[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AMDGPU / SIInsertWaitcnts.cpp
blob7d6f79922d2e19a7ae99946b78187e8e32ae7511
1 //===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// Insert wait instructions for memory reads and writes.
11 ///
12 /// Memory reads and writes are issued asynchronously, so we need to insert
13 /// S_WAITCNT instructions when we want to access any of their results or
14 /// overwrite any register that's used asynchronously.
15 ///
16 /// TODO: This pass currently keeps one timeline per hardware counter. A more
17 /// finely-grained approach that keeps one timeline per event type could
18 /// sometimes get away with generating weaker s_waitcnt instructions. For
19 /// example, when both SMEM and LDS are in flight and we need to wait for
20 /// the i-th-last LDS instruction, then an lgkmcnt(i) is actually sufficient,
21 /// but the pass will currently generate a conservative lgkmcnt(0) because
22 /// multiple event types are in flight.
24 //===----------------------------------------------------------------------===//
26 #include "AMDGPU.h"
27 #include "GCNSubtarget.h"
28 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
29 #include "SIMachineFunctionInfo.h"
30 #include "Utils/AMDGPUBaseInfo.h"
31 #include "llvm/ADT/MapVector.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/CodeGen/MachinePostDominators.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/TargetParser.h"
37 using namespace llvm;
39 #define DEBUG_TYPE "si-insert-waitcnts"
41 DEBUG_COUNTER(ForceExpCounter, DEBUG_TYPE"-forceexp",
42 "Force emit s_waitcnt expcnt(0) instrs");
43 DEBUG_COUNTER(ForceLgkmCounter, DEBUG_TYPE"-forcelgkm",
44 "Force emit s_waitcnt lgkmcnt(0) instrs");
45 DEBUG_COUNTER(ForceVMCounter, DEBUG_TYPE"-forcevm",
46 "Force emit s_waitcnt vmcnt(0) instrs");
48 static cl::opt<bool> ForceEmitZeroFlag(
49 "amdgpu-waitcnt-forcezero",
50 cl::desc("Force all waitcnt instrs to be emitted as s_waitcnt vmcnt(0) expcnt(0) lgkmcnt(0)"),
51 cl::init(false), cl::Hidden);
53 namespace {
55 template <typename EnumT>
56 class enum_iterator
57 : public iterator_facade_base<enum_iterator<EnumT>,
58 std::forward_iterator_tag, const EnumT> {
59 EnumT Value;
60 public:
61 enum_iterator() = default;
62 enum_iterator(EnumT Value) : Value(Value) {}
64 enum_iterator &operator++() {
65 Value = static_cast<EnumT>(Value + 1);
66 return *this;
69 bool operator==(const enum_iterator &RHS) const { return Value == RHS.Value; }
71 EnumT operator*() const { return Value; }
74 // Class of object that encapsulates latest instruction counter score
75 // associated with the operand. Used for determining whether
76 // s_waitcnt instruction needs to be emited.
78 #define CNT_MASK(t) (1u << (t))
80 enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, VS_CNT, NUM_INST_CNTS };
82 iterator_range<enum_iterator<InstCounterType>> inst_counter_types() {
83 return make_range(enum_iterator<InstCounterType>(VM_CNT),
84 enum_iterator<InstCounterType>(NUM_INST_CNTS));
87 using RegInterval = std::pair<int, int>;
89 struct {
90 unsigned VmcntMax;
91 unsigned ExpcntMax;
92 unsigned LgkmcntMax;
93 unsigned VscntMax;
94 } HardwareLimits;
96 struct {
97 unsigned VGPR0;
98 unsigned VGPRL;
99 unsigned SGPR0;
100 unsigned SGPRL;
101 } RegisterEncoding;
103 enum WaitEventType {
104 VMEM_ACCESS, // vector-memory read & write
105 VMEM_READ_ACCESS, // vector-memory read
106 VMEM_WRITE_ACCESS,// vector-memory write
107 LDS_ACCESS, // lds read & write
108 GDS_ACCESS, // gds read & write
109 SQ_MESSAGE, // send message
110 SMEM_ACCESS, // scalar-memory read & write
111 EXP_GPR_LOCK, // export holding on its data src
112 GDS_GPR_LOCK, // GDS holding on its data and addr src
113 EXP_POS_ACCESS, // write to export position
114 EXP_PARAM_ACCESS, // write to export parameter
115 VMW_GPR_LOCK, // vector-memory write holding on its data src
116 NUM_WAIT_EVENTS,
119 static const unsigned WaitEventMaskForInst[NUM_INST_CNTS] = {
120 (1 << VMEM_ACCESS) | (1 << VMEM_READ_ACCESS),
121 (1 << SMEM_ACCESS) | (1 << LDS_ACCESS) | (1 << GDS_ACCESS) |
122 (1 << SQ_MESSAGE),
123 (1 << EXP_GPR_LOCK) | (1 << GDS_GPR_LOCK) | (1 << VMW_GPR_LOCK) |
124 (1 << EXP_PARAM_ACCESS) | (1 << EXP_POS_ACCESS),
125 (1 << VMEM_WRITE_ACCESS)
128 // The mapping is:
129 // 0 .. SQ_MAX_PGM_VGPRS-1 real VGPRs
130 // SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1 extra VGPR-like slots
131 // NUM_ALL_VGPRS .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
132 // We reserve a fixed number of VGPR slots in the scoring tables for
133 // special tokens like SCMEM_LDS (needed for buffer load to LDS).
134 enum RegisterMapping {
135 SQ_MAX_PGM_VGPRS = 512, // Maximum programmable VGPRs across all targets.
136 AGPR_OFFSET = 226, // Maximum programmable ArchVGPRs across all targets.
137 SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
138 NUM_EXTRA_VGPRS = 1, // A reserved slot for DS.
139 EXTRA_VGPR_LDS = 0, // This is a placeholder the Shader algorithm uses.
140 NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
143 // Enumerate different types of result-returning VMEM operations. Although
144 // s_waitcnt orders them all with a single vmcnt counter, in the absence of
145 // s_waitcnt only instructions of the same VmemType are guaranteed to write
146 // their results in order -- so there is no need to insert an s_waitcnt between
147 // two instructions of the same type that write the same vgpr.
148 enum VmemType {
149 // BUF instructions and MIMG instructions without a sampler.
150 VMEM_NOSAMPLER,
151 // MIMG instructions with a sampler.
152 VMEM_SAMPLER,
155 VmemType getVmemType(const MachineInstr &Inst) {
156 assert(SIInstrInfo::isVMEM(Inst));
157 if (!SIInstrInfo::isMIMG(Inst))
158 return VMEM_NOSAMPLER;
159 const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(Inst.getOpcode());
160 return AMDGPU::getMIMGBaseOpcodeInfo(Info->BaseOpcode)->Sampler
161 ? VMEM_SAMPLER
162 : VMEM_NOSAMPLER;
165 void addWait(AMDGPU::Waitcnt &Wait, InstCounterType T, unsigned Count) {
166 switch (T) {
167 case VM_CNT:
168 Wait.VmCnt = std::min(Wait.VmCnt, Count);
169 break;
170 case EXP_CNT:
171 Wait.ExpCnt = std::min(Wait.ExpCnt, Count);
172 break;
173 case LGKM_CNT:
174 Wait.LgkmCnt = std::min(Wait.LgkmCnt, Count);
175 break;
176 case VS_CNT:
177 Wait.VsCnt = std::min(Wait.VsCnt, Count);
178 break;
179 default:
180 llvm_unreachable("bad InstCounterType");
184 // This objects maintains the current score brackets of each wait counter, and
185 // a per-register scoreboard for each wait counter.
187 // We also maintain the latest score for every event type that can change the
188 // waitcnt in order to know if there are multiple types of events within
189 // the brackets. When multiple types of event happen in the bracket,
190 // wait count may get decreased out of order, therefore we need to put in
191 // "s_waitcnt 0" before use.
