Load from scaled register.
245 SchedVar<NoSchedPred, [WriteLD]>]>; // Load from register offset.
246 def : SchedAlias<WriteLDIdx, CyWriteLDIdx>; // Map AArch64->Cyclone type.
248 // EXAMPLE: STR Xn, Xm [, lsl 3]
249 def CyWriteSTIdx : SchedWriteVariant<[
250 SchedVar<ScaledIdxPred, [WriteIS, WriteST]>, // Store to scaled register.
251 SchedVar<NoSchedPred, [WriteST]>]>; // Store to register offset.
252 def : SchedAlias<WriteSTIdx, CyWriteSTIdx>; // Map AArch64->Cyclone type.
254 // Read the (unshifted) base register Xn in the second micro-op one cycle later.
255 // EXAMPLE: LDR Xn, Xm [, lsl 3]
256 def ReadBaseRS : SchedReadAdvance<1>;
257 def CyReadAdrBase : SchedReadVariant<[
258 SchedVar<ScaledIdxPred, [ReadBaseRS]>, // Read base reg after shifting offset.
259 SchedVar<NoSchedPred, [ReadDefault]>]>; // Read base reg with no shift.
260 def : SchedAlias<ReadAdrBase, CyReadAdrBase>; // Map AArch64->Cyclone type.
263 // 7.8.9,7.8.11. Load/Store, paired
266 // Address pre/post increment is a simple ALU op with one cycle latency.
267 def : WriteRes<WriteAdr, [CyUnitI]>;
269 // LDP high register write is fused with the load, but a nop micro-op remains.
270 def : WriteRes<WriteLDHi, []> {
274 // STP is a vector op and store, except for QQ, which is just two stores.
275 def : SchedAlias<WriteSTP, WriteVSTShuffle>;
276 def : InstRW<[WriteST, WriteST], (instrs STPQi)>;
282 // Branches take a single micro-op.
283 // The misprediction penalty is defined as a SchedMachineModel property.
284 def : WriteRes<WriteBr, [CyUnitB]> {let Latency = 0;}
285 def : WriteRes<WriteBrReg, [CyUnitBR]> {let Latency = 0;}
288 // 7.8.14. Never-issued Instructions, Barrier and Hint Operations
291 // NOP,SEV,SEVL,WFE,WFI,YIELD
292 def : WriteRes<WriteHint, []> {let Latency = 0;}
294 def : InstRW<[WriteI], (instrs ISB)>;
296 def : WriteRes<WriteBarrier, [CyUnitLS]>;
298 // System instructions get an invalid latency because the latency of
299 // other operations across them is meaningless.
300 def : WriteRes<WriteSys, []> {let Latency = -1;}
302 //===----------------------------------------------------------------------===//
303 // 7.9 Vector Unit Instructions
305 // Simple vector operations take 2 cycles.
306 def : WriteRes<WriteV, [CyUnitV]> {let Latency = 2;}
308 // Define some longer latency vector op types for Cyclone.
309 def CyWriteV3 : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
310 def CyWriteV4 : SchedWriteRes<[CyUnitV]> {let Latency = 4;}
311 def CyWriteV5 : SchedWriteRes<[CyUnitV]> {let Latency = 5;}
312 def CyWriteV6 : SchedWriteRes<[CyUnitV]> {let Latency = 6;}
314 // Simple floating-point operations take 2 cycles.
315 def : WriteRes<WriteF, [CyUnitV]> {let Latency = 2;}
318 // 7.9.1 Vector Moves
321 // TODO: Add Cyclone-specific zero-cycle zeros. LLVM currently
322 // generates expensive int-float conversion instead:
324 // FMOVv2f64ns Vd.2d, #0.0
327 def : WriteRes<WriteFImm, [CyUnitV]> {let Latency = 2;}
329 // MOVI,MVNI are WriteV
330 // FMOVv2f32ns,FMOVv2f64ns,FMOVv4f32ns are WriteV
332 // Move FPR is a register rename and single nop micro-op.
334 // COPY is handled above in the WriteMov Variant.
