[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AMDGPU / AMDGPUTargetMachine.cpp
blob045e1d5414907978b4e0b7dc67b1b91d2bea8865
1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// The AMDGPU target machine contains all of the hardware specific
11 /// information needed to emit code for R600 and SI GPUs.
13 //===----------------------------------------------------------------------===//
15 #include "AMDGPUTargetMachine.h"
16 #include "AMDGPU.h"
17 #include "AMDGPUAliasAnalysis.h"
18 #include "AMDGPUExportClustering.h"
19 #include "AMDGPUMacroFusion.h"
20 #include "AMDGPUTargetObjectFile.h"
21 #include "AMDGPUTargetTransformInfo.h"
22 #include "GCNIterativeScheduler.h"
23 #include "GCNSchedStrategy.h"
24 #include "R600MachineScheduler.h"
25 #include "SIMachineFunctionInfo.h"
26 #include "SIMachineScheduler.h"
27 #include "TargetInfo/AMDGPUTargetInfo.h"
28 #include "llvm/Analysis/CGSCCPassManager.h"
29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h"
30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
31 #include "llvm/CodeGen/GlobalISel/Legalizer.h"
32 #include "llvm/CodeGen/GlobalISel/Localizer.h"
33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
34 #include "llvm/CodeGen/MIRParser/MIParser.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegAllocRegistry.h"
37 #include "llvm/CodeGen/TargetPassConfig.h"
38 #include "llvm/IR/LegacyPassManager.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/InitializePasses.h"
41 #include "llvm/Passes/PassBuilder.h"
42 #include "llvm/Support/TargetRegistry.h"
43 #include "llvm/Transforms/IPO.h"
44 #include "llvm/Transforms/IPO/AlwaysInliner.h"
45 #include "llvm/Transforms/IPO/GlobalDCE.h"
46 #include "llvm/Transforms/IPO/Internalize.h"
47 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
48 #include "llvm/Transforms/Scalar.h"
49 #include "llvm/Transforms/Scalar/GVN.h"
50 #include "llvm/Transforms/Scalar/InferAddressSpaces.h"
51 #include "llvm/Transforms/Utils.h"
52 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
53 #include "llvm/Transforms/Vectorize.h"
55 using namespace llvm;
57 namespace {
58 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
59 public:
60 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
61 : RegisterRegAllocBase(N, D, C) {}
64 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
65 public:
66 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
67 : RegisterRegAllocBase(N, D, C) {}
70 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
71 const TargetRegisterClass &RC) {
72 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
75 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
76 const TargetRegisterClass &RC) {
77 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
81 /// -{sgpr|vgpr}-regalloc=... command line option.
82 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
84 /// A dummy default pass factory indicates whether the register allocator is
85 /// overridden on the command line.
86 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
87 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
89 static SGPRRegisterRegAlloc
90 defaultSGPRRegAlloc("default",
91 "pick SGPR register allocator based on -O option",
92 useDefaultRegisterAllocator);
94 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
95 RegisterPassParser<SGPRRegisterRegAlloc>>
96 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
97 cl::desc("Register allocator to use for SGPRs"));
99 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
100 RegisterPassParser<VGPRRegisterRegAlloc>>
101 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
102 cl::desc("Register allocator to use for VGPRs"));
105 static void initializeDefaultSGPRRegisterAllocatorOnce() {
106 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
108 if (!Ctor) {
109 Ctor = SGPRRegAlloc;
110 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
114 static void initializeDefaultVGPRRegisterAllocatorOnce() {
115 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
117 if (!Ctor) {
118 Ctor = VGPRRegAlloc;
119 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
123 static FunctionPass *createBasicSGPRRegisterAllocator() {
124 return createBasicRegisterAllocator(onlyAllocateSGPRs);
127 static FunctionPass *createGreedySGPRRegisterAllocator() {
128 return createGreedyRegisterAllocator(onlyAllocateSGPRs);
131 static FunctionPass *createFastSGPRRegisterAllocator() {
132 return createFastRegisterAllocator(onlyAllocateSGPRs, false);
135 static FunctionPass *createBasicVGPRRegisterAllocator() {
136 return createBasicRegisterAllocator(onlyAllocateVGPRs);
139 static FunctionPass *createGreedyVGPRRegisterAllocator() {
140 return createGreedyRegisterAllocator(onlyAllocateVGPRs);
143 static FunctionPass *createFastVGPRRegisterAllocator() {
144 return createFastRegisterAllocator(onlyAllocateVGPRs, true);
147 static SGPRRegisterRegAlloc basicRegAllocSGPR(
148 "basic", "basic register allocator", createBasicSGPRRegisterAllocator);
149 static SGPRRegisterRegAlloc greedyRegAllocSGPR(
150 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
152 static SGPRRegisterRegAlloc fastRegAllocSGPR(
153 "fast", "fast register allocator", createFastSGPRRegisterAllocator);
156 static VGPRRegisterRegAlloc basicRegAllocVGPR(
157 "basic", "basic register allocator", createBasicVGPRRegisterAllocator);
158 static VGPRRegisterRegAlloc greedyRegAllocVGPR(
159 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
161 static VGPRRegisterRegAlloc fastRegAllocVGPR(
162 "fast", "fast register allocator", createFastVGPRRegisterAllocator);
166 static cl::opt<bool> EnableR600StructurizeCFG(
167 "r600-ir-structurize",
168 cl::desc("Use StructurizeCFG IR pass"),
169 cl::init(true));
171 static cl::opt<bool> EnableSROA(
172 "amdgpu-sroa",
173 cl::desc("Run SROA after promote alloca pass"),
174 cl::ReallyHidden,
175 cl::init(true));
177 static cl::opt<bool>
178 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
179 cl::desc("Run early if-conversion"),
180 cl::init(false));
182 static cl::opt<bool>
183 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
184 cl::desc("Run pre-RA exec mask optimizations"),
185 cl::init(true));
187 static cl::opt<bool> EnableR600IfConvert(
188 "r600-if-convert",
189 cl::desc("Use if conversion pass"),
190 cl::ReallyHidden,
191 cl::init(true));
193 // Option to disable vectorizer for tests.
194 static cl::opt<bool> EnableLoadStoreVectorizer(
195 "amdgpu-load-store-vectorizer",
196 cl::desc("Enable load store vectorizer"),
197 cl::init(true),
198 cl::Hidden);
200 // Option to control global loads scalarization
201 static cl::opt<bool> ScalarizeGlobal(
202 "amdgpu-scalarize-global-loads",
203 cl::desc("Enable global load scalarization"),
204 cl::init(true),
205 cl::Hidden);
207 // Option to run internalize pass.