192 class WaitcntBrackets {
193 public:
194 WaitcntBrackets(const GCNSubtarget *SubTarget) : ST(SubTarget) {}
196 static unsigned getWaitCountMax(InstCounterType T) {
197 switch (T) {
198 case VM_CNT:
199 return HardwareLimits.VmcntMax;
200 case LGKM_CNT:
201 return HardwareLimits.LgkmcntMax;
202 case EXP_CNT:
203 return HardwareLimits.ExpcntMax;
204 case VS_CNT:
205 return HardwareLimits.VscntMax;
206 default:
207 break;
209 return 0;
212 unsigned getScoreLB(InstCounterType T) const {
213 assert(T < NUM_INST_CNTS);
214 return ScoreLBs[T];
217 unsigned getScoreUB(InstCounterType T) const {
218 assert(T < NUM_INST_CNTS);
219 return ScoreUBs[T];
222 // Mapping from event to counter.
223 InstCounterType eventCounter(WaitEventType E) {
224 if (WaitEventMaskForInst[VM_CNT] & (1 << E))
225 return VM_CNT;
226 if (WaitEventMaskForInst[LGKM_CNT] & (1 << E))
227 return LGKM_CNT;
228 if (WaitEventMaskForInst[VS_CNT] & (1 << E))
229 return VS_CNT;
230 assert(WaitEventMaskForInst[EXP_CNT] & (1 << E));
231 return EXP_CNT;
234 unsigned getRegScore(int GprNo, InstCounterType T) {
235 if (GprNo < NUM_ALL_VGPRS) {
236 return VgprScores[T][GprNo];
238 assert(T == LGKM_CNT);
239 return SgprScores[GprNo - NUM_ALL_VGPRS];
242 bool merge(const WaitcntBrackets &Other);
244 RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
245 const MachineRegisterInfo *MRI,
246 const SIRegisterInfo *TRI, unsigned OpNo) const;
248 bool counterOutOfOrder(InstCounterType T) const;
249 void simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const;
250 void simplifyWaitcnt(InstCounterType T, unsigned &Count) const;
251 void determineWait(InstCounterType T, unsigned ScoreToWait,
252 AMDGPU::Waitcnt &Wait) const;
253 void applyWaitcnt(const AMDGPU::Waitcnt &Wait);
254 void applyWaitcnt(InstCounterType T, unsigned Count);
255 void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
256 const MachineRegisterInfo *MRI, WaitEventType E,
257 MachineInstr &MI);
259 bool hasPending() const { return PendingEvents != 0; }
260 bool hasPendingEvent(WaitEventType E) const {
261 return PendingEvents & (1 << E);
264 bool hasMixedPendingEvents(InstCounterType T) const {
265 unsigned Events = PendingEvents & WaitEventMaskForInst[T];
266 // Return true if more than one bit is set in Events.
267 return Events & (Events - 1);
270 bool hasPendingFlat() const {
271 return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
272 LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
273 (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
274 LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
277 void setPendingFlat() {
278 LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
279 LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
282 // Return true if there might be pending writes to the specified vgpr by VMEM
283 // instructions with types different from V.
284 bool hasOtherPendingVmemTypes(int GprNo, VmemType V) const {
285 assert(GprNo < NUM_ALL_VGPRS);
286 return VgprVmemTypes[GprNo] & ~(1 << V);
289 void clearVgprVmemTypes(int GprNo) {
290 assert(GprNo < NUM_ALL_VGPRS);
291 VgprVmemTypes[GprNo] = 0;
294 void print(raw_ostream &);
295 void dump() { print(dbgs()); }
297 private:
298 struct MergeInfo {
299 unsigned OldLB;
300 unsigned OtherLB;
301 unsigned MyShift;
302 unsigned OtherShift;
304 static bool mergeScore(const MergeInfo &M, unsigned &Score,
305 unsigned OtherScore);
307 void setScoreLB(InstCounterType T, unsigned Val) {
308 assert(T < NUM_INST_CNTS);
309 ScoreLBs[T] = Val;
312 void setScoreUB(InstCounterType T, unsigned Val) {
313 assert(T < NUM_INST_CNTS);
314 ScoreUBs[T] = Val;
315 if (T == EXP_CNT) {
316 unsigned UB = ScoreUBs[T] - getWaitCountMax(EXP_CNT);
317 if (ScoreLBs[T] < UB && UB < ScoreUBs[T])
318 ScoreLBs[T] = UB;
322 void setRegScore(int GprNo, InstCounterType T, unsigned Val) {
323 if (GprNo < NUM_ALL_VGPRS) {
324 VgprUB = std::max(VgprUB, GprNo);
325 VgprScores[T][GprNo] = Val;
326 } else {
327 assert(T == LGKM_CNT);
328 SgprUB = std::max(SgprUB, GprNo - NUM_ALL_VGPRS);
329 SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
333 void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
334 const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
335 unsigned OpNo, unsigned Val);
337 const GCNSubtarget *ST = nullptr;
338 unsigned ScoreLBs[NUM_INST_CNTS] = {0};
339 unsigned ScoreUBs[NUM_INST_CNTS] = {0};
340 unsigned PendingEvents = 0;
341 // Remember the last flat memory operation.
342 unsigned LastFlat[NUM_INST_CNTS] = {0};
343 // wait_cnt scores for every vgpr.
344 // Keep track of the VgprUB and SgprUB to make merge at join efficient.
345 int VgprUB = -1;
346 int SgprUB = -1;
347 unsigned VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS] = {{0}};
348 // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
349 unsigned SgprScores[SQ_MAX_PGM_SGPRS] = {0};
350 // Bitmask of the VmemTypes of VMEM instructions that might have a pending
351 // write to each vgpr.
352 unsigned char VgprVmemTypes[NUM_ALL_VGPRS] = {0};
355 class SIInsertWaitcnts : public MachineFunctionPass {
356 private:
357 const GCNSubtarget *ST = nullptr;
358 const SIInstrInfo *TII = nullptr;
359 const SIRegisterInfo *TRI = nullptr;
360 const MachineRegisterInfo *MRI = nullptr;
361 AMDGPU::IsaVersion IV;
363 DenseSet<MachineInstr *> TrackedWaitcntSet;
364 DenseMap<const Value *, MachineBasicBlock *> SLoadAddresses;
365 MachinePostDominatorTree *PDT;
367 struct BlockInfo {
368 MachineBasicBlock *MBB;
369 std::unique_ptr<WaitcntBrackets> Incoming;
370 bool Dirty = true;
372 explicit BlockInfo(MachineBasicBlock *MBB) : MBB(MBB) {}
375 MapVector<MachineBasicBlock *, BlockInfo> BlockInfos;
377 // ForceEmitZeroWaitcnts: force all waitcnts insts to be s_waitcnt 0
378 // because of amdgpu-waitcnt-forcezero flag
379 bool ForceEmitZeroWaitcnts;
380 bool ForceEmitWaitcnt[NUM_INST_CNTS];
382 public:
383 static char ID;
385 SIInsertWaitcnts() : MachineFunctionPass(ID) {
386 (void)ForceExpCounter;
387 (void)ForceLgkmCounter;
388 (void)ForceVMCounter;
391 bool runOnMachineFunction(MachineFunction &MF) override;
393 StringRef getPassName() const override {
394 return "SI insert wait instructions";
397 void getAnalysisUsage(AnalysisUsage &AU) const override {
398 AU.setPreservesCFG();
399 AU.addRequired<MachinePostDominatorTree>();
400 MachineFunctionPass::getAnalysisUsage(AU);
403 bool isForceEmitWaitcnt() const {
404 for (auto T : inst_counter_types())
405 if (ForceEmitWaitcnt[T])
406 return true;
407 return false;
410 void setForceEmitWaitcnt() {
411 // For non-debug builds, ForceEmitWaitcnt has been initialized to false;
412 // For debug builds, get the debug counter info and adjust if need be
413 #ifndef NDEBUG
414 if (DebugCounter::isCounterSet(ForceExpCounter) &&
415 DebugCounter::shouldExecute(ForceExpCounter)) {
416 ForceEmitWaitcnt[EXP_CNT] = true;
417 } else {
418 ForceEmitWaitcnt[EXP_CNT] = false;
421 if (DebugCounter::isCounterSet(ForceLgkmCounter) &&
422 DebugCounter::shouldExecute(ForceLgkmCounter)) {
423 ForceEmitWaitcnt[LGKM_CNT] = true;
424 } else {
425 ForceEmitWaitcnt[LGKM_CNT] = false;
428 if (DebugCounter::isCounterSet(ForceVMCounter) &&
429 DebugCounter::shouldExecute(ForceVMCounter)) {
430 ForceEmitWaitcnt[VM_CNT] = true;
431 } else {
432 ForceEmitWaitcnt[VM_CNT] = false;
434 #endif // NDEBUG
437 bool mayAccessVMEMThroughFlat(const MachineInstr &MI) const;
438 bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
439 bool generateWaitcntInstBefore(MachineInstr &MI,
440 WaitcntBrackets &ScoreBrackets,
441 MachineInstr *OldWaitcntInstr);
442 void updateEventWaitcntAfter(MachineInstr &Inst,
443 WaitcntBrackets *ScoreBrackets);
444 bool insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block,
445 WaitcntBrackets &ScoreBrackets);
446 bool applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
447 MachineInstr &OldWaitcntInstr,
448 AMDGPU::Waitcnt &Wait, const MachineInstr *MI);
451 } // end anonymous namespace
453 RegInterval WaitcntBrackets::getRegInterval(const MachineInstr *MI,
454 const SIInstrInfo *TII,
455 const MachineRegisterInfo *MRI,
456 const SIRegisterInfo *TRI,
457 unsigned OpNo) const {
458 const MachineOperand &Op = MI->getOperand(OpNo);
459 if (!TRI->isInAllocatableClass(Op.getReg()))
460 return {-1, -1};
462 // A use via a PW operand does not need a waitcnt.
