1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the ARM implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 // This file contains the ARM implementation of TargetFrameLowering class.
15 // On ARM, stack frames are structured as follows:
17 // The stack grows downward.
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
23 // At function entry, the "frame" looks as follows:
26 // |-----------------------------------|
28 // | arguments passed on the stack |
30 // |-----------------------------------| <- sp
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
40 // |-----------------------------------|
42 // | arguments passed on the stack |
44 // |-----------------------------------| <- (sp at function entry)
46 // | varargs from registers |
48 // |-----------------------------------|
50 // | prev_fp, prev_lr |
51 // | (a.k.a. "frame record") |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
55 // | callee-saved gpr registers |
57 // |-----------------------------------|
59 // | callee-saved fp/simd regs |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....| compile time; if present)
65 // |-----------------------------------|
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
107 //===----------------------------------------------------------------------===//
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCContext.h"
142 #include "llvm/MC/MCDwarf.h"
143 #include "llvm/MC/MCInstrDesc.h"
144 #include "llvm/MC/MCRegisterInfo.h"
145 #include "llvm/Support/CodeGen.h"
146 #include "llvm/Support/CommandLine.h"
147 #include "llvm/Support/Compiler.h"
148 #include "llvm/Support/Debug.h"
149 #include "llvm/Support/ErrorHandling.h"
150 #include "llvm/Support/MathExtras.h"
151 #include "llvm/Support/raw_ostream.h"
152 #include "llvm/Target/TargetMachine.h"
153 #include "llvm/Target/TargetOptions.h"
162 #define DEBUG_TYPE "arm-frame-lowering"
164 using namespace llvm
;
167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden
, cl::init(true),
168 cl::desc("Align ARM NEON spills in prolog and epilog"));
170 static MachineBasicBlock::iterator
171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI
,
172 unsigned NumAlignedDPRCS2Regs
);
174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget
&sti
)
175 : TargetFrameLowering(StackGrowsDown
, sti
.getStackAlignment(), 0, Align(4)),
178 bool ARMFrameLowering::keepFramePointer(const MachineFunction
&MF
) const {
179 // iOS always has a FP for backtracking, force other targets to keep their FP
180 // when doing FastISel. The emitted code is currently superior, and in cases
181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
182 return MF
.getSubtarget
<ARMSubtarget
>().useFastISel();
185 /// Returns true if the target can safely skip saving callee-saved registers
186 /// for noreturn nounwind functions.
187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction
&MF
) const {
188 assert(MF
.getFunction().hasFnAttribute(Attribute::NoReturn
) &&
189 MF
.getFunction().hasFnAttribute(Attribute::NoUnwind
) &&
190 !MF
.getFunction().hasFnAttribute(Attribute::UWTable
));
192 // Frame pointer and link register are not treated as normal CSR, thus we
193 // can always skip CSR saves for nonreturning functions.
197 /// hasFP - Return true if the specified function should have a dedicated frame
198 /// pointer register. This is true if the function has variable sized allocas
199 /// or if frame pointer elimination is disabled.
200 bool ARMFrameLowering::hasFP(const MachineFunction
&MF
) const {
201 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
202 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
204 // ABI-required frame pointer.
205 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
))
208 // Frame pointer required for use within this function.
209 return (RegInfo
->hasStackRealignment(MF
) || MFI
.hasVarSizedObjects() ||
210 MFI
.isFrameAddressTaken());
213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
214 /// not required, we reserve argument space for call sites in the function
215 /// immediately on entry to the current function. This eliminates the need for
216 /// add/sub sp brackets around call sites. Returns true if the call frame is
217 /// included as part of the stack frame.
218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction
&MF
) const {
219 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
220 unsigned CFSize
= MFI
.getMaxCallFrameSize();
221 // It's not always a good idea to include the call frame as part of the
222 // stack frame. ARM (especially Thumb) has small immediate offset to
223 // address the stack frame. So a large call frame can cause poor codegen
224 // and may even makes it impossible to scavenge a register.
225 if (CFSize
>= ((1 << 12) - 1) / 2) // Half of imm12
228 return !MFI
.hasVarSizedObjects();
231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
232 /// call frame pseudos can be simplified. Unlike most targets, having a FP
233 /// is not sufficient here since we still may reference some objects via SP
234 /// even when FP is available in Thumb2 mode.
236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction
&MF
) const {
237 return hasReservedCallFrame(MF
) || MF
.getFrameInfo().hasVarSizedObjects();
240 // Returns how much of the incoming argument stack area we should clean up in an
241 // epilogue. For the C calling convention this will be 0, for guaranteed tail
242 // call conventions it can be positive (a normal return or a tail call to a
243 // function that uses less stack space for arguments) or negative (for a tail
244 // call to a function that needs more stack space than us for arguments).
245 static int getArgumentStackToRestore(MachineFunction
&MF
,
246 MachineBasicBlock
&MBB
) {
247 MachineBasicBlock::iterator MBBI
= MBB
.getLastNonDebugInstr();
248 bool IsTailCallReturn
= false;
249 if (MBB
.end() != MBBI
) {
250 unsigned RetOpcode
= MBBI
->getOpcode();
251 IsTailCallReturn
= RetOpcode
== ARM::TCRETURNdi
||
252 RetOpcode
== ARM::TCRETURNri
;
254 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
256 int ArgumentPopSize
= 0;
257 if (IsTailCallReturn
) {
258 MachineOperand
&StackAdjust
= MBBI
->getOperand(1);
260 // For a tail-call in a callee-pops-arguments environment, some or all of
261 // the stack may actually be in use for the call's arguments, this is
262 // calculated during LowerCall and consumed here...
263 ArgumentPopSize
= StackAdjust
.getImm();
265 // ... otherwise the amount to pop is *all* of the argument space,
266 // conveniently stored in the MachineFunctionInfo by
267 // LowerFormalArguments. This will, of course, be zero for the C calling
269 ArgumentPopSize
= AFI
->getArgumentStackToRestore();
272 return ArgumentPopSize
;
275 static void emitRegPlusImmediate(
276 bool isARM
, MachineBasicBlock
&MBB
, MachineBasicBlock::iterator
&MBBI
,
277 const DebugLoc
&dl
, const ARMBaseInstrInfo
&TII
, unsigned DestReg
,
278 unsigned SrcReg
, int NumBytes
, unsigned MIFlags
= MachineInstr::NoFlags
,
279 ARMCC::CondCodes Pred
= ARMCC::AL
, unsigned PredReg
= 0) {
281 emitARMRegPlusImmediate(MBB
, MBBI
, dl
, DestReg
, SrcReg
, NumBytes
,
282 Pred
, PredReg
, TII
, MIFlags
);
284 emitT2RegPlusImmediate(MBB
, MBBI
, dl
, DestReg
, SrcReg
, NumBytes
,
285 Pred
, PredReg
, TII
, MIFlags
);
288 static void emitSPUpdate(bool isARM
, MachineBasicBlock
&MBB
,
289 MachineBasicBlock::iterator
&MBBI
, const DebugLoc
&dl
,
290 const ARMBaseInstrInfo
&TII
, int NumBytes
,
291 unsigned MIFlags
= MachineInstr::NoFlags
,
292 ARMCC::CondCodes Pred
= ARMCC::AL
,
293 unsigned PredReg
= 0) {
294 emitRegPlusImmediate(isARM
, MBB
, MBBI
, dl
, TII
, ARM::SP
, ARM::SP
, NumBytes
,
295 MIFlags
, Pred
, PredReg
);
298 static int sizeOfSPAdjustment(const MachineInstr
&MI
) {
300 switch (MI
.getOpcode()) {
301 case ARM::VSTMDDB_UPD
:
305 case ARM::t2STMDB_UPD
:
309 case ARM::STR_PRE_IMM
:
312 llvm_unreachable("Unknown push or pop like instruction");
316 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
317 // pred) so the list starts at 4.
318 for (int i
= MI
.getNumOperands() - 1; i
>= 4; --i
)
323 static bool WindowsRequiresStackProbe(const MachineFunction
&MF
,
324 size_t StackSizeInBytes
) {
325 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
326 const Function
&F
= MF
.getFunction();
327 unsigned StackProbeSize
= (MFI
.getStackProtectorIndex() > 0) ? 4080 : 4096;
328 if (F
.hasFnAttribute("stack-probe-size"))
329 F
.getFnAttribute("stack-probe-size")
331 .getAsInteger(0, StackProbeSize
);
332 return (StackSizeInBytes
>= StackProbeSize
) &&
333 !F
.hasFnAttribute("no-stack-arg-probe");
338 struct StackAdjustingInsts
{
340 MachineBasicBlock::iterator I
;
345 SmallVector
<InstInfo
, 4> Insts
;
347 void addInst(MachineBasicBlock::iterator I
, unsigned SPAdjust
,
348 bool BeforeFPSet
= false) {
349 InstInfo Info
= {I
, SPAdjust
, BeforeFPSet
};
350 Insts
.push_back(Info
);
353 void addExtraBytes(const MachineBasicBlock::iterator I
, unsigned ExtraBytes
) {
355 llvm::find_if(Insts
, [&](InstInfo
&Info
) { return Info
.I
== I
; });
356 assert(Info
!= Insts
.end() && "invalid sp adjusting instruction");
357 Info
->SPAdjust
+= ExtraBytes
;
360 void emitDefCFAOffsets(MachineBasicBlock
&MBB
, const DebugLoc
&dl
,
361 const ARMBaseInstrInfo
&TII
, bool HasFP
) {
362 MachineFunction
&MF
= *MBB
.getParent();
363 unsigned CFAOffset
= 0;
364 for (auto &Info
: Insts
) {
365 if (HasFP
&& !Info
.BeforeFPSet
)
368 CFAOffset
+= Info
.SPAdjust
;
369 unsigned CFIIndex
= MF
.addFrameInst(
370 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset
));
371 BuildMI(MBB
, std::next(Info
.I
), dl
,
372 TII
.get(TargetOpcode::CFI_INSTRUCTION
))
373 .addCFIIndex(CFIIndex
)
374 .setMIFlags(MachineInstr::FrameSetup
);
379 } // end anonymous namespace
381 /// Emit an instruction sequence that will align the address in
382 /// register Reg by zero-ing out the lower bits. For versions of the
383 /// architecture that support Neon, this must be done in a single
384 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
385 /// single instruction. That function only gets called when optimizing
386 /// spilling of D registers on a core with the Neon instruction set
388 static void emitAligningInstructions(MachineFunction
&MF
, ARMFunctionInfo
*AFI
,
389 const TargetInstrInfo
&TII
,
390 MachineBasicBlock
&MBB
,
391 MachineBasicBlock::iterator MBBI
,
392 const DebugLoc
&DL
, const unsigned Reg
,
393 const Align Alignment
,
394 const bool MustBeSingleInstruction
) {
395 const ARMSubtarget
&AST
=
396 static_cast<const ARMSubtarget
&>(MF
.getSubtarget());
397 const bool CanUseBFC
= AST
.hasV6T2Ops() || AST
.hasV7Ops();
398 const unsigned AlignMask
= Alignment
.value() - 1U;
399 const unsigned NrBitsToZero
= Log2(Alignment
);
400 assert(!AFI
->isThumb1OnlyFunction() && "Thumb1 not supported");
401 if (!AFI
->isThumbFunction()) {
402 // if the BFC instruction is available, use that to zero the lower
404 // bfc Reg, #0, log2(Alignment)
405 // otherwise use BIC, if the mask to zero the required number of bits
406 // can be encoded in the bic immediate field
407 // bic Reg, Reg, Alignment-1
409 // lsr Reg, Reg, log2(Alignment)
410 // lsl Reg, Reg, log2(Alignment)
412 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::BFC
), Reg
)
413 .addReg(Reg
, RegState::Kill
)
415 .add(predOps(ARMCC::AL
));
416 } else if (AlignMask
<= 255) {
417 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::BICri
), Reg
)
418 .addReg(Reg
, RegState::Kill
)
420 .add(predOps(ARMCC::AL
))
423 assert(!MustBeSingleInstruction
&&
424 "Shouldn't call emitAligningInstructions demanding a single "
425 "instruction to be emitted for large stack alignment for a target "
427 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::MOVsi
), Reg
)
428 .addReg(Reg
, RegState::Kill
)
429 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr
, NrBitsToZero
))
430 .add(predOps(ARMCC::AL
))
432 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::MOVsi
), Reg
)
433 .addReg(Reg
, RegState::Kill
)
434 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl
, NrBitsToZero
))
435 .add(predOps(ARMCC::AL
))
439 // Since this is only reached for Thumb-2 targets, the BFC instruction
440 // should always be available.
442 BuildMI(MBB
, MBBI
, DL
, TII
.get(ARM::t2BFC
), Reg
)
443 .addReg(Reg
, RegState::Kill
)
445 .add(predOps(ARMCC::AL
));
449 /// We need the offset of the frame pointer relative to other MachineFrameInfo
450 /// offsets which are encoded relative to SP at function begin.
451 /// See also emitPrologue() for how the FP is set up.
452 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
453 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
454 /// this to produce a conservative estimate that we check in an assert() later.
455 static int getMaxFPOffset(const ARMSubtarget
&STI
, const ARMFunctionInfo
&AFI
) {
456 // For Thumb1, push.w isn't available, so the first push will always push
457 // r7 and lr onto the stack first.
458 if (AFI
.isThumb1OnlyFunction())
459 return -AFI
.getArgRegsSaveSize() - (2 * 4);
460 // This is a conservative estimation: Assume the frame pointer being r7 and
461 // pc("r15") up to r8 getting spilled before (= 8 registers).
