[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / AMDGPU / SIMachineScheduler.cpp
blob278dd05b049c209d68d6d0431ebf7a63e30ad940
1 //===-- SIMachineScheduler.cpp - SI Scheduler Interface -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// SI Machine Scheduler interface
12 //===----------------------------------------------------------------------===//
14 #include "SIMachineScheduler.h"
15 #include "SIInstrInfo.h"
16 #include "MCTargetDesc/AMDGPUMCTargetDesc.h"
17 #include "llvm/CodeGen/LiveIntervals.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 using namespace llvm;
22 #define DEBUG_TYPE "machine-scheduler"
24 // This scheduler implements a different scheduling algorithm than
25 // GenericScheduler.
27 // There are several specific architecture behaviours that can't be modelled
28 // for GenericScheduler:
29 // . When accessing the result of an SGPR load instruction, you have to wait
30 // for all the SGPR load instructions before your current instruction to
31 // have finished.
32 // . When accessing the result of an VGPR load instruction, you have to wait
33 // for all the VGPR load instructions previous to the VGPR load instruction
34 // you are interested in to finish.
35 // . The less the register pressure, the best load latencies are hidden
37 // Moreover some specifities (like the fact a lot of instructions in the shader
38 // have few dependencies) makes the generic scheduler have some unpredictable
39 // behaviours. For example when register pressure becomes high, it can either
40 // manage to prevent register pressure from going too high, or it can
41 // increase register pressure even more than if it hadn't taken register
42 // pressure into account.
44 // Also some other bad behaviours are generated, like loading at the beginning
45 // of the shader a constant in VGPR you won't need until the end of the shader.
47 // The scheduling problem for SI can distinguish three main parts:
48 // . Hiding high latencies (texture sampling, etc)
49 // . Hiding low latencies (SGPR constant loading, etc)
50 // . Keeping register usage low for better latency hiding and general
51 // performance
53 // Some other things can also affect performance, but are hard to predict
54 // (cache usage, the fact the HW can issue several instructions from different
55 // wavefronts if different types, etc)
57 // This scheduler tries to solve the scheduling problem by dividing it into
58 // simpler sub-problems. It divides the instructions into blocks, schedules
59 // locally inside the blocks where it takes care of low latencies, and then
60 // chooses the order of the blocks by taking care of high latencies.
61 // Dividing the instructions into blocks helps control keeping register
62 // usage low.
64 // First the instructions are put into blocks.
65 // We want the blocks help control register usage and hide high latencies
66 // later. To help control register usage, we typically want all local
67 // computations, when for example you create a result that can be comsummed
68 // right away, to be contained in a block. Block inputs and outputs would
69 // typically be important results that are needed in several locations of
70 // the shader. Since we do want blocks to help hide high latencies, we want
71 // the instructions inside the block to have a minimal set of dependencies
72 // on high latencies. It will make it easy to pick blocks to hide specific
73 // high latencies.
74 // The block creation algorithm is divided into several steps, and several
75 // variants can be tried during the scheduling process.
77 // Second the order of the instructions inside the blocks is chosen.
78 // At that step we do take into account only register usage and hiding
79 // low latency instructions
81 // Third the block order is chosen, there we try to hide high latencies
82 // and keep register usage low.
84 // After the third step, a pass is done to improve the hiding of low
85 // latencies.
87 // Actually when talking about 'low latency' or 'high latency' it includes
88 // both the latency to get the cache (or global mem) data go to the register,
89 // and the bandwidth limitations.
90 // Increasing the number of active wavefronts helps hide the former, but it
91 // doesn't solve the latter, thus why even if wavefront count is high, we have
92 // to try have as many instructions hiding high latencies as possible.
93 // The OpenCL doc says for example latency of 400 cycles for a global mem access,
94 // which is hidden by 10 instructions if the wavefront count is 10.
96 // Some figures taken from AMD docs:
97 // Both texture and constant L1 caches are 4-way associative with 64 bytes
98 // lines.
99 // Constant cache is shared with 4 CUs.
100 // For texture sampling, the address generation unit receives 4 texture
101 // addresses per cycle, thus we could expect texture sampling latency to be
102 // equivalent to 4 instructions in the very best case (a VGPR is 64 work items,
103 // instructions in a wavefront group are executed every 4 cycles),
104 // or 16 instructions if the other wavefronts associated to the 3 other VALUs
105 // of the CU do texture sampling too. (Don't take these figures too seriously,
106 // as I'm not 100% sure of the computation)
107 // Data exports should get similar latency.
108 // For constant loading, the cache is shader with 4 CUs.
109 // The doc says "a throughput of 16B/cycle for each of the 4 Compute Unit"
110 // I guess if the other CU don't read the cache, it can go up to 64B/cycle.
111 // It means a simple s_buffer_load should take one instruction to hide, as
112 // well as a s_buffer_loadx2 and potentially a s_buffer_loadx8 if on the same
113 // cache line.
115 // As of today the driver doesn't preload the constants in cache, thus the
116 // first loads get extra latency. The doc says global memory access can be
117 // 300-600 cycles. We do not specially take that into account when scheduling
118 // As we expect the driver to be able to preload the constants soon.
120 // common code //
122 #ifndef NDEBUG
124 static const char *getReasonStr(SIScheduleCandReason Reason) {
125 switch (Reason) {
126 case NoCand: return "NOCAND";
127 case RegUsage: return "REGUSAGE";
128 case Latency: return "LATENCY";
129 case Successor: return "SUCCESSOR";
130 case Depth: return "DEPTH";
131 case NodeOrder: return "ORDER";
133 llvm_unreachable("Unknown reason!");
136 #endif
138 namespace llvm {
139 namespace SISched {
140 static bool tryLess(int TryVal, int CandVal,
141 SISchedulerCandidate &TryCand,
142 SISchedulerCandidate &Cand,
143 SIScheduleCandReason Reason) {
144 if (TryVal < CandVal) {
145 TryCand.Reason = Reason;
146 return true;
148 if (TryVal > CandVal) {
149 if (Cand.Reason > Reason)
150 Cand.Reason = Reason;
151 return true;
153 Cand.setRepeat(Reason);
154 return false;
157 static bool tryGreater(int TryVal, int CandVal,
158 SISchedulerCandidate &TryCand,
159 SISchedulerCandidate &Cand,
160 SIScheduleCandReason Reason) {
161 if (TryVal > CandVal) {
162 TryCand.Reason = Reason;
163 return true;
165 if (TryVal < CandVal) {
166 if (Cand.Reason > Reason)
167 Cand.Reason = Reason;
168 return true;
170 Cand.setRepeat(Reason);
171 return false;
173 } // end namespace SISched
174 } // end namespace llvm
176 // SIScheduleBlock //
178 void SIScheduleBlock::addUnit(SUnit *SU) {
179 NodeNum2Index[SU->NodeNum] = SUnits.size();
180 SUnits.push_back(SU);
183 #ifndef NDEBUG
184 void SIScheduleBlock::traceCandidate(const SISchedCandidate &Cand) {
186 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
187 dbgs() << '\n';
189 #endif
191 void SIScheduleBlock::tryCandidateTopDown(SISchedCandidate &Cand,
192 SISchedCandidate &TryCand) {
193 // Initialize the candidate if needed.
194 if (!Cand.isValid()) {
195 TryCand.Reason = NodeOrder;
196 return;
199 if (Cand.SGPRUsage > 60 &&
200 SISched::tryLess(TryCand.SGPRUsage, Cand.SGPRUsage,
201 TryCand, Cand, RegUsage))
202 return;
204 // Schedule low latency instructions as top as possible.
205 // Order of priority is:
206 // . Low latency instructions which do not depend on other low latency
207 // instructions we haven't waited for
208 // . Other instructions which do not depend on low latency instructions
209 // we haven't waited for
210 // . Low latencies
211 // . All other instructions
212 // Goal is to get: low latency instructions - independent instructions
213 // - (eventually some more low latency instructions)
214 // - instructions that depend on the first low latency instructions.
215 // If in the block there is a lot of constant loads, the SGPR usage
216 // could go quite high, thus above the arbitrary limit of 60 will encourage
217 // use the already loaded constants (in order to release some SGPRs) before
218 // loading more.
219 if (SISched::tryLess(TryCand.HasLowLatencyNonWaitedParent,
220 Cand.HasLowLatencyNonWaitedParent,
221 TryCand, Cand, SIScheduleCandReason::Depth))
222 return;
224 if (SISched::tryGreater(TryCand.IsLowLatency, Cand.IsLowLatency,
225 TryCand, Cand, SIScheduleCandReason::Depth))
226 return;
228 if (TryCand.IsLowLatency &&
229 SISched::tryLess(TryCand.LowLatencyOffset, Cand.LowLatencyOffset,
230 TryCand, Cand, SIScheduleCandReason::Depth))
231 return;
233 if (SISched::tryLess(TryCand.VGPRUsage, Cand.VGPRUsage,
234 TryCand, Cand, RegUsage))
235 return;
237 // Fall through to original instruction order.
238 if (TryCand.SU->NodeNum < Cand.SU->NodeNum) {
239 TryCand.Reason = NodeOrder;
243 SUnit* SIScheduleBlock::pickNode() {
244 SISchedCandidate TopCand;
246 for (SUnit* SU : TopReadySUs) {
247 SISchedCandidate TryCand;
248 std::vector<unsigned> pressure;
249 std::vector<unsigned> MaxPressure;
250 // Predict register usage after this instruction.
