1 //===-- AMDGPUISelDAGToDAG.cpp - A dag to dag inst selector for AMDGPU ----===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //==-----------------------------------------------------------------------===//
10 /// Defines an instruction selector for the AMDGPU target.
12 //===----------------------------------------------------------------------===//
15 #include "AMDGPUTargetMachine.h"
16 #include "SIMachineFunctionInfo.h"
17 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/SelectionDAGISel.h"
22 #include "llvm/CodeGen/SelectionDAGNodes.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/InitializePasses.h"
26 #ifdef EXPENSIVE_CHECKS
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Dominators.h"
31 #define DEBUG_TYPE "isel"
39 } // end namespace llvm
41 //===----------------------------------------------------------------------===//
42 // Instruction Selector Implementation
43 //===----------------------------------------------------------------------===//
47 static bool isNullConstantOrUndef(SDValue V
) {
51 ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(V
);
52 return Const
!= nullptr && Const
->isNullValue();
55 static bool getConstantValue(SDValue N
, uint32_t &Out
) {
56 // This is only used for packed vectors, where ussing 0 for undef should
63 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
)) {
64 Out
= C
->getAPIntValue().getSExtValue();
68 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
)) {
69 Out
= C
->getValueAPF().bitcastToAPInt().getSExtValue();
76 // TODO: Handle undef as zero
77 static SDNode
*packConstantV2I16(const SDNode
*N
, SelectionDAG
&DAG
,
78 bool Negate
= false) {
79 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&& N
->getNumOperands() == 2);
80 uint32_t LHSVal
, RHSVal
;
81 if (getConstantValue(N
->getOperand(0), LHSVal
) &&
82 getConstantValue(N
->getOperand(1), RHSVal
)) {
85 (-LHSVal
& 0xffff) | (-RHSVal
<< 16) :
86 (LHSVal
& 0xffff) | (RHSVal
<< 16);
87 return DAG
.getMachineNode(AMDGPU::S_MOV_B32
, SL
, N
->getValueType(0),
88 DAG
.getTargetConstant(K
, SL
, MVT::i32
));
94 static SDNode
*packNegConstantV2I16(const SDNode
*N
, SelectionDAG
&DAG
) {
95 return packConstantV2I16(N
, DAG
, true);
98 /// AMDGPU specific code to select AMDGPU machine instructions for
99 /// SelectionDAG operations.
100 class AMDGPUDAGToDAGISel
: public SelectionDAGISel
{
101 // Subtarget - Keep a pointer to the AMDGPU Subtarget around so that we can
102 // make the right decision when generating code for different targets.
103 const GCNSubtarget
*Subtarget
;
105 // Default FP mode for the current function.
106 AMDGPU::SIModeRegisterDefaults Mode
;
108 bool EnableLateStructurizeCFG
;
110 // Instructions that will be lowered with a final instruction that zeros the
112 bool fp16SrcZerosHighBits(unsigned Opc
) const;
115 explicit AMDGPUDAGToDAGISel(TargetMachine
*TM
= nullptr,
116 CodeGenOpt::Level OptLevel
= CodeGenOpt::Default
)
117 : SelectionDAGISel(*TM
, OptLevel
) {
118 EnableLateStructurizeCFG
= AMDGPUTargetMachine::EnableLateStructurizeCFG
;
120 ~AMDGPUDAGToDAGISel() override
= default;
122 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
123 AU
.addRequired
<AMDGPUArgumentUsageInfo
>();
124 AU
.addRequired
<LegacyDivergenceAnalysis
>();
125 #ifdef EXPENSIVE_CHECKS
126 AU
.addRequired
<DominatorTreeWrapperPass
>();
127 AU
.addRequired
<LoopInfoWrapperPass
>();
129 SelectionDAGISel::getAnalysisUsage(AU
);
132 bool matchLoadD16FromBuildVector(SDNode
*N
) const;
134 bool runOnMachineFunction(MachineFunction
&MF
) override
;
135 void PreprocessISelDAG() override
;
136 void Select(SDNode
*N
) override
;
137 StringRef
getPassName() const override
;
138 void PostprocessISelDAG() override
;
141 void SelectBuildVector(SDNode
*N
, unsigned RegClassID
);
144 std::pair
<SDValue
, SDValue
> foldFrameIndex(SDValue N
) const;
145 bool isNoNanSrc(SDValue N
) const;
146 bool isInlineImmediate(const SDNode
*N
, bool Negated
= false) const;
147 bool isNegInlineImmediate(const SDNode
*N
) const {
148 return isInlineImmediate(N
, true);
151 bool isInlineImmediate16(int64_t Imm
) const {
152 return AMDGPU::isInlinableLiteral16(Imm
, Subtarget
->hasInv2PiInlineImm());
155 bool isInlineImmediate32(int64_t Imm
) const {
156 return AMDGPU::isInlinableLiteral32(Imm
, Subtarget
->hasInv2PiInlineImm());
159 bool isInlineImmediate64(int64_t Imm
) const {
160 return AMDGPU::isInlinableLiteral64(Imm
, Subtarget
->hasInv2PiInlineImm());
163 bool isInlineImmediate(const APFloat
&Imm
) const {
164 return Subtarget
->getInstrInfo()->isInlineConstant(Imm
);
167 bool isVGPRImm(const SDNode
*N
) const;
168 bool isUniformLoad(const SDNode
*N
) const;
169 bool isUniformBr(const SDNode
*N
) const;
171 bool isBaseWithConstantOffset64(SDValue Addr
, SDValue
&LHS
,
174 MachineSDNode
*buildSMovImm64(SDLoc
&DL
, uint64_t Val
, EVT VT
) const;
176 SDNode
*glueCopyToOp(SDNode
*N
, SDValue NewChain
, SDValue Glue
) const;
177 SDNode
*glueCopyToM0(SDNode
*N
, SDValue Val
) const;
178 SDNode
*glueCopyToM0LDSInit(SDNode
*N
) const;
180 const TargetRegisterClass
*getOperandRegClass(SDNode
*N
, unsigned OpNo
) const;
181 virtual bool SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
, SDValue
&Offset
);
182 virtual bool SelectADDRIndirect(SDValue Addr
, SDValue
&Base
, SDValue
&Offset
);
183 bool isDSOffsetLegal(SDValue Base
, unsigned Offset
) const;
184 bool isDSOffset2Legal(SDValue Base
, unsigned Offset0
, unsigned Offset1
,
185 unsigned Size
) const;
186 bool SelectDS1Addr1Offset(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset
) const;
187 bool SelectDS64Bit4ByteAligned(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset0
,
188 SDValue
&Offset1
) const;
189 bool SelectDS128Bit8ByteAligned(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset0
,
190 SDValue
&Offset1
) const;
191 bool SelectDSReadWrite2(SDValue Ptr
, SDValue
&Base
, SDValue
&Offset0
,
192 SDValue
&Offset1
, unsigned Size
) const;
193 bool SelectMUBUF(SDValue Addr
, SDValue
&SRsrc
, SDValue
&VAddr
,
194 SDValue
&SOffset
, SDValue
&Offset
, SDValue
&Offen
,
195 SDValue
&Idxen
, SDValue
&Addr64
) const;
196 bool SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
, SDValue
&VAddr
,
197 SDValue
&SOffset
, SDValue
&Offset
) const;
198 bool SelectMUBUFScratchOffen(SDNode
*Parent
,
199 SDValue Addr
, SDValue
&RSrc
, SDValue
&VAddr
,
200 SDValue
&SOffset
, SDValue
&ImmOffset
) const;
201 bool SelectMUBUFScratchOffset(SDNode
*Parent
,
202 SDValue Addr
, SDValue
&SRsrc
, SDValue
&Soffset
,
203 SDValue
&Offset
) const;
205 bool SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
, SDValue
&Soffset
,
206 SDValue
&Offset
) const;
208 bool SelectFlatOffsetImpl(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
209 SDValue
&Offset
, uint64_t FlatVariant
) const;
210 bool SelectFlatOffset(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
211 SDValue
&Offset
) const;
212 bool SelectGlobalOffset(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
213 SDValue
&Offset
) const;
214 bool SelectScratchOffset(SDNode
*N
, SDValue Addr
, SDValue
&VAddr
,
215 SDValue
&Offset
) const;
216 bool SelectGlobalSAddr(SDNode
*N
, SDValue Addr
, SDValue
&SAddr
,
217 SDValue
&VOffset
, SDValue
&Offset
) const;
218 bool SelectScratchSAddr(SDNode
*N
, SDValue Addr
, SDValue
&SAddr
,
219 SDValue
&Offset
) const;
221 bool SelectSMRDOffset(SDValue ByteOffsetNode
, SDValue
&Offset
,
223 SDValue
Expand32BitAddress(SDValue Addr
) const;
224 bool SelectSMRD(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
,
226 bool SelectSMRDImm(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
227 bool SelectSMRDImm32(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
228 bool SelectSMRDSgpr(SDValue Addr
, SDValue
&SBase
, SDValue
&Offset
) const;
229 bool SelectSMRDBufferImm(SDValue Addr
, SDValue
&Offset
) const;
230 bool SelectSMRDBufferImm32(SDValue Addr
, SDValue
&Offset
) const;
231 bool SelectMOVRELOffset(SDValue Index
, SDValue
&Base
, SDValue
&Offset
) const;
233 bool SelectVOP3Mods_NNaN(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
234 bool SelectVOP3ModsImpl(SDValue In
, SDValue
&Src
, unsigned &SrcMods
,
235 bool AllowAbs
= true) const;
236 bool SelectVOP3Mods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
237 bool SelectVOP3BMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
238 bool SelectVOP3NoMods(SDValue In
, SDValue
&Src
) const;
239 bool SelectVOP3Mods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
240 SDValue
&Clamp
, SDValue
&Omod
) const;
241 bool SelectVOP3BMods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
242 SDValue
&Clamp
, SDValue
&Omod
) const;
243 bool SelectVOP3NoMods0(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
,
244 SDValue
&Clamp
, SDValue
&Omod
) const;
246 bool SelectVOP3OMods(SDValue In
, SDValue
&Src
,
247 SDValue
&Clamp
, SDValue
&Omod
) const;
249 bool SelectVOP3PMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
251 bool SelectVOP3OpSel(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
253 bool SelectVOP3OpSelMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
254 bool SelectVOP3PMadMixModsImpl(SDValue In
, SDValue
&Src
, unsigned &Mods
) const;
255 bool SelectVOP3PMadMixMods(SDValue In
, SDValue
&Src
, SDValue
&SrcMods
) const;
257 SDValue
getHi16Elt(SDValue In
) const;
259 SDValue
getMaterializedScalarImm32(int64_t Val
, const SDLoc
&DL
) const;
261 void SelectADD_SUB_I64(SDNode
*N
);
262 void SelectAddcSubb(SDNode
*N
);
263 void SelectUADDO_USUBO(SDNode
*N
);
264 void SelectDIV_SCALE(SDNode
*N
);
265 void SelectMAD_64_32(SDNode
*N
);
266 void SelectFMA_W_CHAIN(SDNode
*N
);
267 void SelectFMUL_W_CHAIN(SDNode
*N
);
269 SDNode
*getS_BFE(unsigned Opcode
, const SDLoc
&DL
, SDValue Val
,
270 uint32_t Offset
, uint32_t Width
);
271 void SelectS_BFEFromShifts(SDNode
*N
);
272 void SelectS_BFE(SDNode
*N
);
273 bool isCBranchSCC(const SDNode
*N
) const;
274 void SelectBRCOND(SDNode
*N
);
275 void SelectFMAD_FMA(SDNode
*N
);
276 void SelectATOMIC_CMP_SWAP(SDNode
*N
);
277 void SelectDSAppendConsume(SDNode
*N
, unsigned IntrID
);
278 void SelectDS_GWS(SDNode
*N
, unsigned IntrID
);
279 void SelectInterpP1F16(SDNode
*N
);
280 void SelectINTRINSIC_W_CHAIN(SDNode
*N
);
281 void SelectINTRINSIC_WO_CHAIN(SDNode
*N
);
282 void SelectINTRINSIC_VOID(SDNode
*N
);
285 // Include the pieces autogenerated from the target description.
286 #include "AMDGPUGenDAGISel.inc"
289 class R600DAGToDAGISel
: public AMDGPUDAGToDAGISel
{
290 const R600Subtarget
*Subtarget
;
292 bool isConstantLoad(const MemSDNode
*N
, int cbID
) const;
293 bool SelectGlobalValueConstantOffset(SDValue Addr
, SDValue
& IntPtr
);
294 bool SelectGlobalValueVariableOffset(SDValue Addr
, SDValue
&BaseReg
,
297 explicit R600DAGToDAGISel(TargetMachine
*TM
, CodeGenOpt::Level OptLevel
) :
298 AMDGPUDAGToDAGISel(TM
, OptLevel
) {}
300 void Select(SDNode
*N
) override
;
302 bool SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
303 SDValue
&Offset
) override
;
304 bool SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
305 SDValue
&Offset
) override
;
307 bool runOnMachineFunction(MachineFunction
&MF
) override
;
309 void PreprocessISelDAG() override
{}
312 // Include the pieces autogenerated from the target description.
313 #include "R600GenDAGISel.inc"
316 static SDValue
stripBitcast(SDValue Val
) {
317 return Val
.getOpcode() == ISD::BITCAST
? Val
.getOperand(0) : Val
;
320 // Figure out if this is really an extract of the high 16-bits of a dword.
321 static bool isExtractHiElt(SDValue In
, SDValue
&Out
) {
322 In
= stripBitcast(In
);
324 if (In
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
325 if (ConstantSDNode
*Idx
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1))) {
328 Out
= In
.getOperand(0);
333 if (In
.getOpcode() != ISD::TRUNCATE
)
336 SDValue Srl
= In
.getOperand(0);
337 if (Srl
.getOpcode() == ISD::SRL
) {
338 if (ConstantSDNode
*ShiftAmt
= dyn_cast
<ConstantSDNode
>(Srl
.getOperand(1))) {
339 if (ShiftAmt
->getZExtValue() == 16) {
340 Out
= stripBitcast(Srl
.getOperand(0));
349 // Look through operations that obscure just looking at the low 16-bits of the
351 static SDValue
stripExtractLoElt(SDValue In
) {
352 if (In
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
353 if (ConstantSDNode
*Idx
= dyn_cast
<ConstantSDNode
>(In
.getOperand(1))) {
354 if (Idx
->isNullValue() && In
.getValueSizeInBits() <= 32)
355 return In
.getOperand(0);
359 if (In
.getOpcode() == ISD::TRUNCATE
) {
360 SDValue Src
= In
.getOperand(0);
361 if (Src
.getValueType().getSizeInBits() == 32)
362 return stripBitcast(Src
);
368 } // end anonymous namespace
370 INITIALIZE_PASS_BEGIN(AMDGPUDAGToDAGISel
, "amdgpu-isel",
371 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
372 INITIALIZE_PASS_DEPENDENCY(AMDGPUArgumentUsageInfo
)
373 INITIALIZE_PASS_DEPENDENCY(AMDGPUPerfHintAnalysis
)
374 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis
)
375 #ifdef EXPENSIVE_CHECKS
376 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
377 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
379 INITIALIZE_PASS_END(AMDGPUDAGToDAGISel
, "amdgpu-isel",
380 "AMDGPU DAG->DAG Pattern Instruction Selection", false, false)
382 /// This pass converts a legalized DAG into a AMDGPU-specific
383 // DAG, ready for instruction scheduling.
384 FunctionPass
*llvm::createAMDGPUISelDag(TargetMachine
*TM
,
385 CodeGenOpt::Level OptLevel
) {
386 return new AMDGPUDAGToDAGISel(TM
, OptLevel
);
389 /// This pass converts a legalized DAG into a R600-specific
390 // DAG, ready for instruction scheduling.
391 FunctionPass
*llvm::createR600ISelDag(TargetMachine
*TM
,
392 CodeGenOpt::Level OptLevel
) {
393 return new R600DAGToDAGISel(TM
, OptLevel
);
396 bool AMDGPUDAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
397 #ifdef EXPENSIVE_CHECKS
398 DominatorTree
& DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
399 LoopInfo
* LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
400 for (auto &L
: LI
->getLoopsInPreorder()) {
401 assert(L
->isLCSSAForm(DT
));
404 Subtarget
= &MF
.getSubtarget
<GCNSubtarget
>();
405 Mode
= AMDGPU::SIModeRegisterDefaults(MF
.getFunction());
406 return SelectionDAGISel::runOnMachineFunction(MF
);
409 bool AMDGPUDAGToDAGISel::fp16SrcZerosHighBits(unsigned Opc
) const {
410 // XXX - only need to list legal operations.