462 int FPCXTSaveSize
= (STI
.hasV8_1MMainlineOps() && AFI
.isCmseNSEntryFunction()) ? 4 : 0;
463 return - FPCXTSaveSize
- AFI
.getArgRegsSaveSize() - (8 * 4);
466 void ARMFrameLowering::emitPrologue(MachineFunction
&MF
,
467 MachineBasicBlock
&MBB
) const {
468 MachineBasicBlock::iterator MBBI
= MBB
.begin();
469 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
470 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
471 MachineModuleInfo
&MMI
= MF
.getMMI();
472 MCContext
&Context
= MMI
.getContext();
473 const TargetMachine
&TM
= MF
.getTarget();
474 const MCRegisterInfo
*MRI
= Context
.getRegisterInfo();
475 const ARMBaseRegisterInfo
*RegInfo
= STI
.getRegisterInfo();
476 const ARMBaseInstrInfo
&TII
= *STI
.getInstrInfo();
477 assert(!AFI
->isThumb1OnlyFunction() &&
478 "This emitPrologue does not support Thumb1!");
479 bool isARM
= !AFI
->isThumbFunction();
480 Align Alignment
= STI
.getFrameLowering()->getStackAlign();
481 unsigned ArgRegsSaveSize
= AFI
->getArgRegsSaveSize();
482 unsigned NumBytes
= MFI
.getStackSize();
483 const std::vector
<CalleeSavedInfo
> &CSI
= MFI
.getCalleeSavedInfo();
484 int FPCXTSaveSize
= 0;
486 // Debug location must be unknown since the first debug location is used
487 // to determine the end of the prologue.
490 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
492 // Determine the sizes of each callee-save spill areas and record which frame
493 // belongs to which callee-save spill areas.
494 unsigned GPRCS1Size
= 0, GPRCS2Size
= 0, DPRCSSize
= 0;
495 int FramePtrSpillFI
= 0;
498 // All calls are tail calls in GHC calling conv, and functions have no
499 // prologue/epilogue.
500 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
503 StackAdjustingInsts DefCFAOffsetCandidates
;
504 bool HasFP
= hasFP(MF
);
506 // Allocate the vararg register save area.
507 if (ArgRegsSaveSize
) {
508 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -ArgRegsSaveSize
,
509 MachineInstr::FrameSetup
);
510 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), ArgRegsSaveSize
, true);
513 if (!AFI
->hasStackFrame() &&
514 (!STI
.isTargetWindows() || !WindowsRequiresStackProbe(MF
, NumBytes
))) {
515 if (NumBytes
- ArgRegsSaveSize
!= 0) {
516 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -(NumBytes
- ArgRegsSaveSize
),
517 MachineInstr::FrameSetup
);
518 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
),
519 NumBytes
- ArgRegsSaveSize
, true);
521 DefCFAOffsetCandidates
.emitDefCFAOffsets(MBB
, dl
, TII
, HasFP
);
525 // Determine spill area sizes.
526 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
527 unsigned Reg
= CSI
[i
].getReg();
528 int FI
= CSI
[i
].getFrameIdx();
535 if (STI
.splitFramePushPop(MF
)) {
550 FramePtrSpillFI
= FI
;
557 // This is a DPR. Exclude the aligned DPRCS2 spills.
560 if (Reg
< ARM::D8
|| Reg
>= ARM::D8
+ AFI
->getNumAlignedDPRCS2Regs())
565 // Move past FPCXT area.
566 MachineBasicBlock::iterator LastPush
= MBB
.end(), GPRCS1Push
, GPRCS2Push
;
567 if (FPCXTSaveSize
> 0) {
569 DefCFAOffsetCandidates
.addInst(LastPush
, FPCXTSaveSize
, true);
573 if (GPRCS1Size
> 0) {
574 GPRCS1Push
= LastPush
= MBBI
++;
575 DefCFAOffsetCandidates
.addInst(LastPush
, GPRCS1Size
, true);
578 // Determine starting offsets of spill areas.
579 unsigned FPCXTOffset
= NumBytes
- ArgRegsSaveSize
- FPCXTSaveSize
;
580 unsigned GPRCS1Offset
= FPCXTOffset
- GPRCS1Size
;
581 unsigned GPRCS2Offset
= GPRCS1Offset
- GPRCS2Size
;
582 Align DPRAlign
= DPRCSSize
? std::min(Align(8), Alignment
) : Align(4);
583 unsigned DPRGapSize
=
584 (GPRCS1Size
+ GPRCS2Size
+ FPCXTSaveSize
+ ArgRegsSaveSize
) %
587 unsigned DPRCSOffset
= GPRCS2Offset
- DPRGapSize
- DPRCSSize
;
588 int FramePtrOffsetInPush
= 0;
590 int FPOffset
= MFI
.getObjectOffset(FramePtrSpillFI
);
591 assert(getMaxFPOffset(STI
, *AFI
) <= FPOffset
&&
592 "Max FP estimation is wrong");
593 FramePtrOffsetInPush
= FPOffset
+ ArgRegsSaveSize
+ FPCXTSaveSize
;
594 AFI
->setFramePtrSpillOffset(MFI
.getObjectOffset(FramePtrSpillFI
) +
597 AFI
->setGPRCalleeSavedArea1Offset(GPRCS1Offset
);
598 AFI
->setGPRCalleeSavedArea2Offset(GPRCS2Offset
);
599 AFI
->setDPRCalleeSavedAreaOffset(DPRCSOffset
);
602 if (GPRCS2Size
> 0) {
603 GPRCS2Push
= LastPush
= MBBI
++;
604 DefCFAOffsetCandidates
.addInst(LastPush
, GPRCS2Size
);
607 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
608 // .cfi_offset operations will reflect that.
610 assert(DPRGapSize
== 4 && "unexpected alignment requirements for DPRs");
611 if (LastPush
!= MBB
.end() &&
612 tryFoldSPUpdateIntoPushPop(STI
, MF
, &*LastPush
, DPRGapSize
))
613 DefCFAOffsetCandidates
.addExtraBytes(LastPush
, DPRGapSize
);
615 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -DPRGapSize
,
616 MachineInstr::FrameSetup
);
617 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), DPRGapSize
);
623 // Since vpush register list cannot have gaps, there may be multiple vpush
624 // instructions in the prologue.
625 while (MBBI
!= MBB
.end() && MBBI
->getOpcode() == ARM::VSTMDDB_UPD
) {
626 DefCFAOffsetCandidates
.addInst(MBBI
, sizeOfSPAdjustment(*MBBI
));
631 // Move past the aligned DPRCS2 area.
632 if (AFI
->getNumAlignedDPRCS2Regs() > 0) {
633 MBBI
= skipAlignedDPRCS2Spills(MBBI
, AFI
->getNumAlignedDPRCS2Regs());
634 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
635 // leaves the stack pointer pointing to the DPRCS2 area.
637 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
638 NumBytes
+= MFI
.getObjectOffset(D8SpillFI
);
640 NumBytes
= DPRCSOffset
;
642 if (STI
.isTargetWindows() && WindowsRequiresStackProbe(MF
, NumBytes
)) {
643 uint32_t NumWords
= NumBytes
>> 2;
645 if (NumWords
< 65536)
646 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi16
), ARM::R4
)
648 .setMIFlags(MachineInstr::FrameSetup
)
649 .add(predOps(ARMCC::AL
));
651 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi32imm
), ARM::R4
)
653 .setMIFlags(MachineInstr::FrameSetup
);
655 switch (TM
.getCodeModel()) {
656 case CodeModel::Tiny
:
657 llvm_unreachable("Tiny code model not available on ARM.");
658 case CodeModel::Small
:
659 case CodeModel::Medium
:
660 case CodeModel::Kernel
:
661 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tBL
))
662 .add(predOps(ARMCC::AL
))
663 .addExternalSymbol("__chkstk")
664 .addReg(ARM::R4
, RegState::Implicit
)
665 .setMIFlags(MachineInstr::FrameSetup
);
667 case CodeModel::Large
:
668 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2MOVi32imm
), ARM::R12
)
669 .addExternalSymbol("__chkstk")
670 .setMIFlags(MachineInstr::FrameSetup
);
672 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tBLXr
))
673 .add(predOps(ARMCC::AL
))
674 .addReg(ARM::R12
, RegState::Kill
)
675 .addReg(ARM::R4
, RegState::Implicit
)
676 .setMIFlags(MachineInstr::FrameSetup
);
680 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::t2SUBrr
), ARM::SP
)
681 .addReg(ARM::SP
, RegState::Kill
)
682 .addReg(ARM::R4
, RegState::Kill
)
683 .setMIFlags(MachineInstr::FrameSetup
)
684 .add(predOps(ARMCC::AL
))
690 // Adjust SP after all the callee-save spills.
691 if (AFI
->getNumAlignedDPRCS2Regs() == 0 &&
692 tryFoldSPUpdateIntoPushPop(STI
, MF
, &*LastPush
, NumBytes
))
693 DefCFAOffsetCandidates
.addExtraBytes(LastPush
, NumBytes
);
695 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, -NumBytes
,
696 MachineInstr::FrameSetup
);
697 DefCFAOffsetCandidates
.addInst(std::prev(MBBI
), NumBytes
);
701 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
702 // Note it's not safe to do this in Thumb2 mode because it would have
703 // taken two instructions:
706 // If an interrupt is taken between the two instructions, then sp is in
707 // an inconsistent state (pointing to the middle of callee-saved area).
708 // The interrupt handler can end up clobbering the registers.
709 AFI
->setShouldRestoreSPFromFP(true);
712 // Set FP to point to the stack slot that contains the previous FP.
713 // For iOS, FP is R7, which has now been stored in spill area 1.
714 // Otherwise, if this is not iOS, all the callee-saved registers go
715 // into spill area 1, including the FP in R11. In either case, it
716 // is in area one and the adjustment needs to take place just after
719 MachineBasicBlock::iterator AfterPush
= std::next(GPRCS1Push
);
720 unsigned PushSize
= sizeOfSPAdjustment(*GPRCS1Push
);
721 emitRegPlusImmediate(!AFI
->isThumbFunction(), MBB
, AfterPush
,
722 dl
, TII
, FramePtr
, ARM::SP
,
723 PushSize
+ FramePtrOffsetInPush
,
724 MachineInstr::FrameSetup
);
725 if (FramePtrOffsetInPush
+ PushSize
!= 0) {
726 unsigned CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfa(
727 nullptr, MRI
->getDwarfRegNum(FramePtr
, true),
728 FPCXTSaveSize
+ ArgRegsSaveSize
- FramePtrOffsetInPush
));
729 BuildMI(MBB
, AfterPush
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
730 .addCFIIndex(CFIIndex
)
731 .setMIFlags(MachineInstr::FrameSetup
);
734 MF
.addFrameInst(MCCFIInstruction::createDefCfaRegister(
735 nullptr, MRI
->getDwarfRegNum(FramePtr
, true)));
736 BuildMI(MBB
, AfterPush
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
737 .addCFIIndex(CFIIndex
)
738 .setMIFlags(MachineInstr::FrameSetup
);
742 // Now that the prologue's actual instructions are finalised, we can insert
743 // the necessary DWARF cf instructions to describe the situation. Start by
744 // recording where each register ended up:
745 if (GPRCS1Size
> 0) {
746 MachineBasicBlock::iterator Pos
= std::next(GPRCS1Push
);
748 for (const auto &Entry
: CSI
) {
749 unsigned Reg
= Entry
.getReg();
750 int FI
= Entry
.getFrameIdx();
757 if (STI
.splitFramePushPop(MF
))
769 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
770 nullptr, MRI
->getDwarfRegNum(Reg
, true), MFI
.getObjectOffset(FI
)));
771 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
772 .addCFIIndex(CFIIndex
)
773 .setMIFlags(MachineInstr::FrameSetup
);
779 if (GPRCS2Size
> 0) {
780 MachineBasicBlock::iterator Pos
= std::next(GPRCS2Push
);
781 for (const auto &Entry
: CSI
) {
782 unsigned Reg
= Entry
.getReg();
783 int FI
= Entry
.getFrameIdx();
790 if (STI
.splitFramePushPop(MF
)) {
791 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
792 unsigned Offset
= MFI
.getObjectOffset(FI
);
793 unsigned CFIIndex
= MF
.addFrameInst(
794 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
795 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
796 .addCFIIndex(CFIIndex
)
797 .setMIFlags(MachineInstr::FrameSetup
);
805 // Since vpush register list cannot have gaps, there may be multiple vpush
806 // instructions in the prologue.
807 MachineBasicBlock::iterator Pos
= std::next(LastPush
);
808 for (const auto &Entry
: CSI
) {
809 unsigned Reg
= Entry
.getReg();
810 int FI
= Entry
.getFrameIdx();
811 if ((Reg
>= ARM::D0
&& Reg
<= ARM::D31
) &&
812 (Reg
< ARM::D8
|| Reg
>= ARM::D8
+ AFI
->getNumAlignedDPRCS2Regs())) {
813 unsigned DwarfReg
= MRI
->getDwarfRegNum(Reg
, true);
814 unsigned Offset
= MFI
.getObjectOffset(FI
);
815 unsigned CFIIndex
= MF
.addFrameInst(
816 MCCFIInstruction::createOffset(nullptr, DwarfReg
, Offset
));
817 BuildMI(MBB
, Pos
, dl
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
818 .addCFIIndex(CFIIndex
)
819 .setMIFlags(MachineInstr::FrameSetup
);
824 // Now we can emit descriptions of where the canonical frame address was
825 // throughout the process. If we have a frame pointer, it takes over the job
826 // half-way through, so only the first few .cfi_def_cfa_offset instructions
827 // actually get emitted.
