[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMFrameLowering.cpp
blob025e43444f9c5969676e03232f129868dd13ae0b
1 //===- ARMFrameLowering.cpp - ARM Frame Information -----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the ARM implementation of TargetFrameLowering class.
11 //===----------------------------------------------------------------------===//
13 // This file contains the ARM implementation of TargetFrameLowering class.
15 // On ARM, stack frames are structured as follows:
17 // The stack grows downward.
19 // All of the individual frame areas on the frame below are optional, i.e. it's
20 // possible to create a function so that the particular area isn't present
21 // in the frame.
23 // At function entry, the "frame" looks as follows:
25 // | | Higher address
26 // |-----------------------------------|
27 // | |
28 // | arguments passed on the stack |
29 // | |
30 // |-----------------------------------| <- sp
31 // | | Lower address
34 // After the prologue has run, the frame has the following general structure.
35 // Technically the last frame area (VLAs) doesn't get created until in the
36 // main function body, after the prologue is run. However, it's depicted here
37 // for completeness.
39 // | | Higher address
40 // |-----------------------------------|
41 // | |
42 // | arguments passed on the stack |
43 // | |
44 // |-----------------------------------| <- (sp at function entry)
45 // | |
46 // | varargs from registers |
47 // | |
48 // |-----------------------------------|
49 // | |
50 // | prev_fp, prev_lr |
51 // | (a.k.a. "frame record") |
52 // | |
53 // |- - - - - - - - - - - - - - - - - -| <- fp (r7 or r11)
54 // | |
55 // | callee-saved gpr registers |
56 // | |
57 // |-----------------------------------|
58 // | |
59 // | callee-saved fp/simd regs |
60 // | |
61 // |-----------------------------------|
62 // |.empty.space.to.make.part.below....|
63 // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at
64 // |.the.standard.8-byte.alignment.....| compile time; if present)
65 // |-----------------------------------|
66 // | |
67 // | local variables of fixed size |
68 // | including spill slots |
69 // |-----------------------------------| <- base pointer (not defined by ABI,
70 // |.variable-sized.local.variables....| LLVM chooses r6)
71 // |.(VLAs)............................| (size of this area is unknown at
72 // |...................................| compile time)
73 // |-----------------------------------| <- sp
74 // | | Lower address
77 // To access the data in a frame, at-compile time, a constant offset must be
78 // computable from one of the pointers (fp, bp, sp) to access it. The size
79 // of the areas with a dotted background cannot be computed at compile-time
80 // if they are present, making it required to have all three of fp, bp and
81 // sp to be set up to be able to access all contents in the frame areas,
82 // assuming all of the frame areas are non-empty.
84 // For most functions, some of the frame areas are empty. For those functions,
85 // it may not be necessary to set up fp or bp:
86 // * A base pointer is definitely needed when there are both VLAs and local
87 // variables with more-than-default alignment requirements.
88 // * A frame pointer is definitely needed when there are local variables with
89 // more-than-default alignment requirements.
91 // In some cases when a base pointer is not strictly needed, it is generated
92 // anyway when offsets from the frame pointer to access local variables become
93 // so large that the offset can't be encoded in the immediate fields of loads
94 // or stores.
96 // The frame pointer might be chosen to be r7 or r11, depending on the target
97 // architecture and operating system. See ARMSubtarget::getFramePointerReg for
98 // details.
100 // Outgoing function arguments must be at the bottom of the stack frame when
101 // calling another function. If we do not have variable-sized stack objects, we
102 // can allocate a "reserved call frame" area at the bottom of the local
103 // variable area, large enough for all outgoing calls. If we do have VLAs, then
104 // the stack pointer must be decremented and incremented around each call to
105 // make space for the arguments below the VLAs.
107 //===----------------------------------------------------------------------===//
109 #include "ARMFrameLowering.h"
110 #include "ARMBaseInstrInfo.h"
111 #include "ARMBaseRegisterInfo.h"
112 #include "ARMConstantPoolValue.h"
113 #include "ARMMachineFunctionInfo.h"
114 #include "ARMSubtarget.h"
115 #include "MCTargetDesc/ARMAddressingModes.h"
116 #include "MCTargetDesc/ARMBaseInfo.h"
117 #include "Utils/ARMBaseInfo.h"
118 #include "llvm/ADT/BitVector.h"
119 #include "llvm/ADT/STLExtras.h"
120 #include "llvm/ADT/SmallPtrSet.h"
121 #include "llvm/ADT/SmallVector.h"
122 #include "llvm/CodeGen/MachineBasicBlock.h"
123 #include "llvm/CodeGen/MachineConstantPool.h"
124 #include "llvm/CodeGen/MachineFrameInfo.h"
125 #include "llvm/CodeGen/MachineFunction.h"
126 #include "llvm/CodeGen/MachineInstr.h"
127 #include "llvm/CodeGen/MachineInstrBuilder.h"
128 #include "llvm/CodeGen/MachineJumpTableInfo.h"
129 #include "llvm/CodeGen/MachineModuleInfo.h"
130 #include "llvm/CodeGen/MachineOperand.h"
131 #include "llvm/CodeGen/MachineRegisterInfo.h"
132 #include "llvm/CodeGen/RegisterScavenging.h"
133 #include "llvm/CodeGen/TargetInstrInfo.h"
134 #include "llvm/CodeGen/TargetOpcodes.h"
135 #include "llvm/CodeGen/TargetRegisterInfo.h"
136 #include "llvm/CodeGen/TargetSubtargetInfo.h"
137 #include "llvm/IR/Attributes.h"
138 #include "llvm/IR/CallingConv.h"
139 #include "llvm/IR/DebugLoc.h"
140 #include "llvm/IR/Function.h"
141 #include "llvm/MC/MCContext.h"
142 #include "llvm/MC/MCDwarf.h"
143 #include "llvm/MC/MCInstrDesc.h"
144 #include "llvm/MC/MCRegisterInfo.h"
145 #include "llvm/Support/CodeGen.h"
146 #include "llvm/Support/CommandLine.h"
147 #include "llvm/Support/Compiler.h"
148 #include "llvm/Support/Debug.h"
149 #include "llvm/Support/ErrorHandling.h"
150 #include "llvm/Support/MathExtras.h"
151 #include "llvm/Support/raw_ostream.h"
152 #include "llvm/Target/TargetMachine.h"
153 #include "llvm/Target/TargetOptions.h"
154 #include <algorithm>
155 #include <cassert>
156 #include <cstddef>
157 #include <cstdint>
158 #include <iterator>
159 #include <utility>
160 #include <vector>
162 #define DEBUG_TYPE "arm-frame-lowering"
164 using namespace llvm;
166 static cl::opt<bool>
167 SpillAlignedNEONRegs("align-neon-spills", cl::Hidden, cl::init(true),
168 cl::desc("Align ARM NEON spills in prolog and epilog"));
170 static MachineBasicBlock::iterator
171 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
172 unsigned NumAlignedDPRCS2Regs);
174 ARMFrameLowering::ARMFrameLowering(const ARMSubtarget &sti)
175 : TargetFrameLowering(StackGrowsDown, sti.getStackAlignment(), 0, Align(4)),
176 STI(sti) {}
178 bool ARMFrameLowering::keepFramePointer(const MachineFunction &MF) const {
179 // iOS always has a FP for backtracking, force other targets to keep their FP
180 // when doing FastISel. The emitted code is currently superior, and in cases
181 // like test-suite's lencod FastISel isn't quite correct when FP is eliminated.
182 return MF.getSubtarget<ARMSubtarget>().useFastISel();
185 /// Returns true if the target can safely skip saving callee-saved registers
186 /// for noreturn nounwind functions.
187 bool ARMFrameLowering::enableCalleeSaveSkip(const MachineFunction &MF) const {
188 assert(MF.getFunction().hasFnAttribute(Attribute::NoReturn) &&
189 MF.getFunction().hasFnAttribute(Attribute::NoUnwind) &&
190 !MF.getFunction().hasFnAttribute(Attribute::UWTable));
192 // Frame pointer and link register are not treated as normal CSR, thus we
193 // can always skip CSR saves for nonreturning functions.
194 return true;
197 /// hasFP - Return true if the specified function should have a dedicated frame
198 /// pointer register. This is true if the function has variable sized allocas
199 /// or if frame pointer elimination is disabled.
200 bool ARMFrameLowering::hasFP(const MachineFunction &MF) const {
201 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
202 const MachineFrameInfo &MFI = MF.getFrameInfo();
204 // ABI-required frame pointer.
205 if (MF.getTarget().Options.DisableFramePointerElim(MF))
206 return true;
208 // Frame pointer required for use within this function.
209 return (RegInfo->hasStackRealignment(MF) || MFI.hasVarSizedObjects() ||
210 MFI.isFrameAddressTaken());
213 /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is
214 /// not required, we reserve argument space for call sites in the function
215 /// immediately on entry to the current function. This eliminates the need for
216 /// add/sub sp brackets around call sites. Returns true if the call frame is
217 /// included as part of the stack frame.
218 bool ARMFrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
219 const MachineFrameInfo &MFI = MF.getFrameInfo();
220 unsigned CFSize = MFI.getMaxCallFrameSize();
221 // It's not always a good idea to include the call frame as part of the
222 // stack frame. ARM (especially Thumb) has small immediate offset to
223 // address the stack frame. So a large call frame can cause poor codegen
224 // and may even makes it impossible to scavenge a register.
225 if (CFSize >= ((1 << 12) - 1) / 2) // Half of imm12
226 return false;
228 return !MFI.hasVarSizedObjects();
231 /// canSimplifyCallFramePseudos - If there is a reserved call frame, the
232 /// call frame pseudos can be simplified. Unlike most targets, having a FP
233 /// is not sufficient here since we still may reference some objects via SP
234 /// even when FP is available in Thumb2 mode.
235 bool
236 ARMFrameLowering::canSimplifyCallFramePseudos(const MachineFunction &MF) const {
237 return hasReservedCallFrame(MF) || MF.getFrameInfo().hasVarSizedObjects();
240 // Returns how much of the incoming argument stack area we should clean up in an
241 // epilogue. For the C calling convention this will be 0, for guaranteed tail
242 // call conventions it can be positive (a normal return or a tail call to a
243 // function that uses less stack space for arguments) or negative (for a tail
244 // call to a function that needs more stack space than us for arguments).
245 static int getArgumentStackToRestore(MachineFunction &MF,
246 MachineBasicBlock &MBB) {
247 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
248 bool IsTailCallReturn = false;
249 if (MBB.end() != MBBI) {
250 unsigned RetOpcode = MBBI->getOpcode();
251 IsTailCallReturn = RetOpcode == ARM::TCRETURNdi ||
252 RetOpcode == ARM::TCRETURNri;
254 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
256 int ArgumentPopSize = 0;
257 if (IsTailCallReturn) {
258 MachineOperand &StackAdjust = MBBI->getOperand(1);
260 // For a tail-call in a callee-pops-arguments environment, some or all of
261 // the stack may actually be in use for the call's arguments, this is
262 // calculated during LowerCall and consumed here...
263 ArgumentPopSize = StackAdjust.getImm();
264 } else {
265 // ... otherwise the amount to pop is *all* of the argument space,
266 // conveniently stored in the MachineFunctionInfo by
267 // LowerFormalArguments. This will, of course, be zero for the C calling
268 // convention.
269 ArgumentPopSize = AFI->getArgumentStackToRestore();
272 return ArgumentPopSize;
275 static void emitRegPlusImmediate(
276 bool isARM, MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
277 const DebugLoc &dl, const ARMBaseInstrInfo &TII, unsigned DestReg,
278 unsigned SrcReg, int NumBytes, unsigned MIFlags = MachineInstr::NoFlags,
279 ARMCC::CondCodes Pred = ARMCC::AL, unsigned PredReg = 0) {
280 if (isARM)
281 emitARMRegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
282 Pred, PredReg, TII, MIFlags);
283 else
284 emitT2RegPlusImmediate(MBB, MBBI, dl, DestReg, SrcReg, NumBytes,
285 Pred, PredReg, TII, MIFlags);
288 static void emitSPUpdate(bool isARM, MachineBasicBlock &MBB,
289 MachineBasicBlock::iterator &MBBI, const DebugLoc &dl,
290 const ARMBaseInstrInfo &TII, int NumBytes,
291 unsigned MIFlags = MachineInstr::NoFlags,
292 ARMCC::CondCodes Pred = ARMCC::AL,
293 unsigned PredReg = 0) {
294 emitRegPlusImmediate(isARM, MBB, MBBI, dl, TII, ARM::SP, ARM::SP, NumBytes,
295 MIFlags, Pred, PredReg);
298 static int sizeOfSPAdjustment(const MachineInstr &MI) {
299 int RegSize;
300 switch (MI.getOpcode()) {
301 case ARM::VSTMDDB_UPD:
302 RegSize = 8;
303 break;
304 case ARM::STMDB_UPD:
305 case ARM::t2STMDB_UPD:
306 RegSize = 4;
307 break;
308 case ARM::t2STR_PRE:
309 case ARM::STR_PRE_IMM:
310 return 4;
311 default:
312 llvm_unreachable("Unknown push or pop like instruction");
315 int count = 0;
316 // ARM and Thumb2 push/pop insts have explicit "sp, sp" operands (+
317 // pred) so the list starts at 4.
318 for (int i = MI.getNumOperands() - 1; i >= 4; --i)
319 count += RegSize;
320 return count;
323 static bool WindowsRequiresStackProbe(const MachineFunction &MF,
324 size_t StackSizeInBytes) {
325 const MachineFrameInfo &MFI = MF.getFrameInfo();
326 const Function &F = MF.getFunction();
327 unsigned StackProbeSize = (MFI.getStackProtectorIndex() > 0) ? 4080 : 4096;
328 if (F.hasFnAttribute("stack-probe-size"))
329 F.getFnAttribute("stack-probe-size")
330 .getValueAsString()
331 .getAsInteger(0, StackProbeSize);
332 return (StackSizeInBytes >= StackProbeSize) &&
333 !F.hasFnAttribute("no-stack-arg-probe");
336 namespace {
338 struct StackAdjustingInsts {
339 struct InstInfo {
340 MachineBasicBlock::iterator I;
341 unsigned SPAdjust;
342 bool BeforeFPSet;
345 SmallVector<InstInfo, 4> Insts;
347 void addInst(MachineBasicBlock::iterator I, unsigned SPAdjust,
348 bool BeforeFPSet = false) {
349 InstInfo Info = {I, SPAdjust, BeforeFPSet};
350 Insts.push_back(Info);
353 void addExtraBytes(const MachineBasicBlock::iterator I, unsigned ExtraBytes) {
354 auto Info =
355 llvm::find_if(Insts, [&](InstInfo &Info) { return Info.I == I; });
356 assert(Info != Insts.end() && "invalid sp adjusting instruction");
357 Info->SPAdjust += ExtraBytes;
360 void emitDefCFAOffsets(MachineBasicBlock &MBB, const DebugLoc &dl,
361 const ARMBaseInstrInfo &TII, bool HasFP) {
362 MachineFunction &MF = *MBB.getParent();
363 unsigned CFAOffset = 0;
364 for (auto &Info : Insts) {
365 if (HasFP && !Info.BeforeFPSet)
366 return;
368 CFAOffset += Info.SPAdjust;
369 unsigned CFIIndex = MF.addFrameInst(
370 MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset));
371 BuildMI(MBB, std::next(Info.I), dl,
372 TII.get(TargetOpcode::CFI_INSTRUCTION))
373 .addCFIIndex(CFIIndex)
374 .setMIFlags(MachineInstr::FrameSetup);
379 } // end anonymous namespace
381 /// Emit an instruction sequence that will align the address in
382 /// register Reg by zero-ing out the lower bits. For versions of the
383 /// architecture that support Neon, this must be done in a single
384 /// instruction, since skipAlignedDPRCS2Spills assumes it is done in a
385 /// single instruction. That function only gets called when optimizing
386 /// spilling of D registers on a core with the Neon instruction set
387 /// present.