417 case ISD::FCANONICALIZE
:
418 case ISD::UINT_TO_FP
:
419 case ISD::SINT_TO_FP
:
421 // Fabs is lowered to a bit operation, but it's an and which will clear the
436 case ISD::FNEARBYINT
:
441 case AMDGPUISD::FRACT
:
442 case AMDGPUISD::CLAMP
:
443 case AMDGPUISD::COS_HW
:
444 case AMDGPUISD::SIN_HW
:
445 case AMDGPUISD::FMIN3
:
446 case AMDGPUISD::FMAX3
:
447 case AMDGPUISD::FMED3
:
448 case AMDGPUISD::FMAD_FTZ
:
451 case AMDGPUISD::RCP_IFLAG
:
452 case AMDGPUISD::LDEXP
:
453 // On gfx10, all 16-bit instructions preserve the high bits.
454 return Subtarget
->getGeneration() <= AMDGPUSubtarget::GFX9
;
456 // We may select fptrunc (fma/mad) to mad_mixlo, which does not zero the
457 // high bits on gfx9.
458 // TODO: If we had the source node we could see if the source was fma/mad
459 return Subtarget
->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS
;
462 case AMDGPUISD::DIV_FIXUP
:
463 return Subtarget
->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS
;
465 // fcopysign, select and others may be lowered to 32-bit bit operations
466 // which don't zero the high bits.
471 bool AMDGPUDAGToDAGISel::matchLoadD16FromBuildVector(SDNode
*N
) const {
472 assert(Subtarget
->d16PreservesUnusedBits());
473 MVT VT
= N
->getValueType(0).getSimpleVT();
474 if (VT
!= MVT::v2i16
&& VT
!= MVT::v2f16
)
477 SDValue Lo
= N
->getOperand(0);
478 SDValue Hi
= N
->getOperand(1);
480 LoadSDNode
*LdHi
= dyn_cast
<LoadSDNode
>(stripBitcast(Hi
));
482 // build_vector lo, (load ptr) -> load_d16_hi ptr, lo
483 // build_vector lo, (zextload ptr from i8) -> load_d16_hi_u8 ptr, lo
484 // build_vector lo, (sextload ptr from i8) -> load_d16_hi_i8 ptr, lo
486 // Need to check for possible indirect dependencies on the other half of the
487 // vector to avoid introducing a cycle.
488 if (LdHi
&& Hi
.hasOneUse() && !LdHi
->isPredecessorOf(Lo
.getNode())) {
489 SDVTList VTList
= CurDAG
->getVTList(VT
, MVT::Other
);
491 SDValue TiedIn
= CurDAG
->getNode(ISD::SCALAR_TO_VECTOR
, SDLoc(N
), VT
, Lo
);
493 LdHi
->getChain(), LdHi
->getBasePtr(), TiedIn
496 unsigned LoadOp
= AMDGPUISD::LOAD_D16_HI
;
497 if (LdHi
->getMemoryVT() == MVT::i8
) {
498 LoadOp
= LdHi
->getExtensionType() == ISD::SEXTLOAD
?
499 AMDGPUISD::LOAD_D16_HI_I8
: AMDGPUISD::LOAD_D16_HI_U8
;
501 assert(LdHi
->getMemoryVT() == MVT::i16
);
505 CurDAG
->getMemIntrinsicNode(LoadOp
, SDLoc(LdHi
), VTList
,
506 Ops
, LdHi
->getMemoryVT(),
507 LdHi
->getMemOperand());
509 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), NewLoadHi
);
510 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(LdHi
, 1), NewLoadHi
.getValue(1));
514 // build_vector (load ptr), hi -> load_d16_lo ptr, hi
515 // build_vector (zextload ptr from i8), hi -> load_d16_lo_u8 ptr, hi
516 // build_vector (sextload ptr from i8), hi -> load_d16_lo_i8 ptr, hi
517 LoadSDNode
*LdLo
= dyn_cast
<LoadSDNode
>(stripBitcast(Lo
));
518 if (LdLo
&& Lo
.hasOneUse()) {
519 SDValue TiedIn
= getHi16Elt(Hi
);
520 if (!TiedIn
|| LdLo
->isPredecessorOf(TiedIn
.getNode()))
523 SDVTList VTList
= CurDAG
->getVTList(VT
, MVT::Other
);
524 unsigned LoadOp
= AMDGPUISD::LOAD_D16_LO
;
525 if (LdLo
->getMemoryVT() == MVT::i8
) {
526 LoadOp
= LdLo
->getExtensionType() == ISD::SEXTLOAD
?
527 AMDGPUISD::LOAD_D16_LO_I8
: AMDGPUISD::LOAD_D16_LO_U8
;
529 assert(LdLo
->getMemoryVT() == MVT::i16
);
532 TiedIn
= CurDAG
->getNode(ISD::BITCAST
, SDLoc(N
), VT
, TiedIn
);
535 LdLo
->getChain(), LdLo
->getBasePtr(), TiedIn
539 CurDAG
->getMemIntrinsicNode(LoadOp
, SDLoc(LdLo
), VTList
,
540 Ops
, LdLo
->getMemoryVT(),
541 LdLo
->getMemOperand());
543 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), NewLoadLo
);
544 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(LdLo
, 1), NewLoadLo
.getValue(1));
551 void AMDGPUDAGToDAGISel::PreprocessISelDAG() {
552 if (!Subtarget
->d16PreservesUnusedBits())
555 SelectionDAG::allnodes_iterator Position
= CurDAG
->allnodes_end();
557 bool MadeChange
= false;
558 while (Position
!= CurDAG
->allnodes_begin()) {
559 SDNode
*N
= &*--Position
;
563 switch (N
->getOpcode()) {
564 case ISD::BUILD_VECTOR
:
565 MadeChange
|= matchLoadD16FromBuildVector(N
);
573 CurDAG
->RemoveDeadNodes();
574 LLVM_DEBUG(dbgs() << "After PreProcess:\n";
579 bool AMDGPUDAGToDAGISel::isNoNanSrc(SDValue N
) const {
580 if (TM
.Options
.NoNaNsFPMath
)
583 // TODO: Move into isKnownNeverNaN
584 if (N
->getFlags().hasNoNaNs())
587 return CurDAG
->isKnownNeverNaN(N
);
590 bool AMDGPUDAGToDAGISel::isInlineImmediate(const SDNode
*N
,
591 bool Negated
) const {
595 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
597 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
))
598 return TII
->isInlineConstant(-C
->getAPIntValue());
600 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
))
601 return TII
->isInlineConstant(-C
->getValueAPF().bitcastToAPInt());
604 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
))
605 return TII
->isInlineConstant(C
->getAPIntValue());
607 if (const ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(N
))
608 return TII
->isInlineConstant(C
->getValueAPF().bitcastToAPInt());
614 /// Determine the register class for \p OpNo
615 /// \returns The register class of the virtual register that will be used for
616 /// the given operand number \OpNo or NULL if the register class cannot be
618 const TargetRegisterClass
*AMDGPUDAGToDAGISel::getOperandRegClass(SDNode
*N
,
619 unsigned OpNo
) const {
620 if (!N
->isMachineOpcode()) {
621 if (N
->getOpcode() == ISD::CopyToReg
) {
622 Register Reg
= cast
<RegisterSDNode
>(N
->getOperand(1))->getReg();
623 if (Reg
.isVirtual()) {
624 MachineRegisterInfo
&MRI
= CurDAG
->getMachineFunction().getRegInfo();
625 return MRI
.getRegClass(Reg
);
628 const SIRegisterInfo
*TRI
629 = static_cast<const GCNSubtarget
*>(Subtarget
)->getRegisterInfo();
630 return TRI
->getPhysRegClass(Reg
);
636 switch (N
->getMachineOpcode()) {
638 const MCInstrDesc
&Desc
=
639 Subtarget
->getInstrInfo()->get(N
->getMachineOpcode());
640 unsigned OpIdx
= Desc
.getNumDefs() + OpNo
;
641 if (OpIdx
>= Desc
.getNumOperands())
643 int RegClass
= Desc
.OpInfo
[OpIdx
].RegClass
;
647 return Subtarget
->getRegisterInfo()->getRegClass(RegClass
);
649 case AMDGPU::REG_SEQUENCE
: {
650 unsigned RCID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
651 const TargetRegisterClass
*SuperRC
=
652 Subtarget
->getRegisterInfo()->getRegClass(RCID
);
654 SDValue SubRegOp
= N
->getOperand(OpNo
+ 1);
655 unsigned SubRegIdx
= cast
<ConstantSDNode
>(SubRegOp
)->getZExtValue();
656 return Subtarget
->getRegisterInfo()->getSubClassWithSubReg(SuperRC
,
662 SDNode
*AMDGPUDAGToDAGISel::glueCopyToOp(SDNode
*N
, SDValue NewChain
,
663 SDValue Glue
) const {
664 SmallVector
<SDValue
, 8> Ops
;
665 Ops
.push_back(NewChain
); // Replace the chain.
666 for (unsigned i
= 1, e
= N
->getNumOperands(); i
!= e
; ++i
)
667 Ops
.push_back(N
->getOperand(i
));
670 return CurDAG
->MorphNodeTo(N
, N
->getOpcode(), N
->getVTList(), Ops
);
673 SDNode
*AMDGPUDAGToDAGISel::glueCopyToM0(SDNode
*N
, SDValue Val
) const {
674 const SITargetLowering
& Lowering
=
675 *static_cast<const SITargetLowering
*>(getTargetLowering());
677 assert(N
->getOperand(0).getValueType() == MVT::Other
&& "Expected chain");
679 SDValue M0
= Lowering
.copyToM0(*CurDAG
, N
->getOperand(0), SDLoc(N
), Val
);
680 return glueCopyToOp(N
, M0
, M0
.getValue(1));
683 SDNode
*AMDGPUDAGToDAGISel::glueCopyToM0LDSInit(SDNode
*N
) const {
684 unsigned AS
= cast
<MemSDNode
>(N
)->getAddressSpace();
685 if (AS
== AMDGPUAS::LOCAL_ADDRESS
) {
686 if (Subtarget
->ldsRequiresM0Init())
687 return glueCopyToM0(N
, CurDAG
->getTargetConstant(-1, SDLoc(N
), MVT::i32
));
688 } else if (AS
== AMDGPUAS::REGION_ADDRESS
) {
689 MachineFunction
&MF
= CurDAG
->getMachineFunction();
690 unsigned Value
= MF
.getInfo
<SIMachineFunctionInfo
>()->getGDSSize();
692 glueCopyToM0(N
, CurDAG
->getTargetConstant(Value
, SDLoc(N
), MVT::i32
));
697 MachineSDNode
*AMDGPUDAGToDAGISel::buildSMovImm64(SDLoc
&DL
, uint64_t Imm
,
699 SDNode
*Lo
= CurDAG
->getMachineNode(
700 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
701 CurDAG
->getTargetConstant(Imm
& 0xFFFFFFFF, DL
, MVT::i32
));
703 CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
704 CurDAG
->getTargetConstant(Imm
>> 32, DL
, MVT::i32
));
705 const SDValue Ops
[] = {
706 CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
),
707 SDValue(Lo
, 0), CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
),
708 SDValue(Hi
, 0), CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
)};
710 return CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
, VT
, Ops
);
713 void AMDGPUDAGToDAGISel::SelectBuildVector(SDNode
*N
, unsigned RegClassID
) {
714 EVT VT
= N
->getValueType(0);
715 unsigned NumVectorElts
= VT
.getVectorNumElements();
716 EVT EltVT
= VT
.getVectorElementType();
718 SDValue RegClass
= CurDAG
->getTargetConstant(RegClassID
, DL
, MVT::i32
);
720 if (NumVectorElts
== 1) {
721 CurDAG
->SelectNodeTo(N
, AMDGPU::COPY_TO_REGCLASS
, EltVT
, N
->getOperand(0),
726 assert(NumVectorElts
<= 32 && "Vectors with more than 32 elements not "
728 // 32 = Max Num Vector Elements
729 // 2 = 2 REG_SEQUENCE operands per element (value, subreg index)
730 // 1 = Vector Register Class
731 SmallVector
<SDValue
, 32 * 2 + 1> RegSeqArgs(NumVectorElts
* 2 + 1);
733 bool IsGCN
= CurDAG
->getSubtarget().getTargetTriple().getArch() ==
735 RegSeqArgs
[0] = CurDAG
->getTargetConstant(RegClassID
, DL
, MVT::i32
);
736 bool IsRegSeq
= true;
737 unsigned NOps
= N
->getNumOperands();
738 for (unsigned i
= 0; i
< NOps
; i
++) {
739 // XXX: Why is this here?
740 if (isa
<RegisterSDNode
>(N
->getOperand(i
))) {
744 unsigned Sub
= IsGCN
? SIRegisterInfo::getSubRegFromChannel(i
)
745 : R600RegisterInfo::getSubRegFromChannel(i
);
746 RegSeqArgs
[1 + (2 * i
)] = N
->getOperand(i
);
747 RegSeqArgs
[1 + (2 * i
) + 1] = CurDAG
->getTargetConstant(Sub
, DL
, MVT::i32
);
749 if (NOps
!= NumVectorElts
) {
750 // Fill in the missing undef elements if this was a scalar_to_vector.
751 assert(N
->getOpcode() == ISD::SCALAR_TO_VECTOR
&& NOps
< NumVectorElts
);
752 MachineSDNode
*ImpDef
= CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
,
754 for (unsigned i
= NOps
; i
< NumVectorElts
; ++i
) {
755 unsigned Sub
= IsGCN
? SIRegisterInfo::getSubRegFromChannel(i
)
756 : R600RegisterInfo::getSubRegFromChannel(i
);
757 RegSeqArgs
[1 + (2 * i
)] = SDValue(ImpDef
, 0);
758 RegSeqArgs
[1 + (2 * i
) + 1] =
759 CurDAG
->getTargetConstant(Sub
, DL
, MVT::i32
);
765 CurDAG
->SelectNodeTo(N
, AMDGPU::REG_SEQUENCE
, N
->getVTList(), RegSeqArgs
);
768 void AMDGPUDAGToDAGISel::Select(SDNode
*N
) {
769 unsigned int Opc
= N
->getOpcode();
770 if (N
->isMachineOpcode()) {
772 return; // Already selected.
775 // isa<MemSDNode> almost works but is slightly too permissive for some DS
777 if (Opc
== ISD::LOAD
|| Opc
== ISD::STORE
|| isa
<AtomicSDNode
>(N
) ||
778 (Opc
== AMDGPUISD::ATOMIC_INC
|| Opc
== AMDGPUISD::ATOMIC_DEC
||
779 Opc
== ISD::ATOMIC_LOAD_FADD
||
780 Opc
== AMDGPUISD::ATOMIC_LOAD_FMIN
||
781 Opc
== AMDGPUISD::ATOMIC_LOAD_FMAX
)) {
782 N
= glueCopyToM0LDSInit(N
);
790 // We are selecting i64 ADD here instead of custom lower it during
791 // DAG legalization, so we can fold some i64 ADDs used for address
792 // calculation into the LOAD and STORE instructions.
