1 //===-- R600ISelLowering.cpp - R600 DAG Lowering Implementation -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// Custom DAG lowering for R600
12 //===----------------------------------------------------------------------===//
14 #include "R600ISelLowering.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "R600Defines.h"
18 #include "R600InstrInfo.h"
19 #include "R600MachineFunctionInfo.h"
20 #include "R600Subtarget.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/IR/IntrinsicsAMDGPU.h"
23 #include "llvm/IR/IntrinsicsR600.h"
27 #include "R600GenCallingConv.inc"
29 R600TargetLowering::R600TargetLowering(const TargetMachine
&TM
,
30 const R600Subtarget
&STI
)
31 : AMDGPUTargetLowering(TM
, STI
), Subtarget(&STI
), Gen(STI
.getGeneration()) {
32 addRegisterClass(MVT::f32
, &R600::R600_Reg32RegClass
);
33 addRegisterClass(MVT::i32
, &R600::R600_Reg32RegClass
);
34 addRegisterClass(MVT::v2f32
, &R600::R600_Reg64RegClass
);
35 addRegisterClass(MVT::v2i32
, &R600::R600_Reg64RegClass
);
36 addRegisterClass(MVT::v4f32
, &R600::R600_Reg128RegClass
);
37 addRegisterClass(MVT::v4i32
, &R600::R600_Reg128RegClass
);
39 setBooleanContents(ZeroOrNegativeOneBooleanContent
);
40 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
42 computeRegisterProperties(Subtarget
->getRegisterInfo());
44 // Legalize loads and stores to the private address space.
45 setOperationAction(ISD::LOAD
, MVT::i32
, Custom
);
46 setOperationAction(ISD::LOAD
, MVT::v2i32
, Custom
);
47 setOperationAction(ISD::LOAD
, MVT::v4i32
, Custom
);
49 // EXTLOAD should be the same as ZEXTLOAD. It is legal for some address
50 // spaces, so it is custom lowered to handle those where it isn't.
51 for (MVT VT
: MVT::integer_valuetypes()) {
52 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
53 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i8
, Custom
);
54 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i16
, Custom
);
56 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
57 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i8
, Custom
);
58 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i16
, Custom
);
60 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
61 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i8
, Custom
);
62 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i16
, Custom
);
65 // Workaround for LegalizeDAG asserting on expansion of i1 vector loads.
66 setLoadExtAction(ISD::EXTLOAD
, MVT::v2i32
, MVT::v2i1
, Expand
);
67 setLoadExtAction(ISD::SEXTLOAD
, MVT::v2i32
, MVT::v2i1
, Expand
);
68 setLoadExtAction(ISD::ZEXTLOAD
, MVT::v2i32
, MVT::v2i1
, Expand
);
70 setLoadExtAction(ISD::EXTLOAD
, MVT::v4i32
, MVT::v4i1
, Expand
);
71 setLoadExtAction(ISD::SEXTLOAD
, MVT::v4i32
, MVT::v4i1
, Expand
);
72 setLoadExtAction(ISD::ZEXTLOAD
, MVT::v4i32
, MVT::v4i1
, Expand
);
74 setOperationAction(ISD::STORE
, MVT::i8
, Custom
);
75 setOperationAction(ISD::STORE
, MVT::i32
, Custom
);
76 setOperationAction(ISD::STORE
, MVT::v2i32
, Custom
);
77 setOperationAction(ISD::STORE
, MVT::v4i32
, Custom
);
79 setTruncStoreAction(MVT::i32
, MVT::i8
, Custom
);
80 setTruncStoreAction(MVT::i32
, MVT::i16
, Custom
);
81 // We need to include these since trunc STORES to PRIVATE need
82 // special handling to accommodate RMW
83 setTruncStoreAction(MVT::v2i32
, MVT::v2i16
, Custom
);
84 setTruncStoreAction(MVT::v4i32
, MVT::v4i16
, Custom
);
85 setTruncStoreAction(MVT::v8i32
, MVT::v8i16
, Custom
);
86 setTruncStoreAction(MVT::v16i32
, MVT::v16i16
, Custom
);
87 setTruncStoreAction(MVT::v32i32
, MVT::v32i16
, Custom
);
88 setTruncStoreAction(MVT::v2i32
, MVT::v2i8
, Custom
);
89 setTruncStoreAction(MVT::v4i32
, MVT::v4i8
, Custom
);
90 setTruncStoreAction(MVT::v8i32
, MVT::v8i8
, Custom
);
91 setTruncStoreAction(MVT::v16i32
, MVT::v16i8
, Custom
);
92 setTruncStoreAction(MVT::v32i32
, MVT::v32i8
, Custom
);
94 // Workaround for LegalizeDAG asserting on expansion of i1 vector stores.
95 setTruncStoreAction(MVT::v2i32
, MVT::v2i1
, Expand
);
96 setTruncStoreAction(MVT::v4i32
, MVT::v4i1
, Expand
);
98 // Set condition code actions
99 setCondCodeAction(ISD::SETO
, MVT::f32
, Expand
);
100 setCondCodeAction(ISD::SETUO
, MVT::f32
, Expand
);
101 setCondCodeAction(ISD::SETLT
, MVT::f32
, Expand
);
102 setCondCodeAction(ISD::SETLE
, MVT::f32
, Expand
);
103 setCondCodeAction(ISD::SETOLT
, MVT::f32
, Expand
);
104 setCondCodeAction(ISD::SETOLE
, MVT::f32
, Expand
);
105 setCondCodeAction(ISD::SETONE
, MVT::f32
, Expand
);
106 setCondCodeAction(ISD::SETUEQ
, MVT::f32
, Expand
);
107 setCondCodeAction(ISD::SETUGE
, MVT::f32
, Expand
);
108 setCondCodeAction(ISD::SETUGT
, MVT::f32
, Expand
);
109 setCondCodeAction(ISD::SETULT
, MVT::f32
, Expand
);
110 setCondCodeAction(ISD::SETULE
, MVT::f32
, Expand
);
112 setCondCodeAction(ISD::SETLE
, MVT::i32
, Expand
);
113 setCondCodeAction(ISD::SETLT
, MVT::i32
, Expand
);
114 setCondCodeAction(ISD::SETULE
, MVT::i32
, Expand
);
115 setCondCodeAction(ISD::SETULT
, MVT::i32
, Expand
);
117 setOperationAction(ISD::FCOS
, MVT::f32
, Custom
);
118 setOperationAction(ISD::FSIN
, MVT::f32
, Custom
);
120 setOperationAction(ISD::SETCC
, MVT::v4i32
, Expand
);
121 setOperationAction(ISD::SETCC
, MVT::v2i32
, Expand
);
123 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
124 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
125 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
127 setOperationAction(ISD::FSUB
, MVT::f32
, Expand
);
129 setOperationAction(ISD::FCEIL
, MVT::f64
, Custom
);
130 setOperationAction(ISD::FTRUNC
, MVT::f64
, Custom
);
131 setOperationAction(ISD::FRINT
, MVT::f64
, Custom
);
132 setOperationAction(ISD::FFLOOR
, MVT::f64
, Custom
);
134 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
135 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Custom
);
137 setOperationAction(ISD::SETCC
, MVT::i32
, Expand
);
138 setOperationAction(ISD::SETCC
, MVT::f32
, Expand
);
139 setOperationAction(ISD::FP_TO_UINT
, MVT::i1
, Custom
);
140 setOperationAction(ISD::FP_TO_SINT
, MVT::i1
, Custom
);
141 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
142 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Custom
);
144 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
145 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
146 setOperationAction(ISD::SELECT
, MVT::v2i32
, Expand
);
147 setOperationAction(ISD::SELECT
, MVT::v4i32
, Expand
);
149 // ADD, SUB overflow.
150 // TODO: turn these into Legal?
151 if (Subtarget
->hasCARRY())
152 setOperationAction(ISD::UADDO
, MVT::i32
, Custom
);
154 if (Subtarget
->hasBORROW())
155 setOperationAction(ISD::USUBO
, MVT::i32
, Custom
);
157 // Expand sign extension of vectors
158 if (!Subtarget
->hasBFE())
159 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
161 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i1
, Expand
);
162 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i1
, Expand
);
164 if (!Subtarget
->hasBFE())
165 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
166 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i8
, Expand
);
167 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i8
, Expand
);
169 if (!Subtarget
->hasBFE())
170 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
171 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i16
, Expand
);
172 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i16
, Expand
);
174 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i32
, Legal
);
175 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v2i32
, Expand
);
176 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::v4i32
, Expand
);
178 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::Other
, Expand
);
180 setOperationAction(ISD::FrameIndex
, MVT::i32
, Custom
);
182 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2i32
, Custom
);
183 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v2f32
, Custom
);
184 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4i32
, Custom
);
185 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, MVT::v4f32
, Custom
);
187 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2i32
, Custom
);
188 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v2f32
, Custom
);
189 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4i32
, Custom
);
190 setOperationAction(ISD::INSERT_VECTOR_ELT
, MVT::v4f32
, Custom
);
192 // We don't have 64-bit shifts. Thus we need either SHX i64 or SHX_PARTS i32
193 // to be Legal/Custom in order to avoid library calls.
194 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
195 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
196 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
198 if (!Subtarget
->hasFMA()) {
199 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
200 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
203 // FIXME: May need no denormals check
204 setOperationAction(ISD::FMAD
, MVT::f32
, Legal
);
206 if (!Subtarget
->hasBFI()) {
207 // fcopysign can be done in a single instruction with BFI.
208 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
209 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
212 if (!Subtarget
->hasBCNT(32))
213 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
215 if (!Subtarget
->hasBCNT(64))
216 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
218 if (Subtarget
->hasFFBH())
219 setOperationAction(ISD::CTLZ_ZERO_UNDEF
, MVT::i32
, Custom
);
221 if (Subtarget
->hasFFBL())
222 setOperationAction(ISD::CTTZ_ZERO_UNDEF
, MVT::i32
, Custom
);
224 // FIXME: This was moved from AMDGPUTargetLowering, I'm not sure if we
226 if (Subtarget
->hasBFE())
227 setHasExtractBitsInsn(true);
229 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
231 const MVT ScalarIntVTs
[] = { MVT::i32
, MVT::i64
};
232 for (MVT VT
: ScalarIntVTs
) {
233 setOperationAction(ISD::ADDC
, VT
, Expand
);
234 setOperationAction(ISD::SUBC
, VT
, Expand
);
235 setOperationAction(ISD::ADDE
, VT
, Expand
);
236 setOperationAction(ISD::SUBE
, VT
, Expand
);
239 // LLVM will expand these to atomic_cmp_swap(0)
240 // and atomic_swap, respectively.
241 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i32
, Expand
);
242 setOperationAction(ISD::ATOMIC_STORE
, MVT::i32
, Expand
);
244 // We need to custom lower some of the intrinsics
245 setOperationAction(ISD::INTRINSIC_VOID
, MVT::Other
, Custom
);
246 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
248 setSchedulingPreference(Sched::Source
);
250 setTargetDAGCombine(ISD::FP_ROUND
);
251 setTargetDAGCombine(ISD::FP_TO_SINT
);
252 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT
);
253 setTargetDAGCombine(ISD::SELECT_CC
);
254 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT
);
255 setTargetDAGCombine(ISD::LOAD
);
258 static inline bool isEOP(MachineBasicBlock::iterator I
) {
259 if (std::next(I
) == I
->getParent()->end())
261 return std::next(I
)->getOpcode() == R600::RETURN
;
265 R600TargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
266 MachineBasicBlock
*BB
) const {
267 MachineFunction
*MF
= BB
->getParent();
268 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
269 MachineBasicBlock::iterator I
= MI
;
270 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
272 switch (MI
.getOpcode()) {
274 // Replace LDS_*_RET instruction that don't have any uses with the
275 // equivalent LDS_*_NORET instruction.