463 // A partial write is not a WAW.
464 assert(!Op.getSubReg() || !Op.isUndef());
466 RegInterval Result;
468 unsigned Reg = TRI->getEncodingValue(AMDGPU::getMCReg(Op.getReg(), *ST));
470 if (TRI->isVectorRegister(*MRI, Op.getReg())) {
471 assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
472 Result.first = Reg - RegisterEncoding.VGPR0;
473 if (TRI->isAGPR(*MRI, Op.getReg()))
474 Result.first += AGPR_OFFSET;
475 assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
476 } else if (TRI->isSGPRReg(*MRI, Op.getReg())) {
477 assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
478 Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
479 assert(Result.first >= NUM_ALL_VGPRS &&
480 Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
482 // TODO: Handle TTMP
483 // else if (TRI->isTTMP(*MRI, Reg.getReg())) ...
484 else
485 return {-1, -1};
487 const TargetRegisterClass *RC = TII->getOpRegClass(*MI, OpNo);
488 unsigned Size = TRI->getRegSizeInBits(*RC);
489 Result.second = Result.first + ((Size + 16) / 32);
491 return Result;
494 void WaitcntBrackets::setExpScore(const MachineInstr *MI,
495 const SIInstrInfo *TII,
496 const SIRegisterInfo *TRI,
497 const MachineRegisterInfo *MRI, unsigned OpNo,
498 unsigned Val) {
499 RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo);
500 assert(TRI->isVectorRegister(*MRI, MI->getOperand(OpNo).getReg()));
501 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
502 setRegScore(RegNo, EXP_CNT, Val);
506 void WaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
507 const SIRegisterInfo *TRI,
508 const MachineRegisterInfo *MRI,
509 WaitEventType E, MachineInstr &Inst) {
510 InstCounterType T = eventCounter(E);
511 unsigned CurrScore = getScoreUB(T) + 1;
512 if (CurrScore == 0)
513 report_fatal_error("InsertWaitcnt score wraparound");
514 // PendingEvents and ScoreUB need to be update regardless if this event
515 // changes the score of a register or not.
516 // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
517 PendingEvents |= 1 << E;
518 setScoreUB(T, CurrScore);
520 if (T == EXP_CNT) {
521 // Put score on the source vgprs. If this is a store, just use those
522 // specific register(s).
523 if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
524 int AddrOpIdx =
525 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr);
526 // All GDS operations must protect their address register (same as
527 // export.)
528 if (AddrOpIdx != -1) {
529 setExpScore(&Inst, TII, TRI, MRI, AddrOpIdx, CurrScore);
532 if (Inst.mayStore()) {
533 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
534 AMDGPU::OpName::data0) != -1) {
535 setExpScore(
536 &Inst, TII, TRI, MRI,
537 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
538 CurrScore);
540 if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
541 AMDGPU::OpName::data1) != -1) {
542 setExpScore(&Inst, TII, TRI, MRI,
543 AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
544 AMDGPU::OpName::data1),
545 CurrScore);
547 } else if (SIInstrInfo::isAtomicRet(Inst) &&
548 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
549 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
550 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
551 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
552 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
553 Inst.getOpcode() != AMDGPU::DS_APPEND &&
554 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
555 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
556 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
557 const MachineOperand &Op = Inst.getOperand(I);
558 if (Op.isReg() && !Op.isDef() &&
559 TRI->isVectorRegister(*MRI, Op.getReg())) {
560 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
564 } else if (TII->isFLAT(Inst)) {
565 if (Inst.mayStore()) {
566 setExpScore(
567 &Inst, TII, TRI, MRI,
568 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
569 CurrScore);
570 } else if (SIInstrInfo::isAtomicRet(Inst)) {
571 setExpScore(
572 &Inst, TII, TRI, MRI,
573 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
574 CurrScore);
576 } else if (TII->isMIMG(Inst)) {
577 if (Inst.mayStore()) {
578 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
579 } else if (SIInstrInfo::isAtomicRet(Inst)) {
580 setExpScore(
581 &Inst, TII, TRI, MRI,
582 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
583 CurrScore);
585 } else if (TII->isMTBUF(Inst)) {
586 if (Inst.mayStore()) {
587 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
589 } else if (TII->isMUBUF(Inst)) {
590 if (Inst.mayStore()) {
591 setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
592 } else if (SIInstrInfo::isAtomicRet(Inst)) {
593 setExpScore(
594 &Inst, TII, TRI, MRI,
595 AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
596 CurrScore);
598 } else {
599 if (TII->isEXP(Inst)) {
600 // For export the destination registers are really temps that
601 // can be used as the actual source after export patching, so
602 // we need to treat them like sources and set the EXP_CNT
603 // score.
604 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
605 MachineOperand &DefMO = Inst.getOperand(I);
606 if (DefMO.isReg() && DefMO.isDef() &&
607 TRI->isVGPR(*MRI, DefMO.getReg())) {
608 setRegScore(
609 TRI->getEncodingValue(AMDGPU::getMCReg(DefMO.getReg(), *ST)),
610 EXP_CNT, CurrScore);
614 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
615 MachineOperand &MO = Inst.getOperand(I);
616 if (MO.isReg() && !MO.isDef() &&
617 TRI->isVectorRegister(*MRI, MO.getReg())) {
618 setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
622 #if 0 // TODO: check if this is handled by MUBUF code above.
623 } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
624 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
625 Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
626 MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
627 unsigned OpNo;//TODO: find the OpNo for this operand;
628 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo);
629 for (int RegNo = Interval.first; RegNo < Interval.second;
630 ++RegNo) {
631 setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
633 #endif
634 } else {
635 // Match the score to the destination registers.
636 for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
637 auto &Op = Inst.getOperand(I);
638 if (!Op.isReg() || !Op.isDef())
639 continue;
640 RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I);
641 if (T == VM_CNT) {
642 if (Interval.first >= NUM_ALL_VGPRS)
643 continue;
644 if (SIInstrInfo::isVMEM(Inst)) {
645 VmemType V = getVmemType(Inst);
646 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo)
647 VgprVmemTypes[RegNo] |= 1 << V;
650 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
651 setRegScore(RegNo, T, CurrScore);
654 if (TII->isDS(Inst) && Inst.mayStore()) {
655 setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
660 void WaitcntBrackets::print(raw_ostream &OS) {
661 OS << '\n';
662 for (auto T : inst_counter_types()) {
663 unsigned LB = getScoreLB(T);
664 unsigned UB = getScoreUB(T);
666 switch (T) {
667 case VM_CNT:
668 OS << " VM_CNT(" << UB - LB << "): ";
669 break;
670 case LGKM_CNT:
671 OS << " LGKM_CNT(" << UB - LB << "): ";
672 break;
673 case EXP_CNT:
674 OS << " EXP_CNT(" << UB - LB << "): ";
675 break;
676 case VS_CNT:
677 OS << " VS_CNT(" << UB - LB << "): ";
678 break;
679 default:
680 OS << " UNKNOWN(" << UB - LB << "): ";
681 break;
684 if (LB < UB) {
685 // Print vgpr scores.