251 TryCand.SU = SU;
252 TopRPTracker.getDownwardPressure(SU->getInstr(), pressure, MaxPressure);
253 TryCand.SGPRUsage = pressure[AMDGPU::RegisterPressureSets::SReg_32];
254 TryCand.VGPRUsage = pressure[AMDGPU::RegisterPressureSets::VGPR_32];
255 TryCand.IsLowLatency = DAG->IsLowLatencySU[SU->NodeNum];
256 TryCand.LowLatencyOffset = DAG->LowLatencyOffset[SU->NodeNum];
257 TryCand.HasLowLatencyNonWaitedParent =
258 HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]];
259 tryCandidateTopDown(TopCand, TryCand);
260 if (TryCand.Reason != NoCand)
261 TopCand.setBest(TryCand);
264 return TopCand.SU;
268 // Schedule something valid.
269 void SIScheduleBlock::fastSchedule() {
270 TopReadySUs.clear();
271 if (Scheduled)
272 undoSchedule();
274 for (SUnit* SU : SUnits) {
275 if (!SU->NumPredsLeft)
276 TopReadySUs.push_back(SU);
279 while (!TopReadySUs.empty()) {
280 SUnit *SU = TopReadySUs[0];
281 ScheduledSUnits.push_back(SU);
282 nodeScheduled(SU);
285 Scheduled = true;
288 // Returns if the register was set between first and last.
289 static bool isDefBetween(unsigned Reg,
290 SlotIndex First, SlotIndex Last,
291 const MachineRegisterInfo *MRI,
292 const LiveIntervals *LIS) {
293 for (MachineRegisterInfo::def_instr_iterator
294 UI = MRI->def_instr_begin(Reg),
295 UE = MRI->def_instr_end(); UI != UE; ++UI) {
296 const MachineInstr* MI = &*UI;
297 if (MI->isDebugValue())
298 continue;
299 SlotIndex InstSlot = LIS->getInstructionIndex(*MI).getRegSlot();
300 if (InstSlot >= First && InstSlot <= Last)
301 return true;
303 return false;
306 void SIScheduleBlock::initRegPressure(MachineBasicBlock::iterator BeginBlock,
307 MachineBasicBlock::iterator EndBlock) {
308 IntervalPressure Pressure, BotPressure;
309 RegPressureTracker RPTracker(Pressure), BotRPTracker(BotPressure);
310 LiveIntervals *LIS = DAG->getLIS();
311 MachineRegisterInfo *MRI = DAG->getMRI();
312 DAG->initRPTracker(TopRPTracker);
313 DAG->initRPTracker(BotRPTracker);
314 DAG->initRPTracker(RPTracker);
316 // Goes though all SU. RPTracker captures what had to be alive for the SUs
317 // to execute, and what is still alive at the end.
318 for (SUnit* SU : ScheduledSUnits) {
319 RPTracker.setPos(SU->getInstr());
320 RPTracker.advance();
323 // Close the RPTracker to finalize live ins/outs.
324 RPTracker.closeRegion();
326 // Initialize the live ins and live outs.
327 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
328 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
330 // Do not Track Physical Registers, because it messes up.
331 for (const auto &RegMaskPair : RPTracker.getPressure().LiveInRegs) {
332 if (Register::isVirtualRegister(RegMaskPair.RegUnit))
333 LiveInRegs.insert(RegMaskPair.RegUnit);
335 LiveOutRegs.clear();
336 // There is several possibilities to distinguish:
337 // 1) Reg is not input to any instruction in the block, but is output of one
338 // 2) 1) + read in the block and not needed after it
339 // 3) 1) + read in the block but needed in another block
340 // 4) Reg is input of an instruction but another block will read it too
341 // 5) Reg is input of an instruction and then rewritten in the block.
342 // result is not read in the block (implies used in another block)
343 // 6) Reg is input of an instruction and then rewritten in the block.
344 // result is read in the block and not needed in another block
345 // 7) Reg is input of an instruction and then rewritten in the block.
346 // result is read in the block but also needed in another block
347 // LiveInRegs will contains all the regs in situation 4, 5, 6, 7
348 // We want LiveOutRegs to contain only Regs whose content will be read after
349 // in another block, and whose content was written in the current block,
350 // that is we want it to get 1, 3, 5, 7
351 // Since we made the MIs of a block to be packed all together before
352 // scheduling, then the LiveIntervals were correct, and the RPTracker was
353 // able to correctly handle 5 vs 6, 2 vs 3.
354 // (Note: This is not sufficient for RPTracker to not do mistakes for case 4)
355 // The RPTracker's LiveOutRegs has 1, 3, (some correct or incorrect)4, 5, 7
356 // Comparing to LiveInRegs is not sufficient to differenciate 4 vs 5, 7
357 // The use of findDefBetween removes the case 4.
358 for (const auto &RegMaskPair : RPTracker.getPressure().LiveOutRegs) {
359 Register Reg = RegMaskPair.RegUnit;
360 if (Reg.isVirtual() &&
361 isDefBetween(Reg, LIS->getInstructionIndex(*BeginBlock).getRegSlot(),
362 LIS->getInstructionIndex(*EndBlock).getRegSlot(), MRI,
363 LIS)) {
364 LiveOutRegs.insert(Reg);
368 // Pressure = sum_alive_registers register size
369 // Internally llvm will represent some registers as big 128 bits registers
370 // for example, but they actually correspond to 4 actual 32 bits registers.
371 // Thus Pressure is not equal to num_alive_registers * constant.
372 LiveInPressure = TopPressure.MaxSetPressure;
373 LiveOutPressure = BotPressure.MaxSetPressure;
375 // Prepares TopRPTracker for top down scheduling.
376 TopRPTracker.closeTop();
379 void SIScheduleBlock::schedule(MachineBasicBlock::iterator BeginBlock,
380 MachineBasicBlock::iterator EndBlock) {
381 if (!Scheduled)
382 fastSchedule();
384 // PreScheduling phase to set LiveIn and LiveOut.
385 initRegPressure(BeginBlock, EndBlock);
386 undoSchedule();
388 // Schedule for real now.
390 TopReadySUs.clear();
392 for (SUnit* SU : SUnits) {
393 if (!SU->NumPredsLeft)
394 TopReadySUs.push_back(SU);
397 while (!TopReadySUs.empty()) {
398 SUnit *SU = pickNode();
399 ScheduledSUnits.push_back(SU);
400 TopRPTracker.setPos(SU->getInstr());
401 TopRPTracker.advance();
402 nodeScheduled(SU);
405 // TODO: compute InternalAdditionnalPressure.
406 InternalAdditionnalPressure.resize(TopPressure.MaxSetPressure.size());
408 // Check everything is right.
409 #ifndef NDEBUG
410 assert(SUnits.size() == ScheduledSUnits.size() &&
411 TopReadySUs.empty());
412 for (SUnit* SU : SUnits) {
413 assert(SU->isScheduled &&
414 SU->NumPredsLeft == 0);
416 #endif
418 Scheduled = true;
421 void SIScheduleBlock::undoSchedule() {
422 for (SUnit* SU : SUnits) {
423 SU->isScheduled = false;
424 for (SDep& Succ : SU->Succs) {
425 if (BC->isSUInBlock(Succ.getSUnit(), ID))
426 undoReleaseSucc(SU, &Succ);
429 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
430 ScheduledSUnits.clear();
431 Scheduled = false;
434 void SIScheduleBlock::undoReleaseSucc(SUnit *SU, SDep *SuccEdge) {
435 SUnit *SuccSU = SuccEdge->getSUnit();
437 if (SuccEdge->isWeak()) {
438 ++SuccSU->WeakPredsLeft;
439 return;
441 ++SuccSU->NumPredsLeft;
444 void SIScheduleBlock::releaseSucc(SUnit *SU, SDep *SuccEdge) {
445 SUnit *SuccSU = SuccEdge->getSUnit();
447 if (SuccEdge->isWeak()) {
448 --SuccSU->WeakPredsLeft;
449 return;
451 #ifndef NDEBUG
452 if (SuccSU->NumPredsLeft == 0) {
453 dbgs() << "*** Scheduling failed! ***\n";
454 DAG->dumpNode(*SuccSU);
455 dbgs() << " has been released too many times!\n";
456 llvm_unreachable(nullptr);
458 #endif
460 --SuccSU->NumPredsLeft;
463 /// Release Successors of the SU that are in the block or not.
464 void SIScheduleBlock::releaseSuccessors(SUnit *SU, bool InOrOutBlock) {
465 for (SDep& Succ : SU->Succs) {
466 SUnit *SuccSU = Succ.getSUnit();
468 if (SuccSU->NodeNum >= DAG->SUnits.size())
469 continue;
471 if (BC->isSUInBlock(SuccSU, ID) != InOrOutBlock)
472 continue;
474 releaseSucc(SU, &Succ);
475 if (SuccSU->NumPredsLeft == 0 && InOrOutBlock)
476 TopReadySUs.push_back(SuccSU);
480 void SIScheduleBlock::nodeScheduled(SUnit *SU) {
481 // Is in TopReadySUs
482 assert (!SU->NumPredsLeft);
483 std::vector<SUnit *>::iterator I = llvm::find(TopReadySUs, SU);
484 if (I == TopReadySUs.end()) {
485 dbgs() << "Data Structure Bug in SI Scheduler\n";
486 llvm_unreachable(nullptr);
488 TopReadySUs.erase(I);
490 releaseSuccessors(SU, true);
491 // Scheduling this node will trigger a wait,
492 // thus propagate to other instructions that they do not need to wait either.
493 if (HasLowLatencyNonWaitedParent[NodeNum2Index[SU->NodeNum]])
494 HasLowLatencyNonWaitedParent.assign(SUnits.size(), 0);
496 if (DAG->IsLowLatencySU[SU->NodeNum]) {
497 for (SDep& Succ : SU->Succs) {
498 std::map<unsigned, unsigned>::iterator I =
499 NodeNum2Index.find(Succ.getSUnit()->NodeNum);
500 if (I != NodeNum2Index.end())
501 HasLowLatencyNonWaitedParent[I->second] = 1;
504 SU->isScheduled = true;
507 void SIScheduleBlock::finalizeUnits() {
508 // We remove links from outside blocks to enable scheduling inside the block.
