[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUISelLowering.cpp
blob9fa3ad64d0be220ef73fcd3c348c97cbc1356bec
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is the parent TargetLowering class for hardware code gen
11 /// targets.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUISelLowering.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUInstrInfo.h"
18 #include "AMDGPUMachineFunction.h"
19 #include "GCNSubtarget.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/IntrinsicsAMDGPU.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/KnownBits.h"
26 #include "llvm/Target/TargetMachine.h"
28 using namespace llvm;
30 #include "AMDGPUGenCallingConv.inc"
32 static cl::opt<bool> AMDGPUBypassSlowDiv(
33 "amdgpu-bypass-slow-div",
34 cl::desc("Skip 64-bit divide for dynamic 32-bit values"),
35 cl::init(true));
37 // Find a larger type to do a load / store of a vector with.
38 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
39 unsigned StoreSize = VT.getStoreSizeInBits();
40 if (StoreSize <= 32)
41 return EVT::getIntegerVT(Ctx, StoreSize);
43 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
44 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
47 unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) {
48 EVT VT = Op.getValueType();
49 KnownBits Known = DAG.computeKnownBits(Op);
50 return VT.getSizeInBits() - Known.countMinLeadingZeros();
53 unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) {
54 EVT VT = Op.getValueType();
56 // In order for this to be a signed 24-bit value, bit 23, must
57 // be a sign bit.
58 return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op);
61 AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM,
62 const AMDGPUSubtarget &STI)
63 : TargetLowering(TM), Subtarget(&STI) {
64 // Lower floating point store/load to integer store/load to reduce the number
65 // of patterns in tablegen.
66 setOperationAction(ISD::LOAD, MVT::f32, Promote);
67 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
69 setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
70 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
72 setOperationAction(ISD::LOAD, MVT::v3f32, Promote);
73 AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32);
75 setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
76 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
78 setOperationAction(ISD::LOAD, MVT::v5f32, Promote);
79 AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32);
81 setOperationAction(ISD::LOAD, MVT::v6f32, Promote);
82 AddPromotedToType(ISD::LOAD, MVT::v6f32, MVT::v6i32);
84 setOperationAction(ISD::LOAD, MVT::v7f32, Promote);
85 AddPromotedToType(ISD::LOAD, MVT::v7f32, MVT::v7i32);
87 setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
88 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
90 setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
91 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
93 setOperationAction(ISD::LOAD, MVT::v32f32, Promote);
94 AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32);
96 setOperationAction(ISD::LOAD, MVT::i64, Promote);
97 AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
99 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
100 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
102 setOperationAction(ISD::LOAD, MVT::f64, Promote);
103 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32);
105 setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
106 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32);
108 setOperationAction(ISD::LOAD, MVT::v3i64, Promote);
109 AddPromotedToType(ISD::LOAD, MVT::v3i64, MVT::v6i32);
111 setOperationAction(ISD::LOAD, MVT::v4i64, Promote);
112 AddPromotedToType(ISD::LOAD, MVT::v4i64, MVT::v8i32);
114 setOperationAction(ISD::LOAD, MVT::v3f64, Promote);
115 AddPromotedToType(ISD::LOAD, MVT::v3f64, MVT::v6i32);
117 setOperationAction(ISD::LOAD, MVT::v4f64, Promote);
118 AddPromotedToType(ISD::LOAD, MVT::v4f64, MVT::v8i32);
120 setOperationAction(ISD::LOAD, MVT::v8i64, Promote);
121 AddPromotedToType(ISD::LOAD, MVT::v8i64, MVT::v16i32);
123 setOperationAction(ISD::LOAD, MVT::v8f64, Promote);
124 AddPromotedToType(ISD::LOAD, MVT::v8f64, MVT::v16i32);
126 setOperationAction(ISD::LOAD, MVT::v16i64, Promote);
127 AddPromotedToType(ISD::LOAD, MVT::v16i64, MVT::v32i32);
129 setOperationAction(ISD::LOAD, MVT::v16f64, Promote);
130 AddPromotedToType(ISD::LOAD, MVT::v16f64, MVT::v32i32);
132 // There are no 64-bit extloads. These should be done as a 32-bit extload and
133 // an extension to 64-bit.
134 for (MVT VT : MVT::integer_valuetypes()) {
135 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
136 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
137 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
140 for (MVT VT : MVT::integer_valuetypes()) {
141 if (VT == MVT::i64)
142 continue;
144 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
145 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
146 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
147 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
149 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
150 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
151 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
152 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
154 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
155 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
156 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
157 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
160 for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) {
161 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
162 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
164 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
165 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
166 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
168 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
169 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
170 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand);
171 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand);
172 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand);
173 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
175 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
178 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
179 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
180 setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand);
181 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
182 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
183 setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand);
184 setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand);
186 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
187 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
188 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f32, Expand);
189 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
190 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand);
191 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f32, Expand);
193 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
194 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
195 setLoadExtAction(ISD::EXTLOAD, MVT::v3f64, MVT::v3f16, Expand);
196 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
197 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
198 setLoadExtAction(ISD::EXTLOAD, MVT::v16f64, MVT::v16f16, Expand);
200 setOperationAction(ISD::STORE, MVT::f32, Promote);
201 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
203 setOperationAction(ISD::STORE, MVT::v2f32, Promote);
204 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
206 setOperationAction(ISD::STORE, MVT::v3f32, Promote);
207 AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32);
209 setOperationAction(ISD::STORE, MVT::v4f32, Promote);
210 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
212 setOperationAction(ISD::STORE, MVT::v5f32, Promote);
213 AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32);
215 setOperationAction(ISD::STORE, MVT::v6f32, Promote);
216 AddPromotedToType(ISD::STORE, MVT::v6f32, MVT::v6i32);
218 setOperationAction(ISD::STORE, MVT::v7f32, Promote);
219 AddPromotedToType(ISD::STORE, MVT::v7f32, MVT::v7i32);
221 setOperationAction(ISD::STORE, MVT::v8f32, Promote);
222 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
224 setOperationAction(ISD::STORE, MVT::v16f32, Promote);
225 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
227 setOperationAction(ISD::STORE, MVT::v32f32, Promote);
228 AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32);
230 setOperationAction(ISD::STORE, MVT::i64, Promote);
231 AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
233 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
234 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
236 setOperationAction(ISD::STORE, MVT::f64, Promote);
237 AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32);
239 setOperationAction(ISD::STORE, MVT::v2f64, Promote);
240 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32);
242 setOperationAction(ISD::STORE, MVT::v3i64, Promote);
243 AddPromotedToType(ISD::STORE, MVT::v3i64, MVT::v6i32);
245 setOperationAction(ISD::STORE, MVT::v3f64, Promote);
246 AddPromotedToType(ISD::STORE, MVT::v3f64, MVT::v6i32);
248 setOperationAction(ISD::STORE, MVT::v4i64, Promote);
249 AddPromotedToType(ISD::STORE, MVT::v4i64, MVT::v8i32);
251 setOperationAction(ISD::STORE, MVT::v4f64, Promote);
252 AddPromotedToType(ISD::STORE, MVT::v4f64, MVT::v8i32);
254 setOperationAction(ISD::STORE, MVT::v8i64, Promote);
255 AddPromotedToType(ISD::STORE, MVT::v8i64, MVT::v16i32);
257 setOperationAction(ISD::STORE, MVT::v8f64, Promote);
258 AddPromotedToType(ISD::STORE, MVT::v8f64, MVT::v16i32);
260 setOperationAction(ISD::STORE, MVT::v16i64, Promote);
261 AddPromotedToType(ISD::STORE, MVT::v16i64, MVT::v32i32);
263 setOperationAction(ISD::STORE, MVT::v16f64, Promote);
264 AddPromotedToType(ISD::STORE, MVT::v16f64, MVT::v32i32);
266 setTruncStoreAction(MVT::i64, MVT::i1, Expand);
267 setTruncStoreAction(MVT::i64, MVT::i8, Expand);
268 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
269 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
271 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
272 setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand);
273 setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand);
274 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
276 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
277 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
278 setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand);
279 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
280 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
281 setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand);
282 setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand);
284 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
285 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
287 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
288 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
290 setTruncStoreAction(MVT::v3i64, MVT::v3i32, Expand);
291 setTruncStoreAction(MVT::v3i64, MVT::v3i16, Expand);
292 setTruncStoreAction(MVT::v3f64, MVT::v3f32, Expand);
293 setTruncStoreAction(MVT::v3f64, MVT::v3f16, Expand);
295 setTruncStoreAction(MVT::v4i64, MVT::v4i32, Expand);
296 setTruncStoreAction(MVT::v4i64, MVT::v4i16, Expand);
297 setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand);
298 setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand);
300 setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand);
301 setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand);
303 setTruncStoreAction(MVT::v16f64, MVT::v16f32, Expand);
304 setTruncStoreAction(MVT::v16f64, MVT::v16f16, Expand);
305 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
306 setTruncStoreAction(MVT::v16i64, MVT::v16i16, Expand);
307 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
308 setTruncStoreAction(MVT::v16i64, MVT::v16i8, Expand);
309 setTruncStoreAction(MVT::v16i64, MVT::v16i1, Expand);
311 setOperationAction(ISD::Constant, MVT::i32, Legal);
312 setOperationAction(ISD::Constant, MVT::i64, Legal);
313 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
314 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
316 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
317 setOperationAction(ISD::BRIND, MVT::Other, Expand);
319 // This is totally unsupported, just custom lower to produce an error.
320 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
322 // Library functions. These default to Expand, but we have instructions
323 // for them.
324 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
325 setOperationAction(ISD::FEXP2, MVT::f32, Legal);
326 setOperationAction(ISD::FPOW, MVT::f32, Legal);
327 setOperationAction(ISD::FLOG2, MVT::f32, Legal);
328 setOperationAction(ISD::FABS, MVT::f32, Legal);
329 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
330 setOperationAction(ISD::FRINT, MVT::f32, Legal);
331 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
332 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
333 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
335 setOperationAction(ISD::FROUND, MVT::f32, Custom);
336 setOperationAction(ISD::FROUND, MVT::f64, Custom);
338 setOperationAction(ISD::FLOG, MVT::f32, Custom);
339 setOperationAction(ISD::FLOG10, MVT::f32, Custom);
340 setOperationAction(ISD::FEXP, MVT::f32, Custom);
343 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
344 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
346 setOperationAction(ISD::FREM, MVT::f16, Custom);
347 setOperationAction(ISD::FREM, MVT::f32, Custom);
348 setOperationAction(ISD::FREM, MVT::f64, Custom);
350 // Expand to fneg + fadd.
351 setOperationAction(ISD::FSUB, MVT::f64, Expand);
353 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom);
354 setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom);
355 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
356 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
357 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom);
358 setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom);
359 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6i32, Custom);
360 setOperationAction(ISD::CONCAT_VECTORS, MVT::v6f32, Custom);
361 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7i32, Custom);
362 setOperationAction(ISD::CONCAT_VECTORS, MVT::v7f32, Custom);
363 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
364 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
365 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f16, Custom);
366 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i16, Custom);
367 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
368 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
369 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom);
370 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom);
371 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
372 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
373 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom);
374 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom);
375 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6f32, Custom);
376 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v6i32, Custom);
377 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7f32, Custom);
378 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v7i32, Custom);
379 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
380 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
381 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom);
382 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom);
383 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom);
384 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom);
385 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f64, Custom);
386 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i64, Custom);
387 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f64, Custom);
388 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i64, Custom);
389 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f64, Custom);
390 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i64, Custom);
391 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f64, Custom);
392 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i64, Custom);
393 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f64, Custom);
394 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i64, Custom);
396 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
397 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom);
398 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom);
400 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
401 for (MVT VT : ScalarIntVTs) {
402 // These should use [SU]DIVREM, so set them to expand
403 setOperationAction(ISD::SDIV, VT, Expand);
404 setOperationAction(ISD::UDIV, VT, Expand);
405 setOperationAction(ISD::SREM, VT, Expand);
406 setOperationAction(ISD::UREM, VT, Expand);
408 // GPU does not have divrem function for signed or unsigned.
409 setOperationAction(ISD::SDIVREM, VT, Custom);
410 setOperationAction(ISD::UDIVREM, VT, Custom);
412 // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
413 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
414 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
416 setOperationAction(ISD::BSWAP, VT, Expand);
417 setOperationAction(ISD::CTTZ, VT, Expand);
418 setOperationAction(ISD::CTLZ, VT, Expand);
420 // AMDGPU uses ADDC/SUBC/ADDE/SUBE
421 setOperationAction(ISD::ADDC, VT, Legal);
422 setOperationAction(ISD::SUBC, VT, Legal);
423 setOperationAction(ISD::ADDE, VT, Legal);
424 setOperationAction(ISD::SUBE, VT, Legal);
427 // The hardware supports 32-bit FSHR, but not FSHL.
428 setOperationAction(ISD::FSHR, MVT::i32, Legal);
430 // The hardware supports 32-bit ROTR, but not ROTL.
431 setOperationAction(ISD::ROTL, MVT::i32, Expand);
432 setOperationAction(ISD::ROTL, MVT::i64, Expand);
433 setOperationAction(ISD::ROTR, MVT::i64, Expand);
435 setOperationAction(ISD::MULHU, MVT::i16, Expand);
436 setOperationAction(ISD::MULHS, MVT::i16, Expand);
438 setOperationAction(ISD::MUL, MVT::i64, Expand);
439 setOperationAction(ISD::MULHU, MVT::i64, Expand);
440 setOperationAction(ISD::MULHS, MVT::i64, Expand);
441 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
442 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
443 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
444 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
445 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
447 setOperationAction(ISD::SMIN, MVT::i32, Legal);
448 setOperationAction(ISD::UMIN, MVT::i32, Legal);
449 setOperationAction(ISD::SMAX, MVT::i32, Legal);
450 setOperationAction(ISD::UMAX, MVT::i32, Legal);
452 setOperationAction(ISD::CTTZ, MVT::i64, Custom);
453 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom);
454 setOperationAction(ISD::CTLZ, MVT::i64, Custom);
455 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom);
457 static const MVT::SimpleValueType VectorIntTypes[] = {
458 MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32, MVT::v6i32, MVT::v7i32};
460 for (MVT VT : VectorIntTypes) {
461 // Expand the following operations for the current type by default.
462 setOperationAction(ISD::ADD, VT, Expand);
463 setOperationAction(ISD::AND, VT, Expand);
464 setOperationAction(ISD::FP_TO_SINT, VT, Expand);
465 setOperationAction(ISD::FP_TO_UINT, VT, Expand);
466 setOperationAction(ISD::MUL, VT, Expand);
467 setOperationAction(ISD::MULHU, VT, Expand);
468 setOperationAction(ISD::MULHS, VT, Expand);
469 setOperationAction(ISD::OR, VT, Expand);
470 setOperationAction(ISD::SHL, VT, Expand);
471 setOperationAction(ISD::SRA, VT, Expand);
472 setOperationAction(ISD::SRL, VT, Expand);
473 setOperationAction(ISD::ROTL, VT, Expand);
474 setOperationAction(ISD::ROTR, VT, Expand);
475 setOperationAction(ISD::SUB, VT, Expand);
476 setOperationAction(ISD::SINT_TO_FP, VT, Expand);
477 setOperationAction(ISD::UINT_TO_FP, VT, Expand);
478 setOperationAction(ISD::SDIV, VT, Expand);
479 setOperationAction(ISD::UDIV, VT, Expand);
480 setOperationAction(ISD::SREM, VT, Expand);
481 setOperationAction(ISD::UREM, VT, Expand);
482 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
483 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
484 setOperationAction(ISD::SDIVREM, VT, Expand);
485 setOperationAction(ISD::UDIVREM, VT, Expand);
486 setOperationAction(ISD::SELECT, VT, Expand);
487 setOperationAction(ISD::VSELECT, VT, Expand);
488 setOperationAction(ISD::SELECT_CC, VT, Expand);
489 setOperationAction(ISD::XOR, VT, Expand);
490 setOperationAction(ISD::BSWAP, VT, Expand);
491 setOperationAction(ISD::CTPOP, VT, Expand);
492 setOperationAction(ISD::CTTZ, VT, Expand);
493 setOperationAction(ISD::CTLZ, VT, Expand);
494 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
495 setOperationAction(ISD::SETCC, VT, Expand);
498 static const MVT::SimpleValueType FloatVectorTypes[] = {
499 MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32, MVT::v6f32, MVT::v7f32};
501 for (MVT VT : FloatVectorTypes) {
502 setOperationAction(ISD::FABS, VT, Expand);
503 setOperationAction(ISD::FMINNUM, VT, Expand);
504 setOperationAction(ISD::FMAXNUM, VT, Expand);
505 setOperationAction(ISD::FADD, VT, Expand);
506 setOperationAction(ISD::FCEIL, VT, Expand);
507 setOperationAction(ISD::FCOS, VT, Expand);
508 setOperationAction(ISD::FDIV, VT, Expand);
509 setOperationAction(ISD::FEXP2, VT, Expand);
510 setOperationAction(ISD::FEXP, VT, Expand);
511 setOperationAction(ISD::FLOG2, VT, Expand);
512 setOperationAction(ISD::FREM, VT, Expand);
513 setOperationAction(ISD::FLOG, VT, Expand);
514 setOperationAction(ISD::FLOG10, VT, Expand);
515 setOperationAction(ISD::FPOW, VT, Expand);
516 setOperationAction(ISD::FFLOOR, VT, Expand);
517 setOperationAction(ISD::FTRUNC, VT, Expand);
518 setOperationAction(ISD::FMUL, VT, Expand);
519 setOperationAction(ISD::FMA, VT, Expand);
520 setOperationAction(ISD::FRINT, VT, Expand);
521 setOperationAction(ISD::FNEARBYINT, VT, Expand);
522 setOperationAction(ISD::FSQRT, VT, Expand);
523 setOperationAction(ISD::FSIN, VT, Expand);
524 setOperationAction(ISD::FSUB, VT, Expand);
525 setOperationAction(ISD::FNEG, VT, Expand);
526 setOperationAction(ISD::VSELECT, VT, Expand);
527 setOperationAction(ISD::SELECT_CC, VT, Expand);
528 setOperationAction(ISD::FCOPYSIGN, VT, Expand);
529 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
530 setOperationAction(ISD::SETCC, VT, Expand);
531 setOperationAction(ISD::FCANONICALIZE, VT, Expand);
534 // This causes using an unrolled select operation rather than expansion with
535 // bit operations. This is in general better, but the alternative using BFI
536 // instructions may be better if the select sources are SGPRs.
537 setOperationAction(ISD::SELECT, MVT::v2f32, Promote);
538 AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32);
540 setOperationAction(ISD::SELECT, MVT::v3f32, Promote);
541 AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32);
543 setOperationAction(ISD::SELECT, MVT::v4f32, Promote);
544 AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32);
546 setOperationAction(ISD::SELECT, MVT::v5f32, Promote);
547 AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32);
549 setOperationAction(ISD::SELECT, MVT::v6f32, Promote);
550 AddPromotedToType(ISD::SELECT, MVT::v6f32, MVT::v6i32);
552 setOperationAction(ISD::SELECT, MVT::v7f32, Promote);
553 AddPromotedToType(ISD::SELECT, MVT::v7f32, MVT::v7i32);
555 // There are no libcalls of any kind.
556 for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
557 setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
559 setSchedulingPreference(Sched::RegPressure);
560 setJumpIsExpensive(true);
562 // FIXME: This is only partially true. If we have to do vector compares, any
563 // SGPR pair can be a condition register. If we have a uniform condition, we
564 // are better off doing SALU operations, where there is only one SCC. For now,
565 // we don't have a way of knowing during instruction selection if a condition
566 // will be uniform and we always use vector compares. Assume we are using
567 // vector compares until that is fixed.