828 DefCFAOffsetCandidates
.emitDefCFAOffsets(MBB
, dl
, TII
, HasFP
);
830 if (STI
.isTargetELF() && hasFP(MF
))
831 MFI
.setOffsetAdjustment(MFI
.getOffsetAdjustment() -
832 AFI
->getFramePtrSpillOffset());
834 AFI
->setFPCXTSaveAreaSize(FPCXTSaveSize
);
835 AFI
->setGPRCalleeSavedArea1Size(GPRCS1Size
);
836 AFI
->setGPRCalleeSavedArea2Size(GPRCS2Size
);
837 AFI
->setDPRCalleeSavedGapSize(DPRGapSize
);
838 AFI
->setDPRCalleeSavedAreaSize(DPRCSSize
);
840 // If we need dynamic stack realignment, do it here. Be paranoid and make
841 // sure if we also have VLAs, we have a base pointer for frame access.
842 // If aligned NEON registers were spilled, the stack has already been
844 if (!AFI
->getNumAlignedDPRCS2Regs() && RegInfo
->hasStackRealignment(MF
)) {
845 Align MaxAlign
= MFI
.getMaxAlign();
846 assert(!AFI
->isThumb1OnlyFunction());
847 if (!AFI
->isThumbFunction()) {
848 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MBBI
, dl
, ARM::SP
, MaxAlign
,
851 // We cannot use sp as source/dest register here, thus we're using r4 to
852 // perform the calculations. We're emitting the following sequence:
854 // -- use emitAligningInstructions to produce best sequence to zero
855 // -- out lower bits in r4
857 // FIXME: It will be better just to find spare register here.
858 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::R4
)
859 .addReg(ARM::SP
, RegState::Kill
)
860 .add(predOps(ARMCC::AL
));
861 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MBBI
, dl
, ARM::R4
, MaxAlign
,
863 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
864 .addReg(ARM::R4
, RegState::Kill
)
865 .add(predOps(ARMCC::AL
));
868 AFI
->setShouldRestoreSPFromFP(true);
871 // If we need a base pointer, set it up here. It's whatever the value
872 // of the stack pointer is at this point. Any variable size objects
873 // will be allocated after this, so we can still use the base pointer
874 // to reference locals.
875 // FIXME: Clarify FrameSetup flags here.
876 if (RegInfo
->hasBasePointer(MF
)) {
878 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), RegInfo
->getBaseRegister())
880 .add(predOps(ARMCC::AL
))
883 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), RegInfo
->getBaseRegister())
885 .add(predOps(ARMCC::AL
));
888 // If the frame has variable sized objects then the epilogue must restore
889 // the sp from fp. We can assume there's an FP here since hasFP already
890 // checks for hasVarSizedObjects.
891 if (MFI
.hasVarSizedObjects())
892 AFI
->setShouldRestoreSPFromFP(true);
895 void ARMFrameLowering::emitEpilogue(MachineFunction
&MF
,
896 MachineBasicBlock
&MBB
) const {
897 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
898 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
899 const TargetRegisterInfo
*RegInfo
= MF
.getSubtarget().getRegisterInfo();
900 const ARMBaseInstrInfo
&TII
=
901 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
902 assert(!AFI
->isThumb1OnlyFunction() &&
903 "This emitEpilogue does not support Thumb1!");
904 bool isARM
= !AFI
->isThumbFunction();
906 // Amount of stack space we reserved next to incoming args for either
907 // varargs registers or stack arguments in tail calls made by this function.
908 unsigned ReservedArgStack
= AFI
->getArgRegsSaveSize();
910 // How much of the stack used by incoming arguments this function is expected
911 // to restore in this particular epilogue.
912 int IncomingArgStackToRestore
= getArgumentStackToRestore(MF
, MBB
);
913 int NumBytes
= (int)MFI
.getStackSize();
914 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
916 // All calls are tail calls in GHC calling conv, and functions have no
917 // prologue/epilogue.
918 if (MF
.getFunction().getCallingConv() == CallingConv::GHC
)
921 // First put ourselves on the first (from top) terminator instructions.
922 MachineBasicBlock::iterator MBBI
= MBB
.getFirstTerminator();
923 DebugLoc dl
= MBBI
!= MBB
.end() ? MBBI
->getDebugLoc() : DebugLoc();
925 if (!AFI
->hasStackFrame()) {
926 if (NumBytes
- ReservedArgStack
!= 0)
927 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, NumBytes
- ReservedArgStack
,
928 MachineInstr::FrameDestroy
);
930 // Unwind MBBI to point to first LDR / VLDRD.
931 if (MBBI
!= MBB
.begin()) {
934 } while (MBBI
!= MBB
.begin() &&
935 MBBI
->getFlag(MachineInstr::FrameDestroy
));
936 if (!MBBI
->getFlag(MachineInstr::FrameDestroy
))
940 // Move SP to start of FP callee save spill area.
941 NumBytes
-= (ReservedArgStack
+
942 AFI
->getFPCXTSaveAreaSize() +
943 AFI
->getGPRCalleeSavedArea1Size() +
944 AFI
->getGPRCalleeSavedArea2Size() +
945 AFI
->getDPRCalleeSavedGapSize() +
946 AFI
->getDPRCalleeSavedAreaSize());
948 // Reset SP based on frame pointer only if the stack frame extends beyond
949 // frame pointer stack slot or target is ELF and the function has FP.
950 if (AFI
->shouldRestoreSPFromFP()) {
951 NumBytes
= AFI
->getFramePtrSpillOffset() - NumBytes
;
954 emitARMRegPlusImmediate(MBB
, MBBI
, dl
, ARM::SP
, FramePtr
, -NumBytes
,
956 MachineInstr::FrameDestroy
);
958 // It's not possible to restore SP from FP in a single instruction.
959 // For iOS, this looks like:
962 // This is bad, if an interrupt is taken after the mov, sp is in an
963 // inconsistent state.
964 // Use the first callee-saved register as a scratch register.
965 assert(!MFI
.getPristineRegs(MF
).test(ARM::R4
) &&
966 "No scratch register to restore SP from FP!");
967 emitT2RegPlusImmediate(MBB
, MBBI
, dl
, ARM::R4
, FramePtr
, -NumBytes
,
968 ARMCC::AL
, 0, TII
, MachineInstr::FrameDestroy
);
969 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
971 .add(predOps(ARMCC::AL
))
972 .setMIFlag(MachineInstr::FrameDestroy
);
977 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::MOVr
), ARM::SP
)
979 .add(predOps(ARMCC::AL
))
981 .setMIFlag(MachineInstr::FrameDestroy
);
983 BuildMI(MBB
, MBBI
, dl
, TII
.get(ARM::tMOVr
), ARM::SP
)
985 .add(predOps(ARMCC::AL
))
986 .setMIFlag(MachineInstr::FrameDestroy
);
988 } else if (NumBytes
&&
989 !tryFoldSPUpdateIntoPushPop(STI
, MF
, &*MBBI
, NumBytes
))
990 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, NumBytes
,
991 MachineInstr::FrameDestroy
);
993 // Increment past our save areas.
994 if (MBBI
!= MBB
.end() && AFI
->getDPRCalleeSavedAreaSize()) {
996 // Since vpop register list cannot have gaps, there may be multiple vpop
997 // instructions in the epilogue.
998 while (MBBI
!= MBB
.end() && MBBI
->getOpcode() == ARM::VLDMDIA_UPD
)
1001 if (AFI
->getDPRCalleeSavedGapSize()) {
1002 assert(AFI
->getDPRCalleeSavedGapSize() == 4 &&
1003 "unexpected DPR alignment gap");
1004 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
, AFI
->getDPRCalleeSavedGapSize(),
1005 MachineInstr::FrameDestroy
);
1008 if (AFI
->getGPRCalleeSavedArea2Size()) MBBI
++;
1009 if (AFI
->getGPRCalleeSavedArea1Size()) MBBI
++;
1010 if (AFI
->getFPCXTSaveAreaSize()) MBBI
++;
1013 if (ReservedArgStack
|| IncomingArgStackToRestore
) {
1014 assert((int)ReservedArgStack
+ IncomingArgStackToRestore
>= 0 &&
1015 "attempting to restore negative stack amount");
1016 emitSPUpdate(isARM
, MBB
, MBBI
, dl
, TII
,
1017 ReservedArgStack
+ IncomingArgStackToRestore
,
1018 MachineInstr::FrameDestroy
);
1022 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1023 /// debug info. It's the same as what we use for resolving the code-gen
1024 /// references for now. FIXME: This can go wrong when references are
1025 /// SP-relative and simple call frames aren't used.
1026 StackOffset
ARMFrameLowering::getFrameIndexReference(const MachineFunction
&MF
,
1028 Register
&FrameReg
) const {
1029 return StackOffset::getFixed(ResolveFrameIndexReference(MF
, FI
, FrameReg
, 0));
1032 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction
&MF
,
1033 int FI
, Register
&FrameReg
,
1035 const MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1036 const ARMBaseRegisterInfo
*RegInfo
= static_cast<const ARMBaseRegisterInfo
*>(
1037 MF
.getSubtarget().getRegisterInfo());
1038 const ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1039 int Offset
= MFI
.getObjectOffset(FI
) + MFI
.getStackSize();
1040 int FPOffset
= Offset
- AFI
->getFramePtrSpillOffset();
1041 bool isFixed
= MFI
.isFixedObjectIndex(FI
);
1046 // SP can move around if there are allocas. We may also lose track of SP
1047 // when emergency spilling inside a non-reserved call frame setup.
1048 bool hasMovingSP
= !hasReservedCallFrame(MF
);
1050 // When dynamically realigning the stack, use the frame pointer for
1051 // parameters, and the stack/base pointer for locals.
1052 if (RegInfo
->hasStackRealignment(MF
)) {
1053 assert(hasFP(MF
) && "dynamic stack realignment without a FP!");
1055 FrameReg
= RegInfo
->getFrameRegister(MF
);
1057 } else if (hasMovingSP
) {
1058 assert(RegInfo
->hasBasePointer(MF
) &&
1059 "VLAs and dynamic stack alignment, but missing base pointer!");
1060 FrameReg
= RegInfo
->getBaseRegister();
1066 // If there is a frame pointer, use it when we can.
1067 if (hasFP(MF
) && AFI
->hasStackFrame()) {
1068 // Use frame pointer to reference fixed objects. Use it for locals if
1069 // there are VLAs (and thus the SP isn't reliable as a base).
1070 if (isFixed
|| (hasMovingSP
&& !RegInfo
->hasBasePointer(MF
))) {
1071 FrameReg
= RegInfo
->getFrameRegister(MF
);
1073 } else if (hasMovingSP
) {
1074 assert(RegInfo
->hasBasePointer(MF
) && "missing base pointer!");
1075 if (AFI
->isThumb2Function()) {
1076 // Try to use the frame pointer if we can, else use the base pointer
1077 // since it's available. This is handy for the emergency spill slot, in
1079 if (FPOffset
>= -255 && FPOffset
< 0) {
1080 FrameReg
= RegInfo
->getFrameRegister(MF
);
1084 } else if (AFI
->isThumbFunction()) {
1085 // Prefer SP to base pointer, if the offset is suitably aligned and in
1086 // range as the effective range of the immediate offset is bigger when
1088 // Use add <rd>, sp, #<imm8>
1089 // ldr <rd>, [sp, #<imm8>]
1090 if (Offset
>= 0 && (Offset
& 3) == 0 && Offset
<= 1020)
1092 // In Thumb2 mode, the negative offset is very limited. Try to avoid
1093 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1094 if (AFI
->isThumb2Function() && FPOffset
>= -255 && FPOffset
< 0) {
1095 FrameReg
= RegInfo
->getFrameRegister(MF
);
1098 } else if (Offset
> (FPOffset
< 0 ? -FPOffset
: FPOffset
)) {
1099 // Otherwise, use SP or FP, whichever is closer to the stack slot.
1100 FrameReg
= RegInfo
->getFrameRegister(MF
);
1104 // Use the base pointer if we have one.
1105 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1106 // That can happen if we forced a base pointer for a large call frame.
1107 if (RegInfo
->hasBasePointer(MF
)) {
1108 FrameReg
= RegInfo
->getBaseRegister();
1114 void ARMFrameLowering::emitPushInst(MachineBasicBlock
&MBB
,
1115 MachineBasicBlock::iterator MI
,
1116 ArrayRef
<CalleeSavedInfo
> CSI
,
1117 unsigned StmOpc
, unsigned StrOpc
,
1118 bool NoGap
, bool (*Func
)(unsigned, bool),
1119 unsigned NumAlignedDPRCS2Regs
,
1120 unsigned MIFlags
) const {
1121 MachineFunction
&MF
= *MBB
.getParent();
1122 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1123 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
1127 using RegAndKill
= std::pair
<unsigned, bool>;
1129 SmallVector
<RegAndKill
, 4> Regs
;
1130 unsigned i
= CSI
.size();
1132 unsigned LastReg
= 0;
1133 for (; i
!= 0; --i
) {
1134 unsigned Reg
= CSI
[i
-1].getReg();
1135 if (!(Func
)(Reg
, STI
.splitFramePushPop(MF
))) continue;
1137 // D-registers in the aligned area DPRCS2 are NOT spilled here.
1138 if (Reg
>= ARM::D8
&& Reg
< ARM::D8
+ NumAlignedDPRCS2Regs
)
1141 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1142 bool isLiveIn
= MRI
.isLiveIn(Reg
);
1143 if (!isLiveIn
&& !MRI
.isReserved(Reg
))
1145 // If NoGap is true, push consecutive registers and then leave the rest
1146 // for other instructions. e.g.