509 for (SUnit* SU : SUnits) {
510 releaseSuccessors(SU, false);
511 if (DAG->IsHighLatencySU[SU->NodeNum])
512 HighLatencyBlock = true;
514 HasLowLatencyNonWaitedParent.resize(SUnits.size(), 0);
517 // we maintain ascending order of IDs
518 void SIScheduleBlock::addPred(SIScheduleBlock *Pred) {
519 unsigned PredID = Pred->getID();
521 // Check if not already predecessor.
522 for (SIScheduleBlock* P : Preds) {
523 if (PredID == P->getID())
524 return;
526 Preds.push_back(Pred);
528 assert(none_of(Succs,
529 [=](std::pair<SIScheduleBlock*,
530 SIScheduleBlockLinkKind> S) {
531 return PredID == S.first->getID();
532 }) &&
533 "Loop in the Block Graph!");
536 void SIScheduleBlock::addSucc(SIScheduleBlock *Succ,
537 SIScheduleBlockLinkKind Kind) {
538 unsigned SuccID = Succ->getID();
540 // Check if not already predecessor.
541 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> &S : Succs) {
542 if (SuccID == S.first->getID()) {
543 if (S.second == SIScheduleBlockLinkKind::NoData &&
544 Kind == SIScheduleBlockLinkKind::Data)
545 S.second = Kind;
546 return;
549 if (Succ->isHighLatencyBlock())
550 ++NumHighLatencySuccessors;
551 Succs.push_back(std::make_pair(Succ, Kind));
553 assert(none_of(Preds,
554 [=](SIScheduleBlock *P) { return SuccID == P->getID(); }) &&
555 "Loop in the Block Graph!");
558 #ifndef NDEBUG
559 void SIScheduleBlock::printDebug(bool full) {
560 dbgs() << "Block (" << ID << ")\n";
561 if (!full)
562 return;
564 dbgs() << "\nContains High Latency Instruction: "
565 << HighLatencyBlock << '\n';
566 dbgs() << "\nDepends On:\n";
567 for (SIScheduleBlock* P : Preds) {
568 P->printDebug(false);
571 dbgs() << "\nSuccessors:\n";
572 for (std::pair<SIScheduleBlock*, SIScheduleBlockLinkKind> S : Succs) {
573 if (S.second == SIScheduleBlockLinkKind::Data)
574 dbgs() << "(Data Dep) ";
575 S.first->printDebug(false);
578 if (Scheduled) {
579 dbgs() << "LiveInPressure "
580 << LiveInPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
581 << LiveInPressure[AMDGPU::RegisterPressureSets::VGPR_32] << '\n';
582 dbgs() << "LiveOutPressure "
583 << LiveOutPressure[AMDGPU::RegisterPressureSets::SReg_32] << ' '
584 << LiveOutPressure[AMDGPU::RegisterPressureSets::VGPR_32] << "\n\n";
585 dbgs() << "LiveIns:\n";
586 for (unsigned Reg : LiveInRegs)
587 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
589 dbgs() << "\nLiveOuts:\n";
590 for (unsigned Reg : LiveOutRegs)
591 dbgs() << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
594 dbgs() << "\nInstructions:\n";
595 for (const SUnit* SU : SUnits)
596 DAG->dumpNode(*SU);
598 dbgs() << "///////////////////////\n";
600 #endif
602 // SIScheduleBlockCreator //
604 SIScheduleBlockCreator::SIScheduleBlockCreator(SIScheduleDAGMI *DAG)
605 : DAG(DAG) {}
607 SIScheduleBlocks
608 SIScheduleBlockCreator::getBlocks(SISchedulerBlockCreatorVariant BlockVariant) {
609 std::map<SISchedulerBlockCreatorVariant, SIScheduleBlocks>::iterator B =
610 Blocks.find(BlockVariant);
611 if (B == Blocks.end()) {
612 SIScheduleBlocks Res;
613 createBlocksForVariant(BlockVariant);
614 topologicalSort();
615 scheduleInsideBlocks();
616 fillStats();
617 Res.Blocks = CurrentBlocks;
618 Res.TopDownIndex2Block = TopDownIndex2Block;
619 Res.TopDownBlock2Index = TopDownBlock2Index;
620 Blocks[BlockVariant] = Res;
621 return Res;
622 } else {
623 return B->second;
627 bool SIScheduleBlockCreator::isSUInBlock(SUnit *SU, unsigned ID) {
628 if (SU->NodeNum >= DAG->SUnits.size())
629 return false;
630 return CurrentBlocks[Node2CurrentBlock[SU->NodeNum]]->getID() == ID;
633 void SIScheduleBlockCreator::colorHighLatenciesAlone() {
634 unsigned DAGSize = DAG->SUnits.size();
636 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
637 SUnit *SU = &DAG->SUnits[i];
638 if (DAG->IsHighLatencySU[SU->NodeNum]) {
639 CurrentColoring[SU->NodeNum] = NextReservedID++;
644 static bool
645 hasDataDependencyPred(const SUnit &SU, const SUnit &FromSU) {
646 for (const auto &PredDep : SU.Preds) {
647 if (PredDep.getSUnit() == &FromSU &&
648 PredDep.getKind() == llvm::SDep::Data)
649 return true;
651 return false;
654 void SIScheduleBlockCreator::colorHighLatenciesGroups() {
655 unsigned DAGSize = DAG->SUnits.size();
656 unsigned NumHighLatencies = 0;
657 unsigned GroupSize;
658 int Color = NextReservedID;
659 unsigned Count = 0;
660 std::set<unsigned> FormingGroup;
662 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
663 SUnit *SU = &DAG->SUnits[i];
664 if (DAG->IsHighLatencySU[SU->NodeNum])
665 ++NumHighLatencies;
668 if (NumHighLatencies == 0)
669 return;
671 if (NumHighLatencies <= 6)
672 GroupSize = 2;
673 else if (NumHighLatencies <= 12)
674 GroupSize = 3;
675 else
676 GroupSize = 4;
678 for (unsigned SUNum : DAG->TopDownIndex2SU) {
679 const SUnit &SU = DAG->SUnits[SUNum];
680 if (DAG->IsHighLatencySU[SU.NodeNum]) {
681 unsigned CompatibleGroup = true;
682 int ProposedColor = Color;
683 std::vector<int> AdditionalElements;
685 // We don't want to put in the same block
686 // two high latency instructions that depend
687 // on each other.
688 // One way would be to check canAddEdge
689 // in both directions, but that currently is not
690 // enough because there the high latency order is
691 // enforced (via links).
692 // Instead, look at the dependencies between the
693 // high latency instructions and deduce if it is
694 // a data dependency or not.
695 for (unsigned j : FormingGroup) {
696 bool HasSubGraph;
697 std::vector<int> SubGraph;
698 // By construction (topological order), if SU and
699 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
700 // in the parent graph of SU.
701 #ifndef NDEBUG
702 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
703 HasSubGraph);
704 assert(!HasSubGraph);
705 #endif
706 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
707 HasSubGraph);
708 if (!HasSubGraph)
709 continue; // No dependencies between each other
710 else if (SubGraph.size() > 5) {
711 // Too many elements would be required to be added to the block.
712 CompatibleGroup = false;
713 break;
715 else {
716 // Check the type of dependency
717 for (unsigned k : SubGraph) {
718 // If in the path to join the two instructions,
719 // there is another high latency instruction,
720 // or instructions colored for another block
721 // abort the merge.
722 if (DAG->IsHighLatencySU[k] ||
723 (CurrentColoring[k] != ProposedColor &&
724 CurrentColoring[k] != 0)) {
725 CompatibleGroup = false;
726 break;
728 // If one of the SU in the subgraph depends on the result of SU j,
729 // there'll be a data dependency.
730 if (hasDataDependencyPred(DAG->SUnits[k], DAG->SUnits[j])) {
731 CompatibleGroup = false;
732 break;
735 if (!CompatibleGroup)
736 break;
737 // Same check for the SU
738 if (hasDataDependencyPred(SU, DAG->SUnits[j])) {
739 CompatibleGroup = false;
740 break;
742 // Add all the required instructions to the block
743 // These cannot live in another block (because they
744 // depend (order dependency) on one of the
745 // instruction in the block, and are required for the
746 // high latency instruction we add.
747 llvm::append_range(AdditionalElements, SubGraph);
750 if (CompatibleGroup) {
751 FormingGroup.insert(SU.NodeNum);
752 for (unsigned j : AdditionalElements)
753 CurrentColoring[j] = ProposedColor;
754 CurrentColoring[SU.NodeNum] = ProposedColor;
755 ++Count;
757 // Found one incompatible instruction,
758 // or has filled a big enough group.
759 // -> start a new one.
760 if (!CompatibleGroup) {
761 FormingGroup.clear();
762 Color = ++NextReservedID;
763 ProposedColor = Color;
764 FormingGroup.insert(SU.NodeNum);
765 CurrentColoring[SU.NodeNum] = ProposedColor;
766 Count = 0;
767 } else if (Count == GroupSize) {
768 FormingGroup.clear();
769 Color = ++NextReservedID;
770 ProposedColor = Color;
771 Count = 0;
777 void SIScheduleBlockCreator::colorComputeReservedDependencies() {
778 unsigned DAGSize = DAG->SUnits.size();
779 std::map<std::set<unsigned>, unsigned> ColorCombinations;
781 CurrentTopDownReservedDependencyColoring.clear();
782 CurrentBottomUpReservedDependencyColoring.clear();
784 CurrentTopDownReservedDependencyColoring.resize(DAGSize, 0);
785 CurrentBottomUpReservedDependencyColoring.resize(DAGSize, 0);
787 // Traverse TopDown, and give different colors to SUs depending
788 // on which combination of High Latencies they depend on.
790 for (unsigned SUNum : DAG->TopDownIndex2SU) {
791 SUnit *SU = &DAG->SUnits[SUNum];
792 std::set<unsigned> SUColors;
794 // Already given.