797 if (N
->getValueType(0) != MVT::i64
)
800 SelectADD_SUB_I64(N
);
805 if (N
->getValueType(0) != MVT::i32
)
812 SelectUADDO_USUBO(N
);
815 case AMDGPUISD::FMUL_W_CHAIN
: {
816 SelectFMUL_W_CHAIN(N
);
819 case AMDGPUISD::FMA_W_CHAIN
: {
820 SelectFMA_W_CHAIN(N
);
824 case ISD::SCALAR_TO_VECTOR
:
825 case ISD::BUILD_VECTOR
: {
826 EVT VT
= N
->getValueType(0);
827 unsigned NumVectorElts
= VT
.getVectorNumElements();
828 if (VT
.getScalarSizeInBits() == 16) {
829 if (Opc
== ISD::BUILD_VECTOR
&& NumVectorElts
== 2) {
830 if (SDNode
*Packed
= packConstantV2I16(N
, *CurDAG
)) {
831 ReplaceNode(N
, Packed
);
839 assert(VT
.getVectorElementType().bitsEq(MVT::i32
));
840 unsigned RegClassID
=
841 SIRegisterInfo::getSGPRClassForBitWidth(NumVectorElts
* 32)->getID();
842 SelectBuildVector(N
, RegClassID
);
845 case ISD::BUILD_PAIR
: {
846 SDValue RC
, SubReg0
, SubReg1
;
848 if (N
->getValueType(0) == MVT::i128
) {
849 RC
= CurDAG
->getTargetConstant(AMDGPU::SGPR_128RegClassID
, DL
, MVT::i32
);
850 SubReg0
= CurDAG
->getTargetConstant(AMDGPU::sub0_sub1
, DL
, MVT::i32
);
851 SubReg1
= CurDAG
->getTargetConstant(AMDGPU::sub2_sub3
, DL
, MVT::i32
);
852 } else if (N
->getValueType(0) == MVT::i64
) {
853 RC
= CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
);
854 SubReg0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
855 SubReg1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
857 llvm_unreachable("Unhandled value type for BUILD_PAIR");
859 const SDValue Ops
[] = { RC
, N
->getOperand(0), SubReg0
,
860 N
->getOperand(1), SubReg1
};
861 ReplaceNode(N
, CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, DL
,
862 N
->getValueType(0), Ops
));
867 case ISD::ConstantFP
: {
868 if (N
->getValueType(0).getSizeInBits() != 64 || isInlineImmediate(N
))
872 if (ConstantFPSDNode
*FP
= dyn_cast
<ConstantFPSDNode
>(N
))
873 Imm
= FP
->getValueAPF().bitcastToAPInt().getZExtValue();
875 ConstantSDNode
*C
= cast
<ConstantSDNode
>(N
);
876 Imm
= C
->getZExtValue();
880 ReplaceNode(N
, buildSMovImm64(DL
, Imm
, N
->getValueType(0)));
883 case AMDGPUISD::BFE_I32
:
884 case AMDGPUISD::BFE_U32
: {
885 // There is a scalar version available, but unlike the vector version which
886 // has a separate operand for the offset and width, the scalar version packs
887 // the width and offset into a single operand. Try to move to the scalar
888 // version if the offsets are constant, so that we can try to keep extended
889 // loads of kernel arguments in SGPRs.
891 // TODO: Technically we could try to pattern match scalar bitshifts of
892 // dynamic values, but it's probably not useful.
893 ConstantSDNode
*Offset
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
897 ConstantSDNode
*Width
= dyn_cast
<ConstantSDNode
>(N
->getOperand(2));
901 bool Signed
= Opc
== AMDGPUISD::BFE_I32
;
903 uint32_t OffsetVal
= Offset
->getZExtValue();
904 uint32_t WidthVal
= Width
->getZExtValue();
906 ReplaceNode(N
, getS_BFE(Signed
? AMDGPU::S_BFE_I32
: AMDGPU::S_BFE_U32
,
907 SDLoc(N
), N
->getOperand(0), OffsetVal
, WidthVal
));
910 case AMDGPUISD::DIV_SCALE
: {
914 case AMDGPUISD::MAD_I64_I32
:
915 case AMDGPUISD::MAD_U64_U32
: {
919 case ISD::CopyToReg
: {
920 const SITargetLowering
& Lowering
=
921 *static_cast<const SITargetLowering
*>(getTargetLowering());
922 N
= Lowering
.legalizeTargetIndependentNode(N
, *CurDAG
);
928 case ISD::SIGN_EXTEND_INREG
:
929 if (N
->getValueType(0) != MVT::i32
)
941 case AMDGPUISD::ATOMIC_CMP_SWAP
:
942 SelectATOMIC_CMP_SWAP(N
);
944 case AMDGPUISD::CVT_PKRTZ_F16_F32
:
945 case AMDGPUISD::CVT_PKNORM_I16_F32
:
946 case AMDGPUISD::CVT_PKNORM_U16_F32
:
947 case AMDGPUISD::CVT_PK_U16_U32
:
948 case AMDGPUISD::CVT_PK_I16_I32
: {
949 // Hack around using a legal type if f16 is illegal.
950 if (N
->getValueType(0) == MVT::i32
) {
951 MVT NewVT
= Opc
== AMDGPUISD::CVT_PKRTZ_F16_F32
? MVT::v2f16
: MVT::v2i16
;
952 N
= CurDAG
->MorphNodeTo(N
, N
->getOpcode(), CurDAG
->getVTList(NewVT
),
953 { N
->getOperand(0), N
->getOperand(1) });
960 case ISD::INTRINSIC_W_CHAIN
: {
961 SelectINTRINSIC_W_CHAIN(N
);
964 case ISD::INTRINSIC_WO_CHAIN
: {
965 SelectINTRINSIC_WO_CHAIN(N
);
968 case ISD::INTRINSIC_VOID
: {
969 SelectINTRINSIC_VOID(N
);
977 bool AMDGPUDAGToDAGISel::isUniformBr(const SDNode
*N
) const {
978 const BasicBlock
*BB
= FuncInfo
->MBB
->getBasicBlock();
979 const Instruction
*Term
= BB
->getTerminator();
980 return Term
->getMetadata("amdgpu.uniform") ||
981 Term
->getMetadata("structurizecfg.uniform");
984 static bool getBaseWithOffsetUsingSplitOR(SelectionDAG
&DAG
, SDValue Addr
,
985 SDValue
&N0
, SDValue
&N1
) {
986 if (Addr
.getValueType() == MVT::i64
&& Addr
.getOpcode() == ISD::BITCAST
&&
987 Addr
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
) {
988 // As we split 64-bit `or` earlier, it's complicated pattern to match, i.e.
989 // (i64 (bitcast (v2i32 (build_vector
990 // (or (extract_vector_elt V, 0), OFFSET),
991 // (extract_vector_elt V, 1)))))
992 SDValue Lo
= Addr
.getOperand(0).getOperand(0);
993 if (Lo
.getOpcode() == ISD::OR
&& DAG
.isBaseWithConstantOffset(Lo
)) {
994 SDValue BaseLo
= Lo
.getOperand(0);
995 SDValue BaseHi
= Addr
.getOperand(0).getOperand(1);
996 // Check that split base (Lo and Hi) are extracted from the same one.
997 if (BaseLo
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
998 BaseHi
.getOpcode() == ISD::EXTRACT_VECTOR_ELT
&&
999 BaseLo
.getOperand(0) == BaseHi
.getOperand(0) &&
1000 // Lo is statically extracted from index 0.
1001 isa
<ConstantSDNode
>(BaseLo
.getOperand(1)) &&
1002 BaseLo
.getConstantOperandVal(1) == 0 &&
1003 // Hi is statically extracted from index 0.
1004 isa
<ConstantSDNode
>(BaseHi
.getOperand(1)) &&
1005 BaseHi
.getConstantOperandVal(1) == 1) {
1006 N0
= BaseLo
.getOperand(0).getOperand(0);
1007 N1
= Lo
.getOperand(1);
1015 bool AMDGPUDAGToDAGISel::isBaseWithConstantOffset64(SDValue Addr
, SDValue
&LHS
,
1016 SDValue
&RHS
) const {
1017 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1018 LHS
= Addr
.getOperand(0);
1019 RHS
= Addr
.getOperand(1);
1023 if (getBaseWithOffsetUsingSplitOR(*CurDAG
, Addr
, LHS
, RHS
)) {
1024 assert(LHS
&& RHS
&& isa
<ConstantSDNode
>(RHS
));
1031 StringRef
AMDGPUDAGToDAGISel::getPassName() const {
1032 return "AMDGPU DAG->DAG Pattern Instruction Selection";
1035 //===----------------------------------------------------------------------===//
1037 //===----------------------------------------------------------------------===//
1039 bool AMDGPUDAGToDAGISel::SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
1044 bool AMDGPUDAGToDAGISel::SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
1049 if ((C
= dyn_cast
<ConstantSDNode
>(Addr
))) {
1050 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
1051 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
1052 } else if ((Addr
.getOpcode() == AMDGPUISD::DWORDADDR
) &&
1053 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0)))) {
1054 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
1055 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
1056 } else if ((Addr
.getOpcode() == ISD::ADD
|| Addr
.getOpcode() == ISD::OR
) &&
1057 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))) {
1058 Base
= Addr
.getOperand(0);
1059 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
1062 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1068 SDValue
AMDGPUDAGToDAGISel::getMaterializedScalarImm32(int64_t Val
,
1069 const SDLoc
&DL
) const {
1070 SDNode
*Mov
= CurDAG
->getMachineNode(
1071 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
1072 CurDAG
->getTargetConstant(Val
, DL
, MVT::i32
));
1073 return SDValue(Mov
, 0);
1076 // FIXME: Should only handle addcarry/subcarry
1077 void AMDGPUDAGToDAGISel::SelectADD_SUB_I64(SDNode
*N
) {
1079 SDValue LHS
= N
->getOperand(0);
1080 SDValue RHS
= N
->getOperand(1);
1082 unsigned Opcode
= N
->getOpcode();
1083 bool ConsumeCarry
= (Opcode
== ISD::ADDE
|| Opcode
== ISD::SUBE
);
1085 ConsumeCarry
|| Opcode
== ISD::ADDC
|| Opcode
== ISD::SUBC
;
1086 bool IsAdd
= Opcode
== ISD::ADD
|| Opcode
== ISD::ADDC
|| Opcode
== ISD::ADDE
;
1088 SDValue Sub0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
1089 SDValue Sub1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
1091 SDNode
*Lo0
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1092 DL
, MVT::i32
, LHS
, Sub0
);
1093 SDNode
*Hi0
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1094 DL
, MVT::i32
, LHS
, Sub1
);
1096 SDNode
*Lo1
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1097 DL
, MVT::i32
, RHS
, Sub0
);
1098 SDNode
*Hi1
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1099 DL
, MVT::i32
, RHS
, Sub1
);
1101 SDVTList VTList
= CurDAG
->getVTList(MVT::i32
, MVT::Glue
);
1103 static const unsigned OpcMap
[2][2][2] = {
1104 {{AMDGPU::S_SUB_U32
, AMDGPU::S_ADD_U32
},
1105 {AMDGPU::V_SUB_CO_U32_e32
, AMDGPU::V_ADD_CO_U32_e32
}},
1106 {{AMDGPU::S_SUBB_U32
, AMDGPU::S_ADDC_U32
},
1107 {AMDGPU::V_SUBB_U32_e32
, AMDGPU::V_ADDC_U32_e32
}}};
1109 unsigned Opc
= OpcMap
[0][N
->isDivergent()][IsAdd
];
1110 unsigned CarryOpc
= OpcMap
[1][N
->isDivergent()][IsAdd
];
1113 if (!ConsumeCarry
) {
1114 SDValue Args
[] = { SDValue(Lo0
, 0), SDValue(Lo1
, 0) };
1115 AddLo
= CurDAG
->getMachineNode(Opc
, DL
, VTList
, Args
);
1117 SDValue Args
[] = { SDValue(Lo0
, 0), SDValue(Lo1
, 0), N
->getOperand(2) };
1118 AddLo
= CurDAG
->getMachineNode(CarryOpc
, DL
, VTList
, Args
);
1120 SDValue AddHiArgs
[] = {
1125 SDNode
*AddHi
= CurDAG
->getMachineNode(CarryOpc
, DL
, VTList
, AddHiArgs
);
1127 SDValue RegSequenceArgs
[] = {
1128 CurDAG
->getTargetConstant(AMDGPU::SReg_64RegClassID
, DL
, MVT::i32
),
1134 SDNode
*RegSequence
= CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, DL
,
1135 MVT::i64
, RegSequenceArgs
);
1138 // Replace the carry-use
1139 ReplaceUses(SDValue(N
, 1), SDValue(AddHi
, 1));
1142 // Replace the remaining uses.
1143 ReplaceNode(N
, RegSequence
);
1146 void AMDGPUDAGToDAGISel::SelectAddcSubb(SDNode
*N
) {
1148 SDValue LHS
= N
->getOperand(0);
1149 SDValue RHS
= N
->getOperand(1);
1150 SDValue CI
= N
->getOperand(2);
1152 if (N
->isDivergent()) {
1153 unsigned Opc
= N
->getOpcode() == ISD::ADDCARRY
? AMDGPU::V_ADDC_U32_e64
1154 : AMDGPU::V_SUBB_U32_e64
;
1155 CurDAG
->SelectNodeTo(
1156 N
, Opc
, N
->getVTList(),
1158 CurDAG
->getTargetConstant(0, {}, MVT::i1
) /*clamp bit*/});
1160 unsigned Opc
= N
->getOpcode() == ISD::ADDCARRY
? AMDGPU::S_ADD_CO_PSEUDO
1161 : AMDGPU::S_SUB_CO_PSEUDO
;
1162 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), {LHS
, RHS
, CI
});
1166 void AMDGPUDAGToDAGISel::SelectUADDO_USUBO(SDNode
*N
) {
1167 // The name of the opcodes are misleading. v_add_i32/v_sub_i32 have unsigned
1168 // carry out despite the _i32 name. These were renamed in VI to _U32.
1169 // FIXME: We should probably rename the opcodes here.
1170 bool IsAdd
= N
->getOpcode() == ISD::UADDO
;
1171 bool IsVALU
= N
->isDivergent();
1173 for (SDNode::use_iterator UI
= N
->use_begin(), E
= N
->use_end(); UI
!= E
;
1175 if (UI
.getUse().getResNo() == 1) {
1176 if ((IsAdd
&& (UI
->getOpcode() != ISD::ADDCARRY
)) ||
1177 (!IsAdd
&& (UI
->getOpcode() != ISD::SUBCARRY
))) {
1184 unsigned Opc
= IsAdd
? AMDGPU::V_ADD_CO_U32_e64
: AMDGPU::V_SUB_CO_U32_e64
;
1186 CurDAG
->SelectNodeTo(
1187 N
, Opc
, N
->getVTList(),
1188 {N
->getOperand(0), N
->getOperand(1),
1189 CurDAG
->getTargetConstant(0, {}, MVT::i1
) /*clamp bit*/});
1191 unsigned Opc
= N
->getOpcode() == ISD::UADDO
? AMDGPU::S_UADDO_PSEUDO
1192 : AMDGPU::S_USUBO_PSEUDO
;
1194 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(),
1195 {N
->getOperand(0), N
->getOperand(1)});
1199 void AMDGPUDAGToDAGISel::SelectFMA_W_CHAIN(SDNode
*N
) {
1201 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp, omod
1204 SelectVOP3Mods0(N
->getOperand(1), Ops
[1], Ops
[0], Ops
[6], Ops
[7]);
1205 SelectVOP3Mods(N
->getOperand(2), Ops
[3], Ops
[2]);
1206 SelectVOP3Mods(N
->getOperand(3), Ops
[5], Ops
[4]);
1207 Ops
[8] = N
->getOperand(0);
1208 Ops
[9] = N
->getOperand(4);
1210 CurDAG
->SelectNodeTo(N
, AMDGPU::V_FMA_F32_e64
, N
->getVTList(), Ops
);
1213 void AMDGPUDAGToDAGISel::SelectFMUL_W_CHAIN(SDNode
*N
) {
1215 // src0_modifiers, src0, src1_modifiers, src1, clamp, omod
1218 SelectVOP3Mods0(N
->getOperand(1), Ops
[1], Ops
[0], Ops
[4], Ops
[5]);
1219 SelectVOP3Mods(N
->getOperand(2), Ops
[3], Ops
[2]);
1220 Ops
[6] = N
->getOperand(0);
1221 Ops
[7] = N
->getOperand(3);
1223 CurDAG
->SelectNodeTo(N
, AMDGPU::V_MUL_F32_e64
, N
->getVTList(), Ops
);
1226 // We need to handle this here because tablegen doesn't support matching
1227 // instructions with multiple outputs.
1228 void AMDGPUDAGToDAGISel::SelectDIV_SCALE(SDNode
*N
) {
1230 EVT VT
= N
->getValueType(0);
1232 assert(VT
== MVT::f32
|| VT
== MVT::f64
);
1235 = (VT
== MVT::f64
) ? AMDGPU::V_DIV_SCALE_F64_e64
: AMDGPU::V_DIV_SCALE_F32_e64
;
1237 // src0_modifiers, src0, src1_modifiers, src1, src2_modifiers, src2, clamp,
1240 SelectVOP3BMods0(N
->getOperand(0), Ops
[1], Ops
[0], Ops
[6], Ops
[7]);
1241 SelectVOP3BMods(N
->getOperand(1), Ops
[3], Ops
[2]);
1242 SelectVOP3BMods(N
->getOperand(2), Ops
[5], Ops
[4]);
1243 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
1246 // We need to handle this here because tablegen doesn't support matching
1247 // instructions with multiple outputs.