686 for (int J = 0; J <= VgprUB; J++) {
687 unsigned RegScore = getRegScore(J, T);
688 if (RegScore <= LB)
689 continue;
690 unsigned RelScore = RegScore - LB - 1;
691 if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
692 OS << RelScore << ":v" << J << " ";
693 } else {
694 OS << RelScore << ":ds ";
697 // Also need to print sgpr scores for lgkm_cnt.
698 if (T == LGKM_CNT) {
699 for (int J = 0; J <= SgprUB; J++) {
700 unsigned RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
701 if (RegScore <= LB)
702 continue;
703 unsigned RelScore = RegScore - LB - 1;
704 OS << RelScore << ":s" << J << " ";
708 OS << '\n';
710 OS << '\n';
713 /// Simplify the waitcnt, in the sense of removing redundant counts, and return
714 /// whether a waitcnt instruction is needed at all.
715 void WaitcntBrackets::simplifyWaitcnt(AMDGPU::Waitcnt &Wait) const {
716 simplifyWaitcnt(VM_CNT, Wait.VmCnt);
717 simplifyWaitcnt(EXP_CNT, Wait.ExpCnt);
718 simplifyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
719 simplifyWaitcnt(VS_CNT, Wait.VsCnt);
722 void WaitcntBrackets::simplifyWaitcnt(InstCounterType T,
723 unsigned &Count) const {
724 const unsigned LB = getScoreLB(T);
725 const unsigned UB = getScoreUB(T);
727 // The number of outstanding events for this type, T, can be calculated
728 // as (UB - LB). If the current Count is greater than or equal to the number
729 // of outstanding events, then the wait for this counter is redundant.
730 if (Count >= UB - LB)
731 Count = ~0u;
734 void WaitcntBrackets::determineWait(InstCounterType T, unsigned ScoreToWait,
735 AMDGPU::Waitcnt &Wait) const {
736 // If the score of src_operand falls within the bracket, we need an
737 // s_waitcnt instruction.
738 const unsigned LB = getScoreLB(T);
739 const unsigned UB = getScoreUB(T);
740 if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
741 if ((T == VM_CNT || T == LGKM_CNT) &&
742 hasPendingFlat() &&
743 !ST->hasFlatLgkmVMemCountInOrder()) {
744 // If there is a pending FLAT operation, and this is a VMem or LGKM
745 // waitcnt and the target can report early completion, then we need
746 // to force a waitcnt 0.
747 addWait(Wait, T, 0);
748 } else if (counterOutOfOrder(T)) {
749 // Counter can get decremented out-of-order when there
750 // are multiple types event in the bracket. Also emit an s_wait counter
751 // with a conservative value of 0 for the counter.
752 addWait(Wait, T, 0);
753 } else {
754 // If a counter has been maxed out avoid overflow by waiting for
755 // MAX(CounterType) - 1 instead.
756 unsigned NeededWait = std::min(UB - ScoreToWait, getWaitCountMax(T) - 1);
757 addWait(Wait, T, NeededWait);
762 void WaitcntBrackets::applyWaitcnt(const AMDGPU::Waitcnt &Wait) {
763 applyWaitcnt(VM_CNT, Wait.VmCnt);
764 applyWaitcnt(EXP_CNT, Wait.ExpCnt);
765 applyWaitcnt(LGKM_CNT, Wait.LgkmCnt);
766 applyWaitcnt(VS_CNT, Wait.VsCnt);
769 void WaitcntBrackets::applyWaitcnt(InstCounterType T, unsigned Count) {
770 const unsigned UB = getScoreUB(T);
771 if (Count >= UB)
772 return;
773 if (Count != 0) {
774 if (counterOutOfOrder(T))
775 return;
776 setScoreLB(T, std::max(getScoreLB(T), UB - Count));
777 } else {
778 setScoreLB(T, UB);
779 PendingEvents &= ~WaitEventMaskForInst[T];
783 // Where there are multiple types of event in the bracket of a counter,
784 // the decrement may go out of order.
785 bool WaitcntBrackets::counterOutOfOrder(InstCounterType T) const {
786 // Scalar memory read always can go out of order.
787 if (T == LGKM_CNT && hasPendingEvent(SMEM_ACCESS))
788 return true;
789 return hasMixedPendingEvents(T);
792 INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
793 false)
794 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
795 INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
796 false)
798 char SIInsertWaitcnts::ID = 0;
800 char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;
802 FunctionPass *llvm::createSIInsertWaitcntsPass() {
803 return new SIInsertWaitcnts();
806 /// Combine consecutive waitcnt instructions that precede \p MI and follow
807 /// \p OldWaitcntInstr and apply any extra wait from waitcnt that were added
808 /// by previous passes. Currently this pass conservatively assumes that these
809 /// preexisting waitcnt are required for correctness.
810 bool SIInsertWaitcnts::applyPreexistingWaitcnt(WaitcntBrackets &ScoreBrackets,
811 MachineInstr &OldWaitcntInstr,
812 AMDGPU::Waitcnt &Wait,
813 const MachineInstr *MI) {
814 bool Modified = false;
815 MachineInstr *WaitcntInstr = nullptr;
816 MachineInstr *WaitcntVsCntInstr = nullptr;
817 for (auto II = OldWaitcntInstr.getIterator(), NextI = std::next(II);
818 &*II != MI; II = NextI, ++NextI) {
819 if (II->isMetaInstruction())
820 continue;
822 if (II->getOpcode() == AMDGPU::S_WAITCNT) {
823 // Conservatively update required wait if this waitcnt was added in an
824 // earlier pass. In this case it will not exist in the tracked waitcnt
825 // set.
826 if (!TrackedWaitcntSet.count(&*II)) {
827 unsigned IEnc = II->getOperand(0).getImm();
828 AMDGPU::Waitcnt OldWait = AMDGPU::decodeWaitcnt(IV, IEnc);
829 Wait = Wait.combined(OldWait);
832 // Merge consecutive waitcnt of the same type by erasing multiples.
833 if (!WaitcntInstr) {
834 WaitcntInstr = &*II;
835 } else {
836 II->eraseFromParent();
837 Modified = true;
840 } else {
841 assert(II->getOpcode() == AMDGPU::S_WAITCNT_VSCNT);
842 assert(II->getOperand(0).getReg() == AMDGPU::SGPR_NULL);
843 if (!TrackedWaitcntSet.count(&*II)) {
844 unsigned OldVSCnt =
845 TII->getNamedOperand(*II, AMDGPU::OpName::simm16)->getImm();
846 Wait.VsCnt = std::min(Wait.VsCnt, OldVSCnt);
849 if (!WaitcntVsCntInstr) {
850 WaitcntVsCntInstr = &*II;
851 } else {
852 II->eraseFromParent();
853 Modified = true;
858 // Updated encoding of merged waitcnt with the required wait.
859 if (WaitcntInstr) {
860 if (Wait.hasWaitExceptVsCnt()) {
861 unsigned NewEnc = AMDGPU::encodeWaitcnt(IV, Wait);
862 unsigned OldEnc = WaitcntInstr->getOperand(0).getImm();
863 if (OldEnc != NewEnc) {
864 WaitcntInstr->getOperand(0).setImm(NewEnc);
865 Modified = true;
867 ScoreBrackets.applyWaitcnt(Wait);
868 Wait.VmCnt = ~0u;
869 Wait.LgkmCnt = ~0u;
870 Wait.ExpCnt = ~0u;
872 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
873 << "Old Instr: " << MI << "New Instr: " << *WaitcntInstr
874 << '\n');
875 } else {
876 WaitcntInstr->eraseFromParent();
877 Modified = true;
881 if (WaitcntVsCntInstr) {
882 if (Wait.hasWaitVsCnt()) {
883 assert(ST->hasVscnt());
884 unsigned OldVSCnt =
885 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16)
886 ->getImm();
887 if (Wait.VsCnt != OldVSCnt) {
888 TII->getNamedOperand(*WaitcntVsCntInstr, AMDGPU::OpName::simm16)
889 ->setImm(Wait.VsCnt);
890 Modified = true;
892 ScoreBrackets.applyWaitcnt(Wait);
893 Wait.VsCnt = ~0u;
895 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
896 << "Old Instr: " << MI
897 << "New Instr: " << *WaitcntVsCntInstr << '\n');
898 } else {
899 WaitcntVsCntInstr->eraseFromParent();
900 Modified = true;
904 return Modified;
907 static bool readsVCCZ(const MachineInstr &MI) {
908 unsigned Opc = MI.getOpcode();
909 return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
910 !MI.getOperand(1).isUndef();
913 /// \returns true if the callee inserts an s_waitcnt 0 on function entry.