795 if (CurrentColoring[SU->NodeNum]) {
796 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
797 CurrentColoring[SU->NodeNum];
798 continue;
801 for (SDep& PredDep : SU->Preds) {
802 SUnit *Pred = PredDep.getSUnit();
803 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
804 continue;
805 if (CurrentTopDownReservedDependencyColoring[Pred->NodeNum] > 0)
806 SUColors.insert(CurrentTopDownReservedDependencyColoring[Pred->NodeNum]);
808 // Color 0 by default.
809 if (SUColors.empty())
810 continue;
811 // Same color than parents.
812 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
813 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
814 *SUColors.begin();
815 else {
816 std::map<std::set<unsigned>, unsigned>::iterator Pos =
817 ColorCombinations.find(SUColors);
818 if (Pos != ColorCombinations.end()) {
819 CurrentTopDownReservedDependencyColoring[SU->NodeNum] = Pos->second;
820 } else {
821 CurrentTopDownReservedDependencyColoring[SU->NodeNum] =
822 NextNonReservedID;
823 ColorCombinations[SUColors] = NextNonReservedID++;
828 ColorCombinations.clear();
830 // Same as before, but BottomUp.
832 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
833 SUnit *SU = &DAG->SUnits[SUNum];
834 std::set<unsigned> SUColors;
836 // Already given.
837 if (CurrentColoring[SU->NodeNum]) {
838 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
839 CurrentColoring[SU->NodeNum];
840 continue;
843 for (SDep& SuccDep : SU->Succs) {
844 SUnit *Succ = SuccDep.getSUnit();
845 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
846 continue;
847 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0)
848 SUColors.insert(CurrentBottomUpReservedDependencyColoring[Succ->NodeNum]);
850 // Keep color 0.
851 if (SUColors.empty())
852 continue;
853 // Same color than parents.
854 if (SUColors.size() == 1 && *SUColors.begin() > DAGSize)
855 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
856 *SUColors.begin();
857 else {
858 std::map<std::set<unsigned>, unsigned>::iterator Pos =
859 ColorCombinations.find(SUColors);
860 if (Pos != ColorCombinations.end()) {
861 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] = Pos->second;
862 } else {
863 CurrentBottomUpReservedDependencyColoring[SU->NodeNum] =
864 NextNonReservedID;
865 ColorCombinations[SUColors] = NextNonReservedID++;
871 void SIScheduleBlockCreator::colorAccordingToReservedDependencies() {
872 unsigned DAGSize = DAG->SUnits.size();
873 std::map<std::pair<unsigned, unsigned>, unsigned> ColorCombinations;
875 // Every combination of colors given by the top down
876 // and bottom up Reserved node dependency
878 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
879 SUnit *SU = &DAG->SUnits[i];
880 std::pair<unsigned, unsigned> SUColors;
882 // High latency instructions: already given.
883 if (CurrentColoring[SU->NodeNum])
884 continue;
886 SUColors.first = CurrentTopDownReservedDependencyColoring[SU->NodeNum];
887 SUColors.second = CurrentBottomUpReservedDependencyColoring[SU->NodeNum];
889 std::map<std::pair<unsigned, unsigned>, unsigned>::iterator Pos =
890 ColorCombinations.find(SUColors);
891 if (Pos != ColorCombinations.end()) {
892 CurrentColoring[SU->NodeNum] = Pos->second;
893 } else {
894 CurrentColoring[SU->NodeNum] = NextNonReservedID;
895 ColorCombinations[SUColors] = NextNonReservedID++;
900 void SIScheduleBlockCreator::colorEndsAccordingToDependencies() {
901 unsigned DAGSize = DAG->SUnits.size();
902 std::vector<int> PendingColoring = CurrentColoring;
904 assert(DAGSize >= 1 &&
905 CurrentBottomUpReservedDependencyColoring.size() == DAGSize &&
906 CurrentTopDownReservedDependencyColoring.size() == DAGSize);
907 // If there is no reserved block at all, do nothing. We don't want
908 // everything in one block.
909 if (*std::max_element(CurrentBottomUpReservedDependencyColoring.begin(),
910 CurrentBottomUpReservedDependencyColoring.end()) == 0 &&
911 *std::max_element(CurrentTopDownReservedDependencyColoring.begin(),
912 CurrentTopDownReservedDependencyColoring.end()) == 0)
913 return;
915 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
916 SUnit *SU = &DAG->SUnits[SUNum];
917 std::set<unsigned> SUColors;
918 std::set<unsigned> SUColorsPending;
920 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
921 continue;
923 if (CurrentBottomUpReservedDependencyColoring[SU->NodeNum] > 0 ||
924 CurrentTopDownReservedDependencyColoring[SU->NodeNum] > 0)
925 continue;
927 for (SDep& SuccDep : SU->Succs) {
928 SUnit *Succ = SuccDep.getSUnit();
929 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
930 continue;
931 if (CurrentBottomUpReservedDependencyColoring[Succ->NodeNum] > 0 ||
932 CurrentTopDownReservedDependencyColoring[Succ->NodeNum] > 0)
933 SUColors.insert(CurrentColoring[Succ->NodeNum]);
934 SUColorsPending.insert(PendingColoring[Succ->NodeNum]);
936 // If there is only one child/parent block, and that block
937 // is not among the ones we are removing in this path, then
938 // merge the instruction to that block
939 if (SUColors.size() == 1 && SUColorsPending.size() == 1)
940 PendingColoring[SU->NodeNum] = *SUColors.begin();
941 else // TODO: Attribute new colors depending on color
942 // combination of children.
943 PendingColoring[SU->NodeNum] = NextNonReservedID++;
945 CurrentColoring = PendingColoring;
949 void SIScheduleBlockCreator::colorForceConsecutiveOrderInGroup() {
950 unsigned DAGSize = DAG->SUnits.size();
951 unsigned PreviousColor;
952 std::set<unsigned> SeenColors;
954 if (DAGSize <= 1)
955 return;
957 PreviousColor = CurrentColoring[0];
959 for (unsigned i = 1, e = DAGSize; i != e; ++i) {
960 SUnit *SU = &DAG->SUnits[i];
961 unsigned CurrentColor = CurrentColoring[i];
962 unsigned PreviousColorSave = PreviousColor;
963 assert(i == SU->NodeNum);
965 if (CurrentColor != PreviousColor)
966 SeenColors.insert(PreviousColor);
967 PreviousColor = CurrentColor;
969 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
970 continue;
972 if (SeenColors.find(CurrentColor) == SeenColors.end())
973 continue;
975 if (PreviousColorSave != CurrentColor)
976 CurrentColoring[i] = NextNonReservedID++;
977 else
978 CurrentColoring[i] = CurrentColoring[i-1];
982 void SIScheduleBlockCreator::colorMergeConstantLoadsNextGroup() {
983 unsigned DAGSize = DAG->SUnits.size();
985 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
986 SUnit *SU = &DAG->SUnits[SUNum];
987 std::set<unsigned> SUColors;
989 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
990 continue;
992 // No predecessor: Vgpr constant loading.
993 // Low latency instructions usually have a predecessor (the address)
994 if (SU->Preds.size() > 0 && !DAG->IsLowLatencySU[SU->NodeNum])
995 continue;
997 for (SDep& SuccDep : SU->Succs) {
998 SUnit *Succ = SuccDep.getSUnit();
999 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1000 continue;
1001 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1003 if (SUColors.size() == 1)
1004 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1008 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroup() {
1009 unsigned DAGSize = DAG->SUnits.size();
1011 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1012 SUnit *SU = &DAG->SUnits[SUNum];
1013 std::set<unsigned> SUColors;
1015 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1016 continue;
1018 for (SDep& SuccDep : SU->Succs) {
1019 SUnit *Succ = SuccDep.getSUnit();
1020 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1021 continue;
1022 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1024 if (SUColors.size() == 1)
1025 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1029 void SIScheduleBlockCreator::colorMergeIfPossibleNextGroupOnlyForReserved() {
1030 unsigned DAGSize = DAG->SUnits.size();
1032 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1033 SUnit *SU = &DAG->SUnits[SUNum];
1034 std::set<unsigned> SUColors;
1036 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1037 continue;
1039 for (SDep& SuccDep : SU->Succs) {
1040 SUnit *Succ = SuccDep.getSUnit();
1041 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1042 continue;
1043 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1045 if (SUColors.size() == 1 && *SUColors.begin() <= DAGSize)
1046 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1050 void SIScheduleBlockCreator::colorMergeIfPossibleSmallGroupsToNextGroup() {
1051 unsigned DAGSize = DAG->SUnits.size();
1052 std::map<unsigned, unsigned> ColorCount;
1054 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1055 SUnit *SU = &DAG->SUnits[SUNum];
1056 unsigned color = CurrentColoring[SU->NodeNum];
1057 ++ColorCount[color];
1060 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1061 SUnit *SU = &DAG->SUnits[SUNum];
1062 unsigned color = CurrentColoring[SU->NodeNum];
1063 std::set<unsigned> SUColors;
1065 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1066 continue;
1068 if (ColorCount[color] > 1)
1069 continue;
1071 for (SDep& SuccDep : SU->Succs) {
1072 SUnit *Succ = SuccDep.getSUnit();
1073 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1074 continue;
1075 SUColors.insert(CurrentColoring[Succ->NodeNum]);
1077 if (SUColors.size() == 1 && *SUColors.begin() != color) {
1078 --ColorCount[color];
1079 CurrentColoring[SU->NodeNum] = *SUColors.begin();
1080 ++ColorCount[*SUColors.begin()];
1085 void SIScheduleBlockCreator::cutHugeBlocks() {
1086 // TODO
1089 void SIScheduleBlockCreator::regroupNoUserInstructions() {
1090 unsigned DAGSize = DAG->SUnits.size();
1091 int GroupID = NextNonReservedID++;
1093 for (unsigned SUNum : DAG->BottomUpIndex2SU) {
1094 SUnit *SU = &DAG->SUnits[SUNum];
1095 bool hasSuccessor = false;
1097 if (CurrentColoring[SU->NodeNum] <= (int)DAGSize)
1098 continue;
1100 for (SDep& SuccDep : SU->Succs) {
1101 SUnit *Succ = SuccDep.getSUnit();
1102 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1103 continue;
1104 hasSuccessor = true;
1106 if (!hasSuccessor)
1107 CurrentColoring[SU->NodeNum] = GroupID;
1111 void SIScheduleBlockCreator::colorExports() {
1112 unsigned ExportColor = NextNonReservedID++;
1113 SmallVector<unsigned, 8> ExpGroup;
1115 // Put all exports together in a block.