208 static cl::opt<bool> InternalizeSymbols(
209 "amdgpu-internalize-symbols",
210 cl::desc("Enable elimination of non-kernel functions and unused globals"),
211 cl::init(false),
212 cl::Hidden);
214 // Option to inline all early.
215 static cl::opt<bool> EarlyInlineAll(
216 "amdgpu-early-inline-all",
217 cl::desc("Inline all functions early"),
218 cl::init(false),
219 cl::Hidden);
221 static cl::opt<bool> EnableSDWAPeephole(
222 "amdgpu-sdwa-peephole",
223 cl::desc("Enable SDWA peepholer"),
224 cl::init(true));
226 static cl::opt<bool> EnableDPPCombine(
227 "amdgpu-dpp-combine",
228 cl::desc("Enable DPP combiner"),
229 cl::init(true));
231 // Enable address space based alias analysis
232 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
233 cl::desc("Enable AMDGPU Alias Analysis"),
234 cl::init(true));
236 // Option to run late CFG structurizer
237 static cl::opt<bool, true> LateCFGStructurize(
238 "amdgpu-late-structurize",
239 cl::desc("Enable late CFG structurization"),
240 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
241 cl::Hidden);
243 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
244 "amdgpu-function-calls",
245 cl::desc("Enable AMDGPU function call support"),
246 cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
247 cl::init(true),
248 cl::Hidden);
250 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
251 "amdgpu-fixed-function-abi",
252 cl::desc("Enable all implicit function arguments"),
253 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
254 cl::init(false),
255 cl::Hidden);
257 // Enable lib calls simplifications
258 static cl::opt<bool> EnableLibCallSimplify(
259 "amdgpu-simplify-libcall",
260 cl::desc("Enable amdgpu library simplifications"),
261 cl::init(true),
262 cl::Hidden);
264 static cl::opt<bool> EnableLowerKernelArguments(
265 "amdgpu-ir-lower-kernel-arguments",
266 cl::desc("Lower kernel argument loads in IR pass"),
267 cl::init(true),
268 cl::Hidden);
270 static cl::opt<bool> EnableRegReassign(
271 "amdgpu-reassign-regs",
272 cl::desc("Enable register reassign optimizations on gfx10+"),
273 cl::init(true),
274 cl::Hidden);
276 static cl::opt<bool> OptVGPRLiveRange(
277 "amdgpu-opt-vgpr-liverange",
278 cl::desc("Enable VGPR liverange optimizations for if-else structure"),
279 cl::init(true), cl::Hidden);
281 // Enable atomic optimization
282 static cl::opt<bool> EnableAtomicOptimizations(
283 "amdgpu-atomic-optimizations",
284 cl::desc("Enable atomic optimizations"),
285 cl::init(false),
286 cl::Hidden);
288 // Enable Mode register optimization
289 static cl::opt<bool> EnableSIModeRegisterPass(
290 "amdgpu-mode-register",
291 cl::desc("Enable mode register pass"),
292 cl::init(true),
293 cl::Hidden);
295 // Option is used in lit tests to prevent deadcoding of patterns inspected.
296 static cl::opt<bool>
297 EnableDCEInRA("amdgpu-dce-in-ra",
298 cl::init(true), cl::Hidden,
299 cl::desc("Enable machine DCE inside regalloc"));
301 static cl::opt<bool> EnableScalarIRPasses(
302 "amdgpu-scalar-ir-passes",
303 cl::desc("Enable scalar IR passes"),
304 cl::init(true),
305 cl::Hidden);
307 static cl::opt<bool> EnableStructurizerWorkarounds(
308 "amdgpu-enable-structurizer-workarounds",
309 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
310 cl::Hidden);
312 static cl::opt<bool> EnableLDSReplaceWithPointer(
313 "amdgpu-enable-lds-replace-with-pointer",
314 cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
315 cl::Hidden);
317 static cl::opt<bool, true> EnableLowerModuleLDS(
318 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
319 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
320 cl::Hidden);
322 static cl::opt<bool> EnablePreRAOptimizations(
323 "amdgpu-enable-pre-ra-optimizations",
324 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
325 cl::Hidden);
327 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
328 // Register the target
329 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
330 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
332 PassRegistry *PR = PassRegistry::getPassRegistry();
333 initializeR600ClauseMergePassPass(*PR);
334 initializeR600ControlFlowFinalizerPass(*PR);
335 initializeR600PacketizerPass(*PR);
336 initializeR600ExpandSpecialInstrsPassPass(*PR);
337 initializeR600VectorRegMergerPass(*PR);
338 initializeGlobalISel(*PR);
339 initializeAMDGPUDAGToDAGISelPass(*PR);
340 initializeGCNDPPCombinePass(*PR);
341 initializeSILowerI1CopiesPass(*PR);
342 initializeSILowerSGPRSpillsPass(*PR);
343 initializeSIFixSGPRCopiesPass(*PR);
344 initializeSIFixVGPRCopiesPass(*PR);
345 initializeSIFoldOperandsPass(*PR);
346 initializeSIPeepholeSDWAPass(*PR);
347 initializeSIShrinkInstructionsPass(*PR);
348 initializeSIOptimizeExecMaskingPreRAPass(*PR);
349 initializeSIOptimizeVGPRLiveRangePass(*PR);
350 initializeSILoadStoreOptimizerPass(*PR);
351 initializeAMDGPUFixFunctionBitcastsPass(*PR);
352 initializeAMDGPUCtorDtorLoweringPass(*PR);
353 initializeAMDGPUAlwaysInlinePass(*PR);
354 initializeAMDGPUAttributorPass(*PR);
355 initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
356 initializeAMDGPUAnnotateUniformValuesPass(*PR);
357 initializeAMDGPUArgumentUsageInfoPass(*PR);
358 initializeAMDGPUAtomicOptimizerPass(*PR);
359 initializeAMDGPULowerKernelArgumentsPass(*PR);
360 initializeAMDGPULowerKernelAttributesPass(*PR);
361 initializeAMDGPULowerIntrinsicsPass(*PR);
362 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
363 initializeAMDGPUPostLegalizerCombinerPass(*PR);
364 initializeAMDGPUPreLegalizerCombinerPass(*PR);
365 initializeAMDGPURegBankCombinerPass(*PR);
366 initializeAMDGPUPromoteAllocaPass(*PR);
367 initializeAMDGPUPromoteAllocaToVectorPass(*PR);
368 initializeAMDGPUCodeGenPreparePass(*PR);
369 initializeAMDGPULateCodeGenPreparePass(*PR);
370 initializeAMDGPUPropagateAttributesEarlyPass(*PR);
371 initializeAMDGPUPropagateAttributesLatePass(*PR);
372 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
373 initializeAMDGPULowerModuleLDSPass(*PR);
374 initializeAMDGPURewriteOutArgumentsPass(*PR);
375 initializeAMDGPUUnifyMetadataPass(*PR);
376 initializeSIAnnotateControlFlowPass(*PR);
377 initializeSIInsertHardClausesPass(*PR);
378 initializeSIInsertWaitcntsPass(*PR);
379 initializeSIModeRegisterPass(*PR);
380 initializeSIWholeQuadModePass(*PR);
381 initializeSILowerControlFlowPass(*PR);
382 initializeSIPreEmitPeepholePass(*PR);
383 initializeSILateBranchLoweringPass(*PR);
384 initializeSIMemoryLegalizerPass(*PR);
385 initializeSIOptimizeExecMaskingPass(*PR);
386 initializeSIPreAllocateWWMRegsPass(*PR);
387 initializeSIFormMemoryClausesPass(*PR);
388 initializeSIPostRABundlerPass(*PR);
389 initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
390 initializeAMDGPUAAWrapperPassPass(*PR);
391 initializeAMDGPUExternalAAWrapperPass(*PR);
392 initializeAMDGPUUseNativeCallsPass(*PR);
393 initializeAMDGPUSimplifyLibCallsPass(*PR);
394 initializeAMDGPUPrintfRuntimeBindingPass(*PR);
395 initializeAMDGPUResourceUsageAnalysisPass(*PR);