1147 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1148 if (NoGap
&& LastReg
&& LastReg
!= Reg
-1)
1151 // Do not set a kill flag on values that are also marked as live-in. This
1152 // happens with the @llvm-returnaddress intrinsic and with arguments
1153 // passed in callee saved registers.
1154 // Omitting the kill flags is conservatively correct even if the live-in
1155 // is not used after all.
1156 Regs
.push_back(std::make_pair(Reg
, /*isKill=*/!isLiveIn
));
1162 llvm::sort(Regs
, [&](const RegAndKill
&LHS
, const RegAndKill
&RHS
) {
1163 return TRI
.getEncodingValue(LHS
.first
) < TRI
.getEncodingValue(RHS
.first
);
1166 if (Regs
.size() > 1 || StrOpc
== 0) {
1167 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(StmOpc
), ARM::SP
)
1169 .setMIFlags(MIFlags
)
1170 .add(predOps(ARMCC::AL
));
1171 for (unsigned i
= 0, e
= Regs
.size(); i
< e
; ++i
)
1172 MIB
.addReg(Regs
[i
].first
, getKillRegState(Regs
[i
].second
));
1173 } else if (Regs
.size() == 1) {
1174 BuildMI(MBB
, MI
, DL
, TII
.get(StrOpc
), ARM::SP
)
1175 .addReg(Regs
[0].first
, getKillRegState(Regs
[0].second
))
1177 .setMIFlags(MIFlags
)
1179 .add(predOps(ARMCC::AL
));
1183 // Put any subsequent vpush instructions before this one: they will refer to
1184 // higher register numbers so need to be pushed first in order to preserve
1186 if (MI
!= MBB
.begin())
1191 void ARMFrameLowering::emitPopInst(MachineBasicBlock
&MBB
,
1192 MachineBasicBlock::iterator MI
,
1193 MutableArrayRef
<CalleeSavedInfo
> CSI
,
1194 unsigned LdmOpc
, unsigned LdrOpc
,
1195 bool isVarArg
, bool NoGap
,
1196 bool (*Func
)(unsigned, bool),
1197 unsigned NumAlignedDPRCS2Regs
) const {
1198 MachineFunction
&MF
= *MBB
.getParent();
1199 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1200 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
1201 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1203 bool isTailCall
= false;
1204 bool isInterrupt
= false;
1205 bool isTrap
= false;
1206 bool isCmseEntry
= false;
1207 if (MBB
.end() != MI
) {
1208 DL
= MI
->getDebugLoc();
1209 unsigned RetOpcode
= MI
->getOpcode();
1210 isTailCall
= (RetOpcode
== ARM::TCRETURNdi
|| RetOpcode
== ARM::TCRETURNri
);
1212 RetOpcode
== ARM::SUBS_PC_LR
|| RetOpcode
== ARM::t2SUBS_PC_LR
;
1214 RetOpcode
== ARM::TRAP
|| RetOpcode
== ARM::TRAPNaCl
||
1215 RetOpcode
== ARM::tTRAP
;
1216 isCmseEntry
= (RetOpcode
== ARM::tBXNS
|| RetOpcode
== ARM::tBXNS_RET
);
1219 SmallVector
<unsigned, 4> Regs
;
1220 unsigned i
= CSI
.size();
1222 unsigned LastReg
= 0;
1223 bool DeleteRet
= false;
1224 for (; i
!= 0; --i
) {
1225 CalleeSavedInfo
&Info
= CSI
[i
-1];
1226 unsigned Reg
= Info
.getReg();
1227 if (!(Func
)(Reg
, STI
.splitFramePushPop(MF
))) continue;
1229 // The aligned reloads from area DPRCS2 are not inserted here.
1230 if (Reg
>= ARM::D8
&& Reg
< ARM::D8
+ NumAlignedDPRCS2Regs
)
1232 if (Reg
== ARM::LR
&& !isTailCall
&& !isVarArg
&& !isInterrupt
&&
1233 !isCmseEntry
&& !isTrap
&& AFI
->getArgumentStackToRestore() == 0 &&
1234 STI
.hasV5TOps() && MBB
.succ_empty()) {
1236 // Fold the return instruction into the LDM.
1238 LdmOpc
= AFI
->isThumbFunction() ? ARM::t2LDMIA_RET
: ARM::LDMIA_RET
;
1239 // We 'restore' LR into PC so it is not live out of the return block:
1240 // Clear Restored bit.
1241 Info
.setRestored(false);
1244 // If NoGap is true, pop consecutive registers and then leave the rest
1245 // for other instructions. e.g.
1246 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1247 if (NoGap
&& LastReg
&& LastReg
!= Reg
-1)
1251 Regs
.push_back(Reg
);
1257 llvm::sort(Regs
, [&](unsigned LHS
, unsigned RHS
) {
1258 return TRI
.getEncodingValue(LHS
) < TRI
.getEncodingValue(RHS
);
1261 if (Regs
.size() > 1 || LdrOpc
== 0) {
1262 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(LdmOpc
), ARM::SP
)
1264 .add(predOps(ARMCC::AL
))
1265 .setMIFlags(MachineInstr::FrameDestroy
);
1266 for (unsigned i
= 0, e
= Regs
.size(); i
< e
; ++i
)
1267 MIB
.addReg(Regs
[i
], getDefRegState(true));
1269 if (MI
!= MBB
.end()) {
1270 MIB
.copyImplicitOps(*MI
);
1271 MI
->eraseFromParent();
1275 } else if (Regs
.size() == 1) {
1276 // If we adjusted the reg to PC from LR above, switch it back here. We
1277 // only do that for LDM.
1278 if (Regs
[0] == ARM::PC
)
1280 MachineInstrBuilder MIB
=
1281 BuildMI(MBB
, MI
, DL
, TII
.get(LdrOpc
), Regs
[0])
1282 .addReg(ARM::SP
, RegState::Define
)
1284 .setMIFlags(MachineInstr::FrameDestroy
);
1285 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1286 // that refactoring is complete (eventually).
1287 if (LdrOpc
== ARM::LDR_POST_REG
|| LdrOpc
== ARM::LDR_POST_IMM
) {
1289 MIB
.addImm(ARM_AM::getAM2Opc(ARM_AM::add
, 4, ARM_AM::no_shift
));
1292 MIB
.add(predOps(ARMCC::AL
));
1296 // Put any subsequent vpop instructions after this one: they will refer to
1297 // higher register numbers so need to be popped afterwards.
1298 if (MI
!= MBB
.end())
1303 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1304 /// starting from d8. Also insert stack realignment code and leave the stack
1305 /// pointer pointing to the d8 spill slot.
1306 static void emitAlignedDPRCS2Spills(MachineBasicBlock
&MBB
,
1307 MachineBasicBlock::iterator MI
,
1308 unsigned NumAlignedDPRCS2Regs
,
1309 ArrayRef
<CalleeSavedInfo
> CSI
,
1310 const TargetRegisterInfo
*TRI
) {
1311 MachineFunction
&MF
= *MBB
.getParent();
1312 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1313 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1314 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1315 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1317 // Mark the D-register spill slots as properly aligned. Since MFI computes
1318 // stack slot layout backwards, this can actually mean that the d-reg stack
1319 // slot offsets can be wrong. The offset for d8 will always be correct.
1320 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
) {
1321 unsigned DNum
= CSI
[i
].getReg() - ARM::D8
;
1322 if (DNum
> NumAlignedDPRCS2Regs
- 1)
1324 int FI
= CSI
[i
].getFrameIdx();
1325 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1326 // registers will be 8-byte aligned.
1327 MFI
.setObjectAlignment(FI
, DNum
% 2 ? Align(8) : Align(16));
1329 // The stack slot for D8 needs to be maximally aligned because this is
1330 // actually the point where we align the stack pointer. MachineFrameInfo
1331 // computes all offsets relative to the incoming stack pointer which is a
1332 // bit weird when realigning the stack. Any extra padding for this
1333 // over-alignment is not realized because the code inserted below adjusts
1334 // the stack pointer by numregs * 8 before aligning the stack pointer.
1336 MFI
.setObjectAlignment(FI
, MFI
.getMaxAlign());
1339 // Move the stack pointer to the d8 spill slot, and align it at the same
1340 // time. Leave the stack slot address in the scratch register r4.
1342 // sub r4, sp, #numregs * 8
1343 // bic r4, r4, #align - 1
1346 bool isThumb
= AFI
->isThumbFunction();
1347 assert(!AFI
->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1348 AFI
->setShouldRestoreSPFromFP(true);
1350 // sub r4, sp, #numregs * 8
1351 // The immediate is <= 64, so it doesn't need any special encoding.
1352 unsigned Opc
= isThumb
? ARM::t2SUBri
: ARM::SUBri
;
1353 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::R4
)
1355 .addImm(8 * NumAlignedDPRCS2Regs
)
1356 .add(predOps(ARMCC::AL
))
1359 Align MaxAlign
= MF
.getFrameInfo().getMaxAlign();
1360 // We must set parameter MustBeSingleInstruction to true, since
1361 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1362 // stack alignment. Luckily, this can always be done since all ARM
1363 // architecture versions that support Neon also support the BFC
1365 emitAligningInstructions(MF
, AFI
, TII
, MBB
, MI
, DL
, ARM::R4
, MaxAlign
, true);
1368 // The stack pointer must be adjusted before spilling anything, otherwise
1369 // the stack slots could be clobbered by an interrupt handler.
1370 // Leave r4 live, it is used below.
1371 Opc
= isThumb
? ARM::tMOVr
: ARM::MOVr
;
1372 MachineInstrBuilder MIB
= BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::SP
)
1374 .add(predOps(ARMCC::AL
));
1376 MIB
.add(condCodeOp());
1378 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1379 // r4 holds the stack slot address.
1380 unsigned NextReg
= ARM::D8
;
1382 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1383 // The writeback is only needed when emitting two vst1.64 instructions.
1384 if (NumAlignedDPRCS2Regs
>= 6) {
1385 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1386 &ARM::QQPRRegClass
);
1387 MBB
.addLiveIn(SupReg
);
1388 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1d64Qwb_fixed
), ARM::R4
)
1389 .addReg(ARM::R4
, RegState::Kill
)
1392 .addReg(SupReg
, RegState::ImplicitKill
)
1393 .add(predOps(ARMCC::AL
));
1395 NumAlignedDPRCS2Regs
-= 4;
1398 // We won't modify r4 beyond this point. It currently points to the next
1399 // register to be spilled.
1400 unsigned R4BaseReg
= NextReg
;
1402 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1403 if (NumAlignedDPRCS2Regs
>= 4) {
1404 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1405 &ARM::QQPRRegClass
);
1406 MBB
.addLiveIn(SupReg
);
1407 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1d64Q
))
1411 .addReg(SupReg
, RegState::ImplicitKill
)
1412 .add(predOps(ARMCC::AL
));
1414 NumAlignedDPRCS2Regs
-= 4;
1417 // 16-byte aligned vst1.64 with 2 d-regs.
1418 if (NumAlignedDPRCS2Regs
>= 2) {
1419 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1421 MBB
.addLiveIn(SupReg
);
1422 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VST1q64
))
1426 .add(predOps(ARMCC::AL
));
1428 NumAlignedDPRCS2Regs
-= 2;
1431 // Finally, use a vanilla vstr.64 for the odd last register.
1432 if (NumAlignedDPRCS2Regs
) {
1433 MBB
.addLiveIn(NextReg
);
1434 // vstr.64 uses addrmode5 which has an offset scale of 4.
1435 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VSTRD
))
1438 .addImm((NextReg
- R4BaseReg
) * 2)
1439 .add(predOps(ARMCC::AL
));
1442 // The last spill instruction inserted should kill the scratch register r4.
1443 std::prev(MI
)->addRegisterKilled(ARM::R4
, TRI
);
1446 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1447 /// iterator to the following instruction.
1448 static MachineBasicBlock::iterator
1449 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI
,
1450 unsigned NumAlignedDPRCS2Regs
) {
1451 // sub r4, sp, #numregs * 8
1452 // bic r4, r4, #align - 1
1455 assert(MI
->mayStore() && "Expecting spill instruction");
1457 // These switches all fall through.
1458 switch(NumAlignedDPRCS2Regs
) {
1461 assert(MI
->mayStore() && "Expecting spill instruction");
1465 assert(MI
->mayStore() && "Expecting spill instruction");
1470 assert(MI
->killsRegister(ARM::R4
) && "Missed kill flag");
1476 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1477 /// starting from d8. These instructions are assumed to execute while the
1478 /// stack is still aligned, unlike the code inserted by emitPopInst.
1479 static void emitAlignedDPRCS2Restores(MachineBasicBlock
&MBB
,
1480 MachineBasicBlock::iterator MI
,
1481 unsigned NumAlignedDPRCS2Regs
,
1482 ArrayRef
<CalleeSavedInfo
> CSI
,
1483 const TargetRegisterInfo
*TRI
) {
1484 MachineFunction
&MF
= *MBB
.getParent();
1485 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1486 DebugLoc DL
= MI
!= MBB
.end() ? MI
->getDebugLoc() : DebugLoc();
1487 const TargetInstrInfo
&TII
= *MF
.getSubtarget().getInstrInfo();
1489 // Find the frame index assigned to d8.
1491 for (unsigned i
= 0, e
= CSI
.size(); i
!= e
; ++i
)
1492 if (CSI
[i
].getReg() == ARM::D8
) {
1493 D8SpillFI
= CSI
[i
].getFrameIdx();
1497 // Materialize the address of the d8 spill slot into the scratch register r4.
1498 // This can be fairly complicated if the stack frame is large, so just use
1499 // the normal frame index elimination mechanism to do it. This code runs as
1500 // the initial part of the epilog where the stack and base pointers haven't
1501 // been changed yet.