388 static void emitAligningInstructions(MachineFunction &MF, ARMFunctionInfo *AFI,
389 const TargetInstrInfo &TII,
390 MachineBasicBlock &MBB,
391 MachineBasicBlock::iterator MBBI,
392 const DebugLoc &DL, const unsigned Reg,
393 const Align Alignment,
394 const bool MustBeSingleInstruction) {
395 const ARMSubtarget &AST =
396 static_cast<const ARMSubtarget &>(MF.getSubtarget());
397 const bool CanUseBFC = AST.hasV6T2Ops() || AST.hasV7Ops();
398 const unsigned AlignMask = Alignment.value() - 1U;
399 const unsigned NrBitsToZero = Log2(Alignment);
400 assert(!AFI->isThumb1OnlyFunction() && "Thumb1 not supported");
401 if (!AFI->isThumbFunction()) {
402 // if the BFC instruction is available, use that to zero the lower
403 // bits:
404 // bfc Reg, #0, log2(Alignment)
405 // otherwise use BIC, if the mask to zero the required number of bits
406 // can be encoded in the bic immediate field
407 // bic Reg, Reg, Alignment-1
408 // otherwise, emit
409 // lsr Reg, Reg, log2(Alignment)
410 // lsl Reg, Reg, log2(Alignment)
411 if (CanUseBFC) {
412 BuildMI(MBB, MBBI, DL, TII.get(ARM::BFC), Reg)
413 .addReg(Reg, RegState::Kill)
414 .addImm(~AlignMask)
415 .add(predOps(ARMCC::AL));
416 } else if (AlignMask <= 255) {
417 BuildMI(MBB, MBBI, DL, TII.get(ARM::BICri), Reg)
418 .addReg(Reg, RegState::Kill)
419 .addImm(AlignMask)
420 .add(predOps(ARMCC::AL))
421 .add(condCodeOp());
422 } else {
423 assert(!MustBeSingleInstruction &&
424 "Shouldn't call emitAligningInstructions demanding a single "
425 "instruction to be emitted for large stack alignment for a target "
426 "without BFC.");
427 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
428 .addReg(Reg, RegState::Kill)
429 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsr, NrBitsToZero))
430 .add(predOps(ARMCC::AL))
431 .add(condCodeOp());
432 BuildMI(MBB, MBBI, DL, TII.get(ARM::MOVsi), Reg)
433 .addReg(Reg, RegState::Kill)
434 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, NrBitsToZero))
435 .add(predOps(ARMCC::AL))
436 .add(condCodeOp());
438 } else {
439 // Since this is only reached for Thumb-2 targets, the BFC instruction
440 // should always be available.
441 assert(CanUseBFC);
442 BuildMI(MBB, MBBI, DL, TII.get(ARM::t2BFC), Reg)
443 .addReg(Reg, RegState::Kill)
444 .addImm(~AlignMask)
445 .add(predOps(ARMCC::AL));
449 /// We need the offset of the frame pointer relative to other MachineFrameInfo
450 /// offsets which are encoded relative to SP at function begin.
451 /// See also emitPrologue() for how the FP is set up.
452 /// Unfortunately we cannot determine this value in determineCalleeSaves() yet
453 /// as assignCalleeSavedSpillSlots() hasn't run at this point. Instead we use
454 /// this to produce a conservative estimate that we check in an assert() later.
455 static int getMaxFPOffset(const ARMSubtarget &STI, const ARMFunctionInfo &AFI) {
456 // For Thumb1, push.w isn't available, so the first push will always push
457 // r7 and lr onto the stack first.
458 if (AFI.isThumb1OnlyFunction())
459 return -AFI.getArgRegsSaveSize() - (2 * 4);
460 // This is a conservative estimation: Assume the frame pointer being r7 and
461 // pc("r15") up to r8 getting spilled before (= 8 registers).
462 int FPCXTSaveSize = (STI.hasV8_1MMainlineOps() && AFI.isCmseNSEntryFunction()) ? 4 : 0;
463 return - FPCXTSaveSize - AFI.getArgRegsSaveSize() - (8 * 4);
466 void ARMFrameLowering::emitPrologue(MachineFunction &MF,
467 MachineBasicBlock &MBB) const {
468 MachineBasicBlock::iterator MBBI = MBB.begin();
469 MachineFrameInfo &MFI = MF.getFrameInfo();
470 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
471 MachineModuleInfo &MMI = MF.getMMI();
472 MCContext &Context = MMI.getContext();
473 const TargetMachine &TM = MF.getTarget();
474 const MCRegisterInfo *MRI = Context.getRegisterInfo();
475 const ARMBaseRegisterInfo *RegInfo = STI.getRegisterInfo();
476 const ARMBaseInstrInfo &TII = *STI.getInstrInfo();
477 assert(!AFI->isThumb1OnlyFunction() &&
478 "This emitPrologue does not support Thumb1!");
479 bool isARM = !AFI->isThumbFunction();
480 Align Alignment = STI.getFrameLowering()->getStackAlign();
481 unsigned ArgRegsSaveSize = AFI->getArgRegsSaveSize();
482 unsigned NumBytes = MFI.getStackSize();
483 const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
484 int FPCXTSaveSize = 0;
486 // Debug location must be unknown since the first debug location is used
487 // to determine the end of the prologue.
488 DebugLoc dl;
490 Register FramePtr = RegInfo->getFrameRegister(MF);
492 // Determine the sizes of each callee-save spill areas and record which frame
493 // belongs to which callee-save spill areas.
494 unsigned GPRCS1Size = 0, GPRCS2Size = 0, DPRCSSize = 0;
495 int FramePtrSpillFI = 0;
496 int D8SpillFI = 0;
498 // All calls are tail calls in GHC calling conv, and functions have no
499 // prologue/epilogue.
500 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
501 return;
503 StackAdjustingInsts DefCFAOffsetCandidates;
504 bool HasFP = hasFP(MF);
506 // Allocate the vararg register save area.
507 if (ArgRegsSaveSize) {
508 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -ArgRegsSaveSize,
509 MachineInstr::FrameSetup);
510 DefCFAOffsetCandidates.addInst(std::prev(MBBI), ArgRegsSaveSize, true);
513 if (!AFI->hasStackFrame() &&
514 (!STI.isTargetWindows() || !WindowsRequiresStackProbe(MF, NumBytes))) {
515 if (NumBytes - ArgRegsSaveSize != 0) {
516 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -(NumBytes - ArgRegsSaveSize),
517 MachineInstr::FrameSetup);
518 DefCFAOffsetCandidates.addInst(std::prev(MBBI),
519 NumBytes - ArgRegsSaveSize, true);
521 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
522 return;
525 // Determine spill area sizes.
526 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
527 unsigned Reg = CSI[i].getReg();
528 int FI = CSI[i].getFrameIdx();
529 switch (Reg) {
530 case ARM::R8:
531 case ARM::R9:
532 case ARM::R10:
533 case ARM::R11:
534 case ARM::R12:
535 if (STI.splitFramePushPop(MF)) {
536 GPRCS2Size += 4;
537 break;
539 LLVM_FALLTHROUGH;
540 case ARM::R0:
541 case ARM::R1:
542 case ARM::R2:
543 case ARM::R3:
544 case ARM::R4:
545 case ARM::R5:
546 case ARM::R6:
547 case ARM::R7:
548 case ARM::LR:
549 if (Reg == FramePtr)
550 FramePtrSpillFI = FI;
551 GPRCS1Size += 4;
552 break;
553 case ARM::FPCXTNS:
554 FPCXTSaveSize = 4;
555 break;
556 default:
557 // This is a DPR. Exclude the aligned DPRCS2 spills.
558 if (Reg == ARM::D8)
559 D8SpillFI = FI;
560 if (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())
561 DPRCSSize += 8;
565 // Move past FPCXT area.
566 MachineBasicBlock::iterator LastPush = MBB.end(), GPRCS1Push, GPRCS2Push;
567 if (FPCXTSaveSize > 0) {
568 LastPush = MBBI++;
569 DefCFAOffsetCandidates.addInst(LastPush, FPCXTSaveSize, true);
572 // Move past area 1.
573 if (GPRCS1Size > 0) {
574 GPRCS1Push = LastPush = MBBI++;
575 DefCFAOffsetCandidates.addInst(LastPush, GPRCS1Size, true);
578 // Determine starting offsets of spill areas.
579 unsigned FPCXTOffset = NumBytes - ArgRegsSaveSize - FPCXTSaveSize;
580 unsigned GPRCS1Offset = FPCXTOffset - GPRCS1Size;
581 unsigned GPRCS2Offset = GPRCS1Offset - GPRCS2Size;
582 Align DPRAlign = DPRCSSize ? std::min(Align(8), Alignment) : Align(4);
583 unsigned DPRGapSize =
584 (GPRCS1Size + GPRCS2Size + FPCXTSaveSize + ArgRegsSaveSize) %
585 DPRAlign.value();
587 unsigned DPRCSOffset = GPRCS2Offset - DPRGapSize - DPRCSSize;
588 int FramePtrOffsetInPush = 0;
589 if (HasFP) {
590 int FPOffset = MFI.getObjectOffset(FramePtrSpillFI);
591 assert(getMaxFPOffset(STI, *AFI) <= FPOffset &&
592 "Max FP estimation is wrong");
593 FramePtrOffsetInPush = FPOffset + ArgRegsSaveSize + FPCXTSaveSize;
594 AFI->setFramePtrSpillOffset(MFI.getObjectOffset(FramePtrSpillFI) +
595 NumBytes);
597 AFI->setGPRCalleeSavedArea1Offset(GPRCS1Offset);
598 AFI->setGPRCalleeSavedArea2Offset(GPRCS2Offset);
599 AFI->setDPRCalleeSavedAreaOffset(DPRCSOffset);
601 // Move past area 2.
602 if (GPRCS2Size > 0) {
603 GPRCS2Push = LastPush = MBBI++;
604 DefCFAOffsetCandidates.addInst(LastPush, GPRCS2Size);
607 // Prolog/epilog inserter assumes we correctly align DPRs on the stack, so our
608 // .cfi_offset operations will reflect that.
609 if (DPRGapSize) {
610 assert(DPRGapSize == 4 && "unexpected alignment requirements for DPRs");
611 if (LastPush != MBB.end() &&
612 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, DPRGapSize))
613 DefCFAOffsetCandidates.addExtraBytes(LastPush, DPRGapSize);
614 else {
615 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -DPRGapSize,
616 MachineInstr::FrameSetup);
617 DefCFAOffsetCandidates.addInst(std::prev(MBBI), DPRGapSize);
621 // Move past area 3.
622 if (DPRCSSize > 0) {
623 // Since vpush register list cannot have gaps, there may be multiple vpush
624 // instructions in the prologue.
625 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VSTMDDB_UPD) {
626 DefCFAOffsetCandidates.addInst(MBBI, sizeOfSPAdjustment(*MBBI));
627 LastPush = MBBI++;
631 // Move past the aligned DPRCS2 area.
632 if (AFI->getNumAlignedDPRCS2Regs() > 0) {
633 MBBI = skipAlignedDPRCS2Spills(MBBI, AFI->getNumAlignedDPRCS2Regs());
634 // The code inserted by emitAlignedDPRCS2Spills realigns the stack, and
635 // leaves the stack pointer pointing to the DPRCS2 area.
637 // Adjust NumBytes to represent the stack slots below the DPRCS2 area.
638 NumBytes += MFI.getObjectOffset(D8SpillFI);
639 } else
640 NumBytes = DPRCSOffset;
642 if (STI.isTargetWindows() && WindowsRequiresStackProbe(MF, NumBytes)) {
643 uint32_t NumWords = NumBytes >> 2;
645 if (NumWords < 65536)
646 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi16), ARM::R4)
647 .addImm(NumWords)
648 .setMIFlags(MachineInstr::FrameSetup)
649 .add(predOps(ARMCC::AL));
650 else
651 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R4)
652 .addImm(NumWords)
653 .setMIFlags(MachineInstr::FrameSetup);
655 switch (TM.getCodeModel()) {
656 case CodeModel::Tiny:
657 llvm_unreachable("Tiny code model not available on ARM.");
658 case CodeModel::Small:
659 case CodeModel::Medium:
660 case CodeModel::Kernel:
661 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBL))
662 .add(predOps(ARMCC::AL))
663 .addExternalSymbol("__chkstk")
664 .addReg(ARM::R4, RegState::Implicit)
665 .setMIFlags(MachineInstr::FrameSetup);
666 break;
667 case CodeModel::Large:
668 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2MOVi32imm), ARM::R12)
669 .addExternalSymbol("__chkstk")
670 .setMIFlags(MachineInstr::FrameSetup);
672 BuildMI(MBB, MBBI, dl, TII.get(ARM::tBLXr))
673 .add(predOps(ARMCC::AL))
674 .addReg(ARM::R12, RegState::Kill)
675 .addReg(ARM::R4, RegState::Implicit)
676 .setMIFlags(MachineInstr::FrameSetup);
677 break;
680 BuildMI(MBB, MBBI, dl, TII.get(ARM::t2SUBrr), ARM::SP)
681 .addReg(ARM::SP, RegState::Kill)
682 .addReg(ARM::R4, RegState::Kill)
683 .setMIFlags(MachineInstr::FrameSetup)
684 .add(predOps(ARMCC::AL))
685 .add(condCodeOp());
686 NumBytes = 0;
689 if (NumBytes) {
690 // Adjust SP after all the callee-save spills.
691 if (AFI->getNumAlignedDPRCS2Regs() == 0 &&
692 tryFoldSPUpdateIntoPushPop(STI, MF, &*LastPush, NumBytes))
693 DefCFAOffsetCandidates.addExtraBytes(LastPush, NumBytes);
694 else {
695 emitSPUpdate(isARM, MBB, MBBI, dl, TII, -NumBytes,
696 MachineInstr::FrameSetup);
697 DefCFAOffsetCandidates.addInst(std::prev(MBBI), NumBytes);
700 if (HasFP && isARM)
701 // Restore from fp only in ARM mode: e.g. sub sp, r7, #24
702 // Note it's not safe to do this in Thumb2 mode because it would have
703 // taken two instructions:
704 // mov sp, r7
705 // sub sp, #24
706 // If an interrupt is taken between the two instructions, then sp is in
707 // an inconsistent state (pointing to the middle of callee-saved area).