1116 // The block will naturally end up being scheduled last,
1117 // thus putting exports at the end of the schedule, which
1118 // is better for performance.
1119 // However we must ensure, for safety, the exports can be put
1120 // together in the same block without any other instruction.
1121 // This could happen, for example, when scheduling after regalloc
1122 // if reloading a spilled register from memory using the same
1123 // register than used in a previous export.
1124 // If that happens, do not regroup the exports.
1125 for (unsigned SUNum : DAG->TopDownIndex2SU) {
1126 const SUnit &SU = DAG->SUnits[SUNum];
1127 if (SIInstrInfo::isEXP(*SU.getInstr())) {
1128 // Check the EXP can be added to the group safely,
1129 // ie without needing any other instruction.
1130 // The EXP is allowed to depend on other EXP
1131 // (they will be in the same group).
1132 for (unsigned j : ExpGroup) {
1133 bool HasSubGraph;
1134 std::vector<int> SubGraph;
1135 // By construction (topological order), if SU and
1136 // DAG->SUnits[j] are linked, DAG->SUnits[j] is neccessary
1137 // in the parent graph of SU.
1138 #ifndef NDEBUG
1139 SubGraph = DAG->GetTopo()->GetSubGraph(SU, DAG->SUnits[j],
1140 HasSubGraph);
1141 assert(!HasSubGraph);
1142 #endif
1143 SubGraph = DAG->GetTopo()->GetSubGraph(DAG->SUnits[j], SU,
1144 HasSubGraph);
1145 if (!HasSubGraph)
1146 continue; // No dependencies between each other
1148 // SubGraph contains all the instructions required
1149 // between EXP SUnits[j] and EXP SU.
1150 for (unsigned k : SubGraph) {
1151 if (!SIInstrInfo::isEXP(*DAG->SUnits[k].getInstr()))
1152 // Other instructions than EXP would be required in the group.
1153 // Abort the groupping.
1154 return;
1158 ExpGroup.push_back(SUNum);
1162 // The group can be formed. Give the color.
1163 for (unsigned j : ExpGroup)
1164 CurrentColoring[j] = ExportColor;
1167 void SIScheduleBlockCreator::createBlocksForVariant(SISchedulerBlockCreatorVariant BlockVariant) {
1168 unsigned DAGSize = DAG->SUnits.size();
1169 std::map<unsigned,unsigned> RealID;
1171 CurrentBlocks.clear();
1172 CurrentColoring.clear();
1173 CurrentColoring.resize(DAGSize, 0);
1174 Node2CurrentBlock.clear();
1176 // Restore links previous scheduling variant has overridden.
1177 DAG->restoreSULinksLeft();
1179 NextReservedID = 1;
1180 NextNonReservedID = DAGSize + 1;
1182 LLVM_DEBUG(dbgs() << "Coloring the graph\n");
1184 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesGrouped)
1185 colorHighLatenciesGroups();
1186 else
1187 colorHighLatenciesAlone();
1188 colorComputeReservedDependencies();
1189 colorAccordingToReservedDependencies();
1190 colorEndsAccordingToDependencies();
1191 if (BlockVariant == SISchedulerBlockCreatorVariant::LatenciesAlonePlusConsecutive)
1192 colorForceConsecutiveOrderInGroup();
1193 regroupNoUserInstructions();
1194 colorMergeConstantLoadsNextGroup();
1195 colorMergeIfPossibleNextGroupOnlyForReserved();
1196 colorExports();
1198 // Put SUs of same color into same block
1199 Node2CurrentBlock.resize(DAGSize, -1);
1200 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1201 SUnit *SU = &DAG->SUnits[i];
1202 unsigned Color = CurrentColoring[SU->NodeNum];
1203 if (RealID.find(Color) == RealID.end()) {
1204 int ID = CurrentBlocks.size();
1205 BlockPtrs.push_back(std::make_unique<SIScheduleBlock>(DAG, this, ID));
1206 CurrentBlocks.push_back(BlockPtrs.rbegin()->get());
1207 RealID[Color] = ID;
1209 CurrentBlocks[RealID[Color]]->addUnit(SU);
1210 Node2CurrentBlock[SU->NodeNum] = RealID[Color];
1213 // Build dependencies between blocks.
1214 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1215 SUnit *SU = &DAG->SUnits[i];
1216 int SUID = Node2CurrentBlock[i];
1217 for (SDep& SuccDep : SU->Succs) {
1218 SUnit *Succ = SuccDep.getSUnit();
1219 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1220 continue;
1221 if (Node2CurrentBlock[Succ->NodeNum] != SUID)
1222 CurrentBlocks[SUID]->addSucc(CurrentBlocks[Node2CurrentBlock[Succ->NodeNum]],
1223 SuccDep.isCtrl() ? NoData : Data);
1225 for (SDep& PredDep : SU->Preds) {
1226 SUnit *Pred = PredDep.getSUnit();
1227 if (PredDep.isWeak() || Pred->NodeNum >= DAGSize)
1228 continue;
1229 if (Node2CurrentBlock[Pred->NodeNum] != SUID)
1230 CurrentBlocks[SUID]->addPred(CurrentBlocks[Node2CurrentBlock[Pred->NodeNum]]);
1234 // Free root and leafs of all blocks to enable scheduling inside them.
1235 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1236 SIScheduleBlock *Block = CurrentBlocks[i];
1237 Block->finalizeUnits();
1239 LLVM_DEBUG(dbgs() << "Blocks created:\n\n";
1240 for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1241 SIScheduleBlock *Block = CurrentBlocks[i];
1242 Block->printDebug(true);
1246 // Two functions taken from Codegen/MachineScheduler.cpp
1248 /// Non-const version.
1249 static MachineBasicBlock::iterator
1250 nextIfDebug(MachineBasicBlock::iterator I,
1251 MachineBasicBlock::const_iterator End) {
1252 for (; I != End; ++I) {
1253 if (!I->isDebugInstr())
1254 break;
1256 return I;
1259 void SIScheduleBlockCreator::topologicalSort() {
1260 unsigned DAGSize = CurrentBlocks.size();
1261 std::vector<int> WorkList;
1263 LLVM_DEBUG(dbgs() << "Topological Sort\n");
1265 WorkList.reserve(DAGSize);
1266 TopDownIndex2Block.resize(DAGSize);
1267 TopDownBlock2Index.resize(DAGSize);
1268 BottomUpIndex2Block.resize(DAGSize);
1270 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1271 SIScheduleBlock *Block = CurrentBlocks[i];
1272 unsigned Degree = Block->getSuccs().size();
1273 TopDownBlock2Index[i] = Degree;
1274 if (Degree == 0) {
1275 WorkList.push_back(i);
1279 int Id = DAGSize;
1280 while (!WorkList.empty()) {
1281 int i = WorkList.back();
1282 SIScheduleBlock *Block = CurrentBlocks[i];
1283 WorkList.pop_back();
1284 TopDownBlock2Index[i] = --Id;
1285 TopDownIndex2Block[Id] = i;
1286 for (SIScheduleBlock* Pred : Block->getPreds()) {
1287 if (!--TopDownBlock2Index[Pred->getID()])
1288 WorkList.push_back(Pred->getID());
1292 #ifndef NDEBUG
1293 // Check correctness of the ordering.
1294 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1295 SIScheduleBlock *Block = CurrentBlocks[i];
1296 for (SIScheduleBlock* Pred : Block->getPreds()) {
1297 assert(TopDownBlock2Index[i] > TopDownBlock2Index[Pred->getID()] &&
1298 "Wrong Top Down topological sorting");
1301 #endif
1303 BottomUpIndex2Block = std::vector<int>(TopDownIndex2Block.rbegin(),
1304 TopDownIndex2Block.rend());
1307 void SIScheduleBlockCreator::scheduleInsideBlocks() {
1308 unsigned DAGSize = CurrentBlocks.size();
1310 LLVM_DEBUG(dbgs() << "\nScheduling Blocks\n\n");
1312 // We do schedule a valid scheduling such that a Block corresponds
1313 // to a range of instructions.
1314 LLVM_DEBUG(dbgs() << "First phase: Fast scheduling for Reg Liveness\n");
1315 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1316 SIScheduleBlock *Block = CurrentBlocks[i];
1317 Block->fastSchedule();
1320 // Note: the following code, and the part restoring previous position
1321 // is by far the most expensive operation of the Scheduler.
1323 // Do not update CurrentTop.
1324 MachineBasicBlock::iterator CurrentTopFastSched = DAG->getCurrentTop();
1325 std::vector<MachineBasicBlock::iterator> PosOld;
1326 std::vector<MachineBasicBlock::iterator> PosNew;
1327 PosOld.reserve(DAG->SUnits.size());
1328 PosNew.reserve(DAG->SUnits.size());
1330 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1331 int BlockIndice = TopDownIndex2Block[i];
1332 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1333 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1335 for (SUnit* SU : SUs) {
1336 MachineInstr *MI = SU->getInstr();
1337 MachineBasicBlock::iterator Pos = MI;
1338 PosOld.push_back(Pos);
1339 if (&*CurrentTopFastSched == MI) {
1340 PosNew.push_back(Pos);
1341 CurrentTopFastSched = nextIfDebug(++CurrentTopFastSched,
1342 DAG->getCurrentBottom());
1343 } else {
1344 // Update the instruction stream.