1502 bool isThumb
= AFI
->isThumbFunction();
1503 assert(!AFI
->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1505 unsigned Opc
= isThumb
? ARM::t2ADDri
: ARM::ADDri
;
1506 BuildMI(MBB
, MI
, DL
, TII
.get(Opc
), ARM::R4
)
1507 .addFrameIndex(D8SpillFI
)
1509 .add(predOps(ARMCC::AL
))
1512 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1513 unsigned NextReg
= ARM::D8
;
1515 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1516 if (NumAlignedDPRCS2Regs
>= 6) {
1517 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1518 &ARM::QQPRRegClass
);
1519 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1d64Qwb_fixed
), NextReg
)
1520 .addReg(ARM::R4
, RegState::Define
)
1521 .addReg(ARM::R4
, RegState::Kill
)
1523 .addReg(SupReg
, RegState::ImplicitDefine
)
1524 .add(predOps(ARMCC::AL
));
1526 NumAlignedDPRCS2Regs
-= 4;
1529 // We won't modify r4 beyond this point. It currently points to the next
1530 // register to be spilled.
1531 unsigned R4BaseReg
= NextReg
;
1533 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1534 if (NumAlignedDPRCS2Regs
>= 4) {
1535 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1536 &ARM::QQPRRegClass
);
1537 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1d64Q
), NextReg
)
1540 .addReg(SupReg
, RegState::ImplicitDefine
)
1541 .add(predOps(ARMCC::AL
));
1543 NumAlignedDPRCS2Regs
-= 4;
1546 // 16-byte aligned vld1.64 with 2 d-regs.
1547 if (NumAlignedDPRCS2Regs
>= 2) {
1548 unsigned SupReg
= TRI
->getMatchingSuperReg(NextReg
, ARM::dsub_0
,
1550 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLD1q64
), SupReg
)
1553 .add(predOps(ARMCC::AL
));
1555 NumAlignedDPRCS2Regs
-= 2;
1558 // Finally, use a vanilla vldr.64 for the remaining odd register.
1559 if (NumAlignedDPRCS2Regs
)
1560 BuildMI(MBB
, MI
, DL
, TII
.get(ARM::VLDRD
), NextReg
)
1562 .addImm(2 * (NextReg
- R4BaseReg
))
1563 .add(predOps(ARMCC::AL
));
1565 // Last store kills r4.
1566 std::prev(MI
)->addRegisterKilled(ARM::R4
, TRI
);
1569 bool ARMFrameLowering::spillCalleeSavedRegisters(
1570 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
1571 ArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
1575 MachineFunction
&MF
= *MBB
.getParent();
1576 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1578 unsigned PushOpc
= AFI
->isThumbFunction() ? ARM::t2STMDB_UPD
: ARM::STMDB_UPD
;
1579 unsigned PushOneOpc
= AFI
->isThumbFunction() ?
1580 ARM::t2STR_PRE
: ARM::STR_PRE_IMM
;
1581 unsigned FltOpc
= ARM::VSTMDDB_UPD
;
1582 unsigned NumAlignedDPRCS2Regs
= AFI
->getNumAlignedDPRCS2Regs();
1583 // Save the non-secure floating point context.
1584 if (llvm::any_of(CSI
, [](const CalleeSavedInfo
&C
) {
1585 return C
.getReg() == ARM::FPCXTNS
;
1587 BuildMI(MBB
, MI
, DebugLoc(), STI
.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre
),
1591 .add(predOps(ARMCC::AL
));
1593 emitPushInst(MBB
, MI
, CSI
, PushOpc
, PushOneOpc
, false, &isARMArea1Register
, 0,
1594 MachineInstr::FrameSetup
);
1595 emitPushInst(MBB
, MI
, CSI
, PushOpc
, PushOneOpc
, false, &isARMArea2Register
, 0,
1596 MachineInstr::FrameSetup
);
1597 emitPushInst(MBB
, MI
, CSI
, FltOpc
, 0, true, &isARMArea3Register
,
1598 NumAlignedDPRCS2Regs
, MachineInstr::FrameSetup
);
1600 // The code above does not insert spill code for the aligned DPRCS2 registers.
1601 // The stack realignment code will be inserted between the push instructions
1602 // and these spills.
1603 if (NumAlignedDPRCS2Regs
)
1604 emitAlignedDPRCS2Spills(MBB
, MI
, NumAlignedDPRCS2Regs
, CSI
, TRI
);
1609 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1610 MachineBasicBlock
&MBB
, MachineBasicBlock::iterator MI
,
1611 MutableArrayRef
<CalleeSavedInfo
> CSI
, const TargetRegisterInfo
*TRI
) const {
1615 MachineFunction
&MF
= *MBB
.getParent();
1616 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1617 bool isVarArg
= AFI
->getArgRegsSaveSize() > 0;
1618 unsigned NumAlignedDPRCS2Regs
= AFI
->getNumAlignedDPRCS2Regs();
1620 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1621 // registers. Do that here instead.
1622 if (NumAlignedDPRCS2Regs
)
1623 emitAlignedDPRCS2Restores(MBB
, MI
, NumAlignedDPRCS2Regs
, CSI
, TRI
);
1625 unsigned PopOpc
= AFI
->isThumbFunction() ? ARM::t2LDMIA_UPD
: ARM::LDMIA_UPD
;
1626 unsigned LdrOpc
= AFI
->isThumbFunction() ? ARM::t2LDR_POST
:ARM::LDR_POST_IMM
;
1627 unsigned FltOpc
= ARM::VLDMDIA_UPD
;
1628 emitPopInst(MBB
, MI
, CSI
, FltOpc
, 0, isVarArg
, true, &isARMArea3Register
,
1629 NumAlignedDPRCS2Regs
);
1630 emitPopInst(MBB
, MI
, CSI
, PopOpc
, LdrOpc
, isVarArg
, false,
1631 &isARMArea2Register
, 0);
1632 emitPopInst(MBB
, MI
, CSI
, PopOpc
, LdrOpc
, isVarArg
, false,
1633 &isARMArea1Register
, 0);
1638 // FIXME: Make generic?
1639 static unsigned EstimateFunctionSizeInBytes(const MachineFunction
&MF
,
1640 const ARMBaseInstrInfo
&TII
) {
1641 unsigned FnSize
= 0;
1642 for (auto &MBB
: MF
) {
1643 for (auto &MI
: MBB
)
1644 FnSize
+= TII
.getInstSizeInBytes(MI
);
1646 if (MF
.getJumpTableInfo())
1647 for (auto &Table
: MF
.getJumpTableInfo()->getJumpTables())
1648 FnSize
+= Table
.MBBs
.size() * 4;
1649 FnSize
+= MF
.getConstantPool()->getConstants().size() * 4;
1653 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1654 /// frames and return the stack size limit beyond which some of these
1655 /// instructions will require a scratch register during their expansion later.
1656 // FIXME: Move to TII?
1657 static unsigned estimateRSStackSizeLimit(MachineFunction
&MF
,
1658 const TargetFrameLowering
*TFI
,
1659 bool &HasNonSPFrameIndex
) {
1660 const ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1661 const ARMBaseInstrInfo
&TII
=
1662 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
1663 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1664 unsigned Limit
= (1 << 12) - 1;
1665 for (auto &MBB
: MF
) {
1666 for (auto &MI
: MBB
) {
1667 if (MI
.isDebugInstr())
1669 for (unsigned i
= 0, e
= MI
.getNumOperands(); i
!= e
; ++i
) {
1670 if (!MI
.getOperand(i
).isFI())
1673 // When using ADDri to get the address of a stack object, 255 is the
1674 // largest offset guaranteed to fit in the immediate offset.
1675 if (MI
.getOpcode() == ARM::ADDri
) {
1676 Limit
= std::min(Limit
, (1U << 8) - 1);
1679 // t2ADDri will not require an extra register, it can reuse the
1681 if (MI
.getOpcode() == ARM::t2ADDri
|| MI
.getOpcode() == ARM::t2ADDri12
)
1684 const MCInstrDesc
&MCID
= MI
.getDesc();
1685 const TargetRegisterClass
*RegClass
= TII
.getRegClass(MCID
, i
, TRI
, MF
);
1686 if (RegClass
&& !RegClass
->contains(ARM::SP
))
1687 HasNonSPFrameIndex
= true;
1689 // Otherwise check the addressing mode.
1690 switch (MI
.getDesc().TSFlags
& ARMII::AddrModeMask
) {
1691 case ARMII::AddrMode_i12
:
1692 case ARMII::AddrMode2
:
1693 // Default 12 bit limit.
1695 case ARMII::AddrMode3
:
1696 case ARMII::AddrModeT2_i8
:
1697 Limit
= std::min(Limit
, (1U << 8) - 1);
1699 case ARMII::AddrMode5FP16
:
1700 Limit
= std::min(Limit
, ((1U << 8) - 1) * 2);
1702 case ARMII::AddrMode5
:
1703 case ARMII::AddrModeT2_i8s4
:
1704 case ARMII::AddrModeT2_ldrex
:
1705 Limit
= std::min(Limit
, ((1U << 8) - 1) * 4);
1707 case ARMII::AddrModeT2_i12
:
1708 // i12 supports only positive offset so these will be converted to
1709 // i8 opcodes. See llvm::rewriteT2FrameIndex.
1710 if (TFI
->hasFP(MF
) && AFI
->hasStackFrame())
1711 Limit
= std::min(Limit
, (1U << 8) - 1);
1713 case ARMII::AddrMode4
:
1714 case ARMII::AddrMode6
:
1715 // Addressing modes 4 & 6 (load/store) instructions can't encode an
1716 // immediate offset for stack references.
1718 case ARMII::AddrModeT2_i7
:
1719 Limit
= std::min(Limit
, ((1U << 7) - 1) * 1);
1721 case ARMII::AddrModeT2_i7s2
:
1722 Limit
= std::min(Limit
, ((1U << 7) - 1) * 2);
1724 case ARMII::AddrModeT2_i7s4
:
1725 Limit
= std::min(Limit
, ((1U << 7) - 1) * 4);
1728 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1730 break; // At most one FI per instruction
1738 // In functions that realign the stack, it can be an advantage to spill the
1739 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1740 // instructions take alignment hints that can improve performance.
1742 checkNumAlignedDPRCS2Regs(MachineFunction
&MF
, BitVector
&SavedRegs
) {
1743 MF
.getInfo
<ARMFunctionInfo
>()->setNumAlignedDPRCS2Regs(0);
1744 if (!SpillAlignedNEONRegs
)
1747 // Naked functions don't spill callee-saved registers.
1748 if (MF
.getFunction().hasFnAttribute(Attribute::Naked
))
1751 // We are planning to use NEON instructions vst1 / vld1.
1752 if (!static_cast<const ARMSubtarget
&>(MF
.getSubtarget()).hasNEON())
1755 // Don't bother if the default stack alignment is sufficiently high.
1756 if (MF
.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1759 // Aligned spills require stack realignment.
1760 if (!static_cast<const ARMBaseRegisterInfo
*>(
1761 MF
.getSubtarget().getRegisterInfo())->canRealignStack(MF
))
1764 // We always spill contiguous d-registers starting from d8. Count how many
1765 // needs spilling. The register allocator will almost always use the
1766 // callee-saved registers in order, but it can happen that there are holes in
1767 // the range. Registers above the hole will be spilled to the standard DPRCS
1769 unsigned NumSpills
= 0;
1770 for (; NumSpills
< 8; ++NumSpills
)
1771 if (!SavedRegs
.test(ARM::D8
+ NumSpills
))
1774 // Don't do this for just one d-register. It's not worth it.
1778 // Spill the first NumSpills D-registers after realigning the stack.
1779 MF
.getInfo
<ARMFunctionInfo
>()->setNumAlignedDPRCS2Regs(NumSpills
);
1781 // A scratch register is required for the vst1 / vld1 instructions.
1782 SavedRegs
.set(ARM::R4
);
1785 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction
&MF
) const {
1786 // For CMSE entry functions, we want to save the FPCXT_NS immediately
1787 // upon function entry (resp. restore it immmediately before return)
1788 if (STI
.hasV8_1MMainlineOps() &&
1789 MF
.getInfo
<ARMFunctionInfo
>()->isCmseNSEntryFunction())
1795 void ARMFrameLowering::determineCalleeSaves(MachineFunction
&MF
,
1796 BitVector
&SavedRegs
,
1797 RegScavenger
*RS
) const {
1798 TargetFrameLowering::determineCalleeSaves(MF
, SavedRegs
, RS
);
1799 // This tells PEI to spill the FP as if it is any other callee-save register
1800 // to take advantage the eliminateFrameIndex machinery. This also ensures it
1801 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1802 // to combine multiple loads / stores.
1803 bool CanEliminateFrame
= true;
1804 bool CS1Spilled
= false;
1805 bool LRSpilled
= false;
1806 unsigned NumGPRSpills
= 0;
1807 unsigned NumFPRSpills
= 0;
1808 SmallVector
<unsigned, 4> UnspilledCS1GPRs
;
1809 SmallVector
<unsigned, 4> UnspilledCS2GPRs
;
1810 const ARMBaseRegisterInfo
*RegInfo
= static_cast<const ARMBaseRegisterInfo
*>(
1811 MF
.getSubtarget().getRegisterInfo());
1812 const ARMBaseInstrInfo
&TII
=
1813 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
1814 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
1815 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
1816 MachineRegisterInfo
&MRI
= MF
.getRegInfo();
1817 const TargetRegisterInfo
*TRI
= MF
.getSubtarget().getRegisterInfo();
1818 (void)TRI
; // Silence unused warning in non-assert builds.
