[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUCodeGenPrepare.cpp
blob60e79c2c6c2f615984e9d703e5a3804f26f7d545
1 //===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass does misc. AMDGPU optimizations on IR before instruction
11 /// selection.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPU.h"
16 #include "AMDGPUTargetMachine.h"
17 #include "llvm/Analysis/AssumptionCache.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/TargetPassConfig.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/InstVisitor.h"
24 #include "llvm/IR/IntrinsicsAMDGPU.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/InitializePasses.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/KnownBits.h"
29 #include "llvm/Transforms/Utils/IntegerDivision.h"
31 #define DEBUG_TYPE "amdgpu-codegenprepare"
33 using namespace llvm;
35 namespace {
37 static cl::opt<bool> WidenLoads(
38 "amdgpu-codegenprepare-widen-constant-loads",
39 cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
40 cl::ReallyHidden,
41 cl::init(false));
43 static cl::opt<bool> Widen16BitOps(
44 "amdgpu-codegenprepare-widen-16-bit-ops",
45 cl::desc("Widen uniform 16-bit instructions to 32-bit in AMDGPUCodeGenPrepare"),
46 cl::ReallyHidden,
47 cl::init(true));
49 static cl::opt<bool> UseMul24Intrin(
50 "amdgpu-codegenprepare-mul24",
51 cl::desc("Introduce mul24 intrinsics in AMDGPUCodeGenPrepare"),
52 cl::ReallyHidden,
53 cl::init(true));
55 // Legalize 64-bit division by using the generic IR expansion.
56 static cl::opt<bool> ExpandDiv64InIR(
57 "amdgpu-codegenprepare-expand-div64",
58 cl::desc("Expand 64-bit division in AMDGPUCodeGenPrepare"),
59 cl::ReallyHidden,
60 cl::init(false));
62 // Leave all division operations as they are. This supersedes ExpandDiv64InIR
63 // and is used for testing the legalizer.
64 static cl::opt<bool> DisableIDivExpand(
65 "amdgpu-codegenprepare-disable-idiv-expansion",
66 cl::desc("Prevent expanding integer division in AMDGPUCodeGenPrepare"),
67 cl::ReallyHidden,
68 cl::init(false));
70 class AMDGPUCodeGenPrepare : public FunctionPass,
71 public InstVisitor<AMDGPUCodeGenPrepare, bool> {
72 const GCNSubtarget *ST = nullptr;
73 AssumptionCache *AC = nullptr;
74 DominatorTree *DT = nullptr;
75 LegacyDivergenceAnalysis *DA = nullptr;
76 Module *Mod = nullptr;
77 const DataLayout *DL = nullptr;
78 bool HasUnsafeFPMath = false;
79 bool HasFP32Denormals = false;
81 /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
82 /// binary operation \p V.
83 ///
84 /// \returns Binary operation \p V.
85 /// \returns \p T's base element bit width.
86 unsigned getBaseElementBitWidth(const Type *T) const;
88 /// \returns Equivalent 32 bit integer type for given type \p T. For example,
89 /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
90 /// is returned.
91 Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
93 /// \returns True if binary operation \p I is a signed binary operation, false
94 /// otherwise.
95 bool isSigned(const BinaryOperator &I) const;
97 /// \returns True if the condition of 'select' operation \p I comes from a
98 /// signed 'icmp' operation, false otherwise.
99 bool isSigned(const SelectInst &I) const;
101 /// \returns True if type \p T needs to be promoted to 32 bit integer type,
102 /// false otherwise.
103 bool needsPromotionToI32(const Type *T) const;
105 /// Promotes uniform binary operation \p I to equivalent 32 bit binary
106 /// operation.
108 /// \details \p I's base element bit width must be greater than 1 and less
109 /// than or equal 16. Promotion is done by sign or zero extending operands to
110 /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
111 /// truncating the result of 32 bit binary operation back to \p I's original
112 /// type. Division operation is not promoted.
114 /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
115 /// false otherwise.
116 bool promoteUniformOpToI32(BinaryOperator &I) const;
118 /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
120 /// \details \p I's base element bit width must be greater than 1 and less
121 /// than or equal 16. Promotion is done by sign or zero extending operands to
122 /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
124 /// \returns True.
125 bool promoteUniformOpToI32(ICmpInst &I) const;
127 /// Promotes uniform 'select' operation \p I to 32 bit 'select'
128 /// operation.
130 /// \details \p I's base element bit width must be greater than 1 and less
131 /// than or equal 16. Promotion is done by sign or zero extending operands to
132 /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
133 /// result of 32 bit 'select' operation back to \p I's original type.
135 /// \returns True.
136 bool promoteUniformOpToI32(SelectInst &I) const;
138 /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
139 /// intrinsic.
141 /// \details \p I's base element bit width must be greater than 1 and less
142 /// than or equal 16. Promotion is done by zero extending the operand to 32
143 /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
144 /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
145 /// shift amount is 32 minus \p I's base element bit width), and truncating
146 /// the result of the shift operation back to \p I's original type.
148 /// \returns True.
149 bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
152 unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
153 unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
154 bool isI24(Value *V, unsigned ScalarSize) const;
155 bool isU24(Value *V, unsigned ScalarSize) const;
157 /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
158 /// SelectionDAG has an issue where an and asserting the bits are known
159 bool replaceMulWithMul24(BinaryOperator &I) const;
161 /// Perform same function as equivalently named function in DAGCombiner. Since
162 /// we expand some divisions here, we need to perform this before obscuring.
163 bool foldBinOpIntoSelect(BinaryOperator &I) const;
165 bool divHasSpecialOptimization(BinaryOperator &I,
166 Value *Num, Value *Den) const;
167 int getDivNumBits(BinaryOperator &I,
168 Value *Num, Value *Den,
169 unsigned AtLeast, bool Signed) const;
171 /// Expands 24 bit div or rem.