914 static bool callWaitsOnFunctionEntry(const MachineInstr &MI) {
915 // Currently all conventions wait, but this may not always be the case.
917 // TODO: If IPRA is enabled, and the callee is isSafeForNoCSROpt, it may make
918 // senses to omit the wait and do it in the caller.
919 return true;
922 /// \returns true if the callee is expected to wait for any outstanding waits
923 /// before returning.
924 static bool callWaitsOnFunctionReturn(const MachineInstr &MI) {
925 return true;
928 /// Generate s_waitcnt instruction to be placed before cur_Inst.
929 /// Instructions of a given type are returned in order,
930 /// but instructions of different types can complete out of order.
931 /// We rely on this in-order completion
932 /// and simply assign a score to the memory access instructions.
933 /// We keep track of the active "score bracket" to determine
934 /// if an access of a memory read requires an s_waitcnt
935 /// and if so what the value of each counter is.
936 /// The "score bracket" is bound by the lower bound and upper bound
937 /// scores (*_score_LB and *_score_ub respectively).
938 bool SIInsertWaitcnts::generateWaitcntInstBefore(
939 MachineInstr &MI, WaitcntBrackets &ScoreBrackets,
940 MachineInstr *OldWaitcntInstr) {
941 setForceEmitWaitcnt();
943 if (MI.isMetaInstruction())
944 return false;
946 AMDGPU::Waitcnt Wait;
947 bool Modified = false;
949 // FIXME: This should have already been handled by the memory legalizer.
950 // Removing this currently doesn't affect any lit tests, but we need to
951 // verify that nothing was relying on this. The number of buffer invalidates
952 // being handled here should not be expanded.
953 if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
954 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
955 MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL ||
956 MI.getOpcode() == AMDGPU::BUFFER_GL0_INV ||
957 MI.getOpcode() == AMDGPU::BUFFER_GL1_INV) {
958 Wait.VmCnt = 0;
961 // All waits must be resolved at call return.
962 // NOTE: this could be improved with knowledge of all call sites or
963 // with knowledge of the called routines.
964 if (MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
965 MI.getOpcode() == AMDGPU::S_SETPC_B64_return ||
966 (MI.isReturn() && MI.isCall() && !callWaitsOnFunctionEntry(MI))) {
967 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
969 // Resolve vm waits before gs-done.
970 else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
971 MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
972 ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
973 AMDGPU::SendMsg::ID_GS_DONE)) {
974 Wait.VmCnt = 0;
976 #if 0 // TODO: the following blocks of logic when we have fence.
977 else if (MI.getOpcode() == SC_FENCE) {
978 const unsigned int group_size =
979 context->shader_info->GetMaxThreadGroupSize();
980 // group_size == 0 means thread group size is unknown at compile time
981 const bool group_is_multi_wave =
982 (group_size == 0 || group_size > target_info->GetWaveFrontSize());
983 const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();
985 for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
986 SCRegType src_type = Inst->GetSrcType(i);
987 switch (src_type) {
988 case SCMEM_LDS:
989 if (group_is_multi_wave ||
990 context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
991 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
992 ScoreBrackets->getScoreUB(LGKM_CNT));
993 // LDS may have to wait for VM_CNT after buffer load to LDS
994 if (target_info->HasBufferLoadToLDS()) {
995 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
996 ScoreBrackets->getScoreUB(VM_CNT));
999 break;
1001 case SCMEM_GDS:
1002 if (group_is_multi_wave || fence_is_global) {
1003 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1004 ScoreBrackets->getScoreUB(EXP_CNT));
1005 EmitWaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
1006 ScoreBrackets->getScoreUB(LGKM_CNT));
1008 break;
1010 case SCMEM_UAV:
1011 case SCMEM_TFBUF:
1012 case SCMEM_RING:
1013 case SCMEM_SCATTER:
1014 if (group_is_multi_wave || fence_is_global) {
1015 EmitWaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
1016 ScoreBrackets->getScoreUB(EXP_CNT));
1017 EmitWaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
1018 ScoreBrackets->getScoreUB(VM_CNT));
1020 break;
1022 case SCMEM_SCRATCH:
1023 default:
1024 break;
1028 #endif
1030 // Export & GDS instructions do not read the EXEC mask until after the export
1031 // is granted (which can occur well after the instruction is issued).
1032 // The shader program must flush all EXP operations on the export-count
1033 // before overwriting the EXEC mask.
1034 else {
1035 if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
1036 // Export and GDS are tracked individually, either may trigger a waitcnt
1037 // for EXEC.
1038 if (ScoreBrackets.hasPendingEvent(EXP_GPR_LOCK) ||
1039 ScoreBrackets.hasPendingEvent(EXP_PARAM_ACCESS) ||
1040 ScoreBrackets.hasPendingEvent(EXP_POS_ACCESS) ||
1041 ScoreBrackets.hasPendingEvent(GDS_GPR_LOCK)) {
1042 Wait.ExpCnt = 0;
1046 if (MI.isCall() && callWaitsOnFunctionEntry(MI)) {
1047 // The function is going to insert a wait on everything in its prolog.
1048 // This still needs to be careful if the call target is a load (e.g. a GOT
1049 // load). We also need to check WAW depenancy with saved PC.
1050 Wait = AMDGPU::Waitcnt();
1052 int CallAddrOpIdx =
1053 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);
1055 if (MI.getOperand(CallAddrOpIdx).isReg()) {
1056 RegInterval CallAddrOpInterval =
1057 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, CallAddrOpIdx);
1059 for (int RegNo = CallAddrOpInterval.first;
1060 RegNo < CallAddrOpInterval.second; ++RegNo)
1061 ScoreBrackets.determineWait(
1062 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1064 int RtnAddrOpIdx =
1065 AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::dst);
1066 if (RtnAddrOpIdx != -1) {
1067 RegInterval RtnAddrOpInterval =
1068 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, RtnAddrOpIdx);
1070 for (int RegNo = RtnAddrOpInterval.first;
1071 RegNo < RtnAddrOpInterval.second; ++RegNo)
1072 ScoreBrackets.determineWait(
1073 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1076 } else {
1077 // FIXME: Should not be relying on memoperands.
1078 // Look at the source operands of every instruction to see if
1079 // any of them results from a previous memory operation that affects
1080 // its current usage. If so, an s_waitcnt instruction needs to be
1081 // emitted.
1082 // If the source operand was defined by a load, add the s_waitcnt
1083 // instruction.
1085 // Two cases are handled for destination operands:
1086 // 1) If the destination operand was defined by a load, add the s_waitcnt
1087 // instruction to guarantee the right WAW order.
1088 // 2) If a destination operand that was used by a recent export/store ins,
1089 // add s_waitcnt on exp_cnt to guarantee the WAR order.
1090 for (const MachineMemOperand *Memop : MI.memoperands()) {
1091 const Value *Ptr = Memop->getValue();
1092 if (Memop->isStore() && SLoadAddresses.count(Ptr)) {
1093 addWait(Wait, LGKM_CNT, 0);
1094 if (PDT->dominates(MI.getParent(), SLoadAddresses.find(Ptr)->second))
1095 SLoadAddresses.erase(Ptr);
1097 unsigned AS = Memop->getAddrSpace();
1098 if (AS != AMDGPUAS::LOCAL_ADDRESS)
1099 continue;
1100 unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
1101 // VM_CNT is only relevant to vgpr or LDS.
1102 ScoreBrackets.determineWait(
1103 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1104 if (Memop->isStore()) {
1105 ScoreBrackets.determineWait(
1106 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1110 // Loop over use and def operands.