1345 DAG->getBB()->splice(CurrentTopFastSched, DAG->getBB(), MI);
1347 // Update LiveIntervals.
1348 // Note: Moving all instructions and calling handleMove every time
1349 // is the most cpu intensive operation of the scheduler.
1350 // It would gain a lot if there was a way to recompute the
1351 // LiveIntervals for the entire scheduling region.
1352 DAG->getLIS()->handleMove(*MI, /*UpdateFlags=*/true);
1353 PosNew.push_back(CurrentTopFastSched);
1358 // Now we have Block of SUs == Block of MI.
1359 // We do the final schedule for the instructions inside the block.
1360 // The property that all the SUs of the Block are grouped together as MI
1361 // is used for correct reg usage tracking.
1362 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1363 SIScheduleBlock *Block = CurrentBlocks[i];
1364 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1365 Block->schedule((*SUs.begin())->getInstr(), (*SUs.rbegin())->getInstr());
1368 LLVM_DEBUG(dbgs() << "Restoring MI Pos\n");
1369 // Restore old ordering (which prevents a LIS->handleMove bug).
1370 for (unsigned i = PosOld.size(), e = 0; i != e; --i) {
1371 MachineBasicBlock::iterator POld = PosOld[i-1];
1372 MachineBasicBlock::iterator PNew = PosNew[i-1];
1373 if (PNew != POld) {
1374 // Update the instruction stream.
1375 DAG->getBB()->splice(POld, DAG->getBB(), PNew);
1377 // Update LiveIntervals.
1378 DAG->getLIS()->handleMove(*POld, /*UpdateFlags=*/true);
1382 LLVM_DEBUG(for (unsigned i = 0, e = CurrentBlocks.size(); i != e; ++i) {
1383 SIScheduleBlock *Block = CurrentBlocks[i];
1384 Block->printDebug(true);
1388 void SIScheduleBlockCreator::fillStats() {
1389 unsigned DAGSize = CurrentBlocks.size();
1391 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1392 int BlockIndice = TopDownIndex2Block[i];
1393 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1394 if (Block->getPreds().empty())
1395 Block->Depth = 0;
1396 else {
1397 unsigned Depth = 0;
1398 for (SIScheduleBlock *Pred : Block->getPreds()) {
1399 if (Depth < Pred->Depth + Pred->getCost())
1400 Depth = Pred->Depth + Pred->getCost();
1402 Block->Depth = Depth;
1406 for (unsigned i = 0, e = DAGSize; i != e; ++i) {
1407 int BlockIndice = BottomUpIndex2Block[i];
1408 SIScheduleBlock *Block = CurrentBlocks[BlockIndice];
1409 if (Block->getSuccs().empty())
1410 Block->Height = 0;
1411 else {
1412 unsigned Height = 0;
1413 for (const auto &Succ : Block->getSuccs())
1414 Height = std::max(Height, Succ.first->Height + Succ.first->getCost());
1415 Block->Height = Height;
1420 // SIScheduleBlockScheduler //
1422 SIScheduleBlockScheduler::SIScheduleBlockScheduler(SIScheduleDAGMI *DAG,
1423 SISchedulerBlockSchedulerVariant Variant,
1424 SIScheduleBlocks BlocksStruct) :
1425 DAG(DAG), Variant(Variant), Blocks(BlocksStruct.Blocks),
1426 LastPosWaitedHighLatency(0), NumBlockScheduled(0), VregCurrentUsage(0),
1427 SregCurrentUsage(0), maxVregUsage(0), maxSregUsage(0) {
1429 // Fill the usage of every output
1430 // Warning: while by construction we always have a link between two blocks
1431 // when one needs a result from the other, the number of users of an output
1432 // is not the sum of child blocks having as input the same virtual register.
1433 // Here is an example. A produces x and y. B eats x and produces x'.
1434 // C eats x' and y. The register coalescer may have attributed the same
1435 // virtual register to x and x'.
1436 // To count accurately, we do a topological sort. In case the register is
1437 // found for several parents, we increment the usage of the one with the
1438 // highest topological index.
1439 LiveOutRegsNumUsages.resize(Blocks.size());
1440 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1441 SIScheduleBlock *Block = Blocks[i];
1442 for (unsigned Reg : Block->getInRegs()) {
1443 bool Found = false;
1444 int topoInd = -1;
1445 for (SIScheduleBlock* Pred: Block->getPreds()) {
1446 std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1447 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1449 if (RegPos != PredOutRegs.end()) {
1450 Found = true;
1451 if (topoInd < BlocksStruct.TopDownBlock2Index[Pred->getID()]) {
1452 topoInd = BlocksStruct.TopDownBlock2Index[Pred->getID()];
1457 if (!Found)
1458 continue;
1460 int PredID = BlocksStruct.TopDownIndex2Block[topoInd];
1461 ++LiveOutRegsNumUsages[PredID][Reg];
1465 LastPosHighLatencyParentScheduled.resize(Blocks.size(), 0);
1466 BlockNumPredsLeft.resize(Blocks.size());
1467 BlockNumSuccsLeft.resize(Blocks.size());
1469 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1470 SIScheduleBlock *Block = Blocks[i];
1471 BlockNumPredsLeft[i] = Block->getPreds().size();
1472 BlockNumSuccsLeft[i] = Block->getSuccs().size();
1475 #ifndef NDEBUG
1476 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1477 SIScheduleBlock *Block = Blocks[i];
1478 assert(Block->getID() == i);
1480 #endif
1482 std::set<unsigned> InRegs = DAG->getInRegs();
1483 addLiveRegs(InRegs);
1485 // Increase LiveOutRegsNumUsages for blocks
1486 // producing registers consumed in another
1487 // scheduling region.
1488 for (unsigned Reg : DAG->getOutRegs()) {
1489 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1490 // Do reverse traversal
1491 int ID = BlocksStruct.TopDownIndex2Block[Blocks.size()-1-i];
1492 SIScheduleBlock *Block = Blocks[ID];
1493 const std::set<unsigned> &OutRegs = Block->getOutRegs();
1495 if (OutRegs.find(Reg) == OutRegs.end())
1496 continue;
1498 ++LiveOutRegsNumUsages[ID][Reg];
1499 break;
1503 // Fill LiveRegsConsumers for regs that were already
1504 // defined before scheduling.
1505 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1506 SIScheduleBlock *Block = Blocks[i];
1507 for (unsigned Reg : Block->getInRegs()) {
1508 bool Found = false;
1509 for (SIScheduleBlock* Pred: Block->getPreds()) {
1510 std::set<unsigned> PredOutRegs = Pred->getOutRegs();
1511 std::set<unsigned>::iterator RegPos = PredOutRegs.find(Reg);
1513 if (RegPos != PredOutRegs.end()) {
1514 Found = true;
1515 break;
1519 if (!Found)
1520 ++LiveRegsConsumers[Reg];
1524 for (unsigned i = 0, e = Blocks.size(); i != e; ++i) {
1525 SIScheduleBlock *Block = Blocks[i];
1526 if (BlockNumPredsLeft[i] == 0) {
1527 ReadyBlocks.push_back(Block);
1531 while (SIScheduleBlock *Block = pickBlock()) {
1532 BlocksScheduled.push_back(Block);
1533 blockScheduled(Block);
1536 LLVM_DEBUG(dbgs() << "Block Order:"; for (SIScheduleBlock *Block
1537 : BlocksScheduled) {
1538 dbgs() << ' ' << Block->getID();
1539 } dbgs() << '\n';);
1542 bool SIScheduleBlockScheduler::tryCandidateLatency(SIBlockSchedCandidate &Cand,
1543 SIBlockSchedCandidate &TryCand) {
1544 if (!Cand.isValid()) {
1545 TryCand.Reason = NodeOrder;
1546 return true;
1549 // Try to hide high latencies.
1550 if (SISched::tryLess(TryCand.LastPosHighLatParentScheduled,
1551 Cand.LastPosHighLatParentScheduled, TryCand, Cand, Latency))
1552 return true;
1553 // Schedule high latencies early so you can hide them better.