172 Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
173 Value *Num, Value *Den,
174 bool IsDiv, bool IsSigned) const;
176 Value *expandDivRem24Impl(IRBuilder<> &Builder, BinaryOperator &I,
177 Value *Num, Value *Den, unsigned NumBits,
178 bool IsDiv, bool IsSigned) const;
180 /// Expands 32 bit div or rem.
181 Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
182 Value *Num, Value *Den) const;
184 Value *shrinkDivRem64(IRBuilder<> &Builder, BinaryOperator &I,
185 Value *Num, Value *Den) const;
186 void expandDivRem64(BinaryOperator &I) const;
188 /// Widen a scalar load.
190 /// \details \p Widen scalar load for uniform, small type loads from constant
191 // memory / to a full 32-bits and then truncate the input to allow a scalar
192 // load instead of a vector load.
194 /// \returns True.
196 bool canWidenScalarExtLoad(LoadInst &I) const;
198 public:
199 static char ID;
201 AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
203 bool visitFDiv(BinaryOperator &I);
204 bool visitXor(BinaryOperator &I);
206 bool visitInstruction(Instruction &I) { return false; }
207 bool visitBinaryOperator(BinaryOperator &I);
208 bool visitLoadInst(LoadInst &I);
209 bool visitICmpInst(ICmpInst &I);
210 bool visitSelectInst(SelectInst &I);
212 bool visitIntrinsicInst(IntrinsicInst &I);
213 bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
215 bool doInitialization(Module &M) override;
216 bool runOnFunction(Function &F) override;
218 StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
220 void getAnalysisUsage(AnalysisUsage &AU) const override {
221 AU.addRequired<AssumptionCacheTracker>();
222 AU.addRequired<LegacyDivergenceAnalysis>();
224 // FIXME: Division expansion needs to preserve the dominator tree.
225 if (!ExpandDiv64InIR)
226 AU.setPreservesAll();
230 } // end anonymous namespace
232 unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
233 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
235 if (T->isIntegerTy())
236 return T->getIntegerBitWidth();
237 return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
240 Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
241 assert(needsPromotionToI32(T) && "T does not need promotion to i32");
243 if (T->isIntegerTy())
244 return B.getInt32Ty();
245 return FixedVectorType::get(B.getInt32Ty(), cast<FixedVectorType>(T));
248 bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
249 return I.getOpcode() == Instruction::AShr ||
250 I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
253 bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
254 return isa<ICmpInst>(I.getOperand(0)) ?
255 cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
258 bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
259 if (!Widen16BitOps)
260 return false;
262 const IntegerType *IntTy = dyn_cast<IntegerType>(T);
263 if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
264 return true;
266 if (const VectorType *VT = dyn_cast<VectorType>(T)) {
267 // TODO: The set of packed operations is more limited, so may want to
268 // promote some anyway.
269 if (ST->hasVOP3PInsts())
270 return false;
272 return needsPromotionToI32(VT->getElementType());
275 return false;
278 // Return true if the op promoted to i32 should have nsw set.
279 static bool promotedOpIsNSW(const Instruction &I) {
280 switch (I.getOpcode()) {
281 case Instruction::Shl:
282 case Instruction::Add:
283 case Instruction::Sub:
284 return true;
285 case Instruction::Mul:
286 return I.hasNoUnsignedWrap();
287 default:
288 return false;
292 // Return true if the op promoted to i32 should have nuw set.
293 static bool promotedOpIsNUW(const Instruction &I) {
294 switch (I.getOpcode()) {
295 case Instruction::Shl:
296 case Instruction::Add:
297 case Instruction::Mul:
298 return true;
299 case Instruction::Sub:
300 return I.hasNoUnsignedWrap();
301 default:
302 return false;
306 bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
307 Type *Ty = I.getType();
308 const DataLayout &DL = Mod->getDataLayout();
309 int TySize = DL.getTypeSizeInBits(Ty);
310 Align Alignment = DL.getValueOrABITypeAlignment(I.getAlign(), Ty);
312 return I.isSimple() && TySize < 32 && Alignment >= 4 && DA->isUniform(&I);
315 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
316 assert(needsPromotionToI32(I.getType()) &&
317 "I does not need promotion to i32");
319 if (I.getOpcode() == Instruction::SDiv ||
320 I.getOpcode() == Instruction::UDiv ||
321 I.getOpcode() == Instruction::SRem ||
322 I.getOpcode() == Instruction::URem)
323 return false;
325 IRBuilder<> Builder(&I);
326 Builder.SetCurrentDebugLocation(I.getDebugLoc());
328 Type *I32Ty = getI32Ty(Builder, I.getType());
329 Value *ExtOp0 = nullptr;
330 Value *ExtOp1 = nullptr;
331 Value *ExtRes = nullptr;
332 Value *TruncRes = nullptr;
334 if (isSigned(I)) {
335 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
336 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
337 } else {
338 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
339 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
342 ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
343 if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
344 if (promotedOpIsNSW(cast<Instruction>(I)))
345 Inst->setHasNoSignedWrap();
347 if (promotedOpIsNUW(cast<Instruction>(I)))
348 Inst->setHasNoUnsignedWrap();
350 if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
351 Inst->setIsExact(ExactOp->isExact());
354 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
356 I.replaceAllUsesWith(TruncRes);
357 I.eraseFromParent();
359 return true;
362 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
363 assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
364 "I does not need promotion to i32");
366 IRBuilder<> Builder(&I);
367 Builder.SetCurrentDebugLocation(I.getDebugLoc());
369 Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
370 Value *ExtOp0 = nullptr;
371 Value *ExtOp1 = nullptr;
372 Value *NewICmp = nullptr;
374 if (I.isSigned()) {
375 ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
376 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
377 } else {
378 ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
379 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
381 NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
383 I.replaceAllUsesWith(NewICmp);
384 I.eraseFromParent();
386 return true;
389 bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
390 assert(needsPromotionToI32(I.getType()) &&
391 "I does not need promotion to i32");
393 IRBuilder<> Builder(&I);
394 Builder.SetCurrentDebugLocation(I.getDebugLoc());
396 Type *I32Ty = getI32Ty(Builder, I.getType());
397 Value *ExtOp1 = nullptr;
398 Value *ExtOp2 = nullptr;
399 Value *ExtRes = nullptr;
400 Value *TruncRes = nullptr;
402 if (isSigned(I)) {
403 ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
404 ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
405 } else {
406 ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
407 ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
409 ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
410 TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
412 I.replaceAllUsesWith(TruncRes);
413 I.eraseFromParent();
415 return true;
418 bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
419 IntrinsicInst &I) const {
420 assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
421 "I must be bitreverse intrinsic");
422 assert(needsPromotionToI32(I.getType()) &&
423 "I does not need promotion to i32");
425 IRBuilder<> Builder(&I);
426 Builder.SetCurrentDebugLocation(I.getDebugLoc());
428 Type *I32Ty = getI32Ty(Builder, I.getType());
429 Function *I32 =
430 Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
431 Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
432 Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
433 Value *LShrOp =
434 Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
435 Value *TruncRes =
436 Builder.CreateTrunc(LShrOp, I.getType());
438 I.replaceAllUsesWith(TruncRes);
439 I.eraseFromParent();
441 return true;
444 unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
445 unsigned ScalarSize) const {
446 KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
447 return ScalarSize - Known.countMinLeadingZeros();
450 unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
451 unsigned ScalarSize) const {
452 // In order for this to be a signed 24-bit value, bit 23, must
453 // be a sign bit.