568 setHasMultipleConditionRegisters(true);
570 setMinCmpXchgSizeInBits(32);
571 setSupportsUnalignedAtomics(false);
573 PredictableSelectIsExpensive = false;
575 // We want to find all load dependencies for long chains of stores to enable
576 // merging into very wide vectors. The problem is with vectors with > 4
577 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
578 // vectors are a legal type, even though we have to split the loads
579 // usually. When we can more precisely specify load legality per address
580 // space, we should be able to make FindBetterChain/MergeConsecutiveStores
581 // smarter so that they can figure out what to do in 2 iterations without all
582 // N > 4 stores on the same chain.
583 GatherAllAliasesMaxDepth = 16;
585 // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry
586 // about these during lowering.
587 MaxStoresPerMemcpy = 0xffffffff;
588 MaxStoresPerMemmove = 0xffffffff;
589 MaxStoresPerMemset = 0xffffffff;
591 // The expansion for 64-bit division is enormous.
592 if (AMDGPUBypassSlowDiv)
593 addBypassSlowDiv(64, 32);
595 setTargetDAGCombine(ISD::BITCAST);
596 setTargetDAGCombine(ISD::SHL);
597 setTargetDAGCombine(ISD::SRA);
598 setTargetDAGCombine(ISD::SRL);
599 setTargetDAGCombine(ISD::TRUNCATE);
600 setTargetDAGCombine(ISD::MUL);
601 setTargetDAGCombine(ISD::MULHU);
602 setTargetDAGCombine(ISD::MULHS);
603 setTargetDAGCombine(ISD::SELECT);
604 setTargetDAGCombine(ISD::SELECT_CC);
605 setTargetDAGCombine(ISD::STORE);
606 setTargetDAGCombine(ISD::FADD);
607 setTargetDAGCombine(ISD::FSUB);
608 setTargetDAGCombine(ISD::FNEG);
609 setTargetDAGCombine(ISD::FABS);
610 setTargetDAGCombine(ISD::AssertZext);
611 setTargetDAGCombine(ISD::AssertSext);
612 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
615 bool AMDGPUTargetLowering::mayIgnoreSignedZero(SDValue Op) const {
616 if (getTargetMachine().Options.NoSignedZerosFPMath)
617 return true;
619 const auto Flags = Op.getNode()->getFlags();
620 if (Flags.hasNoSignedZeros())
621 return true;
623 return false;
626 //===----------------------------------------------------------------------===//
627 // Target Information
628 //===----------------------------------------------------------------------===//
630 LLVM_READNONE
631 static bool fnegFoldsIntoOp(unsigned Opc) {
632 switch (Opc) {
633 case ISD::FADD:
634 case ISD::FSUB:
635 case ISD::FMUL:
636 case ISD::FMA:
637 case ISD::FMAD:
638 case ISD::FMINNUM:
639 case ISD::FMAXNUM:
640 case ISD::FMINNUM_IEEE:
641 case ISD::FMAXNUM_IEEE:
642 case ISD::FSIN:
643 case ISD::FTRUNC:
644 case ISD::FRINT:
645 case ISD::FNEARBYINT:
646 case ISD::FCANONICALIZE:
647 case AMDGPUISD::RCP:
648 case AMDGPUISD::RCP_LEGACY:
649 case AMDGPUISD::RCP_IFLAG:
650 case AMDGPUISD::SIN_HW:
651 case AMDGPUISD::FMUL_LEGACY:
652 case AMDGPUISD::FMIN_LEGACY:
653 case AMDGPUISD::FMAX_LEGACY:
654 case AMDGPUISD::FMED3:
655 // TODO: handle llvm.amdgcn.fma.legacy
656 return true;
657 default:
658 return false;
662 /// \p returns true if the operation will definitely need to use a 64-bit
663 /// encoding, and thus will use a VOP3 encoding regardless of the source
664 /// modifiers.
665 LLVM_READONLY
666 static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) {
667 return N->getNumOperands() > 2 || VT == MVT::f64;
670 // Most FP instructions support source modifiers, but this could be refined
671 // slightly.
672 LLVM_READONLY
673 static bool hasSourceMods(const SDNode *N) {
674 if (isa<MemSDNode>(N))
675 return false;
677 switch (N->getOpcode()) {
678 case ISD::CopyToReg:
679 case ISD::SELECT:
680 case ISD::FDIV:
681 case ISD::FREM:
682 case ISD::INLINEASM:
683 case ISD::INLINEASM_BR:
684 case AMDGPUISD::DIV_SCALE:
685 case ISD::INTRINSIC_W_CHAIN:
687 // TODO: Should really be looking at the users of the bitcast. These are
688 // problematic because bitcasts are used to legalize all stores to integer
689 // types.
690 case ISD::BITCAST:
691 return false;
692 case ISD::INTRINSIC_WO_CHAIN: {
693 switch (cast<ConstantSDNode>(N->getOperand(0))->getZExtValue()) {
694 case Intrinsic::amdgcn_interp_p1:
695 case Intrinsic::amdgcn_interp_p2:
696 case Intrinsic::amdgcn_interp_mov:
697 case Intrinsic::amdgcn_interp_p1_f16:
698 case Intrinsic::amdgcn_interp_p2_f16:
699 return false;
700 default:
701 return true;
704 default:
705 return true;
709 bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N,
710 unsigned CostThreshold) {
711 // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus
712 // it is truly free to use a source modifier in all cases. If there are
713 // multiple users but for each one will necessitate using VOP3, there will be
714 // a code size increase. Try to avoid increasing code size unless we know it
715 // will save on the instruction count.
716 unsigned NumMayIncreaseSize = 0;
717 MVT VT = N->getValueType(0).getScalarType().getSimpleVT();
719 // XXX - Should this limit number of uses to check?
720 for (const SDNode *U : N->uses()) {
721 if (!hasSourceMods(U))
722 return false;
724 if (!opMustUseVOP3Encoding(U, VT)) {
725 if (++NumMayIncreaseSize > CostThreshold)
726 return false;
730 return true;
733 EVT AMDGPUTargetLowering::getTypeForExtReturn(LLVMContext &Context, EVT VT,
734 ISD::NodeType ExtendKind) const {
735 assert(!VT.isVector() && "only scalar expected");
737 // Round to the next multiple of 32-bits.
738 unsigned Size = VT.getSizeInBits();
739 if (Size <= 32)
740 return MVT::i32;
741 return EVT::getIntegerVT(Context, 32 * ((Size + 31) / 32));
744 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
745 return MVT::i32;
748 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
749 return true;
752 // The backend supports 32 and 64 bit floating point immediates.
753 // FIXME: Why are we reporting vectors of FP immediates as legal?
754 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
755 bool ForCodeSize) const {
756 EVT ScalarVT = VT.getScalarType();
757 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 ||
758 (ScalarVT == MVT::f16 && Subtarget->has16BitInsts()));
761 // We don't want to shrink f64 / f32 constants.
762 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
763 EVT ScalarVT = VT.getScalarType();
764 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
767 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
768 ISD::LoadExtType ExtTy,
769 EVT NewVT) const {
770 // TODO: This may be worth removing. Check regression tests for diffs.
771 if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT))
772 return false;
774 unsigned NewSize = NewVT.getStoreSizeInBits();
776 // If we are reducing to a 32-bit load or a smaller multi-dword load,
777 // this is always better.
778 if (NewSize >= 32)
779 return true;
781 EVT OldVT = N->getValueType(0);
782 unsigned OldSize = OldVT.getStoreSizeInBits();
784 MemSDNode *MN = cast<MemSDNode>(N);
785 unsigned AS = MN->getAddressSpace();
786 // Do not shrink an aligned scalar load to sub-dword.
787 // Scalar engine cannot do sub-dword loads.
788 if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 &&
789 (AS == AMDGPUAS::CONSTANT_ADDRESS ||
790 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
791 (isa<LoadSDNode>(N) &&
792 AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) &&
793 AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand()))
794 return false;
796 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
797 // extloads, so doing one requires using a buffer_load. In cases where we
798 // still couldn't use a scalar load, using the wider load shouldn't really
799 // hurt anything.
801 // If the old size already had to be an extload, there's no harm in continuing
802 // to reduce the width.
803 return (OldSize < 32);
806 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy,
807 const SelectionDAG &DAG,
808 const MachineMemOperand &MMO) const {
810 assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits());
812 if (LoadTy.getScalarType() == MVT::i32)
813 return false;
815 unsigned LScalarSize = LoadTy.getScalarSizeInBits();
816 unsigned CastScalarSize = CastTy.getScalarSizeInBits();
818 if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32))
819 return false;
821 bool Fast = false;
822 return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(),
823 CastTy, MMO, &Fast) &&
824 Fast;
827 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
828 // profitable with the expansion for 64-bit since it's generally good to
829 // speculate things.
830 // FIXME: These should really have the size as a parameter.
831 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
832 return true;
835 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
836 return true;
839 bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode *N) const {
840 switch (N->getOpcode()) {
841 case ISD::EntryToken:
842 case ISD::TokenFactor:
843 return true;
844 case ISD::INTRINSIC_WO_CHAIN: {
845 unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
846 switch (IntrID) {
847 case Intrinsic::amdgcn_readfirstlane:
848 case Intrinsic::amdgcn_readlane:
849 return true;
851 return false;
853 case ISD::LOAD:
854 if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() ==
855 AMDGPUAS::CONSTANT_ADDRESS_32BIT)
856 return true;
857 return false;
859 return false;
862 SDValue AMDGPUTargetLowering::getNegatedExpression(
863 SDValue Op, SelectionDAG &DAG, bool LegalOperations, bool ForCodeSize,
864 NegatibleCost &Cost, unsigned Depth) const {
866 switch (Op.getOpcode()) {
867 case ISD::FMA:
868 case ISD::FMAD: {
869 // Negating a fma is not free if it has users without source mods.
870 if (!allUsesHaveSourceMods(Op.getNode()))
871 return SDValue();
872 break;
874 default:
875 break;
878 return TargetLowering::getNegatedExpression(Op, DAG, LegalOperations,
879 ForCodeSize, Cost, Depth);
882 //===---------------------------------------------------------------------===//
883 // Target Properties
884 //===---------------------------------------------------------------------===//
886 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
887 assert(VT.isFloatingPoint());
889 // Packed operations do not have a fabs modifier.
890 return VT == MVT::f32 || VT == MVT::f64 ||
891 (Subtarget->has16BitInsts() && VT == MVT::f16);
894 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
895 assert(VT.isFloatingPoint());
896 // Report this based on the end legalized type.
897 VT = VT.getScalarType();
898 return VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f16;
901 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
902 unsigned NumElem,
903 unsigned AS) const {
904 return true;
907 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
908 // There are few operations which truly have vector input operands. Any vector
909 // operation is going to involve operations on each component, and a
910 // build_vector will be a copy per element, so it always makes sense to use a
911 // build_vector input in place of the extracted element to avoid a copy into a
912 // super register.
914 // We should probably only do this if all users are extracts only, but this
915 // should be the common case.
916 return true;
919 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
920 // Truncate is just accessing a subregister.
922 unsigned SrcSize = Source.getSizeInBits();
923 unsigned DestSize = Dest.getSizeInBits();
925 return DestSize < SrcSize && DestSize % 32 == 0 ;
928 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
929 // Truncate is just accessing a subregister.
931 unsigned SrcSize = Source->getScalarSizeInBits();
932 unsigned DestSize = Dest->getScalarSizeInBits();
934 if (DestSize== 16 && Subtarget->has16BitInsts())
935 return SrcSize >= 32;
937 return DestSize < SrcSize && DestSize % 32 == 0;
940 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
941 unsigned SrcSize = Src->getScalarSizeInBits();
942 unsigned DestSize = Dest->getScalarSizeInBits();
944 if (SrcSize == 16 && Subtarget->has16BitInsts())
945 return DestSize >= 32;
947 return SrcSize == 32 && DestSize == 64;
950 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
951 // Any register load of a 64-bit value really requires 2 32-bit moves. For all
952 // practical purposes, the extra mov 0 to load a 64-bit is free. As used,
953 // this will enable reducing 64-bit operations the 32-bit, which is always
954 // good.
956 if (Src == MVT::i16)
957 return Dest == MVT::i32 ||Dest == MVT::i64 ;
959 return Src == MVT::i32 && Dest == MVT::i64;
962 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
963 return isZExtFree(Val.getValueType(), VT2);
966 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
967 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
968 // limited number of native 64-bit operations. Shrinking an operation to fit
969 // in a single 32-bit register should always be helpful. As currently used,
970 // this is much less general than the name suggests, and is only used in
971 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
972 // not profitable, and may actually be harmful.
973 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
976 //===---------------------------------------------------------------------===//
977 // TargetLowering Callbacks
978 //===---------------------------------------------------------------------===//
980 CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC,
981 bool IsVarArg) {
982 switch (CC) {
983 case CallingConv::AMDGPU_VS:
984 case CallingConv::AMDGPU_GS:
985 case CallingConv::AMDGPU_PS:
986 case CallingConv::AMDGPU_CS:
987 case CallingConv::AMDGPU_HS:
988 case CallingConv::AMDGPU_ES:
989 case CallingConv::AMDGPU_LS:
990 return CC_AMDGPU;
991 case CallingConv::C:
992 case CallingConv::Fast:
993 case CallingConv::Cold:
994 return CC_AMDGPU_Func;
995 case CallingConv::AMDGPU_Gfx:
996 return CC_SI_Gfx;
997 case CallingConv::AMDGPU_KERNEL:
998 case CallingConv::SPIR_KERNEL:
999 default:
1000 report_fatal_error("Unsupported calling convention for call");
1004 CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC,
1005 bool IsVarArg) {
1006 switch (CC) {
1007 case CallingConv::AMDGPU_KERNEL:
1008 case CallingConv::SPIR_KERNEL:
1009 llvm_unreachable("kernels should not be handled here");
1010 case CallingConv::AMDGPU_VS:
1011 case CallingConv::AMDGPU_GS:
1012 case CallingConv::AMDGPU_PS:
1013 case CallingConv::AMDGPU_CS:
1014 case CallingConv::AMDGPU_HS:
1015 case CallingConv::AMDGPU_ES:
1016 case CallingConv::AMDGPU_LS:
1017 return RetCC_SI_Shader;
1018 case CallingConv::AMDGPU_Gfx:
1019 return RetCC_SI_Gfx;
1020 case CallingConv::C:
1021 case CallingConv::Fast:
1022 case CallingConv::Cold:
1023 return RetCC_AMDGPU_Func;
1024 default:
1025 report_fatal_error("Unsupported calling convention.");
1029 /// The SelectionDAGBuilder will automatically promote function arguments
1030 /// with illegal types. However, this does not work for the AMDGPU targets
1031 /// since the function arguments are stored in memory as these illegal types.
1032 /// In order to handle this properly we need to get the original types sizes
1033 /// from the LLVM IR Function and fixup the ISD:InputArg values before
1034 /// passing them to AnalyzeFormalArguments()
1036 /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting
1037 /// input values across multiple registers. Each item in the Ins array
1038 /// represents a single value that will be stored in registers. Ins[x].VT is
1039 /// the value type of the value that will be stored in the register, so
1040 /// whatever SDNode we lower the argument to needs to be this type.
1042 /// In order to correctly lower the arguments we need to know the size of each
1043 /// argument. Since Ins[x].VT gives us the size of the register that will
1044 /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type
1045 /// for the orignal function argument so that we can deduce the correct memory
1046 /// type to use for Ins[x]. In most cases the correct memory type will be
1047 /// Ins[x].ArgVT. However, this will not always be the case. If, for example,
1048 /// we have a kernel argument of type v8i8, this argument will be split into
1049 /// 8 parts and each part will be represented by its own item in the Ins array.
1050 /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of
1051 /// the argument before it was split. From this, we deduce that the memory type
1052 /// for each individual part is i8. We pass the memory type as LocVT to the
1053 /// calling convention analysis function and the register type (Ins[x].VT) as
1054 /// the ValVT.
1055 void AMDGPUTargetLowering::analyzeFormalArgumentsCompute(
1056 CCState &State,
1057 const SmallVectorImpl<ISD::InputArg> &Ins) const {
1058 const MachineFunction &MF = State.getMachineFunction();
1059 const Function &Fn = MF.getFunction();
1060 LLVMContext &Ctx = Fn.getParent()->getContext();
1061 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF);
1062 const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn);
1063 CallingConv::ID CC = Fn.getCallingConv();
1065 Align MaxAlign = Align(1);
1066 uint64_t ExplicitArgOffset = 0;
1067 const DataLayout &DL = Fn.getParent()->getDataLayout();
1069 unsigned InIndex = 0;
1071 for (const Argument &Arg : Fn.args()) {
1072 const bool IsByRef = Arg.hasByRefAttr();
1073 Type *BaseArgTy = Arg.getType();
1074 Type *MemArgTy = IsByRef ? Arg.getParamByRefType() : BaseArgTy;
1075 MaybeAlign Alignment = IsByRef ? Arg.getParamAlign() : None;
1076 if (!Alignment)
1077 Alignment = DL.getABITypeAlign(MemArgTy);
1078 MaxAlign = max(Alignment, MaxAlign);
1079 uint64_t AllocSize = DL.getTypeAllocSize(MemArgTy);
1081 uint64_t ArgOffset = alignTo(ExplicitArgOffset, Alignment) + ExplicitOffset;
1082 ExplicitArgOffset = alignTo(ExplicitArgOffset, Alignment) + AllocSize;
1084 // We're basically throwing away everything passed into us and starting over
1085 // to get accurate in-memory offsets. The "PartOffset" is completely useless
1086 // to us as computed in Ins.
1088 // We also need to figure out what type legalization is trying to do to get
1089 // the correct memory offsets.
1091 SmallVector<EVT, 16> ValueVTs;
1092 SmallVector<uint64_t, 16> Offsets;
1093 ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset);
1095 for (unsigned Value = 0, NumValues = ValueVTs.size();
1096 Value != NumValues; ++Value) {
1097 uint64_t BasePartOffset = Offsets[Value];
1099 EVT ArgVT = ValueVTs[Value];
1100 EVT MemVT = ArgVT;
1101 MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT);
1102 unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT);
1104 if (NumRegs == 1) {
1105 // This argument is not split, so the IR type is the memory type.
1106 if (ArgVT.isExtended()) {
1107 // We have an extended type, like i24, so we should just use the
1108 // register type.
1109 MemVT = RegisterVT;
1110 } else {
1111 MemVT = ArgVT;
1113 } else if (ArgVT.isVector() && RegisterVT.isVector() &&
1114 ArgVT.getScalarType() == RegisterVT.getScalarType()) {
1115 assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements());
1116 // We have a vector value which has been split into a vector with
1117 // the same scalar type, but fewer elements. This should handle
1118 // all the floating-point vector types.
1119 MemVT = RegisterVT;
1120 } else if (ArgVT.isVector() &&
1121 ArgVT.getVectorNumElements() == NumRegs) {
1122 // This arg has been split so that each element is stored in a separate
1123 // register.
1124 MemVT = ArgVT.getScalarType();
1125 } else if (ArgVT.isExtended()) {
1126 // We have an extended type, like i65.
1127 MemVT = RegisterVT;
1128 } else {
1129 unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs;
1130 assert(ArgVT.getStoreSizeInBits() % NumRegs == 0);
1131 if (RegisterVT.isInteger()) {
1132 MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits);
1133 } else if (RegisterVT.isVector()) {
1134 assert(!RegisterVT.getScalarType().isFloatingPoint());
1135 unsigned NumElements = RegisterVT.getVectorNumElements();
1136 assert(MemoryBits % NumElements == 0);
1137 // This vector type has been split into another vector type with
1138 // a different elements size.
1139 EVT ScalarVT = EVT::getIntegerVT(State.getContext(),
1140 MemoryBits / NumElements);
1141 MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements);
1142 } else {
1143 llvm_unreachable("cannot deduce memory type.");
1147 // Convert one element vectors to scalar.