1248 void AMDGPUDAGToDAGISel::SelectMAD_64_32(SDNode
*N
) {
1250 bool Signed
= N
->getOpcode() == AMDGPUISD::MAD_I64_I32
;
1251 unsigned Opc
= Signed
? AMDGPU::V_MAD_I64_I32_e64
: AMDGPU::V_MAD_U64_U32_e64
;
1253 SDValue Clamp
= CurDAG
->getTargetConstant(0, SL
, MVT::i1
);
1254 SDValue Ops
[] = { N
->getOperand(0), N
->getOperand(1), N
->getOperand(2),
1256 CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
1259 bool AMDGPUDAGToDAGISel::isDSOffsetLegal(SDValue Base
, unsigned Offset
) const {
1260 if (!isUInt
<16>(Offset
))
1263 if (!Base
|| Subtarget
->hasUsableDSOffset() ||
1264 Subtarget
->unsafeDSOffsetFoldingEnabled())
1267 // On Southern Islands instruction with a negative base value and an offset
1268 // don't seem to work.
1269 return CurDAG
->SignBitIsZero(Base
);
1272 bool AMDGPUDAGToDAGISel::SelectDS1Addr1Offset(SDValue Addr
, SDValue
&Base
,
1273 SDValue
&Offset
) const {
1275 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1276 SDValue N0
= Addr
.getOperand(0);
1277 SDValue N1
= Addr
.getOperand(1);
1278 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1279 if (isDSOffsetLegal(N0
, C1
->getSExtValue())) {
1282 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1285 } else if (Addr
.getOpcode() == ISD::SUB
) {
1286 // sub C, x -> add (sub 0, x), C
1287 if (const ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0))) {
1288 int64_t ByteOffset
= C
->getSExtValue();
1289 if (isDSOffsetLegal(SDValue(), ByteOffset
)) {
1290 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1292 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1293 // the known bits in isDSOffsetLegal. We need to emit the selected node
1294 // here, so this is thrown away.
1295 SDValue Sub
= CurDAG
->getNode(ISD::SUB
, DL
, MVT::i32
,
1296 Zero
, Addr
.getOperand(1));
1298 if (isDSOffsetLegal(Sub
, ByteOffset
)) {
1299 SmallVector
<SDValue
, 3> Opnds
;
1300 Opnds
.push_back(Zero
);
1301 Opnds
.push_back(Addr
.getOperand(1));
1303 // FIXME: Select to VOP3 version for with-carry.
1304 unsigned SubOp
= AMDGPU::V_SUB_CO_U32_e32
;
1305 if (Subtarget
->hasAddNoCarry()) {
1306 SubOp
= AMDGPU::V_SUB_U32_e64
;
1308 CurDAG
->getTargetConstant(0, {}, MVT::i1
)); // clamp bit
1311 MachineSDNode
*MachineSub
=
1312 CurDAG
->getMachineNode(SubOp
, DL
, MVT::i32
, Opnds
);
1314 Base
= SDValue(MachineSub
, 0);
1315 Offset
= CurDAG
->getTargetConstant(ByteOffset
, DL
, MVT::i16
);
1320 } else if (const ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1321 // If we have a constant address, prefer to put the constant into the
1322 // offset. This can save moves to load the constant address since multiple
1323 // operations can share the zero base address register, and enables merging
1324 // into read2 / write2 instructions.
1328 if (isDSOffsetLegal(SDValue(), CAddr
->getZExtValue())) {
1329 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1330 MachineSDNode
*MovZero
= CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
,
1331 DL
, MVT::i32
, Zero
);
1332 Base
= SDValue(MovZero
, 0);
1333 Offset
= CurDAG
->getTargetConstant(CAddr
->getZExtValue(), DL
, MVT::i16
);
1340 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), MVT::i16
);
1344 bool AMDGPUDAGToDAGISel::isDSOffset2Legal(SDValue Base
, unsigned Offset0
,
1346 unsigned Size
) const {
1347 if (Offset0
% Size
!= 0 || Offset1
% Size
!= 0)
1349 if (!isUInt
<8>(Offset0
/ Size
) || !isUInt
<8>(Offset1
/ Size
))
1352 if (!Base
|| Subtarget
->hasUsableDSOffset() ||
1353 Subtarget
->unsafeDSOffsetFoldingEnabled())
1356 // On Southern Islands instruction with a negative base value and an offset
1357 // don't seem to work.
1358 return CurDAG
->SignBitIsZero(Base
);
1361 // TODO: If offset is too big, put low 16-bit into offset.
1362 bool AMDGPUDAGToDAGISel::SelectDS64Bit4ByteAligned(SDValue Addr
, SDValue
&Base
,
1364 SDValue
&Offset1
) const {
1365 return SelectDSReadWrite2(Addr
, Base
, Offset0
, Offset1
, 4);
1368 bool AMDGPUDAGToDAGISel::SelectDS128Bit8ByteAligned(SDValue Addr
, SDValue
&Base
,
1370 SDValue
&Offset1
) const {
1371 return SelectDSReadWrite2(Addr
, Base
, Offset0
, Offset1
, 8);
1374 bool AMDGPUDAGToDAGISel::SelectDSReadWrite2(SDValue Addr
, SDValue
&Base
,
1375 SDValue
&Offset0
, SDValue
&Offset1
,
1376 unsigned Size
) const {
1379 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1380 SDValue N0
= Addr
.getOperand(0);
1381 SDValue N1
= Addr
.getOperand(1);
1382 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1383 unsigned OffsetValue0
= C1
->getZExtValue();
1384 unsigned OffsetValue1
= OffsetValue0
+ Size
;
1387 if (isDSOffset2Legal(N0
, OffsetValue0
, OffsetValue1
, Size
)) {
1389 Offset0
= CurDAG
->getTargetConstant(OffsetValue0
/ Size
, DL
, MVT::i8
);
1390 Offset1
= CurDAG
->getTargetConstant(OffsetValue1
/ Size
, DL
, MVT::i8
);
1393 } else if (Addr
.getOpcode() == ISD::SUB
) {
1394 // sub C, x -> add (sub 0, x), C
1395 if (const ConstantSDNode
*C
=
1396 dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0))) {
1397 unsigned OffsetValue0
= C
->getZExtValue();
1398 unsigned OffsetValue1
= OffsetValue0
+ Size
;
1400 if (isDSOffset2Legal(SDValue(), OffsetValue0
, OffsetValue1
, Size
)) {
1402 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1404 // XXX - This is kind of hacky. Create a dummy sub node so we can check
1405 // the known bits in isDSOffsetLegal. We need to emit the selected node
1406 // here, so this is thrown away.
1408 CurDAG
->getNode(ISD::SUB
, DL
, MVT::i32
, Zero
, Addr
.getOperand(1));
1410 if (isDSOffset2Legal(Sub
, OffsetValue0
, OffsetValue1
, Size
)) {
1411 SmallVector
<SDValue
, 3> Opnds
;
1412 Opnds
.push_back(Zero
);
1413 Opnds
.push_back(Addr
.getOperand(1));
1414 unsigned SubOp
= AMDGPU::V_SUB_CO_U32_e32
;
1415 if (Subtarget
->hasAddNoCarry()) {
1416 SubOp
= AMDGPU::V_SUB_U32_e64
;
1418 CurDAG
->getTargetConstant(0, {}, MVT::i1
)); // clamp bit
1421 MachineSDNode
*MachineSub
= CurDAG
->getMachineNode(
1422 SubOp
, DL
, MVT::getIntegerVT(Size
* 8), Opnds
);
1424 Base
= SDValue(MachineSub
, 0);
1425 Offset0
= CurDAG
->getTargetConstant(OffsetValue0
/ Size
, DL
, MVT::i8
);
1426 Offset1
= CurDAG
->getTargetConstant(OffsetValue1
/ Size
, DL
, MVT::i8
);
1431 } else if (const ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1432 unsigned OffsetValue0
= CAddr
->getZExtValue();
1433 unsigned OffsetValue1
= OffsetValue0
+ Size
;
1435 if (isDSOffset2Legal(SDValue(), OffsetValue0
, OffsetValue1
, Size
)) {
1436 SDValue Zero
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1437 MachineSDNode
*MovZero
=
1438 CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
, DL
, MVT::i32
, Zero
);
1439 Base
= SDValue(MovZero
, 0);
1440 Offset0
= CurDAG
->getTargetConstant(OffsetValue0
/ Size
, DL
, MVT::i8
);
1441 Offset1
= CurDAG
->getTargetConstant(OffsetValue1
/ Size
, DL
, MVT::i8
);
1449 Offset0
= CurDAG
->getTargetConstant(0, DL
, MVT::i8
);
1450 Offset1
= CurDAG
->getTargetConstant(1, DL
, MVT::i8
);
1454 bool AMDGPUDAGToDAGISel::SelectMUBUF(SDValue Addr
, SDValue
&Ptr
, SDValue
&VAddr
,
1455 SDValue
&SOffset
, SDValue
&Offset
,
1456 SDValue
&Offen
, SDValue
&Idxen
,
1457 SDValue
&Addr64
) const {
1458 // Subtarget prefers to use flat instruction
1459 // FIXME: This should be a pattern predicate and not reach here
1460 if (Subtarget
->useFlatForGlobal())
1465 Idxen
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1466 Offen
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1467 Addr64
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1468 SOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1470 ConstantSDNode
*C1
= nullptr;
1472 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1473 C1
= cast
<ConstantSDNode
>(Addr
.getOperand(1));
1474 if (isUInt
<32>(C1
->getZExtValue()))
1475 N0
= Addr
.getOperand(0);
1480 if (N0
.getOpcode() == ISD::ADD
) {
1481 // (add N2, N3) -> addr64, or
1482 // (add (add N2, N3), C1) -> addr64
1483 SDValue N2
= N0
.getOperand(0);
1484 SDValue N3
= N0
.getOperand(1);
1485 Addr64
= CurDAG
->getTargetConstant(1, DL
, MVT::i1
);
1487 if (N2
->isDivergent()) {
1488 if (N3
->isDivergent()) {
1489 // Both N2 and N3 are divergent. Use N0 (the result of the add) as the
1490 // addr64, and construct the resource from a 0 address.
1491 Ptr
= SDValue(buildSMovImm64(DL
, 0, MVT::v2i32
), 0);
1494 // N2 is divergent, N3 is not.
1499 // N2 is not divergent.
1503 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1504 } else if (N0
->isDivergent()) {
1505 // N0 is divergent. Use it as the addr64, and construct the resource from a
1507 Ptr
= SDValue(buildSMovImm64(DL
, 0, MVT::v2i32
), 0);
1509 Addr64
= CurDAG
->getTargetConstant(1, DL
, MVT::i1
);
1512 // (N0 + C1) -> offset
1513 VAddr
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1519 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1523 if (SIInstrInfo::isLegalMUBUFImmOffset(C1
->getZExtValue())) {
1524 // Legal offset for instruction.
1525 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1529 // Illegal offset, store it in soffset.
1530 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1532 SDValue(CurDAG
->getMachineNode(
1533 AMDGPU::S_MOV_B32
, DL
, MVT::i32
,
1534 CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i32
)),
1539 bool AMDGPUDAGToDAGISel::SelectMUBUFAddr64(SDValue Addr
, SDValue
&SRsrc
,
1540 SDValue
&VAddr
, SDValue
&SOffset
,
1541 SDValue
&Offset
) const {
1542 SDValue Ptr
, Offen
, Idxen
, Addr64
;
1544 // addr64 bit was removed for volcanic islands.
1545 // FIXME: This should be a pattern predicate and not reach here
1546 if (!Subtarget
->hasAddr64())
1549 if (!SelectMUBUF(Addr
, Ptr
, VAddr
, SOffset
, Offset
, Offen
, Idxen
, Addr64
))
1552 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Addr64
);
1553 if (C
->getSExtValue()) {
1556 const SITargetLowering
& Lowering
=
1557 *static_cast<const SITargetLowering
*>(getTargetLowering());
1559 SRsrc
= SDValue(Lowering
.wrapAddr64Rsrc(*CurDAG
, DL
, Ptr
), 0);
1566 std::pair
<SDValue
, SDValue
> AMDGPUDAGToDAGISel::foldFrameIndex(SDValue N
) const {
1569 auto *FI
= dyn_cast
<FrameIndexSDNode
>(N
);
1571 FI
? CurDAG
->getTargetFrameIndex(FI
->getIndex(), FI
->getValueType(0)) : N
;
1573 // We rebase the base address into an absolute stack address and hence
1574 // use constant 0 for soffset. This value must be retained until
1575 // frame elimination and eliminateFrameIndex will choose the appropriate
1576 // frame register if need be.
1577 return std::make_pair(TFI
, CurDAG
->getTargetConstant(0, DL
, MVT::i32
));
1580 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffen(SDNode
*Parent
,
1581 SDValue Addr
, SDValue
&Rsrc
,
1582 SDValue
&VAddr
, SDValue
&SOffset
,
1583 SDValue
&ImmOffset
) const {
1586 MachineFunction
&MF
= CurDAG
->getMachineFunction();
1587 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1589 Rsrc
= CurDAG
->getRegister(Info
->getScratchRSrcReg(), MVT::v4i32
);
1591 if (ConstantSDNode
*CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) {
1592 int64_t Imm
= CAddr
->getSExtValue();
1593 const int64_t NullPtr
=
1594 AMDGPUTargetMachine::getNullPointerValue(AMDGPUAS::PRIVATE_ADDRESS
);
1595 // Don't fold null pointer.
1596 if (Imm
!= NullPtr
) {
1597 SDValue HighBits
= CurDAG
->getTargetConstant(Imm
& ~4095, DL
, MVT::i32
);
1598 MachineSDNode
*MovHighBits
= CurDAG
->getMachineNode(
1599 AMDGPU::V_MOV_B32_e32
, DL
, MVT::i32
, HighBits
);
1600 VAddr
= SDValue(MovHighBits
, 0);
1602 SOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1603 ImmOffset
= CurDAG
->getTargetConstant(Imm
& 4095, DL
, MVT::i16
);
1608 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1611 SDValue N0
= Addr
.getOperand(0);
1612 SDValue N1
= Addr
.getOperand(1);
1614 // Offsets in vaddr must be positive if range checking is enabled.
1616 // The total computation of vaddr + soffset + offset must not overflow. If
1617 // vaddr is negative, even if offset is 0 the sgpr offset add will end up
1620 // Prior to gfx9, MUBUF instructions with the vaddr offset enabled would
1621 // always perform a range check. If a negative vaddr base index was used,
1622 // this would fail the range check. The overall address computation would
1623 // compute a valid address, but this doesn't happen due to the range
1624 // check. For out-of-bounds MUBUF loads, a 0 is returned.
1626 // Therefore it should be safe to fold any VGPR offset on gfx9 into the
1627 // MUBUF vaddr, but not on older subtargets which can only do this if the
1628 // sign bit is known 0.