1111 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
1112 MachineOperand &Op = MI.getOperand(I);
1113 if (!Op.isReg())
1114 continue;
1115 RegInterval Interval =
1116 ScoreBrackets.getRegInterval(&MI, TII, MRI, TRI, I);
1118 const bool IsVGPR = TRI->isVectorRegister(*MRI, Op.getReg());
1119 for (int RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
1120 if (IsVGPR) {
1121 // RAW always needs an s_waitcnt. WAW needs an s_waitcnt unless the
1122 // previous write and this write are the same type of VMEM
1123 // instruction, in which case they're guaranteed to write their
1124 // results in order anyway.
1125 if (Op.isUse() || !SIInstrInfo::isVMEM(MI) ||
1126 ScoreBrackets.hasOtherPendingVmemTypes(RegNo,
1127 getVmemType(MI))) {
1128 ScoreBrackets.determineWait(
1129 VM_CNT, ScoreBrackets.getRegScore(RegNo, VM_CNT), Wait);
1130 ScoreBrackets.clearVgprVmemTypes(RegNo);
1132 if (Op.isDef()) {
1133 ScoreBrackets.determineWait(
1134 EXP_CNT, ScoreBrackets.getRegScore(RegNo, EXP_CNT), Wait);
1137 ScoreBrackets.determineWait(
1138 LGKM_CNT, ScoreBrackets.getRegScore(RegNo, LGKM_CNT), Wait);
1144 // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
1145 // occurs before the instruction. Doing it here prevents any additional
1146 // S_WAITCNTs from being emitted if the instruction was marked as
1147 // requiring a WAITCNT beforehand.
1148 if (MI.getOpcode() == AMDGPU::S_BARRIER &&
1149 !ST->hasAutoWaitcntBeforeBarrier()) {
1150 Wait = Wait.combined(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1153 // TODO: Remove this work-around, enable the assert for Bug 457939
1154 // after fixing the scheduler. Also, the Shader Compiler code is
1155 // independent of target.
1156 if (readsVCCZ(MI) && ST->hasReadVCCZBug()) {
1157 if (ScoreBrackets.getScoreLB(LGKM_CNT) <
1158 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1159 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1160 Wait.LgkmCnt = 0;
1164 // Verify that the wait is actually needed.
1165 ScoreBrackets.simplifyWaitcnt(Wait);
1167 if (ForceEmitZeroWaitcnts)
1168 Wait = AMDGPU::Waitcnt::allZero(ST->hasVscnt());
1170 if (ForceEmitWaitcnt[VM_CNT])
1171 Wait.VmCnt = 0;
1172 if (ForceEmitWaitcnt[EXP_CNT])
1173 Wait.ExpCnt = 0;
1174 if (ForceEmitWaitcnt[LGKM_CNT])
1175 Wait.LgkmCnt = 0;
1176 if (ForceEmitWaitcnt[VS_CNT])
1177 Wait.VsCnt = 0;
1179 if (OldWaitcntInstr) {
1180 // Try to merge the required wait with preexisting waitcnt instructions.
1181 // Also erase redundant waitcnt.
1182 Modified =
1183 applyPreexistingWaitcnt(ScoreBrackets, *OldWaitcntInstr, Wait, &MI);
1184 } else {
1185 // Update waitcnt brackets after determining the required wait.
1186 ScoreBrackets.applyWaitcnt(Wait);
1189 // Build new waitcnt instructions unless no wait is needed or the old waitcnt
1190 // instruction was modified to handle the required wait.
1191 if (Wait.hasWaitExceptVsCnt()) {
1192 unsigned Enc = AMDGPU::encodeWaitcnt(IV, Wait);
1193 auto SWaitInst = BuildMI(*MI.getParent(), MI.getIterator(),
1194 MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
1195 .addImm(Enc);
1196 TrackedWaitcntSet.insert(SWaitInst);
1197 Modified = true;
1199 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1200 << "Old Instr: " << MI
1201 << "New Instr: " << *SWaitInst << '\n');
1204 if (Wait.hasWaitVsCnt()) {
1205 assert(ST->hasVscnt());
1207 auto SWaitInst =
1208 BuildMI(*MI.getParent(), MI.getIterator(), MI.getDebugLoc(),
1209 TII->get(AMDGPU::S_WAITCNT_VSCNT))
1210 .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1211 .addImm(Wait.VsCnt);
1212 TrackedWaitcntSet.insert(SWaitInst);
1213 Modified = true;
1215 LLVM_DEBUG(dbgs() << "generateWaitcntInstBefore\n"
1216 << "Old Instr: " << MI
1217 << "New Instr: " << *SWaitInst << '\n');
1220 return Modified;
1223 // This is a flat memory operation. Check to see if it has memory tokens other
1224 // than LDS. Other address spaces supported by flat memory operations involve
1225 // global memory.
1226 bool SIInsertWaitcnts::mayAccessVMEMThroughFlat(const MachineInstr &MI) const {
1227 assert(TII->isFLAT(MI));
1229 // All flat instructions use the VMEM counter.
1230 assert(TII->usesVM_CNT(MI));
1232 // If there are no memory operands then conservatively assume the flat
1233 // operation may access VMEM.
1234 if (MI.memoperands_empty())
1235 return true;
1237 // See if any memory operand specifies an address space that involves VMEM.
1238 // Flat operations only supported FLAT, LOCAL (LDS), or address spaces
1239 // involving VMEM such as GLOBAL, CONSTANT, PRIVATE (SCRATCH), etc. The REGION
1240 // (GDS) address space is not supported by flat operations. Therefore, simply
1241 // return true unless only the LDS address space is found.
1242 for (const MachineMemOperand *Memop : MI.memoperands()) {
1243 unsigned AS = Memop->getAddrSpace();
1244 assert(AS != AMDGPUAS::REGION_ADDRESS);
1245 if (AS != AMDGPUAS::LOCAL_ADDRESS)
1246 return true;
1249 return false;
1252 // This is a flat memory operation. Check to see if it has memory tokens for
1253 // either LDS or FLAT.
1254 bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
1255 assert(TII->isFLAT(MI));
1257 // Flat instruction such as SCRATCH and GLOBAL do not use the lgkm counter.
1258 if (!TII->usesLGKM_CNT(MI))
1259 return false;
1261 // If in tgsplit mode then there can be no use of LDS.
1262 if (ST->isTgSplitEnabled())
1263 return false;
1265 // If there are no memory operands then conservatively assume the flat
1266 // operation may access LDS.
1267 if (MI.memoperands_empty())
1268 return true;
1270 // See if any memory operand specifies an address space that involves LDS.
1271 for (const MachineMemOperand *Memop : MI.memoperands()) {
1272 unsigned AS = Memop->getAddrSpace();
1273 if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS)
1274 return true;
1277 return false;
1280 void SIInsertWaitcnts::updateEventWaitcntAfter(MachineInstr &Inst,
1281 WaitcntBrackets *ScoreBrackets) {
1282 // Now look at the instruction opcode. If it is a memory access
1283 // instruction, update the upper-bound of the appropriate counter's
1284 // bracket and the destination operand scores.
1285 // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
1286 if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
1287 if (TII->isAlwaysGDS(Inst.getOpcode()) ||
1288 TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
1289 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
1290 ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
1291 } else {
1292 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1294 } else if (TII->isFLAT(Inst)) {
1295 assert(Inst.mayLoadOrStore());
1297 int FlatASCount = 0;
1299 if (mayAccessVMEMThroughFlat(Inst)) {
1300 ++FlatASCount;
1301 if (!ST->hasVscnt())
1302 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1303 else if (Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst))
1304 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1305 else
1306 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1309 if (mayAccessLDSThroughFlat(Inst)) {
1310 ++FlatASCount;
1311 ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
1314 // A Flat memory operation must access at least one address space.
1315 assert(FlatASCount);
1317 // This is a flat memory operation that access both VMEM and LDS, so note it
1318 // - it will require that both the VM and LGKM be flushed to zero if it is
1319 // pending when a VM or LGKM dependency occurs.