396 initializeGCNNSAReassignPass(*PR);
397 initializeGCNPreRAOptimizationsPass(*PR);
400 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
401 return std::make_unique<AMDGPUTargetObjectFile>();
404 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
405 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
408 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
409 return new SIScheduleDAGMI(C);
412 static ScheduleDAGInstrs *
413 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
414 ScheduleDAGMILive *DAG =
415 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
416 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
417 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
418 DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
419 return DAG;
422 static ScheduleDAGInstrs *
423 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
424 auto DAG = new GCNIterativeScheduler(C,
425 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
426 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
427 return DAG;
430 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
431 return new GCNIterativeScheduler(C,
432 GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
435 static ScheduleDAGInstrs *
436 createIterativeILPMachineScheduler(MachineSchedContext *C) {
437 auto DAG = new GCNIterativeScheduler(C,
438 GCNIterativeScheduler::SCHEDULE_ILP);
439 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
440 DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
441 return DAG;
444 static MachineSchedRegistry
445 R600SchedRegistry("r600", "Run R600's custom scheduler",
446 createR600MachineScheduler);
448 static MachineSchedRegistry
449 SISchedRegistry("si", "Run SI's custom scheduler",
450 createSIMachineScheduler);
452 static MachineSchedRegistry
453 GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
454 "Run GCN scheduler to maximize occupancy",
455 createGCNMaxOccupancyMachineScheduler);
457 static MachineSchedRegistry
458 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
459 "Run GCN scheduler to maximize occupancy (experimental)",
460 createIterativeGCNMaxOccupancyMachineScheduler);
462 static MachineSchedRegistry
463 GCNMinRegSchedRegistry("gcn-minreg",
464 "Run GCN iterative scheduler for minimal register usage (experimental)",
465 createMinRegScheduler);
467 static MachineSchedRegistry
468 GCNILPSchedRegistry("gcn-ilp",
469 "Run GCN iterative scheduler for ILP scheduling (experimental)",
470 createIterativeILPMachineScheduler);
472 static StringRef computeDataLayout(const Triple &TT) {
473 if (TT.getArch() == Triple::r600) {
474 // 32-bit pointers.
475 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
476 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
479 // 32-bit private, local, and region pointers. 64-bit global, constant and
480 // flat, non-integral buffer fat pointers.
481 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
482 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
483 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
484 "-ni:7";
487 LLVM_READNONE
488 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
489 if (!GPU.empty())
490 return GPU;
492 // Need to default to a target with flat support for HSA.
493 if (TT.getArch() == Triple::amdgcn)
494 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
496 return "r600";
499 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
500 // The AMDGPU toolchain only supports generating shared objects, so we
501 // must always use PIC.
502 return Reloc::PIC_;
505 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
506 StringRef CPU, StringRef FS,
507 TargetOptions Options,
508 Optional<Reloc::Model> RM,
509 Optional<CodeModel::Model> CM,
510 CodeGenOpt::Level OptLevel)
511 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
512 FS, Options, getEffectiveRelocModel(RM),
513 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
514 TLOF(createTLOF(getTargetTriple())) {
515 initAsmInfo();
516 if (TT.getArch() == Triple::amdgcn) {
517 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
518 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
519 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
520 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
524 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
525 bool AMDGPUTargetMachine::EnableFunctionCalls = false;
526 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
527 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
529 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
531 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
532 Attribute GPUAttr = F.getFnAttribute("target-cpu");
533 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
536 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
537 Attribute FSAttr = F.getFnAttribute("target-features");
539 return FSAttr.isValid() ? FSAttr.getValueAsString()
540 : getTargetFeatureString();
543 /// Predicate for Internalize pass.
544 static bool mustPreserveGV(const GlobalValue &GV) {
545 if (const Function *F = dyn_cast<Function>(&GV))
546 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
548 GV.removeDeadConstantUsers();
549 return !GV.use_empty();
552 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
553 Builder.DivergentTarget = true;
555 bool EnableOpt = getOptLevel() > CodeGenOpt::None;
556 bool Internalize = InternalizeSymbols;
557 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
558 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
559 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
561 if (EnableFunctionCalls) {
562 delete Builder.Inliner;
563 Builder.Inliner = createFunctionInliningPass();
566 Builder.addExtension(
567 PassManagerBuilder::EP_ModuleOptimizerEarly,
568 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
569 legacy::PassManagerBase &PM) {
570 if (AMDGPUAA) {
571 PM.add(createAMDGPUAAWrapperPass());
572 PM.add(createAMDGPUExternalAAWrapperPass());
574 PM.add(createAMDGPUUnifyMetadataPass());
575 PM.add(createAMDGPUPrintfRuntimeBinding());
576 if (Internalize)
577 PM.add(createInternalizePass(mustPreserveGV));
578 PM.add(createAMDGPUPropagateAttributesLatePass(this));
579 if (Internalize)
580 PM.add(createGlobalDCEPass());
581 if (EarlyInline)
582 PM.add(createAMDGPUAlwaysInlinePass(false));
585 Builder.addExtension(
586 PassManagerBuilder::EP_EarlyAsPossible,
587 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
588 legacy::PassManagerBase &PM) {
589 if (AMDGPUAA) {
590 PM.add(createAMDGPUAAWrapperPass());
591 PM.add(createAMDGPUExternalAAWrapperPass());
593 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
594 PM.add(llvm::createAMDGPUUseNativeCallsPass());
595 if (LibCallSimplify)
596 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
599 Builder.addExtension(
600 PassManagerBuilder::EP_CGSCCOptimizerLate,
601 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
602 // Add infer address spaces pass to the opt pipeline after inlining
603 // but before SROA to increase SROA opportunities.