276 if (TII
->isLDSRetInstr(MI
.getOpcode())) {
277 int DstIdx
= TII
->getOperandIdx(MI
.getOpcode(), R600::OpName::dst
);
278 assert(DstIdx
!= -1);
279 MachineInstrBuilder NewMI
;
280 // FIXME: getLDSNoRetOp method only handles LDS_1A1D LDS ops. Add
281 // LDS_1A2D support and remove this special case.
282 if (!MRI
.use_empty(MI
.getOperand(DstIdx
).getReg()) ||
283 MI
.getOpcode() == R600::LDS_CMPST_RET
)
286 NewMI
= BuildMI(*BB
, I
, BB
->findDebugLoc(I
),
287 TII
->get(R600::getLDSNoRetOp(MI
.getOpcode())));
288 for (unsigned i
= 1, e
= MI
.getNumOperands(); i
< e
; ++i
) {
289 NewMI
.add(MI
.getOperand(i
));
292 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI
, BB
);
296 case R600::FABS_R600
: {
297 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
298 *BB
, I
, R600::MOV
, MI
.getOperand(0).getReg(),
299 MI
.getOperand(1).getReg());
300 TII
->addFlag(*NewMI
, 0, MO_FLAG_ABS
);
304 case R600::FNEG_R600
: {
305 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
306 *BB
, I
, R600::MOV
, MI
.getOperand(0).getReg(),
307 MI
.getOperand(1).getReg());
308 TII
->addFlag(*NewMI
, 0, MO_FLAG_NEG
);
312 case R600::MASK_WRITE
: {
313 Register maskedRegister
= MI
.getOperand(0).getReg();
314 assert(maskedRegister
.isVirtual());
315 MachineInstr
* defInstr
= MRI
.getVRegDef(maskedRegister
);
316 TII
->addFlag(*defInstr
, 0, MO_FLAG_MASK
);
320 case R600::MOV_IMM_F32
:
321 TII
->buildMovImm(*BB
, I
, MI
.getOperand(0).getReg(), MI
.getOperand(1)
328 case R600::MOV_IMM_I32
:
329 TII
->buildMovImm(*BB
, I
, MI
.getOperand(0).getReg(),
330 MI
.getOperand(1).getImm());
333 case R600::MOV_IMM_GLOBAL_ADDR
: {
334 //TODO: Perhaps combine this instruction with the next if possible
335 auto MIB
= TII
->buildDefaultInstruction(
336 *BB
, MI
, R600::MOV
, MI
.getOperand(0).getReg(), R600::ALU_LITERAL_X
);
337 int Idx
= TII
->getOperandIdx(*MIB
, R600::OpName::literal
);
338 //TODO: Ugh this is rather ugly
339 MIB
->getOperand(Idx
) = MI
.getOperand(1);
343 case R600::CONST_COPY
: {
344 MachineInstr
*NewMI
= TII
->buildDefaultInstruction(
345 *BB
, MI
, R600::MOV
, MI
.getOperand(0).getReg(), R600::ALU_CONST
);
346 TII
->setImmOperand(*NewMI
, R600::OpName::src0_sel
,
347 MI
.getOperand(1).getImm());
351 case R600::RAT_WRITE_CACHELESS_32_eg
:
352 case R600::RAT_WRITE_CACHELESS_64_eg
:
353 case R600::RAT_WRITE_CACHELESS_128_eg
:
354 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
355 .add(MI
.getOperand(0))
356 .add(MI
.getOperand(1))
357 .addImm(isEOP(I
)); // Set End of program bit
360 case R600::RAT_STORE_TYPED_eg
:
361 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
362 .add(MI
.getOperand(0))
363 .add(MI
.getOperand(1))
364 .add(MI
.getOperand(2))
365 .addImm(isEOP(I
)); // Set End of program bit
369 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP
))
370 .add(MI
.getOperand(0));
373 case R600::BRANCH_COND_f32
: {
374 MachineInstr
*NewMI
=
375 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::PRED_X
),
377 .add(MI
.getOperand(1))
378 .addImm(R600::PRED_SETNE
)
380 TII
->addFlag(*NewMI
, 0, MO_FLAG_PUSH
);
381 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP_COND
))
382 .add(MI
.getOperand(0))
383 .addReg(R600::PREDICATE_BIT
, RegState::Kill
);
387 case R600::BRANCH_COND_i32
: {
388 MachineInstr
*NewMI
=
389 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::PRED_X
),
391 .add(MI
.getOperand(1))
392 .addImm(R600::PRED_SETNE_INT
)
394 TII
->addFlag(*NewMI
, 0, MO_FLAG_PUSH
);
395 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(R600::JUMP_COND
))
396 .add(MI
.getOperand(0))
397 .addReg(R600::PREDICATE_BIT
, RegState::Kill
);
401 case R600::EG_ExportSwz
:
402 case R600::R600_ExportSwz
: {
403 // Instruction is left unmodified if its not the last one of its type
404 bool isLastInstructionOfItsType
= true;
405 unsigned InstExportType
= MI
.getOperand(1).getImm();
406 for (MachineBasicBlock::iterator NextExportInst
= std::next(I
),
407 EndBlock
= BB
->end(); NextExportInst
!= EndBlock
;
408 NextExportInst
= std::next(NextExportInst
)) {
409 if (NextExportInst
->getOpcode() == R600::EG_ExportSwz
||
410 NextExportInst
->getOpcode() == R600::R600_ExportSwz
) {
411 unsigned CurrentInstExportType
= NextExportInst
->getOperand(1)
413 if (CurrentInstExportType
== InstExportType
) {
414 isLastInstructionOfItsType
= false;
420 if (!EOP
&& !isLastInstructionOfItsType
)
422 unsigned CfInst
= (MI
.getOpcode() == R600::EG_ExportSwz
) ? 84 : 40;
423 BuildMI(*BB
, I
, BB
->findDebugLoc(I
), TII
->get(MI
.getOpcode()))
424 .add(MI
.getOperand(0))
425 .add(MI
.getOperand(1))
426 .add(MI
.getOperand(2))
427 .add(MI
.getOperand(3))
428 .add(MI
.getOperand(4))
429 .add(MI
.getOperand(5))
430 .add(MI
.getOperand(6))
440 MI
.eraseFromParent();
444 //===----------------------------------------------------------------------===//
445 // Custom DAG Lowering Operations
446 //===----------------------------------------------------------------------===//
448 SDValue
R600TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
449 MachineFunction
&MF
= DAG
.getMachineFunction();
450 R600MachineFunctionInfo
*MFI
= MF
.getInfo
<R600MachineFunctionInfo
>();
451 switch (Op
.getOpcode()) {
452 default: return AMDGPUTargetLowering::LowerOperation(Op
, DAG
);
453 case ISD::EXTRACT_VECTOR_ELT
: return LowerEXTRACT_VECTOR_ELT(Op
, DAG
);
454 case ISD::INSERT_VECTOR_ELT
: return LowerINSERT_VECTOR_ELT(Op
, DAG
);
457 case ISD::SRL_PARTS
: return LowerShiftParts(Op
, DAG
);
458 case ISD::UADDO
: return LowerUADDSUBO(Op
, DAG
, ISD::ADD
, AMDGPUISD::CARRY
);
459 case ISD::USUBO
: return LowerUADDSUBO(Op
, DAG
, ISD::SUB
, AMDGPUISD::BORROW
);
461 case ISD::FSIN
: return LowerTrig(Op
, DAG
);
462 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
463 case ISD::STORE
: return LowerSTORE(Op
, DAG
);
465 SDValue Result
= LowerLOAD(Op
, DAG
);
466 assert((!Result
.getNode() ||
467 Result
.getNode()->getNumValues() == 2) &&
468 "Load should return a value and a chain");
472 case ISD::BRCOND
: return LowerBRCOND(Op
, DAG
);
473 case ISD::GlobalAddress
: return LowerGlobalAddress(MFI
, Op
, DAG
);
474 case ISD::FrameIndex
: return lowerFrameIndex(Op
, DAG
);
475 case ISD::INTRINSIC_VOID
: {
476 SDValue Chain
= Op
.getOperand(0);
477 unsigned IntrinsicID
=
478 cast
<ConstantSDNode
>(Op
.getOperand(1))->getZExtValue();
479 switch (IntrinsicID
) {
480 case Intrinsic::r600_store_swizzle
: {
482 const SDValue Args
[8] = {
484 Op
.getOperand(2), // Export Value
485 Op
.getOperand(3), // ArrayBase
486 Op
.getOperand(4), // Type
487 DAG
.getConstant(0, DL
, MVT::i32
), // SWZ_X
488 DAG
.getConstant(1, DL
, MVT::i32
), // SWZ_Y
489 DAG
.getConstant(2, DL
, MVT::i32
), // SWZ_Z
490 DAG
.getConstant(3, DL
, MVT::i32
) // SWZ_W
492 return DAG
.getNode(AMDGPUISD::R600_EXPORT
, DL
, Op
.getValueType(), Args
);
495 // default for switch(IntrinsicID)
498 // break out of case ISD::INTRINSIC_VOID in switch(Op.getOpcode())
501 case ISD::INTRINSIC_WO_CHAIN
: {
502 unsigned IntrinsicID
=
503 cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue();
504 EVT VT
= Op
.getValueType();
506 switch (IntrinsicID
) {
507 case Intrinsic::r600_tex
:
508 case Intrinsic::r600_texc
: {
510 switch (IntrinsicID
) {
511 case Intrinsic::r600_tex
:
514 case Intrinsic::r600_texc
:
518 llvm_unreachable("unhandled texture operation");
521 SDValue TexArgs
[19] = {
522 DAG
.getConstant(TextureOp
, DL
, MVT::i32
),
524 DAG
.getConstant(0, DL
, MVT::i32
),
525 DAG
.getConstant(1, DL
, MVT::i32
),
526 DAG
.getConstant(2, DL
, MVT::i32
),
527 DAG
.getConstant(3, DL
, MVT::i32
),
531 DAG
.getConstant(0, DL
, MVT::i32
),
532 DAG
.getConstant(1, DL
, MVT::i32
),
533 DAG
.getConstant(2, DL
, MVT::i32
),
534 DAG
.getConstant(3, DL
, MVT::i32
),
542 return DAG
.getNode(AMDGPUISD::TEXTURE_FETCH
, DL
, MVT::v4f32
, TexArgs
);
544 case Intrinsic::r600_dot4
: {
546 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
547 DAG
.getConstant(0, DL
, MVT::i32
)),
548 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
549 DAG
.getConstant(0, DL
, MVT::i32
)),
550 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
551 DAG
.getConstant(1, DL
, MVT::i32
)),
552 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
553 DAG
.getConstant(1, DL
, MVT::i32
)),
554 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
555 DAG
.getConstant(2, DL
, MVT::i32
)),
556 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