1148 if (MemVT.isVector() && MemVT.getVectorNumElements() == 1)
1149 MemVT = MemVT.getScalarType();
1151 // Round up vec3/vec5 argument.
1152 if (MemVT.isVector() && !MemVT.isPow2VectorType()) {
1153 assert(MemVT.getVectorNumElements() == 3 ||
1154 MemVT.getVectorNumElements() == 5);
1155 MemVT = MemVT.getPow2VectorType(State.getContext());
1156 } else if (!MemVT.isSimple() && !MemVT.isVector()) {
1157 MemVT = MemVT.getRoundIntegerType(State.getContext());
1160 unsigned PartOffset = 0;
1161 for (unsigned i = 0; i != NumRegs; ++i) {
1162 State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT,
1163 BasePartOffset + PartOffset,
1164 MemVT.getSimpleVT(),
1165 CCValAssign::Full));
1166 PartOffset += MemVT.getStoreSize();
1172 SDValue AMDGPUTargetLowering::LowerReturn(
1173 SDValue Chain, CallingConv::ID CallConv,
1174 bool isVarArg,
1175 const SmallVectorImpl<ISD::OutputArg> &Outs,
1176 const SmallVectorImpl<SDValue> &OutVals,
1177 const SDLoc &DL, SelectionDAG &DAG) const {
1178 // FIXME: Fails for r600 tests
1179 //assert(!isVarArg && Outs.empty() && OutVals.empty() &&
1180 // "wave terminate should not have return values");
1181 return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain);
1184 //===---------------------------------------------------------------------===//
1185 // Target specific lowering
1186 //===---------------------------------------------------------------------===//
1188 /// Selects the correct CCAssignFn for a given CallingConvention value.
1189 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC,
1190 bool IsVarArg) {
1191 return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg);
1194 CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC,
1195 bool IsVarArg) {
1196 return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg);
1199 SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain,
1200 SelectionDAG &DAG,
1201 MachineFrameInfo &MFI,
1202 int ClobberedFI) const {
1203 SmallVector<SDValue, 8> ArgChains;
1204 int64_t FirstByte = MFI.getObjectOffset(ClobberedFI);
1205 int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1;
1207 // Include the original chain at the beginning of the list. When this is
1208 // used by target LowerCall hooks, this helps legalize find the
1209 // CALLSEQ_BEGIN node.
1210 ArgChains.push_back(Chain);
1212 // Add a chain value for each stack argument corresponding
1213 for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(),
1214 UE = DAG.getEntryNode().getNode()->use_end();
1215 U != UE; ++U) {
1216 if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) {
1217 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) {
1218 if (FI->getIndex() < 0) {
1219 int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex());
1220 int64_t InLastByte = InFirstByte;
1221 InLastByte += MFI.getObjectSize(FI->getIndex()) - 1;
1223 if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) ||
1224 (FirstByte <= InFirstByte && InFirstByte <= LastByte))
1225 ArgChains.push_back(SDValue(L, 1));
1231 // Build a tokenfactor for all the chains.
1232 return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains);
1235 SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI,
1236 SmallVectorImpl<SDValue> &InVals,
1237 StringRef Reason) const {
1238 SDValue Callee = CLI.Callee;
1239 SelectionDAG &DAG = CLI.DAG;
1241 const Function &Fn = DAG.getMachineFunction().getFunction();
1243 StringRef FuncName("<unknown>");
1245 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
1246 FuncName = G->getSymbol();
1247 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1248 FuncName = G->getGlobal()->getName();
1250 DiagnosticInfoUnsupported NoCalls(
1251 Fn, Reason + FuncName, CLI.DL.getDebugLoc());
1252 DAG.getContext()->diagnose(NoCalls);
1254 if (!CLI.IsTailCall) {
1255 for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I)
1256 InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT));
1259 return DAG.getEntryNode();
1262 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
1263 SmallVectorImpl<SDValue> &InVals) const {
1264 return lowerUnhandledCall(CLI, InVals, "unsupported call to function ");
1267 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
1268 SelectionDAG &DAG) const {
1269 const Function &Fn = DAG.getMachineFunction().getFunction();
1271 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca",
1272 SDLoc(Op).getDebugLoc());
1273 DAG.getContext()->diagnose(NoDynamicAlloca);
1274 auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)};
1275 return DAG.getMergeValues(Ops, SDLoc());
1278 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
1279 SelectionDAG &DAG) const {
1280 switch (Op.getOpcode()) {
1281 default:
1282 Op->print(errs(), &DAG);
1283 llvm_unreachable("Custom lowering code for this "
1284 "instruction is not implemented yet!");
1285 break;
1286 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
1287 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
1288 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
1289 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
1290 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
1291 case ISD::FREM: return LowerFREM(Op, DAG);
1292 case ISD::FCEIL: return LowerFCEIL(Op, DAG);
1293 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
1294 case ISD::FRINT: return LowerFRINT(Op, DAG);
1295 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
1296 case ISD::FROUND: return LowerFROUND(Op, DAG);
1297 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
1298 case ISD::FLOG:
1299 return LowerFLOG(Op, DAG, numbers::ln2f);
1300 case ISD::FLOG10:
1301 return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f);
1302 case ISD::FEXP:
1303 return lowerFEXP(Op, DAG);
1304 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1305 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
1306 case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG);
1307 case ISD::FP_TO_SINT:
1308 case ISD::FP_TO_UINT:
1309 return LowerFP_TO_INT(Op, DAG);
1310 case ISD::CTTZ:
1311 case ISD::CTTZ_ZERO_UNDEF:
1312 case ISD::CTLZ:
1313 case ISD::CTLZ_ZERO_UNDEF:
1314 return LowerCTLZ_CTTZ(Op, DAG);
1315 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1317 return Op;
1320 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
1321 SmallVectorImpl<SDValue> &Results,
1322 SelectionDAG &DAG) const {
1323 switch (N->getOpcode()) {
1324 case ISD::SIGN_EXTEND_INREG:
1325 // Different parts of legalization seem to interpret which type of
1326 // sign_extend_inreg is the one to check for custom lowering. The extended
1327 // from type is what really matters, but some places check for custom
1328 // lowering of the result type. This results in trying to use
1329 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
1330 // nothing here and let the illegal result integer be handled normally.
1331 return;
1332 default:
1333 return;
1337 bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) {
1338 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
1339 if (!GVar || !GVar->hasInitializer())
1340 return false;
1342 return !isa<UndefValue>(GVar->getInitializer());
1345 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
1346 SDValue Op,
1347 SelectionDAG &DAG) const {
1349 const DataLayout &DL = DAG.getDataLayout();
1350 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
1351 const GlobalValue *GV = G->getGlobal();
1353 if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1354 G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) {
1355 if (!MFI->isModuleEntryFunction() &&
1356 !GV->getName().equals("llvm.amdgcn.module.lds")) {
1357 SDLoc DL(Op);
1358 const Function &Fn = DAG.getMachineFunction().getFunction();
1359 DiagnosticInfoUnsupported BadLDSDecl(
1360 Fn, "local memory global used by non-kernel function",
1361 DL.getDebugLoc(), DS_Warning);
1362 DAG.getContext()->diagnose(BadLDSDecl);
1364 // We currently don't have a way to correctly allocate LDS objects that
1365 // aren't directly associated with a kernel. We do force inlining of
1366 // functions that use local objects. However, if these dead functions are
1367 // not eliminated, we don't want a compile time error. Just emit a warning
1368 // and a trap, since there should be no callable path here.
1369 SDValue Trap = DAG.getNode(ISD::TRAP, DL, MVT::Other, DAG.getEntryNode());
1370 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other,
1371 Trap, DAG.getRoot());
1372 DAG.setRoot(OutputChain);
1373 return DAG.getUNDEF(Op.getValueType());
1376 // XXX: What does the value of G->getOffset() mean?
1377 assert(G->getOffset() == 0 &&
1378 "Do not know what to do with an non-zero offset");
1380 // TODO: We could emit code to handle the initialization somewhere.
1381 if (!hasDefinedInitializer(GV)) {
1382 unsigned Offset = MFI->allocateLDSGlobal(DL, *cast<GlobalVariable>(GV));
1383 return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType());
1387 const Function &Fn = DAG.getMachineFunction().getFunction();
1388 DiagnosticInfoUnsupported BadInit(
1389 Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc());
1390 DAG.getContext()->diagnose(BadInit);
1391 return SDValue();
1394 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
1395 SelectionDAG &DAG) const {
1396 SmallVector<SDValue, 8> Args;
1398 EVT VT = Op.getValueType();
1399 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
1400 SDLoc SL(Op);
1401 SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0));
1402 SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1));
1404 SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi });
1405 return DAG.getNode(ISD::BITCAST, SL, VT, BV);
1408 for (const SDUse &U : Op->ops())
1409 DAG.ExtractVectorElements(U.get(), Args);
1411 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1414 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
1415 SelectionDAG &DAG) const {
1417 SmallVector<SDValue, 8> Args;
1418 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1419 EVT VT = Op.getValueType();
1420 EVT SrcVT = Op.getOperand(0).getValueType();
1422 // For these types, we have some TableGen patterns except if the index is 1
1423 if (((SrcVT == MVT::v4f16 && VT == MVT::v2f16) ||
1424 (SrcVT == MVT::v4i16 && VT == MVT::v2i16)) &&
1425 Start != 1)
1426 return Op;
1428 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
1429 VT.getVectorNumElements());
1431 return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args);
1434 /// Generate Min/Max node
1435 SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT,
1436 SDValue LHS, SDValue RHS,
1437 SDValue True, SDValue False,
1438 SDValue CC,
1439 DAGCombinerInfo &DCI) const {
1440 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1441 return SDValue();
1443 SelectionDAG &DAG = DCI.DAG;
1444 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1445 switch (CCOpcode) {
1446 case ISD::SETOEQ:
1447 case ISD::SETONE:
1448 case ISD::SETUNE:
1449 case ISD::SETNE:
1450 case ISD::SETUEQ:
1451 case ISD::SETEQ:
1452 case ISD::SETFALSE:
1453 case ISD::SETFALSE2:
1454 case ISD::SETTRUE:
1455 case ISD::SETTRUE2:
1456 case ISD::SETUO:
1457 case ISD::SETO:
1458 break;
1459 case ISD::SETULE:
1460 case ISD::SETULT: {
1461 if (LHS == True)
1462 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1463 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1465 case ISD::SETOLE:
1466 case ISD::SETOLT:
1467 case ISD::SETLE:
1468 case ISD::SETLT: {
1469 // Ordered. Assume ordered for undefined.
1471 // Only do this after legalization to avoid interfering with other combines
1472 // which might occur.
1473 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1474 !DCI.isCalledByLegalizer())
1475 return SDValue();
1477 // We need to permute the operands to get the correct NaN behavior. The
1478 // selected operand is the second one based on the failing compare with NaN,
1479 // so permute it based on the compare type the hardware uses.
1480 if (LHS == True)
1481 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1482 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1484 case ISD::SETUGE:
1485 case ISD::SETUGT: {
1486 if (LHS == True)
1487 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1488 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1490 case ISD::SETGT:
1491 case ISD::SETGE:
1492 case ISD::SETOGE:
1493 case ISD::SETOGT: {
1494 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1495 !DCI.isCalledByLegalizer())
1496 return SDValue();
1498 if (LHS == True)
1499 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1500 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1502 case ISD::SETCC_INVALID:
1503 llvm_unreachable("Invalid setcc condcode!");
1505 return SDValue();
1508 std::pair<SDValue, SDValue>
1509 AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const {
1510 SDLoc SL(Op);
1512 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1514 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1515 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1517 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1518 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1520 return std::make_pair(Lo, Hi);
1523 SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const {
1524 SDLoc SL(Op);
1526 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1527 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
1528 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero);
1531 SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const {
1532 SDLoc SL(Op);
1534 SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op);
1535 const SDValue One = DAG.getConstant(1, SL, MVT::i32);
1536 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One);
1539 // Split a vector type into two parts. The first part is a power of two vector.
1540 // The second part is whatever is left over, and is a scalar if it would
1541 // otherwise be a 1-vector.
1542 std::pair<EVT, EVT>
1543 AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const {
1544 EVT LoVT, HiVT;
1545 EVT EltVT = VT.getVectorElementType();
1546 unsigned NumElts = VT.getVectorNumElements();
1547 unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2);
1548 LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts);
1549 HiVT = NumElts - LoNumElts == 1
1550 ? EltVT
1551 : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts);
1552 return std::make_pair(LoVT, HiVT);
1555 // Split a vector value into two parts of types LoVT and HiVT. HiVT could be
1556 // scalar.
1557 std::pair<SDValue, SDValue>
1558 AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL,
1559 const EVT &LoVT, const EVT &HiVT,
1560 SelectionDAG &DAG) const {
1561 assert(LoVT.getVectorNumElements() +
1562 (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <=
1563 N.getValueType().getVectorNumElements() &&
1564 "More vector elements requested than available!");
1565 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N,
1566 DAG.getVectorIdxConstant(0, DL));
1567 SDValue Hi = DAG.getNode(
1568 HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL,
1569 HiVT, N, DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), DL));
1570 return std::make_pair(Lo, Hi);
1573 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1574 SelectionDAG &DAG) const {
1575 LoadSDNode *Load = cast<LoadSDNode>(Op);
1576 EVT VT = Op.getValueType();
1577 SDLoc SL(Op);
1580 // If this is a 2 element vector, we really want to scalarize and not create
1581 // weird 1 element vectors.
1582 if (VT.getVectorNumElements() == 2) {
1583 SDValue Ops[2];
1584 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(Load, DAG);
1585 return DAG.getMergeValues(Ops, SL);
1588 SDValue BasePtr = Load->getBasePtr();
1589 EVT MemVT = Load->getMemoryVT();
1591 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1593 EVT LoVT, HiVT;
1594 EVT LoMemVT, HiMemVT;
1595 SDValue Lo, Hi;
1597 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1598 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1599 std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG);
1601 unsigned Size = LoMemVT.getStoreSize();
1602 unsigned BaseAlign = Load->getAlignment();
1603 unsigned HiAlign = MinAlign(BaseAlign, Size);
1605 SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1606 Load->getChain(), BasePtr, SrcValue, LoMemVT,
1607 BaseAlign, Load->getMemOperand()->getFlags());
1608 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, TypeSize::Fixed(Size));
1609 SDValue HiLoad =
1610 DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(),
1611 HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1612 HiMemVT, HiAlign, Load->getMemOperand()->getFlags());
1614 SDValue Join;
1615 if (LoVT == HiVT) {
1616 // This is the case that the vector is power of two so was evenly split.
1617 Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad);
1618 } else {
1619 Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad,
1620 DAG.getVectorIdxConstant(0, SL));
1621 Join = DAG.getNode(
1622 HiVT.isVector() ? ISD::INSERT_SUBVECTOR : ISD::INSERT_VECTOR_ELT, SL,
1623 VT, Join, HiLoad,
1624 DAG.getVectorIdxConstant(LoVT.getVectorNumElements(), SL));
1627 SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1628 LoLoad.getValue(1), HiLoad.getValue(1))};
1630 return DAG.getMergeValues(Ops, SL);
1633 SDValue AMDGPUTargetLowering::WidenOrSplitVectorLoad(SDValue Op,
1634 SelectionDAG &DAG) const {
1635 LoadSDNode *Load = cast<LoadSDNode>(Op);
1636 EVT VT = Op.getValueType();
1637 SDValue BasePtr = Load->getBasePtr();
1638 EVT MemVT = Load->getMemoryVT();
1639 SDLoc SL(Op);
1640 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
1641 unsigned BaseAlign = Load->getAlignment();
1642 unsigned NumElements = MemVT.getVectorNumElements();
1644 // Widen from vec3 to vec4 when the load is at least 8-byte aligned
1645 // or 16-byte fully dereferenceable. Otherwise, split the vector load.
1646 if (NumElements != 3 ||
1647 (BaseAlign < 8 &&
1648 !SrcValue.isDereferenceable(16, *DAG.getContext(), DAG.getDataLayout())))
1649 return SplitVectorLoad(Op, DAG);
1651 assert(NumElements == 3);
1653 EVT WideVT =
1654 EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4);
1655 EVT WideMemVT =
1656 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4);
1657 SDValue WideLoad = DAG.getExtLoad(
1658 Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue,
1659 WideMemVT, BaseAlign, Load->getMemOperand()->getFlags());
1660 return DAG.getMergeValues(
1661 {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad,
1662 DAG.getVectorIdxConstant(0, SL)),
1663 WideLoad.getValue(1)},
1664 SL);
1667 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1668 SelectionDAG &DAG) const {
1669 StoreSDNode *Store = cast<StoreSDNode>(Op);
1670 SDValue Val = Store->getValue();
1671 EVT VT = Val.getValueType();
1673 // If this is a 2 element vector, we really want to scalarize and not create
1674 // weird 1 element vectors.
1675 if (VT.getVectorNumElements() == 2)
1676 return scalarizeVectorStore(Store, DAG);
1678 EVT MemVT = Store->getMemoryVT();
1679 SDValue Chain = Store->getChain();
1680 SDValue BasePtr = Store->getBasePtr();
1681 SDLoc SL(Op);
1683 EVT LoVT, HiVT;
1684 EVT LoMemVT, HiMemVT;
1685 SDValue Lo, Hi;
1687 std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG);
1688 std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG);
1689 std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG);
1691 SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize());
1693 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
1694 unsigned BaseAlign = Store->getAlignment();
1695 unsigned Size = LoMemVT.getStoreSize();
1696 unsigned HiAlign = MinAlign(BaseAlign, Size);
1698 SDValue LoStore =
1699 DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign,
1700 Store->getMemOperand()->getFlags());
1701 SDValue HiStore =
1702 DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size),
1703 HiMemVT, HiAlign, Store->getMemOperand()->getFlags());
1705 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1708 // This is a shortcut for integer division because we have fast i32<->f32
1709 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1710 // float is enough to accurately represent up to a 24-bit signed integer.
1711 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG,
1712 bool Sign) const {
1713 SDLoc DL(Op);
1714 EVT VT = Op.getValueType();
1715 SDValue LHS = Op.getOperand(0);
1716 SDValue RHS = Op.getOperand(1);
1717 MVT IntVT = MVT::i32;
1718 MVT FltVT = MVT::f32;
1720 unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS);
1721 if (LHSSignBits < 9)
1722 return SDValue();
1724 unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS);
1725 if (RHSSignBits < 9)
1726 return SDValue();
1728 unsigned BitSize = VT.getSizeInBits();
1729 unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
1730 unsigned DivBits = BitSize - SignBits;
1731 if (Sign)
1732 ++DivBits;
1734 ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1735 ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1737 SDValue jq = DAG.getConstant(1, DL, IntVT);
1739 if (Sign) {
1740 // char|short jq = ia ^ ib;
1741 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1743 // jq = jq >> (bitsize - 2)
1744 jq = DAG.getNode(ISD::SRA, DL, VT, jq,
1745 DAG.getConstant(BitSize - 2, DL, VT));
1747 // jq = jq | 0x1
1748 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
1751 // int ia = (int)LHS;
1752 SDValue ia = LHS;
1754 // int ib, (int)RHS;
1755 SDValue ib = RHS;
1757 // float fa = (float)ia;
1758 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1760 // float fb = (float)ib;
1761 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1763 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1764 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1766 // fq = trunc(fq);
1767 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1769 // float fqneg = -fq;
1770 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1772 MachineFunction &MF = DAG.getMachineFunction();
1773 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
1775 // float fr = mad(fqneg, fb, fa);
1776 unsigned OpCode = !Subtarget->hasMadMacF32Insts() ?
1777 (unsigned)ISD::FMA :
1778 !MFI->getMode().allFP32Denormals() ?