335 def WriteVMov : SchedWriteVariant<[
336 SchedVar<WriteVMovPred, [WriteX]>,
337 SchedVar<NoSchedPred, [WriteV]>]>;
338 def : InstRW<[WriteVMov], (instrs ORRv16i8)>;
340 // FMOVSr,FMOVDr are WriteF.
342 // MOV V,V is a WriteV.
344 // CPY D,V[x] is a WriteV
346 // INS V[x],V[y] is a WriteV.
348 // FMOVWSr,FMOVXDr,FMOVXDHighr
349 def : WriteRes<WriteFCopy, [CyUnitLS]> {
354 def : InstRW<[WriteLD], (instrs FMOVSWr,FMOVDXr,FMOVDXHighr)>;
357 def CyWriteCopyToFPR : WriteSequence<[WriteVLD, WriteV]>;
358 def : InstRW<[CyWriteCopyToFPR], (instregex "INSv")>;
361 def CyWriteCopyToGPR : WriteSequence<[WriteLD, WriteI]>;
362 def : InstRW<[CyWriteCopyToGPR], (instregex "SMOVv","UMOVv")>;
365 def : InstRW<[CyWriteCopyToFPR], (instregex "DUPv")>;
367 // DUP V,V[x] is a WriteV.
370 // 7.9.2 Integer Arithmetic, Logical, and Comparisons
373 // BIC,ORR V,#imm are WriteV
375 def : InstRW<[CyWriteV3], (instregex "ABSv")>;
377 // MVN,NEG,NOT are WriteV
379 def : InstRW<[CyWriteV3], (instregex "SQABSv","SQNEGv")>;
382 def CyWriteVADDLP : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
383 def : InstRW<[CyWriteVADDLP], (instregex "SADDLPv","UADDLPv")>;
385 def : InstRW<[CyWriteV3],
386 (instregex "ADDVv","SMAXVv","UMAXVv","SMINVv","UMINVv")>;
388 def : InstRW<[CyWriteV3], (instregex "SADDLV","UADDLV")>;
390 // ADD,SUB are WriteV
393 def CyWriteVABD : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
395 // Add/Diff and accumulate uses the vector multiply unit.
396 def CyWriteVAccum : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
397 def CyReadVAccum : SchedReadAdvance<1,
398 [CyWriteVAccum, CyWriteVADDLP, CyWriteVABD]>;
400 def : InstRW<[CyWriteVAccum, CyReadVAccum],
401 (instregex "SADALP","UADALP")>;
403 def : InstRW<[CyWriteVAccum, CyReadVAccum],
404 (instregex "SABAv","UABAv","SABALv","UABALv")>;
406 def : InstRW<[CyWriteV3], (instregex "SQADDv","SQSUBv","UQADDv","UQSUBv")>;
408 def : InstRW<[CyWriteV3], (instregex "SUQADDv","USQADDv")>;
410 def : InstRW<[CyWriteV4], (instregex "ADDHNv","RADDHNv", "RSUBHNv", "SUBHNv")>;
413 // AND,BIC,CMTST,EOR,ORN,ORR
415 // SHADD,SHSUB,SRHADD,UHADD,UHSUB,URHADD
416 // SADDL,SSUBL,UADDL,USUBL
417 // SADDW,SSUBW,UADDW,USUBW
419 def : InstRW<[CyWriteV3], (instregex "CMEQv","CMGEv","CMGTv",
423 def : InstRW<[CyWriteV3], (instregex "SMAXv","SMINv","UMAXv","UMINv",
424 "SMAXPv","SMINPv","UMAXPv","UMINPv")>;
426 def : InstRW<[CyWriteVABD], (instregex "SABDv","UABDv",