557 DAG
.getConstant(2, DL
, MVT::i32
)),
558 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(1),
559 DAG
.getConstant(3, DL
, MVT::i32
)),
560 DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::f32
, Op
.getOperand(2),
561 DAG
.getConstant(3, DL
, MVT::i32
))
563 return DAG
.getNode(AMDGPUISD::DOT4
, DL
, MVT::f32
, Args
);
566 case Intrinsic::r600_implicitarg_ptr
: {
567 MVT PtrVT
= getPointerTy(DAG
.getDataLayout(), AMDGPUAS::PARAM_I_ADDRESS
);
568 uint32_t ByteOffset
= getImplicitParameterOffset(MF
, FIRST_IMPLICIT
);
569 return DAG
.getConstant(ByteOffset
, DL
, PtrVT
);
571 case Intrinsic::r600_read_ngroups_x
:
572 return LowerImplicitParameter(DAG
, VT
, DL
, 0);
573 case Intrinsic::r600_read_ngroups_y
:
574 return LowerImplicitParameter(DAG
, VT
, DL
, 1);
575 case Intrinsic::r600_read_ngroups_z
:
576 return LowerImplicitParameter(DAG
, VT
, DL
, 2);
577 case Intrinsic::r600_read_global_size_x
:
578 return LowerImplicitParameter(DAG
, VT
, DL
, 3);
579 case Intrinsic::r600_read_global_size_y
:
580 return LowerImplicitParameter(DAG
, VT
, DL
, 4);
581 case Intrinsic::r600_read_global_size_z
:
582 return LowerImplicitParameter(DAG
, VT
, DL
, 5);
583 case Intrinsic::r600_read_local_size_x
:
584 return LowerImplicitParameter(DAG
, VT
, DL
, 6);
585 case Intrinsic::r600_read_local_size_y
:
586 return LowerImplicitParameter(DAG
, VT
, DL
, 7);
587 case Intrinsic::r600_read_local_size_z
:
588 return LowerImplicitParameter(DAG
, VT
, DL
, 8);
590 case Intrinsic::r600_read_tgid_x
:
591 case Intrinsic::amdgcn_workgroup_id_x
:
592 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
594 case Intrinsic::r600_read_tgid_y
:
595 case Intrinsic::amdgcn_workgroup_id_y
:
596 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
598 case Intrinsic::r600_read_tgid_z
:
599 case Intrinsic::amdgcn_workgroup_id_z
:
600 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
602 case Intrinsic::r600_read_tidig_x
:
603 case Intrinsic::amdgcn_workitem_id_x
:
604 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
606 case Intrinsic::r600_read_tidig_y
:
607 case Intrinsic::amdgcn_workitem_id_y
:
608 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
610 case Intrinsic::r600_read_tidig_z
:
611 case Intrinsic::amdgcn_workitem_id_z
:
612 return CreateLiveInRegisterRaw(DAG
, &R600::R600_TReg32RegClass
,
615 case Intrinsic::r600_recipsqrt_ieee
:
616 return DAG
.getNode(AMDGPUISD::RSQ
, DL
, VT
, Op
.getOperand(1));
618 case Intrinsic::r600_recipsqrt_clamped
:
619 return DAG
.getNode(AMDGPUISD::RSQ_CLAMP
, DL
, VT
, Op
.getOperand(1));
624 // break out of case ISD::INTRINSIC_WO_CHAIN in switch(Op.getOpcode())
627 } // end switch(Op.getOpcode())
631 void R600TargetLowering::ReplaceNodeResults(SDNode
*N
,
632 SmallVectorImpl
<SDValue
> &Results
,
633 SelectionDAG
&DAG
) const {
634 switch (N
->getOpcode()) {
636 AMDGPUTargetLowering::ReplaceNodeResults(N
, Results
, DAG
);
638 case ISD::FP_TO_UINT
:
639 if (N
->getValueType(0) == MVT::i1
) {
640 Results
.push_back(lowerFP_TO_UINT(N
->getOperand(0), DAG
));
643 // Since we don't care about out of bounds values we can use FP_TO_SINT for
644 // uints too. The DAGLegalizer code for uint considers some extra cases
645 // which are not necessary here.
647 case ISD::FP_TO_SINT
: {
648 if (N
->getValueType(0) == MVT::i1
) {
649 Results
.push_back(lowerFP_TO_SINT(N
->getOperand(0), DAG
));
654 if (expandFP_TO_SINT(N
, Result
, DAG
))
655 Results
.push_back(Result
);
659 SDValue Op
= SDValue(N
, 1);
660 SDValue RES
= LowerSDIVREM(Op
, DAG
);
661 Results
.push_back(RES
);
662 Results
.push_back(RES
.getValue(1));
666 SDValue Op
= SDValue(N
, 0);
667 LowerUDIVREM64(Op
, DAG
, Results
);
673 SDValue
R600TargetLowering::vectorToVerticalVector(SelectionDAG
&DAG
,
674 SDValue Vector
) const {
676 EVT VecVT
= Vector
.getValueType();
677 EVT EltVT
= VecVT
.getVectorElementType();
678 SmallVector
<SDValue
, 8> Args
;
680 for (unsigned i
= 0, e
= VecVT
.getVectorNumElements(); i
!= e
; ++i
) {
681 Args
.push_back(DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltVT
, Vector
,
682 DAG
.getVectorIdxConstant(i
, DL
)));
685 return DAG
.getNode(AMDGPUISD::BUILD_VERTICAL_VECTOR
, DL
, VecVT
, Args
);
688 SDValue
R600TargetLowering::LowerEXTRACT_VECTOR_ELT(SDValue Op
,
689 SelectionDAG
&DAG
) const {
691 SDValue Vector
= Op
.getOperand(0);
692 SDValue Index
= Op
.getOperand(1);
694 if (isa
<ConstantSDNode
>(Index
) ||
695 Vector
.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR
)
698 Vector
= vectorToVerticalVector(DAG
, Vector
);
699 return DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, Op
.getValueType(),
703 SDValue
R600TargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op
,
704 SelectionDAG
&DAG
) const {
706 SDValue Vector
= Op
.getOperand(0);
707 SDValue Value
= Op
.getOperand(1);
708 SDValue Index
= Op
.getOperand(2);
710 if (isa
<ConstantSDNode
>(Index
) ||
711 Vector
.getOpcode() == AMDGPUISD::BUILD_VERTICAL_VECTOR
)
714 Vector
= vectorToVerticalVector(DAG
, Vector
);
715 SDValue Insert
= DAG
.getNode(ISD::INSERT_VECTOR_ELT
, DL
, Op
.getValueType(),
716 Vector
, Value
, Index
);
717 return vectorToVerticalVector(DAG
, Insert
);
720 SDValue
R600TargetLowering::LowerGlobalAddress(AMDGPUMachineFunction
*MFI
,
722 SelectionDAG
&DAG
) const {
723 GlobalAddressSDNode
*GSD
= cast
<GlobalAddressSDNode
>(Op
);
724 if (GSD
->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS
)
725 return AMDGPUTargetLowering::LowerGlobalAddress(MFI
, Op
, DAG
);
727 const DataLayout
&DL
= DAG
.getDataLayout();
728 const GlobalValue
*GV
= GSD
->getGlobal();
729 MVT ConstPtrVT
= getPointerTy(DL
, AMDGPUAS::CONSTANT_ADDRESS
);
731 SDValue GA
= DAG
.getTargetGlobalAddress(GV
, SDLoc(GSD
), ConstPtrVT
);
732 return DAG
.getNode(AMDGPUISD::CONST_DATA_PTR
, SDLoc(GSD
), ConstPtrVT
, GA
);
735 SDValue
R600TargetLowering::LowerTrig(SDValue Op
, SelectionDAG
&DAG
) const {
736 // On hw >= R700, COS/SIN input must be between -1. and 1.
737 // Thus we lower them to TRIG ( FRACT ( x / 2Pi + 0.5) - 0.5)
738 EVT VT
= Op
.getValueType();
739 SDValue Arg
= Op
.getOperand(0);
742 // TODO: Should this propagate fast-math-flags?
743 SDValue FractPart
= DAG
.getNode(AMDGPUISD::FRACT
, DL
, VT
,
744 DAG
.getNode(ISD::FADD
, DL
, VT
,
745 DAG
.getNode(ISD::FMUL
, DL
, VT
, Arg
,
746 DAG
.getConstantFP(0.15915494309, DL
, MVT::f32
)),
747 DAG
.getConstantFP(0.5, DL
, MVT::f32
)));
749 switch (Op
.getOpcode()) {
751 TrigNode
= AMDGPUISD::COS_HW
;
754 TrigNode
= AMDGPUISD::SIN_HW
;
757 llvm_unreachable("Wrong trig opcode");
759 SDValue TrigVal
= DAG
.getNode(TrigNode
, DL
, VT
,
760 DAG
.getNode(ISD::FADD
, DL
, VT
, FractPart
,
761 DAG
.getConstantFP(-0.5, DL
, MVT::f32
)));
762 if (Gen
>= AMDGPUSubtarget::R700
)
764 // On R600 hw, COS/SIN input must be between -Pi and Pi.
765 return DAG
.getNode(ISD::FMUL
, DL
, VT
, TrigVal
,
766 DAG
.getConstantFP(numbers::pif
, DL
, MVT::f32
));
769 SDValue
R600TargetLowering::LowerShiftParts(SDValue Op
,
770 SelectionDAG
&DAG
) const {
772 expandShiftParts(Op
.getNode(), Lo
, Hi
, DAG
);
773 return DAG
.getMergeValues({Lo
, Hi
}, SDLoc(Op
));
776 SDValue
R600TargetLowering::LowerUADDSUBO(SDValue Op
, SelectionDAG
&DAG
,
777 unsigned mainop
, unsigned ovf
) const {
779 EVT VT
= Op
.getValueType();
781 SDValue Lo
= Op
.getOperand(0);
782 SDValue Hi
= Op
.getOperand(1);
784 SDValue OVF
= DAG
.getNode(ovf
, DL
, VT
, Lo
, Hi
);
786 OVF
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, OVF
,
787 DAG
.getValueType(MVT::i1
));
789 SDValue Res
= DAG
.getNode(mainop
, DL
, VT
, Lo
, Hi
);
791 return DAG
.getNode(ISD::MERGE_VALUES
, DL
, DAG
.getVTList(VT
, VT
), Res
, OVF
);
794 SDValue
R600TargetLowering::lowerFP_TO_UINT(SDValue Op
, SelectionDAG
&DAG
) const {
800 Op
, DAG
.getConstantFP(1.0f
, DL
, MVT::f32
),
801 DAG
.getCondCode(ISD::SETEQ
));
804 SDValue
R600TargetLowering::lowerFP_TO_SINT(SDValue Op
, SelectionDAG
&DAG
) const {
810 Op
, DAG
.getConstantFP(-1.0f
, DL
, MVT::f32
),
811 DAG
.getCondCode(ISD::SETEQ
));
814 SDValue
R600TargetLowering::LowerImplicitParameter(SelectionDAG
&DAG
, EVT VT
,
816 unsigned DwordOffset
) const {
817 unsigned ByteOffset
= DwordOffset
* 4;
818 PointerType
* PtrType
= PointerType::get(VT
.getTypeForEVT(*DAG
.getContext()),
819 AMDGPUAS::PARAM_I_ADDRESS
);
821 // We shouldn't be using an offset wider than 16-bits for implicit parameters.