604 PM.add(createInferAddressSpacesPass());
606 // This should run after inlining to have any chance of doing anything,
607 // and before other cleanup optimizations.
608 PM.add(createAMDGPULowerKernelAttributesPass());
610 // Promote alloca to vector before SROA and loop unroll. If we manage
611 // to eliminate allocas before unroll we may choose to unroll less.
612 if (EnableOpt)
613 PM.add(createAMDGPUPromoteAllocaToVector());
617 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
618 AAM.registerFunctionAnalysis<AMDGPUAA>();
621 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
622 PB.registerPipelineParsingCallback(
623 [this](StringRef PassName, ModulePassManager &PM,
624 ArrayRef<PassBuilder::PipelineElement>) {
625 if (PassName == "amdgpu-propagate-attributes-late") {
626 PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
627 return true;
629 if (PassName == "amdgpu-unify-metadata") {
630 PM.addPass(AMDGPUUnifyMetadataPass());
631 return true;
633 if (PassName == "amdgpu-printf-runtime-binding") {
634 PM.addPass(AMDGPUPrintfRuntimeBindingPass());
635 return true;
637 if (PassName == "amdgpu-always-inline") {
638 PM.addPass(AMDGPUAlwaysInlinePass());
639 return true;
641 if (PassName == "amdgpu-replace-lds-use-with-pointer") {
642 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
643 return true;
645 if (PassName == "amdgpu-lower-module-lds") {
646 PM.addPass(AMDGPULowerModuleLDSPass());
647 return true;
649 return false;
651 PB.registerPipelineParsingCallback(
652 [this](StringRef PassName, FunctionPassManager &PM,
653 ArrayRef<PassBuilder::PipelineElement>) {
654 if (PassName == "amdgpu-simplifylib") {
655 PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
656 return true;
658 if (PassName == "amdgpu-usenative") {
659 PM.addPass(AMDGPUUseNativeCallsPass());
660 return true;
662 if (PassName == "amdgpu-promote-alloca") {
663 PM.addPass(AMDGPUPromoteAllocaPass(*this));
664 return true;
666 if (PassName == "amdgpu-promote-alloca-to-vector") {
667 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
668 return true;
670 if (PassName == "amdgpu-lower-kernel-attributes") {
671 PM.addPass(AMDGPULowerKernelAttributesPass());
672 return true;
674 if (PassName == "amdgpu-propagate-attributes-early") {
675 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
676 return true;
678 return false;
681 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
682 FAM.registerPass([&] { return AMDGPUAA(); });
685 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
686 if (AAName == "amdgpu-aa") {
687 AAM.registerFunctionAnalysis<AMDGPUAA>();
688 return true;
690 return false;
693 PB.registerPipelineStartEPCallback(
694 [this](ModulePassManager &PM, OptimizationLevel Level) {
695 FunctionPassManager FPM;
696 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
697 FPM.addPass(AMDGPUUseNativeCallsPass());
698 if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
699 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
700 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
703 PB.registerPipelineEarlySimplificationEPCallback(
704 [this](ModulePassManager &PM, OptimizationLevel Level) {
705 if (Level == OptimizationLevel::O0)
706 return;
708 PM.addPass(AMDGPUUnifyMetadataPass());
709 PM.addPass(AMDGPUPrintfRuntimeBindingPass());
711 if (InternalizeSymbols) {
712 PM.addPass(InternalizePass(mustPreserveGV));
714 PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
715 if (InternalizeSymbols) {
716 PM.addPass(GlobalDCEPass());
718 if (EarlyInlineAll && !EnableFunctionCalls)
719 PM.addPass(AMDGPUAlwaysInlinePass());
722 PB.registerCGSCCOptimizerLateEPCallback(
723 [this](CGSCCPassManager &PM, OptimizationLevel Level) {
724 if (Level == OptimizationLevel::O0)
725 return;
727 FunctionPassManager FPM;
729 // Add infer address spaces pass to the opt pipeline after inlining
730 // but before SROA to increase SROA opportunities.
731 FPM.addPass(InferAddressSpacesPass());
733 // This should run after inlining to have any chance of doing
734 // anything, and before other cleanup optimizations.
735 FPM.addPass(AMDGPULowerKernelAttributesPass());
737 if (Level != OptimizationLevel::O0) {
738 // Promote alloca to vector before SROA and loop unroll. If we
739 // manage to eliminate allocas before unroll we may choose to unroll
740 // less.
741 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
744 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
748 //===----------------------------------------------------------------------===//
749 // R600 Target Machine (R600 -> Cayman)
750 //===----------------------------------------------------------------------===//
752 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
753 StringRef CPU, StringRef FS,
754 TargetOptions Options,
755 Optional<Reloc::Model> RM,
756 Optional<CodeModel::Model> CM,
757 CodeGenOpt::Level OL, bool JIT)
758 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
759 setRequiresStructuredCFG(true);
761 // Override the default since calls aren't supported for r600.
762 if (EnableFunctionCalls &&
763 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
764 EnableFunctionCalls = false;
767 const R600Subtarget *R600TargetMachine::getSubtargetImpl(
768 const Function &F) const {
769 StringRef GPU = getGPUName(F);
770 StringRef FS = getFeatureString(F);
772 SmallString<128> SubtargetKey(GPU);
773 SubtargetKey.append(FS);
775 auto &I = SubtargetMap[SubtargetKey];
776 if (!I) {
777 // This needs to be done before we create a new subtarget since any
778 // creation will depend on the TM and the code generation flags on the
779 // function that reside in TargetOptions.
780 resetTargetOptions(F);
781 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
784 return I.get();
787 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
788 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
789 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
790 AddrSpace == AMDGPUAS::REGION_ADDRESS)
791 ? -1
792 : 0;
795 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
796 unsigned DestAS) const {
797 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
798 AMDGPU::isFlatGlobalAddrSpace(DestAS);
801 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
802 const auto *LD = dyn_cast<LoadInst>(V);
803 if (!LD)
804 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
806 // It must be a generic pointer loaded.