1629 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
1630 if (SIInstrInfo::isLegalMUBUFImmOffset(C1
->getZExtValue()) &&
1631 (!Subtarget
->privateMemoryResourceIsRangeChecked() ||
1632 CurDAG
->SignBitIsZero(N0
))) {
1633 std::tie(VAddr
, SOffset
) = foldFrameIndex(N0
);
1634 ImmOffset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i16
);
1640 std::tie(VAddr
, SOffset
) = foldFrameIndex(Addr
);
1641 ImmOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1645 static bool IsCopyFromSGPR(const SIRegisterInfo
&TRI
, SDValue Val
) {
1646 if (Val
.getOpcode() != ISD::CopyFromReg
)
1649 TRI
.getPhysRegClass(cast
<RegisterSDNode
>(Val
.getOperand(1))->getReg());
1650 return RC
&& TRI
.isSGPRClass(RC
);
1653 bool AMDGPUDAGToDAGISel::SelectMUBUFScratchOffset(SDNode
*Parent
,
1657 SDValue
&Offset
) const {
1658 const SIRegisterInfo
*TRI
=
1659 static_cast<const SIRegisterInfo
*>(Subtarget
->getRegisterInfo());
1660 MachineFunction
&MF
= CurDAG
->getMachineFunction();
1661 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
1664 // CopyFromReg <sgpr>
1665 if (IsCopyFromSGPR(*TRI
, Addr
)) {
1666 SRsrc
= CurDAG
->getRegister(Info
->getScratchRSrcReg(), MVT::v4i32
);
1668 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i16
);
1672 ConstantSDNode
*CAddr
;
1673 if (Addr
.getOpcode() == ISD::ADD
) {
1674 // Add (CopyFromReg <sgpr>) <constant>
1675 CAddr
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1));
1676 if (!CAddr
|| !SIInstrInfo::isLegalMUBUFImmOffset(CAddr
->getZExtValue()))
1678 if (!IsCopyFromSGPR(*TRI
, Addr
.getOperand(0)))
1681 SOffset
= Addr
.getOperand(0);
1682 } else if ((CAddr
= dyn_cast
<ConstantSDNode
>(Addr
)) &&
1683 SIInstrInfo::isLegalMUBUFImmOffset(CAddr
->getZExtValue())) {
1685 SOffset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
1690 SRsrc
= CurDAG
->getRegister(Info
->getScratchRSrcReg(), MVT::v4i32
);
1692 Offset
= CurDAG
->getTargetConstant(CAddr
->getZExtValue(), DL
, MVT::i16
);
1696 bool AMDGPUDAGToDAGISel::SelectMUBUFOffset(SDValue Addr
, SDValue
&SRsrc
,
1697 SDValue
&SOffset
, SDValue
&Offset
1699 SDValue Ptr
, VAddr
, Offen
, Idxen
, Addr64
;
1700 const SIInstrInfo
*TII
=
1701 static_cast<const SIInstrInfo
*>(Subtarget
->getInstrInfo());
1703 if (!SelectMUBUF(Addr
, Ptr
, VAddr
, SOffset
, Offset
, Offen
, Idxen
, Addr64
))
1706 if (!cast
<ConstantSDNode
>(Offen
)->getSExtValue() &&
1707 !cast
<ConstantSDNode
>(Idxen
)->getSExtValue() &&
1708 !cast
<ConstantSDNode
>(Addr64
)->getSExtValue()) {
1709 uint64_t Rsrc
= TII
->getDefaultRsrcDataFormat() |
1710 APInt::getAllOnesValue(32).getZExtValue(); // Size
1713 const SITargetLowering
& Lowering
=
1714 *static_cast<const SITargetLowering
*>(getTargetLowering());
1716 SRsrc
= SDValue(Lowering
.buildRSRC(*CurDAG
, DL
, Ptr
, 0, Rsrc
), 0);
1722 // Find a load or store from corresponding pattern root.
1723 // Roots may be build_vector, bitconvert or their combinations.
1724 static MemSDNode
* findMemSDNode(SDNode
*N
) {
1725 N
= AMDGPUTargetLowering::stripBitcast(SDValue(N
,0)).getNode();
1726 if (MemSDNode
*MN
= dyn_cast
<MemSDNode
>(N
))
1728 assert(isa
<BuildVectorSDNode
>(N
));
1729 for (SDValue V
: N
->op_values())
1731 dyn_cast
<MemSDNode
>(AMDGPUTargetLowering::stripBitcast(V
)))
1733 llvm_unreachable("cannot find MemSDNode in the pattern!");
1736 bool AMDGPUDAGToDAGISel::SelectFlatOffsetImpl(SDNode
*N
, SDValue Addr
,
1737 SDValue
&VAddr
, SDValue
&Offset
,
1738 uint64_t FlatVariant
) const {
1739 int64_t OffsetVal
= 0;
1741 unsigned AS
= findMemSDNode(N
)->getAddressSpace();
1743 bool CanHaveFlatSegmentOffsetBug
=
1744 Subtarget
->hasFlatSegmentOffsetBug() &&
1745 FlatVariant
== SIInstrFlags::FLAT
&&
1746 (AS
== AMDGPUAS::FLAT_ADDRESS
|| AS
== AMDGPUAS::GLOBAL_ADDRESS
);
1748 if (Subtarget
->hasFlatInstOffsets() && !CanHaveFlatSegmentOffsetBug
) {
1750 if (isBaseWithConstantOffset64(Addr
, N0
, N1
)) {
1751 int64_t COffsetVal
= cast
<ConstantSDNode
>(N1
)->getSExtValue();
1753 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
1754 if (TII
->isLegalFLATOffset(COffsetVal
, AS
, FlatVariant
)) {
1756 OffsetVal
= COffsetVal
;
1758 // If the offset doesn't fit, put the low bits into the offset field and
1761 // For a FLAT instruction the hardware decides whether to access
1762 // global/scratch/shared memory based on the high bits of vaddr,
1763 // ignoring the offset field, so we have to ensure that when we add
1764 // remainder to vaddr it still points into the same underlying object.
1765 // The easiest way to do that is to make sure that we split the offset
1766 // into two pieces that are both >= 0 or both <= 0.
1769 uint64_t RemainderOffset
;
1771 std::tie(OffsetVal
, RemainderOffset
) =
1772 TII
->splitFlatOffset(COffsetVal
, AS
, FlatVariant
);
1774 SDValue AddOffsetLo
=
1775 getMaterializedScalarImm32(Lo_32(RemainderOffset
), DL
);
1776 SDValue Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
1778 if (Addr
.getValueType().getSizeInBits() == 32) {
1779 SmallVector
<SDValue
, 3> Opnds
;
1780 Opnds
.push_back(N0
);
1781 Opnds
.push_back(AddOffsetLo
);
1782 unsigned AddOp
= AMDGPU::V_ADD_CO_U32_e32
;
1783 if (Subtarget
->hasAddNoCarry()) {
1784 AddOp
= AMDGPU::V_ADD_U32_e64
;
1785 Opnds
.push_back(Clamp
);
1787 Addr
= SDValue(CurDAG
->getMachineNode(AddOp
, DL
, MVT::i32
, Opnds
), 0);
1789 // TODO: Should this try to use a scalar add pseudo if the base address
1790 // is uniform and saddr is usable?
1791 SDValue Sub0
= CurDAG
->getTargetConstant(AMDGPU::sub0
, DL
, MVT::i32
);
1792 SDValue Sub1
= CurDAG
->getTargetConstant(AMDGPU::sub1
, DL
, MVT::i32
);
1794 SDNode
*N0Lo
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1795 DL
, MVT::i32
, N0
, Sub0
);
1796 SDNode
*N0Hi
= CurDAG
->getMachineNode(TargetOpcode::EXTRACT_SUBREG
,
1797 DL
, MVT::i32
, N0
, Sub1
);
1799 SDValue AddOffsetHi
=
1800 getMaterializedScalarImm32(Hi_32(RemainderOffset
), DL
);
1802 SDVTList VTs
= CurDAG
->getVTList(MVT::i32
, MVT::i1
);
1805 CurDAG
->getMachineNode(AMDGPU::V_ADD_CO_U32_e64
, DL
, VTs
,
1806 {AddOffsetLo
, SDValue(N0Lo
, 0), Clamp
});
1808 SDNode
*Addc
= CurDAG
->getMachineNode(
1809 AMDGPU::V_ADDC_U32_e64
, DL
, VTs
,
1810 {AddOffsetHi
, SDValue(N0Hi
, 0), SDValue(Add
, 1), Clamp
});
1812 SDValue RegSequenceArgs
[] = {
1813 CurDAG
->getTargetConstant(AMDGPU::VReg_64RegClassID
, DL
, MVT::i32
),
1814 SDValue(Add
, 0), Sub0
, SDValue(Addc
, 0), Sub1
};
1816 Addr
= SDValue(CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, DL
,
1817 MVT::i64
, RegSequenceArgs
),
1825 Offset
= CurDAG
->getTargetConstant(OffsetVal
, SDLoc(), MVT::i16
);
1829 bool AMDGPUDAGToDAGISel::SelectFlatOffset(SDNode
*N
, SDValue Addr
,
1831 SDValue
&Offset
) const {
1832 return SelectFlatOffsetImpl(N
, Addr
, VAddr
, Offset
, SIInstrFlags::FLAT
);
1835 bool AMDGPUDAGToDAGISel::SelectGlobalOffset(SDNode
*N
, SDValue Addr
,
1837 SDValue
&Offset
) const {
1838 return SelectFlatOffsetImpl(N
, Addr
, VAddr
, Offset
, SIInstrFlags::FlatGlobal
);
1841 bool AMDGPUDAGToDAGISel::SelectScratchOffset(SDNode
*N
, SDValue Addr
,
1843 SDValue
&Offset
) const {
1844 return SelectFlatOffsetImpl(N
, Addr
, VAddr
, Offset
,
1845 SIInstrFlags::FlatScratch
);
1848 // If this matches zero_extend i32:x, return x
1849 static SDValue
matchZExtFromI32(SDValue Op
) {
1850 if (Op
.getOpcode() != ISD::ZERO_EXTEND
)
1853 SDValue ExtSrc
= Op
.getOperand(0);
1854 return (ExtSrc
.getValueType() == MVT::i32
) ? ExtSrc
: SDValue();
1857 // Match (64-bit SGPR base) + (zext vgpr offset) + sext(imm offset)
1858 bool AMDGPUDAGToDAGISel::SelectGlobalSAddr(SDNode
*N
,
1862 SDValue
&Offset
) const {
1863 int64_t ImmOffset
= 0;
1865 // Match the immediate offset first, which canonically is moved as low as
1869 if (isBaseWithConstantOffset64(Addr
, LHS
, RHS
)) {
1870 int64_t COffsetVal
= cast
<ConstantSDNode
>(RHS
)->getSExtValue();
1871 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
1873 if (TII
->isLegalFLATOffset(COffsetVal
, AMDGPUAS::GLOBAL_ADDRESS
,
1874 SIInstrFlags::FlatGlobal
)) {
1876 ImmOffset
= COffsetVal
;
1877 } else if (!LHS
->isDivergent()) {
1878 if (COffsetVal
> 0) {
1880 // saddr + large_offset -> saddr +
1881 // (voffset = large_offset & ~MaxOffset) +
1882 // (large_offset & MaxOffset);
1883 int64_t SplitImmOffset
, RemainderOffset
;
1884 std::tie(SplitImmOffset
, RemainderOffset
) = TII
->splitFlatOffset(
1885 COffsetVal
, AMDGPUAS::GLOBAL_ADDRESS
, SIInstrFlags::FlatGlobal
);
1887 if (isUInt
<32>(RemainderOffset
)) {
1888 SDNode
*VMov
= CurDAG
->getMachineNode(
1889 AMDGPU::V_MOV_B32_e32
, SL
, MVT::i32
,
1890 CurDAG
->getTargetConstant(RemainderOffset
, SDLoc(), MVT::i32
));
1891 VOffset
= SDValue(VMov
, 0);
1893 Offset
= CurDAG
->getTargetConstant(SplitImmOffset
, SDLoc(), MVT::i16
);
1898 // We are adding a 64 bit SGPR and a constant. If constant bus limit
1899 // is 1 we would need to perform 1 or 2 extra moves for each half of
1900 // the constant and it is better to do a scalar add and then issue a
1901 // single VALU instruction to materialize zero. Otherwise it is less
1902 // instructions to perform VALU adds with immediates or inline literals.
1903 unsigned NumLiterals
=
1904 !TII
->isInlineConstant(APInt(32, COffsetVal
& 0xffffffff)) +
1905 !TII
->isInlineConstant(APInt(32, COffsetVal
>> 32));
1906 if (Subtarget
->getConstantBusLimit(AMDGPU::V_ADD_U32_e64
) > NumLiterals
)
1911 // Match the variable offset.
1912 if (Addr
.getOpcode() == ISD::ADD
) {
1913 LHS
= Addr
.getOperand(0);
1914 RHS
= Addr
.getOperand(1);
1916 if (!LHS
->isDivergent()) {
1917 // add (i64 sgpr), (zero_extend (i32 vgpr))
1918 if (SDValue ZextRHS
= matchZExtFromI32(RHS
)) {
1924 if (!SAddr
&& !RHS
->isDivergent()) {
1925 // add (zero_extend (i32 vgpr)), (i64 sgpr)
1926 if (SDValue ZextLHS
= matchZExtFromI32(LHS
)) {
1933 Offset
= CurDAG
->getTargetConstant(ImmOffset
, SDLoc(), MVT::i16
);
1938 if (Addr
->isDivergent() || Addr
.getOpcode() == ISD::UNDEF
||
1939 isa
<ConstantSDNode
>(Addr
))
1942 // It's cheaper to materialize a single 32-bit zero for vaddr than the two
1943 // moves required to copy a 64-bit SGPR to VGPR.
1946 CurDAG
->getMachineNode(AMDGPU::V_MOV_B32_e32
, SDLoc(Addr
), MVT::i32
,
1947 CurDAG
->getTargetConstant(0, SDLoc(), MVT::i32
));
1948 VOffset
= SDValue(VMov
, 0);
1949 Offset
= CurDAG
->getTargetConstant(ImmOffset
, SDLoc(), MVT::i16
);
1953 static SDValue
SelectSAddrFI(SelectionDAG
*CurDAG
, SDValue SAddr
) {
1954 if (auto FI
= dyn_cast
<FrameIndexSDNode
>(SAddr
)) {
1955 SAddr
= CurDAG
->getTargetFrameIndex(FI
->getIndex(), FI
->getValueType(0));
1956 } else if (SAddr
.getOpcode() == ISD::ADD
&&
1957 isa
<FrameIndexSDNode
>(SAddr
.getOperand(0))) {
1958 // Materialize this into a scalar move for scalar address to avoid
1960 auto FI
= cast
<FrameIndexSDNode
>(SAddr
.getOperand(0));
1961 SDValue TFI
= CurDAG
->getTargetFrameIndex(FI
->getIndex(),
1962 FI
->getValueType(0));
1963 SAddr
= SDValue(CurDAG
->getMachineNode(AMDGPU::S_ADD_I32
, SDLoc(SAddr
),
1964 MVT::i32
, TFI
, SAddr
.getOperand(1)),
1971 // Match (32-bit SGPR base) + sext(imm offset)
1972 bool AMDGPUDAGToDAGISel::SelectScratchSAddr(SDNode
*Parent
, SDValue Addr
,
1974 SDValue
&Offset
) const {
1975 if (Addr
->isDivergent())
1980 int64_t COffsetVal
= 0;
1982 if (CurDAG
->isBaseWithConstantOffset(Addr
)) {
1983 COffsetVal
= cast
<ConstantSDNode
>(Addr
.getOperand(1))->getSExtValue();
1984 SAddr
= Addr
.getOperand(0);
1989 SAddr
= SelectSAddrFI(CurDAG
, SAddr
);
1991 const SIInstrInfo
*TII
= Subtarget
->getInstrInfo();
1993 if (!TII
->isLegalFLATOffset(COffsetVal
, AMDGPUAS::PRIVATE_ADDRESS
,
1994 SIInstrFlags::FlatScratch
)) {
1995 int64_t SplitImmOffset
, RemainderOffset
;
1996 std::tie(SplitImmOffset
, RemainderOffset
) = TII
->splitFlatOffset(
1997 COffsetVal
, AMDGPUAS::PRIVATE_ADDRESS
, SIInstrFlags::FlatScratch
);
1999 COffsetVal
= SplitImmOffset
;
2002 SAddr
.getOpcode() == ISD::TargetFrameIndex
2003 ? getMaterializedScalarImm32(Lo_32(RemainderOffset
), DL
)
2004 : CurDAG
->getTargetConstant(RemainderOffset
, DL
, MVT::i32
);
2005 SAddr
= SDValue(CurDAG
->getMachineNode(AMDGPU::S_ADD_I32
, DL
, MVT::i32
,
2010 Offset
= CurDAG
->getTargetConstant(COffsetVal
, DL
, MVT::i16
);
2015 bool AMDGPUDAGToDAGISel::SelectSMRDOffset(SDValue ByteOffsetNode
,
2016 SDValue
&Offset
, bool &Imm
) const {
2017 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(ByteOffsetNode
);
2019 if (ByteOffsetNode
.getValueType().isScalarInteger() &&
2020 ByteOffsetNode
.getValueType().getSizeInBits() == 32) {
2021 Offset
= ByteOffsetNode
;
2025 if (ByteOffsetNode
.getOpcode() == ISD::ZERO_EXTEND
) {
2026 if (ByteOffsetNode
.getOperand(0).getValueType().getSizeInBits() == 32) {
2027 Offset
= ByteOffsetNode
.getOperand(0);
2035 SDLoc
SL(ByteOffsetNode
);
2036 // GFX9 and GFX10 have signed byte immediate offsets.