822 assert(isInt
<16>(ByteOffset
));
824 return DAG
.getLoad(VT
, DL
, DAG
.getEntryNode(),
825 DAG
.getConstant(ByteOffset
, DL
, MVT::i32
), // PTR
826 MachinePointerInfo(ConstantPointerNull::get(PtrType
)));
829 bool R600TargetLowering::isZero(SDValue Op
) const {
830 if(ConstantSDNode
*Cst
= dyn_cast
<ConstantSDNode
>(Op
)) {
831 return Cst
->isNullValue();
832 } else if(ConstantFPSDNode
*CstFP
= dyn_cast
<ConstantFPSDNode
>(Op
)){
833 return CstFP
->isZero();
839 bool R600TargetLowering::isHWTrueValue(SDValue Op
) const {
840 if (ConstantFPSDNode
* CFP
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
841 return CFP
->isExactlyValue(1.0);
843 return isAllOnesConstant(Op
);
846 bool R600TargetLowering::isHWFalseValue(SDValue Op
) const {
847 if (ConstantFPSDNode
* CFP
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
848 return CFP
->getValueAPF().isZero();
850 return isNullConstant(Op
);
853 SDValue
R600TargetLowering::LowerSELECT_CC(SDValue Op
, SelectionDAG
&DAG
) const {
855 EVT VT
= Op
.getValueType();
857 SDValue LHS
= Op
.getOperand(0);
858 SDValue RHS
= Op
.getOperand(1);
859 SDValue True
= Op
.getOperand(2);
860 SDValue False
= Op
.getOperand(3);
861 SDValue CC
= Op
.getOperand(4);
864 if (VT
== MVT::f32
) {
865 DAGCombinerInfo
DCI(DAG
, AfterLegalizeVectorOps
, true, nullptr);
866 SDValue MinMax
= combineFMinMaxLegacy(DL
, VT
, LHS
, RHS
, True
, False
, CC
, DCI
);
871 // LHS and RHS are guaranteed to be the same value type
872 EVT CompareVT
= LHS
.getValueType();
874 // Check if we can lower this to a native operation.
876 // Try to lower to a SET* instruction:
878 // SET* can match the following patterns:
880 // select_cc f32, f32, -1, 0, cc_supported
881 // select_cc f32, f32, 1.0f, 0.0f, cc_supported
882 // select_cc i32, i32, -1, 0, cc_supported
885 // Move hardware True/False values to the correct operand.
886 if (isHWTrueValue(False
) && isHWFalseValue(True
)) {
887 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
888 ISD::CondCode InverseCC
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
889 if (isCondCodeLegal(InverseCC
, CompareVT
.getSimpleVT())) {
890 std::swap(False
, True
);
891 CC
= DAG
.getCondCode(InverseCC
);
893 ISD::CondCode SwapInvCC
= ISD::getSetCCSwappedOperands(InverseCC
);
894 if (isCondCodeLegal(SwapInvCC
, CompareVT
.getSimpleVT())) {
895 std::swap(False
, True
);
897 CC
= DAG
.getCondCode(SwapInvCC
);
902 if (isHWTrueValue(True
) && isHWFalseValue(False
) &&
903 (CompareVT
== VT
|| VT
== MVT::i32
)) {
904 // This can be matched by a SET* instruction.
905 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
, LHS
, RHS
, True
, False
, CC
);
908 // Try to lower to a CND* instruction:
910 // CND* can match the following patterns:
912 // select_cc f32, 0.0, f32, f32, cc_supported
913 // select_cc f32, 0.0, i32, i32, cc_supported
914 // select_cc i32, 0, f32, f32, cc_supported
915 // select_cc i32, 0, i32, i32, cc_supported
918 // Try to move the zero value to the RHS
920 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
921 // Try swapping the operands
922 ISD::CondCode CCSwapped
= ISD::getSetCCSwappedOperands(CCOpcode
);
923 if (isCondCodeLegal(CCSwapped
, CompareVT
.getSimpleVT())) {
925 CC
= DAG
.getCondCode(CCSwapped
);
927 // Try inverting the conditon and then swapping the operands
928 ISD::CondCode CCInv
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
929 CCSwapped
= ISD::getSetCCSwappedOperands(CCInv
);
930 if (isCondCodeLegal(CCSwapped
, CompareVT
.getSimpleVT())) {
931 std::swap(True
, False
);
933 CC
= DAG
.getCondCode(CCSwapped
);
940 ISD::CondCode CCOpcode
= cast
<CondCodeSDNode
>(CC
)->get();
941 if (CompareVT
!= VT
) {
942 // Bitcast True / False to the correct types. This will end up being
943 // a nop, but it allows us to define only a single pattern in the
944 // .TD files for each CND* instruction rather than having to have
945 // one pattern for integer True/False and one for fp True/False
946 True
= DAG
.getNode(ISD::BITCAST
, DL
, CompareVT
, True
);
947 False
= DAG
.getNode(ISD::BITCAST
, DL
, CompareVT
, False
);
954 CCOpcode
= ISD::getSetCCInverse(CCOpcode
, CompareVT
);
962 SDValue SelectNode
= DAG
.getNode(ISD::SELECT_CC
, DL
, CompareVT
,
965 DAG
.getCondCode(CCOpcode
));
966 return DAG
.getNode(ISD::BITCAST
, DL
, VT
, SelectNode
);
969 // If we make it this for it means we have no native instructions to handle
970 // this SELECT_CC, so we must lower it.
971 SDValue HWTrue
, HWFalse
;
973 if (CompareVT
== MVT::f32
) {
974 HWTrue
= DAG
.getConstantFP(1.0f
, DL
, CompareVT
);
975 HWFalse
= DAG
.getConstantFP(0.0f
, DL
, CompareVT
);
976 } else if (CompareVT
== MVT::i32
) {
977 HWTrue
= DAG
.getConstant(-1, DL
, CompareVT
);
978 HWFalse
= DAG
.getConstant(0, DL
, CompareVT
);
981 llvm_unreachable("Unhandled value type in LowerSELECT_CC");
984 // Lower this unsupported SELECT_CC into a combination of two supported
985 // SELECT_CC operations.
986 SDValue Cond
= DAG
.getNode(ISD::SELECT_CC
, DL
, CompareVT
, LHS
, RHS
, HWTrue
, HWFalse
, CC
);
988 return DAG
.getNode(ISD::SELECT_CC
, DL
, VT
,
991 DAG
.getCondCode(ISD::SETNE
));
994 /// LLVM generates byte-addressed pointers. For indirect addressing, we need to
995 /// convert these pointers to a register index. Each register holds
996 /// 16 bytes, (4 x 32bit sub-register), but we need to take into account the
997 /// \p StackWidth, which tells us how many of the 4 sub-registrers will be used
998 /// for indirect addressing.
999 SDValue
R600TargetLowering::stackPtrToRegIndex(SDValue Ptr
,
1000 unsigned StackWidth
,
1001 SelectionDAG
&DAG
) const {
1003 switch(StackWidth
) {
1013 default: llvm_unreachable("Invalid stack width");
1017 return DAG
.getNode(ISD::SRL
, DL
, Ptr
.getValueType(), Ptr
,
1018 DAG
.getConstant(SRLPad
, DL
, MVT::i32
));
1021 void R600TargetLowering::getStackAddress(unsigned StackWidth
,
1024 unsigned &PtrIncr
) const {
1025 switch (StackWidth
) {
1036 Channel
= ElemIdx
% 2;
1050 SDValue
R600TargetLowering::lowerPrivateTruncStore(StoreSDNode
*Store
,
1051 SelectionDAG
&DAG
) const {
1053 //TODO: Who creates the i8 stores?
1054 assert(Store
->isTruncatingStore()
1055 || Store
->getValue().getValueType() == MVT::i8
);
1056 assert(Store
->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
);
1059 if (Store
->getMemoryVT() == MVT::i8
) {
1060 assert(Store
->getAlignment() >= 1);
1061 Mask
= DAG
.getConstant(0xff, DL
, MVT::i32
);
1062 } else if (Store
->getMemoryVT() == MVT::i16
) {
1063 assert(Store
->getAlignment() >= 2);
1064 Mask
= DAG
.getConstant(0xffff, DL
, MVT::i32
);
1066 llvm_unreachable("Unsupported private trunc store");
1069 SDValue OldChain
= Store
->getChain();
1070 bool VectorTrunc
= (OldChain
.getOpcode() == AMDGPUISD::DUMMY_CHAIN
);
1072 SDValue Chain
= VectorTrunc
? OldChain
->getOperand(0) : OldChain
;
1073 SDValue BasePtr
= Store
->getBasePtr();
1074 SDValue Offset
= Store
->getOffset();
1075 EVT MemVT
= Store
->getMemoryVT();
1077 SDValue LoadPtr
= BasePtr
;
1078 if (!Offset
.isUndef()) {
1079 LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
, Offset
);
1082 // Get dword location
1083 // TODO: this should be eliminated by the future SHR ptr, 2
1084 SDValue Ptr
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1085 DAG
.getConstant(0xfffffffc, DL
, MVT::i32
));
1088 // TODO: can we be smarter about machine pointer info?
1089 MachinePointerInfo
PtrInfo(AMDGPUAS::PRIVATE_ADDRESS
);
1090 SDValue Dst
= DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, PtrInfo
);
1092 Chain
= Dst
.getValue(1);
1094 // Get offset in dword
1095 SDValue ByteIdx
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1096 DAG
.getConstant(0x3, DL
, MVT::i32
));
1098 // Convert byte offset to bit shift
1099 SDValue ShiftAmt
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, ByteIdx
,
1100 DAG
.getConstant(3, DL
, MVT::i32
));
1102 // TODO: Contrary to the name of the functiom,
1103 // it also handles sub i32 non-truncating stores (like i1)
1104 SDValue SExtValue
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, MVT::i32
,
1107 // Mask the value to the right type
1108 SDValue MaskedValue
= DAG
.getZeroExtendInReg(SExtValue
, DL
, MemVT
);
1110 // Shift the value in place
1111 SDValue ShiftedValue
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
,
1112 MaskedValue
, ShiftAmt
);
1114 // Shift the mask in place
1115 SDValue DstMask
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, Mask
, ShiftAmt
);
1117 // Invert the mask. NOTE: if we had native ROL instructions we could
1118 // use inverted mask
1119 DstMask
= DAG
.getNOT(DL
, DstMask
, MVT::i32
);
1121 // Cleanup the target bits
1122 Dst
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Dst
, DstMask
);
1125 SDValue Value
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, Dst
, ShiftedValue
);
1128 // TODO: Can we be smarter about MachinePointerInfo?
1129 SDValue NewStore
= DAG
.getStore(Chain
, DL
, Value
, Ptr
, PtrInfo
);
1131 // If we are part of expanded vector, make our neighbors depend on this store
1133 // Make all other vector elements depend on this store
1134 Chain
= DAG
.getNode(AMDGPUISD::DUMMY_CHAIN
, DL
, MVT::Other
, NewStore
);
1135 DAG
.ReplaceAllUsesOfValueWith(OldChain
, Chain
);
1140 SDValue
R600TargetLowering::LowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
1141 StoreSDNode
*StoreNode
= cast
<StoreSDNode
>(Op
);
1142 unsigned AS
= StoreNode
->getAddressSpace();
1144 SDValue Chain
= StoreNode
->getChain();
1145 SDValue Ptr
= StoreNode
->getBasePtr();
1146 SDValue Value
= StoreNode
->getValue();
1148 EVT VT
= Value
.getValueType();
1149 EVT MemVT
= StoreNode
->getMemoryVT();
1150 EVT PtrVT
= Ptr
.getValueType();
1154 const bool TruncatingStore
= StoreNode
->isTruncatingStore();
1156 // Neither LOCAL nor PRIVATE can do vectors at the moment
1157 if ((AS
== AMDGPUAS::LOCAL_ADDRESS
|| AS
== AMDGPUAS::PRIVATE_ADDRESS
||
1160 if ((AS
== AMDGPUAS::PRIVATE_ADDRESS
) && TruncatingStore
) {
1161 // Add an extra level of chain to isolate this vector
1162 SDValue NewChain
= DAG
.getNode(AMDGPUISD::DUMMY_CHAIN
, DL
, MVT::Other
, Chain
);
1163 // TODO: can the chain be replaced without creating a new store?