1819 Register FramePtr
= RegInfo
->getFrameRegister(MF
);
1821 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1822 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1823 // since it's not always possible to restore sp from fp in a single
1825 // FIXME: It will be better just to find spare register here.
1826 if (AFI
->isThumb2Function() &&
1827 (MFI
.hasVarSizedObjects() || RegInfo
->hasStackRealignment(MF
)))
1828 SavedRegs
.set(ARM::R4
);
1830 // If a stack probe will be emitted, spill R4 and LR, since they are
1831 // clobbered by the stack probe call.
1832 // This estimate should be a safe, conservative estimate. The actual
1833 // stack probe is enabled based on the size of the local objects;
1834 // this estimate also includes the varargs store size.
1835 if (STI
.isTargetWindows() &&
1836 WindowsRequiresStackProbe(MF
, MFI
.estimateStackSize(MF
))) {
1837 SavedRegs
.set(ARM::R4
);
1838 SavedRegs
.set(ARM::LR
);
1841 if (AFI
->isThumb1OnlyFunction()) {
1842 // Spill LR if Thumb1 function uses variable length argument lists.
1843 if (AFI
->getArgRegsSaveSize() > 0)
1844 SavedRegs
.set(ARM::LR
);
1846 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1847 // requires stack alignment. We don't know for sure what the stack size
1848 // will be, but for this, an estimate is good enough. If there anything
1849 // changes it, it'll be a spill, which implies we've used all the registers
1850 // and so R4 is already used, so not marking it here will be OK.
1851 // FIXME: It will be better just to find spare register here.
1852 if (MFI
.hasVarSizedObjects() || RegInfo
->hasStackRealignment(MF
) ||
1853 MFI
.estimateStackSize(MF
) > 508)
1854 SavedRegs
.set(ARM::R4
);
1857 // See if we can spill vector registers to aligned stack.
1858 checkNumAlignedDPRCS2Regs(MF
, SavedRegs
);
1860 // Spill the BasePtr if it's used.
1861 if (RegInfo
->hasBasePointer(MF
))
1862 SavedRegs
.set(RegInfo
->getBaseRegister());
1864 // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1865 if (STI
.hasV8_1MMainlineOps() && AFI
->isCmseNSEntryFunction())
1866 CanEliminateFrame
= false;
1868 // Don't spill FP if the frame can be eliminated. This is determined
1869 // by scanning the callee-save registers to see if any is modified.
1870 const MCPhysReg
*CSRegs
= RegInfo
->getCalleeSavedRegs(&MF
);
1871 for (unsigned i
= 0; CSRegs
[i
]; ++i
) {
1872 unsigned Reg
= CSRegs
[i
];
1873 bool Spilled
= false;
1874 if (SavedRegs
.test(Reg
)) {
1876 CanEliminateFrame
= false;
1879 if (!ARM::GPRRegClass
.contains(Reg
)) {
1881 if (ARM::SPRRegClass
.contains(Reg
))
1883 else if (ARM::DPRRegClass
.contains(Reg
))
1885 else if (ARM::QPRRegClass
.contains(Reg
))
1894 if (!STI
.splitFramePushPop(MF
)) {
1901 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1906 case ARM::R0
: case ARM::R1
:
1907 case ARM::R2
: case ARM::R3
:
1908 case ARM::R4
: case ARM::R5
:
1909 case ARM::R6
: case ARM::R7
:
1916 if (!STI
.splitFramePushPop(MF
)) {
1917 UnspilledCS1GPRs
.push_back(Reg
);
1922 case ARM::R0
: case ARM::R1
:
1923 case ARM::R2
: case ARM::R3
:
1924 case ARM::R4
: case ARM::R5
:
1925 case ARM::R6
: case ARM::R7
:
1927 UnspilledCS1GPRs
.push_back(Reg
);
1930 UnspilledCS2GPRs
.push_back(Reg
);
1936 bool ForceLRSpill
= false;
1937 if (!LRSpilled
&& AFI
->isThumb1OnlyFunction()) {
1938 unsigned FnSize
= EstimateFunctionSizeInBytes(MF
, TII
);
1939 // Force LR to be spilled if the Thumb function size is > 2048. This enables
1940 // use of BL to implement far jump.
1941 if (FnSize
>= (1 << 11)) {
1942 CanEliminateFrame
= false;
1943 ForceLRSpill
= true;
1947 // If any of the stack slot references may be out of range of an immediate
1948 // offset, make sure a register (or a spill slot) is available for the
1949 // register scavenger. Note that if we're indexing off the frame pointer, the
1950 // effective stack size is 4 bytes larger since the FP points to the stack
1951 // slot of the previous FP. Also, if we have variable sized objects in the
1952 // function, stack slot references will often be negative, and some of
1953 // our instructions are positive-offset only, so conservatively consider
1954 // that case to want a spill slot (or register) as well. Similarly, if
1955 // the function adjusts the stack pointer during execution and the
1956 // adjustments aren't already part of our stack size estimate, our offset
1957 // calculations may be off, so be conservative.
1958 // FIXME: We could add logic to be more precise about negative offsets
1959 // and which instructions will need a scratch register for them. Is it
1960 // worth the effort and added fragility?
1961 unsigned EstimatedStackSize
=
1962 MFI
.estimateStackSize(MF
) + 4 * (NumGPRSpills
+ NumFPRSpills
);
1964 // Determine biggest (positive) SP offset in MachineFrameInfo.
1965 int MaxFixedOffset
= 0;
1966 for (int I
= MFI
.getObjectIndexBegin(); I
< 0; ++I
) {
1967 int MaxObjectOffset
= MFI
.getObjectOffset(I
) + MFI
.getObjectSize(I
);
1968 MaxFixedOffset
= std::max(MaxFixedOffset
, MaxObjectOffset
);
1971 bool HasFP
= hasFP(MF
);
1973 if (AFI
->hasStackFrame())
1974 EstimatedStackSize
+= 4;
1976 // If FP is not used, SP will be used to access arguments, so count the
1977 // size of arguments into the estimation.
1978 EstimatedStackSize
+= MaxFixedOffset
;
1980 EstimatedStackSize
+= 16; // For possible paddings.
1982 unsigned EstimatedRSStackSizeLimit
, EstimatedRSFixedSizeLimit
;
1983 bool HasNonSPFrameIndex
= false;
1984 if (AFI
->isThumb1OnlyFunction()) {
1985 // For Thumb1, don't bother to iterate over the function. The only
1986 // instruction that requires an emergency spill slot is a store to a
1989 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1990 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1991 // a 5-bit unsigned immediate.
1993 // We could try to check if the function actually contains a tSTRspi
1994 // that might need the spill slot, but it's not really important.
1995 // Functions with VLAs or extremely large call frames are rare, and
1996 // if a function is allocating more than 1KB of stack, an extra 4-byte
1997 // slot probably isn't relevant.
1998 if (RegInfo
->hasBasePointer(MF
))
1999 EstimatedRSStackSizeLimit
= (1U << 5) * 4;
2001 EstimatedRSStackSizeLimit
= (1U << 8) * 4;
2002 EstimatedRSFixedSizeLimit
= (1U << 5) * 4;
2004 EstimatedRSStackSizeLimit
=
2005 estimateRSStackSizeLimit(MF
, this, HasNonSPFrameIndex
);
2006 EstimatedRSFixedSizeLimit
= EstimatedRSStackSizeLimit
;
2008 // Final estimate of whether sp or bp-relative accesses might require
2010 bool HasLargeStack
= EstimatedStackSize
> EstimatedRSStackSizeLimit
;
2012 // If the stack pointer moves and we don't have a base pointer, the
2013 // estimate logic doesn't work. The actual offsets might be larger when
2014 // we're constructing a call frame, or we might need to use negative
2016 bool HasMovingSP
= MFI
.hasVarSizedObjects() ||
2017 (MFI
.adjustsStack() && !canSimplifyCallFramePseudos(MF
));
2018 bool HasBPOrFixedSP
= RegInfo
->hasBasePointer(MF
) || !HasMovingSP
;
2020 // If we have a frame pointer, we assume arguments will be accessed
2021 // relative to the frame pointer. Check whether fp-relative accesses to
2022 // arguments require scavenging.
2024 // We could do slightly better on Thumb1; in some cases, an sp-relative
2025 // offset would be legal even though an fp-relative offset is not.
2026 int MaxFPOffset
= getMaxFPOffset(STI
, *AFI
);
2027 bool HasLargeArgumentList
=
2028 HasFP
&& (MaxFixedOffset
- MaxFPOffset
) > (int)EstimatedRSFixedSizeLimit
;
2030 bool BigFrameOffsets
= HasLargeStack
|| !HasBPOrFixedSP
||
2031 HasLargeArgumentList
|| HasNonSPFrameIndex
;
2032 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2033 << "; EstimatedStack: " << EstimatedStackSize
2034 << "; EstimatedFPStack: " << MaxFixedOffset
- MaxFPOffset
2035 << "; BigFrameOffsets: " << BigFrameOffsets
<< "\n");
2036 if (BigFrameOffsets
||
2037 !CanEliminateFrame
|| RegInfo
->cannotEliminateFrame(MF
)) {
2038 AFI
->setHasStackFrame(true);
2041 SavedRegs
.set(FramePtr
);
2042 // If the frame pointer is required by the ABI, also spill LR so that we
2043 // emit a complete frame record.
2044 if (MF
.getTarget().Options
.DisableFramePointerElim(MF
) && !LRSpilled
) {
2045 SavedRegs
.set(ARM::LR
);
2048 auto LRPos
= llvm::find(UnspilledCS1GPRs
, ARM::LR
);
2049 if (LRPos
!= UnspilledCS1GPRs
.end())
2050 UnspilledCS1GPRs
.erase(LRPos
);
2052 auto FPPos
= llvm::find(UnspilledCS1GPRs
, FramePtr
);
2053 if (FPPos
!= UnspilledCS1GPRs
.end())
2054 UnspilledCS1GPRs
.erase(FPPos
);
2056 if (FramePtr
== ARM::R7
)
2060 // This is true when we inserted a spill for a callee-save GPR which is
2061 // not otherwise used by the function. This guaranteees it is possible
2062 // to scavenge a register to hold the address of a stack slot. On Thumb1,
2063 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2064 // subtargets, this is any GPR, i.e. r4-r11 or lr.
2066 // If we don't insert a spill, we instead allocate an emergency spill
2067 // slot, which can be used by scavenging to spill an arbitrary register.
2069 // We currently don't try to figure out whether any specific instruction
2070 // requires scavening an additional register.
2071 bool ExtraCSSpill
= false;
2073 if (AFI
->isThumb1OnlyFunction()) {
2074 // For Thumb1-only targets, we need some low registers when we save and
2075 // restore the high registers (which aren't allocatable, but could be
2076 // used by inline assembly) because the push/pop instructions can not
2077 // access high registers. If necessary, we might need to push more low
2078 // registers to ensure that there is at least one free that can be used
2079 // for the saving & restoring, and preferably we should ensure that as
2080 // many as are needed are available so that fewer push/pop instructions
2083 // Low registers which are not currently pushed, but could be (r4-r7).
2084 SmallVector
<unsigned, 4> AvailableRegs
;
2086 // Unused argument registers (r0-r3) can be clobbered in the prologue for
2088 int EntryRegDeficit
= 0;
2089 for (unsigned Reg
: {ARM::R0
, ARM::R1
, ARM::R2
, ARM::R3
}) {
2090 if (!MF
.getRegInfo().isLiveIn(Reg
)) {
2093 << printReg(Reg
, TRI
)
2094 << " is unused argument register, EntryRegDeficit = "
2095 << EntryRegDeficit
<< "\n");
2099 // Unused return registers can be clobbered in the epilogue for free.
2100 int ExitRegDeficit
= AFI
->getReturnRegsCount() - 4;
2101 LLVM_DEBUG(dbgs() << AFI
->getReturnRegsCount()
2102 << " return regs used, ExitRegDeficit = "
2103 << ExitRegDeficit
<< "\n");
2105 int RegDeficit
= std::max(EntryRegDeficit
, ExitRegDeficit
);
2106 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit
<< "\n");
2108 // r4-r6 can be used in the prologue if they are pushed by the first push
2110 for (unsigned Reg
: {ARM::R4
, ARM::R5
, ARM::R6
}) {
2111 if (SavedRegs
.test(Reg
)) {
2113 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
)
2114 << " is saved low register, RegDeficit = "
2115 << RegDeficit
<< "\n");
2117 AvailableRegs
.push_back(Reg
);
2120 << printReg(Reg
, TRI
)
2121 << " is non-saved low register, adding to AvailableRegs\n");
2125 // r7 can be used if it is not being used as the frame pointer.
2127 if (SavedRegs
.test(ARM::R7
)) {
2129 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2130 << RegDeficit
<< "\n");
2132 AvailableRegs
.push_back(ARM::R7
);
2135 << "%r7 is non-saved low register, adding to AvailableRegs\n");
2139 // Each of r8-r11 needs to be copied to a low register, then pushed.
2140 for (unsigned Reg
: {ARM::R8
, ARM::R9
, ARM::R10
, ARM::R11
}) {
2141 if (SavedRegs
.test(Reg
)) {
2143 LLVM_DEBUG(dbgs() << printReg(Reg
, TRI
)
2144 << " is saved high register, RegDeficit = "
2145 << RegDeficit
<< "\n");
2149 // LR can only be used by PUSH, not POP, and can't be used at all if the
2150 // llvm.returnaddress intrinsic is used. This is only worth doing if we
2151 // are more limited at function entry than exit.