430 // 7.9.3 Floating Point Arithmetic and Comparisons
433 // FABS,FNEG are WriteF
435 def : InstRW<[CyWriteV4], (instrs FADDPv2i32p)>;
436 def : InstRW<[CyWriteV5], (instrs FADDPv2i64p)>;
438 def : InstRW<[CyWriteV3], (instregex "FMAXPv2i","FMAXNMPv2i",
439 "FMINPv2i","FMINNMPv2i")>;
441 def : InstRW<[CyWriteV4], (instregex "FMAXVv","FMAXNMVv","FMINVv","FMINNMVv")>;
443 def : InstRW<[CyWriteV4], (instrs FADDSrr,FADDv2f32,FADDv4f32,
444 FSUBSrr,FSUBv2f32,FSUBv4f32,
445 FADDPv2f32,FADDPv4f32,
446 FABD32,FABDv2f32,FABDv4f32)>;
447 def : InstRW<[CyWriteV5], (instrs FADDDrr,FADDv2f64,
452 def : InstRW<[CyWriteV3], (instregex "FCMEQ","FCMGT","FCMLE","FCMLT")>;
454 def : InstRW<[CyWriteV3], (instregex "FACGE","FACGT",
455 "FMAXS","FMAXD","FMAXv",
456 "FMINS","FMIND","FMINv",
457 "FMAXNMS","FMAXNMD","FMAXNMv",
458 "FMINNMS","FMINNMD","FMINNMv",
459 "FMAXPv2f","FMAXPv4f",
460 "FMINPv2f","FMINPv4f",
461 "FMAXNMPv2f","FMAXNMPv4f",
462 "FMINNMPv2f","FMINNMPv4f")>;
464 // FCMP,FCMPE,FCCMP,FCCMPE
465 def : WriteRes<WriteFCmp, [CyUnitVC]> {let Latency = 4;}
467 // FCSEL is a WriteF.
470 // 7.9.4 Shifts and Bitfield Operations
475 def CyWriteVSHR : SchedWriteRes<[CyUnitV]> {let Latency = 2;}
476 def : InstRW<[CyWriteVSHR], (instregex "SSHRv","USHRv")>;
478 def CyWriteVSRSHR : SchedWriteRes<[CyUnitV]> {let Latency = 3;}
479 def : InstRW<[CyWriteVSRSHR], (instregex "SRSHRv","URSHRv")>;
481 // Shift and accumulate uses the vector multiply unit.
482 def CyWriteVShiftAcc : SchedWriteRes<[CyUnitVM]> {let Latency = 3;}
483 def CyReadVShiftAcc : SchedReadAdvance<1,
484 [CyWriteVShiftAcc, CyWriteVSHR, CyWriteVSRSHR]>;
485 def : InstRW<[CyWriteVShiftAcc, CyReadVShiftAcc],
486 (instregex "SRSRAv","SSRAv","URSRAv","USRAv")>;
488 // SSHL,USHL are WriteV.
490 def : InstRW<[CyWriteV3], (instregex "SRSHLv","URSHLv")>;
492 // SQSHL,SQSHLU,UQSHL are WriteV.
494 def : InstRW<[CyWriteV3], (instregex "SQRSHLv","UQRSHLv")>;
501 // CLS,CLZ,CNT,RBIT,REV16,REV32,REV64,XTN
504 def : InstRW<[CyWriteV4],
505 (instregex "RSHRNv","SHRNv",
506 "SQRSHRNv","SQRSHRUNv","SQSHRNv","SQSHRUNv",
507 "UQRSHRNv","UQSHRNv","SQXTNv","SQXTUNv","UQXTNv")>;
510 // 7.9.5 Multiplication
513 def CyWriteVMul : SchedWriteRes<[CyUnitVM]> { let Latency = 4;}
514 def : InstRW<[CyWriteVMul], (instregex "MULv","SMULLv","UMULLv",
515 "SQDMULLv","SQDMULHv","SQRDMULHv")>;
517 // FMUL,FMULX,FNMUL default to WriteFMul.