454 return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
457 bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
458 return ScalarSize >= 24 && // Types less than 24-bit should be treated
459 // as unsigned 24-bit values.
460 numBitsSigned(V, ScalarSize) < 24;
463 bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
464 return numBitsUnsigned(V, ScalarSize) <= 24;
467 static void extractValues(IRBuilder<> &Builder,
468 SmallVectorImpl<Value *> &Values, Value *V) {
469 auto *VT = dyn_cast<FixedVectorType>(V->getType());
470 if (!VT) {
471 Values.push_back(V);
472 return;
475 for (int I = 0, E = VT->getNumElements(); I != E; ++I)
476 Values.push_back(Builder.CreateExtractElement(V, I));
479 static Value *insertValues(IRBuilder<> &Builder,
480 Type *Ty,
481 SmallVectorImpl<Value *> &Values) {
482 if (Values.size() == 1)
483 return Values[0];
485 Value *NewVal = UndefValue::get(Ty);
486 for (int I = 0, E = Values.size(); I != E; ++I)
487 NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
489 return NewVal;
492 bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
493 if (I.getOpcode() != Instruction::Mul)
494 return false;
496 Type *Ty = I.getType();
497 unsigned Size = Ty->getScalarSizeInBits();
498 if (Size <= 16 && ST->has16BitInsts())
499 return false;
501 // Prefer scalar if this could be s_mul_i32
502 if (DA->isUniform(&I))
503 return false;
505 Value *LHS = I.getOperand(0);
506 Value *RHS = I.getOperand(1);
507 IRBuilder<> Builder(&I);
508 Builder.SetCurrentDebugLocation(I.getDebugLoc());
510 Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
512 // TODO: Should this try to match mulhi24?
513 if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
514 IntrID = Intrinsic::amdgcn_mul_u24;
515 } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
516 IntrID = Intrinsic::amdgcn_mul_i24;
517 } else
518 return false;
520 SmallVector<Value *, 4> LHSVals;
521 SmallVector<Value *, 4> RHSVals;
522 SmallVector<Value *, 4> ResultVals;
523 extractValues(Builder, LHSVals, LHS);
524 extractValues(Builder, RHSVals, RHS);
527 IntegerType *I32Ty = Builder.getInt32Ty();
528 FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
529 for (int I = 0, E = LHSVals.size(); I != E; ++I) {
530 Value *LHS, *RHS;
531 if (IntrID == Intrinsic::amdgcn_mul_u24) {
532 LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
533 RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
534 } else {
535 LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
536 RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
539 Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
541 if (IntrID == Intrinsic::amdgcn_mul_u24) {
542 ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
543 LHSVals[I]->getType()));
544 } else {
545 ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
546 LHSVals[I]->getType()));
550 Value *NewVal = insertValues(Builder, Ty, ResultVals);
551 NewVal->takeName(&I);
552 I.replaceAllUsesWith(NewVal);
553 I.eraseFromParent();
555 return true;
558 // Find a select instruction, which may have been casted. This is mostly to deal
559 // with cases where i16 selects were promoted here to i32.
560 static SelectInst *findSelectThroughCast(Value *V, CastInst *&Cast) {
561 Cast = nullptr;
562 if (SelectInst *Sel = dyn_cast<SelectInst>(V))
563 return Sel;
565 if ((Cast = dyn_cast<CastInst>(V))) {
566 if (SelectInst *Sel = dyn_cast<SelectInst>(Cast->getOperand(0)))
567 return Sel;
570 return nullptr;
573 bool AMDGPUCodeGenPrepare::foldBinOpIntoSelect(BinaryOperator &BO) const {
574 // Don't do this unless the old select is going away. We want to eliminate the
575 // binary operator, not replace a binop with a select.
576 int SelOpNo = 0;
578 CastInst *CastOp;
580 // TODO: Should probably try to handle some cases with multiple
581 // users. Duplicating the select may be profitable for division.
582 SelectInst *Sel = findSelectThroughCast(BO.getOperand(0), CastOp);
583 if (!Sel || !Sel->hasOneUse()) {
584 SelOpNo = 1;
585 Sel = findSelectThroughCast(BO.getOperand(1), CastOp);
588 if (!Sel || !Sel->hasOneUse())
589 return false;
591 Constant *CT = dyn_cast<Constant>(Sel->getTrueValue());
592 Constant *CF = dyn_cast<Constant>(Sel->getFalseValue());
593 Constant *CBO = dyn_cast<Constant>(BO.getOperand(SelOpNo ^ 1));
594 if (!CBO || !CT || !CF)
595 return false;
597 if (CastOp) {
598 if (!CastOp->hasOneUse())
599 return false;
600 CT = ConstantFoldCastOperand(CastOp->getOpcode(), CT, BO.getType(), *DL);
601 CF = ConstantFoldCastOperand(CastOp->getOpcode(), CF, BO.getType(), *DL);
604 // TODO: Handle special 0/-1 cases DAG combine does, although we only really
605 // need to handle divisions here.