1554 if (SISched::tryGreater(TryCand.IsHighLatency, Cand.IsHighLatency,
1555 TryCand, Cand, Latency))
1556 return true;
1557 if (TryCand.IsHighLatency && SISched::tryGreater(TryCand.Height, Cand.Height,
1558 TryCand, Cand, Depth))
1559 return true;
1560 if (SISched::tryGreater(TryCand.NumHighLatencySuccessors,
1561 Cand.NumHighLatencySuccessors,
1562 TryCand, Cand, Successor))
1563 return true;
1564 return false;
1567 bool SIScheduleBlockScheduler::tryCandidateRegUsage(SIBlockSchedCandidate &Cand,
1568 SIBlockSchedCandidate &TryCand) {
1569 if (!Cand.isValid()) {
1570 TryCand.Reason = NodeOrder;
1571 return true;
1574 if (SISched::tryLess(TryCand.VGPRUsageDiff > 0, Cand.VGPRUsageDiff > 0,
1575 TryCand, Cand, RegUsage))
1576 return true;
1577 if (SISched::tryGreater(TryCand.NumSuccessors > 0,
1578 Cand.NumSuccessors > 0,
1579 TryCand, Cand, Successor))
1580 return true;
1581 if (SISched::tryGreater(TryCand.Height, Cand.Height, TryCand, Cand, Depth))
1582 return true;
1583 if (SISched::tryLess(TryCand.VGPRUsageDiff, Cand.VGPRUsageDiff,
1584 TryCand, Cand, RegUsage))
1585 return true;
1586 return false;
1589 SIScheduleBlock *SIScheduleBlockScheduler::pickBlock() {
1590 SIBlockSchedCandidate Cand;
1591 std::vector<SIScheduleBlock*>::iterator Best;
1592 SIScheduleBlock *Block;
1593 if (ReadyBlocks.empty())
1594 return nullptr;
1596 DAG->fillVgprSgprCost(LiveRegs.begin(), LiveRegs.end(),
1597 VregCurrentUsage, SregCurrentUsage);
1598 if (VregCurrentUsage > maxVregUsage)
1599 maxVregUsage = VregCurrentUsage;
1600 if (SregCurrentUsage > maxSregUsage)
1601 maxSregUsage = SregCurrentUsage;
1602 LLVM_DEBUG(dbgs() << "Picking New Blocks\n"; dbgs() << "Available: ";
1603 for (SIScheduleBlock *Block
1604 : ReadyBlocks) dbgs()
1605 << Block->getID() << ' ';
1606 dbgs() << "\nCurrent Live:\n";
1607 for (unsigned Reg
1608 : LiveRegs) dbgs()
1609 << printVRegOrUnit(Reg, DAG->getTRI()) << ' ';
1610 dbgs() << '\n';
1611 dbgs() << "Current VGPRs: " << VregCurrentUsage << '\n';
1612 dbgs() << "Current SGPRs: " << SregCurrentUsage << '\n';);
1614 Cand.Block = nullptr;
1615 for (std::vector<SIScheduleBlock*>::iterator I = ReadyBlocks.begin(),
1616 E = ReadyBlocks.end(); I != E; ++I) {
1617 SIBlockSchedCandidate TryCand;
1618 TryCand.Block = *I;
1619 TryCand.IsHighLatency = TryCand.Block->isHighLatencyBlock();
1620 TryCand.VGPRUsageDiff =
1621 checkRegUsageImpact(TryCand.Block->getInRegs(),
1622 TryCand.Block->getOutRegs())[AMDGPU::RegisterPressureSets::VGPR_32];
1623 TryCand.NumSuccessors = TryCand.Block->getSuccs().size();
1624 TryCand.NumHighLatencySuccessors =
1625 TryCand.Block->getNumHighLatencySuccessors();
1626 TryCand.LastPosHighLatParentScheduled =
1627 (unsigned int) std::max<int> (0,
1628 LastPosHighLatencyParentScheduled[TryCand.Block->getID()] -
1629 LastPosWaitedHighLatency);
1630 TryCand.Height = TryCand.Block->Height;
1631 // Try not to increase VGPR usage too much, else we may spill.
1632 if (VregCurrentUsage > 120 ||
1633 Variant != SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage) {
1634 if (!tryCandidateRegUsage(Cand, TryCand) &&
1635 Variant != SISchedulerBlockSchedulerVariant::BlockRegUsage)
1636 tryCandidateLatency(Cand, TryCand);
1637 } else {
1638 if (!tryCandidateLatency(Cand, TryCand))
1639 tryCandidateRegUsage(Cand, TryCand);
1641 if (TryCand.Reason != NoCand) {
1642 Cand.setBest(TryCand);
1643 Best = I;
1644 LLVM_DEBUG(dbgs() << "Best Current Choice: " << Cand.Block->getID() << ' '
1645 << getReasonStr(Cand.Reason) << '\n');
1649 LLVM_DEBUG(dbgs() << "Picking: " << Cand.Block->getID() << '\n';
1650 dbgs() << "Is a block with high latency instruction: "
1651 << (Cand.IsHighLatency ? "yes\n" : "no\n");
1652 dbgs() << "Position of last high latency dependency: "
1653 << Cand.LastPosHighLatParentScheduled << '\n';
1654 dbgs() << "VGPRUsageDiff: " << Cand.VGPRUsageDiff << '\n';
1655 dbgs() << '\n';);
1657 Block = Cand.Block;
1658 ReadyBlocks.erase(Best);
1659 return Block;
1662 // Tracking of currently alive registers to determine VGPR Usage.
1664 void SIScheduleBlockScheduler::addLiveRegs(std::set<unsigned> &Regs) {
1665 for (Register Reg : Regs) {
1666 // For now only track virtual registers.
1667 if (!Reg.isVirtual())
1668 continue;
1669 // If not already in the live set, then add it.
1670 (void) LiveRegs.insert(Reg);
1674 void SIScheduleBlockScheduler::decreaseLiveRegs(SIScheduleBlock *Block,
1675 std::set<unsigned> &Regs) {
1676 for (unsigned Reg : Regs) {
1677 // For now only track virtual registers.
1678 std::set<unsigned>::iterator Pos = LiveRegs.find(Reg);
1679 assert (Pos != LiveRegs.end() && // Reg must be live.
1680 LiveRegsConsumers.find(Reg) != LiveRegsConsumers.end() &&
1681 LiveRegsConsumers[Reg] >= 1);
1682 --LiveRegsConsumers[Reg];
1683 if (LiveRegsConsumers[Reg] == 0)
1684 LiveRegs.erase(Pos);
1688 void SIScheduleBlockScheduler::releaseBlockSuccs(SIScheduleBlock *Parent) {
1689 for (const auto &Block : Parent->getSuccs()) {
1690 if (--BlockNumPredsLeft[Block.first->getID()] == 0)
1691 ReadyBlocks.push_back(Block.first);
1693 if (Parent->isHighLatencyBlock() &&
1694 Block.second == SIScheduleBlockLinkKind::Data)
1695 LastPosHighLatencyParentScheduled[Block.first->getID()] = NumBlockScheduled;
1699 void SIScheduleBlockScheduler::blockScheduled(SIScheduleBlock *Block) {
1700 decreaseLiveRegs(Block, Block->getInRegs());
1701 addLiveRegs(Block->getOutRegs());
1702 releaseBlockSuccs(Block);
1703 for (std::map<unsigned, unsigned>::iterator RegI =
1704 LiveOutRegsNumUsages[Block->getID()].begin(),
1705 E = LiveOutRegsNumUsages[Block->getID()].end(); RegI != E; ++RegI) {
1706 std::pair<unsigned, unsigned> RegP = *RegI;
1707 // We produce this register, thus it must not be previously alive.
1708 assert(LiveRegsConsumers.find(RegP.first) == LiveRegsConsumers.end() ||
1709 LiveRegsConsumers[RegP.first] == 0);
1710 LiveRegsConsumers[RegP.first] += RegP.second;
1712 if (LastPosHighLatencyParentScheduled[Block->getID()] >
1713 (unsigned)LastPosWaitedHighLatency)
1714 LastPosWaitedHighLatency =
1715 LastPosHighLatencyParentScheduled[Block->getID()];
1716 ++NumBlockScheduled;
1719 std::vector<int>
1720 SIScheduleBlockScheduler::checkRegUsageImpact(std::set<unsigned> &InRegs,
1721 std::set<unsigned> &OutRegs) {
1722 std::vector<int> DiffSetPressure;
1723 DiffSetPressure.assign(DAG->getTRI()->getNumRegPressureSets(), 0);
1725 for (Register Reg : InRegs) {
1726 // For now only track virtual registers.
1727 if (!Reg.isVirtual())
1728 continue;
1729 if (LiveRegsConsumers[Reg] > 1)
1730 continue;
1731 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1732 for (; PSetI.isValid(); ++PSetI) {
1733 DiffSetPressure[*PSetI] -= PSetI.getWeight();
1737 for (Register Reg : OutRegs) {
1738 // For now only track virtual registers.
1739 if (!Reg.isVirtual())
1740 continue;
1741 PSetIterator PSetI = DAG->getMRI()->getPressureSets(Reg);
1742 for (; PSetI.isValid(); ++PSetI) {
1743 DiffSetPressure[*PSetI] += PSetI.getWeight();
1747 return DiffSetPressure;
1750 // SIScheduler //
1752 struct SIScheduleBlockResult
1753 SIScheduler::scheduleVariant(SISchedulerBlockCreatorVariant BlockVariant,
1754 SISchedulerBlockSchedulerVariant ScheduleVariant) {
1755 SIScheduleBlocks Blocks = BlockCreator.getBlocks(BlockVariant);
1756 SIScheduleBlockScheduler Scheduler(DAG, ScheduleVariant, Blocks);
1757 std::vector<SIScheduleBlock*> ScheduledBlocks;
1758 struct SIScheduleBlockResult Res;
1760 ScheduledBlocks = Scheduler.getBlocks();
1762 for (unsigned b = 0; b < ScheduledBlocks.size(); ++b) {
1763 SIScheduleBlock *Block = ScheduledBlocks[b];
1764 std::vector<SUnit*> SUs = Block->getScheduledUnits();
1766 for (SUnit* SU : SUs)
1767 Res.SUs.push_back(SU->NodeNum);
1770 Res.MaxSGPRUsage = Scheduler.getSGPRUsage();
1771 Res.MaxVGPRUsage = Scheduler.getVGPRUsage();
1772 return Res;
1775 // SIScheduleDAGMI //
1777 SIScheduleDAGMI::SIScheduleDAGMI(MachineSchedContext *C) :
1778 ScheduleDAGMILive(C, std::make_unique<GenericScheduler>(C)) {
1779 SITII = static_cast<const SIInstrInfo*>(TII);
1780 SITRI = static_cast<const SIRegisterInfo*>(TRI);
1783 SIScheduleDAGMI::~SIScheduleDAGMI() = default;
1785 // Code adapted from scheduleDAG.cpp
1786 // Does a topological sort over the SUs.