518 def : WriteRes<WriteFMul, [CyUnitVM]> { let Latency = 4;}
520 def CyWriteV64Mul : SchedWriteRes<[CyUnitVM]> { let Latency = 5;}
521 def : InstRW<[CyWriteV64Mul], (instrs FMULDrr,FMULv2f64,FMULv2i64_indexed,
522 FNMULDrr,FMULX64,FMULXv2f64,FMULXv2i64_indexed)>;
524 def CyReadVMulAcc : SchedReadAdvance<1, [CyWriteVMul, CyWriteV64Mul]>;
525 def : InstRW<[CyWriteVMul, CyReadVMulAcc],
526 (instregex "MLA","MLS","SMLAL","SMLSL","UMLAL","UMLSL",
527 "SQDMLAL","SQDMLSL")>;
529 def CyWriteSMul : SchedWriteRes<[CyUnitVM]> { let Latency = 8;}
530 def CyWriteDMul : SchedWriteRes<[CyUnitVM]> { let Latency = 10;}
531 def CyReadSMul : SchedReadAdvance<4, [CyWriteSMul]>;
532 def CyReadDMul : SchedReadAdvance<5, [CyWriteDMul]>;
534 def : InstRW<[CyWriteSMul, CyReadSMul],
535 (instrs FMADDSrrr,FMSUBSrrr,FNMADDSrrr,FNMSUBSrrr,
537 FMLAv1i32_indexed,FMLAv1i64_indexed,FMLAv2i32_indexed)>;
538 def : InstRW<[CyWriteDMul, CyReadDMul],
539 (instrs FMADDDrrr,FMSUBDrrr,FNMADDDrrr,FNMSUBDrrr,
540 FMLAv2f64,FMLAv2i64_indexed,
541 FMLSv2f64,FMLSv2i64_indexed)>;
543 def CyWritePMUL : SchedWriteRes<[CyUnitVD]> { let Latency = 3; }
544 def : InstRW<[CyWritePMUL], (instregex "PMULv", "PMULLv")>;
547 // 7.9.6 Divide and Square Root
551 // TODO: Add 64-bit variant with 19 cycle latency.
552 // TODO: Specialize FSQRT for longer latency.
553 def : WriteRes<WriteFDiv, [CyUnitVD, CyUnitFloatDiv]> {
555 let ResourceCycles = [2, 17];
558 def : InstRW<[CyWriteV4], (instregex "FRECPEv","FRECPXv","URECPEv","URSQRTEv")>;
560 def WriteFRSQRTE : SchedWriteRes<[CyUnitVM]> { let Latency = 4; }
561 def : InstRW<[WriteFRSQRTE], (instregex "FRSQRTEv")>;
563 def WriteFRECPS : SchedWriteRes<[CyUnitVM]> { let Latency = 8; }
564 def WriteFRSQRTS : SchedWriteRes<[CyUnitVM]> { let Latency = 10; }
565 def : InstRW<[WriteFRECPS], (instregex "FRECPSv")>;
566 def : InstRW<[WriteFRSQRTS], (instregex "FRSQRTSv")>;
569 // 7.9.7 Integer-FP Conversions
572 // FCVT lengthen f16/s32
573 def : InstRW<[WriteV], (instrs FCVTSHr,FCVTDHr,FCVTDSr)>;
577 // FRINT(AIMNPXZ) V,V
578 def : WriteRes<WriteFCvt, [CyUnitV]> {let Latency = 4;}
580 // SCVT/UCVT S/D, Rd = VLD5+V4: 9 cycles.
581 def CyWriteCvtToFPR : WriteSequence<[WriteVLD, CyWriteV4]>;
582 def : InstRW<[CyWriteCopyToFPR], (instregex "FCVT[AMNPZ][SU][SU][WX][SD]r")>;
584 // FCVT Rd, S/D = V6+LD4: 10 cycles
585 def CyWriteCvtToGPR : WriteSequence<[CyWriteV6, WriteLD]>;
586 def : InstRW<[CyWriteCvtToGPR], (instregex "[SU]CVTF[SU][WX][SD]r")>;
591 // 7.9.8-7.9.10 Cryptography, Data Transposition, Table Lookup
594 def CyWriteCrypto2 : SchedWriteRes<[CyUnitVD]> {let Latency = 2;}
595 def : InstRW<[CyWriteCrypto2], (instrs AESIMCrr, AESMCrr, SHA1Hrr,
596 AESDrr, AESErr, SHA1SU1rr, SHA256SU0rr,
599 def CyWriteCrypto3 : SchedWriteRes<[CyUnitVD]> {let Latency = 3;}
600 def : InstRW<[CyWriteCrypto3], (instrs SHA256SU1rrr)>;
602 def CyWriteCrypto6 : SchedWriteRes<[CyUnitVD]> {let Latency = 6;}
603 def : InstRW<[CyWriteCrypto6], (instrs SHA1Crrr, SHA1Mrrr, SHA1Prrr,
604 SHA256Hrrr,SHA256H2rrr)>;
606 // TRN,UZP,ZUP are WriteV.