708 // The interrupt handler can end up clobbering the registers.
709 AFI->setShouldRestoreSPFromFP(true);
712 // Set FP to point to the stack slot that contains the previous FP.
713 // For iOS, FP is R7, which has now been stored in spill area 1.
714 // Otherwise, if this is not iOS, all the callee-saved registers go
715 // into spill area 1, including the FP in R11. In either case, it
716 // is in area one and the adjustment needs to take place just after
717 // that push.
718 if (HasFP) {
719 MachineBasicBlock::iterator AfterPush = std::next(GPRCS1Push);
720 unsigned PushSize = sizeOfSPAdjustment(*GPRCS1Push);
721 emitRegPlusImmediate(!AFI->isThumbFunction(), MBB, AfterPush,
722 dl, TII, FramePtr, ARM::SP,
723 PushSize + FramePtrOffsetInPush,
724 MachineInstr::FrameSetup);
725 if (FramePtrOffsetInPush + PushSize != 0) {
726 unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(
727 nullptr, MRI->getDwarfRegNum(FramePtr, true),
728 FPCXTSaveSize + ArgRegsSaveSize - FramePtrOffsetInPush));
729 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
730 .addCFIIndex(CFIIndex)
731 .setMIFlags(MachineInstr::FrameSetup);
732 } else {
733 unsigned CFIIndex =
734 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(
735 nullptr, MRI->getDwarfRegNum(FramePtr, true)));
736 BuildMI(MBB, AfterPush, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
737 .addCFIIndex(CFIIndex)
738 .setMIFlags(MachineInstr::FrameSetup);
742 // Now that the prologue's actual instructions are finalised, we can insert
743 // the necessary DWARF cf instructions to describe the situation. Start by
744 // recording where each register ended up:
745 if (GPRCS1Size > 0) {
746 MachineBasicBlock::iterator Pos = std::next(GPRCS1Push);
747 int CFIIndex;
748 for (const auto &Entry : CSI) {
749 unsigned Reg = Entry.getReg();
750 int FI = Entry.getFrameIdx();
751 switch (Reg) {
752 case ARM::R8:
753 case ARM::R9:
754 case ARM::R10:
755 case ARM::R11:
756 case ARM::R12:
757 if (STI.splitFramePushPop(MF))
758 break;
759 LLVM_FALLTHROUGH;
760 case ARM::R0:
761 case ARM::R1:
762 case ARM::R2:
763 case ARM::R3:
764 case ARM::R4:
765 case ARM::R5:
766 case ARM::R6:
767 case ARM::R7:
768 case ARM::LR:
769 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
770 nullptr, MRI->getDwarfRegNum(Reg, true), MFI.getObjectOffset(FI)));
771 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
772 .addCFIIndex(CFIIndex)
773 .setMIFlags(MachineInstr::FrameSetup);
774 break;
779 if (GPRCS2Size > 0) {
780 MachineBasicBlock::iterator Pos = std::next(GPRCS2Push);
781 for (const auto &Entry : CSI) {
782 unsigned Reg = Entry.getReg();
783 int FI = Entry.getFrameIdx();
784 switch (Reg) {
785 case ARM::R8:
786 case ARM::R9:
787 case ARM::R10:
788 case ARM::R11:
789 case ARM::R12:
790 if (STI.splitFramePushPop(MF)) {
791 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
792 unsigned Offset = MFI.getObjectOffset(FI);
793 unsigned CFIIndex = MF.addFrameInst(
794 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
795 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
796 .addCFIIndex(CFIIndex)
797 .setMIFlags(MachineInstr::FrameSetup);
799 break;
804 if (DPRCSSize > 0) {
805 // Since vpush register list cannot have gaps, there may be multiple vpush
806 // instructions in the prologue.
807 MachineBasicBlock::iterator Pos = std::next(LastPush);
808 for (const auto &Entry : CSI) {
809 unsigned Reg = Entry.getReg();
810 int FI = Entry.getFrameIdx();
811 if ((Reg >= ARM::D0 && Reg <= ARM::D31) &&
812 (Reg < ARM::D8 || Reg >= ARM::D8 + AFI->getNumAlignedDPRCS2Regs())) {
813 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
814 unsigned Offset = MFI.getObjectOffset(FI);
815 unsigned CFIIndex = MF.addFrameInst(
816 MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset));
817 BuildMI(MBB, Pos, dl, TII.get(TargetOpcode::CFI_INSTRUCTION))
818 .addCFIIndex(CFIIndex)
819 .setMIFlags(MachineInstr::FrameSetup);
824 // Now we can emit descriptions of where the canonical frame address was
825 // throughout the process. If we have a frame pointer, it takes over the job
826 // half-way through, so only the first few .cfi_def_cfa_offset instructions
827 // actually get emitted.
828 DefCFAOffsetCandidates.emitDefCFAOffsets(MBB, dl, TII, HasFP);
830 if (STI.isTargetELF() && hasFP(MF))
831 MFI.setOffsetAdjustment(MFI.getOffsetAdjustment() -
832 AFI->getFramePtrSpillOffset());
834 AFI->setFPCXTSaveAreaSize(FPCXTSaveSize);
835 AFI->setGPRCalleeSavedArea1Size(GPRCS1Size);
836 AFI->setGPRCalleeSavedArea2Size(GPRCS2Size);
837 AFI->setDPRCalleeSavedGapSize(DPRGapSize);
838 AFI->setDPRCalleeSavedAreaSize(DPRCSSize);
840 // If we need dynamic stack realignment, do it here. Be paranoid and make
841 // sure if we also have VLAs, we have a base pointer for frame access.
842 // If aligned NEON registers were spilled, the stack has already been
843 // realigned.
844 if (!AFI->getNumAlignedDPRCS2Regs() && RegInfo->hasStackRealignment(MF)) {
845 Align MaxAlign = MFI.getMaxAlign();
846 assert(!AFI->isThumb1OnlyFunction());
847 if (!AFI->isThumbFunction()) {
848 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::SP, MaxAlign,
849 false);
850 } else {
851 // We cannot use sp as source/dest register here, thus we're using r4 to
852 // perform the calculations. We're emitting the following sequence:
853 // mov r4, sp
854 // -- use emitAligningInstructions to produce best sequence to zero
855 // -- out lower bits in r4
856 // mov sp, r4
857 // FIXME: It will be better just to find spare register here.
858 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::R4)
859 .addReg(ARM::SP, RegState::Kill)
860 .add(predOps(ARMCC::AL));
861 emitAligningInstructions(MF, AFI, TII, MBB, MBBI, dl, ARM::R4, MaxAlign,
862 false);
863 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
864 .addReg(ARM::R4, RegState::Kill)
865 .add(predOps(ARMCC::AL));
868 AFI->setShouldRestoreSPFromFP(true);
871 // If we need a base pointer, set it up here. It's whatever the value
872 // of the stack pointer is at this point. Any variable size objects
873 // will be allocated after this, so we can still use the base pointer
874 // to reference locals.
875 // FIXME: Clarify FrameSetup flags here.
876 if (RegInfo->hasBasePointer(MF)) {
877 if (isARM)
878 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), RegInfo->getBaseRegister())
879 .addReg(ARM::SP)
880 .add(predOps(ARMCC::AL))
881 .add(condCodeOp());
882 else
883 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), RegInfo->getBaseRegister())
884 .addReg(ARM::SP)
885 .add(predOps(ARMCC::AL));
888 // If the frame has variable sized objects then the epilogue must restore
889 // the sp from fp. We can assume there's an FP here since hasFP already
890 // checks for hasVarSizedObjects.
891 if (MFI.hasVarSizedObjects())
892 AFI->setShouldRestoreSPFromFP(true);
895 void ARMFrameLowering::emitEpilogue(MachineFunction &MF,
896 MachineBasicBlock &MBB) const {
897 MachineFrameInfo &MFI = MF.getFrameInfo();
898 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
899 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
900 const ARMBaseInstrInfo &TII =
901 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
902 assert(!AFI->isThumb1OnlyFunction() &&
903 "This emitEpilogue does not support Thumb1!");
904 bool isARM = !AFI->isThumbFunction();
906 // Amount of stack space we reserved next to incoming args for either
907 // varargs registers or stack arguments in tail calls made by this function.
908 unsigned ReservedArgStack = AFI->getArgRegsSaveSize();
910 // How much of the stack used by incoming arguments this function is expected
911 // to restore in this particular epilogue.
912 int IncomingArgStackToRestore = getArgumentStackToRestore(MF, MBB);
913 int NumBytes = (int)MFI.getStackSize();
914 Register FramePtr = RegInfo->getFrameRegister(MF);
916 // All calls are tail calls in GHC calling conv, and functions have no
917 // prologue/epilogue.
918 if (MF.getFunction().getCallingConv() == CallingConv::GHC)
919 return;
921 // First put ourselves on the first (from top) terminator instructions.
922 MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
923 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() : DebugLoc();
925 if (!AFI->hasStackFrame()) {
926 if (NumBytes - ReservedArgStack != 0)
927 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes - ReservedArgStack,
928 MachineInstr::FrameDestroy);
929 } else {
930 // Unwind MBBI to point to first LDR / VLDRD.
931 if (MBBI != MBB.begin()) {
932 do {
933 --MBBI;
934 } while (MBBI != MBB.begin() &&
935 MBBI->getFlag(MachineInstr::FrameDestroy));
936 if (!MBBI->getFlag(MachineInstr::FrameDestroy))
937 ++MBBI;
940 // Move SP to start of FP callee save spill area.
941 NumBytes -= (ReservedArgStack +
942 AFI->getFPCXTSaveAreaSize() +
943 AFI->getGPRCalleeSavedArea1Size() +
944 AFI->getGPRCalleeSavedArea2Size() +
945 AFI->getDPRCalleeSavedGapSize() +
946 AFI->getDPRCalleeSavedAreaSize());
948 // Reset SP based on frame pointer only if the stack frame extends beyond
949 // frame pointer stack slot or target is ELF and the function has FP.
950 if (AFI->shouldRestoreSPFromFP()) {
951 NumBytes = AFI->getFramePtrSpillOffset() - NumBytes;
952 if (NumBytes) {
953 if (isARM)
954 emitARMRegPlusImmediate(MBB, MBBI, dl, ARM::SP, FramePtr, -NumBytes,
955 ARMCC::AL, 0, TII,
956 MachineInstr::FrameDestroy);
957 else {
958 // It's not possible to restore SP from FP in a single instruction.
959 // For iOS, this looks like:
960 // mov sp, r7
961 // sub sp, #24
962 // This is bad, if an interrupt is taken after the mov, sp is in an
963 // inconsistent state.
964 // Use the first callee-saved register as a scratch register.
965 assert(!MFI.getPristineRegs(MF).test(ARM::R4) &&
966 "No scratch register to restore SP from FP!");
967 emitT2RegPlusImmediate(MBB, MBBI, dl, ARM::R4, FramePtr, -NumBytes,
968 ARMCC::AL, 0, TII, MachineInstr::FrameDestroy);
969 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
970 .addReg(ARM::R4)
971 .add(predOps(ARMCC::AL))
972 .setMIFlag(MachineInstr::FrameDestroy);
974 } else {
975 // Thumb2 or ARM.
976 if (isARM)
977 BuildMI(MBB, MBBI, dl, TII.get(ARM::MOVr), ARM::SP)
978 .addReg(FramePtr)
979 .add(predOps(ARMCC::AL))
980 .add(condCodeOp())
981 .setMIFlag(MachineInstr::FrameDestroy);
982 else
983 BuildMI(MBB, MBBI, dl, TII.get(ARM::tMOVr), ARM::SP)
984 .addReg(FramePtr)
985 .add(predOps(ARMCC::AL))
986 .setMIFlag(MachineInstr::FrameDestroy);
988 } else if (NumBytes &&
989 !tryFoldSPUpdateIntoPushPop(STI, MF, &*MBBI, NumBytes))
990 emitSPUpdate(isARM, MBB, MBBI, dl, TII, NumBytes,
991 MachineInstr::FrameDestroy);
993 // Increment past our save areas.
994 if (MBBI != MBB.end() && AFI->getDPRCalleeSavedAreaSize()) {
995 MBBI++;
996 // Since vpop register list cannot have gaps, there may be multiple vpop
997 // instructions in the epilogue.
998 while (MBBI != MBB.end() && MBBI->getOpcode() == ARM::VLDMDIA_UPD)
999 MBBI++;
1001 if (AFI->getDPRCalleeSavedGapSize()) {
1002 assert(AFI->getDPRCalleeSavedGapSize() == 4 &&
1003 "unexpected DPR alignment gap");
1004 emitSPUpdate(isARM, MBB, MBBI, dl, TII, AFI->getDPRCalleeSavedGapSize(),
1005 MachineInstr::FrameDestroy);
1008 if (AFI->getGPRCalleeSavedArea2Size()) MBBI++;
1009 if (AFI->getGPRCalleeSavedArea1Size()) MBBI++;
1010 if (AFI->getFPCXTSaveAreaSize()) MBBI++;
1013 if (ReservedArgStack || IncomingArgStackToRestore) {
1014 assert((int)ReservedArgStack + IncomingArgStackToRestore >= 0 &&
1015 "attempting to restore negative stack amount");
1016 emitSPUpdate(isARM, MBB, MBBI, dl, TII,
1017 ReservedArgStack + IncomingArgStackToRestore,
1018 MachineInstr::FrameDestroy);
1022 /// getFrameIndexReference - Provide a base+offset reference to an FI slot for
1023 /// debug info. It's the same as what we use for resolving the code-gen
1024 /// references for now. FIXME: This can go wrong when references are
1025 /// SP-relative and simple call frames aren't used.
1026 StackOffset ARMFrameLowering::getFrameIndexReference(const MachineFunction &MF,
1027 int FI,
1028 Register &FrameReg) const {
1029 return StackOffset::getFixed(ResolveFrameIndexReference(MF, FI, FrameReg, 0));
1032 int ARMFrameLowering::ResolveFrameIndexReference(const MachineFunction &MF,
1033 int FI, Register &FrameReg,
1034 int SPAdj) const {
1035 const MachineFrameInfo &MFI = MF.getFrameInfo();
1036 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1037 MF.getSubtarget().getRegisterInfo());
1038 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1039 int Offset = MFI.getObjectOffset(FI) + MFI.getStackSize();
1040 int FPOffset = Offset - AFI->getFramePtrSpillOffset();
1041 bool isFixed = MFI.isFixedObjectIndex(FI);
1043 FrameReg = ARM::SP;
1044 Offset += SPAdj;
1046 // SP can move around if there are allocas. We may also lose track of SP
1047 // when emergency spilling inside a non-reserved call frame setup.
1048 bool hasMovingSP = !hasReservedCallFrame(MF);
1050 // When dynamically realigning the stack, use the frame pointer for
1051 // parameters, and the stack/base pointer for locals.
1052 if (RegInfo->hasStackRealignment(MF)) {
1053 assert(hasFP(MF) && "dynamic stack realignment without a FP!");
1054 if (isFixed) {
1055 FrameReg = RegInfo->getFrameRegister(MF);
1056 Offset = FPOffset;
1057 } else if (hasMovingSP) {
1058 assert(RegInfo->hasBasePointer(MF) &&
1059 "VLAs and dynamic stack alignment, but missing base pointer!");
1060 FrameReg = RegInfo->getBaseRegister();
1061 Offset -= SPAdj;
1063 return Offset;
1066 // If there is a frame pointer, use it when we can.