606 Constant *FoldedT = SelOpNo ?
607 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CT, *DL) :
608 ConstantFoldBinaryOpOperands(BO.getOpcode(), CT, CBO, *DL);
609 if (isa<ConstantExpr>(FoldedT))
610 return false;
612 Constant *FoldedF = SelOpNo ?
613 ConstantFoldBinaryOpOperands(BO.getOpcode(), CBO, CF, *DL) :
614 ConstantFoldBinaryOpOperands(BO.getOpcode(), CF, CBO, *DL);
615 if (isa<ConstantExpr>(FoldedF))
616 return false;
618 IRBuilder<> Builder(&BO);
619 Builder.SetCurrentDebugLocation(BO.getDebugLoc());
620 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&BO))
621 Builder.setFastMathFlags(FPOp->getFastMathFlags());
623 Value *NewSelect = Builder.CreateSelect(Sel->getCondition(),
624 FoldedT, FoldedF);
625 NewSelect->takeName(&BO);
626 BO.replaceAllUsesWith(NewSelect);
627 BO.eraseFromParent();
628 if (CastOp)
629 CastOp->eraseFromParent();
630 Sel->eraseFromParent();
631 return true;
634 // Optimize fdiv with rcp:
636 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
637 // allowed with unsafe-fp-math or afn.
639 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
640 static Value *optimizeWithRcp(Value *Num, Value *Den, bool AllowInaccurateRcp,
641 bool RcpIsAccurate, IRBuilder<> &Builder,
642 Module *Mod) {
644 if (!AllowInaccurateRcp && !RcpIsAccurate)
645 return nullptr;
647 Type *Ty = Den->getType();
648 if (const ConstantFP *CLHS = dyn_cast<ConstantFP>(Num)) {
649 if (AllowInaccurateRcp || RcpIsAccurate) {
650 if (CLHS->isExactlyValue(1.0)) {
651 Function *Decl = Intrinsic::getDeclaration(
652 Mod, Intrinsic::amdgcn_rcp, Ty);
654 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
655 // the CI documentation has a worst case error of 1 ulp.
656 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
657 // use it as long as we aren't trying to use denormals.
659 // v_rcp_f16 and v_rsq_f16 DO support denormals.
661 // NOTE: v_sqrt and v_rcp will be combined to v_rsq later. So we don't
662 // insert rsq intrinsic here.
664 // 1.0 / x -> rcp(x)
665 return Builder.CreateCall(Decl, { Den });
668 // Same as for 1.0, but expand the sign out of the constant.
669 if (CLHS->isExactlyValue(-1.0)) {
670 Function *Decl = Intrinsic::getDeclaration(
671 Mod, Intrinsic::amdgcn_rcp, Ty);
673 // -1.0 / x -> rcp (fneg x)
674 Value *FNeg = Builder.CreateFNeg(Den);
675 return Builder.CreateCall(Decl, { FNeg });
680 if (AllowInaccurateRcp) {
681 Function *Decl = Intrinsic::getDeclaration(
682 Mod, Intrinsic::amdgcn_rcp, Ty);
684 // Turn into multiply by the reciprocal.
685 // x / y -> x * (1.0 / y)
686 Value *Recip = Builder.CreateCall(Decl, { Den });
687 return Builder.CreateFMul(Num, Recip);
689 return nullptr;
692 // optimize with fdiv.fast:
694 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
696 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
698 // NOTE: optimizeWithRcp should be tried first because rcp is the preference.
699 static Value *optimizeWithFDivFast(Value *Num, Value *Den, float ReqdAccuracy,
700 bool HasDenormals, IRBuilder<> &Builder,
701 Module *Mod) {
702 // fdiv.fast can achieve 2.5 ULP accuracy.
703 if (ReqdAccuracy < 2.5f)
704 return nullptr;
706 // Only have fdiv.fast for f32.
707 Type *Ty = Den->getType();
708 if (!Ty->isFloatTy())
709 return nullptr;
711 bool NumIsOne = false;
712 if (const ConstantFP *CNum = dyn_cast<ConstantFP>(Num)) {
713 if (CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0))
714 NumIsOne = true;
717 // fdiv does not support denormals. But 1.0/x is always fine to use it.
718 if (HasDenormals && !NumIsOne)
719 return nullptr;
721 Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
722 return Builder.CreateCall(Decl, { Num, Den });
725 // Optimizations is performed based on fpmath, fast math flags as well as
726 // denormals to optimize fdiv with either rcp or fdiv.fast.
728 // With rcp:
729 // 1/x -> rcp(x) when rcp is sufficiently accurate or inaccurate rcp is
730 // allowed with unsafe-fp-math or afn.
732 // a/b -> a*rcp(b) when inaccurate rcp is allowed with unsafe-fp-math or afn.
734 // With fdiv.fast:
735 // a/b -> fdiv.fast(a, b) when !fpmath >= 2.5ulp with denormals flushed.
737 // 1/x -> fdiv.fast(1,x) when !fpmath >= 2.5ulp.
739 // NOTE: rcp is the preference in cases that both are legal.
740 bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
742 Type *Ty = FDiv.getType()->getScalarType();
744 // The f64 rcp/rsq approximations are pretty inaccurate. We can do an
745 // expansion around them in codegen.
746 if (Ty->isDoubleTy())
747 return false;
749 // No intrinsic for fdiv16 if target does not support f16.