1779 (unsigned)ISD::FMAD :
1780 (unsigned)AMDGPUISD::FMAD_FTZ;
1781 SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa);
1783 // int iq = (int)fq;
1784 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1786 // fr = fabs(fr);
1787 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1789 // fb = fabs(fb);
1790 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1792 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
1794 // int cv = fr >= fb;
1795 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1797 // jq = (cv ? jq : 0);
1798 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
1800 // dst = iq + jq;
1801 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1803 // Rem needs compensation, it's easier to recompute it
1804 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1805 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1807 // Truncate to number of bits this divide really is.
1808 if (Sign) {
1809 SDValue InRegSize
1810 = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits));
1811 Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize);
1812 Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize);
1813 } else {
1814 SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT);
1815 Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask);
1816 Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask);
1819 return DAG.getMergeValues({ Div, Rem }, DL);
1822 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1823 SelectionDAG &DAG,
1824 SmallVectorImpl<SDValue> &Results) const {
1825 SDLoc DL(Op);
1826 EVT VT = Op.getValueType();
1828 assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64");
1830 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1832 SDValue One = DAG.getConstant(1, DL, HalfVT);
1833 SDValue Zero = DAG.getConstant(0, DL, HalfVT);
1835 //HiLo split
1836 SDValue LHS = Op.getOperand(0);
1837 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1838 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One);
1840 SDValue RHS = Op.getOperand(1);
1841 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1842 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One);
1844 if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1845 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1847 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1848 LHS_Lo, RHS_Lo);
1850 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero});
1851 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero});
1853 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV));
1854 Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM));
1855 return;
1858 if (isTypeLegal(MVT::i64)) {
1859 MachineFunction &MF = DAG.getMachineFunction();
1860 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1862 // Compute denominator reciprocal.
1863 unsigned FMAD = !Subtarget->hasMadMacF32Insts() ?
1864 (unsigned)ISD::FMA :
1865 !MFI->getMode().allFP32Denormals() ?
1866 (unsigned)ISD::FMAD :
1867 (unsigned)AMDGPUISD::FMAD_FTZ;
1869 SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo);
1870 SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi);
1871 SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi,
1872 DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32),
1873 Cvt_Lo);
1874 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1);
1875 SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp,
1876 DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32));
1877 SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1,
1878 DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32));
1879 SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2);
1880 SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc,
1881 DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32),
1882 Mul1);
1883 SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2);
1884 SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc);
1885 SDValue Rcp64 = DAG.getBitcast(VT,
1886 DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi}));
1888 SDValue Zero64 = DAG.getConstant(0, DL, VT);
1889 SDValue One64 = DAG.getConstant(1, DL, VT);
1890 SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1);
1891 SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1);
1893 SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS);
1894 SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64);
1895 SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1);
1896 SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1897 Zero);
1898 SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1,
1899 One);
1901 SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo,
1902 Mulhi1_Lo, Zero1);
1903 SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi,
1904 Mulhi1_Hi, Add1_Lo.getValue(1));
1905 SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi);
1906 SDValue Add1 = DAG.getBitcast(VT,
1907 DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi}));
1909 SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1);
1910 SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2);
1911 SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1912 Zero);
1913 SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2,
1914 One);
1916 SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo,
1917 Mulhi2_Lo, Zero1);
1918 SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc,
1919 Mulhi2_Hi, Add1_Lo.getValue(1));
1920 SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC,
1921 Zero, Add2_Lo.getValue(1));
1922 SDValue Add2 = DAG.getBitcast(VT,
1923 DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi}));
1924 SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2);
1926 SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3);
1928 SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero);
1929 SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One);
1930 SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo,
1931 Mul3_Lo, Zero1);
1932 SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi,
1933 Mul3_Hi, Sub1_Lo.getValue(1));
1934 SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi);
1935 SDValue Sub1 = DAG.getBitcast(VT,
1936 DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi}));
1938 SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT);
1939 SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero,
1940 ISD::SETUGE);
1941 SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero,
1942 ISD::SETUGE);
1943 SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ);
1945 // TODO: Here and below portions of the code can be enclosed into if/endif.
1946 // Currently control flow is unconditional and we have 4 selects after
1947 // potential endif to substitute PHIs.
1949 // if C3 != 0 ...
1950 SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo,
1951 RHS_Lo, Zero1);
1952 SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi,
1953 RHS_Hi, Sub1_Lo.getValue(1));
1954 SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1955 Zero, Sub2_Lo.getValue(1));
1956 SDValue Sub2 = DAG.getBitcast(VT,
1957 DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi}));
1959 SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64);
1961 SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero,
1962 ISD::SETUGE);
1963 SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero,
1964 ISD::SETUGE);
1965 SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ);
1967 // if (C6 != 0)
1968 SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64);
1970 SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo,
1971 RHS_Lo, Zero1);
1972 SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi,
1973 RHS_Hi, Sub2_Lo.getValue(1));
1974 SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi,
1975 Zero, Sub3_Lo.getValue(1));
1976 SDValue Sub3 = DAG.getBitcast(VT,
1977 DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi}));
1979 // endif C6
1980 // endif C3
1982 SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE);
1983 SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE);
1985 SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE);
1986 SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE);
1988 Results.push_back(Div);
1989 Results.push_back(Rem);
1991 return;
1994 // r600 expandion.
1995 // Get Speculative values
1996 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1997 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1999 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ);
2000 SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero});
2001 REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM);
2003 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ);
2004 SDValue DIV_Lo = Zero;
2006 const unsigned halfBitWidth = HalfVT.getSizeInBits();
2008 for (unsigned i = 0; i < halfBitWidth; ++i) {
2009 const unsigned bitPos = halfBitWidth - i - 1;
2010 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
2011 // Get value of high bit
2012 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
2013 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One);
2014 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
2016 // Shift
2017 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
2018 // Add LHS high bit
2019 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
2021 SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT);
2022 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE);
2024 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
2026 // Update REM
2027 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
2028 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
2031 SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi});
2032 DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV);
2033 Results.push_back(DIV);
2034 Results.push_back(REM);
2037 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
2038 SelectionDAG &DAG) const {
2039 SDLoc DL(Op);
2040 EVT VT = Op.getValueType();
2042 if (VT == MVT::i64) {
2043 SmallVector<SDValue, 2> Results;
2044 LowerUDIVREM64(Op, DAG, Results);
2045 return DAG.getMergeValues(Results, DL);
2048 if (VT == MVT::i32) {
2049 if (SDValue Res = LowerDIVREM24(Op, DAG, false))
2050 return Res;
2053 SDValue X = Op.getOperand(0);
2054 SDValue Y = Op.getOperand(1);
2056 // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
2057 // algorithm used here.
2059 // Initial estimate of inv(y).
2060 SDValue Z = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Y);
2062 // One round of UNR.
2063 SDValue NegY = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Y);
2064 SDValue NegYZ = DAG.getNode(ISD::MUL, DL, VT, NegY, Z);
2065 Z = DAG.getNode(ISD::ADD, DL, VT, Z,
2066 DAG.getNode(ISD::MULHU, DL, VT, Z, NegYZ));
2068 // Quotient/remainder estimate.
2069 SDValue Q = DAG.getNode(ISD::MULHU, DL, VT, X, Z);
2070 SDValue R =
2071 DAG.getNode(ISD::SUB, DL, VT, X, DAG.getNode(ISD::MUL, DL, VT, Q, Y));
2073 // First quotient/remainder refinement.
2074 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2075 SDValue One = DAG.getConstant(1, DL, VT);
2076 SDValue Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2077 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2078 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2079 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2080 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2082 // Second quotient/remainder refinement.
2083 Cond = DAG.getSetCC(DL, CCVT, R, Y, ISD::SETUGE);
2084 Q = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2085 DAG.getNode(ISD::ADD, DL, VT, Q, One), Q);
2086 R = DAG.getNode(ISD::SELECT, DL, VT, Cond,
2087 DAG.getNode(ISD::SUB, DL, VT, R, Y), R);
2089 return DAG.getMergeValues({Q, R}, DL);
2092 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
2093 SelectionDAG &DAG) const {
2094 SDLoc DL(Op);
2095 EVT VT = Op.getValueType();
2097 SDValue LHS = Op.getOperand(0);
2098 SDValue RHS = Op.getOperand(1);
2100 SDValue Zero = DAG.getConstant(0, DL, VT);
2101 SDValue NegOne = DAG.getConstant(-1, DL, VT);
2103 if (VT == MVT::i32) {
2104 if (SDValue Res = LowerDIVREM24(Op, DAG, true))
2105 return Res;
2108 if (VT == MVT::i64 &&
2109 DAG.ComputeNumSignBits(LHS) > 32 &&
2110 DAG.ComputeNumSignBits(RHS) > 32) {
2111 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
2113 //HiLo split
2114 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
2115 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
2116 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
2117 LHS_Lo, RHS_Lo);
2118 SDValue Res[2] = {
2119 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
2120 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
2122 return DAG.getMergeValues(Res, DL);
2125 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
2126 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
2127 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
2128 SDValue RSign = LHSign; // Remainder sign is the same as LHS
2130 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
2131 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
2133 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
2134 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
2136 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
2137 SDValue Rem = Div.getValue(1);
2139 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
2140 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
2142 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
2143 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
2145 SDValue Res[2] = {
2146 Div,
2149 return DAG.getMergeValues(Res, DL);
2152 // (frem x, y) -> (fma (fneg (ftrunc (fdiv x, y))), y, x)
2153 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
2154 SDLoc SL(Op);
2155 EVT VT = Op.getValueType();
2156 auto Flags = Op->getFlags();
2157 SDValue X = Op.getOperand(0);
2158 SDValue Y = Op.getOperand(1);
2160 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y, Flags);
2161 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, VT, Div, Flags);
2162 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Trunc, Flags);
2163 // TODO: For f32 use FMAD instead if !hasFastFMA32?
2164 return DAG.getNode(ISD::FMA, SL, VT, Neg, Y, X, Flags);
2167 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
2168 SDLoc SL(Op);
2169 SDValue Src = Op.getOperand(0);
2171 // result = trunc(src)
2172 // if (src > 0.0 && src != result)
2173 // result += 1.0
2175 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2177 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2178 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
2180 EVT SetCCVT =
2181 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2183 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
2184 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2185 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2187 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
2188 // TODO: Should this propagate fast-math-flags?
2189 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2192 static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL,
2193 SelectionDAG &DAG) {
2194 const unsigned FractBits = 52;
2195 const unsigned ExpBits = 11;
2197 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
2199 DAG.getConstant(FractBits - 32, SL, MVT::i32),
2200 DAG.getConstant(ExpBits, SL, MVT::i32));
2201 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
2202 DAG.getConstant(1023, SL, MVT::i32));
2204 return Exp;
2207 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
2208 SDLoc SL(Op);
2209 SDValue Src = Op.getOperand(0);
2211 assert(Op.getValueType() == MVT::f64);
2213 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
2215 // Extract the upper half, since this is where we will find the sign and
2216 // exponent.
2217 SDValue Hi = getHiHalf64(Src, DAG);
2219 SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2221 const unsigned FractBits = 52;
2223 // Extract the sign bit.
2224 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
2225 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
2227 // Extend back to 64-bits.
2228 SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit});
2229 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
2231 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
2232 const SDValue FractMask
2233 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
2235 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
2236 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
2237 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
2239 EVT SetCCVT =
2240 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
2242 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
2244 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2245 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2247 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
2248 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
2250 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
2253 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
2254 SDLoc SL(Op);
2255 SDValue Src = Op.getOperand(0);
2257 assert(Op.getValueType() == MVT::f64);
2259 APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2260 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
2261 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2263 // TODO: Should this propagate fast-math-flags?
2265 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2266 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2268 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2270 APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2271 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
2273 EVT SetCCVT =
2274 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2275 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2277 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2280 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2281 // FNEARBYINT and FRINT are the same, except in their handling of FP
2282 // exceptions. Those aren't really meaningful for us, and OpenCL only has
2283 // rint, so just treat them as equivalent.
2284 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2287 // XXX - May require not supporting f32 denormals?
2289 // Don't handle v2f16. The extra instructions to scalarize and repack around the
2290 // compare and vselect end up producing worse code than scalarizing the whole
2291 // operation.
2292 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2293 SDLoc SL(Op);
2294 SDValue X = Op.getOperand(0);
2295 EVT VT = Op.getValueType();
2297 SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X);
2299 // TODO: Should this propagate fast-math-flags?
2301 SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T);
2303 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff);
2305 const SDValue Zero = DAG.getConstantFP(0.0, SL, VT);
2306 const SDValue One = DAG.getConstantFP(1.0, SL, VT);
2307 const SDValue Half = DAG.getConstantFP(0.5, SL, VT);
2309 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X);
2311 EVT SetCCVT =
2312 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
2314 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2316 SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero);
2318 return DAG.getNode(ISD::FADD, SL, VT, T, Sel);
2321 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2322 SDLoc SL(Op);
2323 SDValue Src = Op.getOperand(0);
2325 // result = trunc(src);
2326 // if (src < 0.0 && src != result)
2327 // result += -1.0.
2329 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2331 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
2332 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
2334 EVT SetCCVT =
2335 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
2337 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2338 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2339 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2341 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2342 // TODO: Should this propagate fast-math-flags?
2343 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2346 SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG,
2347 double Log2BaseInverted) const {
2348 EVT VT = Op.getValueType();
2350 SDLoc SL(Op);
2351 SDValue Operand = Op.getOperand(0);
2352 SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand);
2353 SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT);
2355 return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand);
2358 // exp2(M_LOG2E_F * f);
2359 SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const {
2360 EVT VT = Op.getValueType();
2361 SDLoc SL(Op);
2362 SDValue Src = Op.getOperand(0);
2364 const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT);
2365 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags());
2366 return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags());
2369 static bool isCtlzOpc(unsigned Opc) {
2370 return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF;
2373 static bool isCttzOpc(unsigned Opc) {
2374 return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF;
2377 SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const {
2378 SDLoc SL(Op);
2379 SDValue Src = Op.getOperand(0);
2381 assert(isCtlzOpc(Op.getOpcode()) || isCttzOpc(Op.getOpcode()));
2382 bool Ctlz = isCtlzOpc(Op.getOpcode());
2383 unsigned NewOpc = Ctlz ? AMDGPUISD::FFBH_U32 : AMDGPUISD::FFBL_B32;
2385 bool ZeroUndef = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ||
2386 Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF;
2388 if (Src.getValueType() == MVT::i32) {
2389 // (ctlz hi:lo) -> (umin (ffbh src), 32)
2390 // (cttz hi:lo) -> (umin (ffbl src), 32)
2391 // (ctlz_zero_undef src) -> (ffbh src)
2392 // (cttz_zero_undef src) -> (ffbl src)
2393 SDValue NewOpr = DAG.getNode(NewOpc, SL, MVT::i32, Src);
2394 if (!ZeroUndef) {
2395 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2396 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const32);
2398 return NewOpr;
2401 SDValue Lo, Hi;
2402 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2404 SDValue OprLo = DAG.getNode(NewOpc, SL, MVT::i32, Lo);
2405 SDValue OprHi = DAG.getNode(NewOpc, SL, MVT::i32, Hi);
2407 // (ctlz hi:lo) -> (umin3 (ffbh hi), (uaddsat (ffbh lo), 32), 64)
2408 // (cttz hi:lo) -> (umin3 (uaddsat (ffbl hi), 32), (ffbl lo), 64)
2409 // (ctlz_zero_undef hi:lo) -> (umin (ffbh hi), (add (ffbh lo), 32))
2410 // (cttz_zero_undef hi:lo) -> (umin (add (ffbl hi), 32), (ffbl lo))
2412 unsigned AddOpc = ZeroUndef ? ISD::ADD : ISD::UADDSAT;
2413 const SDValue Const32 = DAG.getConstant(32, SL, MVT::i32);
2414 if (Ctlz)
2415 OprLo = DAG.getNode(AddOpc, SL, MVT::i32, OprLo, Const32);
2416 else
2417 OprHi = DAG.getNode(AddOpc, SL, MVT::i32, OprHi, Const32);
2419 SDValue NewOpr;
2420 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, OprLo, OprHi);
2421 if (!ZeroUndef) {
2422 const SDValue Const64 = DAG.getConstant(64, SL, MVT::i32);
2423 NewOpr = DAG.getNode(ISD::UMIN, SL, MVT::i32, NewOpr, Const64);
2426 return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr);
2429 SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG,
2430 bool Signed) const {
2431 // The regular method coverting a 64-bit integer to float roughly consists of
2432 // 2 steps: normalization and rounding. In fact, after normalization, the
2433 // conversion from a 64-bit integer to a float is essentially the same as the
2434 // one from a 32-bit integer. The only difference is that it has more
2435 // trailing bits to be rounded. To leverage the native 32-bit conversion, a
2436 // 64-bit integer could be preprocessed and fit into a 32-bit integer then
2437 // converted into the correct float number. The basic steps for the unsigned
2438 // conversion are illustrated in the following pseudo code:
2440 // f32 uitofp(i64 u) {
2441 // i32 hi, lo = split(u);
2442 // // Only count the leading zeros in hi as we have native support of the
2443 // // conversion from i32 to f32. If hi is all 0s, the conversion is
2444 // // reduced to a 32-bit one automatically.
2445 // i32 shamt = clz(hi); // Return 32 if hi is all 0s.
2446 // u <<= shamt;
2447 // hi, lo = split(u);
2448 // hi |= (lo != 0) ? 1 : 0; // Adjust rounding bit in hi based on lo.
2449 // // convert it as a 32-bit integer and scale the result back.
2450 // return uitofp(hi) * 2^(32 - shamt);
2451 // }
2453 // The signed one follows the same principle but uses 'ffbh_i32' to count its
2454 // sign bits instead. If 'ffbh_i32' is not available, its absolute value is
2455 // converted instead followed by negation based its sign bit.
2457 SDLoc SL(Op);
2458 SDValue Src = Op.getOperand(0);
2460 SDValue Lo, Hi;
2461 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2462 SDValue Sign;
2463 SDValue ShAmt;
2464 if (Signed && Subtarget->isGCN()) {
2465 // We also need to consider the sign bit in Lo if Hi has just sign bits,
2466 // i.e. Hi is 0 or -1. However, that only needs to take the MSB into
2467 // account. That is, the maximal shift is
2468 // - 32 if Lo and Hi have opposite signs;
2469 // - 33 if Lo and Hi have the same sign.
2471 // Or, MaxShAmt = 33 + OppositeSign, where
2473 // OppositeSign is defined as ((Lo ^ Hi) >> 31), which is
2474 // - -1 if Lo and Hi have opposite signs; and
2475 // - 0 otherwise.
2477 // All in all, ShAmt is calculated as
2479 // umin(sffbh(Hi), 33 + (Lo^Hi)>>31) - 1.
2481 // or
2483 // umin(sffbh(Hi) - 1, 32 + (Lo^Hi)>>31).
2485 // to reduce the critical path.
2486 SDValue OppositeSign = DAG.getNode(
2487 ISD::SRA, SL, MVT::i32, DAG.getNode(ISD::XOR, SL, MVT::i32, Lo, Hi),
2488 DAG.getConstant(31, SL, MVT::i32));
2489 SDValue MaxShAmt =
2490 DAG.getNode(ISD::ADD, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2491 OppositeSign);
2492 // Count the leading sign bits.
2493 ShAmt = DAG.getNode(AMDGPUISD::FFBH_I32, SL, MVT::i32, Hi);
2494 // Different from unsigned conversion, the shift should be one bit less to
2495 // preserve the sign bit.
2496 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, ShAmt,
2497 DAG.getConstant(1, SL, MVT::i32));
2498 ShAmt = DAG.getNode(ISD::UMIN, SL, MVT::i32, ShAmt, MaxShAmt);
2499 } else {
2500 if (Signed) {
2501 // Without 'ffbh_i32', only leading zeros could be counted. Take the
2502 // absolute value first.