608 // TBL,TBX are WriteV.
611 // 7.9.11-7.9.14 Load/Store, single element and paired
614 // Loading into the vector unit takes 5 cycles vs 4 for integer loads.
615 def : WriteRes<WriteVLD, [CyUnitLS]> {
619 // Store-load forwarding is 4 cycles.
620 def : WriteRes<WriteVST, [CyUnitLS]> {
624 // WriteVLDPair/VSTPair sequences are expanded by the target description.
627 // 7.9.15 Load, element operations
630 // Only the first WriteVLD and WriteAdr for writeback matches def operands.
631 // Subsequent WriteVLDs consume resources. Since all loaded values have the
632 // same latency, this is acceptable.
634 // Vd is read 5 cycles after issuing the vector load.
635 def : ReadAdvance<ReadVLD, 5>;
637 def : InstRW<[WriteVLD],
638 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
639 def : InstRW<[WriteVLD, WriteAdr],
640 (instregex "LD1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
642 // Register writes from the load's high half are fused micro-ops.
643 def : InstRW<[WriteVLD],
644 (instregex "LD1Twov(8b|4h|2s|1d)$")>;
645 def : InstRW<[WriteVLD, WriteAdr],
646 (instregex "LD1Twov(8b|4h|2s|1d)_POST")>;
647 def : InstRW<[WriteVLD, WriteVLD],
648 (instregex "LD1Twov(16b|8h|4s|2d)$")>;
649 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
650 (instregex "LD1Twov(16b|8h|4s|2d)_POST")>;
652 def : InstRW<[WriteVLD, WriteVLD],
653 (instregex "LD1Threev(8b|4h|2s|1d)$")>;
654 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
655 (instregex "LD1Threev(8b|4h|2s|1d)_POST")>;
656 def : InstRW<[WriteVLD, WriteVLD, WriteVLD],
657 (instregex "LD1Threev(16b|8h|4s|2d)$")>;
658 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD],
659 (instregex "LD1Threev(16b|8h|4s|2d)_POST")>;
661 def : InstRW<[WriteVLD, WriteVLD],
662 (instregex "LD1Fourv(8b|4h|2s|1d)$")>;
663 def : InstRW<[WriteVLD, WriteAdr, WriteVLD],
664 (instregex "LD1Fourv(8b|4h|2s|1d)_POST")>;
665 def : InstRW<[WriteVLD, WriteVLD, WriteVLD, WriteVLD],
666 (instregex "LD1Fourv(16b|8h|4s|2d)$")>;
667 def : InstRW<[WriteVLD, WriteAdr, WriteVLD, WriteVLD, WriteVLD],
668 (instregex "LD1Fourv(16b|8h|4s|2d)_POST")>;
670 def : InstRW<[WriteVLDShuffle, ReadVLD],
671 (instregex "LD1i(8|16|32)$")>;
672 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],
673 (instregex "LD1i(8|16|32)_POST")>;
675 def : InstRW<[WriteVLDShuffle, ReadVLD], (instrs LD1i64)>;
676 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr],(instrs LD1i64_POST)>;
678 def : InstRW<[WriteVLDShuffle],
679 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
680 def : InstRW<[WriteVLDShuffle, WriteAdr],
681 (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>;
683 def : InstRW<[WriteVLDShuffle, WriteV],
684 (instregex "LD2Twov(8b|4h|2s)$")>;
685 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
686 (instregex "LD2Twov(8b|4h|2s)_POST$")>;
687 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle],
688 (instregex "LD2Twov(16b|8h|4s|2d)$")>;
689 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle],
690 (instregex "LD2Twov(16b|8h|4s|2d)_POST")>;
692 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
693 (instregex "LD2i(8|16|32)$")>;
694 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
695 (instregex "LD2i(8|16|32)_POST")>;