750 if (Ty->isHalfTy() && !ST->has16BitInsts())
751 return false;
753 const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
754 const float ReqdAccuracy = FPOp->getFPAccuracy();
756 // Inaccurate rcp is allowed with unsafe-fp-math or afn.
757 FastMathFlags FMF = FPOp->getFastMathFlags();
758 const bool AllowInaccurateRcp = HasUnsafeFPMath || FMF.approxFunc();
760 // rcp_f16 is accurate for !fpmath >= 1.0ulp.
761 // rcp_f32 is accurate for !fpmath >= 1.0ulp and denormals are flushed.
762 // rcp_f64 is never accurate.
763 const bool RcpIsAccurate = (Ty->isHalfTy() && ReqdAccuracy >= 1.0f) ||
764 (Ty->isFloatTy() && !HasFP32Denormals && ReqdAccuracy >= 1.0f);
766 IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()));
767 Builder.setFastMathFlags(FMF);
768 Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
770 Value *Num = FDiv.getOperand(0);
771 Value *Den = FDiv.getOperand(1);
773 Value *NewFDiv = nullptr;
774 if (auto *VT = dyn_cast<FixedVectorType>(FDiv.getType())) {
775 NewFDiv = UndefValue::get(VT);
777 // FIXME: Doesn't do the right thing for cases where the vector is partially
778 // constant. This works when the scalarizer pass is run first.
779 for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
780 Value *NumEltI = Builder.CreateExtractElement(Num, I);
781 Value *DenEltI = Builder.CreateExtractElement(Den, I);
782 // Try rcp first.
783 Value *NewElt = optimizeWithRcp(NumEltI, DenEltI, AllowInaccurateRcp,
784 RcpIsAccurate, Builder, Mod);
785 if (!NewElt) // Try fdiv.fast.
786 NewElt = optimizeWithFDivFast(NumEltI, DenEltI, ReqdAccuracy,
787 HasFP32Denormals, Builder, Mod);
788 if (!NewElt) // Keep the original.
789 NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
791 NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
793 } else { // Scalar FDiv.
794 // Try rcp first.
795 NewFDiv = optimizeWithRcp(Num, Den, AllowInaccurateRcp, RcpIsAccurate,
796 Builder, Mod);
797 if (!NewFDiv) { // Try fdiv.fast.
798 NewFDiv = optimizeWithFDivFast(Num, Den, ReqdAccuracy, HasFP32Denormals,
799 Builder, Mod);
803 if (NewFDiv) {
804 FDiv.replaceAllUsesWith(NewFDiv);
805 NewFDiv->takeName(&FDiv);
806 FDiv.eraseFromParent();
809 return !!NewFDiv;
812 bool AMDGPUCodeGenPrepare::visitXor(BinaryOperator &I) {
813 // Match the Xor instruction, its type and its operands
814 IntrinsicInst *IntrinsicCall = dyn_cast<IntrinsicInst>(I.getOperand(0));
815 ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1));
816 if (!RHS || !IntrinsicCall || RHS->getSExtValue() != -1)
817 return visitBinaryOperator(I);
819 // Check if the Call is an intrinsic intruction to amdgcn_class intrinsic
820 // has only one use
821 if (IntrinsicCall->getIntrinsicID() != Intrinsic::amdgcn_class ||
822 !IntrinsicCall->hasOneUse())
823 return visitBinaryOperator(I);
825 // "Not" the second argument of the intrinsic call
826 ConstantInt *Arg = dyn_cast<ConstantInt>(IntrinsicCall->getOperand(1));
827 if (!Arg)
828 return visitBinaryOperator(I);
830 IntrinsicCall->setOperand(
831 1, ConstantInt::get(Arg->getType(), Arg->getZExtValue() ^ 0x3ff));
832 I.replaceAllUsesWith(IntrinsicCall);
833 I.eraseFromParent();
834 return true;
837 static bool hasUnsafeFPMath(const Function &F) {
838 Attribute Attr = F.getFnAttribute("unsafe-fp-math");
839 return Attr.getValueAsBool();
842 static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
843 Value *LHS, Value *RHS) {
844 Type *I32Ty = Builder.getInt32Ty();
845 Type *I64Ty = Builder.getInt64Ty();
847 Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
848 Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
849 Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
850 Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
851 Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
852 Hi = Builder.CreateTrunc(Hi, I32Ty);
853 return std::make_pair(Lo, Hi);
856 static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
857 return getMul64(Builder, LHS, RHS).second;
860 /// Figure out how many bits are really needed for this ddivision. \p AtLeast is
861 /// an optimization hint to bypass the second ComputeNumSignBits call if we the
862 /// first one is insufficient. Returns -1 on failure.
863 int AMDGPUCodeGenPrepare::getDivNumBits(BinaryOperator &I,
864 Value *Num, Value *Den,
865 unsigned AtLeast, bool IsSigned) const {
866 const DataLayout &DL = Mod->getDataLayout();
867 unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
868 if (LHSSignBits < AtLeast)
869 return -1;
871 unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
872 if (RHSSignBits < AtLeast)
873 return -1;
875 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
876 unsigned DivBits = Num->getType()->getScalarSizeInBits() - SignBits;
877 if (IsSigned)
878 ++DivBits;
879 return DivBits;
882 // The fractional part of a float is enough to accurately represent up to
883 // a 24-bit signed integer.