1164 SDValue NewStore
= DAG
.getTruncStore(
1165 NewChain
, DL
, Value
, Ptr
, StoreNode
->getPointerInfo(),
1166 MemVT
, StoreNode
->getAlignment(),
1167 StoreNode
->getMemOperand()->getFlags(), StoreNode
->getAAInfo());
1168 StoreNode
= cast
<StoreSDNode
>(NewStore
);
1171 return scalarizeVectorStore(StoreNode
, DAG
);
1174 Align Alignment
= StoreNode
->getAlign();
1175 if (Alignment
< MemVT
.getStoreSize() &&
1176 !allowsMisalignedMemoryAccesses(MemVT
, AS
, Alignment
,
1177 StoreNode
->getMemOperand()->getFlags(),
1179 return expandUnalignedStore(StoreNode
, DAG
);
1182 SDValue DWordAddr
= DAG
.getNode(ISD::SRL
, DL
, PtrVT
, Ptr
,
1183 DAG
.getConstant(2, DL
, PtrVT
));
1185 if (AS
== AMDGPUAS::GLOBAL_ADDRESS
) {
1186 // It is beneficial to create MSKOR here instead of combiner to avoid
1187 // artificial dependencies introduced by RMW
1188 if (TruncatingStore
) {
1189 assert(VT
.bitsLE(MVT::i32
));
1190 SDValue MaskConstant
;
1191 if (MemVT
== MVT::i8
) {
1192 MaskConstant
= DAG
.getConstant(0xFF, DL
, MVT::i32
);
1194 assert(MemVT
== MVT::i16
);
1195 assert(StoreNode
->getAlignment() >= 2);
1196 MaskConstant
= DAG
.getConstant(0xFFFF, DL
, MVT::i32
);
1199 SDValue ByteIndex
= DAG
.getNode(ISD::AND
, DL
, PtrVT
, Ptr
,
1200 DAG
.getConstant(0x00000003, DL
, PtrVT
));
1201 SDValue BitShift
= DAG
.getNode(ISD::SHL
, DL
, VT
, ByteIndex
,
1202 DAG
.getConstant(3, DL
, VT
));
1204 // Put the mask in correct place
1205 SDValue Mask
= DAG
.getNode(ISD::SHL
, DL
, VT
, MaskConstant
, BitShift
);
1207 // Put the value bits in correct place
1208 SDValue TruncValue
= DAG
.getNode(ISD::AND
, DL
, VT
, Value
, MaskConstant
);
1209 SDValue ShiftedValue
= DAG
.getNode(ISD::SHL
, DL
, VT
, TruncValue
, BitShift
);
1211 // XXX: If we add a 64-bit ZW register class, then we could use a 2 x i32
1215 DAG
.getConstant(0, DL
, MVT::i32
),
1216 DAG
.getConstant(0, DL
, MVT::i32
),
1219 SDValue Input
= DAG
.getBuildVector(MVT::v4i32
, DL
, Src
);
1220 SDValue Args
[3] = { Chain
, Input
, DWordAddr
};
1221 return DAG
.getMemIntrinsicNode(AMDGPUISD::STORE_MSKOR
, DL
,
1222 Op
->getVTList(), Args
, MemVT
,
1223 StoreNode
->getMemOperand());
1224 } else if (Ptr
->getOpcode() != AMDGPUISD::DWORDADDR
&& VT
.bitsGE(MVT::i32
)) {
1225 // Convert pointer from byte address to dword address.
1226 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, PtrVT
, DWordAddr
);
1228 if (StoreNode
->isIndexed()) {
1229 llvm_unreachable("Indexed stores not supported yet");
1231 Chain
= DAG
.getStore(Chain
, DL
, Value
, Ptr
, StoreNode
->getMemOperand());
1237 // GLOBAL_ADDRESS has been handled above, LOCAL_ADDRESS allows all sizes
1238 if (AS
!= AMDGPUAS::PRIVATE_ADDRESS
)
1241 if (MemVT
.bitsLT(MVT::i32
))
1242 return lowerPrivateTruncStore(StoreNode
, DAG
);
1244 // Standard i32+ store, tag it with DWORDADDR to note that the address
1246 if (Ptr
.getOpcode() != AMDGPUISD::DWORDADDR
) {
1247 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, PtrVT
, DWordAddr
);
1248 return DAG
.getStore(Chain
, DL
, Value
, Ptr
, StoreNode
->getMemOperand());
1251 // Tagged i32+ stores will be matched by patterns
1255 // return (512 + (kc_bank << 12)
1257 ConstantAddressBlock(unsigned AddressSpace
) {
1258 switch (AddressSpace
) {
1259 case AMDGPUAS::CONSTANT_BUFFER_0
:
1261 case AMDGPUAS::CONSTANT_BUFFER_1
:
1263 case AMDGPUAS::CONSTANT_BUFFER_2
:
1264 return 512 + 4096 * 2;
1265 case AMDGPUAS::CONSTANT_BUFFER_3
:
1266 return 512 + 4096 * 3;
1267 case AMDGPUAS::CONSTANT_BUFFER_4
:
1268 return 512 + 4096 * 4;
1269 case AMDGPUAS::CONSTANT_BUFFER_5
:
1270 return 512 + 4096 * 5;
1271 case AMDGPUAS::CONSTANT_BUFFER_6
:
1272 return 512 + 4096 * 6;
1273 case AMDGPUAS::CONSTANT_BUFFER_7
:
1274 return 512 + 4096 * 7;
1275 case AMDGPUAS::CONSTANT_BUFFER_8
:
1276 return 512 + 4096 * 8;
1277 case AMDGPUAS::CONSTANT_BUFFER_9
:
1278 return 512 + 4096 * 9;
1279 case AMDGPUAS::CONSTANT_BUFFER_10
:
1280 return 512 + 4096 * 10;
1281 case AMDGPUAS::CONSTANT_BUFFER_11
:
1282 return 512 + 4096 * 11;
1283 case AMDGPUAS::CONSTANT_BUFFER_12
:
1284 return 512 + 4096 * 12;
1285 case AMDGPUAS::CONSTANT_BUFFER_13
:
1286 return 512 + 4096 * 13;
1287 case AMDGPUAS::CONSTANT_BUFFER_14
:
1288 return 512 + 4096 * 14;
1289 case AMDGPUAS::CONSTANT_BUFFER_15
:
1290 return 512 + 4096 * 15;
1296 SDValue
R600TargetLowering::lowerPrivateExtLoad(SDValue Op
,
1297 SelectionDAG
&DAG
) const {
1299 LoadSDNode
*Load
= cast
<LoadSDNode
>(Op
);
1300 ISD::LoadExtType ExtType
= Load
->getExtensionType();
1301 EVT MemVT
= Load
->getMemoryVT();
1302 assert(Load
->getAlignment() >= MemVT
.getStoreSize());
1304 SDValue BasePtr
= Load
->getBasePtr();
1305 SDValue Chain
= Load
->getChain();
1306 SDValue Offset
= Load
->getOffset();
1308 SDValue LoadPtr
= BasePtr
;
1309 if (!Offset
.isUndef()) {
1310 LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, MVT::i32
, BasePtr
, Offset
);
1313 // Get dword location
1314 // NOTE: this should be eliminated by the future SHR ptr, 2
1315 SDValue Ptr
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, LoadPtr
,
1316 DAG
.getConstant(0xfffffffc, DL
, MVT::i32
));
1319 // TODO: can we be smarter about machine pointer info?
1320 MachinePointerInfo
PtrInfo(AMDGPUAS::PRIVATE_ADDRESS
);
1321 SDValue Read
= DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, PtrInfo
);
1323 // Get offset within the register.
1324 SDValue ByteIdx
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
,
1325 LoadPtr
, DAG
.getConstant(0x3, DL
, MVT::i32
));
1327 // Bit offset of target byte (byteIdx * 8).
1328 SDValue ShiftAmt
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, ByteIdx
,
1329 DAG
.getConstant(3, DL
, MVT::i32
));
1331 // Shift to the right.
1332 SDValue Ret
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Read
, ShiftAmt
);
1334 // Eliminate the upper bits by setting them to ...
1335 EVT MemEltVT
= MemVT
.getScalarType();
1337 if (ExtType
== ISD::SEXTLOAD
) { // ... ones.
1338 SDValue MemEltVTNode
= DAG
.getValueType(MemEltVT
);
1339 Ret
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, MVT::i32
, Ret
, MemEltVTNode
);
1340 } else { // ... or zeros.
1341 Ret
= DAG
.getZeroExtendInReg(Ret
, DL
, MemEltVT
);
1346 Read
.getValue(1) // This should be our output chain
1349 return DAG
.getMergeValues(Ops
, DL
);
1352 SDValue
R600TargetLowering::LowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
1353 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(Op
);
1354 unsigned AS
= LoadNode
->getAddressSpace();
1355 EVT MemVT
= LoadNode
->getMemoryVT();
1356 ISD::LoadExtType ExtType
= LoadNode
->getExtensionType();
1358 if (AS
== AMDGPUAS::PRIVATE_ADDRESS
&&
1359 ExtType
!= ISD::NON_EXTLOAD
&& MemVT
.bitsLT(MVT::i32
)) {
1360 return lowerPrivateExtLoad(Op
, DAG
);
1364 EVT VT
= Op
.getValueType();
1365 SDValue Chain
= LoadNode
->getChain();
1366 SDValue Ptr
= LoadNode
->getBasePtr();
1368 if ((LoadNode
->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS
||
1369 LoadNode
->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS
) &&
1372 std::tie(Ops
[0], Ops
[1]) = scalarizeVectorLoad(LoadNode
, DAG
);
1373 return DAG
.getMergeValues(Ops
, DL
);
1376 // This is still used for explicit load from addrspace(8)
1377 int ConstantBlock
= ConstantAddressBlock(LoadNode
->getAddressSpace());
1378 if (ConstantBlock
> -1 &&
1379 ((LoadNode
->getExtensionType() == ISD::NON_EXTLOAD
) ||
1380 (LoadNode
->getExtensionType() == ISD::ZEXTLOAD
))) {
1382 if (isa
<Constant
>(LoadNode
->getMemOperand()->getValue()) ||
1383 isa
<ConstantSDNode
>(Ptr
)) {
1384 return constBufferLoad(LoadNode
, LoadNode
->getAddressSpace(), DAG
);
1386 //TODO: Does this even work?