696 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV],
697 (instregex "LD2i64$")>;
698 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV],
699 (instregex "LD2i64_POST")>;
701 def : InstRW<[WriteVLDShuffle, WriteV],
702 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
703 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV],
704 (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
706 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
707 (instregex "LD3Threev(8b|4h|2s)$")>;
708 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
709 (instregex "LD3Threev(8b|4h|2s)_POST")>;
710 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteVLDShuffle],
711 (instregex "LD3Threev(16b|8h|4s|2d)$")>;
712 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteVLDShuffle],
713 (instregex "LD3Threev(16b|8h|4s|2d)_POST")>;
715 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV],
716 (instregex "LD3i(8|16|32)$")>;
717 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV],
718 (instregex "LD3i(8|16|32)_POST")>;
720 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV],
721 (instregex "LD3i64$")>;
722 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
723 (instregex "LD3i64_POST")>;
725 def : InstRW<[WriteVLDShuffle, WriteV, WriteV],
726 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)$")>;
727 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV],
728 (instregex "LD3Rv(8b|4h|2s|16b|8h|4s)_POST")>;
730 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV],
731 (instrs LD3Rv1d,LD3Rv2d)>;
732 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV],
733 (instrs LD3Rv1d_POST,LD3Rv2d_POST)>;
735 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
736 (instregex "LD4Fourv(8b|4h|2s)$")>;
737 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
738 (instregex "LD4Fourv(8b|4h|2s)_POST")>;
739 def : InstRW<[WriteVLDPairShuffle, WriteVLDPairShuffle,
740 WriteVLDPairShuffle, WriteVLDPairShuffle],
741 (instregex "LD4Fourv(16b|8h|4s|2d)$")>;
742 def : InstRW<[WriteVLDPairShuffle, WriteAdr, WriteVLDPairShuffle,
743 WriteVLDPairShuffle, WriteVLDPairShuffle],
744 (instregex "LD4Fourv(16b|8h|4s|2d)_POST")>;
746 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteV, WriteV, WriteV],
747 (instregex "LD4i(8|16|32)$")>;
748 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteV, WriteV, WriteV],
749 (instregex "LD4i(8|16|32)_POST")>;
752 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteVLDShuffle, WriteV, WriteV],
754 def : InstRW<[WriteVLDShuffle, ReadVLD, WriteAdr, WriteVLDShuffle, WriteV],
755 (instrs LD4i64_POST)>;
757 def : InstRW<[WriteVLDShuffle, WriteV, WriteV, WriteV],
758 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)$")>;
759 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteV, WriteV, WriteV],
760 (instregex "LD4Rv(8b|4h|2s|16b|8h|4s)_POST")>;
762 def : InstRW<[WriteVLDShuffle, WriteVLDShuffle, WriteV, WriteV],
763 (instrs LD4Rv1d,LD4Rv2d)>;
764 def : InstRW<[WriteVLDShuffle, WriteAdr, WriteVLDShuffle, WriteV, WriteV],
765 (instrs LD4Rv1d_POST,LD4Rv2d_POST)>;
768 // 7.9.16 Store, element operations
771 // Only the WriteAdr for writeback matches a def operands.
772 // Subsequent WriteVLDs only consume resources.