1320 if (FlatASCount > 1)
1321 ScoreBrackets->setPendingFlat();
1322 } else if (SIInstrInfo::isVMEM(Inst) &&
1323 !llvm::AMDGPU::getMUBUFIsBufferInv(Inst.getOpcode())) {
1324 if (!ST->hasVscnt())
1325 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
1326 else if ((Inst.mayLoad() && !SIInstrInfo::isAtomicNoRet(Inst)) ||
1327 /* IMAGE_GET_RESINFO / IMAGE_GET_LOD */
1328 (TII->isMIMG(Inst) && !Inst.mayLoad() && !Inst.mayStore()))
1329 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_READ_ACCESS, Inst);
1330 else if (Inst.mayStore())
1331 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_WRITE_ACCESS, Inst);
1333 if (ST->vmemWriteNeedsExpWaitcnt() &&
1334 (Inst.mayStore() || SIInstrInfo::isAtomicRet(Inst))) {
1335 ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
1337 } else if (TII->isSMRD(Inst)) {
1338 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1339 } else if (Inst.isCall()) {
1340 if (callWaitsOnFunctionReturn(Inst)) {
1341 // Act as a wait on everything
1342 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt::allZero(ST->hasVscnt()));
1343 } else {
1344 // May need to way wait for anything.
1345 ScoreBrackets->applyWaitcnt(AMDGPU::Waitcnt());
1347 } else if (SIInstrInfo::isEXP(Inst)) {
1348 unsigned Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
1349 if (Imm >= AMDGPU::Exp::ET_PARAM0 && Imm <= AMDGPU::Exp::ET_PARAM31)
1350 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
1351 else if (Imm >= AMDGPU::Exp::ET_POS0 && Imm <= AMDGPU::Exp::ET_POS_LAST)
1352 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
1353 else
1354 ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
1355 } else {
1356 switch (Inst.getOpcode()) {
1357 case AMDGPU::S_SENDMSG:
1358 case AMDGPU::S_SENDMSGHALT:
1359 ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
1360 break;
1361 case AMDGPU::S_MEMTIME:
1362 case AMDGPU::S_MEMREALTIME:
1363 ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
1364 break;
1369 bool WaitcntBrackets::mergeScore(const MergeInfo &M, unsigned &Score,
1370 unsigned OtherScore) {
1371 unsigned MyShifted = Score <= M.OldLB ? 0 : Score + M.MyShift;
1372 unsigned OtherShifted =
1373 OtherScore <= M.OtherLB ? 0 : OtherScore + M.OtherShift;
1374 Score = std::max(MyShifted, OtherShifted);
1375 return OtherShifted > MyShifted;
1378 /// Merge the pending events and associater score brackets of \p Other into
1379 /// this brackets status.
1381 /// Returns whether the merge resulted in a change that requires tighter waits
1382 /// (i.e. the merged brackets strictly dominate the original brackets).
1383 bool WaitcntBrackets::merge(const WaitcntBrackets &Other) {
1384 bool StrictDom = false;
1386 VgprUB = std::max(VgprUB, Other.VgprUB);
1387 SgprUB = std::max(SgprUB, Other.SgprUB);
1389 for (auto T : inst_counter_types()) {
1390 // Merge event flags for this counter
1391 const bool OldOutOfOrder = counterOutOfOrder(T);
1392 const unsigned OldEvents = PendingEvents & WaitEventMaskForInst[T];
1393 const unsigned OtherEvents = Other.PendingEvents & WaitEventMaskForInst[T];
1394 if (OtherEvents & ~OldEvents)
1395 StrictDom = true;
1396 PendingEvents |= OtherEvents;
1398 // Merge scores for this counter
1399 const unsigned MyPending = ScoreUBs[T] - ScoreLBs[T];
1400 const unsigned OtherPending = Other.ScoreUBs[T] - Other.ScoreLBs[T];
1401 const unsigned NewUB = ScoreLBs[T] + std::max(MyPending, OtherPending);
1402 if (NewUB < ScoreLBs[T])
1403 report_fatal_error("waitcnt score overflow");
1405 MergeInfo M;
1406 M.OldLB = ScoreLBs[T];
1407 M.OtherLB = Other.ScoreLBs[T];
1408 M.MyShift = NewUB - ScoreUBs[T];
1409 M.OtherShift = NewUB - Other.ScoreUBs[T];
1411 ScoreUBs[T] = NewUB;
1413 StrictDom |= mergeScore(M, LastFlat[T], Other.LastFlat[T]);
1415 bool RegStrictDom = false;
1416 for (int J = 0; J <= VgprUB; J++) {
1417 RegStrictDom |= mergeScore(M, VgprScores[T][J], Other.VgprScores[T][J]);
1420 if (T == VM_CNT) {
1421 for (int J = 0; J <= VgprUB; J++) {
1422 unsigned char NewVmemTypes = VgprVmemTypes[J] | Other.VgprVmemTypes[J];
1423 RegStrictDom |= NewVmemTypes != VgprVmemTypes[J];
1424 VgprVmemTypes[J] = NewVmemTypes;
1428 if (T == LGKM_CNT) {
1429 for (int J = 0; J <= SgprUB; J++) {
1430 RegStrictDom |= mergeScore(M, SgprScores[J], Other.SgprScores[J]);
1434 if (RegStrictDom && !OldOutOfOrder)
1435 StrictDom = true;
1438 return StrictDom;
1441 // Generate s_waitcnt instructions where needed.
1442 bool SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
1443 MachineBasicBlock &Block,
1444 WaitcntBrackets &ScoreBrackets) {
1445 bool Modified = false;
1447 LLVM_DEBUG({
1448 dbgs() << "*** Block" << Block.getNumber() << " ***";
1449 ScoreBrackets.dump();
1452 // Track the correctness of vccz through this basic block. There are two
1453 // reasons why it might be incorrect; see ST->hasReadVCCZBug() and
1454 // ST->partialVCCWritesUpdateVCCZ().
1455 bool VCCZCorrect = true;
1456 if (ST->hasReadVCCZBug()) {
1457 // vccz could be incorrect at a basic block boundary if a predecessor wrote
1458 // to vcc and then issued an smem load.
1459 VCCZCorrect = false;
1460 } else if (!ST->partialVCCWritesUpdateVCCZ()) {
1461 // vccz could be incorrect at a basic block boundary if a predecessor wrote
1462 // to vcc_lo or vcc_hi.
1463 VCCZCorrect = false;
1466 // Walk over the instructions.
1467 MachineInstr *OldWaitcntInstr = nullptr;
1469 for (MachineBasicBlock::instr_iterator Iter = Block.instr_begin(),
1470 E = Block.instr_end();
1471 Iter != E;) {
1472 MachineInstr &Inst = *Iter;
1474 // Track pre-existing waitcnts that were added in earlier iterations or by
1475 // the memory legalizer.
1476 if (Inst.getOpcode() == AMDGPU::S_WAITCNT ||
1477 (Inst.getOpcode() == AMDGPU::S_WAITCNT_VSCNT &&
1478 Inst.getOperand(0).isReg() &&
1479 Inst.getOperand(0).getReg() == AMDGPU::SGPR_NULL)) {
1480 if (!OldWaitcntInstr)
1481 OldWaitcntInstr = &Inst;
1482 ++Iter;
1483 continue;
1486 // Generate an s_waitcnt instruction to be placed before Inst, if needed.
1487 Modified |= generateWaitcntInstBefore(Inst, ScoreBrackets, OldWaitcntInstr);
1488 OldWaitcntInstr = nullptr;
1490 // Restore vccz if it's not known to be correct already.
1491 bool RestoreVCCZ = !VCCZCorrect && readsVCCZ(Inst);
1493 // Don't examine operands unless we need to track vccz correctness.
1494 if (ST->hasReadVCCZBug() || !ST->partialVCCWritesUpdateVCCZ()) {
1495 if (Inst.definesRegister(AMDGPU::VCC_LO) ||
1496 Inst.definesRegister(AMDGPU::VCC_HI)) {
1497 // Up to gfx9, writes to vcc_lo and vcc_hi don't update vccz.
1498 if (!ST->partialVCCWritesUpdateVCCZ())
1499 VCCZCorrect = false;
1500 } else if (Inst.definesRegister(AMDGPU::VCC)) {
1501 // There is a hardware bug on CI/SI where SMRD instruction may corrupt
1502 // vccz bit, so when we detect that an instruction may read from a
1503 // corrupt vccz bit, we need to:
1504 // 1. Insert s_waitcnt lgkm(0) to wait for all outstanding SMRD
1505 // operations to complete.
1506 // 2. Restore the correct value of vccz by writing the current value
1507 // of vcc back to vcc.