2503 Sign = DAG.getNode(ISD::SRA, SL, MVT::i64, Src,
2504 DAG.getConstant(63, SL, MVT::i64));
2505 SDValue Abs =
2506 DAG.getNode(ISD::XOR, SL, MVT::i64,
2507 DAG.getNode(ISD::ADD, SL, MVT::i64, Src, Sign), Sign);
2508 std::tie(Lo, Hi) = split64BitValue(Abs, DAG);
2510 // Count the leading zeros.
2511 ShAmt = DAG.getNode(ISD::CTLZ, SL, MVT::i32, Hi);
2512 // The shift amount for signed integers is [0, 32].
2514 // Normalize the given 64-bit integer.
2515 SDValue Norm = DAG.getNode(ISD::SHL, SL, MVT::i64, Src, ShAmt);
2516 // Split it again.
2517 std::tie(Lo, Hi) = split64BitValue(Norm, DAG);
2518 // Calculate the adjust bit for rounding.
2519 // (lo != 0) ? 1 : 0 => (lo >= 1) ? 1 : 0 => umin(1, lo)
2520 SDValue Adjust = DAG.getNode(ISD::UMIN, SL, MVT::i32,
2521 DAG.getConstant(1, SL, MVT::i32), Lo);
2522 // Get the 32-bit normalized integer.
2523 Norm = DAG.getNode(ISD::OR, SL, MVT::i32, Hi, Adjust);
2524 // Convert the normalized 32-bit integer into f32.
2525 unsigned Opc =
2526 (Signed && Subtarget->isGCN()) ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
2527 SDValue FVal = DAG.getNode(Opc, SL, MVT::f32, Norm);
2529 // Finally, need to scale back the converted floating number as the original
2530 // 64-bit integer is converted as a 32-bit one.
2531 ShAmt = DAG.getNode(ISD::SUB, SL, MVT::i32, DAG.getConstant(32, SL, MVT::i32),
2532 ShAmt);
2533 // On GCN, use LDEXP directly.
2534 if (Subtarget->isGCN())
2535 return DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f32, FVal, ShAmt);
2537 // Otherwise, align 'ShAmt' to the exponent part and add it into the exponent
2538 // part directly to emulate the multiplication of 2^ShAmt. That 8-bit
2539 // exponent is enough to avoid overflowing into the sign bit.
2540 SDValue Exp = DAG.getNode(ISD::SHL, SL, MVT::i32, ShAmt,
2541 DAG.getConstant(23, SL, MVT::i32));
2542 SDValue IVal =
2543 DAG.getNode(ISD::ADD, SL, MVT::i32,
2544 DAG.getNode(ISD::BITCAST, SL, MVT::i32, FVal), Exp);
2545 if (Signed) {
2546 // Set the sign bit.
2547 Sign = DAG.getNode(ISD::SHL, SL, MVT::i32,
2548 DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Sign),
2549 DAG.getConstant(31, SL, MVT::i32));
2550 IVal = DAG.getNode(ISD::OR, SL, MVT::i32, IVal, Sign);
2552 return DAG.getNode(ISD::BITCAST, SL, MVT::f32, IVal);
2555 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2556 bool Signed) const {
2557 SDLoc SL(Op);
2558 SDValue Src = Op.getOperand(0);
2560 SDValue Lo, Hi;
2561 std::tie(Lo, Hi) = split64BitValue(Src, DAG);
2563 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2564 SL, MVT::f64, Hi);
2566 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2568 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2569 DAG.getConstant(32, SL, MVT::i32));
2570 // TODO: Should this propagate fast-math-flags?
2571 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2574 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2575 SelectionDAG &DAG) const {
2576 // TODO: Factor out code common with LowerSINT_TO_FP.
2577 EVT DestVT = Op.getValueType();
2578 SDValue Src = Op.getOperand(0);
2579 EVT SrcVT = Src.getValueType();
2581 if (SrcVT == MVT::i16) {
2582 if (DestVT == MVT::f16)
2583 return Op;
2584 SDLoc DL(Op);
2586 // Promote src to i32
2587 SDValue Ext = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Src);
2588 return DAG.getNode(ISD::UINT_TO_FP, DL, DestVT, Ext);
2591 assert(SrcVT == MVT::i64 && "operation should be legal");
2593 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2594 SDLoc DL(Op);
2596 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2597 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2598 SDValue FPRound =
2599 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2601 return FPRound;
2604 if (DestVT == MVT::f32)
2605 return LowerINT_TO_FP32(Op, DAG, false);
2607 assert(DestVT == MVT::f64);
2608 return LowerINT_TO_FP64(Op, DAG, false);
2611 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2612 SelectionDAG &DAG) const {
2613 EVT DestVT = Op.getValueType();
2615 SDValue Src = Op.getOperand(0);
2616 EVT SrcVT = Src.getValueType();
2618 if (SrcVT == MVT::i16) {
2619 if (DestVT == MVT::f16)
2620 return Op;
2622 SDLoc DL(Op);
2623 // Promote src to i32
2624 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, Src);
2625 return DAG.getNode(ISD::SINT_TO_FP, DL, DestVT, Ext);
2628 assert(SrcVT == MVT::i64 && "operation should be legal");
2630 // TODO: Factor out code common with LowerUINT_TO_FP.
2632 if (Subtarget->has16BitInsts() && DestVT == MVT::f16) {
2633 SDLoc DL(Op);
2634 SDValue Src = Op.getOperand(0);
2636 SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src);
2637 SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op));
2638 SDValue FPRound =
2639 DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag);
2641 return FPRound;
2644 if (DestVT == MVT::f32)
2645 return LowerINT_TO_FP32(Op, DAG, true);
2647 assert(DestVT == MVT::f64);
2648 return LowerINT_TO_FP64(Op, DAG, true);
2651 SDValue AMDGPUTargetLowering::LowerFP_TO_INT64(SDValue Op, SelectionDAG &DAG,
2652 bool Signed) const {
2653 SDLoc SL(Op);
2655 SDValue Src = Op.getOperand(0);
2656 EVT SrcVT = Src.getValueType();
2658 assert(SrcVT == MVT::f32 || SrcVT == MVT::f64);
2660 // The basic idea of converting a floating point number into a pair of 32-bit
2661 // integers is illustrated as follows:
2663 // tf := trunc(val);
2664 // hif := floor(tf * 2^-32);
2665 // lof := tf - hif * 2^32; // lof is always positive due to floor.
2666 // hi := fptoi(hif);
2667 // lo := fptoi(lof);
2669 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, SrcVT, Src);
2670 SDValue Sign;
2671 if (Signed && SrcVT == MVT::f32) {
2672 // However, a 32-bit floating point number has only 23 bits mantissa and
2673 // it's not enough to hold all the significant bits of `lof` if val is
2674 // negative. To avoid the loss of precision, We need to take the absolute
2675 // value after truncating and flip the result back based on the original
2676 // signedness.
2677 Sign = DAG.getNode(ISD::SRA, SL, MVT::i32,
2678 DAG.getNode(ISD::BITCAST, SL, MVT::i32, Trunc),
2679 DAG.getConstant(31, SL, MVT::i32));
2680 Trunc = DAG.getNode(ISD::FABS, SL, SrcVT, Trunc);
2683 SDValue K0, K1;
2684 if (SrcVT == MVT::f64) {
2685 K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)),
2686 SL, SrcVT);
2687 K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)),
2688 SL, SrcVT);
2689 } else {
2690 K0 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)), SL,
2691 SrcVT);
2692 K1 = DAG.getConstantFP(BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)), SL,
2693 SrcVT);
2695 // TODO: Should this propagate fast-math-flags?
2696 SDValue Mul = DAG.getNode(ISD::FMUL, SL, SrcVT, Trunc, K0);
2698 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, SrcVT, Mul);
2700 SDValue Fma = DAG.getNode(ISD::FMA, SL, SrcVT, FloorMul, K1, Trunc);
2702 SDValue Hi = DAG.getNode((Signed && SrcVT == MVT::f64) ? ISD::FP_TO_SINT
2703 : ISD::FP_TO_UINT,
2704 SL, MVT::i32, FloorMul);
2705 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2707 SDValue Result = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2708 DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}));
2710 if (Signed && SrcVT == MVT::f32) {
2711 assert(Sign);
2712 // Flip the result based on the signedness, which is either all 0s or 1s.
2713 Sign = DAG.getNode(ISD::BITCAST, SL, MVT::i64,
2714 DAG.getBuildVector(MVT::v2i32, SL, {Sign, Sign}));
2715 // r := xor(r, sign) - sign;
2716 Result =
2717 DAG.getNode(ISD::SUB, SL, MVT::i64,
2718 DAG.getNode(ISD::XOR, SL, MVT::i64, Result, Sign), Sign);
2721 return Result;
2724 SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const {
2725 SDLoc DL(Op);
2726 SDValue N0 = Op.getOperand(0);
2728 // Convert to target node to get known bits
2729 if (N0.getValueType() == MVT::f32)
2730 return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0);
2732 if (getTargetMachine().Options.UnsafeFPMath) {
2733 // There is a generic expand for FP_TO_FP16 with unsafe fast math.
2734 return SDValue();
2737 assert(N0.getSimpleValueType() == MVT::f64);
2739 // f64 -> f16 conversion using round-to-nearest-even rounding mode.
2740 const unsigned ExpMask = 0x7ff;
2741 const unsigned ExpBiasf64 = 1023;
2742 const unsigned ExpBiasf16 = 15;
2743 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2744 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2745 SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0);
2746 SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U,
2747 DAG.getConstant(32, DL, MVT::i64));
2748 UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32);
2749 U = DAG.getZExtOrTrunc(U, DL, MVT::i32);
2750 SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2751 DAG.getConstant(20, DL, MVT::i64));
2752 E = DAG.getNode(ISD::AND, DL, MVT::i32, E,
2753 DAG.getConstant(ExpMask, DL, MVT::i32));
2754 // Subtract the fp64 exponent bias (1023) to get the real exponent and
2755 // add the f16 bias (15) to get the biased exponent for the f16 format.
2756 E = DAG.getNode(ISD::ADD, DL, MVT::i32, E,
2757 DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32));
2759 SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2760 DAG.getConstant(8, DL, MVT::i32));
2761 M = DAG.getNode(ISD::AND, DL, MVT::i32, M,
2762 DAG.getConstant(0xffe, DL, MVT::i32));
2764 SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH,
2765 DAG.getConstant(0x1ff, DL, MVT::i32));
2766 MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U);
2768 SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ);
2769 M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set);
2771 // (M != 0 ? 0x0200 : 0) | 0x7c00;
2772 SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32,
2773 DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32),
2774 Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32));
2776 // N = M | (E << 12);
2777 SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2778 DAG.getNode(ISD::SHL, DL, MVT::i32, E,
2779 DAG.getConstant(12, DL, MVT::i32)));
2781 // B = clamp(1-E, 0, 13);
2782 SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32,
2783 One, E);
2784 SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero);
2785 B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B,
2786 DAG.getConstant(13, DL, MVT::i32));
2788 SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M,
2789 DAG.getConstant(0x1000, DL, MVT::i32));
2791 SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B);
2792 SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B);
2793 SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE);
2794 D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1);
2796 SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT);
2797 SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V,
2798 DAG.getConstant(0x7, DL, MVT::i32));
2799 V = DAG.getNode(ISD::SRL, DL, MVT::i32, V,
2800 DAG.getConstant(2, DL, MVT::i32));
2801 SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32),
2802 One, Zero, ISD::SETEQ);
2803 SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32),
2804 One, Zero, ISD::SETGT);
2805 V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1);
2806 V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1);
2808 V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32),
2809 DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT);
2810 V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32),
2811 I, V, ISD::SETEQ);
2813 // Extract the sign bit.
2814 SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH,
2815 DAG.getConstant(16, DL, MVT::i32));
2816 Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign,
2817 DAG.getConstant(0x8000, DL, MVT::i32));
2819 V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V);
2820 return DAG.getZExtOrTrunc(V, DL, Op.getValueType());
2823 SDValue AMDGPUTargetLowering::LowerFP_TO_INT(SDValue Op,
2824 SelectionDAG &DAG) const {
2825 SDValue Src = Op.getOperand(0);
2826 unsigned OpOpcode = Op.getOpcode();
2827 EVT SrcVT = Src.getValueType();
2828 EVT DestVT = Op.getValueType();
2830 // Will be selected natively
2831 if (SrcVT == MVT::f16 && DestVT == MVT::i16)
2832 return Op;
2834 // Promote i16 to i32
2835 if (DestVT == MVT::i16 && (SrcVT == MVT::f32 || SrcVT == MVT::f64)) {
2836 SDLoc DL(Op);
2838 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2839 return DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToInt32);
2842 if (SrcVT == MVT::f16 ||
2843 (SrcVT == MVT::f32 && Src.getOpcode() == ISD::FP16_TO_FP)) {
2844 SDLoc DL(Op);
2846 SDValue FpToInt32 = DAG.getNode(OpOpcode, DL, MVT::i32, Src);
2847 unsigned Ext =
2848 OpOpcode == ISD::FP_TO_SINT ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
2849 return DAG.getNode(Ext, DL, MVT::i64, FpToInt32);
2852 if (DestVT == MVT::i64 && (SrcVT == MVT::f32 || SrcVT == MVT::f64))
2853 return LowerFP_TO_INT64(Op, DAG, OpOpcode == ISD::FP_TO_SINT);
2855 return SDValue();
2858 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2859 SelectionDAG &DAG) const {
2860 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2861 MVT VT = Op.getSimpleValueType();
2862 MVT ScalarVT = VT.getScalarType();
2864 assert(VT.isVector());
2866 SDValue Src = Op.getOperand(0);
2867 SDLoc DL(Op);
2869 // TODO: Don't scalarize on Evergreen?
2870 unsigned NElts = VT.getVectorNumElements();
2871 SmallVector<SDValue, 8> Args;
2872 DAG.ExtractVectorElements(Src, Args, 0, NElts);
2874 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2875 for (unsigned I = 0; I < NElts; ++I)
2876 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2878 return DAG.getBuildVector(VT, DL, Args);
2881 //===----------------------------------------------------------------------===//
2882 // Custom DAG optimizations
2883 //===----------------------------------------------------------------------===//
2885 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2886 return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24;
2889 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2890 EVT VT = Op.getValueType();
2891 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2892 // as unsigned 24-bit values.
2893 AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24;
2896 static SDValue simplifyMul24(SDNode *Node24,
2897 TargetLowering::DAGCombinerInfo &DCI) {
2898 SelectionDAG &DAG = DCI.DAG;
2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2900 bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN;
2902 SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0);
2903 SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1);
2904 unsigned NewOpcode = Node24->getOpcode();
2905 if (IsIntrin) {
2906 unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue();
2907 NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ?
2908 AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
2911 APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24);
2913 // First try to simplify using SimplifyMultipleUseDemandedBits which allows
2914 // the operands to have other uses, but will only perform simplifications that
2915 // involve bypassing some nodes for this user.
2916 SDValue DemandedLHS = TLI.SimplifyMultipleUseDemandedBits(LHS, Demanded, DAG);
2917 SDValue DemandedRHS = TLI.SimplifyMultipleUseDemandedBits(RHS, Demanded, DAG);
2918 if (DemandedLHS || DemandedRHS)
2919 return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(),
2920 DemandedLHS ? DemandedLHS : LHS,
2921 DemandedRHS ? DemandedRHS : RHS);
2923 // Now try SimplifyDemandedBits which can simplify the nodes used by our
2924 // operands if this node is the only user.
2925 if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI))
2926 return SDValue(Node24, 0);
2927 if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI))
2928 return SDValue(Node24, 0);
2930 return SDValue();
2933 template <typename IntTy>
2934 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset,
2935 uint32_t Width, const SDLoc &DL) {
2936 if (Width + Offset < 32) {
2937 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2938 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2939 return DAG.getConstant(Result, DL, MVT::i32);
2942 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
2945 static bool hasVolatileUser(SDNode *Val) {
2946 for (SDNode *U : Val->uses()) {
2947 if (MemSDNode *M = dyn_cast<MemSDNode>(U)) {
2948 if (M->isVolatile())
2949 return true;
2953 return false;
2956 bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const {
2957 // i32 vectors are the canonical memory type.
2958 if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT))
2959 return false;
2961 if (!VT.isByteSized())
2962 return false;
2964 unsigned Size = VT.getStoreSize();
2966 if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector())
2967 return false;
2969 if (Size == 3 || (Size > 4 && (Size % 4 != 0)))
2970 return false;
2972 return true;
2975 // Replace load of an illegal type with a store of a bitcast to a friendlier
2976 // type.
2977 SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N,
2978 DAGCombinerInfo &DCI) const {
2979 if (!DCI.isBeforeLegalize())
2980 return SDValue();
2982 LoadSDNode *LN = cast<LoadSDNode>(N);
2983 if (!LN->isSimple() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN))
2984 return SDValue();
2986 SDLoc SL(N);
2987 SelectionDAG &DAG = DCI.DAG;
2988 EVT VT = LN->getMemoryVT();
2990 unsigned Size = VT.getStoreSize();
2991 Align Alignment = LN->getAlign();
2992 if (Alignment < Size && isTypeLegal(VT)) {
2993 bool IsFast;
2994 unsigned AS = LN->getAddressSpace();
2996 // Expand unaligned loads earlier than legalization. Due to visitation order
2997 // problems during legalization, the emitted instructions to pack and unpack
2998 // the bytes again are not eliminated in the case of an unaligned copy.
2999 if (!allowsMisalignedMemoryAccesses(
3000 VT, AS, Alignment, LN->getMemOperand()->getFlags(), &IsFast)) {
3001 SDValue Ops[2];
3003 if (VT.isVector())
3004 std::tie(Ops[0], Ops[1]) = scalarizeVectorLoad(LN, DAG);
3005 else
3006 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG);
3008 return DAG.getMergeValues(Ops, SDLoc(N));
3011 if (!IsFast)
3012 return SDValue();
3015 if (!shouldCombineMemoryType(VT))
3016 return SDValue();
3018 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3020 SDValue NewLoad
3021 = DAG.getLoad(NewVT, SL, LN->getChain(),
3022 LN->getBasePtr(), LN->getMemOperand());
3024 SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad);
3025 DCI.CombineTo(N, BC, NewLoad.getValue(1));
3026 return SDValue(N, 0);
3029 // Replace store of an illegal type with a store of a bitcast to a friendlier
3030 // type.
3031 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
3032 DAGCombinerInfo &DCI) const {
3033 if (!DCI.isBeforeLegalize())
3034 return SDValue();
3036 StoreSDNode *SN = cast<StoreSDNode>(N);
3037 if (!SN->isSimple() || !ISD::isNormalStore(SN))
3038 return SDValue();
3040 EVT VT = SN->getMemoryVT();
3041 unsigned Size = VT.getStoreSize();
3043 SDLoc SL(N);
3044 SelectionDAG &DAG = DCI.DAG;
3045 Align Alignment = SN->getAlign();
3046 if (Alignment < Size && isTypeLegal(VT)) {
3047 bool IsFast;
3048 unsigned AS = SN->getAddressSpace();
3050 // Expand unaligned stores earlier than legalization. Due to visitation
3051 // order problems during legalization, the emitted instructions to pack and
3052 // unpack the bytes again are not eliminated in the case of an unaligned
3053 // copy.
3054 if (!allowsMisalignedMemoryAccesses(
3055 VT, AS, Alignment, SN->getMemOperand()->getFlags(), &IsFast)) {
3056 if (VT.isVector())
3057 return scalarizeVectorStore(SN, DAG);
3059 return expandUnalignedStore(SN, DAG);
3062 if (!IsFast)
3063 return SDValue();
3066 if (!shouldCombineMemoryType(VT))
3067 return SDValue();
3069 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
3070 SDValue Val = SN->getValue();
3072 //DCI.AddToWorklist(Val.getNode());
3074 bool OtherUses = !Val.hasOneUse();
3075 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val);
3076 if (OtherUses) {
3077 SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal);
3078 DAG.ReplaceAllUsesOfValueWith(Val, CastBack);
3081 return DAG.getStore(SN->getChain(), SL, CastVal,
3082 SN->getBasePtr(), SN->getMemOperand());
3085 // FIXME: This should go in generic DAG combiner with an isTruncateFree check,
3086 // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU
3087 // issues.