2037 int64_t ByteOffset
= C
->getSExtValue();
2038 Optional
<int64_t> EncodedOffset
=
2039 AMDGPU::getSMRDEncodedOffset(*Subtarget
, ByteOffset
, false);
2040 if (EncodedOffset
) {
2041 Offset
= CurDAG
->getTargetConstant(*EncodedOffset
, SL
, MVT::i32
);
2046 // SGPR and literal offsets are unsigned.
2050 EncodedOffset
= AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget
, ByteOffset
);
2051 if (EncodedOffset
) {
2052 Offset
= CurDAG
->getTargetConstant(*EncodedOffset
, SL
, MVT::i32
);
2056 if (!isUInt
<32>(ByteOffset
) && !isInt
<32>(ByteOffset
))
2059 SDValue C32Bit
= CurDAG
->getTargetConstant(ByteOffset
, SL
, MVT::i32
);
2061 CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, SL
, MVT::i32
, C32Bit
), 0);
2066 SDValue
AMDGPUDAGToDAGISel::Expand32BitAddress(SDValue Addr
) const {
2067 if (Addr
.getValueType() != MVT::i32
)
2070 // Zero-extend a 32-bit address.
2073 const MachineFunction
&MF
= CurDAG
->getMachineFunction();
2074 const SIMachineFunctionInfo
*Info
= MF
.getInfo
<SIMachineFunctionInfo
>();
2075 unsigned AddrHiVal
= Info
->get32BitAddressHighBits();
2076 SDValue AddrHi
= CurDAG
->getTargetConstant(AddrHiVal
, SL
, MVT::i32
);
2078 const SDValue Ops
[] = {
2079 CurDAG
->getTargetConstant(AMDGPU::SReg_64_XEXECRegClassID
, SL
, MVT::i32
),
2081 CurDAG
->getTargetConstant(AMDGPU::sub0
, SL
, MVT::i32
),
2082 SDValue(CurDAG
->getMachineNode(AMDGPU::S_MOV_B32
, SL
, MVT::i32
, AddrHi
),
2084 CurDAG
->getTargetConstant(AMDGPU::sub1
, SL
, MVT::i32
),
2087 return SDValue(CurDAG
->getMachineNode(AMDGPU::REG_SEQUENCE
, SL
, MVT::i64
,
2091 bool AMDGPUDAGToDAGISel::SelectSMRD(SDValue Addr
, SDValue
&SBase
,
2092 SDValue
&Offset
, bool &Imm
) const {
2095 // A 32-bit (address + offset) should not cause unsigned 32-bit integer
2096 // wraparound, because s_load instructions perform the addition in 64 bits.
2097 if ((Addr
.getValueType() != MVT::i32
||
2098 Addr
->getFlags().hasNoUnsignedWrap())) {
2100 // Extract the base and offset if possible.
2101 if (CurDAG
->isBaseWithConstantOffset(Addr
) ||
2102 Addr
.getOpcode() == ISD::ADD
) {
2103 N0
= Addr
.getOperand(0);
2104 N1
= Addr
.getOperand(1);
2105 } else if (getBaseWithOffsetUsingSplitOR(*CurDAG
, Addr
, N0
, N1
)) {
2106 assert(N0
&& N1
&& isa
<ConstantSDNode
>(N1
));
2109 if (SelectSMRDOffset(N1
, Offset
, Imm
)) {
2110 SBase
= Expand32BitAddress(N0
);
2115 SBase
= Expand32BitAddress(Addr
);
2116 Offset
= CurDAG
->getTargetConstant(0, SL
, MVT::i32
);
2121 bool AMDGPUDAGToDAGISel::SelectSMRDImm(SDValue Addr
, SDValue
&SBase
,
2122 SDValue
&Offset
) const {
2124 return SelectSMRD(Addr
, SBase
, Offset
, Imm
) && Imm
;
2127 bool AMDGPUDAGToDAGISel::SelectSMRDImm32(SDValue Addr
, SDValue
&SBase
,
2128 SDValue
&Offset
) const {
2130 assert(Subtarget
->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS
);
2133 if (!SelectSMRD(Addr
, SBase
, Offset
, Imm
))
2136 return !Imm
&& isa
<ConstantSDNode
>(Offset
);
2139 bool AMDGPUDAGToDAGISel::SelectSMRDSgpr(SDValue Addr
, SDValue
&SBase
,
2140 SDValue
&Offset
) const {
2142 return SelectSMRD(Addr
, SBase
, Offset
, Imm
) && !Imm
&&
2143 !isa
<ConstantSDNode
>(Offset
);
2146 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm(SDValue Addr
,
2147 SDValue
&Offset
) const {
2148 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Addr
)) {
2149 // The immediate offset for S_BUFFER instructions is unsigned.
2151 AMDGPU::getSMRDEncodedOffset(*Subtarget
, C
->getZExtValue(), true)) {
2152 Offset
= CurDAG
->getTargetConstant(*Imm
, SDLoc(Addr
), MVT::i32
);
2160 bool AMDGPUDAGToDAGISel::SelectSMRDBufferImm32(SDValue Addr
,
2161 SDValue
&Offset
) const {
2162 assert(Subtarget
->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS
);
2164 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Addr
)) {
2165 if (auto Imm
= AMDGPU::getSMRDEncodedLiteralOffset32(*Subtarget
,
2166 C
->getZExtValue())) {
2167 Offset
= CurDAG
->getTargetConstant(*Imm
, SDLoc(Addr
), MVT::i32
);
2175 bool AMDGPUDAGToDAGISel::SelectMOVRELOffset(SDValue Index
,
2177 SDValue
&Offset
) const {
2180 if (CurDAG
->isBaseWithConstantOffset(Index
)) {
2181 SDValue N0
= Index
.getOperand(0);
2182 SDValue N1
= Index
.getOperand(1);
2183 ConstantSDNode
*C1
= cast
<ConstantSDNode
>(N1
);
2186 // Don't peel off the offset (c0) if doing so could possibly lead
2187 // the base (n0) to be negative.
2188 // (or n0, |c0|) can never change a sign given isBaseWithConstantOffset.
2189 if (C1
->getSExtValue() <= 0 || CurDAG
->SignBitIsZero(N0
) ||
2190 (Index
->getOpcode() == ISD::OR
&& C1
->getSExtValue() >= 0)) {
2192 Offset
= CurDAG
->getTargetConstant(C1
->getZExtValue(), DL
, MVT::i32
);
2197 if (isa
<ConstantSDNode
>(Index
))
2201 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
2205 SDNode
*AMDGPUDAGToDAGISel::getS_BFE(unsigned Opcode
, const SDLoc
&DL
,
2206 SDValue Val
, uint32_t Offset
,
2208 // Transformation function, pack the offset and width of a BFE into
2209 // the format expected by the S_BFE_I32 / S_BFE_U32. In the second
2210 // source, bits [5:0] contain the offset and bits [22:16] the width.
2211 uint32_t PackedVal
= Offset
| (Width
<< 16);
2212 SDValue PackedConst
= CurDAG
->getTargetConstant(PackedVal
, DL
, MVT::i32
);
2214 return CurDAG
->getMachineNode(Opcode
, DL
, MVT::i32
, Val
, PackedConst
);
2217 void AMDGPUDAGToDAGISel::SelectS_BFEFromShifts(SDNode
*N
) {
2218 // "(a << b) srl c)" ---> "BFE_U32 a, (c-b), (32-c)
2219 // "(a << b) sra c)" ---> "BFE_I32 a, (c-b), (32-c)
2220 // Predicate: 0 < b <= c < 32
2222 const SDValue
&Shl
= N
->getOperand(0);
2223 ConstantSDNode
*B
= dyn_cast
<ConstantSDNode
>(Shl
->getOperand(1));
2224 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2227 uint32_t BVal
= B
->getZExtValue();
2228 uint32_t CVal
= C
->getZExtValue();
2230 if (0 < BVal
&& BVal
<= CVal
&& CVal
< 32) {
2231 bool Signed
= N
->getOpcode() == ISD::SRA
;
2232 unsigned Opcode
= Signed
? AMDGPU::S_BFE_I32
: AMDGPU::S_BFE_U32
;
2234 ReplaceNode(N
, getS_BFE(Opcode
, SDLoc(N
), Shl
.getOperand(0), CVal
- BVal
,
2242 void AMDGPUDAGToDAGISel::SelectS_BFE(SDNode
*N
) {
2243 switch (N
->getOpcode()) {
2245 if (N
->getOperand(0).getOpcode() == ISD::SRL
) {
2246 // "(a srl b) & mask" ---> "BFE_U32 a, b, popcount(mask)"
2247 // Predicate: isMask(mask)
2248 const SDValue
&Srl
= N
->getOperand(0);
2249 ConstantSDNode
*Shift
= dyn_cast
<ConstantSDNode
>(Srl
.getOperand(1));
2250 ConstantSDNode
*Mask
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2252 if (Shift
&& Mask
) {
2253 uint32_t ShiftVal
= Shift
->getZExtValue();
2254 uint32_t MaskVal
= Mask
->getZExtValue();
2256 if (isMask_32(MaskVal
)) {
2257 uint32_t WidthVal
= countPopulation(MaskVal
);
2259 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_U32
, SDLoc(N
),
2260 Srl
.getOperand(0), ShiftVal
, WidthVal
));
2267 if (N
->getOperand(0).getOpcode() == ISD::AND
) {
2268 // "(a & mask) srl b)" ---> "BFE_U32 a, b, popcount(mask >> b)"
2269 // Predicate: isMask(mask >> b)
2270 const SDValue
&And
= N
->getOperand(0);
2271 ConstantSDNode
*Shift
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1));
2272 ConstantSDNode
*Mask
= dyn_cast
<ConstantSDNode
>(And
->getOperand(1));
2274 if (Shift
&& Mask
) {
2275 uint32_t ShiftVal
= Shift
->getZExtValue();
2276 uint32_t MaskVal
= Mask
->getZExtValue() >> ShiftVal
;
2278 if (isMask_32(MaskVal
)) {
2279 uint32_t WidthVal
= countPopulation(MaskVal
);
2281 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_U32
, SDLoc(N
),
2282 And
.getOperand(0), ShiftVal
, WidthVal
));
2286 } else if (N
->getOperand(0).getOpcode() == ISD::SHL
) {
2287 SelectS_BFEFromShifts(N
);
2292 if (N
->getOperand(0).getOpcode() == ISD::SHL
) {
2293 SelectS_BFEFromShifts(N
);
2298 case ISD::SIGN_EXTEND_INREG
: {
2299 // sext_inreg (srl x, 16), i8 -> bfe_i32 x, 16, 8
2300 SDValue Src
= N
->getOperand(0);
2301 if (Src
.getOpcode() != ISD::SRL
)
2304 const ConstantSDNode
*Amt
= dyn_cast
<ConstantSDNode
>(Src
.getOperand(1));
2308 unsigned Width
= cast
<VTSDNode
>(N
->getOperand(1))->getVT().getSizeInBits();
2309 ReplaceNode(N
, getS_BFE(AMDGPU::S_BFE_I32
, SDLoc(N
), Src
.getOperand(0),
2310 Amt
->getZExtValue(), Width
));
2318 bool AMDGPUDAGToDAGISel::isCBranchSCC(const SDNode
*N
) const {
2319 assert(N
->getOpcode() == ISD::BRCOND
);
2320 if (!N
->hasOneUse())
2323 SDValue Cond
= N
->getOperand(1);
2324 if (Cond
.getOpcode() == ISD::CopyToReg
)
2325 Cond
= Cond
.getOperand(2);
2327 if (Cond
.getOpcode() != ISD::SETCC
|| !Cond
.hasOneUse())
2330 MVT VT
= Cond
.getOperand(0).getSimpleValueType();
2334 if (VT
== MVT::i64
) {
2335 auto ST
= static_cast<const GCNSubtarget
*>(Subtarget
);
2337 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Cond
.getOperand(2))->get();
2338 return (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) && ST
->hasScalarCompareEq64();
2344 void AMDGPUDAGToDAGISel::SelectBRCOND(SDNode
*N
) {
2345 SDValue Cond
= N
->getOperand(1);
2347 if (Cond
.isUndef()) {
2348 CurDAG
->SelectNodeTo(N
, AMDGPU::SI_BR_UNDEF
, MVT::Other
,
2349 N
->getOperand(2), N
->getOperand(0));
2353 const GCNSubtarget
*ST
= static_cast<const GCNSubtarget
*>(Subtarget
);
2354 const SIRegisterInfo
*TRI
= ST
->getRegisterInfo();
2356 bool UseSCCBr
= isCBranchSCC(N
) && isUniformBr(N
);
2357 unsigned BrOp
= UseSCCBr
? AMDGPU::S_CBRANCH_SCC1
: AMDGPU::S_CBRANCH_VCCNZ
;
2358 Register CondReg
= UseSCCBr
? AMDGPU::SCC
: TRI
->getVCC();
2362 // This is the case that we are selecting to S_CBRANCH_VCCNZ. We have not
2363 // analyzed what generates the vcc value, so we do not know whether vcc
2364 // bits for disabled lanes are 0. Thus we need to mask out bits for
2367 // For the case that we select S_CBRANCH_SCC1 and it gets
2368 // changed to S_CBRANCH_VCCNZ in SIFixSGPRCopies, SIFixSGPRCopies calls
2369 // SIInstrInfo::moveToVALU which inserts the S_AND).
2371 // We could add an analysis of what generates the vcc value here and omit
2372 // the S_AND when is unnecessary. But it would be better to add a separate
2373 // pass after SIFixSGPRCopies to do the unnecessary S_AND removal, so it
2374 // catches both cases.
2375 Cond
= SDValue(CurDAG
->getMachineNode(ST
->isWave32() ? AMDGPU::S_AND_B32
2376 : AMDGPU::S_AND_B64
,
2378 CurDAG
->getRegister(ST
->isWave32() ? AMDGPU::EXEC_LO
2385 SDValue VCC
= CurDAG
->getCopyToReg(N
->getOperand(0), SL
, CondReg
, Cond
);
2386 CurDAG
->SelectNodeTo(N
, BrOp
, MVT::Other
,
2387 N
->getOperand(2), // Basic Block
2391 void AMDGPUDAGToDAGISel::SelectFMAD_FMA(SDNode
*N
) {
2392 MVT VT
= N
->getSimpleValueType(0);
2393 bool IsFMA
= N
->getOpcode() == ISD::FMA
;
2394 if (VT
!= MVT::f32
|| (!Subtarget
->hasMadMixInsts() &&
2395 !Subtarget
->hasFmaMixInsts()) ||
2396 ((IsFMA
&& Subtarget
->hasMadMixInsts()) ||
2397 (!IsFMA
&& Subtarget
->hasFmaMixInsts()))) {
2402 SDValue Src0
= N
->getOperand(0);
2403 SDValue Src1
= N
->getOperand(1);
2404 SDValue Src2
= N
->getOperand(2);
2405 unsigned Src0Mods
, Src1Mods
, Src2Mods
;
2407 // Avoid using v_mad_mix_f32/v_fma_mix_f32 unless there is actually an operand
2408 // using the conversion from f16.
2409 bool Sel0
= SelectVOP3PMadMixModsImpl(Src0
, Src0
, Src0Mods
);
2410 bool Sel1
= SelectVOP3PMadMixModsImpl(Src1
, Src1
, Src1Mods
);
2411 bool Sel2
= SelectVOP3PMadMixModsImpl(Src2
, Src2
, Src2Mods
);
2413 assert((IsFMA
|| !Mode
.allFP32Denormals()) &&
2414 "fmad selected with denormals enabled");
2415 // TODO: We can select this with f32 denormals enabled if all the sources are
2416 // converted from f16 (in which case fmad isn't legal).
2418 if (Sel0
|| Sel1
|| Sel2
) {
2419 // For dummy operands.
2420 SDValue Zero
= CurDAG
->getTargetConstant(0, SDLoc(), MVT::i32
);
2422 CurDAG
->getTargetConstant(Src0Mods
, SDLoc(), MVT::i32
), Src0
,
2423 CurDAG
->getTargetConstant(Src1Mods
, SDLoc(), MVT::i32
), Src1
,
2424 CurDAG
->getTargetConstant(Src2Mods
, SDLoc(), MVT::i32
), Src2
,
2425 CurDAG
->getTargetConstant(0, SDLoc(), MVT::i1
),
2429 CurDAG
->SelectNodeTo(N
,
2430 IsFMA
? AMDGPU::V_FMA_MIX_F32
: AMDGPU::V_MAD_MIX_F32
,
2437 // This is here because there isn't a way to use the generated sub0_sub1 as the
2438 // subreg index to EXTRACT_SUBREG in tablegen.