1508 if (ST->hasReadVCCZBug() &&
1509 ScoreBrackets.getScoreLB(LGKM_CNT) <
1510 ScoreBrackets.getScoreUB(LGKM_CNT) &&
1511 ScoreBrackets.hasPendingEvent(SMEM_ACCESS)) {
1512 // Writes to vcc while there's an outstanding smem read may get
1513 // clobbered as soon as any read completes.
1514 VCCZCorrect = false;
1515 } else {
1516 // Writes to vcc will fix any incorrect value in vccz.
1517 VCCZCorrect = true;
1522 if (TII->isSMRD(Inst)) {
1523 for (const MachineMemOperand *Memop : Inst.memoperands()) {
1524 // No need to handle invariant loads when avoiding WAR conflicts, as
1525 // there cannot be a vector store to the same memory location.
1526 if (!Memop->isInvariant()) {
1527 const Value *Ptr = Memop->getValue();
1528 SLoadAddresses.insert(std::make_pair(Ptr, Inst.getParent()));
1531 if (ST->hasReadVCCZBug()) {
1532 // This smem read could complete and clobber vccz at any time.
1533 VCCZCorrect = false;
1537 updateEventWaitcntAfter(Inst, &ScoreBrackets);
1539 #if 0 // TODO: implement resource type check controlled by options with ub = LB.
1540 // If this instruction generates a S_SETVSKIP because it is an
1541 // indexed resource, and we are on Tahiti, then it will also force
1542 // an S_WAITCNT vmcnt(0)
1543 if (RequireCheckResourceType(Inst, context)) {
1544 // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
1545 ScoreBrackets->setScoreLB(VM_CNT,
1546 ScoreBrackets->getScoreUB(VM_CNT));
1548 #endif
1550 LLVM_DEBUG({
1551 Inst.print(dbgs());
1552 ScoreBrackets.dump();
1555 // TODO: Remove this work-around after fixing the scheduler and enable the
1556 // assert above.
1557 if (RestoreVCCZ) {
1558 // Restore the vccz bit. Any time a value is written to vcc, the vcc
1559 // bit is updated, so we can restore the bit by reading the value of
1560 // vcc and then writing it back to the register.
1561 BuildMI(Block, Inst, Inst.getDebugLoc(),
1562 TII->get(ST->isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64),
1563 TRI->getVCC())
1564 .addReg(TRI->getVCC());
1565 VCCZCorrect = true;
1566 Modified = true;
1569 ++Iter;
1572 return Modified;
1575 bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
1576 ST = &MF.getSubtarget<GCNSubtarget>();
1577 TII = ST->getInstrInfo();
1578 TRI = &TII->getRegisterInfo();
1579 MRI = &MF.getRegInfo();
1580 IV = AMDGPU::getIsaVersion(ST->getCPU());
1581 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1582 PDT = &getAnalysis<MachinePostDominatorTree>();
1584 ForceEmitZeroWaitcnts = ForceEmitZeroFlag;
1585 for (auto T : inst_counter_types())
1586 ForceEmitWaitcnt[T] = false;
1588 HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
1589 HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
1590 HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);
1591 HardwareLimits.VscntMax = ST->hasVscnt() ? 63 : 0;
1593 unsigned NumVGPRsMax = ST->getAddressableNumVGPRs();
1594 unsigned NumSGPRsMax = ST->getAddressableNumSGPRs();
1595 assert(NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
1596 assert(NumSGPRsMax <= SQ_MAX_PGM_SGPRS);
1598 RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
1599 RegisterEncoding.VGPRL = RegisterEncoding.VGPR0 + NumVGPRsMax - 1;
1600 RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
1601 RegisterEncoding.SGPRL = RegisterEncoding.SGPR0 + NumSGPRsMax - 1;
1603 TrackedWaitcntSet.clear();
1604 BlockInfos.clear();
1605 bool Modified = false;
1607 if (!MFI->isEntryFunction()) {
1608 // Wait for any outstanding memory operations that the input registers may
1609 // depend on. We can't track them and it's better to do the wait after the
1610 // costly call sequence.
1612 // TODO: Could insert earlier and schedule more liberally with operations
1613 // that only use caller preserved registers.
1614 MachineBasicBlock &EntryBB = MF.front();
1615 MachineBasicBlock::iterator I = EntryBB.begin();
1616 for (MachineBasicBlock::iterator E = EntryBB.end();
1617 I != E && (I->isPHI() || I->isMetaInstruction()); ++I)
1619 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT)).addImm(0);
1620 if (ST->hasVscnt())
1621 BuildMI(EntryBB, I, DebugLoc(), TII->get(AMDGPU::S_WAITCNT_VSCNT))
1622 .addReg(AMDGPU::SGPR_NULL, RegState::Undef)
1623 .addImm(0);
1625 Modified = true;
1628 // Keep iterating over the blocks in reverse post order, inserting and
1629 // updating s_waitcnt where needed, until a fix point is reached.
1630 for (auto *MBB : ReversePostOrderTraversal<MachineFunction *>(&MF))
1631 BlockInfos.insert({MBB, BlockInfo(MBB)});
1633 std::unique_ptr<WaitcntBrackets> Brackets;
1634 bool Repeat;
1635 do {
1636 Repeat = false;
1638 for (auto BII = BlockInfos.begin(), BIE = BlockInfos.end(); BII != BIE;
1639 ++BII) {
1640 BlockInfo &BI = BII->second;
1641 if (!BI.Dirty)
1642 continue;
1644 if (BI.Incoming) {
1645 if (!Brackets)
1646 Brackets = std::make_unique<WaitcntBrackets>(*BI.Incoming);
1647 else
1648 *Brackets = *BI.Incoming;
1649 } else {
1650 if (!Brackets)
1651 Brackets = std::make_unique<WaitcntBrackets>(ST);
1652 else
1653 *Brackets = WaitcntBrackets(ST);
1656 Modified |= insertWaitcntInBlock(MF, *BI.MBB, *Brackets);
1657 BI.Dirty = false;
1659 if (Brackets->hasPending()) {
1660 BlockInfo *MoveBracketsToSucc = nullptr;
1661 for (MachineBasicBlock *Succ : BI.MBB->successors()) {
1662 auto SuccBII = BlockInfos.find(Succ);
1663 BlockInfo &SuccBI = SuccBII->second;
1664 if (!SuccBI.Incoming) {
1665 SuccBI.Dirty = true;
1666 if (SuccBII <= BII)
1667 Repeat = true;
1668 if (!MoveBracketsToSucc) {
1669 MoveBracketsToSucc = &SuccBI;
1670 } else {
1671 SuccBI.Incoming = std::make_unique<WaitcntBrackets>(*Brackets);
1673 } else if (SuccBI.Incoming->merge(*Brackets)) {
1674 SuccBI.Dirty = true;
1675 if (SuccBII <= BII)
1676 Repeat = true;
1679 if (MoveBracketsToSucc)
1680 MoveBracketsToSucc->Incoming = std::move(Brackets);
1683 } while (Repeat);
1685 SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;
1687 bool HaveScalarStores = false;
1689 for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
1690 ++BI) {
1691 MachineBasicBlock &MBB = *BI;
1693 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
1694 ++I) {
1695 if (!HaveScalarStores && TII->isScalarStore(*I))
1696 HaveScalarStores = true;
1698 if (I->getOpcode() == AMDGPU::S_ENDPGM ||
1699 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
1700 EndPgmBlocks.push_back(&MBB);
1704 if (HaveScalarStores) {
1705 // If scalar writes are used, the cache must be flushed or else the next
1706 // wave to reuse the same scratch memory can be clobbered.
1708 // Insert s_dcache_wb at wave termination points if there were any scalar
1709 // stores, and only if the cache hasn't already been flushed. This could be
1710 // improved by looking across blocks for flushes in postdominating blocks
1711 // from the stores but an explicitly requested flush is probably very rare.
1712 for (MachineBasicBlock *MBB : EndPgmBlocks) {
1713 bool SeenDCacheWB = false;
1715 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
1716 ++I) {
1717 if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
1718 SeenDCacheWB = true;
1719 else if (TII->isScalarStore(*I))
1720 SeenDCacheWB = false;
1722 // FIXME: It would be better to insert this before a waitcnt if any.
1723 if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
1724 I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
1725 !SeenDCacheWB) {
1726 Modified = true;
1727 BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
1733 return Modified;