774 def : InstRW<[WriteVST],
775 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>;
776 def : InstRW<[WriteAdr, WriteVST],
777 (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST")>;
779 def : InstRW<[WriteVSTShuffle],
780 (instregex "ST1Twov(8b|4h|2s|1d)$")>;
781 def : InstRW<[WriteAdr, WriteVSTShuffle],
782 (instregex "ST1Twov(8b|4h|2s|1d)_POST")>;
783 def : InstRW<[WriteVST, WriteVST],
784 (instregex "ST1Twov(16b|8h|4s|2d)$")>;
785 def : InstRW<[WriteAdr, WriteVST, WriteVST],
786 (instregex "ST1Twov(16b|8h|4s|2d)_POST")>;
788 def : InstRW<[WriteVSTShuffle, WriteVST],
789 (instregex "ST1Threev(8b|4h|2s|1d)$")>;
790 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVST],
791 (instregex "ST1Threev(8b|4h|2s|1d)_POST")>;
792 def : InstRW<[WriteVST, WriteVST, WriteVST],
793 (instregex "ST1Threev(16b|8h|4s|2d)$")>;
794 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST],
795 (instregex "ST1Threev(16b|8h|4s|2d)_POST")>;
797 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
798 (instregex "ST1Fourv(8b|4h|2s|1d)$")>;
799 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
800 (instregex "ST1Fourv(8b|4h|2s|1d)_POST")>;
801 def : InstRW<[WriteVST, WriteVST, WriteVST, WriteVST],
802 (instregex "ST1Fourv(16b|8h|4s|2d)$")>;
803 def : InstRW<[WriteAdr, WriteVST, WriteVST, WriteVST, WriteVST],
804 (instregex "ST1Fourv(16b|8h|4s|2d)_POST")>;
806 def : InstRW<[WriteVSTShuffle], (instregex "ST1i(8|16|32)$")>;
807 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST1i(8|16|32)_POST")>;
809 def : InstRW<[WriteVSTShuffle], (instrs ST1i64)>;
810 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST1i64_POST)>;
812 def : InstRW<[WriteVSTShuffle],
813 (instregex "ST2Twov(8b|4h|2s)$")>;
814 def : InstRW<[WriteAdr, WriteVSTShuffle],
815 (instregex "ST2Twov(8b|4h|2s)_POST")>;
816 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
817 (instregex "ST2Twov(16b|8h|4s|2d)$")>;
818 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
819 (instregex "ST2Twov(16b|8h|4s|2d)_POST")>;
821 def : InstRW<[WriteVSTShuffle], (instregex "ST2i(8|16|32)$")>;
822 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST2i(8|16|32)_POST")>;
823 def : InstRW<[WriteVSTShuffle], (instrs ST2i64)>;
824 def : InstRW<[WriteAdr, WriteVSTShuffle], (instrs ST2i64_POST)>;
826 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle],
827 (instregex "ST3Threev(8b|4h|2s)$")>;
828 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],
829 (instregex "ST3Threev(8b|4h|2s)_POST")>;
830 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
831 (instregex "ST3Threev(16b|8h|4s|2d)$")>;
832 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle, WriteVSTShuffle],
833 (instregex "ST3Threev(16b|8h|4s|2d)_POST")>;
835 def : InstRW<[WriteVSTShuffle], (instregex "ST3i(8|16|32)$")>;
836 def : InstRW<[WriteAdr, WriteVSTShuffle], (instregex "ST3i(8|16|32)_POST")>;
838 def :InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64)>;
839 def :InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle], (instrs ST3i64_POST)>;
841 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle],
842 (instregex "ST4Fourv(8b|4h|2s|1d)$")>;
843 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle],
844 (instregex "ST4Fourv(8b|4h|2s|1d)_POST")>;
845 def : InstRW<[WriteVSTPairShuffle, WriteVSTPairShuffle,
846 WriteVSTPairShuffle, WriteVSTPairShuffle],
847 (instregex "ST4Fourv(16b|8h|4s|2d)$")>;
848 def : InstRW<[WriteAdr, WriteVSTPairShuffle, WriteVSTPairShuffle,
849 WriteVSTPairShuffle, WriteVSTPairShuffle],
850 (instregex "ST4Fourv(16b|8h|4s|2d)_POST")>;
852 def : InstRW<[WriteVSTPairShuffle], (instregex "ST4i(8|16|32)$")>;
853 def : InstRW<[WriteAdr, WriteVSTPairShuffle], (instregex "ST4i(8|16|32)_POST")>;
855 def : InstRW<[WriteVSTShuffle, WriteVSTShuffle], (instrs ST4i64)>;
856 def : InstRW<[WriteAdr, WriteVSTShuffle, WriteVSTShuffle],(instrs ST4i64_POST)>;
858 // Atomic operations are not supported.
859 def : WriteRes<WriteAtomic, []> { let Unsupported = 1; }
862 // Unused SchedRead types
865 def : ReadAdvance<ReadI, 0>;
866 def : ReadAdvance<ReadISReg, 0>;
867 def : ReadAdvance<ReadIEReg, 0>;
868 def : ReadAdvance<ReadIM, 0>;
869 def : ReadAdvance<ReadIMA, 0>;
870 def : ReadAdvance<ReadID, 0>;
872 } // SchedModel = CycloneModel