2152 if ((EntryRegDeficit
> ExitRegDeficit
) &&
2153 !(MF
.getRegInfo().isLiveIn(ARM::LR
) &&
2154 MF
.getFrameInfo().isReturnAddressTaken())) {
2155 if (SavedRegs
.test(ARM::LR
)) {
2157 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2158 << RegDeficit
<< "\n");
2160 AvailableRegs
.push_back(ARM::LR
);
2161 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2165 // If there are more high registers that need pushing than low registers
2166 // available, push some more low registers so that we can use fewer push
2167 // instructions. This might not reduce RegDeficit all the way to zero,
2168 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2170 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit
<< "\n");
2171 for (; RegDeficit
> 0 && !AvailableRegs
.empty(); --RegDeficit
) {
2172 unsigned Reg
= AvailableRegs
.pop_back_val();
2173 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2174 << " to make up reg deficit\n");
2178 assert(!MRI
.isReserved(Reg
) && "Should not be reserved");
2179 if (Reg
!= ARM::LR
&& !MRI
.isPhysRegUsed(Reg
))
2180 ExtraCSSpill
= true;
2181 UnspilledCS1GPRs
.erase(llvm::find(UnspilledCS1GPRs
, Reg
));
2185 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2189 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2190 // restore LR in that case.
2191 bool ExpensiveLRRestore
= AFI
->isThumb1OnlyFunction() && MFI
.hasTailCall();
2193 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2194 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2195 if (!LRSpilled
&& CS1Spilled
&& !ExpensiveLRRestore
) {
2196 SavedRegs
.set(ARM::LR
);
2198 SmallVectorImpl
<unsigned>::iterator LRPos
;
2199 LRPos
= llvm::find(UnspilledCS1GPRs
, (unsigned)ARM::LR
);
2200 if (LRPos
!= UnspilledCS1GPRs
.end())
2201 UnspilledCS1GPRs
.erase(LRPos
);
2203 ForceLRSpill
= false;
2204 if (!MRI
.isReserved(ARM::LR
) && !MRI
.isPhysRegUsed(ARM::LR
) &&
2205 !AFI
->isThumb1OnlyFunction())
2206 ExtraCSSpill
= true;
2209 // If stack and double are 8-byte aligned and we are spilling an odd number
2210 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2211 // the integer and double callee save areas.
2212 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills
<< "\n");
2213 const Align TargetAlign
= getStackAlign();
2214 if (TargetAlign
>= Align(8) && (NumGPRSpills
& 1)) {
2215 if (CS1Spilled
&& !UnspilledCS1GPRs
.empty()) {
2216 for (unsigned i
= 0, e
= UnspilledCS1GPRs
.size(); i
!= e
; ++i
) {
2217 unsigned Reg
= UnspilledCS1GPRs
[i
];
2218 // Don't spill high register if the function is thumb. In the case of
2219 // Windows on ARM, accept R11 (frame pointer)
2220 if (!AFI
->isThumbFunction() ||
2221 (STI
.isTargetWindows() && Reg
== ARM::R11
) ||
2222 isARMLowRegister(Reg
) ||
2223 (Reg
== ARM::LR
&& !ExpensiveLRRestore
)) {
2225 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2226 << " to make up alignment\n");
2227 if (!MRI
.isReserved(Reg
) && !MRI
.isPhysRegUsed(Reg
) &&
2228 !(Reg
== ARM::LR
&& AFI
->isThumb1OnlyFunction()))
2229 ExtraCSSpill
= true;
2233 } else if (!UnspilledCS2GPRs
.empty() && !AFI
->isThumb1OnlyFunction()) {
2234 unsigned Reg
= UnspilledCS2GPRs
.front();
2236 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg
, TRI
)
2237 << " to make up alignment\n");
2238 if (!MRI
.isReserved(Reg
) && !MRI
.isPhysRegUsed(Reg
))
2239 ExtraCSSpill
= true;
2243 // Estimate if we might need to scavenge a register at some point in order
2244 // to materialize a stack offset. If so, either spill one additional
2245 // callee-saved register or reserve a special spill slot to facilitate
2246 // register scavenging. Thumb1 needs a spill slot for stack pointer
2247 // adjustments also, even when the frame itself is small.
2248 if (BigFrameOffsets
&& !ExtraCSSpill
) {
2249 // If any non-reserved CS register isn't spilled, just spill one or two
2250 // extra. That should take care of it!
2251 unsigned NumExtras
= TargetAlign
.value() / 4;
2252 SmallVector
<unsigned, 2> Extras
;
2253 while (NumExtras
&& !UnspilledCS1GPRs
.empty()) {
2254 unsigned Reg
= UnspilledCS1GPRs
.pop_back_val();
2255 if (!MRI
.isReserved(Reg
) &&
2256 (!AFI
->isThumb1OnlyFunction() || isARMLowRegister(Reg
))) {
2257 Extras
.push_back(Reg
);
2261 // For non-Thumb1 functions, also check for hi-reg CS registers
2262 if (!AFI
->isThumb1OnlyFunction()) {
2263 while (NumExtras
&& !UnspilledCS2GPRs
.empty()) {
2264 unsigned Reg
= UnspilledCS2GPRs
.pop_back_val();
2265 if (!MRI
.isReserved(Reg
)) {
2266 Extras
.push_back(Reg
);
2271 if (NumExtras
== 0) {
2272 for (unsigned Reg
: Extras
) {
2274 if (!MRI
.isPhysRegUsed(Reg
))
2275 ExtraCSSpill
= true;
2278 if (!ExtraCSSpill
&& RS
) {
2279 // Reserve a slot closest to SP or frame pointer.
2280 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2281 const TargetRegisterClass
&RC
= ARM::GPRRegClass
;
2282 unsigned Size
= TRI
->getSpillSize(RC
);
2283 Align Alignment
= TRI
->getSpillAlign(RC
);
2284 RS
->addScavengingFrameIndex(
2285 MFI
.CreateStackObject(Size
, Alignment
, false));
2291 SavedRegs
.set(ARM::LR
);
2292 AFI
->setLRIsSpilled(SavedRegs
.test(ARM::LR
));
2295 void ARMFrameLowering::getCalleeSaves(const MachineFunction
&MF
,
2296 BitVector
&SavedRegs
) const {
2297 TargetFrameLowering::getCalleeSaves(MF
, SavedRegs
);
2299 // If we have the "returned" parameter attribute which guarantees that we
2300 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2301 // record that fact for IPRA.
2302 const ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2303 if (AFI
->getPreservesR0())
2304 SavedRegs
.set(ARM::R0
);
2307 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2308 MachineFunction
&MF
, const TargetRegisterInfo
*TRI
,
2309 std::vector
<CalleeSavedInfo
> &CSI
) const {
2310 // For CMSE entry functions, handle floating-point context as if it was a
2311 // callee-saved register.
2312 if (STI
.hasV8_1MMainlineOps() &&
2313 MF
.getInfo
<ARMFunctionInfo
>()->isCmseNSEntryFunction()) {
2314 CSI
.emplace_back(ARM::FPCXTNS
);
2315 CSI
.back().setRestored(false);
2321 const TargetFrameLowering::SpillSlot
*
2322 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries
) const {
2323 static const SpillSlot FixedSpillOffsets
[] = {{ARM::FPCXTNS
, -4}};
2324 NumEntries
= array_lengthof(FixedSpillOffsets
);
2325 return FixedSpillOffsets
;
2328 MachineBasicBlock::iterator
ARMFrameLowering::eliminateCallFramePseudoInstr(
2329 MachineFunction
&MF
, MachineBasicBlock
&MBB
,
2330 MachineBasicBlock::iterator I
) const {
2331 const ARMBaseInstrInfo
&TII
=
2332 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
2333 ARMFunctionInfo
*AFI
= MF
.getInfo
<ARMFunctionInfo
>();
2334 bool isARM
= !AFI
->isThumbFunction();
2335 DebugLoc dl
= I
->getDebugLoc();
2336 unsigned Opc
= I
->getOpcode();
2337 bool IsDestroy
= Opc
== TII
.getCallFrameDestroyOpcode();
2338 unsigned CalleePopAmount
= IsDestroy
? I
->getOperand(1).getImm() : 0;
2340 assert(!AFI
->isThumb1OnlyFunction() &&
2341 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2343 int PIdx
= I
->findFirstPredOperandIdx();
2344 ARMCC::CondCodes Pred
= (PIdx
== -1)
2346 : (ARMCC::CondCodes
)I
->getOperand(PIdx
).getImm();
2347 unsigned PredReg
= TII
.getFramePred(*I
);
2349 if (!hasReservedCallFrame(MF
)) {
2350 // Bail early if the callee is expected to do the adjustment.
2351 if (IsDestroy
&& CalleePopAmount
!= -1U)
2352 return MBB
.erase(I
);
2354 // If we have alloca, convert as follows:
2355 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2356 // ADJCALLSTACKUP -> add, sp, sp, amount
2357 unsigned Amount
= TII
.getFrameSize(*I
);
2359 // We need to keep the stack aligned properly. To do this, we round the
2360 // amount of space needed for the outgoing arguments up to the next
2361 // alignment boundary.
2362 Amount
= alignSPAdjust(Amount
);
2364 if (Opc
== ARM::ADJCALLSTACKDOWN
|| Opc
== ARM::tADJCALLSTACKDOWN
) {
2365 emitSPUpdate(isARM
, MBB
, I
, dl
, TII
, -Amount
, MachineInstr::NoFlags
,
2368 assert(Opc
== ARM::ADJCALLSTACKUP
|| Opc
== ARM::tADJCALLSTACKUP
);
2369 emitSPUpdate(isARM
, MBB
, I
, dl
, TII
, Amount
, MachineInstr::NoFlags
,
2373 } else if (CalleePopAmount
!= -1U) {
2374 // If the calling convention demands that the callee pops arguments from the
2375 // stack, we want to add it back if we have a reserved call frame.
2376 emitSPUpdate(isARM
, MBB
, I
, dl
, TII
, -CalleePopAmount
,
2377 MachineInstr::NoFlags
, Pred
, PredReg
);
2379 return MBB
.erase(I
);
2382 /// Get the minimum constant for ARM that is greater than or equal to the
2383 /// argument. In ARM, constants can have any value that can be produced by
2384 /// rotating an 8-bit value to the right by an even number of bits within a
2386 static uint32_t alignToARMConstant(uint32_t Value
) {
2387 unsigned Shifted
= 0;
2392 while (!(Value
& 0xC0000000)) {
2397 bool Carry
= (Value
& 0x00FFFFFF);
2398 Value
= ((Value
& 0xFF000000) >> 24) + Carry
;
2400 if (Value
& 0x0000100)
2401 Value
= Value
& 0x000001FC;
2404 Value
= Value
>> (Shifted
- 24);
2406 Value
= Value
<< (24 - Shifted
);
2411 // The stack limit in the TCB is set to this many bytes above the actual
2413 static const uint64_t kSplitStackAvailable
= 256;
2415 // Adjust the function prologue to enable split stacks. This currently only
2416 // supports android and linux.
2418 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2419 // must be well defined in order to allow for consistent implementations of the
2420 // __morestack helper function. The ABI is also not a normal ABI in that it
2421 // doesn't follow the normal calling conventions because this allows the
2422 // prologue of each function to be optimized further.
2424 // Currently, the ABI looks like (when calling __morestack)
2426 // * r4 holds the minimum stack size requested for this function call
2427 // * r5 holds the stack size of the arguments to the function
2428 // * the beginning of the function is 3 instructions after the call to
2431 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2432 // place the arguments on to the new stack, and the 3-instruction knowledge to
2433 // jump directly to the body of the function when working on the new stack.
2435 // An old (and possibly no longer compatible) implementation of __morestack for
2436 // ARM can be found at [1].
2438 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2439 void ARMFrameLowering::adjustForSegmentedStacks(
2440 MachineFunction
&MF
, MachineBasicBlock
&PrologueMBB
) const {
2443 const ARMSubtarget
*ST
= &MF
.getSubtarget
<ARMSubtarget
>();
2444 bool Thumb
= ST
->isThumb();
2446 // Sadly, this currently doesn't support varargs, platforms other than
2447 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2448 if (MF
.getFunction().isVarArg())
2449 report_fatal_error("Segmented stacks do not support vararg functions.");
2450 if (!ST
->isTargetAndroid() && !ST
->isTargetLinux())
2451 report_fatal_error("Segmented stacks not supported on this platform.");
2453 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2454 MachineModuleInfo
&MMI
= MF
.getMMI();
2455 MCContext
&Context
= MMI
.getContext();
2456 const MCRegisterInfo
*MRI
= Context
.getRegisterInfo();
2457 const ARMBaseInstrInfo
&TII
=
2458 *static_cast<const ARMBaseInstrInfo
*>(MF
.getSubtarget().getInstrInfo());
2459 ARMFunctionInfo
*ARMFI
= MF
.getInfo
<ARMFunctionInfo
>();
2462 uint64_t StackSize
= MFI
.getStackSize();
2464 // Do not generate a prologue for leaf functions with a stack of size zero.
2465 // For non-leaf functions we have to allow for the possibility that the
2466 // callis to a non-split function, as in PR37807. This function could also
2467 // take the address of a non-split function. When the linker tries to adjust
2468 // its non-existent prologue, it would fail with an error. Mark the object
2469 // file so that such failures are not errors. See this Go language bug-report
2470 // https://go-review.googlesource.com/c/go/+/148819/
2471 if (StackSize
== 0 && !MFI
.hasTailCall()) {
2472 MF
.getMMI().setHasNosplitStack(true);
2476 // Use R4 and R5 as scratch registers.
2477 // We save R4 and R5 before use and restore them before leaving the function.