2439 void AMDGPUDAGToDAGISel::SelectATOMIC_CMP_SWAP(SDNode
*N
) {
2440 MemSDNode
*Mem
= cast
<MemSDNode
>(N
);
2441 unsigned AS
= Mem
->getAddressSpace();
2442 if (AS
== AMDGPUAS::FLAT_ADDRESS
) {
2447 MVT VT
= N
->getSimpleValueType(0);
2448 bool Is32
= (VT
== MVT::i32
);
2451 MachineSDNode
*CmpSwap
= nullptr;
2452 if (Subtarget
->hasAddr64()) {
2453 SDValue SRsrc
, VAddr
, SOffset
, Offset
;
2455 if (SelectMUBUFAddr64(Mem
->getBasePtr(), SRsrc
, VAddr
, SOffset
, Offset
)) {
2456 unsigned Opcode
= Is32
? AMDGPU::BUFFER_ATOMIC_CMPSWAP_ADDR64_RTN
:
2457 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_ADDR64_RTN
;
2458 SDValue CmpVal
= Mem
->getOperand(2);
2459 SDValue CPol
= CurDAG
->getTargetConstant(AMDGPU::CPol::GLC
, SL
, MVT::i32
);
2461 // XXX - Do we care about glue operands?
2463 SDValue Ops
[] = {CmpVal
, VAddr
, SRsrc
, SOffset
, Offset
, CPol
,
2466 CmpSwap
= CurDAG
->getMachineNode(Opcode
, SL
, Mem
->getVTList(), Ops
);
2471 SDValue SRsrc
, SOffset
, Offset
;
2472 if (SelectMUBUFOffset(Mem
->getBasePtr(), SRsrc
, SOffset
, Offset
)) {
2473 unsigned Opcode
= Is32
? AMDGPU::BUFFER_ATOMIC_CMPSWAP_OFFSET_RTN
:
2474 AMDGPU::BUFFER_ATOMIC_CMPSWAP_X2_OFFSET_RTN
;
2476 SDValue CmpVal
= Mem
->getOperand(2);
2477 SDValue CPol
= CurDAG
->getTargetConstant(AMDGPU::CPol::GLC
, SL
, MVT::i32
);
2478 SDValue Ops
[] = {CmpVal
, SRsrc
, SOffset
, Offset
, CPol
, Mem
->getChain()};
2480 CmpSwap
= CurDAG
->getMachineNode(Opcode
, SL
, Mem
->getVTList(), Ops
);
2489 MachineMemOperand
*MMO
= Mem
->getMemOperand();
2490 CurDAG
->setNodeMemRefs(CmpSwap
, {MMO
});
2492 unsigned SubReg
= Is32
? AMDGPU::sub0
: AMDGPU::sub0_sub1
;
2494 = CurDAG
->getTargetExtractSubreg(SubReg
, SL
, VT
, SDValue(CmpSwap
, 0));
2496 ReplaceUses(SDValue(N
, 0), Extract
);
2497 ReplaceUses(SDValue(N
, 1), SDValue(CmpSwap
, 1));
2498 CurDAG
->RemoveDeadNode(N
);
2501 void AMDGPUDAGToDAGISel::SelectDSAppendConsume(SDNode
*N
, unsigned IntrID
) {
2502 // The address is assumed to be uniform, so if it ends up in a VGPR, it will
2503 // be copied to an SGPR with readfirstlane.
2504 unsigned Opc
= IntrID
== Intrinsic::amdgcn_ds_append
?
2505 AMDGPU::DS_APPEND
: AMDGPU::DS_CONSUME
;
2507 SDValue Chain
= N
->getOperand(0);
2508 SDValue Ptr
= N
->getOperand(2);
2509 MemIntrinsicSDNode
*M
= cast
<MemIntrinsicSDNode
>(N
);
2510 MachineMemOperand
*MMO
= M
->getMemOperand();
2511 bool IsGDS
= M
->getAddressSpace() == AMDGPUAS::REGION_ADDRESS
;
2514 if (CurDAG
->isBaseWithConstantOffset(Ptr
)) {
2515 SDValue PtrBase
= Ptr
.getOperand(0);
2516 SDValue PtrOffset
= Ptr
.getOperand(1);
2518 const APInt
&OffsetVal
= cast
<ConstantSDNode
>(PtrOffset
)->getAPIntValue();
2519 if (isDSOffsetLegal(PtrBase
, OffsetVal
.getZExtValue())) {
2520 N
= glueCopyToM0(N
, PtrBase
);
2521 Offset
= CurDAG
->getTargetConstant(OffsetVal
, SDLoc(), MVT::i32
);
2526 N
= glueCopyToM0(N
, Ptr
);
2527 Offset
= CurDAG
->getTargetConstant(0, SDLoc(), MVT::i32
);
2532 CurDAG
->getTargetConstant(IsGDS
, SDLoc(), MVT::i32
),
2534 N
->getOperand(N
->getNumOperands() - 1) // New glue
2537 SDNode
*Selected
= CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
2538 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Selected
), {MMO
});
2541 static unsigned gwsIntrinToOpcode(unsigned IntrID
) {
2543 case Intrinsic::amdgcn_ds_gws_init
:
2544 return AMDGPU::DS_GWS_INIT
;
2545 case Intrinsic::amdgcn_ds_gws_barrier
:
2546 return AMDGPU::DS_GWS_BARRIER
;
2547 case Intrinsic::amdgcn_ds_gws_sema_v
:
2548 return AMDGPU::DS_GWS_SEMA_V
;
2549 case Intrinsic::amdgcn_ds_gws_sema_br
:
2550 return AMDGPU::DS_GWS_SEMA_BR
;
2551 case Intrinsic::amdgcn_ds_gws_sema_p
:
2552 return AMDGPU::DS_GWS_SEMA_P
;
2553 case Intrinsic::amdgcn_ds_gws_sema_release_all
:
2554 return AMDGPU::DS_GWS_SEMA_RELEASE_ALL
;
2556 llvm_unreachable("not a gws intrinsic");
2560 void AMDGPUDAGToDAGISel::SelectDS_GWS(SDNode
*N
, unsigned IntrID
) {
2561 if (IntrID
== Intrinsic::amdgcn_ds_gws_sema_release_all
&&
2562 !Subtarget
->hasGWSSemaReleaseAll()) {
2568 // Chain, intrinsic ID, vsrc, offset
2569 const bool HasVSrc
= N
->getNumOperands() == 4;
2570 assert(HasVSrc
|| N
->getNumOperands() == 3);
2573 SDValue BaseOffset
= N
->getOperand(HasVSrc
? 3 : 2);
2575 MemIntrinsicSDNode
*M
= cast
<MemIntrinsicSDNode
>(N
);
2576 MachineMemOperand
*MMO
= M
->getMemOperand();
2578 // Don't worry if the offset ends up in a VGPR. Only one lane will have
2579 // effect, so SIFixSGPRCopies will validly insert readfirstlane.
2581 // The resource id offset is computed as (<isa opaque base> + M0[21:16] +
2582 // offset field) % 64. Some versions of the programming guide omit the m0
2583 // part, or claim it's from offset 0.
2584 if (ConstantSDNode
*ConstOffset
= dyn_cast
<ConstantSDNode
>(BaseOffset
)) {
2585 // If we have a constant offset, try to use the 0 in m0 as the base.
2586 // TODO: Look into changing the default m0 initialization value. If the
2587 // default -1 only set the low 16-bits, we could leave it as-is and add 1 to
2588 // the immediate offset.
2589 glueCopyToM0(N
, CurDAG
->getTargetConstant(0, SL
, MVT::i32
));
2590 ImmOffset
= ConstOffset
->getZExtValue();
2592 if (CurDAG
->isBaseWithConstantOffset(BaseOffset
)) {
2593 ImmOffset
= BaseOffset
.getConstantOperandVal(1);
2594 BaseOffset
= BaseOffset
.getOperand(0);
2597 // Prefer to do the shift in an SGPR since it should be possible to use m0
2598 // as the result directly. If it's already an SGPR, it will be eliminated
2601 = CurDAG
->getMachineNode(AMDGPU::V_READFIRSTLANE_B32
, SL
, MVT::i32
,
2603 // Shift to offset in m0
2605 = CurDAG
->getMachineNode(AMDGPU::S_LSHL_B32
, SL
, MVT::i32
,
2606 SDValue(SGPROffset
, 0),
2607 CurDAG
->getTargetConstant(16, SL
, MVT::i32
));
2608 glueCopyToM0(N
, SDValue(M0Base
, 0));
2611 SDValue Chain
= N
->getOperand(0);
2612 SDValue OffsetField
= CurDAG
->getTargetConstant(ImmOffset
, SL
, MVT::i32
);
2614 const unsigned Opc
= gwsIntrinToOpcode(IntrID
);
2615 SmallVector
<SDValue
, 5> Ops
;
2617 Ops
.push_back(N
->getOperand(2));
2618 Ops
.push_back(OffsetField
);
2619 Ops
.push_back(Chain
);
2621 SDNode
*Selected
= CurDAG
->SelectNodeTo(N
, Opc
, N
->getVTList(), Ops
);
2622 CurDAG
->setNodeMemRefs(cast
<MachineSDNode
>(Selected
), {MMO
});
2625 void AMDGPUDAGToDAGISel::SelectInterpP1F16(SDNode
*N
) {
2626 if (Subtarget
->getLDSBankCount() != 16) {
2627 // This is a single instruction with a pattern.
2634 // This requires 2 instructions. It is possible to write a pattern to support
2635 // this, but the generated isel emitter doesn't correctly deal with multiple
2636 // output instructions using the same physical register input. The copy to m0
2637 // is incorrectly placed before the second instruction.
2639 // TODO: Match source modifiers.
2642 // (int_amdgcn_interp_p1_f16
2643 // (VOP3Mods f32:$src0, i32:$src0_modifiers),
2644 // (i32 timm:$attrchan), (i32 timm:$attr),
2645 // (i1 timm:$high), M0),
2646 // (V_INTERP_P1LV_F16 $src0_modifiers, VGPR_32:$src0, timm:$attr,
2647 // timm:$attrchan, 0,
2648 // (V_INTERP_MOV_F32 2, timm:$attr, timm:$attrchan), timm:$high)> {
2649 // let Predicates = [has16BankLDS];
2653 SDValue ToM0
= CurDAG
->getCopyToReg(CurDAG
->getEntryNode(), DL
, AMDGPU::M0
,
2654 N
->getOperand(5), SDValue());
2656 SDVTList VTs
= CurDAG
->getVTList(MVT::f32
, MVT::Other
);
2659 CurDAG
->getMachineNode(AMDGPU::V_INTERP_MOV_F32
, DL
, VTs
, {
2660 CurDAG
->getTargetConstant(2, DL
, MVT::i32
), // P0
2661 N
->getOperand(3), // Attr
2662 N
->getOperand(2), // Attrchan
2663 ToM0
.getValue(1) // In glue
2666 SDNode
*InterpP1LV
=
2667 CurDAG
->getMachineNode(AMDGPU::V_INTERP_P1LV_F16
, DL
, MVT::f32
, {
2668 CurDAG
->getTargetConstant(0, DL
, MVT::i32
), // $src0_modifiers
2669 N
->getOperand(1), // Src0
2670 N
->getOperand(3), // Attr
2671 N
->getOperand(2), // Attrchan
2672 CurDAG
->getTargetConstant(0, DL
, MVT::i32
), // $src2_modifiers
2673 SDValue(InterpMov
, 0), // Src2 - holds two f16 values selected by high
2674 N
->getOperand(4), // high
2675 CurDAG
->getTargetConstant(0, DL
, MVT::i1
), // $clamp
2676 CurDAG
->getTargetConstant(0, DL
, MVT::i32
), // $omod
2677 SDValue(InterpMov
, 1)
2680 CurDAG
->ReplaceAllUsesOfValueWith(SDValue(N
, 0), SDValue(InterpP1LV
, 0));
2683 void AMDGPUDAGToDAGISel::SelectINTRINSIC_W_CHAIN(SDNode
*N
) {
2684 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
2686 case Intrinsic::amdgcn_ds_append
:
2687 case Intrinsic::amdgcn_ds_consume
: {
2688 if (N
->getValueType(0) != MVT::i32
)
2690 SelectDSAppendConsume(N
, IntrID
);
2698 void AMDGPUDAGToDAGISel::SelectINTRINSIC_WO_CHAIN(SDNode
*N
) {
2699 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(0))->getZExtValue();
2702 case Intrinsic::amdgcn_wqm
:
2703 Opcode
= AMDGPU::WQM
;
2705 case Intrinsic::amdgcn_softwqm
:
2706 Opcode
= AMDGPU::SOFT_WQM
;
2708 case Intrinsic::amdgcn_wwm
:
2709 case Intrinsic::amdgcn_strict_wwm
:
2710 Opcode
= AMDGPU::STRICT_WWM
;
2712 case Intrinsic::amdgcn_strict_wqm
:
2713 Opcode
= AMDGPU::STRICT_WQM
;
2715 case Intrinsic::amdgcn_interp_p1_f16
:
2716 SelectInterpP1F16(N
);
2723 SDValue Src
= N
->getOperand(1);
2724 CurDAG
->SelectNodeTo(N
, Opcode
, N
->getVTList(), {Src
});
2727 void AMDGPUDAGToDAGISel::SelectINTRINSIC_VOID(SDNode
*N
) {
2728 unsigned IntrID
= cast
<ConstantSDNode
>(N
->getOperand(1))->getZExtValue();
2730 case Intrinsic::amdgcn_ds_gws_init
:
2731 case Intrinsic::amdgcn_ds_gws_barrier
:
2732 case Intrinsic::amdgcn_ds_gws_sema_v
:
2733 case Intrinsic::amdgcn_ds_gws_sema_br
:
2734 case Intrinsic::amdgcn_ds_gws_sema_p
:
2735 case Intrinsic::amdgcn_ds_gws_sema_release_all
:
2736 SelectDS_GWS(N
, IntrID
);
2745 bool AMDGPUDAGToDAGISel::SelectVOP3ModsImpl(SDValue In
, SDValue
&Src
,
2747 bool AllowAbs
) const {
2751 if (Src
.getOpcode() == ISD::FNEG
) {
2752 Mods
|= SISrcMods::NEG
;
2753 Src
= Src
.getOperand(0);
2756 if (AllowAbs
&& Src
.getOpcode() == ISD::FABS
) {
2757 Mods
|= SISrcMods::ABS
;
2758 Src
= Src
.getOperand(0);
2764 bool AMDGPUDAGToDAGISel::SelectVOP3Mods(SDValue In
, SDValue
&Src
,
2765 SDValue
&SrcMods
) const {
2767 if (SelectVOP3ModsImpl(In
, Src
, Mods
)) {
2768 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2775 bool AMDGPUDAGToDAGISel::SelectVOP3BMods(SDValue In
, SDValue
&Src
,
2776 SDValue
&SrcMods
) const {
2778 if (SelectVOP3ModsImpl(In
, Src
, Mods
, /* AllowAbs */ false)) {
2779 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2786 bool AMDGPUDAGToDAGISel::SelectVOP3Mods_NNaN(SDValue In
, SDValue
&Src
,
2787 SDValue
&SrcMods
) const {
2788 SelectVOP3Mods(In
, Src
, SrcMods
);
2789 return isNoNanSrc(Src
);
2792 bool AMDGPUDAGToDAGISel::SelectVOP3NoMods(SDValue In
, SDValue
&Src
) const {
2793 if (In
.getOpcode() == ISD::FABS
|| In
.getOpcode() == ISD::FNEG
)
2800 bool AMDGPUDAGToDAGISel::SelectVOP3Mods0(SDValue In
, SDValue
&Src
,
2801 SDValue
&SrcMods
, SDValue
&Clamp
,
2802 SDValue
&Omod
) const {
2804 Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2805 Omod
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2807 return SelectVOP3Mods(In
, Src
, SrcMods
);
2810 bool AMDGPUDAGToDAGISel::SelectVOP3BMods0(SDValue In
, SDValue
&Src
,
2811 SDValue
&SrcMods
, SDValue
&Clamp
,
2812 SDValue
&Omod
) const {
2814 Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2815 Omod
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2817 return SelectVOP3BMods(In
, Src
, SrcMods
);
2820 bool AMDGPUDAGToDAGISel::SelectVOP3OMods(SDValue In
, SDValue
&Src
,
2821 SDValue
&Clamp
, SDValue
&Omod
) const {
2825 Clamp
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2826 Omod
= CurDAG
->getTargetConstant(0, DL
, MVT::i1
);
2831 bool AMDGPUDAGToDAGISel::SelectVOP3PMods(SDValue In
, SDValue
&Src
,
2832 SDValue
&SrcMods
) const {
2836 if (Src
.getOpcode() == ISD::FNEG
) {
2837 Mods
^= (SISrcMods::NEG
| SISrcMods::NEG_HI
);
2838 Src
= Src
.getOperand(0);
2841 if (Src
.getOpcode() == ISD::BUILD_VECTOR
) {
2842 unsigned VecMods
= Mods
;
2844 SDValue Lo
= stripBitcast(Src
.getOperand(0));
2845 SDValue Hi
= stripBitcast(Src
.getOperand(1));
2847 if (Lo
.getOpcode() == ISD::FNEG
) {
2848 Lo
= stripBitcast(Lo
.getOperand(0));
2849 Mods
^= SISrcMods::NEG
;
2852 if (Hi
.getOpcode() == ISD::FNEG
) {
2853 Hi
= stripBitcast(Hi
.getOperand(0));
2854 Mods
^= SISrcMods::NEG_HI
;
2857 if (isExtractHiElt(Lo
, Lo
))
2858 Mods
|= SISrcMods::OP_SEL_0
;
2860 if (isExtractHiElt(Hi
, Hi
))
2861 Mods
|= SISrcMods::OP_SEL_1
;
2863 unsigned VecSize
= Src
.getValueSizeInBits();
2864 Lo
= stripExtractLoElt(Lo
);
2865 Hi
= stripExtractLoElt(Hi
);
2867 if (Lo
.getValueSizeInBits() > VecSize
) {
2868 Lo
= CurDAG
->getTargetExtractSubreg(
2869 (VecSize
> 32) ? AMDGPU::sub0_sub1
: AMDGPU::sub0
, SDLoc(In
),
2870 MVT::getIntegerVT(VecSize
), Lo
);
2873 if (Hi
.getValueSizeInBits() > VecSize
) {
2874 Hi
= CurDAG
->getTargetExtractSubreg(
2875 (VecSize
> 32) ? AMDGPU::sub0_sub1
: AMDGPU::sub0
, SDLoc(In
),
2876 MVT::getIntegerVT(VecSize
), Hi
);
2879 assert(Lo
.getValueSizeInBits() <= VecSize
&&
2880 Hi
.getValueSizeInBits() <= VecSize
);
2882 if (Lo
== Hi
&& !isInlineImmediate(Lo
.getNode())) {
2883 // Really a scalar input. Just select from the low half of the register to
2886 if (VecSize
== 32 || VecSize
== Lo
.getValueSizeInBits()) {
2889 assert(Lo
.getValueSizeInBits() == 32 && VecSize
== 64);
2892 SDValue Undef
= SDValue(
2893 CurDAG
->getMachineNode(TargetOpcode::IMPLICIT_DEF
, SL
,
2894 Lo
.getValueType()), 0);
2895 auto RC
= Lo
->isDivergent() ? AMDGPU::VReg_64RegClassID
2896 : AMDGPU::SReg_64RegClassID
;
2897 const SDValue Ops
[] = {
2898 CurDAG
->getTargetConstant(RC
, SL
, MVT::i32
),
2899 Lo
, CurDAG
->getTargetConstant(AMDGPU::sub0
, SL
, MVT::i32
),
2900 Undef
, CurDAG
->getTargetConstant(AMDGPU::sub1
, SL
, MVT::i32
) };
2902 Src
= SDValue(CurDAG
->getMachineNode(TargetOpcode::REG_SEQUENCE
, SL
,
2903 Src
.getValueType(), Ops
), 0);
2905 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2909 if (VecSize
== 64 && Lo
== Hi
&& isa
<ConstantFPSDNode
>(Lo
)) {
2910 uint64_t Lit
= cast
<ConstantFPSDNode
>(Lo
)->getValueAPF()
2911 .bitcastToAPInt().getZExtValue();
2912 if (AMDGPU::isInlinableLiteral32(Lit
, Subtarget
->hasInv2PiInlineImm())) {
2913 Src
= CurDAG
->getTargetConstant(Lit
, SDLoc(In
), MVT::i64
);;
2914 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2922 // Packed instructions do not have abs modifiers.