1787 // Both TopDown and BottomUp
1788 void SIScheduleDAGMI::topologicalSort() {
1789 Topo.InitDAGTopologicalSorting();
1791 TopDownIndex2SU = std::vector<int>(Topo.begin(), Topo.end());
1792 BottomUpIndex2SU = std::vector<int>(Topo.rbegin(), Topo.rend());
1795 // Move low latencies further from their user without
1796 // increasing SGPR usage (in general)
1797 // This is to be replaced by a better pass that would
1798 // take into account SGPR usage (based on VGPR Usage
1799 // and the corresponding wavefront count), that would
1800 // try to merge groups of loads if it make sense, etc
1801 void SIScheduleDAGMI::moveLowLatencies() {
1802 unsigned DAGSize = SUnits.size();
1803 int LastLowLatencyUser = -1;
1804 int LastLowLatencyPos = -1;
1806 for (unsigned i = 0, e = ScheduledSUnits.size(); i != e; ++i) {
1807 SUnit *SU = &SUnits[ScheduledSUnits[i]];
1808 bool IsLowLatencyUser = false;
1809 unsigned MinPos = 0;
1811 for (SDep& PredDep : SU->Preds) {
1812 SUnit *Pred = PredDep.getSUnit();
1813 if (SITII->isLowLatencyInstruction(*Pred->getInstr())) {
1814 IsLowLatencyUser = true;
1816 if (Pred->NodeNum >= DAGSize)
1817 continue;
1818 unsigned PredPos = ScheduledSUnitsInv[Pred->NodeNum];
1819 if (PredPos >= MinPos)
1820 MinPos = PredPos + 1;
1823 if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1824 unsigned BestPos = LastLowLatencyUser + 1;
1825 if ((int)BestPos <= LastLowLatencyPos)
1826 BestPos = LastLowLatencyPos + 1;
1827 if (BestPos < MinPos)
1828 BestPos = MinPos;
1829 if (BestPos < i) {
1830 for (unsigned u = i; u > BestPos; --u) {
1831 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1832 ScheduledSUnits[u] = ScheduledSUnits[u-1];
1834 ScheduledSUnits[BestPos] = SU->NodeNum;
1835 ScheduledSUnitsInv[SU->NodeNum] = BestPos;
1837 LastLowLatencyPos = BestPos;
1838 if (IsLowLatencyUser)
1839 LastLowLatencyUser = BestPos;
1840 } else if (IsLowLatencyUser) {
1841 LastLowLatencyUser = i;
1842 // Moves COPY instructions on which depends
1843 // the low latency instructions too.
1844 } else if (SU->getInstr()->getOpcode() == AMDGPU::COPY) {
1845 bool CopyForLowLat = false;
1846 for (SDep& SuccDep : SU->Succs) {
1847 SUnit *Succ = SuccDep.getSUnit();
1848 if (SuccDep.isWeak() || Succ->NodeNum >= DAGSize)
1849 continue;
1850 if (SITII->isLowLatencyInstruction(*Succ->getInstr())) {
1851 CopyForLowLat = true;
1854 if (!CopyForLowLat)
1855 continue;
1856 if (MinPos < i) {
1857 for (unsigned u = i; u > MinPos; --u) {
1858 ++ScheduledSUnitsInv[ScheduledSUnits[u-1]];
1859 ScheduledSUnits[u] = ScheduledSUnits[u-1];
1861 ScheduledSUnits[MinPos] = SU->NodeNum;
1862 ScheduledSUnitsInv[SU->NodeNum] = MinPos;
1868 void SIScheduleDAGMI::restoreSULinksLeft() {
1869 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1870 SUnits[i].isScheduled = false;
1871 SUnits[i].WeakPredsLeft = SUnitsLinksBackup[i].WeakPredsLeft;
1872 SUnits[i].NumPredsLeft = SUnitsLinksBackup[i].NumPredsLeft;
1873 SUnits[i].WeakSuccsLeft = SUnitsLinksBackup[i].WeakSuccsLeft;
1874 SUnits[i].NumSuccsLeft = SUnitsLinksBackup[i].NumSuccsLeft;
1878 // Return the Vgpr and Sgpr usage corresponding to some virtual registers.
1879 template<typename _Iterator> void
1880 SIScheduleDAGMI::fillVgprSgprCost(_Iterator First, _Iterator End,
1881 unsigned &VgprUsage, unsigned &SgprUsage) {
1882 VgprUsage = 0;
1883 SgprUsage = 0;
1884 for (_Iterator RegI = First; RegI != End; ++RegI) {
1885 Register Reg = *RegI;
1886 // For now only track virtual registers
1887 if (!Reg.isVirtual())
1888 continue;
1889 PSetIterator PSetI = MRI.getPressureSets(Reg);
1890 for (; PSetI.isValid(); ++PSetI) {
1891 if (*PSetI == AMDGPU::RegisterPressureSets::VGPR_32)
1892 VgprUsage += PSetI.getWeight();
1893 else if (*PSetI == AMDGPU::RegisterPressureSets::SReg_32)
1894 SgprUsage += PSetI.getWeight();
1899 void SIScheduleDAGMI::schedule()
1901 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1902 SIScheduleBlockResult Best, Temp;
1903 LLVM_DEBUG(dbgs() << "Preparing Scheduling\n");
1905 buildDAGWithRegPressure();
1906 LLVM_DEBUG(dump());
1908 topologicalSort();
1909 findRootsAndBiasEdges(TopRoots, BotRoots);
1910 // We reuse several ScheduleDAGMI and ScheduleDAGMILive
1911 // functions, but to make them happy we must initialize
1912 // the default Scheduler implementation (even if we do not
1913 // run it)
1914 SchedImpl->initialize(this);
1915 initQueues(TopRoots, BotRoots);
1917 // Fill some stats to help scheduling.
1919 SUnitsLinksBackup = SUnits;
1920 IsLowLatencySU.clear();
1921 LowLatencyOffset.clear();
1922 IsHighLatencySU.clear();
1924 IsLowLatencySU.resize(SUnits.size(), 0);
1925 LowLatencyOffset.resize(SUnits.size(), 0);
1926 IsHighLatencySU.resize(SUnits.size(), 0);
1928 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1929 SUnit *SU = &SUnits[i];
1930 const MachineOperand *BaseLatOp;
1931 int64_t OffLatReg;
1932 if (SITII->isLowLatencyInstruction(*SU->getInstr())) {
1933 IsLowLatencySU[i] = 1;
1934 bool OffsetIsScalable;
1935 if (SITII->getMemOperandWithOffset(*SU->getInstr(), BaseLatOp, OffLatReg,
1936 OffsetIsScalable, TRI))
1937 LowLatencyOffset[i] = OffLatReg;
1938 } else if (SITII->isHighLatencyDef(SU->getInstr()->getOpcode()))
1939 IsHighLatencySU[i] = 1;
1942 SIScheduler Scheduler(this);
1943 Best = Scheduler.scheduleVariant(SISchedulerBlockCreatorVariant::LatenciesAlone,
1944 SISchedulerBlockSchedulerVariant::BlockLatencyRegUsage);
1946 // if VGPR usage is extremely high, try other good performing variants
1947 // which could lead to lower VGPR usage
1948 if (Best.MaxVGPRUsage > 180) {
1949 static const std::pair<SISchedulerBlockCreatorVariant,
1950 SISchedulerBlockSchedulerVariant>
1951 Variants[] = {
1952 { LatenciesAlone, BlockRegUsageLatency },
1953 // { LatenciesAlone, BlockRegUsage },
1954 { LatenciesGrouped, BlockLatencyRegUsage },
1955 // { LatenciesGrouped, BlockRegUsageLatency },
1956 // { LatenciesGrouped, BlockRegUsage },
1957 { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1958 // { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1959 // { LatenciesAlonePlusConsecutive, BlockRegUsage }
1961 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1962 Temp = Scheduler.scheduleVariant(v.first, v.second);
1963 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1964 Best = Temp;
1967 // if VGPR usage is still extremely high, we may spill. Try other variants
1968 // which are less performing, but that could lead to lower VGPR usage.
1969 if (Best.MaxVGPRUsage > 200) {
1970 static const std::pair<SISchedulerBlockCreatorVariant,
1971 SISchedulerBlockSchedulerVariant>
1972 Variants[] = {
1973 // { LatenciesAlone, BlockRegUsageLatency },
1974 { LatenciesAlone, BlockRegUsage },
1975 // { LatenciesGrouped, BlockLatencyRegUsage },
1976 { LatenciesGrouped, BlockRegUsageLatency },
1977 { LatenciesGrouped, BlockRegUsage },
1978 // { LatenciesAlonePlusConsecutive, BlockLatencyRegUsage },
1979 { LatenciesAlonePlusConsecutive, BlockRegUsageLatency },
1980 { LatenciesAlonePlusConsecutive, BlockRegUsage }
1982 for (std::pair<SISchedulerBlockCreatorVariant, SISchedulerBlockSchedulerVariant> v : Variants) {
1983 Temp = Scheduler.scheduleVariant(v.first, v.second);
1984 if (Temp.MaxVGPRUsage < Best.MaxVGPRUsage)
1985 Best = Temp;
1989 ScheduledSUnits = Best.SUs;
1990 ScheduledSUnitsInv.resize(SUnits.size());
1992 for (unsigned i = 0, e = (unsigned)SUnits.size(); i != e; ++i) {
1993 ScheduledSUnitsInv[ScheduledSUnits[i]] = i;
1996 moveLowLatencies();
1998 // Tell the outside world about the result of the scheduling.
2000 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
2001 TopRPTracker.setPos(CurrentTop);
2003 for (std::vector<unsigned>::iterator I = ScheduledSUnits.begin(),
2004 E = ScheduledSUnits.end(); I != E; ++I) {
2005 SUnit *SU = &SUnits[*I];
2007 scheduleMI(SU, true);
2009 LLVM_DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") "
2010 << *SU->getInstr());
2013 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
2015 placeDebugValues();
2017 LLVM_DEBUG({
2018 dbgs() << "*** Final schedule for "
2019 << printMBBReference(*begin()->getParent()) << " ***\n";
2020 dumpSchedule();
2021 dbgs() << '\n';