2478 unsigned ScratchReg0
= ARM::R4
;
2479 unsigned ScratchReg1
= ARM::R5
;
2480 uint64_t AlignedStackSize
;
2482 MachineBasicBlock
*PrevStackMBB
= MF
.CreateMachineBasicBlock();
2483 MachineBasicBlock
*PostStackMBB
= MF
.CreateMachineBasicBlock();
2484 MachineBasicBlock
*AllocMBB
= MF
.CreateMachineBasicBlock();
2485 MachineBasicBlock
*GetMBB
= MF
.CreateMachineBasicBlock();
2486 MachineBasicBlock
*McrMBB
= MF
.CreateMachineBasicBlock();
2488 // Grab everything that reaches PrologueMBB to update there liveness as well.
2489 SmallPtrSet
<MachineBasicBlock
*, 8> BeforePrologueRegion
;
2490 SmallVector
<MachineBasicBlock
*, 2> WalkList
;
2491 WalkList
.push_back(&PrologueMBB
);
2494 MachineBasicBlock
*CurMBB
= WalkList
.pop_back_val();
2495 for (MachineBasicBlock
*PredBB
: CurMBB
->predecessors()) {
2496 if (BeforePrologueRegion
.insert(PredBB
).second
)
2497 WalkList
.push_back(PredBB
);
2499 } while (!WalkList
.empty());
2501 // The order in that list is important.
2502 // The blocks will all be inserted before PrologueMBB using that order.
2503 // Therefore the block that should appear first in the CFG should appear
2504 // first in the list.
2505 MachineBasicBlock
*AddedBlocks
[] = {PrevStackMBB
, McrMBB
, GetMBB
, AllocMBB
,
2508 for (MachineBasicBlock
*B
: AddedBlocks
)
2509 BeforePrologueRegion
.insert(B
);
2511 for (const auto &LI
: PrologueMBB
.liveins()) {
2512 for (MachineBasicBlock
*PredBB
: BeforePrologueRegion
)
2513 PredBB
->addLiveIn(LI
);
2516 // Remove the newly added blocks from the list, since we know
2517 // we do not have to do the following updates for them.
2518 for (MachineBasicBlock
*B
: AddedBlocks
) {
2519 BeforePrologueRegion
.erase(B
);
2520 MF
.insert(PrologueMBB
.getIterator(), B
);
2523 for (MachineBasicBlock
*MBB
: BeforePrologueRegion
) {
2524 // Make sure the LiveIns are still sorted and unique.
2525 MBB
->sortUniqueLiveIns();
2526 // Replace the edges to PrologueMBB by edges to the sequences
2527 // we are about to add.
2528 MBB
->ReplaceUsesOfBlockWith(&PrologueMBB
, AddedBlocks
[0]);
2531 // The required stack size that is aligned to ARM constant criterion.
2532 AlignedStackSize
= alignToARMConstant(StackSize
);
2534 // When the frame size is less than 256 we just compare the stack
2535 // boundary directly to the value of the stack pointer, per gcc.
2536 bool CompareStackPointer
= AlignedStackSize
< kSplitStackAvailable
;
2538 // We will use two of the callee save registers as scratch registers so we
2539 // need to save those registers onto the stack.
2540 // We will use SR0 to hold stack limit and SR1 to hold the stack size
2541 // requested and arguments for __morestack().
2542 // SR0: Scratch Register #0
2543 // SR1: Scratch Register #1
2546 BuildMI(PrevStackMBB
, DL
, TII
.get(ARM::tPUSH
))
2547 .add(predOps(ARMCC::AL
))
2548 .addReg(ScratchReg0
)
2549 .addReg(ScratchReg1
);
2551 BuildMI(PrevStackMBB
, DL
, TII
.get(ARM::STMDB_UPD
))
2552 .addReg(ARM::SP
, RegState::Define
)
2554 .add(predOps(ARMCC::AL
))
2555 .addReg(ScratchReg0
)
2556 .addReg(ScratchReg1
);
2559 // Emit the relevant DWARF information about the change in stack pointer as
2560 // well as where to find both r4 and r5 (the callee-save registers)
2561 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2562 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2563 .addCFIIndex(CFIIndex
);
2564 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2565 nullptr, MRI
->getDwarfRegNum(ScratchReg1
, true), -4));
2566 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2567 .addCFIIndex(CFIIndex
);
2568 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2569 nullptr, MRI
->getDwarfRegNum(ScratchReg0
, true), -8));
2570 BuildMI(PrevStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2571 .addCFIIndex(CFIIndex
);
2575 BuildMI(McrMBB
, DL
, TII
.get(ARM::tMOVr
), ScratchReg1
)
2577 .add(predOps(ARMCC::AL
));
2578 } else if (CompareStackPointer
) {
2579 BuildMI(McrMBB
, DL
, TII
.get(ARM::MOVr
), ScratchReg1
)
2581 .add(predOps(ARMCC::AL
))
2585 // sub SR1, sp, #StackSize
2586 if (!CompareStackPointer
&& Thumb
) {
2587 BuildMI(McrMBB
, DL
, TII
.get(ARM::tSUBi8
), ScratchReg1
)
2589 .addReg(ScratchReg1
)
2590 .addImm(AlignedStackSize
)
2591 .add(predOps(ARMCC::AL
));
2592 } else if (!CompareStackPointer
) {
2593 BuildMI(McrMBB
, DL
, TII
.get(ARM::SUBri
), ScratchReg1
)
2595 .addImm(AlignedStackSize
)
2596 .add(predOps(ARMCC::AL
))
2600 if (Thumb
&& ST
->isThumb1Only()) {
2601 unsigned PCLabelId
= ARMFI
->createPICLabelUId();
2602 ARMConstantPoolValue
*NewCPV
= ARMConstantPoolSymbol::Create(
2603 MF
.getFunction().getContext(), "__STACK_LIMIT", PCLabelId
, 0);
2604 MachineConstantPool
*MCP
= MF
.getConstantPool();
2605 unsigned CPI
= MCP
->getConstantPoolIndex(NewCPV
, Align(4));
2607 // ldr SR0, [pc, offset(STACK_LIMIT)]
2608 BuildMI(GetMBB
, DL
, TII
.get(ARM::tLDRpci
), ScratchReg0
)
2609 .addConstantPoolIndex(CPI
)
2610 .add(predOps(ARMCC::AL
));
2613 BuildMI(GetMBB
, DL
, TII
.get(ARM::tLDRi
), ScratchReg0
)
2614 .addReg(ScratchReg0
)
2616 .add(predOps(ARMCC::AL
));
2618 // Get TLS base address from the coprocessor
2619 // mrc p15, #0, SR0, c13, c0, #3
2620 BuildMI(McrMBB
, DL
, TII
.get(Thumb
? ARM::t2MRC
: ARM::MRC
),
2627 .add(predOps(ARMCC::AL
));
2629 // Use the last tls slot on android and a private field of the TCP on linux.
2630 assert(ST
->isTargetAndroid() || ST
->isTargetLinux());
2631 unsigned TlsOffset
= ST
->isTargetAndroid() ? 63 : 1;
2633 // Get the stack limit from the right offset
2634 // ldr SR0, [sr0, #4 * TlsOffset]
2635 BuildMI(GetMBB
, DL
, TII
.get(Thumb
? ARM::t2LDRi12
: ARM::LDRi12
),
2637 .addReg(ScratchReg0
)
2638 .addImm(4 * TlsOffset
)
2639 .add(predOps(ARMCC::AL
));
2642 // Compare stack limit with stack size requested.
2644 Opcode
= Thumb
? ARM::tCMPr
: ARM::CMPrr
;
2645 BuildMI(GetMBB
, DL
, TII
.get(Opcode
))
2646 .addReg(ScratchReg0
)
2647 .addReg(ScratchReg1
)
2648 .add(predOps(ARMCC::AL
));
2650 // This jump is taken if StackLimit < SP - stack required.
2651 Opcode
= Thumb
? ARM::tBcc
: ARM::Bcc
;
2652 BuildMI(GetMBB
, DL
, TII
.get(Opcode
)).addMBB(PostStackMBB
)
2657 // Calling __morestack(StackSize, Size of stack arguments).
2658 // __morestack knows that the stack size requested is in SR0(r4)
2659 // and amount size of stack arguments is in SR1(r5).
2661 // Pass first argument for the __morestack by Scratch Register #0.
2662 // The amount size of stack required
2664 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVi8
), ScratchReg0
)
2666 .addImm(AlignedStackSize
)
2667 .add(predOps(ARMCC::AL
));
2669 BuildMI(AllocMBB
, DL
, TII
.get(ARM::MOVi
), ScratchReg0
)
2670 .addImm(AlignedStackSize
)
2671 .add(predOps(ARMCC::AL
))
2674 // Pass second argument for the __morestack by Scratch Register #1.
2675 // The amount size of stack consumed to save function arguments.
2677 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVi8
), ScratchReg1
)
2679 .addImm(alignToARMConstant(ARMFI
->getArgumentStackSize()))
2680 .add(predOps(ARMCC::AL
));
2682 BuildMI(AllocMBB
, DL
, TII
.get(ARM::MOVi
), ScratchReg1
)
2683 .addImm(alignToARMConstant(ARMFI
->getArgumentStackSize()))
2684 .add(predOps(ARMCC::AL
))
2688 // push {lr} - Save return address of this function.
2690 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPUSH
))
2691 .add(predOps(ARMCC::AL
))
2694 BuildMI(AllocMBB
, DL
, TII
.get(ARM::STMDB_UPD
))
2695 .addReg(ARM::SP
, RegState::Define
)
2697 .add(predOps(ARMCC::AL
))
2701 // Emit the DWARF info about the change in stack as well as where to find the
2702 // previous link register
2703 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2704 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2705 .addCFIIndex(CFIIndex
);
2706 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createOffset(
2707 nullptr, MRI
->getDwarfRegNum(ARM::LR
, true), -12));
2708 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2709 .addCFIIndex(CFIIndex
);
2711 // Call __morestack().
2713 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tBL
))
2714 .add(predOps(ARMCC::AL
))
2715 .addExternalSymbol("__morestack");
2717 BuildMI(AllocMBB
, DL
, TII
.get(ARM::BL
))
2718 .addExternalSymbol("__morestack");
2721 // pop {lr} - Restore return address of this original function.
2723 if (ST
->isThumb1Only()) {
2724 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPOP
))
2725 .add(predOps(ARMCC::AL
))
2726 .addReg(ScratchReg0
);
2727 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tMOVr
), ARM::LR
)
2728 .addReg(ScratchReg0
)
2729 .add(predOps(ARMCC::AL
));
2731 BuildMI(AllocMBB
, DL
, TII
.get(ARM::t2LDR_POST
))
2732 .addReg(ARM::LR
, RegState::Define
)
2733 .addReg(ARM::SP
, RegState::Define
)
2736 .add(predOps(ARMCC::AL
));
2739 BuildMI(AllocMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2740 .addReg(ARM::SP
, RegState::Define
)
2742 .add(predOps(ARMCC::AL
))
2746 // Restore SR0 and SR1 in case of __morestack() was called.
2747 // __morestack() will skip PostStackMBB block so we need to restore
2748 // scratch registers from here.
2751 BuildMI(AllocMBB
, DL
, TII
.get(ARM::tPOP
))
2752 .add(predOps(ARMCC::AL
))
2753 .addReg(ScratchReg0
)
2754 .addReg(ScratchReg1
);
2756 BuildMI(AllocMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2757 .addReg(ARM::SP
, RegState::Define
)
2759 .add(predOps(ARMCC::AL
))
2760 .addReg(ScratchReg0
)
2761 .addReg(ScratchReg1
);
2764 // Update the CFA offset now that we've popped
2765 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2766 BuildMI(AllocMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2767 .addCFIIndex(CFIIndex
);
2769 // Return from this function.
2770 BuildMI(AllocMBB
, DL
, TII
.get(ST
->getReturnOpcode())).add(predOps(ARMCC::AL
));
2772 // Restore SR0 and SR1 in case of __morestack() was not called.
2775 BuildMI(PostStackMBB
, DL
, TII
.get(ARM::tPOP
))
2776 .add(predOps(ARMCC::AL
))
2777 .addReg(ScratchReg0
)
2778 .addReg(ScratchReg1
);
2780 BuildMI(PostStackMBB
, DL
, TII
.get(ARM::LDMIA_UPD
))
2781 .addReg(ARM::SP
, RegState::Define
)
2783 .add(predOps(ARMCC::AL
))
2784 .addReg(ScratchReg0
)
2785 .addReg(ScratchReg1
);
2788 // Update the CFA offset now that we've popped
2789 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2790 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2791 .addCFIIndex(CFIIndex
);
2793 // Tell debuggers that r4 and r5 are now the same as they were in the
2794 // previous function, that they're the "Same Value".
2795 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createSameValue(
2796 nullptr, MRI
->getDwarfRegNum(ScratchReg0
, true)));
2797 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2798 .addCFIIndex(CFIIndex
);
2799 CFIIndex
= MF
.addFrameInst(MCCFIInstruction::createSameValue(
2800 nullptr, MRI
->getDwarfRegNum(ScratchReg1
, true)));
2801 BuildMI(PostStackMBB
, DL
, TII
.get(TargetOpcode::CFI_INSTRUCTION
))
2802 .addCFIIndex(CFIIndex
);
2804 // Organizing MBB lists
2805 PostStackMBB
->addSuccessor(&PrologueMBB
);
2807 AllocMBB
->addSuccessor(PostStackMBB
);
2809 GetMBB
->addSuccessor(PostStackMBB
);
2810 GetMBB
->addSuccessor(AllocMBB
);
2812 McrMBB
->addSuccessor(GetMBB
);
2814 PrevStackMBB
->addSuccessor(McrMBB
);
2816 #ifdef EXPENSIVE_CHECKS