1387 // non-constant ptr can't be folded, keeps it as a v4f32 load
1388 Result
= DAG
.getNode(AMDGPUISD::CONST_ADDRESS
, DL
, MVT::v4i32
,
1389 DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Ptr
,
1390 DAG
.getConstant(4, DL
, MVT::i32
)),
1391 DAG
.getConstant(LoadNode
->getAddressSpace() -
1392 AMDGPUAS::CONSTANT_BUFFER_0
, DL
, MVT::i32
)
1396 if (!VT
.isVector()) {
1397 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
, Result
,
1398 DAG
.getConstant(0, DL
, MVT::i32
));
1401 SDValue MergedValues
[2] = {
1405 return DAG
.getMergeValues(MergedValues
, DL
);
1408 // For most operations returning SDValue() will result in the node being
1409 // expanded by the DAG Legalizer. This is not the case for ISD::LOAD, so we
1410 // need to manually expand loads that may be legal in some address spaces and
1411 // illegal in others. SEXT loads from CONSTANT_BUFFER_0 are supported for
1412 // compute shaders, since the data is sign extended when it is uploaded to the
1413 // buffer. However SEXT loads from other address spaces are not supported, so
1414 // we need to expand them here.
1415 if (LoadNode
->getExtensionType() == ISD::SEXTLOAD
) {
1416 assert(!MemVT
.isVector() && (MemVT
== MVT::i16
|| MemVT
== MVT::i8
));
1417 SDValue NewLoad
= DAG
.getExtLoad(
1418 ISD::EXTLOAD
, DL
, VT
, Chain
, Ptr
, LoadNode
->getPointerInfo(), MemVT
,
1419 LoadNode
->getAlignment(), LoadNode
->getMemOperand()->getFlags());
1420 SDValue Res
= DAG
.getNode(ISD::SIGN_EXTEND_INREG
, DL
, VT
, NewLoad
,
1421 DAG
.getValueType(MemVT
));
1423 SDValue MergedValues
[2] = { Res
, Chain
};
1424 return DAG
.getMergeValues(MergedValues
, DL
);
1427 if (LoadNode
->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS
) {
1431 // DWORDADDR ISD marks already shifted address
1432 if (Ptr
.getOpcode() != AMDGPUISD::DWORDADDR
) {
1433 assert(VT
== MVT::i32
);
1434 Ptr
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Ptr
, DAG
.getConstant(2, DL
, MVT::i32
));
1435 Ptr
= DAG
.getNode(AMDGPUISD::DWORDADDR
, DL
, MVT::i32
, Ptr
);
1436 return DAG
.getLoad(MVT::i32
, DL
, Chain
, Ptr
, LoadNode
->getMemOperand());
1441 SDValue
R600TargetLowering::LowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
1442 SDValue Chain
= Op
.getOperand(0);
1443 SDValue Cond
= Op
.getOperand(1);
1444 SDValue Jump
= Op
.getOperand(2);
1446 return DAG
.getNode(AMDGPUISD::BRANCH_COND
, SDLoc(Op
), Op
.getValueType(),
1450 SDValue
R600TargetLowering::lowerFrameIndex(SDValue Op
,
1451 SelectionDAG
&DAG
) const {
1452 MachineFunction
&MF
= DAG
.getMachineFunction();
1453 const R600FrameLowering
*TFL
= Subtarget
->getFrameLowering();
1455 FrameIndexSDNode
*FIN
= cast
<FrameIndexSDNode
>(Op
);
1457 unsigned FrameIndex
= FIN
->getIndex();
1458 Register IgnoredFrameReg
;
1459 StackOffset Offset
=
1460 TFL
->getFrameIndexReference(MF
, FrameIndex
, IgnoredFrameReg
);
1461 return DAG
.getConstant(Offset
.getFixed() * 4 * TFL
->getStackWidth(MF
),
1462 SDLoc(Op
), Op
.getValueType());
1465 CCAssignFn
*R600TargetLowering::CCAssignFnForCall(CallingConv::ID CC
,
1466 bool IsVarArg
) const {
1468 case CallingConv::AMDGPU_KERNEL
:
1469 case CallingConv::SPIR_KERNEL
:
1470 case CallingConv::C
:
1471 case CallingConv::Fast
:
1472 case CallingConv::Cold
:
1473 llvm_unreachable("kernels should not be handled here");
1474 case CallingConv::AMDGPU_VS
:
1475 case CallingConv::AMDGPU_GS
:
1476 case CallingConv::AMDGPU_PS
:
1477 case CallingConv::AMDGPU_CS
:
1478 case CallingConv::AMDGPU_HS
:
1479 case CallingConv::AMDGPU_ES
:
1480 case CallingConv::AMDGPU_LS
:
1483 report_fatal_error("Unsupported calling convention.");
1487 /// XXX Only kernel functions are supported, so we can assume for now that
1488 /// every function is a kernel function, but in the future we should use
1489 /// separate calling conventions for kernel and non-kernel functions.
1490 SDValue
R600TargetLowering::LowerFormalArguments(
1491 SDValue Chain
, CallingConv::ID CallConv
, bool isVarArg
,
1492 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
1493 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
1494 SmallVector
<CCValAssign
, 16> ArgLocs
;
1495 CCState
CCInfo(CallConv
, isVarArg
, DAG
.getMachineFunction(), ArgLocs
,
1497 MachineFunction
&MF
= DAG
.getMachineFunction();
1498 SmallVector
<ISD::InputArg
, 8> LocalIns
;
1500 if (AMDGPU::isShader(CallConv
)) {
1501 CCInfo
.AnalyzeFormalArguments(Ins
, CCAssignFnForCall(CallConv
, isVarArg
));
1503 analyzeFormalArgumentsCompute(CCInfo
, Ins
);
1506 for (unsigned i
= 0, e
= Ins
.size(); i
< e
; ++i
) {
1507 CCValAssign
&VA
= ArgLocs
[i
];
1508 const ISD::InputArg
&In
= Ins
[i
];
1510 EVT MemVT
= VA
.getLocVT();
1511 if (!VT
.isVector() && MemVT
.isVector()) {
1512 // Get load source type if scalarized.
1513 MemVT
= MemVT
.getVectorElementType();
1516 if (AMDGPU::isShader(CallConv
)) {
1517 Register Reg
= MF
.addLiveIn(VA
.getLocReg(), &R600::R600_Reg128RegClass
);
1518 SDValue Register
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, VT
);
1519 InVals
.push_back(Register
);
1523 // i64 isn't a legal type, so the register type used ends up as i32, which
1524 // isn't expected here. It attempts to create this sextload, but it ends up
1525 // being invalid. Somehow this seems to work with i64 arguments, but breaks
1528 // The first 36 bytes of the input buffer contains information about
1529 // thread group and global sizes.
1530 ISD::LoadExtType Ext
= ISD::NON_EXTLOAD
;
1531 if (MemVT
.getScalarSizeInBits() != VT
.getScalarSizeInBits()) {
1532 // FIXME: This should really check the extload type, but the handling of
1533 // extload vector parameters seems to be broken.
1535 // Ext = In.Flags.isSExt() ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
1536 Ext
= ISD::SEXTLOAD
;
1539 // Compute the offset from the value.
1540 // XXX - I think PartOffset should give you this, but it seems to give the
1541 // size of the register which isn't useful.
1543 unsigned PartOffset
= VA
.getLocMemOffset();
1544 unsigned Alignment
= MinAlign(VT
.getStoreSize(), PartOffset
);
1546 MachinePointerInfo
PtrInfo(AMDGPUAS::PARAM_I_ADDRESS
);
1547 SDValue Arg
= DAG
.getLoad(
1548 ISD::UNINDEXED
, Ext
, VT
, DL
, Chain
,
1549 DAG
.getConstant(PartOffset
, DL
, MVT::i32
), DAG
.getUNDEF(MVT::i32
),
1551 MemVT
, Alignment
, MachineMemOperand::MONonTemporal
|
1552 MachineMemOperand::MODereferenceable
|
1553 MachineMemOperand::MOInvariant
);
1555 InVals
.push_back(Arg
);
1560 EVT
R600TargetLowering::getSetCCResultType(const DataLayout
&DL
, LLVMContext
&,
1564 return VT
.changeVectorElementTypeToInteger();
1567 bool R600TargetLowering::canMergeStoresTo(unsigned AS
, EVT MemVT
,
1568 const MachineFunction
&MF
) const {
1569 // Local and Private addresses do not handle vectors. Limit to i32
1570 if ((AS
== AMDGPUAS::LOCAL_ADDRESS
|| AS
== AMDGPUAS::PRIVATE_ADDRESS
)) {
1571 return (MemVT
.getSizeInBits() <= 32);
1576 bool R600TargetLowering::allowsMisalignedMemoryAccesses(
1577 EVT VT
, unsigned AddrSpace
, Align Alignment
, MachineMemOperand::Flags Flags
,
1578 bool *IsFast
) const {
1582 if (!VT
.isSimple() || VT
== MVT::Other
)
1585 if (VT
.bitsLT(MVT::i32
))
1588 // TODO: This is a rough estimate.
1592 return VT
.bitsGT(MVT::i32
) && Alignment
>= Align(4);
1595 static SDValue
CompactSwizzlableVector(
1596 SelectionDAG
&DAG
, SDValue VectorEntry
,
1597 DenseMap
<unsigned, unsigned> &RemapSwizzle
) {
1598 assert(RemapSwizzle
.empty());
1600 SDLoc
DL(VectorEntry
);
1601 EVT EltTy
= VectorEntry
.getValueType().getVectorElementType();
1603 SDValue NewBldVec
[4];
1604 for (unsigned i
= 0; i
< 4; i
++)
1605 NewBldVec
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltTy
, VectorEntry
,
1606 DAG
.getIntPtrConstant(i
, DL
));
1608 for (unsigned i
= 0; i
< 4; i
++) {
1609 if (NewBldVec
[i
].isUndef())
1610 // We mask write here to teach later passes that the ith element of this
1611 // vector is undef. Thus we can use it to reduce 128 bits reg usage,
1612 // break false dependencies and additionnaly make assembly easier to read.