807 assert(V->getType()->isPointerTy() &&
808 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
810 const auto *Ptr = LD->getPointerOperand();
811 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
812 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
813 // For a generic pointer loaded from the constant memory, it could be assumed
814 // as a global pointer since the constant memory is only populated on the
815 // host side. As implied by the offload programming model, only global
816 // pointers could be referenced on the host side.
817 return AMDGPUAS::GLOBAL_ADDRESS;
820 TargetTransformInfo
821 R600TargetMachine::getTargetTransformInfo(const Function &F) {
822 return TargetTransformInfo(R600TTIImpl(this, F));
825 //===----------------------------------------------------------------------===//
826 // GCN Target Machine (SI+)
827 //===----------------------------------------------------------------------===//
829 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
830 StringRef CPU, StringRef FS,
831 TargetOptions Options,
832 Optional<Reloc::Model> RM,
833 Optional<CodeModel::Model> CM,
834 CodeGenOpt::Level OL, bool JIT)
835 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
837 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
838 StringRef GPU = getGPUName(F);
839 StringRef FS = getFeatureString(F);
841 SmallString<128> SubtargetKey(GPU);
842 SubtargetKey.append(FS);
844 auto &I = SubtargetMap[SubtargetKey];
845 if (!I) {
846 // This needs to be done before we create a new subtarget since any
847 // creation will depend on the TM and the code generation flags on the
848 // function that reside in TargetOptions.
849 resetTargetOptions(F);
850 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
853 I->setScalarizeGlobalBehavior(ScalarizeGlobal);
855 return I.get();
858 TargetTransformInfo
859 GCNTargetMachine::getTargetTransformInfo(const Function &F) {
860 return TargetTransformInfo(GCNTTIImpl(this, F));
863 //===----------------------------------------------------------------------===//
864 // AMDGPU Pass Setup
865 //===----------------------------------------------------------------------===//
867 namespace {
869 class AMDGPUPassConfig : public TargetPassConfig {
870 public:
871 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
872 : TargetPassConfig(TM, PM) {
873 // Exceptions and StackMaps are not supported, so these passes will never do
874 // anything.
875 disablePass(&StackMapLivenessID);
876 disablePass(&FuncletLayoutID);
877 // Garbage collection is not supported.
878 disablePass(&GCLoweringID);
879 disablePass(&ShadowStackGCLoweringID);
882 AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
883 return getTM<AMDGPUTargetMachine>();
886 ScheduleDAGInstrs *
887 createMachineScheduler(MachineSchedContext *C) const override {
888 ScheduleDAGMILive *DAG = createGenericSchedLive(C);
889 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
890 return DAG;
893 void addEarlyCSEOrGVNPass();
894 void addStraightLineScalarOptimizationPasses();
895 void addIRPasses() override;
896 void addCodeGenPrepare() override;
897 bool addPreISel() override;
898 bool addInstSelector() override;
899 bool addGCPasses() override;
901 std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
903 /// Check if a pass is enabled given \p Opt option. The option always
904 /// overrides defaults if explicitely used. Otherwise its default will
905 /// be used given that a pass shall work at an optimization \p Level
906 /// minimum.
907 bool isPassEnabled(const cl::opt<bool> &Opt,
908 CodeGenOpt::Level Level = CodeGenOpt::Default) const {
909 if (Opt.getNumOccurrences())
910 return Opt;
911 if (TM->getOptLevel() < Level)
912 return false;
913 return Opt;
917 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
918 return getStandardCSEConfigForOpt(TM->getOptLevel());
921 class R600PassConfig final : public AMDGPUPassConfig {
922 public:
923 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
924 : AMDGPUPassConfig(TM, PM) {}
926 ScheduleDAGInstrs *createMachineScheduler(
927 MachineSchedContext *C) const override {
928 return createR600MachineScheduler(C);
931 bool addPreISel() override;
932 bool addInstSelector() override;
933 void addPreRegAlloc() override;
934 void addPreSched2() override;
935 void addPreEmitPass() override;
938 class GCNPassConfig final : public AMDGPUPassConfig {
939 public:
940 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
941 : AMDGPUPassConfig(TM, PM) {
942 // It is necessary to know the register usage of the entire call graph. We
943 // allow calls without EnableAMDGPUFunctionCalls if they are marked
944 // noinline, so this is always required.
945 setRequiresCodeGenSCCOrder(true);
948 GCNTargetMachine &getGCNTargetMachine() const {
949 return getTM<GCNTargetMachine>();
952 ScheduleDAGInstrs *
953 createMachineScheduler(MachineSchedContext *C) const override;
955 bool addPreISel() override;
956 void addMachineSSAOptimization() override;
957 bool addILPOpts() override;
958 bool addInstSelector() override;
959 bool addIRTranslator() override;
960 void addPreLegalizeMachineIR() override;
961 bool addLegalizeMachineIR() override;
962 void addPreRegBankSelect() override;
963 bool addRegBankSelect() override;
964 void addPreGlobalInstructionSelect() override;
965 bool addGlobalInstructionSelect() override;
966 void addFastRegAlloc() override;
967 void addOptimizedRegAlloc() override;
969 FunctionPass *createSGPRAllocPass(bool Optimized);
970 FunctionPass *createVGPRAllocPass(bool Optimized);
971 FunctionPass *createRegAllocPass(bool Optimized) override;
973 bool addRegAssignAndRewriteFast() override;
974 bool addRegAssignAndRewriteOptimized() override;
976 void addPreRegAlloc() override;
977 bool addPreRewrite() override;
978 void addPostRegAlloc() override;
979 void addPreSched2() override;
980 void addPreEmitPass() override;
983 } // end anonymous namespace
985 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
986 if (getOptLevel() == CodeGenOpt::Aggressive)
987 addPass(createGVNPass());
988 else
989 addPass(createEarlyCSEPass());
992 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
993 addPass(createLICMPass());
994 addPass(createSeparateConstOffsetFromGEPPass());
995 addPass(createSpeculativeExecutionPass());
996 // ReassociateGEPs exposes more opportunites for SLSR. See
997 // the example in reassociate-geps-and-slsr.ll.
998 addPass(createStraightLineStrengthReducePass());
999 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
1000 // EarlyCSE can reuse.
1001 addEarlyCSEOrGVNPass();
1002 // Run NaryReassociate after EarlyCSE/GVN to be more effective.
1003 addPass(createNaryReassociatePass());
1004 // NaryReassociate on GEPs creates redundant common expressions, so run
1005 // EarlyCSE after it.