1067 if (hasFP(MF) && AFI->hasStackFrame()) {
1068 // Use frame pointer to reference fixed objects. Use it for locals if
1069 // there are VLAs (and thus the SP isn't reliable as a base).
1070 if (isFixed || (hasMovingSP && !RegInfo->hasBasePointer(MF))) {
1071 FrameReg = RegInfo->getFrameRegister(MF);
1072 return FPOffset;
1073 } else if (hasMovingSP) {
1074 assert(RegInfo->hasBasePointer(MF) && "missing base pointer!");
1075 if (AFI->isThumb2Function()) {
1076 // Try to use the frame pointer if we can, else use the base pointer
1077 // since it's available. This is handy for the emergency spill slot, in
1078 // particular.
1079 if (FPOffset >= -255 && FPOffset < 0) {
1080 FrameReg = RegInfo->getFrameRegister(MF);
1081 return FPOffset;
1084 } else if (AFI->isThumbFunction()) {
1085 // Prefer SP to base pointer, if the offset is suitably aligned and in
1086 // range as the effective range of the immediate offset is bigger when
1087 // basing off SP.
1088 // Use add <rd>, sp, #<imm8>
1089 // ldr <rd>, [sp, #<imm8>]
1090 if (Offset >= 0 && (Offset & 3) == 0 && Offset <= 1020)
1091 return Offset;
1092 // In Thumb2 mode, the negative offset is very limited. Try to avoid
1093 // out of range references. ldr <rt>,[<rn>, #-<imm8>]
1094 if (AFI->isThumb2Function() && FPOffset >= -255 && FPOffset < 0) {
1095 FrameReg = RegInfo->getFrameRegister(MF);
1096 return FPOffset;
1098 } else if (Offset > (FPOffset < 0 ? -FPOffset : FPOffset)) {
1099 // Otherwise, use SP or FP, whichever is closer to the stack slot.
1100 FrameReg = RegInfo->getFrameRegister(MF);
1101 return FPOffset;
1104 // Use the base pointer if we have one.
1105 // FIXME: Maybe prefer sp on Thumb1 if it's legal and the offset is cheaper?
1106 // That can happen if we forced a base pointer for a large call frame.
1107 if (RegInfo->hasBasePointer(MF)) {
1108 FrameReg = RegInfo->getBaseRegister();
1109 Offset -= SPAdj;
1111 return Offset;
1114 void ARMFrameLowering::emitPushInst(MachineBasicBlock &MBB,
1115 MachineBasicBlock::iterator MI,
1116 ArrayRef<CalleeSavedInfo> CSI,
1117 unsigned StmOpc, unsigned StrOpc,
1118 bool NoGap, bool (*Func)(unsigned, bool),
1119 unsigned NumAlignedDPRCS2Regs,
1120 unsigned MIFlags) const {
1121 MachineFunction &MF = *MBB.getParent();
1122 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1123 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1125 DebugLoc DL;
1127 using RegAndKill = std::pair<unsigned, bool>;
1129 SmallVector<RegAndKill, 4> Regs;
1130 unsigned i = CSI.size();
1131 while (i != 0) {
1132 unsigned LastReg = 0;
1133 for (; i != 0; --i) {
1134 unsigned Reg = CSI[i-1].getReg();
1135 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1137 // D-registers in the aligned area DPRCS2 are NOT spilled here.
1138 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1139 continue;
1141 const MachineRegisterInfo &MRI = MF.getRegInfo();
1142 bool isLiveIn = MRI.isLiveIn(Reg);
1143 if (!isLiveIn && !MRI.isReserved(Reg))
1144 MBB.addLiveIn(Reg);
1145 // If NoGap is true, push consecutive registers and then leave the rest
1146 // for other instructions. e.g.
1147 // vpush {d8, d10, d11} -> vpush {d8}, vpush {d10, d11}
1148 if (NoGap && LastReg && LastReg != Reg-1)
1149 break;
1150 LastReg = Reg;
1151 // Do not set a kill flag on values that are also marked as live-in. This
1152 // happens with the @llvm-returnaddress intrinsic and with arguments
1153 // passed in callee saved registers.
1154 // Omitting the kill flags is conservatively correct even if the live-in
1155 // is not used after all.
1156 Regs.push_back(std::make_pair(Reg, /*isKill=*/!isLiveIn));
1159 if (Regs.empty())
1160 continue;
1162 llvm::sort(Regs, [&](const RegAndKill &LHS, const RegAndKill &RHS) {
1163 return TRI.getEncodingValue(LHS.first) < TRI.getEncodingValue(RHS.first);
1166 if (Regs.size() > 1 || StrOpc== 0) {
1167 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StmOpc), ARM::SP)
1168 .addReg(ARM::SP)
1169 .setMIFlags(MIFlags)
1170 .add(predOps(ARMCC::AL));
1171 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1172 MIB.addReg(Regs[i].first, getKillRegState(Regs[i].second));
1173 } else if (Regs.size() == 1) {
1174 BuildMI(MBB, MI, DL, TII.get(StrOpc), ARM::SP)
1175 .addReg(Regs[0].first, getKillRegState(Regs[0].second))
1176 .addReg(ARM::SP)
1177 .setMIFlags(MIFlags)
1178 .addImm(-4)
1179 .add(predOps(ARMCC::AL));
1181 Regs.clear();
1183 // Put any subsequent vpush instructions before this one: they will refer to
1184 // higher register numbers so need to be pushed first in order to preserve
1185 // monotonicity.
1186 if (MI != MBB.begin())
1187 --MI;
1191 void ARMFrameLowering::emitPopInst(MachineBasicBlock &MBB,
1192 MachineBasicBlock::iterator MI,
1193 MutableArrayRef<CalleeSavedInfo> CSI,
1194 unsigned LdmOpc, unsigned LdrOpc,
1195 bool isVarArg, bool NoGap,
1196 bool (*Func)(unsigned, bool),
1197 unsigned NumAlignedDPRCS2Regs) const {
1198 MachineFunction &MF = *MBB.getParent();
1199 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1200 const TargetRegisterInfo &TRI = *STI.getRegisterInfo();
1201 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1202 DebugLoc DL;
1203 bool isTailCall = false;
1204 bool isInterrupt = false;
1205 bool isTrap = false;
1206 bool isCmseEntry = false;
1207 if (MBB.end() != MI) {
1208 DL = MI->getDebugLoc();
1209 unsigned RetOpcode = MI->getOpcode();
1210 isTailCall = (RetOpcode == ARM::TCRETURNdi || RetOpcode == ARM::TCRETURNri);
1211 isInterrupt =
1212 RetOpcode == ARM::SUBS_PC_LR || RetOpcode == ARM::t2SUBS_PC_LR;
1213 isTrap =
1214 RetOpcode == ARM::TRAP || RetOpcode == ARM::TRAPNaCl ||
1215 RetOpcode == ARM::tTRAP;
1216 isCmseEntry = (RetOpcode == ARM::tBXNS || RetOpcode == ARM::tBXNS_RET);
1219 SmallVector<unsigned, 4> Regs;
1220 unsigned i = CSI.size();
1221 while (i != 0) {
1222 unsigned LastReg = 0;
1223 bool DeleteRet = false;
1224 for (; i != 0; --i) {
1225 CalleeSavedInfo &Info = CSI[i-1];
1226 unsigned Reg = Info.getReg();
1227 if (!(Func)(Reg, STI.splitFramePushPop(MF))) continue;
1229 // The aligned reloads from area DPRCS2 are not inserted here.
1230 if (Reg >= ARM::D8 && Reg < ARM::D8 + NumAlignedDPRCS2Regs)
1231 continue;
1232 if (Reg == ARM::LR && !isTailCall && !isVarArg && !isInterrupt &&
1233 !isCmseEntry && !isTrap && AFI->getArgumentStackToRestore() == 0 &&
1234 STI.hasV5TOps() && MBB.succ_empty()) {
1235 Reg = ARM::PC;
1236 // Fold the return instruction into the LDM.
1237 DeleteRet = true;
1238 LdmOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_RET : ARM::LDMIA_RET;
1239 // We 'restore' LR into PC so it is not live out of the return block:
1240 // Clear Restored bit.
1241 Info.setRestored(false);
1244 // If NoGap is true, pop consecutive registers and then leave the rest
1245 // for other instructions. e.g.
1246 // vpop {d8, d10, d11} -> vpop {d8}, vpop {d10, d11}
1247 if (NoGap && LastReg && LastReg != Reg-1)
1248 break;
1250 LastReg = Reg;
1251 Regs.push_back(Reg);
1254 if (Regs.empty())
1255 continue;
1257 llvm::sort(Regs, [&](unsigned LHS, unsigned RHS) {
1258 return TRI.getEncodingValue(LHS) < TRI.getEncodingValue(RHS);
1261 if (Regs.size() > 1 || LdrOpc == 0) {
1262 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(LdmOpc), ARM::SP)
1263 .addReg(ARM::SP)
1264 .add(predOps(ARMCC::AL))
1265 .setMIFlags(MachineInstr::FrameDestroy);
1266 for (unsigned i = 0, e = Regs.size(); i < e; ++i)
1267 MIB.addReg(Regs[i], getDefRegState(true));
1268 if (DeleteRet) {
1269 if (MI != MBB.end()) {
1270 MIB.copyImplicitOps(*MI);
1271 MI->eraseFromParent();
1274 MI = MIB;
1275 } else if (Regs.size() == 1) {
1276 // If we adjusted the reg to PC from LR above, switch it back here. We
1277 // only do that for LDM.
1278 if (Regs[0] == ARM::PC)
1279 Regs[0] = ARM::LR;
1280 MachineInstrBuilder MIB =
1281 BuildMI(MBB, MI, DL, TII.get(LdrOpc), Regs[0])
1282 .addReg(ARM::SP, RegState::Define)
1283 .addReg(ARM::SP)
1284 .setMIFlags(MachineInstr::FrameDestroy);
1285 // ARM mode needs an extra reg0 here due to addrmode2. Will go away once
1286 // that refactoring is complete (eventually).
1287 if (LdrOpc == ARM::LDR_POST_REG || LdrOpc == ARM::LDR_POST_IMM) {
1288 MIB.addReg(0);
1289 MIB.addImm(ARM_AM::getAM2Opc(ARM_AM::add, 4, ARM_AM::no_shift));
1290 } else
1291 MIB.addImm(4);
1292 MIB.add(predOps(ARMCC::AL));
1294 Regs.clear();
1296 // Put any subsequent vpop instructions after this one: they will refer to
1297 // higher register numbers so need to be popped afterwards.
1298 if (MI != MBB.end())
1299 ++MI;
1303 /// Emit aligned spill instructions for NumAlignedDPRCS2Regs D-registers
1304 /// starting from d8. Also insert stack realignment code and leave the stack
1305 /// pointer pointing to the d8 spill slot.
1306 static void emitAlignedDPRCS2Spills(MachineBasicBlock &MBB,
1307 MachineBasicBlock::iterator MI,
1308 unsigned NumAlignedDPRCS2Regs,
1309 ArrayRef<CalleeSavedInfo> CSI,
1310 const TargetRegisterInfo *TRI) {
1311 MachineFunction &MF = *MBB.getParent();
1312 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1313 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1314 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1315 MachineFrameInfo &MFI = MF.getFrameInfo();
1317 // Mark the D-register spill slots as properly aligned. Since MFI computes
1318 // stack slot layout backwards, this can actually mean that the d-reg stack
1319 // slot offsets can be wrong. The offset for d8 will always be correct.
1320 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1321 unsigned DNum = CSI[i].getReg() - ARM::D8;
1322 if (DNum > NumAlignedDPRCS2Regs - 1)
1323 continue;
1324 int FI = CSI[i].getFrameIdx();
1325 // The even-numbered registers will be 16-byte aligned, the odd-numbered
1326 // registers will be 8-byte aligned.
1327 MFI.setObjectAlignment(FI, DNum % 2 ? Align(8) : Align(16));
1329 // The stack slot for D8 needs to be maximally aligned because this is
1330 // actually the point where we align the stack pointer. MachineFrameInfo
1331 // computes all offsets relative to the incoming stack pointer which is a
1332 // bit weird when realigning the stack. Any extra padding for this
1333 // over-alignment is not realized because the code inserted below adjusts
1334 // the stack pointer by numregs * 8 before aligning the stack pointer.
1335 if (DNum == 0)
1336 MFI.setObjectAlignment(FI, MFI.getMaxAlign());
1339 // Move the stack pointer to the d8 spill slot, and align it at the same
1340 // time. Leave the stack slot address in the scratch register r4.
1342 // sub r4, sp, #numregs * 8
1343 // bic r4, r4, #align - 1
1344 // mov sp, r4
1346 bool isThumb = AFI->isThumbFunction();
1347 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1348 AFI->setShouldRestoreSPFromFP(true);
1350 // sub r4, sp, #numregs * 8
1351 // The immediate is <= 64, so it doesn't need any special encoding.
1352 unsigned Opc = isThumb ? ARM::t2SUBri : ARM::SUBri;
1353 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1354 .addReg(ARM::SP)
1355 .addImm(8 * NumAlignedDPRCS2Regs)
1356 .add(predOps(ARMCC::AL))
1357 .add(condCodeOp());
1359 Align MaxAlign = MF.getFrameInfo().getMaxAlign();
1360 // We must set parameter MustBeSingleInstruction to true, since
1361 // skipAlignedDPRCS2Spills expects exactly 3 instructions to perform
1362 // stack alignment. Luckily, this can always be done since all ARM
1363 // architecture versions that support Neon also support the BFC
1364 // instruction.
1365 emitAligningInstructions(MF, AFI, TII, MBB, MI, DL, ARM::R4, MaxAlign, true);
1367 // mov sp, r4
1368 // The stack pointer must be adjusted before spilling anything, otherwise
1369 // the stack slots could be clobbered by an interrupt handler.
1370 // Leave r4 live, it is used below.
1371 Opc = isThumb ? ARM::tMOVr : ARM::MOVr;
1372 MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(Opc), ARM::SP)
1373 .addReg(ARM::R4)
1374 .add(predOps(ARMCC::AL));
1375 if (!isThumb)
1376 MIB.add(condCodeOp());
1378 // Now spill NumAlignedDPRCS2Regs registers starting from d8.
1379 // r4 holds the stack slot address.
1380 unsigned NextReg = ARM::D8;
1382 // 16-byte aligned vst1.64 with 4 d-regs and address writeback.
1383 // The writeback is only needed when emitting two vst1.64 instructions.
1384 if (NumAlignedDPRCS2Regs >= 6) {
1385 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1386 &ARM::QQPRRegClass);
1387 MBB.addLiveIn(SupReg);
1388 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Qwb_fixed), ARM::R4)
1389 .addReg(ARM::R4, RegState::Kill)
1390 .addImm(16)
1391 .addReg(NextReg)
1392 .addReg(SupReg, RegState::ImplicitKill)
1393 .add(predOps(ARMCC::AL));
1394 NextReg += 4;
1395 NumAlignedDPRCS2Regs -= 4;
1398 // We won't modify r4 beyond this point. It currently points to the next
1399 // register to be spilled.