1613 RemapSwizzle
[i
] = 7; // SEL_MASK_WRITE
1614 if (ConstantFPSDNode
*C
= dyn_cast
<ConstantFPSDNode
>(NewBldVec
[i
])) {
1616 RemapSwizzle
[i
] = 4; // SEL_0
1617 NewBldVec
[i
] = DAG
.getUNDEF(MVT::f32
);
1618 } else if (C
->isExactlyValue(1.0)) {
1619 RemapSwizzle
[i
] = 5; // SEL_1
1620 NewBldVec
[i
] = DAG
.getUNDEF(MVT::f32
);
1624 if (NewBldVec
[i
].isUndef())
1627 for (unsigned j
= 0; j
< i
; j
++) {
1628 if (NewBldVec
[i
] == NewBldVec
[j
]) {
1629 NewBldVec
[i
] = DAG
.getUNDEF(NewBldVec
[i
].getValueType());
1630 RemapSwizzle
[i
] = j
;
1636 return DAG
.getBuildVector(VectorEntry
.getValueType(), SDLoc(VectorEntry
),
1640 static SDValue
ReorganizeVector(SelectionDAG
&DAG
, SDValue VectorEntry
,
1641 DenseMap
<unsigned, unsigned> &RemapSwizzle
) {
1642 assert(RemapSwizzle
.empty());
1644 SDLoc
DL(VectorEntry
);
1645 EVT EltTy
= VectorEntry
.getValueType().getVectorElementType();
1647 SDValue NewBldVec
[4];
1648 bool isUnmovable
[4] = {false, false, false, false};
1649 for (unsigned i
= 0; i
< 4; i
++)
1650 NewBldVec
[i
] = DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, EltTy
, VectorEntry
,
1651 DAG
.getIntPtrConstant(i
, DL
));
1653 for (unsigned i
= 0; i
< 4; i
++) {
1654 RemapSwizzle
[i
] = i
;
1655 if (NewBldVec
[i
].getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
1656 unsigned Idx
= cast
<ConstantSDNode
>(NewBldVec
[i
].getOperand(1))
1659 isUnmovable
[Idx
] = true;
1663 for (unsigned i
= 0; i
< 4; i
++) {
1664 if (NewBldVec
[i
].getOpcode() == ISD::EXTRACT_VECTOR_ELT
) {
1665 unsigned Idx
= cast
<ConstantSDNode
>(NewBldVec
[i
].getOperand(1))
1667 if (isUnmovable
[Idx
])
1670 std::swap(NewBldVec
[Idx
], NewBldVec
[i
]);
1671 std::swap(RemapSwizzle
[i
], RemapSwizzle
[Idx
]);
1676 return DAG
.getBuildVector(VectorEntry
.getValueType(), SDLoc(VectorEntry
),
1680 SDValue
R600TargetLowering::OptimizeSwizzle(SDValue BuildVector
, SDValue Swz
[4],
1682 const SDLoc
&DL
) const {
1683 // Old -> New swizzle values
1684 DenseMap
<unsigned, unsigned> SwizzleRemap
;
1686 BuildVector
= CompactSwizzlableVector(DAG
, BuildVector
, SwizzleRemap
);
1687 for (unsigned i
= 0; i
< 4; i
++) {
1688 unsigned Idx
= cast
<ConstantSDNode
>(Swz
[i
])->getZExtValue();
1689 if (SwizzleRemap
.find(Idx
) != SwizzleRemap
.end())
1690 Swz
[i
] = DAG
.getConstant(SwizzleRemap
[Idx
], DL
, MVT::i32
);
1693 SwizzleRemap
.clear();
1694 BuildVector
= ReorganizeVector(DAG
, BuildVector
, SwizzleRemap
);
1695 for (unsigned i
= 0; i
< 4; i
++) {
1696 unsigned Idx
= cast
<ConstantSDNode
>(Swz
[i
])->getZExtValue();
1697 if (SwizzleRemap
.find(Idx
) != SwizzleRemap
.end())
1698 Swz
[i
] = DAG
.getConstant(SwizzleRemap
[Idx
], DL
, MVT::i32
);
1704 SDValue
R600TargetLowering::constBufferLoad(LoadSDNode
*LoadNode
, int Block
,
1705 SelectionDAG
&DAG
) const {
1707 EVT VT
= LoadNode
->getValueType(0);
1708 SDValue Chain
= LoadNode
->getChain();
1709 SDValue Ptr
= LoadNode
->getBasePtr();
1710 assert (isa
<ConstantSDNode
>(Ptr
));
1712 //TODO: Support smaller loads
1713 if (LoadNode
->getMemoryVT().getScalarType() != MVT::i32
|| !ISD::isNON_EXTLoad(LoadNode
))
1716 if (LoadNode
->getAlignment() < 4)
1719 int ConstantBlock
= ConstantAddressBlock(Block
);
1722 for (unsigned i
= 0; i
< 4; i
++) {
1723 // We want Const position encoded with the following formula :
1724 // (((512 + (kc_bank << 12) + const_index) << 2) + chan)
1725 // const_index is Ptr computed by llvm using an alignment of 16.
1726 // Thus we add (((512 + (kc_bank << 12)) + chan ) * 4 here and
1727 // then div by 4 at the ISel step
1728 SDValue NewPtr
= DAG
.getNode(ISD::ADD
, DL
, Ptr
.getValueType(), Ptr
,
1729 DAG
.getConstant(4 * i
+ ConstantBlock
* 16, DL
, MVT::i32
));
1730 Slots
[i
] = DAG
.getNode(AMDGPUISD::CONST_ADDRESS
, DL
, MVT::i32
, NewPtr
);
1732 EVT NewVT
= MVT::v4i32
;
1733 unsigned NumElements
= 4;
1734 if (VT
.isVector()) {
1736 NumElements
= VT
.getVectorNumElements();
1738 SDValue Result
= DAG
.getBuildVector(NewVT
, DL
, makeArrayRef(Slots
, NumElements
));
1739 if (!VT
.isVector()) {
1740 Result
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
, MVT::i32
, Result
,
1741 DAG
.getConstant(0, DL
, MVT::i32
));
1743 SDValue MergedValues
[2] = {
1747 return DAG
.getMergeValues(MergedValues
, DL
);
1750 //===----------------------------------------------------------------------===//
1751 // Custom DAG Optimizations
1752 //===----------------------------------------------------------------------===//
1754 SDValue
R600TargetLowering::PerformDAGCombine(SDNode
*N
,
1755 DAGCombinerInfo
&DCI
) const {
1756 SelectionDAG
&DAG
= DCI
.DAG
;
1759 switch (N
->getOpcode()) {
1760 // (f32 fp_round (f64 uint_to_fp a)) -> (f32 uint_to_fp a)
1761 case ISD::FP_ROUND
: {
1762 SDValue Arg
= N
->getOperand(0);
1763 if (Arg
.getOpcode() == ISD::UINT_TO_FP
&& Arg
.getValueType() == MVT::f64
) {
1764 return DAG
.getNode(ISD::UINT_TO_FP
, DL
, N
->getValueType(0),
1770 // (i32 fp_to_sint (fneg (select_cc f32, f32, 1.0, 0.0 cc))) ->
1771 // (i32 select_cc f32, f32, -1, 0 cc)
1773 // Mesa's GLSL frontend generates the above pattern a lot and we can lower
1774 // this to one of the SET*_DX10 instructions.
1775 case ISD::FP_TO_SINT
: {
1776 SDValue FNeg
= N
->getOperand(0);
1777 if (FNeg
.getOpcode() != ISD::FNEG
) {
1780 SDValue SelectCC
= FNeg
.getOperand(0);
1781 if (SelectCC
.getOpcode() != ISD::SELECT_CC
||
1782 SelectCC
.getOperand(0).getValueType() != MVT::f32
|| // LHS
1783 SelectCC
.getOperand(2).getValueType() != MVT::f32
|| // True
1784 !isHWTrueValue(SelectCC
.getOperand(2)) ||
1785 !isHWFalseValue(SelectCC
.getOperand(3))) {
1789 return DAG
.getNode(ISD::SELECT_CC
, DL
, N
->getValueType(0),
1790 SelectCC
.getOperand(0), // LHS
1791 SelectCC
.getOperand(1), // RHS
1792 DAG
.getConstant(-1, DL
, MVT::i32
), // True
1793 DAG
.getConstant(0, DL
, MVT::i32
), // False
1794 SelectCC
.getOperand(4)); // CC
1797 // insert_vector_elt (build_vector elt0, ... , eltN), NewEltIdx, idx
1798 // => build_vector elt0, ... , NewEltIdx, ... , eltN
1799 case ISD::INSERT_VECTOR_ELT
: {
1800 SDValue InVec
= N
->getOperand(0);
1801 SDValue InVal
= N
->getOperand(1);
1802 SDValue EltNo
= N
->getOperand(2);
1804 // If the inserted element is an UNDEF, just use the input vector.
1805 if (InVal
.isUndef())
1808 EVT VT
= InVec
.getValueType();
1810 // If we can't generate a legal BUILD_VECTOR, exit
1811 if (!isOperationLegal(ISD::BUILD_VECTOR
, VT
))
1814 // Check that we know which element is being inserted
1815 if (!isa
<ConstantSDNode
>(EltNo
))
1817 unsigned Elt
= cast
<ConstantSDNode
>(EltNo
)->getZExtValue();
1819 // Check that the operand is a BUILD_VECTOR (or UNDEF, which can essentially
1820 // be converted to a BUILD_VECTOR). Fill in the Ops vector with the
1822 SmallVector
<SDValue
, 8> Ops
;
1823 if (InVec
.getOpcode() == ISD::BUILD_VECTOR
) {
1824 Ops
.append(InVec
.getNode()->op_begin(),
1825 InVec
.getNode()->op_end());
1826 } else if (InVec
.isUndef()) {
1827 unsigned NElts
= VT
.getVectorNumElements();
1828 Ops
.append(NElts
, DAG
.getUNDEF(InVal
.getValueType()));
1833 // Insert the element
1834 if (Elt
< Ops
.size()) {
1835 // All the operands of BUILD_VECTOR must have the same type;
1836 // we enforce that here.
1837 EVT OpVT
= Ops
[0].getValueType();
1838 if (InVal
.getValueType() != OpVT
)
1839 InVal
= OpVT
.bitsGT(InVal
.getValueType()) ?