1006 addPass(createEarlyCSEPass());
1009 void AMDGPUPassConfig::addIRPasses() {
1010 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
1012 // There is no reason to run these.
1013 disablePass(&StackMapLivenessID);
1014 disablePass(&FuncletLayoutID);
1015 disablePass(&PatchableFunctionID);
1017 addPass(createAMDGPUPrintfRuntimeBinding());
1018 addPass(createAMDGPUCtorDtorLoweringPass());
1020 // This must occur before inlining, as the inliner will not look through
1021 // bitcast calls.
1022 addPass(createAMDGPUFixFunctionBitcastsPass());
1024 // A call to propagate attributes pass in the backend in case opt was not run.
1025 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
1027 addPass(createAMDGPULowerIntrinsicsPass());
1029 // Function calls are not supported, so make sure we inline everything.
1030 addPass(createAMDGPUAlwaysInlinePass());
1031 addPass(createAlwaysInlinerLegacyPass());
1032 // We need to add the barrier noop pass, otherwise adding the function
1033 // inlining pass will cause all of the PassConfigs passes to be run
1034 // one function at a time, which means if we have a nodule with two
1035 // functions, then we will generate code for the first function
1036 // without ever running any passes on the second.
1037 addPass(createBarrierNoopPass());
1039 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
1040 if (TM.getTargetTriple().getArch() == Triple::r600)
1041 addPass(createR600OpenCLImageTypeLoweringPass());
1043 // Replace OpenCL enqueued block function pointers with global variables.
1044 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
1046 // Can increase LDS used by kernel so runs before PromoteAlloca
1047 if (EnableLowerModuleLDS) {
1048 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
1049 // pass "amdgpu-lower-module-lds", and also it required to be run only if
1050 // "amdgpu-lower-module-lds" pass is enabled.
1051 if (EnableLDSReplaceWithPointer)
1052 addPass(createAMDGPUReplaceLDSUseWithPointerPass());
1054 addPass(createAMDGPULowerModuleLDSPass());
1057 if (TM.getOptLevel() > CodeGenOpt::None)
1058 addPass(createInferAddressSpacesPass());
1060 addPass(createAtomicExpandPass());
1062 if (TM.getOptLevel() > CodeGenOpt::None) {
1063 addPass(createAMDGPUPromoteAlloca());
1065 if (EnableSROA)
1066 addPass(createSROAPass());
1067 if (isPassEnabled(EnableScalarIRPasses))
1068 addStraightLineScalarOptimizationPasses();
1070 if (EnableAMDGPUAliasAnalysis) {
1071 addPass(createAMDGPUAAWrapperPass());
1072 addPass(createExternalAAWrapperPass([](Pass &P, Function &,
1073 AAResults &AAR) {
1074 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
1075 AAR.addAAResult(WrapperPass->getResult());
1076 }));
1079 if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
1080 // TODO: May want to move later or split into an early and late one.
1081 addPass(createAMDGPUCodeGenPreparePass());
1085 TargetPassConfig::addIRPasses();
1087 // EarlyCSE is not always strong enough to clean up what LSR produces. For
1088 // example, GVN can combine
1090 // %0 = add %a, %b
1091 // %1 = add %b, %a
1093 // and
1095 // %0 = shl nsw %a, 2
1096 // %1 = shl %a, 2
1098 // but EarlyCSE can do neither of them.
1099 if (isPassEnabled(EnableScalarIRPasses))
1100 addEarlyCSEOrGVNPass();
1103 void AMDGPUPassConfig::addCodeGenPrepare() {
1104 if (TM->getTargetTriple().getArch() == Triple::amdgcn)
1105 addPass(createAMDGPUAnnotateKernelFeaturesPass());
1107 if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
1108 EnableLowerKernelArguments)
1109 addPass(createAMDGPULowerKernelArgumentsPass());
1111 TargetPassConfig::addCodeGenPrepare();
1113 if (isPassEnabled(EnableLoadStoreVectorizer))
1114 addPass(createLoadStoreVectorizerPass());
1116 // LowerSwitch pass may introduce unreachable blocks that can
1117 // cause unexpected behavior for subsequent passes. Placing it
1118 // here seems better that these blocks would get cleaned up by
1119 // UnreachableBlockElim inserted next in the pass flow.
1120 addPass(createLowerSwitchPass());
1123 bool AMDGPUPassConfig::addPreISel() {
1124 if (TM->getOptLevel() > CodeGenOpt::None)
1125 addPass(createFlattenCFGPass());
1126 return false;
1129 bool AMDGPUPassConfig::addInstSelector() {
1130 // Defer the verifier until FinalizeISel.
1131 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
1132 return false;
1135 bool AMDGPUPassConfig::addGCPasses() {
1136 // Do nothing. GC is not supported.
1137 return false;
1140 //===----------------------------------------------------------------------===//
1141 // R600 Pass Setup
1142 //===----------------------------------------------------------------------===//
1144 bool R600PassConfig::addPreISel() {
1145 AMDGPUPassConfig::addPreISel();
1147 if (EnableR600StructurizeCFG)
1148 addPass(createStructurizeCFGPass());
1149 return false;
1152 bool R600PassConfig::addInstSelector() {
1153 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
1154 return false;
1157 void R600PassConfig::addPreRegAlloc() {
1158 addPass(createR600VectorRegMerger());
1161 void R600PassConfig::addPreSched2() {
1162 addPass(createR600EmitClauseMarkers(), false);
1163 if (EnableR600IfConvert)
1164 addPass(&IfConverterID, false);
1165 addPass(createR600ClauseMergePass(), false);
1168 void R600PassConfig::addPreEmitPass() {
1169 addPass(createAMDGPUCFGStructurizerPass(), false);
1170 addPass(createR600ExpandSpecialInstrsPass(), false);
1171 addPass(&FinalizeMachineBundlesID, false);
1172 addPass(createR600Packetizer(), false);
1173 addPass(createR600ControlFlowFinalizer(), false);
1176 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
1177 return new R600PassConfig(*this, PM);
1180 //===----------------------------------------------------------------------===//
1181 // GCN Pass Setup
1182 //===----------------------------------------------------------------------===//
1184 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
1185 MachineSchedContext *C) const {
1186 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
1187 if (ST.enableSIScheduler())
1188 return createSIMachineScheduler(C);
1189 return createGCNMaxOccupancyMachineScheduler(C);
1192 bool GCNPassConfig::addPreISel() {
1193 AMDGPUPassConfig::addPreISel();
1195 if (TM->getOptLevel() > CodeGenOpt::None)
1196 addPass(createAMDGPULateCodeGenPreparePass());
1198 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
1199 addPass(createAMDGPUAtomicOptimizerPass());
1202 if (TM->getOptLevel() > CodeGenOpt::None)
1203 addPass(createSinkingPass());
1205 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
1206 // regions formed by them.