1400 unsigned R4BaseReg = NextReg;
1402 // 16-byte aligned vst1.64 with 4 d-regs, no writeback.
1403 if (NumAlignedDPRCS2Regs >= 4) {
1404 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1405 &ARM::QQPRRegClass);
1406 MBB.addLiveIn(SupReg);
1407 BuildMI(MBB, MI, DL, TII.get(ARM::VST1d64Q))
1408 .addReg(ARM::R4)
1409 .addImm(16)
1410 .addReg(NextReg)
1411 .addReg(SupReg, RegState::ImplicitKill)
1412 .add(predOps(ARMCC::AL));
1413 NextReg += 4;
1414 NumAlignedDPRCS2Regs -= 4;
1417 // 16-byte aligned vst1.64 with 2 d-regs.
1418 if (NumAlignedDPRCS2Regs >= 2) {
1419 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1420 &ARM::QPRRegClass);
1421 MBB.addLiveIn(SupReg);
1422 BuildMI(MBB, MI, DL, TII.get(ARM::VST1q64))
1423 .addReg(ARM::R4)
1424 .addImm(16)
1425 .addReg(SupReg)
1426 .add(predOps(ARMCC::AL));
1427 NextReg += 2;
1428 NumAlignedDPRCS2Regs -= 2;
1431 // Finally, use a vanilla vstr.64 for the odd last register.
1432 if (NumAlignedDPRCS2Regs) {
1433 MBB.addLiveIn(NextReg);
1434 // vstr.64 uses addrmode5 which has an offset scale of 4.
1435 BuildMI(MBB, MI, DL, TII.get(ARM::VSTRD))
1436 .addReg(NextReg)
1437 .addReg(ARM::R4)
1438 .addImm((NextReg - R4BaseReg) * 2)
1439 .add(predOps(ARMCC::AL));
1442 // The last spill instruction inserted should kill the scratch register r4.
1443 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1446 /// Skip past the code inserted by emitAlignedDPRCS2Spills, and return an
1447 /// iterator to the following instruction.
1448 static MachineBasicBlock::iterator
1449 skipAlignedDPRCS2Spills(MachineBasicBlock::iterator MI,
1450 unsigned NumAlignedDPRCS2Regs) {
1451 // sub r4, sp, #numregs * 8
1452 // bic r4, r4, #align - 1
1453 // mov sp, r4
1454 ++MI; ++MI; ++MI;
1455 assert(MI->mayStore() && "Expecting spill instruction");
1457 // These switches all fall through.
1458 switch(NumAlignedDPRCS2Regs) {
1459 case 7:
1460 ++MI;
1461 assert(MI->mayStore() && "Expecting spill instruction");
1462 LLVM_FALLTHROUGH;
1463 default:
1464 ++MI;
1465 assert(MI->mayStore() && "Expecting spill instruction");
1466 LLVM_FALLTHROUGH;
1467 case 1:
1468 case 2:
1469 case 4:
1470 assert(MI->killsRegister(ARM::R4) && "Missed kill flag");
1471 ++MI;
1473 return MI;
1476 /// Emit aligned reload instructions for NumAlignedDPRCS2Regs D-registers
1477 /// starting from d8. These instructions are assumed to execute while the
1478 /// stack is still aligned, unlike the code inserted by emitPopInst.
1479 static void emitAlignedDPRCS2Restores(MachineBasicBlock &MBB,
1480 MachineBasicBlock::iterator MI,
1481 unsigned NumAlignedDPRCS2Regs,
1482 ArrayRef<CalleeSavedInfo> CSI,
1483 const TargetRegisterInfo *TRI) {
1484 MachineFunction &MF = *MBB.getParent();
1485 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1486 DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
1487 const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
1489 // Find the frame index assigned to d8.
1490 int D8SpillFI = 0;
1491 for (unsigned i = 0, e = CSI.size(); i != e; ++i)
1492 if (CSI[i].getReg() == ARM::D8) {
1493 D8SpillFI = CSI[i].getFrameIdx();
1494 break;
1497 // Materialize the address of the d8 spill slot into the scratch register r4.
1498 // This can be fairly complicated if the stack frame is large, so just use
1499 // the normal frame index elimination mechanism to do it. This code runs as
1500 // the initial part of the epilog where the stack and base pointers haven't
1501 // been changed yet.
1502 bool isThumb = AFI->isThumbFunction();
1503 assert(!AFI->isThumb1OnlyFunction() && "Can't realign stack for thumb1");
1505 unsigned Opc = isThumb ? ARM::t2ADDri : ARM::ADDri;
1506 BuildMI(MBB, MI, DL, TII.get(Opc), ARM::R4)
1507 .addFrameIndex(D8SpillFI)
1508 .addImm(0)
1509 .add(predOps(ARMCC::AL))
1510 .add(condCodeOp());
1512 // Now restore NumAlignedDPRCS2Regs registers starting from d8.
1513 unsigned NextReg = ARM::D8;
1515 // 16-byte aligned vld1.64 with 4 d-regs and writeback.
1516 if (NumAlignedDPRCS2Regs >= 6) {
1517 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1518 &ARM::QQPRRegClass);
1519 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Qwb_fixed), NextReg)
1520 .addReg(ARM::R4, RegState::Define)
1521 .addReg(ARM::R4, RegState::Kill)
1522 .addImm(16)
1523 .addReg(SupReg, RegState::ImplicitDefine)
1524 .add(predOps(ARMCC::AL));
1525 NextReg += 4;
1526 NumAlignedDPRCS2Regs -= 4;
1529 // We won't modify r4 beyond this point. It currently points to the next
1530 // register to be spilled.
1531 unsigned R4BaseReg = NextReg;
1533 // 16-byte aligned vld1.64 with 4 d-regs, no writeback.
1534 if (NumAlignedDPRCS2Regs >= 4) {
1535 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1536 &ARM::QQPRRegClass);
1537 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1d64Q), NextReg)
1538 .addReg(ARM::R4)
1539 .addImm(16)
1540 .addReg(SupReg, RegState::ImplicitDefine)
1541 .add(predOps(ARMCC::AL));
1542 NextReg += 4;
1543 NumAlignedDPRCS2Regs -= 4;
1546 // 16-byte aligned vld1.64 with 2 d-regs.
1547 if (NumAlignedDPRCS2Regs >= 2) {
1548 unsigned SupReg = TRI->getMatchingSuperReg(NextReg, ARM::dsub_0,
1549 &ARM::QPRRegClass);
1550 BuildMI(MBB, MI, DL, TII.get(ARM::VLD1q64), SupReg)
1551 .addReg(ARM::R4)
1552 .addImm(16)
1553 .add(predOps(ARMCC::AL));
1554 NextReg += 2;
1555 NumAlignedDPRCS2Regs -= 2;
1558 // Finally, use a vanilla vldr.64 for the remaining odd register.
1559 if (NumAlignedDPRCS2Regs)
1560 BuildMI(MBB, MI, DL, TII.get(ARM::VLDRD), NextReg)
1561 .addReg(ARM::R4)
1562 .addImm(2 * (NextReg - R4BaseReg))
1563 .add(predOps(ARMCC::AL));
1565 // Last store kills r4.
1566 std::prev(MI)->addRegisterKilled(ARM::R4, TRI);
1569 bool ARMFrameLowering::spillCalleeSavedRegisters(
1570 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1571 ArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1572 if (CSI.empty())
1573 return false;
1575 MachineFunction &MF = *MBB.getParent();
1576 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1578 unsigned PushOpc = AFI->isThumbFunction() ? ARM::t2STMDB_UPD : ARM::STMDB_UPD;
1579 unsigned PushOneOpc = AFI->isThumbFunction() ?
1580 ARM::t2STR_PRE : ARM::STR_PRE_IMM;
1581 unsigned FltOpc = ARM::VSTMDDB_UPD;
1582 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1583 // Save the non-secure floating point context.
1584 if (llvm::any_of(CSI, [](const CalleeSavedInfo &C) {
1585 return C.getReg() == ARM::FPCXTNS;
1586 })) {
1587 BuildMI(MBB, MI, DebugLoc(), STI.getInstrInfo()->get(ARM::VSTR_FPCXTNS_pre),
1588 ARM::SP)
1589 .addReg(ARM::SP)
1590 .addImm(-4)
1591 .add(predOps(ARMCC::AL));
1593 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea1Register, 0,
1594 MachineInstr::FrameSetup);
1595 emitPushInst(MBB, MI, CSI, PushOpc, PushOneOpc, false, &isARMArea2Register, 0,
1596 MachineInstr::FrameSetup);
1597 emitPushInst(MBB, MI, CSI, FltOpc, 0, true, &isARMArea3Register,
1598 NumAlignedDPRCS2Regs, MachineInstr::FrameSetup);
1600 // The code above does not insert spill code for the aligned DPRCS2 registers.
1601 // The stack realignment code will be inserted between the push instructions
1602 // and these spills.
1603 if (NumAlignedDPRCS2Regs)
1604 emitAlignedDPRCS2Spills(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1606 return true;
1609 bool ARMFrameLowering::restoreCalleeSavedRegisters(
1610 MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
1611 MutableArrayRef<CalleeSavedInfo> CSI, const TargetRegisterInfo *TRI) const {
1612 if (CSI.empty())
1613 return false;
1615 MachineFunction &MF = *MBB.getParent();
1616 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1617 bool isVarArg = AFI->getArgRegsSaveSize() > 0;
1618 unsigned NumAlignedDPRCS2Regs = AFI->getNumAlignedDPRCS2Regs();
1620 // The emitPopInst calls below do not insert reloads for the aligned DPRCS2
1621 // registers. Do that here instead.
1622 if (NumAlignedDPRCS2Regs)
1623 emitAlignedDPRCS2Restores(MBB, MI, NumAlignedDPRCS2Regs, CSI, TRI);
1625 unsigned PopOpc = AFI->isThumbFunction() ? ARM::t2LDMIA_UPD : ARM::LDMIA_UPD;
1626 unsigned LdrOpc = AFI->isThumbFunction() ? ARM::t2LDR_POST :ARM::LDR_POST_IMM;
1627 unsigned FltOpc = ARM::VLDMDIA_UPD;
1628 emitPopInst(MBB, MI, CSI, FltOpc, 0, isVarArg, true, &isARMArea3Register,
1629 NumAlignedDPRCS2Regs);
1630 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1631 &isARMArea2Register, 0);
1632 emitPopInst(MBB, MI, CSI, PopOpc, LdrOpc, isVarArg, false,
1633 &isARMArea1Register, 0);
1635 return true;
1638 // FIXME: Make generic?
1639 static unsigned EstimateFunctionSizeInBytes(const MachineFunction &MF,
1640 const ARMBaseInstrInfo &TII) {
1641 unsigned FnSize = 0;
1642 for (auto &MBB : MF) {
1643 for (auto &MI : MBB)
1644 FnSize += TII.getInstSizeInBytes(MI);
1646 if (MF.getJumpTableInfo())
1647 for (auto &Table: MF.getJumpTableInfo()->getJumpTables())
1648 FnSize += Table.MBBs.size() * 4;
1649 FnSize += MF.getConstantPool()->getConstants().size() * 4;
1650 return FnSize;
1653 /// estimateRSStackSizeLimit - Look at each instruction that references stack
1654 /// frames and return the stack size limit beyond which some of these
1655 /// instructions will require a scratch register during their expansion later.
1656 // FIXME: Move to TII?
1657 static unsigned estimateRSStackSizeLimit(MachineFunction &MF,
1658 const TargetFrameLowering *TFI,
1659 bool &HasNonSPFrameIndex) {
1660 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1661 const ARMBaseInstrInfo &TII =
1662 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1663 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1664 unsigned Limit = (1 << 12) - 1;
1665 for (auto &MBB : MF) {
1666 for (auto &MI : MBB) {
1667 if (MI.isDebugInstr())
1668 continue;
1669 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1670 if (!MI.getOperand(i).isFI())
1671 continue;
1673 // When using ADDri to get the address of a stack object, 255 is the
1674 // largest offset guaranteed to fit in the immediate offset.
1675 if (MI.getOpcode() == ARM::ADDri) {
1676 Limit = std::min(Limit, (1U << 8) - 1);
1677 break;
1679 // t2ADDri will not require an extra register, it can reuse the
1680 // destination.
1681 if (MI.getOpcode() == ARM::t2ADDri || MI.getOpcode() == ARM::t2ADDri12)
1682 break;
1684 const MCInstrDesc &MCID = MI.getDesc();
1685 const TargetRegisterClass *RegClass = TII.getRegClass(MCID, i, TRI, MF);
1686 if (RegClass && !RegClass->contains(ARM::SP))
1687 HasNonSPFrameIndex = true;
1689 // Otherwise check the addressing mode.
1690 switch (MI.getDesc().TSFlags & ARMII::AddrModeMask) {
1691 case ARMII::AddrMode_i12:
1692 case ARMII::AddrMode2:
1693 // Default 12 bit limit.
1694 break;
1695 case ARMII::AddrMode3:
1696 case ARMII::AddrModeT2_i8:
1697 Limit = std::min(Limit, (1U << 8) - 1);
1698 break;
1699 case ARMII::AddrMode5FP16:
1700 Limit = std::min(Limit, ((1U << 8) - 1) * 2);
1701 break;
1702 case ARMII::AddrMode5:
1703 case ARMII::AddrModeT2_i8s4:
1704 case ARMII::AddrModeT2_ldrex:
1705 Limit = std::min(Limit, ((1U << 8) - 1) * 4);
1706 break;
1707 case ARMII::AddrModeT2_i12:
1708 // i12 supports only positive offset so these will be converted to
1709 // i8 opcodes. See llvm::rewriteT2FrameIndex.
1710 if (TFI->hasFP(MF) && AFI->hasStackFrame())
1711 Limit = std::min(Limit, (1U << 8) - 1);
1712 break;
1713 case ARMII::AddrMode4:
1714 case ARMII::AddrMode6:
1715 // Addressing modes 4 & 6 (load/store) instructions can't encode an
1716 // immediate offset for stack references.
1717 return 0;
1718 case ARMII::AddrModeT2_i7:
1719 Limit = std::min(Limit, ((1U << 7) - 1) * 1);
1720 break;
1721 case ARMII::AddrModeT2_i7s2:
1722 Limit = std::min(Limit, ((1U << 7) - 1) * 2);
1723 break;
1724 case ARMII::AddrModeT2_i7s4:
1725 Limit = std::min(Limit, ((1U << 7) - 1) * 4);
1726 break;
1727 default:
1728 llvm_unreachable("Unhandled addressing mode in stack size limit calculation");
1730 break; // At most one FI per instruction
1735 return Limit;
1738 // In functions that realign the stack, it can be an advantage to spill the
1739 // callee-saved vector registers after realigning the stack. The vst1 and vld1
1740 // instructions take alignment hints that can improve performance.
1741 static void
1742 checkNumAlignedDPRCS2Regs(MachineFunction &MF, BitVector &SavedRegs) {
1743 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(0);
1744 if (!SpillAlignedNEONRegs)
1745 return;
1747 // Naked functions don't spill callee-saved registers.