3088 SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N,
3089 DAGCombinerInfo &DCI) const {
3090 SelectionDAG &DAG = DCI.DAG;
3091 SDValue N0 = N->getOperand(0);
3093 // (vt2 (assertzext (truncate vt0:x), vt1)) ->
3094 // (vt2 (truncate (assertzext vt0:x, vt1)))
3095 if (N0.getOpcode() == ISD::TRUNCATE) {
3096 SDValue N1 = N->getOperand(1);
3097 EVT ExtVT = cast<VTSDNode>(N1)->getVT();
3098 SDLoc SL(N);
3100 SDValue Src = N0.getOperand(0);
3101 EVT SrcVT = Src.getValueType();
3102 if (SrcVT.bitsGE(ExtVT)) {
3103 SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1);
3104 return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg);
3108 return SDValue();
3111 SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine(
3112 SDNode *N, DAGCombinerInfo &DCI) const {
3113 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
3114 switch (IID) {
3115 case Intrinsic::amdgcn_mul_i24:
3116 case Intrinsic::amdgcn_mul_u24:
3117 return simplifyMul24(N, DCI);
3118 case Intrinsic::amdgcn_fract:
3119 case Intrinsic::amdgcn_rsq:
3120 case Intrinsic::amdgcn_rcp_legacy:
3121 case Intrinsic::amdgcn_rsq_legacy:
3122 case Intrinsic::amdgcn_rsq_clamp:
3123 case Intrinsic::amdgcn_ldexp: {
3124 // FIXME: This is probably wrong. If src is an sNaN, it won't be quieted
3125 SDValue Src = N->getOperand(1);
3126 return Src.isUndef() ? Src : SDValue();
3128 default:
3129 return SDValue();
3133 /// Split the 64-bit value \p LHS into two 32-bit components, and perform the
3134 /// binary operation \p Opc to it with the corresponding constant operands.
3135 SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl(
3136 DAGCombinerInfo &DCI, const SDLoc &SL,
3137 unsigned Opc, SDValue LHS,
3138 uint32_t ValLo, uint32_t ValHi) const {
3139 SelectionDAG &DAG = DCI.DAG;
3140 SDValue Lo, Hi;
3141 std::tie(Lo, Hi) = split64BitValue(LHS, DAG);
3143 SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32);
3144 SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32);
3146 SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS);
3147 SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS);
3149 // Re-visit the ands. It's possible we eliminated one of them and it could
3150 // simplify the vector.
3151 DCI.AddToWorklist(Lo.getNode());
3152 DCI.AddToWorklist(Hi.getNode());
3154 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd});
3155 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3158 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
3159 DAGCombinerInfo &DCI) const {
3160 EVT VT = N->getValueType(0);
3162 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3163 if (!RHS)
3164 return SDValue();
3166 SDValue LHS = N->getOperand(0);
3167 unsigned RHSVal = RHS->getZExtValue();
3168 if (!RHSVal)
3169 return LHS;
3171 SDLoc SL(N);
3172 SelectionDAG &DAG = DCI.DAG;
3174 switch (LHS->getOpcode()) {
3175 default:
3176 break;
3177 case ISD::ZERO_EXTEND:
3178 case ISD::SIGN_EXTEND:
3179 case ISD::ANY_EXTEND: {
3180 SDValue X = LHS->getOperand(0);
3182 if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 &&
3183 isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) {
3184 // Prefer build_vector as the canonical form if packed types are legal.
3185 // (shl ([asz]ext i16:x), 16 -> build_vector 0, x
3186 SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL,
3187 { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) });
3188 return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec);
3191 // shl (ext x) => zext (shl x), if shift does not overflow int
3192 if (VT != MVT::i64)
3193 break;
3194 KnownBits Known = DAG.computeKnownBits(X);
3195 unsigned LZ = Known.countMinLeadingZeros();
3196 if (LZ < RHSVal)
3197 break;
3198 EVT XVT = X.getValueType();
3199 SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0));
3200 return DAG.getZExtOrTrunc(Shl, SL, VT);
3204 if (VT != MVT::i64)
3205 return SDValue();
3207 // i64 (shl x, C) -> (build_pair 0, (shl x, C -32))
3209 // On some subtargets, 64-bit shift is a quarter rate instruction. In the
3210 // common case, splitting this into a move and a 32-bit shift is faster and
3211 // the same code size.
3212 if (RHSVal < 32)
3213 return SDValue();
3215 SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32);
3217 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
3218 SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt);
3220 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3222 SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift});
3223 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3226 SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N,
3227 DAGCombinerInfo &DCI) const {
3228 if (N->getValueType(0) != MVT::i64)
3229 return SDValue();
3231 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3232 if (!RHS)
3233 return SDValue();
3235 SelectionDAG &DAG = DCI.DAG;
3236 SDLoc SL(N);
3237 unsigned RHSVal = RHS->getZExtValue();
3239 // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31)
3240 if (RHSVal == 32) {
3241 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3242 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3243 DAG.getConstant(31, SL, MVT::i32));
3245 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift});
3246 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3249 // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31)
3250 if (RHSVal == 63) {
3251 SDValue Hi = getHiHalf64(N->getOperand(0), DAG);
3252 SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi,
3253 DAG.getConstant(31, SL, MVT::i32));
3254 SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift});
3255 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec);
3258 return SDValue();
3261 SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N,
3262 DAGCombinerInfo &DCI) const {
3263 auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3264 if (!RHS)
3265 return SDValue();
3267 EVT VT = N->getValueType(0);
3268 SDValue LHS = N->getOperand(0);
3269 unsigned ShiftAmt = RHS->getZExtValue();
3270 SelectionDAG &DAG = DCI.DAG;
3271 SDLoc SL(N);
3273 // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1)
3274 // this improves the ability to match BFE patterns in isel.
3275 if (LHS.getOpcode() == ISD::AND) {
3276 if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) {
3277 if (Mask->getAPIntValue().isShiftedMask() &&
3278 Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) {
3279 return DAG.getNode(
3280 ISD::AND, SL, VT,
3281 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)),
3282 DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1)));
3287 if (VT != MVT::i64)
3288 return SDValue();
3290 if (ShiftAmt < 32)
3291 return SDValue();
3293 // srl i64:x, C for C >= 32
3294 // =>
3295 // build_pair (srl hi_32(x), C - 32), 0
3296 SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
3298 SDValue Hi = getHiHalf64(LHS, DAG);
3300 SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32);
3301 SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst);
3303 SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero});
3305 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair);
3308 SDValue AMDGPUTargetLowering::performTruncateCombine(
3309 SDNode *N, DAGCombinerInfo &DCI) const {
3310 SDLoc SL(N);
3311 SelectionDAG &DAG = DCI.DAG;
3312 EVT VT = N->getValueType(0);
3313 SDValue Src = N->getOperand(0);
3315 // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x)
3316 if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) {
3317 SDValue Vec = Src.getOperand(0);
3318 if (Vec.getOpcode() == ISD::BUILD_VECTOR) {
3319 SDValue Elt0 = Vec.getOperand(0);
3320 EVT EltVT = Elt0.getValueType();
3321 if (VT.getFixedSizeInBits() <= EltVT.getFixedSizeInBits()) {
3322 if (EltVT.isFloatingPoint()) {
3323 Elt0 = DAG.getNode(ISD::BITCAST, SL,
3324 EltVT.changeTypeToInteger(), Elt0);
3327 return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0);
3332 // Equivalent of above for accessing the high element of a vector as an
3333 // integer operation.
3334 // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y)
3335 if (Src.getOpcode() == ISD::SRL && !VT.isVector()) {
3336 if (auto K = isConstOrConstSplat(Src.getOperand(1))) {
3337 if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) {
3338 SDValue BV = stripBitcast(Src.getOperand(0));
3339 if (BV.getOpcode() == ISD::BUILD_VECTOR &&
3340 BV.getValueType().getVectorNumElements() == 2) {
3341 SDValue SrcElt = BV.getOperand(1);
3342 EVT SrcEltVT = SrcElt.getValueType();
3343 if (SrcEltVT.isFloatingPoint()) {
3344 SrcElt = DAG.getNode(ISD::BITCAST, SL,
3345 SrcEltVT.changeTypeToInteger(), SrcElt);
3348 return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt);
3354 // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit.
3356 // i16 (trunc (srl i64:x, K)), K <= 16 ->
3357 // i16 (trunc (srl (i32 (trunc x), K)))
3358 if (VT.getScalarSizeInBits() < 32) {
3359 EVT SrcVT = Src.getValueType();
3360 if (SrcVT.getScalarSizeInBits() > 32 &&
3361 (Src.getOpcode() == ISD::SRL ||
3362 Src.getOpcode() == ISD::SRA ||
3363 Src.getOpcode() == ISD::SHL)) {
3364 SDValue Amt = Src.getOperand(1);
3365 KnownBits Known = DAG.computeKnownBits(Amt);
3366 unsigned Size = VT.getScalarSizeInBits();
3367 if ((Known.isConstant() && Known.getConstant().ule(Size)) ||
3368 (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) {
3369 EVT MidVT = VT.isVector() ?
3370 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
3371 VT.getVectorNumElements()) : MVT::i32;
3373 EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout());
3374 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT,
3375 Src.getOperand(0));
3376 DCI.AddToWorklist(Trunc.getNode());
3378 if (Amt.getValueType() != NewShiftVT) {
3379 Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT);
3380 DCI.AddToWorklist(Amt.getNode());
3383 SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT,
3384 Trunc, Amt);
3385 return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift);
3390 return SDValue();
3393 // We need to specifically handle i64 mul here to avoid unnecessary conversion
3394 // instructions. If we only match on the legalized i64 mul expansion,
3395 // SimplifyDemandedBits will be unable to remove them because there will be
3396 // multiple uses due to the separate mul + mulh[su].
3397 static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL,
3398 SDValue N0, SDValue N1, unsigned Size, bool Signed) {
3399 if (Size <= 32) {
3400 unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3401 return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1);
3404 unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24;
3405 unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24;
3407 SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1);
3408 SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1);
3410 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, MulLo, MulHi);
3413 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
3414 DAGCombinerInfo &DCI) const {
3415 EVT VT = N->getValueType(0);
3417 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3418 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3419 // unnecessarily). isDivergent() is used as an approximation of whether the
3420 // value is in an SGPR.
3421 if (!N->isDivergent())
3422 return SDValue();
3424 unsigned Size = VT.getSizeInBits();
3425 if (VT.isVector() || Size > 64)
3426 return SDValue();
3428 // There are i16 integer mul/mad.
3429 if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16))
3430 return SDValue();
3432 SelectionDAG &DAG = DCI.DAG;
3433 SDLoc DL(N);
3435 SDValue N0 = N->getOperand(0);
3436 SDValue N1 = N->getOperand(1);
3438 // SimplifyDemandedBits has the annoying habit of turning useful zero_extends
3439 // in the source into any_extends if the result of the mul is truncated. Since
3440 // we can assume the high bits are whatever we want, use the underlying value
3441 // to avoid the unknown high bits from interfering.
3442 if (N0.getOpcode() == ISD::ANY_EXTEND)
3443 N0 = N0.getOperand(0);
3445 if (N1.getOpcode() == ISD::ANY_EXTEND)
3446 N1 = N1.getOperand(0);
3448 SDValue Mul;
3450 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
3451 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3452 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3453 Mul = getMul24(DAG, DL, N0, N1, Size, false);
3454 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
3455 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3456 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3457 Mul = getMul24(DAG, DL, N0, N1, Size, true);
3458 } else {
3459 return SDValue();
3462 // We need to use sext even for MUL_U24, because MUL_U24 is used
3463 // for signed multiply of 8 and 16-bit types.
3464 return DAG.getSExtOrTrunc(Mul, DL, VT);
3467 SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N,
3468 DAGCombinerInfo &DCI) const {
3469 EVT VT = N->getValueType(0);
3471 if (!Subtarget->hasMulI24() || VT.isVector())
3472 return SDValue();
3474 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3475 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3476 // unnecessarily). isDivergent() is used as an approximation of whether the
3477 // value is in an SGPR.
3478 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3479 // valu op anyway)
3480 if (Subtarget->hasSMulHi() && !N->isDivergent())
3481 return SDValue();
3483 SelectionDAG &DAG = DCI.DAG;
3484 SDLoc DL(N);
3486 SDValue N0 = N->getOperand(0);
3487 SDValue N1 = N->getOperand(1);
3489 if (!isI24(N0, DAG) || !isI24(N1, DAG))
3490 return SDValue();
3492 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
3493 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
3495 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1);
3496 DCI.AddToWorklist(Mulhi.getNode());
3497 return DAG.getSExtOrTrunc(Mulhi, DL, VT);
3500 SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N,
3501 DAGCombinerInfo &DCI) const {
3502 EVT VT = N->getValueType(0);
3504 if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32)
3505 return SDValue();
3507 // Don't generate 24-bit multiplies on values that are in SGPRs, since
3508 // we only have a 32-bit scalar multiply (avoid values being moved to VGPRs
3509 // unnecessarily). isDivergent() is used as an approximation of whether the
3510 // value is in an SGPR.
3511 // This doesn't apply if no s_mul_hi is available (since we'll end up with a
3512 // valu op anyway)
3513 if (Subtarget->hasSMulHi() && !N->isDivergent())
3514 return SDValue();
3516 SelectionDAG &DAG = DCI.DAG;
3517 SDLoc DL(N);
3519 SDValue N0 = N->getOperand(0);
3520 SDValue N1 = N->getOperand(1);
3522 if (!isU24(N0, DAG) || !isU24(N1, DAG))
3523 return SDValue();
3525 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
3526 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
3528 SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1);
3529 DCI.AddToWorklist(Mulhi.getNode());
3530 return DAG.getZExtOrTrunc(Mulhi, DL, VT);
3533 static bool isNegativeOne(SDValue Val) {
3534 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val))
3535 return C->isAllOnesValue();
3536 return false;
3539 SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG,
3540 SDValue Op,
3541 const SDLoc &DL,
3542 unsigned Opc) const {
3543 EVT VT = Op.getValueType();
3544 EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT);
3545 if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() &&
3546 LegalVT != MVT::i16))
3547 return SDValue();
3549 if (VT != MVT::i32)
3550 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op);
3552 SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op);
3553 if (VT != MVT::i32)
3554 FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX);
3556 return FFBX;
3559 // The native instructions return -1 on 0 input. Optimize out a select that
3560 // produces -1 on 0.
3562 // TODO: If zero is not undef, we could also do this if the output is compared
3563 // against the bitwidth.
3565 // TODO: Should probably combine against FFBH_U32 instead of ctlz directly.
3566 SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond,
3567 SDValue LHS, SDValue RHS,
3568 DAGCombinerInfo &DCI) const {
3569 ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1));
3570 if (!CmpRhs || !CmpRhs->isNullValue())
3571 return SDValue();
3573 SelectionDAG &DAG = DCI.DAG;
3574 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get();
3575 SDValue CmpLHS = Cond.getOperand(0);
3577 // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x
3578 // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x
3579 if (CCOpcode == ISD::SETEQ &&
3580 (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) &&
3581 RHS.getOperand(0) == CmpLHS && isNegativeOne(LHS)) {
3582 unsigned Opc =
3583 isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3584 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3587 // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x
3588 // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x
3589 if (CCOpcode == ISD::SETNE &&
3590 (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(LHS.getOpcode())) &&
3591 LHS.getOperand(0) == CmpLHS && isNegativeOne(RHS)) {
3592 unsigned Opc =
3593 isCttzOpc(LHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : AMDGPUISD::FFBH_U32;
3595 return getFFBX_U32(DAG, CmpLHS, SL, Opc);
3598 return SDValue();
3601 static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI,
3602 unsigned Op,
3603 const SDLoc &SL,
3604 SDValue Cond,
3605 SDValue N1,
3606 SDValue N2) {
3607 SelectionDAG &DAG = DCI.DAG;
3608 EVT VT = N1.getValueType();
3610 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond,
3611 N1.getOperand(0), N2.getOperand(0));
3612 DCI.AddToWorklist(NewSelect.getNode());
3613 return DAG.getNode(Op, SL, VT, NewSelect);
3616 // Pull a free FP operation out of a select so it may fold into uses.
3618 // select c, (fneg x), (fneg y) -> fneg (select c, x, y)
3619 // select c, (fneg x), k -> fneg (select c, x, (fneg k))
3621 // select c, (fabs x), (fabs y) -> fabs (select c, x, y)
3622 // select c, (fabs x), +k -> fabs (select c, x, k)
3623 static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI,
3624 SDValue N) {
3625 SelectionDAG &DAG = DCI.DAG;
3626 SDValue Cond = N.getOperand(0);
3627 SDValue LHS = N.getOperand(1);
3628 SDValue RHS = N.getOperand(2);
3630 EVT VT = N.getValueType();
3631 if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) ||
3632 (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) {
3633 return distributeOpThroughSelect(DCI, LHS.getOpcode(),
3634 SDLoc(N), Cond, LHS, RHS);
3637 bool Inv = false;
3638 if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) {
3639 std::swap(LHS, RHS);
3640 Inv = true;
3643 // TODO: Support vector constants.
3644 ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
3645 if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) {
3646 SDLoc SL(N);
3647 // If one side is an fneg/fabs and the other is a constant, we can push the
3648 // fneg/fabs down. If it's an fabs, the constant needs to be non-negative.
3649 SDValue NewLHS = LHS.getOperand(0);
3650 SDValue NewRHS = RHS;
3652 // Careful: if the neg can be folded up, don't try to pull it back down.
3653 bool ShouldFoldNeg = true;
3655 if (NewLHS.hasOneUse()) {
3656 unsigned Opc = NewLHS.getOpcode();
3657 if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc))
3658 ShouldFoldNeg = false;
3659 if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL)
3660 ShouldFoldNeg = false;
3663 if (ShouldFoldNeg) {
3664 if (LHS.getOpcode() == ISD::FNEG)
3665 NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3666 else if (CRHS->isNegative())
3667 return SDValue();
3669 if (Inv)
3670 std::swap(NewLHS, NewRHS);
3672 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT,
3673 Cond, NewLHS, NewRHS);
3674 DCI.AddToWorklist(NewSelect.getNode());
3675 return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect);
3679 return SDValue();
3683 SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N,
3684 DAGCombinerInfo &DCI) const {
3685 if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0)))
3686 return Folded;
3688 SDValue Cond = N->getOperand(0);
3689 if (Cond.getOpcode() != ISD::SETCC)
3690 return SDValue();
3692 EVT VT = N->getValueType(0);
3693 SDValue LHS = Cond.getOperand(0);
3694 SDValue RHS = Cond.getOperand(1);
3695 SDValue CC = Cond.getOperand(2);
3697 SDValue True = N->getOperand(1);
3698 SDValue False = N->getOperand(2);
3700 if (Cond.hasOneUse()) { // TODO: Look for multiple select uses.
3701 SelectionDAG &DAG = DCI.DAG;
3702 if (DAG.isConstantValueOfAnyType(True) &&
3703 !DAG.isConstantValueOfAnyType(False)) {
3704 // Swap cmp + select pair to move constant to false input.
3705 // This will allow using VOPC cndmasks more often.
3706 // select (setcc x, y), k, x -> select (setccinv x, y), x, k
3708 SDLoc SL(N);
3709 ISD::CondCode NewCC =
3710 getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), LHS.getValueType());
3712 SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC);
3713 return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True);
3716 if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) {
3717 SDValue MinMax
3718 = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI);
3719 // Revisit this node so we can catch min3/max3/med3 patterns.