884 Value *AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
885 BinaryOperator &I,
886 Value *Num, Value *Den,
887 bool IsDiv, bool IsSigned) const {
888 int DivBits = getDivNumBits(I, Num, Den, 9, IsSigned);
889 if (DivBits == -1)
890 return nullptr;
891 return expandDivRem24Impl(Builder, I, Num, Den, DivBits, IsDiv, IsSigned);
894 Value *AMDGPUCodeGenPrepare::expandDivRem24Impl(IRBuilder<> &Builder,
895 BinaryOperator &I,
896 Value *Num, Value *Den,
897 unsigned DivBits,
898 bool IsDiv, bool IsSigned) const {
899 Type *I32Ty = Builder.getInt32Ty();
900 Num = Builder.CreateTrunc(Num, I32Ty);
901 Den = Builder.CreateTrunc(Den, I32Ty);
903 Type *F32Ty = Builder.getFloatTy();
904 ConstantInt *One = Builder.getInt32(1);
905 Value *JQ = One;
907 if (IsSigned) {
908 // char|short jq = ia ^ ib;
909 JQ = Builder.CreateXor(Num, Den);
911 // jq = jq >> (bitsize - 2)
912 JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
914 // jq = jq | 0x1
915 JQ = Builder.CreateOr(JQ, One);
918 // int ia = (int)LHS;
919 Value *IA = Num;
921 // int ib, (int)RHS;
922 Value *IB = Den;
924 // float fa = (float)ia;
925 Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
926 : Builder.CreateUIToFP(IA, F32Ty);
928 // float fb = (float)ib;
929 Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
930 : Builder.CreateUIToFP(IB,F32Ty);
932 Function *RcpDecl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp,
933 Builder.getFloatTy());
934 Value *RCP = Builder.CreateCall(RcpDecl, { FB });
935 Value *FQM = Builder.CreateFMul(FA, RCP);
937 // fq = trunc(fqm);
938 CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
939 FQ->copyFastMathFlags(Builder.getFastMathFlags());
941 // float fqneg = -fq;
942 Value *FQNeg = Builder.CreateFNeg(FQ);
944 // float fr = mad(fqneg, fb, fa);
945 auto FMAD = !ST->hasMadMacF32Insts()
946 ? Intrinsic::fma
947 : (Intrinsic::ID)Intrinsic::amdgcn_fmad_ftz;
948 Value *FR = Builder.CreateIntrinsic(FMAD,
949 {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
951 // int iq = (int)fq;
952 Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
953 : Builder.CreateFPToUI(FQ, I32Ty);
955 // fr = fabs(fr);
956 FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
958 // fb = fabs(fb);
959 FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
961 // int cv = fr >= fb;
962 Value *CV = Builder.CreateFCmpOGE(FR, FB);
964 // jq = (cv ? jq : 0);
965 JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
967 // dst = iq + jq;
968 Value *Div = Builder.CreateAdd(IQ, JQ);
970 Value *Res = Div;
971 if (!IsDiv) {
972 // Rem needs compensation, it's easier to recompute it
973 Value *Rem = Builder.CreateMul(Div, Den);
974 Res = Builder.CreateSub(Num, Rem);
977 if (DivBits != 0 && DivBits < 32) {
978 // Extend in register from the number of bits this divide really is.
979 if (IsSigned) {
980 int InRegBits = 32 - DivBits;
982 Res = Builder.CreateShl(Res, InRegBits);
983 Res = Builder.CreateAShr(Res, InRegBits);
984 } else {
985 ConstantInt *TruncMask
986 = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
987 Res = Builder.CreateAnd(Res, TruncMask);
991 return Res;
994 // Try to recognize special cases the DAG will emit special, better expansions
995 // than the general expansion we do here.
997 // TODO: It would be better to just directly handle those optimizations here.
998 bool AMDGPUCodeGenPrepare::divHasSpecialOptimization(
999 BinaryOperator &I, Value *Num, Value *Den) const {
1000 if (Constant *C = dyn_cast<Constant>(Den)) {
1001 // Arbitrary constants get a better expansion as long as a wider mulhi is
1002 // legal.
1003 if (C->getType()->getScalarSizeInBits() <= 32)
1004 return true;
1006 // TODO: Sdiv check for not exact for some reason.
1008 // If there's no wider mulhi, there's only a better expansion for powers of
1009 // two.
1010 // TODO: Should really know for each vector element.
1011 if (isKnownToBeAPowerOfTwo(C, *DL, true, 0, AC, &I, DT))
1012 return true;
1014 return false;
1017 if (BinaryOperator *BinOpDen = dyn_cast<BinaryOperator>(Den)) {
1018 // fold (udiv x, (shl c, y)) -> x >>u (log2(c)+y) iff c is power of 2
1019 if (BinOpDen->getOpcode() == Instruction::Shl &&
1020 isa<Constant>(BinOpDen->getOperand(0)) &&
1021 isKnownToBeAPowerOfTwo(BinOpDen->getOperand(0), *DL, true,
1022 0, AC, &I, DT)) {
1023 return true;
1027 return false;
1030 static Value *getSign32(Value *V, IRBuilder<> &Builder, const DataLayout *DL) {
1031 // Check whether the sign can be determined statically.
1032 KnownBits Known = computeKnownBits(V, *DL);
1033 if (Known.isNegative())
1034 return Constant::getAllOnesValue(V->getType());
1035 if (Known.isNonNegative())
1036 return Constant::getNullValue(V->getType());
1037 return Builder.CreateAShr(V, Builder.getInt32(31));
1040 Value *AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
1041 BinaryOperator &I, Value *X,
1042 Value *Y) const {
1043 Instruction::BinaryOps Opc = I.getOpcode();
1044 assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
1045 Opc == Instruction::SRem || Opc == Instruction::SDiv);
1047 FastMathFlags FMF;
1048 FMF.setFast();
1049 Builder.setFastMathFlags(FMF);
1051 if (divHasSpecialOptimization(I, X, Y))
1052 return nullptr; // Keep it for later optimization.