1748 if (MF.getFunction().hasFnAttribute(Attribute::Naked))
1749 return;
1751 // We are planning to use NEON instructions vst1 / vld1.
1752 if (!static_cast<const ARMSubtarget &>(MF.getSubtarget()).hasNEON())
1753 return;
1755 // Don't bother if the default stack alignment is sufficiently high.
1756 if (MF.getSubtarget().getFrameLowering()->getStackAlign() >= Align(8))
1757 return;
1759 // Aligned spills require stack realignment.
1760 if (!static_cast<const ARMBaseRegisterInfo *>(
1761 MF.getSubtarget().getRegisterInfo())->canRealignStack(MF))
1762 return;
1764 // We always spill contiguous d-registers starting from d8. Count how many
1765 // needs spilling. The register allocator will almost always use the
1766 // callee-saved registers in order, but it can happen that there are holes in
1767 // the range. Registers above the hole will be spilled to the standard DPRCS
1768 // area.
1769 unsigned NumSpills = 0;
1770 for (; NumSpills < 8; ++NumSpills)
1771 if (!SavedRegs.test(ARM::D8 + NumSpills))
1772 break;
1774 // Don't do this for just one d-register. It's not worth it.
1775 if (NumSpills < 2)
1776 return;
1778 // Spill the first NumSpills D-registers after realigning the stack.
1779 MF.getInfo<ARMFunctionInfo>()->setNumAlignedDPRCS2Regs(NumSpills);
1781 // A scratch register is required for the vst1 / vld1 instructions.
1782 SavedRegs.set(ARM::R4);
1785 bool ARMFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
1786 // For CMSE entry functions, we want to save the FPCXT_NS immediately
1787 // upon function entry (resp. restore it immmediately before return)
1788 if (STI.hasV8_1MMainlineOps() &&
1789 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction())
1790 return false;
1792 return true;
1795 void ARMFrameLowering::determineCalleeSaves(MachineFunction &MF,
1796 BitVector &SavedRegs,
1797 RegScavenger *RS) const {
1798 TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
1799 // This tells PEI to spill the FP as if it is any other callee-save register
1800 // to take advantage the eliminateFrameIndex machinery. This also ensures it
1801 // is spilled in the order specified by getCalleeSavedRegs() to make it easier
1802 // to combine multiple loads / stores.
1803 bool CanEliminateFrame = true;
1804 bool CS1Spilled = false;
1805 bool LRSpilled = false;
1806 unsigned NumGPRSpills = 0;
1807 unsigned NumFPRSpills = 0;
1808 SmallVector<unsigned, 4> UnspilledCS1GPRs;
1809 SmallVector<unsigned, 4> UnspilledCS2GPRs;
1810 const ARMBaseRegisterInfo *RegInfo = static_cast<const ARMBaseRegisterInfo *>(
1811 MF.getSubtarget().getRegisterInfo());
1812 const ARMBaseInstrInfo &TII =
1813 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
1814 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
1815 MachineFrameInfo &MFI = MF.getFrameInfo();
1816 MachineRegisterInfo &MRI = MF.getRegInfo();
1817 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1818 (void)TRI; // Silence unused warning in non-assert builds.
1819 Register FramePtr = RegInfo->getFrameRegister(MF);
1821 // Spill R4 if Thumb2 function requires stack realignment - it will be used as
1822 // scratch register. Also spill R4 if Thumb2 function has varsized objects,
1823 // since it's not always possible to restore sp from fp in a single
1824 // instruction.
1825 // FIXME: It will be better just to find spare register here.
1826 if (AFI->isThumb2Function() &&
1827 (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)))
1828 SavedRegs.set(ARM::R4);
1830 // If a stack probe will be emitted, spill R4 and LR, since they are
1831 // clobbered by the stack probe call.
1832 // This estimate should be a safe, conservative estimate. The actual
1833 // stack probe is enabled based on the size of the local objects;
1834 // this estimate also includes the varargs store size.
1835 if (STI.isTargetWindows() &&
1836 WindowsRequiresStackProbe(MF, MFI.estimateStackSize(MF))) {
1837 SavedRegs.set(ARM::R4);
1838 SavedRegs.set(ARM::LR);
1841 if (AFI->isThumb1OnlyFunction()) {
1842 // Spill LR if Thumb1 function uses variable length argument lists.
1843 if (AFI->getArgRegsSaveSize() > 0)
1844 SavedRegs.set(ARM::LR);
1846 // Spill R4 if Thumb1 epilogue has to restore SP from FP or the function
1847 // requires stack alignment. We don't know for sure what the stack size
1848 // will be, but for this, an estimate is good enough. If there anything
1849 // changes it, it'll be a spill, which implies we've used all the registers
1850 // and so R4 is already used, so not marking it here will be OK.
1851 // FIXME: It will be better just to find spare register here.
1852 if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF) ||
1853 MFI.estimateStackSize(MF) > 508)
1854 SavedRegs.set(ARM::R4);
1857 // See if we can spill vector registers to aligned stack.
1858 checkNumAlignedDPRCS2Regs(MF, SavedRegs);
1860 // Spill the BasePtr if it's used.
1861 if (RegInfo->hasBasePointer(MF))
1862 SavedRegs.set(RegInfo->getBaseRegister());
1864 // On v8.1-M.Main CMSE entry functions save/restore FPCXT.
1865 if (STI.hasV8_1MMainlineOps() && AFI->isCmseNSEntryFunction())
1866 CanEliminateFrame = false;
1868 // Don't spill FP if the frame can be eliminated. This is determined
1869 // by scanning the callee-save registers to see if any is modified.
1870 const MCPhysReg *CSRegs = RegInfo->getCalleeSavedRegs(&MF);
1871 for (unsigned i = 0; CSRegs[i]; ++i) {
1872 unsigned Reg = CSRegs[i];
1873 bool Spilled = false;
1874 if (SavedRegs.test(Reg)) {
1875 Spilled = true;
1876 CanEliminateFrame = false;
1879 if (!ARM::GPRRegClass.contains(Reg)) {
1880 if (Spilled) {
1881 if (ARM::SPRRegClass.contains(Reg))
1882 NumFPRSpills++;
1883 else if (ARM::DPRRegClass.contains(Reg))
1884 NumFPRSpills += 2;
1885 else if (ARM::QPRRegClass.contains(Reg))
1886 NumFPRSpills += 4;
1888 continue;
1891 if (Spilled) {
1892 NumGPRSpills++;
1894 if (!STI.splitFramePushPop(MF)) {
1895 if (Reg == ARM::LR)
1896 LRSpilled = true;
1897 CS1Spilled = true;
1898 continue;
1901 // Keep track if LR and any of R4, R5, R6, and R7 is spilled.
1902 switch (Reg) {
1903 case ARM::LR:
1904 LRSpilled = true;
1905 LLVM_FALLTHROUGH;
1906 case ARM::R0: case ARM::R1:
1907 case ARM::R2: case ARM::R3:
1908 case ARM::R4: case ARM::R5:
1909 case ARM::R6: case ARM::R7:
1910 CS1Spilled = true;
1911 break;
1912 default:
1913 break;
1915 } else {
1916 if (!STI.splitFramePushPop(MF)) {
1917 UnspilledCS1GPRs.push_back(Reg);
1918 continue;
1921 switch (Reg) {
1922 case ARM::R0: case ARM::R1:
1923 case ARM::R2: case ARM::R3:
1924 case ARM::R4: case ARM::R5:
1925 case ARM::R6: case ARM::R7:
1926 case ARM::LR:
1927 UnspilledCS1GPRs.push_back(Reg);
1928 break;
1929 default:
1930 UnspilledCS2GPRs.push_back(Reg);
1931 break;
1936 bool ForceLRSpill = false;
1937 if (!LRSpilled && AFI->isThumb1OnlyFunction()) {
1938 unsigned FnSize = EstimateFunctionSizeInBytes(MF, TII);
1939 // Force LR to be spilled if the Thumb function size is > 2048. This enables
1940 // use of BL to implement far jump.
1941 if (FnSize >= (1 << 11)) {
1942 CanEliminateFrame = false;
1943 ForceLRSpill = true;
1947 // If any of the stack slot references may be out of range of an immediate
1948 // offset, make sure a register (or a spill slot) is available for the
1949 // register scavenger. Note that if we're indexing off the frame pointer, the
1950 // effective stack size is 4 bytes larger since the FP points to the stack
1951 // slot of the previous FP. Also, if we have variable sized objects in the
1952 // function, stack slot references will often be negative, and some of
1953 // our instructions are positive-offset only, so conservatively consider
1954 // that case to want a spill slot (or register) as well. Similarly, if
1955 // the function adjusts the stack pointer during execution and the
1956 // adjustments aren't already part of our stack size estimate, our offset
1957 // calculations may be off, so be conservative.
1958 // FIXME: We could add logic to be more precise about negative offsets
1959 // and which instructions will need a scratch register for them. Is it
1960 // worth the effort and added fragility?
1961 unsigned EstimatedStackSize =
1962 MFI.estimateStackSize(MF) + 4 * (NumGPRSpills + NumFPRSpills);
1964 // Determine biggest (positive) SP offset in MachineFrameInfo.
1965 int MaxFixedOffset = 0;
1966 for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
1967 int MaxObjectOffset = MFI.getObjectOffset(I) + MFI.getObjectSize(I);
1968 MaxFixedOffset = std::max(MaxFixedOffset, MaxObjectOffset);
1971 bool HasFP = hasFP(MF);
1972 if (HasFP) {
1973 if (AFI->hasStackFrame())
1974 EstimatedStackSize += 4;
1975 } else {
1976 // If FP is not used, SP will be used to access arguments, so count the
1977 // size of arguments into the estimation.
1978 EstimatedStackSize += MaxFixedOffset;
1980 EstimatedStackSize += 16; // For possible paddings.
1982 unsigned EstimatedRSStackSizeLimit, EstimatedRSFixedSizeLimit;
1983 bool HasNonSPFrameIndex = false;
1984 if (AFI->isThumb1OnlyFunction()) {
1985 // For Thumb1, don't bother to iterate over the function. The only
1986 // instruction that requires an emergency spill slot is a store to a
1987 // frame index.
1989 // tSTRspi, which is used for sp-relative accesses, has an 8-bit unsigned
1990 // immediate. tSTRi, which is used for bp- and fp-relative accesses, has
1991 // a 5-bit unsigned immediate.
1993 // We could try to check if the function actually contains a tSTRspi
1994 // that might need the spill slot, but it's not really important.
1995 // Functions with VLAs or extremely large call frames are rare, and
1996 // if a function is allocating more than 1KB of stack, an extra 4-byte
1997 // slot probably isn't relevant.
1998 if (RegInfo->hasBasePointer(MF))
1999 EstimatedRSStackSizeLimit = (1U << 5) * 4;
2000 else
2001 EstimatedRSStackSizeLimit = (1U << 8) * 4;
2002 EstimatedRSFixedSizeLimit = (1U << 5) * 4;
2003 } else {
2004 EstimatedRSStackSizeLimit =
2005 estimateRSStackSizeLimit(MF, this, HasNonSPFrameIndex);
2006 EstimatedRSFixedSizeLimit = EstimatedRSStackSizeLimit;
2008 // Final estimate of whether sp or bp-relative accesses might require
2009 // scavenging.
2010 bool HasLargeStack = EstimatedStackSize > EstimatedRSStackSizeLimit;
2012 // If the stack pointer moves and we don't have a base pointer, the
2013 // estimate logic doesn't work. The actual offsets might be larger when
2014 // we're constructing a call frame, or we might need to use negative
2015 // offsets from fp.
2016 bool HasMovingSP = MFI.hasVarSizedObjects() ||
2017 (MFI.adjustsStack() && !canSimplifyCallFramePseudos(MF));
2018 bool HasBPOrFixedSP = RegInfo->hasBasePointer(MF) || !HasMovingSP;
2020 // If we have a frame pointer, we assume arguments will be accessed
2021 // relative to the frame pointer. Check whether fp-relative accesses to
2022 // arguments require scavenging.
2024 // We could do slightly better on Thumb1; in some cases, an sp-relative
2025 // offset would be legal even though an fp-relative offset is not.
2026 int MaxFPOffset = getMaxFPOffset(STI, *AFI);
2027 bool HasLargeArgumentList =
2028 HasFP && (MaxFixedOffset - MaxFPOffset) > (int)EstimatedRSFixedSizeLimit;
2030 bool BigFrameOffsets = HasLargeStack || !HasBPOrFixedSP ||
2031 HasLargeArgumentList || HasNonSPFrameIndex;
2032 LLVM_DEBUG(dbgs() << "EstimatedLimit: " << EstimatedRSStackSizeLimit
2033 << "; EstimatedStack: " << EstimatedStackSize
2034 << "; EstimatedFPStack: " << MaxFixedOffset - MaxFPOffset
2035 << "; BigFrameOffsets: " << BigFrameOffsets << "\n");
2036 if (BigFrameOffsets ||
2037 !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) {
2038 AFI->setHasStackFrame(true);
2040 if (HasFP) {
2041 SavedRegs.set(FramePtr);
2042 // If the frame pointer is required by the ABI, also spill LR so that we
2043 // emit a complete frame record.
2044 if (MF.getTarget().Options.DisableFramePointerElim(MF) && !LRSpilled) {
2045 SavedRegs.set(ARM::LR);
2046 LRSpilled = true;
2047 NumGPRSpills++;
2048 auto LRPos = llvm::find(UnspilledCS1GPRs, ARM::LR);
2049 if (LRPos != UnspilledCS1GPRs.end())
2050 UnspilledCS1GPRs.erase(LRPos);
2052 auto FPPos = llvm::find(UnspilledCS1GPRs, FramePtr);
2053 if (FPPos != UnspilledCS1GPRs.end())
2054 UnspilledCS1GPRs.erase(FPPos);
2055 NumGPRSpills++;
2056 if (FramePtr == ARM::R7)
2057 CS1Spilled = true;
2060 // This is true when we inserted a spill for a callee-save GPR which is
2061 // not otherwise used by the function. This guaranteees it is possible
2062 // to scavenge a register to hold the address of a stack slot. On Thumb1,
2063 // the register must be a valid operand to tSTRi, i.e. r4-r7. For other
2064 // subtargets, this is any GPR, i.e. r4-r11 or lr.
2066 // If we don't insert a spill, we instead allocate an emergency spill
2067 // slot, which can be used by scavenging to spill an arbitrary register.
2069 // We currently don't try to figure out whether any specific instruction
2070 // requires scavening an additional register.
2071 bool ExtraCSSpill = false;
2073 if (AFI->isThumb1OnlyFunction()) {
2074 // For Thumb1-only targets, we need some low registers when we save and
2075 // restore the high registers (which aren't allocatable, but could be
2076 // used by inline assembly) because the push/pop instructions can not
2077 // access high registers. If necessary, we might need to push more low
2078 // registers to ensure that there is at least one free that can be used
2079 // for the saving & restoring, and preferably we should ensure that as
2080 // many as are needed are available so that fewer push/pop instructions
2081 // are required.