3720 //DCI.AddToWorklist(MinMax.getNode());
3721 return MinMax;
3725 // There's no reason to not do this if the condition has other uses.
3726 return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI);
3729 static bool isInv2Pi(const APFloat &APF) {
3730 static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118));
3731 static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983));
3732 static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882));
3734 return APF.bitwiseIsEqual(KF16) ||
3735 APF.bitwiseIsEqual(KF32) ||
3736 APF.bitwiseIsEqual(KF64);
3739 // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an
3740 // additional cost to negate them.
3741 bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const {
3742 if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) {
3743 if (C->isZero() && !C->isNegative())
3744 return true;
3746 if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF()))
3747 return true;
3750 return false;
3753 static unsigned inverseMinMax(unsigned Opc) {
3754 switch (Opc) {
3755 case ISD::FMAXNUM:
3756 return ISD::FMINNUM;
3757 case ISD::FMINNUM:
3758 return ISD::FMAXNUM;
3759 case ISD::FMAXNUM_IEEE:
3760 return ISD::FMINNUM_IEEE;
3761 case ISD::FMINNUM_IEEE:
3762 return ISD::FMAXNUM_IEEE;
3763 case AMDGPUISD::FMAX_LEGACY:
3764 return AMDGPUISD::FMIN_LEGACY;
3765 case AMDGPUISD::FMIN_LEGACY:
3766 return AMDGPUISD::FMAX_LEGACY;
3767 default:
3768 llvm_unreachable("invalid min/max opcode");
3772 SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N,
3773 DAGCombinerInfo &DCI) const {
3774 SelectionDAG &DAG = DCI.DAG;
3775 SDValue N0 = N->getOperand(0);
3776 EVT VT = N->getValueType(0);
3778 unsigned Opc = N0.getOpcode();
3780 // If the input has multiple uses and we can either fold the negate down, or
3781 // the other uses cannot, give up. This both prevents unprofitable
3782 // transformations and infinite loops: we won't repeatedly try to fold around
3783 // a negate that has no 'good' form.
3784 if (N0.hasOneUse()) {
3785 // This may be able to fold into the source, but at a code size cost. Don't
3786 // fold if the fold into the user is free.
3787 if (allUsesHaveSourceMods(N, 0))
3788 return SDValue();
3789 } else {
3790 if (fnegFoldsIntoOp(Opc) &&
3791 (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode())))
3792 return SDValue();
3795 SDLoc SL(N);
3796 switch (Opc) {
3797 case ISD::FADD: {
3798 if (!mayIgnoreSignedZero(N0))
3799 return SDValue();
3801 // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y))
3802 SDValue LHS = N0.getOperand(0);
3803 SDValue RHS = N0.getOperand(1);
3805 if (LHS.getOpcode() != ISD::FNEG)
3806 LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3807 else
3808 LHS = LHS.getOperand(0);
3810 if (RHS.getOpcode() != ISD::FNEG)
3811 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3812 else
3813 RHS = RHS.getOperand(0);
3815 SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags());
3816 if (Res.getOpcode() != ISD::FADD)
3817 return SDValue(); // Op got folded away.
3818 if (!N0.hasOneUse())
3819 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3820 return Res;
3822 case ISD::FMUL:
3823 case AMDGPUISD::FMUL_LEGACY: {
3824 // (fneg (fmul x, y)) -> (fmul x, (fneg y))
3825 // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y))
3826 SDValue LHS = N0.getOperand(0);
3827 SDValue RHS = N0.getOperand(1);
3829 if (LHS.getOpcode() == ISD::FNEG)
3830 LHS = LHS.getOperand(0);
3831 else if (RHS.getOpcode() == ISD::FNEG)
3832 RHS = RHS.getOperand(0);
3833 else
3834 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3836 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags());
3837 if (Res.getOpcode() != Opc)
3838 return SDValue(); // Op got folded away.
3839 if (!N0.hasOneUse())
3840 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3841 return Res;
3843 case ISD::FMA:
3844 case ISD::FMAD: {
3845 // TODO: handle llvm.amdgcn.fma.legacy
3846 if (!mayIgnoreSignedZero(N0))
3847 return SDValue();
3849 // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z))
3850 SDValue LHS = N0.getOperand(0);
3851 SDValue MHS = N0.getOperand(1);
3852 SDValue RHS = N0.getOperand(2);
3854 if (LHS.getOpcode() == ISD::FNEG)
3855 LHS = LHS.getOperand(0);
3856 else if (MHS.getOpcode() == ISD::FNEG)
3857 MHS = MHS.getOperand(0);
3858 else
3859 MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS);
3861 if (RHS.getOpcode() != ISD::FNEG)
3862 RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3863 else
3864 RHS = RHS.getOperand(0);
3866 SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS);
3867 if (Res.getOpcode() != Opc)
3868 return SDValue(); // Op got folded away.
3869 if (!N0.hasOneUse())
3870 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3871 return Res;
3873 case ISD::FMAXNUM:
3874 case ISD::FMINNUM:
3875 case ISD::FMAXNUM_IEEE:
3876 case ISD::FMINNUM_IEEE:
3877 case AMDGPUISD::FMAX_LEGACY:
3878 case AMDGPUISD::FMIN_LEGACY: {
3879 // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y)
3880 // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y)
3881 // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y)
3882 // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y)
3884 SDValue LHS = N0.getOperand(0);
3885 SDValue RHS = N0.getOperand(1);
3887 // 0 doesn't have a negated inline immediate.
3888 // TODO: This constant check should be generalized to other operations.
3889 if (isConstantCostlierToNegate(RHS))
3890 return SDValue();
3892 SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS);
3893 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3894 unsigned Opposite = inverseMinMax(Opc);
3896 SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags());
3897 if (Res.getOpcode() != Opposite)
3898 return SDValue(); // Op got folded away.
3899 if (!N0.hasOneUse())
3900 DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res));
3901 return Res;
3903 case AMDGPUISD::FMED3: {
3904 SDValue Ops[3];
3905 for (unsigned I = 0; I < 3; ++I)
3906 Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags());
3908 SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags());
3909 if (Res.getOpcode() != AMDGPUISD::FMED3)
3910 return SDValue(); // Op got folded away.
3912 if (!N0.hasOneUse()) {
3913 SDValue Neg = DAG.getNode(ISD::FNEG, SL, VT, Res);
3914 DAG.ReplaceAllUsesWith(N0, Neg);
3916 for (SDNode *U : Neg->uses())
3917 DCI.AddToWorklist(U);
3920 return Res;
3922 case ISD::FP_EXTEND:
3923 case ISD::FTRUNC:
3924 case ISD::FRINT:
3925 case ISD::FNEARBYINT: // XXX - Should fround be handled?
3926 case ISD::FSIN:
3927 case ISD::FCANONICALIZE:
3928 case AMDGPUISD::RCP:
3929 case AMDGPUISD::RCP_LEGACY:
3930 case AMDGPUISD::RCP_IFLAG:
3931 case AMDGPUISD::SIN_HW: {
3932 SDValue CvtSrc = N0.getOperand(0);
3933 if (CvtSrc.getOpcode() == ISD::FNEG) {
3934 // (fneg (fp_extend (fneg x))) -> (fp_extend x)
3935 // (fneg (rcp (fneg x))) -> (rcp x)
3936 return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0));
3939 if (!N0.hasOneUse())
3940 return SDValue();
3942 // (fneg (fp_extend x)) -> (fp_extend (fneg x))
3943 // (fneg (rcp x)) -> (rcp (fneg x))
3944 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3945 return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags());
3947 case ISD::FP_ROUND: {
3948 SDValue CvtSrc = N0.getOperand(0);
3950 if (CvtSrc.getOpcode() == ISD::FNEG) {
3951 // (fneg (fp_round (fneg x))) -> (fp_round x)
3952 return DAG.getNode(ISD::FP_ROUND, SL, VT,
3953 CvtSrc.getOperand(0), N0.getOperand(1));
3956 if (!N0.hasOneUse())
3957 return SDValue();
3959 // (fneg (fp_round x)) -> (fp_round (fneg x))
3960 SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc);
3961 return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1));
3963 case ISD::FP16_TO_FP: {
3964 // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal
3965 // f16, but legalization of f16 fneg ends up pulling it out of the source.
3966 // Put the fneg back as a legal source operation that can be matched later.
3967 SDLoc SL(N);
3969 SDValue Src = N0.getOperand(0);
3970 EVT SrcVT = Src.getValueType();
3972 // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000)
3973 SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src,
3974 DAG.getConstant(0x8000, SL, SrcVT));
3975 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg);
3977 default:
3978 return SDValue();
3982 SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N,
3983 DAGCombinerInfo &DCI) const {
3984 SelectionDAG &DAG = DCI.DAG;
3985 SDValue N0 = N->getOperand(0);
3987 if (!N0.hasOneUse())
3988 return SDValue();
3990 switch (N0.getOpcode()) {
3991 case ISD::FP16_TO_FP: {
3992 assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal");
3993 SDLoc SL(N);
3994 SDValue Src = N0.getOperand(0);
3995 EVT SrcVT = Src.getValueType();
3997 // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff)
3998 SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src,
3999 DAG.getConstant(0x7fff, SL, SrcVT));
4000 return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs);
4002 default:
4003 return SDValue();
4007 SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N,
4008 DAGCombinerInfo &DCI) const {
4009 const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
4010 if (!CFP)
4011 return SDValue();
4013 // XXX - Should this flush denormals?
4014 const APFloat &Val = CFP->getValueAPF();
4015 APFloat One(Val.getSemantics(), "1.0");
4016 return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0));
4019 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
4020 DAGCombinerInfo &DCI) const {
4021 SelectionDAG &DAG = DCI.DAG;
4022 SDLoc DL(N);
4024 switch(N->getOpcode()) {
4025 default:
4026 break;
4027 case ISD::BITCAST: {
4028 EVT DestVT = N->getValueType(0);
4030 // Push casts through vector builds. This helps avoid emitting a large
4031 // number of copies when materializing floating point vector constants.
4033 // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) =>
4034 // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y))
4035 if (DestVT.isVector()) {
4036 SDValue Src = N->getOperand(0);
4037 if (Src.getOpcode() == ISD::BUILD_VECTOR) {
4038 EVT SrcVT = Src.getValueType();
4039 unsigned NElts = DestVT.getVectorNumElements();
4041 if (SrcVT.getVectorNumElements() == NElts) {
4042 EVT DestEltVT = DestVT.getVectorElementType();
4044 SmallVector<SDValue, 8> CastedElts;
4045 SDLoc SL(N);
4046 for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) {
4047 SDValue Elt = Src.getOperand(I);
4048 CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt));
4051 return DAG.getBuildVector(DestVT, SL, CastedElts);
4056 if (DestVT.getSizeInBits() != 64 || !DestVT.isVector())
4057 break;
4059 // Fold bitcasts of constants.
4061 // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k)
4062 // TODO: Generalize and move to DAGCombiner
4063 SDValue Src = N->getOperand(0);
4064 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) {
4065 SDLoc SL(N);
4066 uint64_t CVal = C->getZExtValue();
4067 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4068 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4069 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4070 return DAG.getNode(ISD::BITCAST, SL, DestVT, BV);
4073 if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) {
4074 const APInt &Val = C->getValueAPF().bitcastToAPInt();
4075 SDLoc SL(N);
4076 uint64_t CVal = Val.getZExtValue();
4077 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
4078 DAG.getConstant(Lo_32(CVal), SL, MVT::i32),
4079 DAG.getConstant(Hi_32(CVal), SL, MVT::i32));
4081 return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec);
4084 break;
4086 case ISD::SHL: {
4087 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4088 break;
4090 return performShlCombine(N, DCI);
4092 case ISD::SRL: {
4093 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4094 break;
4096 return performSrlCombine(N, DCI);
4098 case ISD::SRA: {
4099 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
4100 break;
4102 return performSraCombine(N, DCI);
4104 case ISD::TRUNCATE:
4105 return performTruncateCombine(N, DCI);
4106 case ISD::MUL:
4107 return performMulCombine(N, DCI);
4108 case ISD::MULHS:
4109 return performMulhsCombine(N, DCI);
4110 case ISD::MULHU:
4111 return performMulhuCombine(N, DCI);
4112 case AMDGPUISD::MUL_I24:
4113 case AMDGPUISD::MUL_U24:
4114 case AMDGPUISD::MULHI_I24:
4115 case AMDGPUISD::MULHI_U24:
4116 return simplifyMul24(N, DCI);
4117 case ISD::SELECT:
4118 return performSelectCombine(N, DCI);
4119 case ISD::FNEG:
4120 return performFNegCombine(N, DCI);
4121 case ISD::FABS:
4122 return performFAbsCombine(N, DCI);
4123 case AMDGPUISD::BFE_I32:
4124 case AMDGPUISD::BFE_U32: {
4125 assert(!N->getValueType(0).isVector() &&
4126 "Vector handling of BFE not implemented");
4127 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
4128 if (!Width)
4129 break;
4131 uint32_t WidthVal = Width->getZExtValue() & 0x1f;
4132 if (WidthVal == 0)
4133 return DAG.getConstant(0, DL, MVT::i32);
4135 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
4136 if (!Offset)
4137 break;
4139 SDValue BitsFrom = N->getOperand(0);
4140 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
4142 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
4144 if (OffsetVal == 0) {
4145 // This is already sign / zero extended, so try to fold away extra BFEs.
4146 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
4148 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
4149 if (OpSignBits >= SignBits)
4150 return BitsFrom;
4152 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
4153 if (Signed) {
4154 // This is a sign_extend_inreg. Replace it to take advantage of existing
4155 // DAG Combines. If not eliminated, we will match back to BFE during
4156 // selection.
4158 // TODO: The sext_inreg of extended types ends, although we can could
4159 // handle them in a single BFE.
4160 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
4161 DAG.getValueType(SmallVT));
4164 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
4167 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
4168 if (Signed) {
4169 return constantFoldBFE<int32_t>(DAG,
4170 CVal->getSExtValue(),
4171 OffsetVal,
4172 WidthVal,
4173 DL);
4176 return constantFoldBFE<uint32_t>(DAG,
4177 CVal->getZExtValue(),
4178 OffsetVal,
4179 WidthVal,
4180 DL);
4183 if ((OffsetVal + WidthVal) >= 32 &&
4184 !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) {
4185 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
4186 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
4187 BitsFrom, ShiftVal);
4190 if (BitsFrom.hasOneUse()) {
4191 APInt Demanded = APInt::getBitsSet(32,
4192 OffsetVal,
4193 OffsetVal + WidthVal);
4195 KnownBits Known;
4196 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4197 !DCI.isBeforeLegalizeOps());
4198 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4199 if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) ||
4200 TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) {
4201 DCI.CommitTargetLoweringOpt(TLO);
4205 break;
4207 case ISD::LOAD:
4208 return performLoadCombine(N, DCI);
4209 case ISD::STORE:
4210 return performStoreCombine(N, DCI);
4211 case AMDGPUISD::RCP:
4212 case AMDGPUISD::RCP_IFLAG:
4213 return performRcpCombine(N, DCI);
4214 case ISD::AssertZext:
4215 case ISD::AssertSext:
4216 return performAssertSZExtCombine(N, DCI);
4217 case ISD::INTRINSIC_WO_CHAIN:
4218 return performIntrinsicWOChainCombine(N, DCI);
4220 return SDValue();
4223 //===----------------------------------------------------------------------===//
4224 // Helper functions
4225 //===----------------------------------------------------------------------===//
4227 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4228 const TargetRegisterClass *RC,
4229 Register Reg, EVT VT,
4230 const SDLoc &SL,
4231 bool RawReg) const {
4232 MachineFunction &MF = DAG.getMachineFunction();
4233 MachineRegisterInfo &MRI = MF.getRegInfo();
4234 Register VReg;
4236 if (!MRI.isLiveIn(Reg)) {
4237 VReg = MRI.createVirtualRegister(RC);
4238 MRI.addLiveIn(Reg, VReg);
4239 } else {
4240 VReg = MRI.getLiveInVirtReg(Reg);
4243 if (RawReg)
4244 return DAG.getRegister(VReg, VT);
4246 return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT);
4249 // This may be called multiple times, and nothing prevents creating multiple
4250 // objects at the same offset. See if we already defined this object.
4251 static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size,
4252 int64_t Offset) {
4253 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
4254 if (MFI.getObjectOffset(I) == Offset) {
4255 assert(MFI.getObjectSize(I) == Size);
4256 return I;
4260 return MFI.CreateFixedObject(Size, Offset, true);
4263 SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG,
4264 EVT VT,
4265 const SDLoc &SL,
4266 int64_t Offset) const {
4267 MachineFunction &MF = DAG.getMachineFunction();
4268 MachineFrameInfo &MFI = MF.getFrameInfo();
4269 int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset);
4271 auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset);
4272 SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32);
4274 return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, Align(4),
4275 MachineMemOperand::MODereferenceable |
4276 MachineMemOperand::MOInvariant);
4279 SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG,
4280 const SDLoc &SL,
4281 SDValue Chain,
4282 SDValue ArgVal,
4283 int64_t Offset) const {
4284 MachineFunction &MF = DAG.getMachineFunction();
4285 MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset);
4286 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4288 SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32);
4289 // Stores to the argument stack area are relative to the stack pointer.