1207 addPass(&AMDGPUUnifyDivergentExitNodesID);
1208 if (!LateCFGStructurize) {
1209 if (EnableStructurizerWorkarounds) {
1210 addPass(createFixIrreduciblePass());
1211 addPass(createUnifyLoopExitsPass());
1213 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
1215 addPass(createAMDGPUAnnotateUniformValues());
1216 if (!LateCFGStructurize) {
1217 addPass(createSIAnnotateControlFlowPass());
1219 addPass(createLCSSAPass());
1221 if (TM->getOptLevel() > CodeGenOpt::Less)
1222 addPass(&AMDGPUPerfHintAnalysisID);
1224 return false;
1227 void GCNPassConfig::addMachineSSAOptimization() {
1228 TargetPassConfig::addMachineSSAOptimization();
1230 // We want to fold operands after PeepholeOptimizer has run (or as part of
1231 // it), because it will eliminate extra copies making it easier to fold the
1232 // real source operand. We want to eliminate dead instructions after, so that
1233 // we see fewer uses of the copies. We then need to clean up the dead
1234 // instructions leftover after the operands are folded as well.
1236 // XXX - Can we get away without running DeadMachineInstructionElim again?
1237 addPass(&SIFoldOperandsID);
1238 if (EnableDPPCombine)
1239 addPass(&GCNDPPCombineID);
1240 addPass(&SILoadStoreOptimizerID);
1241 if (isPassEnabled(EnableSDWAPeephole)) {
1242 addPass(&SIPeepholeSDWAID);
1243 addPass(&EarlyMachineLICMID);
1244 addPass(&MachineCSEID);
1245 addPass(&SIFoldOperandsID);
1247 addPass(&DeadMachineInstructionElimID);
1248 addPass(createSIShrinkInstructionsPass());
1251 bool GCNPassConfig::addILPOpts() {
1252 if (EnableEarlyIfConversion)
1253 addPass(&EarlyIfConverterID);
1255 TargetPassConfig::addILPOpts();
1256 return false;
1259 bool GCNPassConfig::addInstSelector() {
1260 AMDGPUPassConfig::addInstSelector();
1261 addPass(&SIFixSGPRCopiesID);
1262 addPass(createSILowerI1CopiesPass());
1263 return false;
1266 bool GCNPassConfig::addIRTranslator() {
1267 addPass(new IRTranslator(getOptLevel()));
1268 return false;
1271 void GCNPassConfig::addPreLegalizeMachineIR() {
1272 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1273 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
1274 addPass(new Localizer());
1277 bool GCNPassConfig::addLegalizeMachineIR() {
1278 addPass(new Legalizer());
1279 return false;
1282 void GCNPassConfig::addPreRegBankSelect() {
1283 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1284 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
1287 bool GCNPassConfig::addRegBankSelect() {
1288 addPass(new RegBankSelect());
1289 return false;
1292 void GCNPassConfig::addPreGlobalInstructionSelect() {
1293 bool IsOptNone = getOptLevel() == CodeGenOpt::None;
1294 addPass(createAMDGPURegBankCombiner(IsOptNone));
1297 bool GCNPassConfig::addGlobalInstructionSelect() {
1298 addPass(new InstructionSelect(getOptLevel()));
1299 return false;
1302 void GCNPassConfig::addPreRegAlloc() {
1303 if (LateCFGStructurize) {
1304 addPass(createAMDGPUMachineCFGStructurizerPass());
1308 void GCNPassConfig::addFastRegAlloc() {
1309 // FIXME: We have to disable the verifier here because of PHIElimination +
1310 // TwoAddressInstructions disabling it.
1312 // This must be run immediately after phi elimination and before
1313 // TwoAddressInstructions, otherwise the processing of the tied operand of
1314 // SI_ELSE will introduce a copy of the tied operand source after the else.
1315 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1317 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
1318 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
1320 TargetPassConfig::addFastRegAlloc();
1323 void GCNPassConfig::addOptimizedRegAlloc() {
1324 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
1325 // instructions that cause scheduling barriers.
1326 insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
1327 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
1329 if (OptExecMaskPreRA)
1330 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
1332 if (isPassEnabled(EnablePreRAOptimizations))
1333 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
1335 // This is not an essential optimization and it has a noticeable impact on
1336 // compilation time, so we only enable it from O2.
1337 if (TM->getOptLevel() > CodeGenOpt::Less)
1338 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
1340 // FIXME: when an instruction has a Killed operand, and the instruction is
1341 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of
1342 // the register in LiveVariables, this would trigger a failure in verifier,
1343 // we should fix it and enable the verifier.
1344 if (OptVGPRLiveRange)
1345 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false);
1346 // This must be run immediately after phi elimination and before
1347 // TwoAddressInstructions, otherwise the processing of the tied operand of
1348 // SI_ELSE will introduce a copy of the tied operand source after the else.
1349 insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
1351 if (EnableDCEInRA)
1352 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
1354 TargetPassConfig::addOptimizedRegAlloc();
1357 bool GCNPassConfig::addPreRewrite() {
1358 if (EnableRegReassign)
1359 addPass(&GCNNSAReassignID);
1360 return true;
1363 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
1364 // Initialize the global default.
1365 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
1366 initializeDefaultSGPRRegisterAllocatorOnce);
1368 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
1369 if (Ctor != useDefaultRegisterAllocator)
1370 return Ctor();
1372 if (Optimized)
1373 return createGreedyRegisterAllocator(onlyAllocateSGPRs);
1375 return createFastRegisterAllocator(onlyAllocateSGPRs, false);
1378 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
1379 // Initialize the global default.
1380 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
1381 initializeDefaultVGPRRegisterAllocatorOnce);
1383 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
1384 if (Ctor != useDefaultRegisterAllocator)
1385 return Ctor();
1387 if (Optimized)
1388 return createGreedyVGPRRegisterAllocator();
1390 return createFastVGPRRegisterAllocator();
1393 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
1394 llvm_unreachable("should not be used");
1397 static const char RegAllocOptNotSupportedMessage[] =
1398 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
1400 bool GCNPassConfig::addRegAssignAndRewriteFast() {
1401 if (!usingDefaultRegAlloc())
1402 report_fatal_error(RegAllocOptNotSupportedMessage);
1404 addPass(createSGPRAllocPass(false));
1406 // Equivalent of PEI for SGPRs.