1840 DAG
.getNode(ISD::ANY_EXTEND
, DL
, OpVT
, InVal
) :
1841 DAG
.getNode(ISD::TRUNCATE
, DL
, OpVT
, InVal
);
1845 // Return the new vector
1846 return DAG
.getBuildVector(VT
, DL
, Ops
);
1849 // Extract_vec (Build_vector) generated by custom lowering
1850 // also needs to be customly combined
1851 case ISD::EXTRACT_VECTOR_ELT
: {
1852 SDValue Arg
= N
->getOperand(0);
1853 if (Arg
.getOpcode() == ISD::BUILD_VECTOR
) {
1854 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
1855 unsigned Element
= Const
->getZExtValue();
1856 return Arg
->getOperand(Element
);
1859 if (Arg
.getOpcode() == ISD::BITCAST
&&
1860 Arg
.getOperand(0).getOpcode() == ISD::BUILD_VECTOR
&&
1861 (Arg
.getOperand(0).getValueType().getVectorNumElements() ==
1862 Arg
.getValueType().getVectorNumElements())) {
1863 if (ConstantSDNode
*Const
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))) {
1864 unsigned Element
= Const
->getZExtValue();
1865 return DAG
.getNode(ISD::BITCAST
, DL
, N
->getVTList(),
1866 Arg
->getOperand(0).getOperand(Element
));
1872 case ISD::SELECT_CC
: {
1873 // Try common optimizations
1874 if (SDValue Ret
= AMDGPUTargetLowering::PerformDAGCombine(N
, DCI
))
1877 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, seteq ->
1878 // selectcc x, y, a, b, inv(cc)
1880 // fold selectcc (selectcc x, y, a, b, cc), b, a, b, setne ->
1881 // selectcc x, y, a, b, cc
1882 SDValue LHS
= N
->getOperand(0);
1883 if (LHS
.getOpcode() != ISD::SELECT_CC
) {
1887 SDValue RHS
= N
->getOperand(1);
1888 SDValue True
= N
->getOperand(2);
1889 SDValue False
= N
->getOperand(3);
1890 ISD::CondCode NCC
= cast
<CondCodeSDNode
>(N
->getOperand(4))->get();
1892 if (LHS
.getOperand(2).getNode() != True
.getNode() ||
1893 LHS
.getOperand(3).getNode() != False
.getNode() ||
1894 RHS
.getNode() != False
.getNode()) {
1899 default: return SDValue();
1900 case ISD::SETNE
: return LHS
;
1902 ISD::CondCode LHSCC
= cast
<CondCodeSDNode
>(LHS
.getOperand(4))->get();
1903 LHSCC
= ISD::getSetCCInverse(LHSCC
, LHS
.getOperand(0).getValueType());
1904 if (DCI
.isBeforeLegalizeOps() ||
1905 isCondCodeLegal(LHSCC
, LHS
.getOperand(0).getSimpleValueType()))
1906 return DAG
.getSelectCC(DL
,
1918 case AMDGPUISD::R600_EXPORT
: {
1919 SDValue Arg
= N
->getOperand(1);
1920 if (Arg
.getOpcode() != ISD::BUILD_VECTOR
)
1923 SDValue NewArgs
[8] = {
1924 N
->getOperand(0), // Chain
1926 N
->getOperand(2), // ArrayBase
1927 N
->getOperand(3), // Type
1928 N
->getOperand(4), // SWZ_X
1929 N
->getOperand(5), // SWZ_Y
1930 N
->getOperand(6), // SWZ_Z
1931 N
->getOperand(7) // SWZ_W
1933 NewArgs
[1] = OptimizeSwizzle(N
->getOperand(1), &NewArgs
[4], DAG
, DL
);
1934 return DAG
.getNode(AMDGPUISD::R600_EXPORT
, DL
, N
->getVTList(), NewArgs
);
1936 case AMDGPUISD::TEXTURE_FETCH
: {
1937 SDValue Arg
= N
->getOperand(1);
1938 if (Arg
.getOpcode() != ISD::BUILD_VECTOR
)
1941 SDValue NewArgs
[19] = {
1962 NewArgs
[1] = OptimizeSwizzle(N
->getOperand(1), &NewArgs
[2], DAG
, DL
);
1963 return DAG
.getNode(AMDGPUISD::TEXTURE_FETCH
, DL
, N
->getVTList(), NewArgs
);
1967 LoadSDNode
*LoadNode
= cast
<LoadSDNode
>(N
);
1968 SDValue Ptr
= LoadNode
->getBasePtr();
1969 if (LoadNode
->getAddressSpace() == AMDGPUAS::PARAM_I_ADDRESS
&&
1970 isa
<ConstantSDNode
>(Ptr
))
1971 return constBufferLoad(LoadNode
, AMDGPUAS::CONSTANT_BUFFER_0
, DAG
);
1978 return AMDGPUTargetLowering::PerformDAGCombine(N
, DCI
);
1981 bool R600TargetLowering::FoldOperand(SDNode
*ParentNode
, unsigned SrcIdx
,
1982 SDValue
&Src
, SDValue
&Neg
, SDValue
&Abs
,
1983 SDValue
&Sel
, SDValue
&Imm
,
1984 SelectionDAG
&DAG
) const {
1985 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
1986 if (!Src
.isMachineOpcode())
1989 switch (Src
.getMachineOpcode()) {
1990 case R600::FNEG_R600
:
1993 Src
= Src
.getOperand(0);
1994 Neg
= DAG
.getTargetConstant(1, SDLoc(ParentNode
), MVT::i32
);
1996 case R600::FABS_R600
:
1999 Src
= Src
.getOperand(0);
2000 Abs
= DAG
.getTargetConstant(1, SDLoc(ParentNode
), MVT::i32
);
2002 case R600::CONST_COPY
: {
2003 unsigned Opcode
= ParentNode
->getMachineOpcode();
2004 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
2009 SDValue CstOffset
= Src
.getOperand(0);
2010 if (ParentNode
->getValueType(0).isVector())
2013 // Gather constants values
2014 int SrcIndices
[] = {
2015 TII
->getOperandIdx(Opcode
, R600::OpName::src0
),
2016 TII
->getOperandIdx(Opcode
, R600::OpName::src1
),
2017 TII
->getOperandIdx(Opcode
, R600::OpName::src2
),
2018 TII
->getOperandIdx(Opcode
, R600::OpName::src0_X
),
2019 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Y
),
2020 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Z
),
2021 TII
->getOperandIdx(Opcode
, R600::OpName::src0_W
),
2022 TII
->getOperandIdx(Opcode
, R600::OpName::src1_X
),
2023 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Y
),
2024 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Z
),
2025 TII
->getOperandIdx(Opcode
, R600::OpName::src1_W
)
2027 std::vector
<unsigned> Consts
;
2028 for (int OtherSrcIdx
: SrcIndices
) {
2029 int OtherSelIdx
= TII
->getSelIdx(Opcode
, OtherSrcIdx
);
2030 if (OtherSrcIdx
< 0 || OtherSelIdx
< 0)
2036 if (RegisterSDNode
*Reg
=
2037 dyn_cast
<RegisterSDNode
>(ParentNode
->getOperand(OtherSrcIdx
))) {
2038 if (Reg
->getReg() == R600::ALU_CONST
) {
2040 = cast
<ConstantSDNode
>(ParentNode
->getOperand(OtherSelIdx
));
2041 Consts
.push_back(Cst
->getZExtValue());
2046 ConstantSDNode
*Cst
= cast
<ConstantSDNode
>(CstOffset
);
2047 Consts
.push_back(Cst
->getZExtValue());
2048 if (!TII
->fitsConstReadLimitations(Consts
)) {
2053 Src
= DAG
.getRegister(R600::ALU_CONST
, MVT::f32
);
2056 case R600::MOV_IMM_GLOBAL_ADDR
:
2057 // Check if the Imm slot is used. Taken from below.
2058 if (cast
<ConstantSDNode
>(Imm
)->getZExtValue())
2060 Imm
= Src
.getOperand(0);
2061 Src
= DAG
.getRegister(R600::ALU_LITERAL_X
, MVT::i32
);
2063 case R600::MOV_IMM_I32
:
2064 case R600::MOV_IMM_F32
: {
2065 unsigned ImmReg
= R600::ALU_LITERAL_X
;
2066 uint64_t ImmValue
= 0;
2068 if (Src
.getMachineOpcode() == R600::MOV_IMM_F32
) {
2069 ConstantFPSDNode
*FPC
= cast
<ConstantFPSDNode
>(Src
.getOperand(0));
2070 float FloatValue
= FPC
->getValueAPF().convertToFloat();
2071 if (FloatValue
== 0.0) {
2072 ImmReg
= R600::ZERO
;
2073 } else if (FloatValue
== 0.5) {
2074 ImmReg
= R600::HALF
;
2075 } else if (FloatValue
== 1.0) {
2078 ImmValue
= FPC
->getValueAPF().bitcastToAPInt().getZExtValue();
2081 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Src
.getOperand(0));
2082 uint64_t Value
= C
->getZExtValue();
2084 ImmReg
= R600::ZERO
;
2085 } else if (Value
== 1) {
2086 ImmReg
= R600::ONE_INT
;
2092 // Check that we aren't already using an immediate.
2093 // XXX: It's possible for an instruction to have more than one
2094 // immediate operand, but this is not supported yet.
2095 if (ImmReg
== R600::ALU_LITERAL_X
) {
2098 ConstantSDNode
*C
= cast
<ConstantSDNode
>(Imm
);
2099 if (C
->getZExtValue())
2101 Imm
= DAG
.getTargetConstant(ImmValue
, SDLoc(ParentNode
), MVT::i32
);
2103 Src
= DAG
.getRegister(ImmReg
, MVT::i32
);
2111 /// Fold the instructions after selecting them
2112 SDNode
*R600TargetLowering::PostISelFolding(MachineSDNode
*Node
,
2113 SelectionDAG
&DAG
) const {
2114 const R600InstrInfo
*TII
= Subtarget
->getInstrInfo();
2115 if (!Node
->isMachineOpcode())
2118 unsigned Opcode
= Node
->getMachineOpcode();
2121 std::vector
<SDValue
> Ops(Node
->op_begin(), Node
->op_end());
2123 if (Opcode
== R600::DOT_4
) {
2124 int OperandIdx
[] = {
2125 TII
->getOperandIdx(Opcode
, R600::OpName::src0_X
),
2126 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Y
),
2127 TII
->getOperandIdx(Opcode
, R600::OpName::src0_Z
),
2128 TII
->getOperandIdx(Opcode
, R600::OpName::src0_W
),
2129 TII
->getOperandIdx(Opcode
, R600::OpName::src1_X
),
2130 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Y
),
2131 TII
->getOperandIdx(Opcode
, R600::OpName::src1_Z
),
2132 TII
->getOperandIdx(Opcode
, R600::OpName::src1_W
)
2135 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_X
),
2136 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_Y
),
2137 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_Z
),
2138 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg_W
),
2139 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_X
),
2140 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_Y
),
2141 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_Z
),
2142 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg_W
)
2145 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_X
),
2146 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_Y
),
2147 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_Z
),
2148 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs_W
),
2149 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_X
),
2150 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_Y
),
2151 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_Z
),
2152 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs_W
)
2154 for (unsigned i
= 0; i
< 8; i
++) {
2155 if (OperandIdx
[i
] < 0)
2157 SDValue
&Src
= Ops
[OperandIdx
[i
] - 1];
2158 SDValue
&Neg
= Ops
[NegIdx
[i
] - 1];
2159 SDValue
&Abs
= Ops
[AbsIdx
[i
] - 1];
2160 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
2161 int SelIdx
= TII
->getSelIdx(Opcode
, OperandIdx
[i
]);
2164 SDValue
&Sel
= (SelIdx
> -1) ? Ops
[SelIdx
] : FakeOp
;
2165 if (FoldOperand(Node
, i
, Src
, Neg
, Abs
, Sel
, FakeOp
, DAG
))
2166 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);
2168 } else if (Opcode
== R600::REG_SEQUENCE
) {
2169 for (unsigned i
= 1, e
= Node
->getNumOperands(); i
< e
; i
+= 2) {
2170 SDValue
&Src
= Ops
[i
];
2171 if (FoldOperand(Node
, i
, Src
, FakeOp
, FakeOp
, FakeOp
, FakeOp
, DAG
))
2172 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);
2175 if (!TII
->hasInstrModifiers(Opcode
))
2177 int OperandIdx
[] = {
2178 TII
->getOperandIdx(Opcode
, R600::OpName::src0
),
2179 TII
->getOperandIdx(Opcode
, R600::OpName::src1
),
2180 TII
->getOperandIdx(Opcode
, R600::OpName::src2
)
2183 TII
->getOperandIdx(Opcode
, R600::OpName::src0_neg
),
2184 TII
->getOperandIdx(Opcode
, R600::OpName::src1_neg
),
2185 TII
->getOperandIdx(Opcode
, R600::OpName::src2_neg
)
2188 TII
->getOperandIdx(Opcode
, R600::OpName::src0_abs
),
2189 TII
->getOperandIdx(Opcode
, R600::OpName::src1_abs
),
2192 for (unsigned i
= 0; i
< 3; i
++) {
2193 if (OperandIdx
[i
] < 0)
2195 SDValue
&Src
= Ops
[OperandIdx
[i
] - 1];
2196 SDValue
&Neg
= Ops
[NegIdx
[i
] - 1];
2198 SDValue
&Abs
= (AbsIdx
[i
] > -1) ? Ops
[AbsIdx
[i
] - 1] : FakeAbs
;
2199 bool HasDst
= TII
->getOperandIdx(Opcode
, R600::OpName::dst
) > -1;
2200 int SelIdx
= TII
->getSelIdx(Opcode
, OperandIdx
[i
]);
2201 int ImmIdx
= TII
->getOperandIdx(Opcode
, R600::OpName::literal
);
2206 SDValue
&Sel
= (SelIdx
> -1) ? Ops
[SelIdx
] : FakeOp
;
2207 SDValue
&Imm
= Ops
[ImmIdx
];
2208 if (FoldOperand(Node
, i
, Src
, Neg
, Abs
, Sel
, Imm
, DAG
))
2209 return DAG
.getMachineNode(Opcode
, SDLoc(Node
), Node
->getVTList(), Ops
);