4290 SDValue SP =
4291 DAG.getCopyFromReg(Chain, SL, Info->getStackPtrOffsetReg(), MVT::i32);
4292 Ptr = DAG.getNode(ISD::ADD, SL, MVT::i32, SP, Ptr);
4293 SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, Align(4),
4294 MachineMemOperand::MODereferenceable);
4295 return Store;
4298 SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG,
4299 const TargetRegisterClass *RC,
4300 EVT VT, const SDLoc &SL,
4301 const ArgDescriptor &Arg) const {
4302 assert(Arg && "Attempting to load missing argument");
4304 SDValue V = Arg.isRegister() ?
4305 CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) :
4306 loadStackInputValue(DAG, VT, SL, Arg.getStackOffset());
4308 if (!Arg.isMasked())
4309 return V;
4311 unsigned Mask = Arg.getMask();
4312 unsigned Shift = countTrailingZeros<unsigned>(Mask);
4313 V = DAG.getNode(ISD::SRL, SL, VT, V,
4314 DAG.getShiftAmountConstant(Shift, VT, SL));
4315 return DAG.getNode(ISD::AND, SL, VT, V,
4316 DAG.getConstant(Mask >> Shift, SL, VT));
4319 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
4320 const MachineFunction &MF, const ImplicitParameter Param) const {
4321 const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
4322 const AMDGPUSubtarget &ST =
4323 AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction());
4324 unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction());
4325 const Align Alignment = ST.getAlignmentForImplicitArgPtr();
4326 uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) +
4327 ExplicitArgOffset;
4328 switch (Param) {
4329 case GRID_DIM:
4330 return ArgOffset;
4331 case GRID_OFFSET:
4332 return ArgOffset + 4;
4334 llvm_unreachable("unexpected implicit parameter type");
4337 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
4339 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
4340 switch ((AMDGPUISD::NodeType)Opcode) {
4341 case AMDGPUISD::FIRST_NUMBER: break;
4342 // AMDIL DAG nodes
4343 NODE_NAME_CASE(UMUL);
4344 NODE_NAME_CASE(BRANCH_COND);
4346 // AMDGPU DAG nodes
4347 NODE_NAME_CASE(IF)
4348 NODE_NAME_CASE(ELSE)
4349 NODE_NAME_CASE(LOOP)
4350 NODE_NAME_CASE(CALL)
4351 NODE_NAME_CASE(TC_RETURN)
4352 NODE_NAME_CASE(TRAP)
4353 NODE_NAME_CASE(RET_FLAG)
4354 NODE_NAME_CASE(RETURN_TO_EPILOG)
4355 NODE_NAME_CASE(ENDPGM)
4356 NODE_NAME_CASE(DWORDADDR)
4357 NODE_NAME_CASE(FRACT)
4358 NODE_NAME_CASE(SETCC)
4359 NODE_NAME_CASE(SETREG)
4360 NODE_NAME_CASE(DENORM_MODE)
4361 NODE_NAME_CASE(FMA_W_CHAIN)
4362 NODE_NAME_CASE(FMUL_W_CHAIN)
4363 NODE_NAME_CASE(CLAMP)
4364 NODE_NAME_CASE(COS_HW)
4365 NODE_NAME_CASE(SIN_HW)
4366 NODE_NAME_CASE(FMAX_LEGACY)
4367 NODE_NAME_CASE(FMIN_LEGACY)
4368 NODE_NAME_CASE(FMAX3)
4369 NODE_NAME_CASE(SMAX3)
4370 NODE_NAME_CASE(UMAX3)
4371 NODE_NAME_CASE(FMIN3)
4372 NODE_NAME_CASE(SMIN3)
4373 NODE_NAME_CASE(UMIN3)
4374 NODE_NAME_CASE(FMED3)
4375 NODE_NAME_CASE(SMED3)
4376 NODE_NAME_CASE(UMED3)
4377 NODE_NAME_CASE(FDOT2)
4378 NODE_NAME_CASE(URECIP)
4379 NODE_NAME_CASE(DIV_SCALE)
4380 NODE_NAME_CASE(DIV_FMAS)
4381 NODE_NAME_CASE(DIV_FIXUP)
4382 NODE_NAME_CASE(FMAD_FTZ)
4383 NODE_NAME_CASE(RCP)
4384 NODE_NAME_CASE(RSQ)
4385 NODE_NAME_CASE(RCP_LEGACY)
4386 NODE_NAME_CASE(RCP_IFLAG)
4387 NODE_NAME_CASE(FMUL_LEGACY)
4388 NODE_NAME_CASE(RSQ_CLAMP)
4389 NODE_NAME_CASE(LDEXP)
4390 NODE_NAME_CASE(FP_CLASS)
4391 NODE_NAME_CASE(DOT4)
4392 NODE_NAME_CASE(CARRY)
4393 NODE_NAME_CASE(BORROW)
4394 NODE_NAME_CASE(BFE_U32)
4395 NODE_NAME_CASE(BFE_I32)
4396 NODE_NAME_CASE(BFI)
4397 NODE_NAME_CASE(BFM)
4398 NODE_NAME_CASE(FFBH_U32)
4399 NODE_NAME_CASE(FFBH_I32)
4400 NODE_NAME_CASE(FFBL_B32)
4401 NODE_NAME_CASE(MUL_U24)
4402 NODE_NAME_CASE(MUL_I24)
4403 NODE_NAME_CASE(MULHI_U24)
4404 NODE_NAME_CASE(MULHI_I24)
4405 NODE_NAME_CASE(MAD_U24)
4406 NODE_NAME_CASE(MAD_I24)
4407 NODE_NAME_CASE(MAD_I64_I32)
4408 NODE_NAME_CASE(MAD_U64_U32)
4409 NODE_NAME_CASE(PERM)
4410 NODE_NAME_CASE(TEXTURE_FETCH)
4411 NODE_NAME_CASE(R600_EXPORT)
4412 NODE_NAME_CASE(CONST_ADDRESS)
4413 NODE_NAME_CASE(REGISTER_LOAD)
4414 NODE_NAME_CASE(REGISTER_STORE)
4415 NODE_NAME_CASE(SAMPLE)
4416 NODE_NAME_CASE(SAMPLEB)
4417 NODE_NAME_CASE(SAMPLED)
4418 NODE_NAME_CASE(SAMPLEL)
4419 NODE_NAME_CASE(CVT_F32_UBYTE0)
4420 NODE_NAME_CASE(CVT_F32_UBYTE1)
4421 NODE_NAME_CASE(CVT_F32_UBYTE2)
4422 NODE_NAME_CASE(CVT_F32_UBYTE3)
4423 NODE_NAME_CASE(CVT_PKRTZ_F16_F32)
4424 NODE_NAME_CASE(CVT_PKNORM_I16_F32)
4425 NODE_NAME_CASE(CVT_PKNORM_U16_F32)
4426 NODE_NAME_CASE(CVT_PK_I16_I32)
4427 NODE_NAME_CASE(CVT_PK_U16_U32)
4428 NODE_NAME_CASE(FP_TO_FP16)
4429 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
4430 NODE_NAME_CASE(CONST_DATA_PTR)
4431 NODE_NAME_CASE(PC_ADD_REL_OFFSET)
4432 NODE_NAME_CASE(LDS)
4433 NODE_NAME_CASE(DUMMY_CHAIN)
4434 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
4435 NODE_NAME_CASE(LOAD_D16_HI)
4436 NODE_NAME_CASE(LOAD_D16_LO)
4437 NODE_NAME_CASE(LOAD_D16_HI_I8)
4438 NODE_NAME_CASE(LOAD_D16_HI_U8)
4439 NODE_NAME_CASE(LOAD_D16_LO_I8)
4440 NODE_NAME_CASE(LOAD_D16_LO_U8)
4441 NODE_NAME_CASE(STORE_MSKOR)
4442 NODE_NAME_CASE(LOAD_CONSTANT)
4443 NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
4444 NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16)
4445 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT)
4446 NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16)
4447 NODE_NAME_CASE(DS_ORDERED_COUNT)
4448 NODE_NAME_CASE(ATOMIC_CMP_SWAP)
4449 NODE_NAME_CASE(ATOMIC_INC)
4450 NODE_NAME_CASE(ATOMIC_DEC)
4451 NODE_NAME_CASE(ATOMIC_LOAD_FMIN)
4452 NODE_NAME_CASE(ATOMIC_LOAD_FMAX)
4453 NODE_NAME_CASE(BUFFER_LOAD)
4454 NODE_NAME_CASE(BUFFER_LOAD_UBYTE)
4455 NODE_NAME_CASE(BUFFER_LOAD_USHORT)
4456 NODE_NAME_CASE(BUFFER_LOAD_BYTE)
4457 NODE_NAME_CASE(BUFFER_LOAD_SHORT)
4458 NODE_NAME_CASE(BUFFER_LOAD_FORMAT)
4459 NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16)
4460 NODE_NAME_CASE(SBUFFER_LOAD)
4461 NODE_NAME_CASE(BUFFER_STORE)
4462 NODE_NAME_CASE(BUFFER_STORE_BYTE)
4463 NODE_NAME_CASE(BUFFER_STORE_SHORT)
4464 NODE_NAME_CASE(BUFFER_STORE_FORMAT)
4465 NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16)
4466 NODE_NAME_CASE(BUFFER_ATOMIC_SWAP)
4467 NODE_NAME_CASE(BUFFER_ATOMIC_ADD)
4468 NODE_NAME_CASE(BUFFER_ATOMIC_SUB)
4469 NODE_NAME_CASE(BUFFER_ATOMIC_SMIN)
4470 NODE_NAME_CASE(BUFFER_ATOMIC_UMIN)
4471 NODE_NAME_CASE(BUFFER_ATOMIC_SMAX)
4472 NODE_NAME_CASE(BUFFER_ATOMIC_UMAX)
4473 NODE_NAME_CASE(BUFFER_ATOMIC_AND)
4474 NODE_NAME_CASE(BUFFER_ATOMIC_OR)
4475 NODE_NAME_CASE(BUFFER_ATOMIC_XOR)
4476 NODE_NAME_CASE(BUFFER_ATOMIC_INC)
4477 NODE_NAME_CASE(BUFFER_ATOMIC_DEC)
4478 NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP)
4479 NODE_NAME_CASE(BUFFER_ATOMIC_CSUB)
4480 NODE_NAME_CASE(BUFFER_ATOMIC_FADD)
4481 NODE_NAME_CASE(BUFFER_ATOMIC_FMIN)
4482 NODE_NAME_CASE(BUFFER_ATOMIC_FMAX)
4484 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
4486 return nullptr;
4489 SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand,
4490 SelectionDAG &DAG, int Enabled,
4491 int &RefinementSteps,
4492 bool &UseOneConstNR,
4493 bool Reciprocal) const {
4494 EVT VT = Operand.getValueType();
4496 if (VT == MVT::f32) {
4497 RefinementSteps = 0;
4498 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
4501 // TODO: There is also f64 rsq instruction, but the documentation is less
4502 // clear on its precision.
4504 return SDValue();
4507 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
4508 SelectionDAG &DAG, int Enabled,
4509 int &RefinementSteps) const {
4510 EVT VT = Operand.getValueType();
4512 if (VT == MVT::f32) {
4513 // Reciprocal, < 1 ulp error.
4515 // This reciprocal approximation converges to < 0.5 ulp error with one
4516 // newton rhapson performed with two fused multiple adds (FMAs).
4518 RefinementSteps = 0;
4519 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
4522 // TODO: There is also f64 rcp instruction, but the documentation is less
4523 // clear on its precision.
4525 return SDValue();
4528 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
4529 const SDValue Op, KnownBits &Known,
4530 const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const {
4532 Known.resetAll(); // Don't know anything.
4534 unsigned Opc = Op.getOpcode();
4536 switch (Opc) {
4537 default:
4538 break;
4539 case AMDGPUISD::CARRY:
4540 case AMDGPUISD::BORROW: {
4541 Known.Zero = APInt::getHighBitsSet(32, 31);
4542 break;
4545 case AMDGPUISD::BFE_I32:
4546 case AMDGPUISD::BFE_U32: {
4547 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4548 if (!CWidth)
4549 return;
4551 uint32_t Width = CWidth->getZExtValue() & 0x1f;
4553 if (Opc == AMDGPUISD::BFE_U32)
4554 Known.Zero = APInt::getHighBitsSet(32, 32 - Width);
4556 break;
4558 case AMDGPUISD::FP_TO_FP16: {
4559 unsigned BitWidth = Known.getBitWidth();
4561 // High bits are zero.
4562 Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16);
4563 break;
4565 case AMDGPUISD::MUL_U24:
4566 case AMDGPUISD::MUL_I24: {
4567 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4568 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4569 unsigned TrailZ = LHSKnown.countMinTrailingZeros() +
4570 RHSKnown.countMinTrailingZeros();
4571 Known.Zero.setLowBits(std::min(TrailZ, 32u));
4572 // Skip extra check if all bits are known zeros.
4573 if (TrailZ >= 32)
4574 break;
4576 // Truncate to 24 bits.
4577 LHSKnown = LHSKnown.trunc(24);
4578 RHSKnown = RHSKnown.trunc(24);
4580 if (Opc == AMDGPUISD::MUL_I24) {
4581 unsigned LHSValBits = 24 - LHSKnown.countMinSignBits();
4582 unsigned RHSValBits = 24 - RHSKnown.countMinSignBits();
4583 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4584 if (MaxValBits >= 32)
4585 break;
4586 bool LHSNegative = LHSKnown.isNegative();
4587 bool LHSNonNegative = LHSKnown.isNonNegative();
4588 bool LHSPositive = LHSKnown.isStrictlyPositive();
4589 bool RHSNegative = RHSKnown.isNegative();
4590 bool RHSNonNegative = RHSKnown.isNonNegative();
4591 bool RHSPositive = RHSKnown.isStrictlyPositive();
4593 if ((LHSNonNegative && RHSNonNegative) || (LHSNegative && RHSNegative))
4594 Known.Zero.setHighBits(32 - MaxValBits);
4595 else if ((LHSNegative && RHSPositive) || (LHSPositive && RHSNegative))
4596 Known.One.setHighBits(32 - MaxValBits);
4597 } else {
4598 unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros();
4599 unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros();
4600 unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u);
4601 if (MaxValBits >= 32)
4602 break;
4603 Known.Zero.setHighBits(32 - MaxValBits);
4605 break;
4607 case AMDGPUISD::PERM: {
4608 ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4609 if (!CMask)
4610 return;
4612 KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1);
4613 KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1);
4614 unsigned Sel = CMask->getZExtValue();
4616 for (unsigned I = 0; I < 32; I += 8) {
4617 unsigned SelBits = Sel & 0xff;
4618 if (SelBits < 4) {
4619 SelBits *= 8;
4620 Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4621 Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4622 } else if (SelBits < 7) {
4623 SelBits = (SelBits & 3) * 8;
4624 Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I;
4625 Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I;
4626 } else if (SelBits == 0x0c) {
4627 Known.Zero |= 0xFFull << I;
4628 } else if (SelBits > 0x0c) {
4629 Known.One |= 0xFFull << I;
4631 Sel >>= 8;
4633 break;
4635 case AMDGPUISD::BUFFER_LOAD_UBYTE: {
4636 Known.Zero.setHighBits(24);
4637 break;
4639 case AMDGPUISD::BUFFER_LOAD_USHORT: {
4640 Known.Zero.setHighBits(16);
4641 break;
4643 case AMDGPUISD::LDS: {
4644 auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode());
4645 Align Alignment = GA->getGlobal()->getPointerAlignment(DAG.getDataLayout());
4647 Known.Zero.setHighBits(16);
4648 Known.Zero.setLowBits(Log2(Alignment));
4649 break;
4651 case ISD::INTRINSIC_WO_CHAIN: {
4652 unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4653 switch (IID) {
4654 case Intrinsic::amdgcn_mbcnt_lo:
4655 case Intrinsic::amdgcn_mbcnt_hi: {
4656 const GCNSubtarget &ST =
4657 DAG.getMachineFunction().getSubtarget<GCNSubtarget>();
4658 // These return at most the wavefront size - 1.
4659 unsigned Size = Op.getValueType().getSizeInBits();
4660 Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2());
4661 break;
4663 default:
4664 break;
4670 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
4671 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4672 unsigned Depth) const {
4673 switch (Op.getOpcode()) {
4674 case AMDGPUISD::BFE_I32: {
4675 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4676 if (!Width)
4677 return 1;
4679 unsigned SignBits = 32 - Width->getZExtValue() + 1;
4680 if (!isNullConstant(Op.getOperand(1)))
4681 return SignBits;
4683 // TODO: Could probably figure something out with non-0 offsets.
4684 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
4685 return std::max(SignBits, Op0SignBits);
4688 case AMDGPUISD::BFE_U32: {
4689 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
4690 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
4693 case AMDGPUISD::CARRY:
4694 case AMDGPUISD::BORROW:
4695 return 31;
4696 case AMDGPUISD::BUFFER_LOAD_BYTE:
4697 return 25;
4698 case AMDGPUISD::BUFFER_LOAD_SHORT:
4699 return 17;
4700 case AMDGPUISD::BUFFER_LOAD_UBYTE:
4701 return 24;
4702 case AMDGPUISD::BUFFER_LOAD_USHORT:
4703 return 16;
4704 case AMDGPUISD::FP_TO_FP16:
4705 return 16;
4706 default:
4707 return 1;
4711 unsigned AMDGPUTargetLowering::computeNumSignBitsForTargetInstr(
4712 GISelKnownBits &Analysis, Register R,
4713 const APInt &DemandedElts, const MachineRegisterInfo &MRI,
4714 unsigned Depth) const {
4715 const MachineInstr *MI = MRI.getVRegDef(R);
4716 if (!MI)
4717 return 1;
4719 // TODO: Check range metadata on MMO.
4720 switch (MI->getOpcode()) {
4721 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SBYTE:
4722 return 25;
4723 case AMDGPU::G_AMDGPU_BUFFER_LOAD_SSHORT:
4724 return 17;
4725 case AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE:
4726 return 24;
4727 case AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT:
4728 return 16;
4729 default:
4730 return 1;
4734 bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
4735 const SelectionDAG &DAG,
4736 bool SNaN,
4737 unsigned Depth) const {
4738 unsigned Opcode = Op.getOpcode();
4739 switch (Opcode) {
4740 case AMDGPUISD::FMIN_LEGACY:
4741 case AMDGPUISD::FMAX_LEGACY: {
4742 if (SNaN)
4743 return true;
4745 // TODO: Can check no nans on one of the operands for each one, but which
4746 // one?
4747 return false;
4749 case AMDGPUISD::FMUL_LEGACY:
4750 case AMDGPUISD::CVT_PKRTZ_F16_F32: {
4751 if (SNaN)
4752 return true;
4753 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4754 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4756 case AMDGPUISD::FMED3:
4757 case AMDGPUISD::FMIN3:
4758 case AMDGPUISD::FMAX3:
4759 case AMDGPUISD::FMAD_FTZ: {
4760 if (SNaN)
4761 return true;
4762 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) &&
4763 DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4764 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4766 case AMDGPUISD::CVT_F32_UBYTE0:
4767 case AMDGPUISD::CVT_F32_UBYTE1:
4768 case AMDGPUISD::CVT_F32_UBYTE2:
4769 case AMDGPUISD::CVT_F32_UBYTE3:
4770 return true;
4772 case AMDGPUISD::RCP:
4773 case AMDGPUISD::RSQ:
4774 case AMDGPUISD::RCP_LEGACY:
4775 case AMDGPUISD::RSQ_CLAMP: {
4776 if (SNaN)
4777 return true;
4779 // TODO: Need is known positive check.
4780 return false;
4782 case AMDGPUISD::LDEXP:
4783 case AMDGPUISD::FRACT: {
4784 if (SNaN)
4785 return true;
4786 return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1);
4788 case AMDGPUISD::DIV_SCALE:
4789 case AMDGPUISD::DIV_FMAS:
4790 case AMDGPUISD::DIV_FIXUP:
4791 // TODO: Refine on operands.
4792 return SNaN;
4793 case AMDGPUISD::SIN_HW:
4794 case AMDGPUISD::COS_HW: {
4795 // TODO: Need check for infinity
4796 return SNaN;
4798 case ISD::INTRINSIC_WO_CHAIN: {
4799 unsigned IntrinsicID
4800 = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
4801 // TODO: Handle more intrinsics
4802 switch (IntrinsicID) {
4803 case Intrinsic::amdgcn_cubeid:
4804 return true;
4806 case Intrinsic::amdgcn_frexp_mant: {
4807 if (SNaN)
4808 return true;
4809 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1);
4811 case Intrinsic::amdgcn_cvt_pkrtz: {
4812 if (SNaN)
4813 return true;
4814 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4815 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1);
4817 case Intrinsic::amdgcn_rcp:
4818 case Intrinsic::amdgcn_rsq:
4819 case Intrinsic::amdgcn_rcp_legacy:
4820 case Intrinsic::amdgcn_rsq_legacy:
4821 case Intrinsic::amdgcn_rsq_clamp: {
4822 if (SNaN)
4823 return true;
4825 // TODO: Need is known positive check.
4826 return false;
4828 case Intrinsic::amdgcn_trig_preop:
4829 case Intrinsic::amdgcn_fdot2:
4830 // TODO: Refine on operand
4831 return SNaN;
4832 case Intrinsic::amdgcn_fma_legacy:
4833 if (SNaN)
4834 return true;
4835 return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) &&
4836 DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1) &&
4837 DAG.isKnownNeverNaN(Op.getOperand(3), SNaN, Depth + 1);
4838 default:
4839 return false;
4842 default:
4843 return false;
4847 TargetLowering::AtomicExpansionKind
4848 AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const {
4849 switch (RMW->getOperation()) {
4850 case AtomicRMWInst::Nand:
4851 case AtomicRMWInst::FAdd:
4852 case AtomicRMWInst::FSub:
4853 return AtomicExpansionKind::CmpXChg;
4854 default:
4855 return AtomicExpansionKind::None;
4859 bool AMDGPUTargetLowering::isConstantUnsignedBitfieldExtactLegal(
4860 unsigned Opc, LLT Ty1, LLT Ty2) const {
4861 return Ty1 == Ty2 && (Ty1 == LLT::scalar(32) || Ty1 == LLT::scalar(64));