2923 Mods
|= SISrcMods::OP_SEL_1
;
2925 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2929 bool AMDGPUDAGToDAGISel::SelectVOP3OpSel(SDValue In
, SDValue
&Src
,
2930 SDValue
&SrcMods
) const {
2932 // FIXME: Handle op_sel
2933 SrcMods
= CurDAG
->getTargetConstant(0, SDLoc(In
), MVT::i32
);
2937 bool AMDGPUDAGToDAGISel::SelectVOP3OpSelMods(SDValue In
, SDValue
&Src
,
2938 SDValue
&SrcMods
) const {
2939 // FIXME: Handle op_sel
2940 return SelectVOP3Mods(In
, Src
, SrcMods
);
2943 // The return value is not whether the match is possible (which it always is),
2944 // but whether or not it a conversion is really used.
2945 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixModsImpl(SDValue In
, SDValue
&Src
,
2946 unsigned &Mods
) const {
2948 SelectVOP3ModsImpl(In
, Src
, Mods
);
2950 if (Src
.getOpcode() == ISD::FP_EXTEND
) {
2951 Src
= Src
.getOperand(0);
2952 assert(Src
.getValueType() == MVT::f16
);
2953 Src
= stripBitcast(Src
);
2955 // Be careful about folding modifiers if we already have an abs. fneg is
2956 // applied last, so we don't want to apply an earlier fneg.
2957 if ((Mods
& SISrcMods::ABS
) == 0) {
2959 SelectVOP3ModsImpl(Src
, Src
, ModsTmp
);
2961 if ((ModsTmp
& SISrcMods::NEG
) != 0)
2962 Mods
^= SISrcMods::NEG
;
2964 if ((ModsTmp
& SISrcMods::ABS
) != 0)
2965 Mods
|= SISrcMods::ABS
;
2968 // op_sel/op_sel_hi decide the source type and source.
2969 // If the source's op_sel_hi is set, it indicates to do a conversion from fp16.
2970 // If the sources's op_sel is set, it picks the high half of the source
2973 Mods
|= SISrcMods::OP_SEL_1
;
2974 if (isExtractHiElt(Src
, Src
)) {
2975 Mods
|= SISrcMods::OP_SEL_0
;
2977 // TODO: Should we try to look for neg/abs here?
2986 bool AMDGPUDAGToDAGISel::SelectVOP3PMadMixMods(SDValue In
, SDValue
&Src
,
2987 SDValue
&SrcMods
) const {
2989 SelectVOP3PMadMixModsImpl(In
, Src
, Mods
);
2990 SrcMods
= CurDAG
->getTargetConstant(Mods
, SDLoc(In
), MVT::i32
);
2994 SDValue
AMDGPUDAGToDAGISel::getHi16Elt(SDValue In
) const {
2996 return CurDAG
->getUNDEF(MVT::i32
);
2998 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(In
)) {
3000 return CurDAG
->getConstant(C
->getZExtValue() << 16, SL
, MVT::i32
);
3003 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(In
)) {
3005 return CurDAG
->getConstant(
3006 C
->getValueAPF().bitcastToAPInt().getZExtValue() << 16, SL
, MVT::i32
);
3010 if (isExtractHiElt(In
, Src
))
3016 bool AMDGPUDAGToDAGISel::isVGPRImm(const SDNode
* N
) const {
3017 assert(CurDAG
->getTarget().getTargetTriple().getArch() == Triple::amdgcn
);
3019 const SIRegisterInfo
*SIRI
=
3020 static_cast<const SIRegisterInfo
*>(Subtarget
->getRegisterInfo());
3021 const SIInstrInfo
* SII
=
3022 static_cast<const SIInstrInfo
*>(Subtarget
->getInstrInfo());
3025 bool AllUsesAcceptSReg
= true;
3026 for (SDNode::use_iterator U
= N
->use_begin(), E
= SDNode::use_end();
3027 Limit
< 10 && U
!= E
; ++U
, ++Limit
) {
3028 const TargetRegisterClass
*RC
= getOperandRegClass(*U
, U
.getOperandNo());
3030 // If the register class is unknown, it could be an unknown
3031 // register class that needs to be an SGPR, e.g. an inline asm
3033 if (!RC
|| SIRI
->isSGPRClass(RC
))
3036 if (RC
!= &AMDGPU::VS_32RegClass
) {
3037 AllUsesAcceptSReg
= false;
3039 if (User
->isMachineOpcode()) {
3040 unsigned Opc
= User
->getMachineOpcode();
3041 MCInstrDesc Desc
= SII
->get(Opc
);
3042 if (Desc
.isCommutable()) {
3043 unsigned OpIdx
= Desc
.getNumDefs() + U
.getOperandNo();
3044 unsigned CommuteIdx1
= TargetInstrInfo::CommuteAnyOperandIndex
;
3045 if (SII
->findCommutedOpIndices(Desc
, OpIdx
, CommuteIdx1
)) {
3046 unsigned CommutedOpNo
= CommuteIdx1
- Desc
.getNumDefs();
3047 const TargetRegisterClass
*CommutedRC
= getOperandRegClass(*U
, CommutedOpNo
);
3048 if (CommutedRC
== &AMDGPU::VS_32RegClass
)
3049 AllUsesAcceptSReg
= true;
3053 // If "AllUsesAcceptSReg == false" so far we haven't suceeded
3054 // commuting current user. This means have at least one use
3055 // that strictly require VGPR. Thus, we will not attempt to commute
3056 // other user instructions.
3057 if (!AllUsesAcceptSReg
)
3061 return !AllUsesAcceptSReg
&& (Limit
< 10);
3064 bool AMDGPUDAGToDAGISel::isUniformLoad(const SDNode
* N
) const {
3065 auto Ld
= cast
<LoadSDNode
>(N
);
3067 return Ld
->getAlignment() >= 4 &&
3071 Ld
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS
||
3072 Ld
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
3079 Subtarget
->getScalarizeGlobalBehavior() &&
3080 Ld
->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS
&&
3082 !N
->isDivergent() &&
3083 static_cast<const SITargetLowering
*>(
3084 getTargetLowering())->isMemOpHasNoClobberedMemOperand(N
)
3089 void AMDGPUDAGToDAGISel::PostprocessISelDAG() {
3090 const AMDGPUTargetLowering
& Lowering
=
3091 *static_cast<const AMDGPUTargetLowering
*>(getTargetLowering());
3092 bool IsModified
= false;
3096 // Go over all selected nodes and try to fold them a bit more
3097 SelectionDAG::allnodes_iterator Position
= CurDAG
->allnodes_begin();
3098 while (Position
!= CurDAG
->allnodes_end()) {
3099 SDNode
*Node
= &*Position
++;
3100 MachineSDNode
*MachineNode
= dyn_cast
<MachineSDNode
>(Node
);
3104 SDNode
*ResNode
= Lowering
.PostISelFolding(MachineNode
, *CurDAG
);
3105 if (ResNode
!= Node
) {
3107 ReplaceUses(Node
, ResNode
);
3111 CurDAG
->RemoveDeadNodes();
3112 } while (IsModified
);
3115 bool R600DAGToDAGISel::runOnMachineFunction(MachineFunction
&MF
) {
3116 Subtarget
= &MF
.getSubtarget
<R600Subtarget
>();
3117 return SelectionDAGISel::runOnMachineFunction(MF
);
3120 bool R600DAGToDAGISel::isConstantLoad(const MemSDNode
*N
, int CbId
) const {
3124 return N
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS
||
3125 N
->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT
;
3127 return N
->getAddressSpace() == AMDGPUAS::CONSTANT_BUFFER_0
+ CbId
;
3130 bool R600DAGToDAGISel::SelectGlobalValueConstantOffset(SDValue Addr
,
3132 if (ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Addr
)) {
3133 IntPtr
= CurDAG
->getIntPtrConstant(Cst
->getZExtValue() / 4, SDLoc(Addr
),
3140 bool R600DAGToDAGISel::SelectGlobalValueVariableOffset(SDValue Addr
,
3141 SDValue
& BaseReg
, SDValue
&Offset
) {
3142 if (!isa
<ConstantSDNode
>(Addr
)) {
3144 Offset
= CurDAG
->getIntPtrConstant(0, SDLoc(Addr
), true);
3150 void R600DAGToDAGISel::Select(SDNode
*N
) {
3151 unsigned int Opc
= N
->getOpcode();
3152 if (N
->isMachineOpcode()) {
3154 return; // Already selected.
3159 case AMDGPUISD::BUILD_VERTICAL_VECTOR
:
3160 case ISD::SCALAR_TO_VECTOR
:
3161 case ISD::BUILD_VECTOR
: {
3162 EVT VT
= N
->getValueType(0);
3163 unsigned NumVectorElts
= VT
.getVectorNumElements();
3164 unsigned RegClassID
;
3165 // BUILD_VECTOR was lowered into an IMPLICIT_DEF + 4 INSERT_SUBREG
3166 // that adds a 128 bits reg copy when going through TwoAddressInstructions
3167 // pass. We want to avoid 128 bits copies as much as possible because they
3168 // can't be bundled by our scheduler.
3169 switch(NumVectorElts
) {
3170 case 2: RegClassID
= R600::R600_Reg64RegClassID
; break;
3172 if (Opc
== AMDGPUISD::BUILD_VERTICAL_VECTOR
)
3173 RegClassID
= R600::R600_Reg128VerticalRegClassID
;
3175 RegClassID
= R600::R600_Reg128RegClassID
;
3177 default: llvm_unreachable("Do not know how to lower this BUILD_VECTOR");
3179 SelectBuildVector(N
, RegClassID
);
3187 bool R600DAGToDAGISel::SelectADDRIndirect(SDValue Addr
, SDValue
&Base
,
3192 if ((C
= dyn_cast
<ConstantSDNode
>(Addr
))) {
3193 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
3194 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
3195 } else if ((Addr
.getOpcode() == AMDGPUISD::DWORDADDR
) &&
3196 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(0)))) {
3197 Base
= CurDAG
->getRegister(R600::INDIRECT_BASE_ADDR
, MVT::i32
);
3198 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
3199 } else if ((Addr
.getOpcode() == ISD::ADD
|| Addr
.getOpcode() == ISD::OR
) &&
3200 (C
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))) {
3201 Base
= Addr
.getOperand(0);
3202 Offset
= CurDAG
->getTargetConstant(C
->getZExtValue(), DL
, MVT::i32
);
3205 Offset
= CurDAG
->getTargetConstant(0, DL
, MVT::i32
);
3211 bool R600DAGToDAGISel::SelectADDRVTX_READ(SDValue Addr
, SDValue
&Base
,
3213 ConstantSDNode
*IMMOffset
;
3215 if (Addr
.getOpcode() == ISD::ADD
3216 && (IMMOffset
= dyn_cast
<ConstantSDNode
>(Addr
.getOperand(1)))
3217 && isInt
<16>(IMMOffset
->getZExtValue())) {
3219 Base
= Addr
.getOperand(0);
3220 Offset
= CurDAG
->getTargetConstant(IMMOffset
->getZExtValue(), SDLoc(Addr
),
3223 // If the pointer address is constant, we can move it to the offset field.
3224 } else if ((IMMOffset
= dyn_cast
<ConstantSDNode
>(Addr
))
3225 && isInt
<16>(IMMOffset
->getZExtValue())) {
3226 Base
= CurDAG
->getCopyFromReg(CurDAG
->getEntryNode(),
3227 SDLoc(CurDAG
->getEntryNode()),
3228 R600::ZERO
, MVT::i32
);
3229 Offset
= CurDAG
->getTargetConstant(IMMOffset
->getZExtValue(), SDLoc(Addr
),
3234 // Default case, no offset
3236 Offset
= CurDAG
->getTargetConstant(0, SDLoc(Addr
), MVT::i32
);