1407 addPass(&SILowerSGPRSpillsID);
1409 addPass(createVGPRAllocPass(false));
1410 return true;
1413 bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
1414 if (!usingDefaultRegAlloc())
1415 report_fatal_error(RegAllocOptNotSupportedMessage);
1417 addPass(createSGPRAllocPass(true));
1419 // Commit allocated register changes. This is mostly necessary because too
1420 // many things rely on the use lists of the physical registers, such as the
1421 // verifier. This is only necessary with allocators which use LiveIntervals,
1422 // since FastRegAlloc does the replacments itself.
1423 addPass(createVirtRegRewriter(false));
1425 // Equivalent of PEI for SGPRs.
1426 addPass(&SILowerSGPRSpillsID);
1428 addPass(createVGPRAllocPass(true));
1430 addPreRewrite();
1431 addPass(&VirtRegRewriterID);
1433 return true;
1436 void GCNPassConfig::addPostRegAlloc() {
1437 addPass(&SIFixVGPRCopiesID);
1438 if (getOptLevel() > CodeGenOpt::None)
1439 addPass(&SIOptimizeExecMaskingID);
1440 TargetPassConfig::addPostRegAlloc();
1443 void GCNPassConfig::addPreSched2() {
1444 addPass(&SIPostRABundlerID);
1447 void GCNPassConfig::addPreEmitPass() {
1448 addPass(createSIMemoryLegalizerPass());
1449 addPass(createSIInsertWaitcntsPass());
1451 if (TM->getOptLevel() > CodeGenOpt::None)
1452 addPass(createSIShrinkInstructionsPass());
1454 addPass(createSIModeRegisterPass());
1456 if (getOptLevel() > CodeGenOpt::None)
1457 addPass(&SIInsertHardClausesID);
1459 addPass(&SILateBranchLoweringPassID);
1460 if (getOptLevel() > CodeGenOpt::None)
1461 addPass(&SIPreEmitPeepholeID);
1462 // The hazard recognizer that runs as part of the post-ra scheduler does not
1463 // guarantee to be able handle all hazards correctly. This is because if there
1464 // are multiple scheduling regions in a basic block, the regions are scheduled
1465 // bottom up, so when we begin to schedule a region we don't know what
1466 // instructions were emitted directly before it.
1468 // Here we add a stand-alone hazard recognizer pass which can handle all
1469 // cases.
1470 addPass(&PostRAHazardRecognizerID);
1471 addPass(&BranchRelaxationPassID);
1474 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
1475 return new GCNPassConfig(*this, PM);
1478 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
1479 return new yaml::SIMachineFunctionInfo();
1482 yaml::MachineFunctionInfo *
1483 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
1484 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1485 return new yaml::SIMachineFunctionInfo(
1486 *MFI, *MF.getSubtarget().getRegisterInfo(), MF);
1489 bool GCNTargetMachine::parseMachineFunctionInfo(
1490 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
1491 SMDiagnostic &Error, SMRange &SourceRange) const {
1492 const yaml::SIMachineFunctionInfo &YamlMFI =
1493 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
1494 MachineFunction &MF = PFS.MF;
1495 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1497 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
1498 return true;
1500 if (MFI->Occupancy == 0) {
1501 // Fixup the subtarget dependent default value.
1502 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1503 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
1506 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
1507 Register TempReg;
1508 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
1509 SourceRange = RegName.SourceRange;
1510 return true;
1512 RegVal = TempReg;
1514 return false;
1517 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
1518 // Create a diagnostic for a the register string literal.
1519 const MemoryBuffer &Buffer =
1520 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
1521 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
1522 RegName.Value.size(), SourceMgr::DK_Error,
1523 "incorrect register class for field", RegName.Value,
1524 None, None);
1525 SourceRange = RegName.SourceRange;
1526 return true;
1529 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
1530 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
1531 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
1532 return true;
1534 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
1535 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
1536 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
1539 if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
1540 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
1541 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
1544 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
1545 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
1546 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
1549 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
1550 const TargetRegisterClass &RC,
1551 ArgDescriptor &Arg, unsigned UserSGPRs,
1552 unsigned SystemSGPRs) {
1553 // Skip parsing if it's not present.
1554 if (!A)
1555 return false;
1557 if (A->IsRegister) {
1558 Register Reg;
1559 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
1560 SourceRange = A->RegisterName.SourceRange;
1561 return true;
1563 if (!RC.contains(Reg))
1564 return diagnoseRegisterClass(A->RegisterName);
1565 Arg = ArgDescriptor::createRegister(Reg);
1566 } else
1567 Arg = ArgDescriptor::createStack(A->StackOffset);
1568 // Check and apply the optional mask.
1569 if (A->Mask)
1570 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
1572 MFI->NumUserSGPRs += UserSGPRs;
1573 MFI->NumSystemSGPRs += SystemSGPRs;
1574 return false;
1577 if (YamlMFI.ArgInfo &&
1578 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
1579 AMDGPU::SGPR_128RegClass,
1580 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
1581 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
1582 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
1583 2, 0) ||
1584 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
1585 MFI->ArgInfo.QueuePtr, 2, 0) ||
1586 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
1587 AMDGPU::SReg_64RegClass,
1588 MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
1589 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
1590 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
1591 2, 0) ||
1592 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
1593 AMDGPU::SReg_64RegClass,
1594 MFI->ArgInfo.FlatScratchInit, 2, 0) ||
1595 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
1596 AMDGPU::SGPR_32RegClass,
1597 MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
1598 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
1599 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
1600 0, 1) ||
1601 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
1602 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
1603 0, 1) ||
1604 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
1605 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
1606 0, 1) ||
1607 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
1608 AMDGPU::SGPR_32RegClass,
1609 MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
1610 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
1611 AMDGPU::SGPR_32RegClass,
1612 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
1613 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
1614 AMDGPU::SReg_64RegClass,
1615 MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
1616 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
1617 AMDGPU::SReg_64RegClass,
1618 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
1619 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
1620 AMDGPU::VGPR_32RegClass,
1621 MFI->ArgInfo.WorkItemIDX, 0, 0) ||
1622 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
1623 AMDGPU::VGPR_32RegClass,
1624 MFI->ArgInfo.WorkItemIDY, 0, 0) ||
1625 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
1626 AMDGPU::VGPR_32RegClass,
1627 MFI->ArgInfo.WorkItemIDZ, 0, 0)))
1628 return true;
1630 MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
1631 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
1632 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
1633 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
1634 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
1635 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
1637 return false;