2083 // Low registers which are not currently pushed, but could be (r4-r7).
2084 SmallVector<unsigned, 4> AvailableRegs;
2086 // Unused argument registers (r0-r3) can be clobbered in the prologue for
2087 // free.
2088 int EntryRegDeficit = 0;
2089 for (unsigned Reg : {ARM::R0, ARM::R1, ARM::R2, ARM::R3}) {
2090 if (!MF.getRegInfo().isLiveIn(Reg)) {
2091 --EntryRegDeficit;
2092 LLVM_DEBUG(dbgs()
2093 << printReg(Reg, TRI)
2094 << " is unused argument register, EntryRegDeficit = "
2095 << EntryRegDeficit << "\n");
2099 // Unused return registers can be clobbered in the epilogue for free.
2100 int ExitRegDeficit = AFI->getReturnRegsCount() - 4;
2101 LLVM_DEBUG(dbgs() << AFI->getReturnRegsCount()
2102 << " return regs used, ExitRegDeficit = "
2103 << ExitRegDeficit << "\n");
2105 int RegDeficit = std::max(EntryRegDeficit, ExitRegDeficit);
2106 LLVM_DEBUG(dbgs() << "RegDeficit = " << RegDeficit << "\n");
2108 // r4-r6 can be used in the prologue if they are pushed by the first push
2109 // instruction.
2110 for (unsigned Reg : {ARM::R4, ARM::R5, ARM::R6}) {
2111 if (SavedRegs.test(Reg)) {
2112 --RegDeficit;
2113 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2114 << " is saved low register, RegDeficit = "
2115 << RegDeficit << "\n");
2116 } else {
2117 AvailableRegs.push_back(Reg);
2118 LLVM_DEBUG(
2119 dbgs()
2120 << printReg(Reg, TRI)
2121 << " is non-saved low register, adding to AvailableRegs\n");
2125 // r7 can be used if it is not being used as the frame pointer.
2126 if (!HasFP) {
2127 if (SavedRegs.test(ARM::R7)) {
2128 --RegDeficit;
2129 LLVM_DEBUG(dbgs() << "%r7 is saved low register, RegDeficit = "
2130 << RegDeficit << "\n");
2131 } else {
2132 AvailableRegs.push_back(ARM::R7);
2133 LLVM_DEBUG(
2134 dbgs()
2135 << "%r7 is non-saved low register, adding to AvailableRegs\n");
2139 // Each of r8-r11 needs to be copied to a low register, then pushed.
2140 for (unsigned Reg : {ARM::R8, ARM::R9, ARM::R10, ARM::R11}) {
2141 if (SavedRegs.test(Reg)) {
2142 ++RegDeficit;
2143 LLVM_DEBUG(dbgs() << printReg(Reg, TRI)
2144 << " is saved high register, RegDeficit = "
2145 << RegDeficit << "\n");
2149 // LR can only be used by PUSH, not POP, and can't be used at all if the
2150 // llvm.returnaddress intrinsic is used. This is only worth doing if we
2151 // are more limited at function entry than exit.
2152 if ((EntryRegDeficit > ExitRegDeficit) &&
2153 !(MF.getRegInfo().isLiveIn(ARM::LR) &&
2154 MF.getFrameInfo().isReturnAddressTaken())) {
2155 if (SavedRegs.test(ARM::LR)) {
2156 --RegDeficit;
2157 LLVM_DEBUG(dbgs() << "%lr is saved register, RegDeficit = "
2158 << RegDeficit << "\n");
2159 } else {
2160 AvailableRegs.push_back(ARM::LR);
2161 LLVM_DEBUG(dbgs() << "%lr is not saved, adding to AvailableRegs\n");
2165 // If there are more high registers that need pushing than low registers
2166 // available, push some more low registers so that we can use fewer push
2167 // instructions. This might not reduce RegDeficit all the way to zero,
2168 // because we can only guarantee that r4-r6 are available, but r8-r11 may
2169 // need saving.
2170 LLVM_DEBUG(dbgs() << "Final RegDeficit = " << RegDeficit << "\n");
2171 for (; RegDeficit > 0 && !AvailableRegs.empty(); --RegDeficit) {
2172 unsigned Reg = AvailableRegs.pop_back_val();
2173 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2174 << " to make up reg deficit\n");
2175 SavedRegs.set(Reg);
2176 NumGPRSpills++;
2177 CS1Spilled = true;
2178 assert(!MRI.isReserved(Reg) && "Should not be reserved");
2179 if (Reg != ARM::LR && !MRI.isPhysRegUsed(Reg))
2180 ExtraCSSpill = true;
2181 UnspilledCS1GPRs.erase(llvm::find(UnspilledCS1GPRs, Reg));
2182 if (Reg == ARM::LR)
2183 LRSpilled = true;
2185 LLVM_DEBUG(dbgs() << "After adding spills, RegDeficit = " << RegDeficit
2186 << "\n");
2189 // Avoid spilling LR in Thumb1 if there's a tail call: it's expensive to
2190 // restore LR in that case.
2191 bool ExpensiveLRRestore = AFI->isThumb1OnlyFunction() && MFI.hasTailCall();
2193 // If LR is not spilled, but at least one of R4, R5, R6, and R7 is spilled.
2194 // Spill LR as well so we can fold BX_RET to the registers restore (LDM).
2195 if (!LRSpilled && CS1Spilled && !ExpensiveLRRestore) {
2196 SavedRegs.set(ARM::LR);
2197 NumGPRSpills++;
2198 SmallVectorImpl<unsigned>::iterator LRPos;
2199 LRPos = llvm::find(UnspilledCS1GPRs, (unsigned)ARM::LR);
2200 if (LRPos != UnspilledCS1GPRs.end())
2201 UnspilledCS1GPRs.erase(LRPos);
2203 ForceLRSpill = false;
2204 if (!MRI.isReserved(ARM::LR) && !MRI.isPhysRegUsed(ARM::LR) &&
2205 !AFI->isThumb1OnlyFunction())
2206 ExtraCSSpill = true;
2209 // If stack and double are 8-byte aligned and we are spilling an odd number
2210 // of GPRs, spill one extra callee save GPR so we won't have to pad between
2211 // the integer and double callee save areas.
2212 LLVM_DEBUG(dbgs() << "NumGPRSpills = " << NumGPRSpills << "\n");
2213 const Align TargetAlign = getStackAlign();
2214 if (TargetAlign >= Align(8) && (NumGPRSpills & 1)) {
2215 if (CS1Spilled && !UnspilledCS1GPRs.empty()) {
2216 for (unsigned i = 0, e = UnspilledCS1GPRs.size(); i != e; ++i) {
2217 unsigned Reg = UnspilledCS1GPRs[i];
2218 // Don't spill high register if the function is thumb. In the case of
2219 // Windows on ARM, accept R11 (frame pointer)
2220 if (!AFI->isThumbFunction() ||
2221 (STI.isTargetWindows() && Reg == ARM::R11) ||
2222 isARMLowRegister(Reg) ||
2223 (Reg == ARM::LR && !ExpensiveLRRestore)) {
2224 SavedRegs.set(Reg);
2225 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2226 << " to make up alignment\n");
2227 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg) &&
2228 !(Reg == ARM::LR && AFI->isThumb1OnlyFunction()))
2229 ExtraCSSpill = true;
2230 break;
2233 } else if (!UnspilledCS2GPRs.empty() && !AFI->isThumb1OnlyFunction()) {
2234 unsigned Reg = UnspilledCS2GPRs.front();
2235 SavedRegs.set(Reg);
2236 LLVM_DEBUG(dbgs() << "Spilling " << printReg(Reg, TRI)
2237 << " to make up alignment\n");
2238 if (!MRI.isReserved(Reg) && !MRI.isPhysRegUsed(Reg))
2239 ExtraCSSpill = true;
2243 // Estimate if we might need to scavenge a register at some point in order
2244 // to materialize a stack offset. If so, either spill one additional
2245 // callee-saved register or reserve a special spill slot to facilitate
2246 // register scavenging. Thumb1 needs a spill slot for stack pointer
2247 // adjustments also, even when the frame itself is small.
2248 if (BigFrameOffsets && !ExtraCSSpill) {
2249 // If any non-reserved CS register isn't spilled, just spill one or two
2250 // extra. That should take care of it!
2251 unsigned NumExtras = TargetAlign.value() / 4;
2252 SmallVector<unsigned, 2> Extras;
2253 while (NumExtras && !UnspilledCS1GPRs.empty()) {
2254 unsigned Reg = UnspilledCS1GPRs.pop_back_val();
2255 if (!MRI.isReserved(Reg) &&
2256 (!AFI->isThumb1OnlyFunction() || isARMLowRegister(Reg))) {
2257 Extras.push_back(Reg);
2258 NumExtras--;
2261 // For non-Thumb1 functions, also check for hi-reg CS registers
2262 if (!AFI->isThumb1OnlyFunction()) {
2263 while (NumExtras && !UnspilledCS2GPRs.empty()) {
2264 unsigned Reg = UnspilledCS2GPRs.pop_back_val();
2265 if (!MRI.isReserved(Reg)) {
2266 Extras.push_back(Reg);
2267 NumExtras--;
2271 if (NumExtras == 0) {
2272 for (unsigned Reg : Extras) {
2273 SavedRegs.set(Reg);
2274 if (!MRI.isPhysRegUsed(Reg))
2275 ExtraCSSpill = true;
2278 if (!ExtraCSSpill && RS) {
2279 // Reserve a slot closest to SP or frame pointer.
2280 LLVM_DEBUG(dbgs() << "Reserving emergency spill slot\n");
2281 const TargetRegisterClass &RC = ARM::GPRRegClass;
2282 unsigned Size = TRI->getSpillSize(RC);
2283 Align Alignment = TRI->getSpillAlign(RC);
2284 RS->addScavengingFrameIndex(
2285 MFI.CreateStackObject(Size, Alignment, false));
2290 if (ForceLRSpill)
2291 SavedRegs.set(ARM::LR);
2292 AFI->setLRIsSpilled(SavedRegs.test(ARM::LR));
2295 void ARMFrameLowering::getCalleeSaves(const MachineFunction &MF,
2296 BitVector &SavedRegs) const {
2297 TargetFrameLowering::getCalleeSaves(MF, SavedRegs);
2299 // If we have the "returned" parameter attribute which guarantees that we
2300 // return the value which was passed in r0 unmodified (e.g. C++ 'structors),
2301 // record that fact for IPRA.
2302 const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2303 if (AFI->getPreservesR0())
2304 SavedRegs.set(ARM::R0);
2307 bool ARMFrameLowering::assignCalleeSavedSpillSlots(
2308 MachineFunction &MF, const TargetRegisterInfo *TRI,
2309 std::vector<CalleeSavedInfo> &CSI) const {
2310 // For CMSE entry functions, handle floating-point context as if it was a
2311 // callee-saved register.
2312 if (STI.hasV8_1MMainlineOps() &&
2313 MF.getInfo<ARMFunctionInfo>()->isCmseNSEntryFunction()) {
2314 CSI.emplace_back(ARM::FPCXTNS);
2315 CSI.back().setRestored(false);
2318 return false;
2321 const TargetFrameLowering::SpillSlot *
2322 ARMFrameLowering::getCalleeSavedSpillSlots(unsigned &NumEntries) const {
2323 static const SpillSlot FixedSpillOffsets[] = {{ARM::FPCXTNS, -4}};
2324 NumEntries = array_lengthof(FixedSpillOffsets);
2325 return FixedSpillOffsets;
2328 MachineBasicBlock::iterator ARMFrameLowering::eliminateCallFramePseudoInstr(
2329 MachineFunction &MF, MachineBasicBlock &MBB,
2330 MachineBasicBlock::iterator I) const {
2331 const ARMBaseInstrInfo &TII =
2332 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2333 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
2334 bool isARM = !AFI->isThumbFunction();
2335 DebugLoc dl = I->getDebugLoc();
2336 unsigned Opc = I->getOpcode();
2337 bool IsDestroy = Opc == TII.getCallFrameDestroyOpcode();
2338 unsigned CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0;
2340 assert(!AFI->isThumb1OnlyFunction() &&
2341 "This eliminateCallFramePseudoInstr does not support Thumb1!");
2343 int PIdx = I->findFirstPredOperandIdx();
2344 ARMCC::CondCodes Pred = (PIdx == -1)
2345 ? ARMCC::AL
2346 : (ARMCC::CondCodes)I->getOperand(PIdx).getImm();
2347 unsigned PredReg = TII.getFramePred(*I);
2349 if (!hasReservedCallFrame(MF)) {
2350 // Bail early if the callee is expected to do the adjustment.
2351 if (IsDestroy && CalleePopAmount != -1U)
2352 return MBB.erase(I);
2354 // If we have alloca, convert as follows:
2355 // ADJCALLSTACKDOWN -> sub, sp, sp, amount
2356 // ADJCALLSTACKUP -> add, sp, sp, amount
2357 unsigned Amount = TII.getFrameSize(*I);
2358 if (Amount != 0) {
2359 // We need to keep the stack aligned properly. To do this, we round the
2360 // amount of space needed for the outgoing arguments up to the next
2361 // alignment boundary.
2362 Amount = alignSPAdjust(Amount);
2364 if (Opc == ARM::ADJCALLSTACKDOWN || Opc == ARM::tADJCALLSTACKDOWN) {
2365 emitSPUpdate(isARM, MBB, I, dl, TII, -Amount, MachineInstr::NoFlags,
2366 Pred, PredReg);
2367 } else {
2368 assert(Opc == ARM::ADJCALLSTACKUP || Opc == ARM::tADJCALLSTACKUP);
2369 emitSPUpdate(isARM, MBB, I, dl, TII, Amount, MachineInstr::NoFlags,
2370 Pred, PredReg);
2373 } else if (CalleePopAmount != -1U) {
2374 // If the calling convention demands that the callee pops arguments from the
2375 // stack, we want to add it back if we have a reserved call frame.
2376 emitSPUpdate(isARM, MBB, I, dl, TII, -CalleePopAmount,
2377 MachineInstr::NoFlags, Pred, PredReg);
2379 return MBB.erase(I);
2382 /// Get the minimum constant for ARM that is greater than or equal to the
2383 /// argument. In ARM, constants can have any value that can be produced by
2384 /// rotating an 8-bit value to the right by an even number of bits within a
2385 /// 32-bit word.
2386 static uint32_t alignToARMConstant(uint32_t Value) {
2387 unsigned Shifted = 0;
2389 if (Value == 0)
2390 return 0;
2392 while (!(Value & 0xC0000000)) {
2393 Value = Value << 2;
2394 Shifted += 2;
2397 bool Carry = (Value & 0x00FFFFFF);
2398 Value = ((Value & 0xFF000000) >> 24) + Carry;
2400 if (Value & 0x0000100)
2401 Value = Value & 0x000001FC;
2403 if (Shifted > 24)
2404 Value = Value >> (Shifted - 24);
2405 else
2406 Value = Value << (24 - Shifted);
2408 return Value;
2411 // The stack limit in the TCB is set to this many bytes above the actual
2412 // stack limit.
2413 static const uint64_t kSplitStackAvailable = 256;
2415 // Adjust the function prologue to enable split stacks. This currently only
2416 // supports android and linux.