1054 bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
1055 bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
1057 Type *Ty = X->getType();
1058 Type *I32Ty = Builder.getInt32Ty();
1059 Type *F32Ty = Builder.getFloatTy();
1061 if (Ty->getScalarSizeInBits() < 32) {
1062 if (IsSigned) {
1063 X = Builder.CreateSExt(X, I32Ty);
1064 Y = Builder.CreateSExt(Y, I32Ty);
1065 } else {
1066 X = Builder.CreateZExt(X, I32Ty);
1067 Y = Builder.CreateZExt(Y, I32Ty);
1071 if (Value *Res = expandDivRem24(Builder, I, X, Y, IsDiv, IsSigned)) {
1072 return IsSigned ? Builder.CreateSExtOrTrunc(Res, Ty) :
1073 Builder.CreateZExtOrTrunc(Res, Ty);
1076 ConstantInt *Zero = Builder.getInt32(0);
1077 ConstantInt *One = Builder.getInt32(1);
1079 Value *Sign = nullptr;
1080 if (IsSigned) {
1081 Value *SignX = getSign32(X, Builder, DL);
1082 Value *SignY = getSign32(Y, Builder, DL);
1083 // Remainder sign is the same as LHS
1084 Sign = IsDiv ? Builder.CreateXor(SignX, SignY) : SignX;
1086 X = Builder.CreateAdd(X, SignX);
1087 Y = Builder.CreateAdd(Y, SignY);
1089 X = Builder.CreateXor(X, SignX);
1090 Y = Builder.CreateXor(Y, SignY);
1093 // The algorithm here is based on ideas from "Software Integer Division", Tom
1094 // Rodeheffer, August 2008.
1096 // unsigned udiv(unsigned x, unsigned y) {
1097 // // Initial estimate of inv(y). The constant is less than 2^32 to ensure
1098 // // that this is a lower bound on inv(y), even if some of the calculations
1099 // // round up.
1100 // unsigned z = (unsigned)((4294967296.0 - 512.0) * v_rcp_f32((float)y));
1102 // // One round of UNR (Unsigned integer Newton-Raphson) to improve z.
1103 // // Empirically this is guaranteed to give a "two-y" lower bound on
1104 // // inv(y).
1105 // z += umulh(z, -y * z);
1107 // // Quotient/remainder estimate.
1108 // unsigned q = umulh(x, z);
1109 // unsigned r = x - q * y;
1111 // // Two rounds of quotient/remainder refinement.
1112 // if (r >= y) {
1113 // ++q;
1114 // r -= y;
1115 // }
1116 // if (r >= y) {
1117 // ++q;
1118 // r -= y;
1119 // }
1121 // return q;
1122 // }
1124 // Initial estimate of inv(y).
1125 Value *FloatY = Builder.CreateUIToFP(Y, F32Ty);
1126 Function *Rcp = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_rcp, F32Ty);
1127 Value *RcpY = Builder.CreateCall(Rcp, {FloatY});
1128 Constant *Scale = ConstantFP::get(F32Ty, BitsToFloat(0x4F7FFFFE));
1129 Value *ScaledY = Builder.CreateFMul(RcpY, Scale);
1130 Value *Z = Builder.CreateFPToUI(ScaledY, I32Ty);
1132 // One round of UNR.
1133 Value *NegY = Builder.CreateSub(Zero, Y);
1134 Value *NegYZ = Builder.CreateMul(NegY, Z);
1135 Z = Builder.CreateAdd(Z, getMulHu(Builder, Z, NegYZ));
1137 // Quotient/remainder estimate.
1138 Value *Q = getMulHu(Builder, X, Z);
1139 Value *R = Builder.CreateSub(X, Builder.CreateMul(Q, Y));
1141 // First quotient/remainder refinement.
1142 Value *Cond = Builder.CreateICmpUGE(R, Y);
1143 if (IsDiv)
1144 Q = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1145 R = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1147 // Second quotient/remainder refinement.
1148 Cond = Builder.CreateICmpUGE(R, Y);
1149 Value *Res;
1150 if (IsDiv)
1151 Res = Builder.CreateSelect(Cond, Builder.CreateAdd(Q, One), Q);
1152 else
1153 Res = Builder.CreateSelect(Cond, Builder.CreateSub(R, Y), R);
1155 if (IsSigned) {
1156 Res = Builder.CreateXor(Res, Sign);
1157 Res = Builder.CreateSub(Res, Sign);
1160 Res = Builder.CreateTrunc(Res, Ty);
1162 return Res;
1165 Value *AMDGPUCodeGenPrepare::shrinkDivRem64(IRBuilder<> &Builder,
1166 BinaryOperator &I,
1167 Value *Num, Value *Den) const {
1168 if (!ExpandDiv64InIR && divHasSpecialOptimization(I, Num, Den))
1169 return nullptr; // Keep it for later optimization.
1171 Instruction::BinaryOps Opc = I.getOpcode();
1173 bool IsDiv = Opc == Instruction::SDiv || Opc == Instruction::UDiv;
1174 bool IsSigned = Opc == Instruction::SDiv || Opc == Instruction::SRem;
1176 int NumDivBits = getDivNumBits(I, Num, Den, 32, IsSigned);
1177 if (NumDivBits == -1)
1178 return nullptr;
1180 Value *Narrowed = nullptr;
1181 if (NumDivBits <= 24) {
1182 Narrowed = expandDivRem24Impl(Builder, I, Num, Den, NumDivBits,
1183 IsDiv, IsSigned);
1184 } else if (NumDivBits <= 32) {
1185 Narrowed = expandDivRem32(Builder, I, Num, Den);
1188 if (Narrowed) {
1189 return IsSigned ? Builder.CreateSExt(Narrowed, Num->getType()) :
1190 Builder.CreateZExt(Narrowed, Num->getType());
1193 return nullptr;
1196 void AMDGPUCodeGenPrepare::expandDivRem64(BinaryOperator &I) const {
1197 Instruction::BinaryOps Opc = I.getOpcode();
1198 // Do the general expansion.
1199 if (Opc == Instruction::UDiv || Opc == Instruction::SDiv) {
1200 expandDivisionUpTo64Bits(&I);
1201 return;
1204 if (Opc == Instruction::URem || Opc == Instruction::SRem) {
1205 expandRemainderUpTo64Bits(&I);
1206 return;
1209 llvm_unreachable("not a division");
1212 bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
1213 if (foldBinOpIntoSelect(I))
1214 return true;
1216 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1217 DA->isUniform(&I) && promoteUniformOpToI32(I))
1218 return true;
1220 if (UseMul24Intrin && replaceMulWithMul24(I))
1221 return true;
1223 bool Changed = false;
1224 Instruction::BinaryOps Opc = I.getOpcode();
1225 Type *Ty = I.getType();
1226 Value *NewDiv = nullptr;
1227 unsigned ScalarSize = Ty->getScalarSizeInBits();
1229 SmallVector<BinaryOperator *, 8> Div64ToExpand;
1231 if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
1232 Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
1233 ScalarSize <= 64 &&
1234 !DisableIDivExpand) {
1235 Value *Num = I.getOperand(0);
1236 Value *Den = I.getOperand(1);
1237 IRBuilder<> Builder(&I);
1238 Builder.SetCurrentDebugLocation(I.getDebugLoc());
1240 if (auto *VT = dyn_cast<FixedVectorType>(Ty)) {
1241 NewDiv = UndefValue::get(VT);
1243 for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
1244 Value *NumEltN = Builder.CreateExtractElement(Num, N);
1245 Value *DenEltN = Builder.CreateExtractElement(Den, N);
1247 Value *NewElt;
1248 if (ScalarSize <= 32) {
1249 NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
1250 if (!NewElt)
1251 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1252 } else {
1253 // See if this 64-bit division can be shrunk to 32/24-bits before
1254 // producing the general expansion.
1255 NewElt = shrinkDivRem64(Builder, I, NumEltN, DenEltN);
1256 if (!NewElt) {
1257 // The general 64-bit expansion introduces control flow and doesn't
1258 // return the new value. Just insert a scalar copy and defer
1259 // expanding it.
1260 NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
1261 Div64ToExpand.push_back(cast<BinaryOperator>(NewElt));
1265 NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
1267 } else {
1268 if (ScalarSize <= 32)
1269 NewDiv = expandDivRem32(Builder, I, Num, Den);
1270 else {
1271 NewDiv = shrinkDivRem64(Builder, I, Num, Den);
1272 if (!NewDiv)
1273 Div64ToExpand.push_back(&I);
1277 if (NewDiv) {
1278 I.replaceAllUsesWith(NewDiv);
1279 I.eraseFromParent();
1280 Changed = true;
1284 if (ExpandDiv64InIR) {
1285 // TODO: We get much worse code in specially handled constant cases.
1286 for (BinaryOperator *Div : Div64ToExpand) {
1287 expandDivRem64(*Div);
1288 Changed = true;
1292 return Changed;
1295 bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
1296 if (!WidenLoads)
1297 return false;
1299 if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
1300 I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
1301 canWidenScalarExtLoad(I)) {
1302 IRBuilder<> Builder(&I);
1303 Builder.SetCurrentDebugLocation(I.getDebugLoc());
1305 Type *I32Ty = Builder.getInt32Ty();
1306 Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
1307 Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
1308 LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
1309 WidenLoad->copyMetadata(I);
1311 // If we have range metadata, we need to convert the type, and not make
1312 // assumptions about the high bits.
1313 if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
1314 ConstantInt *Lower =
1315 mdconst::extract<ConstantInt>(Range->getOperand(0));
1317 if (Lower->getValue().isNullValue()) {
1318 WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
1319 } else {
1320 Metadata *LowAndHigh[] = {
1321 ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
1322 // Don't make assumptions about the high bits.
1323 ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
1326 WidenLoad->setMetadata(LLVMContext::MD_range,
1327 MDNode::get(Mod->getContext(), LowAndHigh));
1331 int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
1332 Type *IntNTy = Builder.getIntNTy(TySize);
1333 Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
1334 Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
1335 I.replaceAllUsesWith(ValOrig);
1336 I.eraseFromParent();
1337 return true;
1340 return false;
1343 bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
1344 bool Changed = false;
1346 if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
1347 DA->isUniform(&I))
1348 Changed |= promoteUniformOpToI32(I);
1350 return Changed;
1353 bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
1354 bool Changed = false;
1356 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1357 DA->isUniform(&I))
1358 Changed |= promoteUniformOpToI32(I);
1360 return Changed;
1363 bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
1364 switch (I.getIntrinsicID()) {
1365 case Intrinsic::bitreverse:
1366 return visitBitreverseIntrinsicInst(I);
1367 default:
1368 return false;
1372 bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
1373 bool Changed = false;
1375 if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
1376 DA->isUniform(&I))
1377 Changed |= promoteUniformBitreverseToI32(I);
1379 return Changed;
1382 bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
1383 Mod = &M;
1384 DL = &Mod->getDataLayout();
1385 return false;
1388 bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
1389 if (skipFunction(F))
1390 return false;
1392 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1393 if (!TPC)
1394 return false;
1396 const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
1397 ST = &TM.getSubtarget<GCNSubtarget>(F);
1398 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1399 DA = &getAnalysis<LegacyDivergenceAnalysis>();
1401 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
1402 DT = DTWP ? &DTWP->getDomTree() : nullptr;
1404 HasUnsafeFPMath = hasUnsafeFPMath(F);
1406 AMDGPU::SIModeRegisterDefaults Mode(F);
1407 HasFP32Denormals = Mode.allFP32Denormals();
1409 bool MadeChange = false;
1411 Function::iterator NextBB;
1412 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; FI = NextBB) {
1413 BasicBlock *BB = &*FI;
1414 NextBB = std::next(FI);
1416 BasicBlock::iterator Next;
1417 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; I = Next) {
1418 Next = std::next(I);
1420 MadeChange |= visit(*I);
1422 if (Next != E) { // Control flow changed
1423 BasicBlock *NextInstBB = Next->getParent();
1424 if (NextInstBB != BB) {
1425 BB = NextInstBB;
1426 E = BB->end();
1427 FE = F.end();
1433 return MadeChange;
1436 INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
1437 "AMDGPU IR optimizations", false, false)
1438 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1439 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
1440 INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
1441 false, false)
1443 char AMDGPUCodeGenPrepare::ID = 0;
1445 FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
1446 return new AMDGPUCodeGenPrepare();