2418 // The ABI of the segmented stack prologue is a little arbitrarily chosen, but
2419 // must be well defined in order to allow for consistent implementations of the
2420 // __morestack helper function. The ABI is also not a normal ABI in that it
2421 // doesn't follow the normal calling conventions because this allows the
2422 // prologue of each function to be optimized further.
2424 // Currently, the ABI looks like (when calling __morestack)
2426 // * r4 holds the minimum stack size requested for this function call
2427 // * r5 holds the stack size of the arguments to the function
2428 // * the beginning of the function is 3 instructions after the call to
2429 // __morestack
2431 // Implementations of __morestack should use r4 to allocate a new stack, r5 to
2432 // place the arguments on to the new stack, and the 3-instruction knowledge to
2433 // jump directly to the body of the function when working on the new stack.
2435 // An old (and possibly no longer compatible) implementation of __morestack for
2436 // ARM can be found at [1].
2438 // [1] - https://github.com/mozilla/rust/blob/86efd9/src/rt/arch/arm/morestack.S
2439 void ARMFrameLowering::adjustForSegmentedStacks(
2440 MachineFunction &MF, MachineBasicBlock &PrologueMBB) const {
2441 unsigned Opcode;
2442 unsigned CFIIndex;
2443 const ARMSubtarget *ST = &MF.getSubtarget<ARMSubtarget>();
2444 bool Thumb = ST->isThumb();
2446 // Sadly, this currently doesn't support varargs, platforms other than
2447 // android/linux. Note that thumb1/thumb2 are support for android/linux.
2448 if (MF.getFunction().isVarArg())
2449 report_fatal_error("Segmented stacks do not support vararg functions.");
2450 if (!ST->isTargetAndroid() && !ST->isTargetLinux())
2451 report_fatal_error("Segmented stacks not supported on this platform.");
2453 MachineFrameInfo &MFI = MF.getFrameInfo();
2454 MachineModuleInfo &MMI = MF.getMMI();
2455 MCContext &Context = MMI.getContext();
2456 const MCRegisterInfo *MRI = Context.getRegisterInfo();
2457 const ARMBaseInstrInfo &TII =
2458 *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
2459 ARMFunctionInfo *ARMFI = MF.getInfo<ARMFunctionInfo>();
2460 DebugLoc DL;
2462 uint64_t StackSize = MFI.getStackSize();
2464 // Do not generate a prologue for leaf functions with a stack of size zero.
2465 // For non-leaf functions we have to allow for the possibility that the
2466 // callis to a non-split function, as in PR37807. This function could also
2467 // take the address of a non-split function. When the linker tries to adjust
2468 // its non-existent prologue, it would fail with an error. Mark the object
2469 // file so that such failures are not errors. See this Go language bug-report
2470 // https://go-review.googlesource.com/c/go/+/148819/
2471 if (StackSize == 0 && !MFI.hasTailCall()) {
2472 MF.getMMI().setHasNosplitStack(true);
2473 return;
2476 // Use R4 and R5 as scratch registers.
2477 // We save R4 and R5 before use and restore them before leaving the function.
2478 unsigned ScratchReg0 = ARM::R4;
2479 unsigned ScratchReg1 = ARM::R5;
2480 uint64_t AlignedStackSize;
2482 MachineBasicBlock *PrevStackMBB = MF.CreateMachineBasicBlock();
2483 MachineBasicBlock *PostStackMBB = MF.CreateMachineBasicBlock();
2484 MachineBasicBlock *AllocMBB = MF.CreateMachineBasicBlock();
2485 MachineBasicBlock *GetMBB = MF.CreateMachineBasicBlock();
2486 MachineBasicBlock *McrMBB = MF.CreateMachineBasicBlock();
2488 // Grab everything that reaches PrologueMBB to update there liveness as well.
2489 SmallPtrSet<MachineBasicBlock *, 8> BeforePrologueRegion;
2490 SmallVector<MachineBasicBlock *, 2> WalkList;
2491 WalkList.push_back(&PrologueMBB);
2493 do {
2494 MachineBasicBlock *CurMBB = WalkList.pop_back_val();
2495 for (MachineBasicBlock *PredBB : CurMBB->predecessors()) {
2496 if (BeforePrologueRegion.insert(PredBB).second)
2497 WalkList.push_back(PredBB);
2499 } while (!WalkList.empty());
2501 // The order in that list is important.
2502 // The blocks will all be inserted before PrologueMBB using that order.
2503 // Therefore the block that should appear first in the CFG should appear
2504 // first in the list.
2505 MachineBasicBlock *AddedBlocks[] = {PrevStackMBB, McrMBB, GetMBB, AllocMBB,
2506 PostStackMBB};
2508 for (MachineBasicBlock *B : AddedBlocks)
2509 BeforePrologueRegion.insert(B);
2511 for (const auto &LI : PrologueMBB.liveins()) {
2512 for (MachineBasicBlock *PredBB : BeforePrologueRegion)
2513 PredBB->addLiveIn(LI);
2516 // Remove the newly added blocks from the list, since we know
2517 // we do not have to do the following updates for them.
2518 for (MachineBasicBlock *B : AddedBlocks) {
2519 BeforePrologueRegion.erase(B);
2520 MF.insert(PrologueMBB.getIterator(), B);
2523 for (MachineBasicBlock *MBB : BeforePrologueRegion) {
2524 // Make sure the LiveIns are still sorted and unique.
2525 MBB->sortUniqueLiveIns();
2526 // Replace the edges to PrologueMBB by edges to the sequences
2527 // we are about to add.
2528 MBB->ReplaceUsesOfBlockWith(&PrologueMBB, AddedBlocks[0]);
2531 // The required stack size that is aligned to ARM constant criterion.
2532 AlignedStackSize = alignToARMConstant(StackSize);
2534 // When the frame size is less than 256 we just compare the stack
2535 // boundary directly to the value of the stack pointer, per gcc.
2536 bool CompareStackPointer = AlignedStackSize < kSplitStackAvailable;
2538 // We will use two of the callee save registers as scratch registers so we
2539 // need to save those registers onto the stack.
2540 // We will use SR0 to hold stack limit and SR1 to hold the stack size
2541 // requested and arguments for __morestack().
2542 // SR0: Scratch Register #0
2543 // SR1: Scratch Register #1
2544 // push {SR0, SR1}
2545 if (Thumb) {
2546 BuildMI(PrevStackMBB, DL, TII.get(ARM::tPUSH))
2547 .add(predOps(ARMCC::AL))
2548 .addReg(ScratchReg0)
2549 .addReg(ScratchReg1);
2550 } else {
2551 BuildMI(PrevStackMBB, DL, TII.get(ARM::STMDB_UPD))
2552 .addReg(ARM::SP, RegState::Define)
2553 .addReg(ARM::SP)
2554 .add(predOps(ARMCC::AL))
2555 .addReg(ScratchReg0)
2556 .addReg(ScratchReg1);
2559 // Emit the relevant DWARF information about the change in stack pointer as
2560 // well as where to find both r4 and r5 (the callee-save registers)
2561 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 8));
2562 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2563 .addCFIIndex(CFIIndex);
2564 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2565 nullptr, MRI->getDwarfRegNum(ScratchReg1, true), -4));
2566 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2567 .addCFIIndex(CFIIndex);
2568 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2569 nullptr, MRI->getDwarfRegNum(ScratchReg0, true), -8));
2570 BuildMI(PrevStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2571 .addCFIIndex(CFIIndex);
2573 // mov SR1, sp
2574 if (Thumb) {
2575 BuildMI(McrMBB, DL, TII.get(ARM::tMOVr), ScratchReg1)
2576 .addReg(ARM::SP)
2577 .add(predOps(ARMCC::AL));
2578 } else if (CompareStackPointer) {
2579 BuildMI(McrMBB, DL, TII.get(ARM::MOVr), ScratchReg1)
2580 .addReg(ARM::SP)
2581 .add(predOps(ARMCC::AL))
2582 .add(condCodeOp());
2585 // sub SR1, sp, #StackSize
2586 if (!CompareStackPointer && Thumb) {
2587 BuildMI(McrMBB, DL, TII.get(ARM::tSUBi8), ScratchReg1)
2588 .add(condCodeOp())
2589 .addReg(ScratchReg1)
2590 .addImm(AlignedStackSize)
2591 .add(predOps(ARMCC::AL));
2592 } else if (!CompareStackPointer) {
2593 BuildMI(McrMBB, DL, TII.get(ARM::SUBri), ScratchReg1)
2594 .addReg(ARM::SP)
2595 .addImm(AlignedStackSize)
2596 .add(predOps(ARMCC::AL))
2597 .add(condCodeOp());
2600 if (Thumb && ST->isThumb1Only()) {
2601 unsigned PCLabelId = ARMFI->createPICLabelUId();
2602 ARMConstantPoolValue *NewCPV = ARMConstantPoolSymbol::Create(
2603 MF.getFunction().getContext(), "__STACK_LIMIT", PCLabelId, 0);
2604 MachineConstantPool *MCP = MF.getConstantPool();
2605 unsigned CPI = MCP->getConstantPoolIndex(NewCPV, Align(4));
2607 // ldr SR0, [pc, offset(STACK_LIMIT)]
2608 BuildMI(GetMBB, DL, TII.get(ARM::tLDRpci), ScratchReg0)
2609 .addConstantPoolIndex(CPI)
2610 .add(predOps(ARMCC::AL));
2612 // ldr SR0, [SR0]
2613 BuildMI(GetMBB, DL, TII.get(ARM::tLDRi), ScratchReg0)
2614 .addReg(ScratchReg0)
2615 .addImm(0)
2616 .add(predOps(ARMCC::AL));
2617 } else {
2618 // Get TLS base address from the coprocessor
2619 // mrc p15, #0, SR0, c13, c0, #3
2620 BuildMI(McrMBB, DL, TII.get(Thumb ? ARM::t2MRC : ARM::MRC),
2621 ScratchReg0)
2622 .addImm(15)
2623 .addImm(0)
2624 .addImm(13)
2625 .addImm(0)
2626 .addImm(3)
2627 .add(predOps(ARMCC::AL));
2629 // Use the last tls slot on android and a private field of the TCP on linux.
2630 assert(ST->isTargetAndroid() || ST->isTargetLinux());
2631 unsigned TlsOffset = ST->isTargetAndroid() ? 63 : 1;
2633 // Get the stack limit from the right offset
2634 // ldr SR0, [sr0, #4 * TlsOffset]
2635 BuildMI(GetMBB, DL, TII.get(Thumb ? ARM::t2LDRi12 : ARM::LDRi12),
2636 ScratchReg0)
2637 .addReg(ScratchReg0)
2638 .addImm(4 * TlsOffset)
2639 .add(predOps(ARMCC::AL));
2642 // Compare stack limit with stack size requested.
2643 // cmp SR0, SR1
2644 Opcode = Thumb ? ARM::tCMPr : ARM::CMPrr;
2645 BuildMI(GetMBB, DL, TII.get(Opcode))
2646 .addReg(ScratchReg0)
2647 .addReg(ScratchReg1)
2648 .add(predOps(ARMCC::AL));
2650 // This jump is taken if StackLimit < SP - stack required.
2651 Opcode = Thumb ? ARM::tBcc : ARM::Bcc;
2652 BuildMI(GetMBB, DL, TII.get(Opcode)).addMBB(PostStackMBB)
2653 .addImm(ARMCC::LO)
2654 .addReg(ARM::CPSR);
2657 // Calling __morestack(StackSize, Size of stack arguments).
2658 // __morestack knows that the stack size requested is in SR0(r4)
2659 // and amount size of stack arguments is in SR1(r5).
2661 // Pass first argument for the __morestack by Scratch Register #0.
2662 // The amount size of stack required
2663 if (Thumb) {
2664 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg0)
2665 .add(condCodeOp())
2666 .addImm(AlignedStackSize)
2667 .add(predOps(ARMCC::AL));
2668 } else {
2669 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg0)
2670 .addImm(AlignedStackSize)
2671 .add(predOps(ARMCC::AL))
2672 .add(condCodeOp());
2674 // Pass second argument for the __morestack by Scratch Register #1.
2675 // The amount size of stack consumed to save function arguments.
2676 if (Thumb) {
2677 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVi8), ScratchReg1)
2678 .add(condCodeOp())
2679 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2680 .add(predOps(ARMCC::AL));
2681 } else {
2682 BuildMI(AllocMBB, DL, TII.get(ARM::MOVi), ScratchReg1)
2683 .addImm(alignToARMConstant(ARMFI->getArgumentStackSize()))
2684 .add(predOps(ARMCC::AL))
2685 .add(condCodeOp());
2688 // push {lr} - Save return address of this function.
2689 if (Thumb) {
2690 BuildMI(AllocMBB, DL, TII.get(ARM::tPUSH))
2691 .add(predOps(ARMCC::AL))
2692 .addReg(ARM::LR);
2693 } else {
2694 BuildMI(AllocMBB, DL, TII.get(ARM::STMDB_UPD))
2695 .addReg(ARM::SP, RegState::Define)
2696 .addReg(ARM::SP)
2697 .add(predOps(ARMCC::AL))
2698 .addReg(ARM::LR);
2701 // Emit the DWARF info about the change in stack as well as where to find the
2702 // previous link register
2703 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 12));
2704 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2705 .addCFIIndex(CFIIndex);
2706 CFIIndex = MF.addFrameInst(MCCFIInstruction::createOffset(
2707 nullptr, MRI->getDwarfRegNum(ARM::LR, true), -12));
2708 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2709 .addCFIIndex(CFIIndex);
2711 // Call __morestack().
2712 if (Thumb) {
2713 BuildMI(AllocMBB, DL, TII.get(ARM::tBL))
2714 .add(predOps(ARMCC::AL))
2715 .addExternalSymbol("__morestack");
2716 } else {
2717 BuildMI(AllocMBB, DL, TII.get(ARM::BL))
2718 .addExternalSymbol("__morestack");
2721 // pop {lr} - Restore return address of this original function.
2722 if (Thumb) {
2723 if (ST->isThumb1Only()) {
2724 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2725 .add(predOps(ARMCC::AL))
2726 .addReg(ScratchReg0);
2727 BuildMI(AllocMBB, DL, TII.get(ARM::tMOVr), ARM::LR)
2728 .addReg(ScratchReg0)
2729 .add(predOps(ARMCC::AL));
2730 } else {
2731 BuildMI(AllocMBB, DL, TII.get(ARM::t2LDR_POST))
2732 .addReg(ARM::LR, RegState::Define)
2733 .addReg(ARM::SP, RegState::Define)
2734 .addReg(ARM::SP)
2735 .addImm(4)
2736 .add(predOps(ARMCC::AL));
2738 } else {
2739 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2740 .addReg(ARM::SP, RegState::Define)
2741 .addReg(ARM::SP)
2742 .add(predOps(ARMCC::AL))
2743 .addReg(ARM::LR);
2746 // Restore SR0 and SR1 in case of __morestack() was called.
2747 // __morestack() will skip PostStackMBB block so we need to restore
2748 // scratch registers from here.
2749 // pop {SR0, SR1}
2750 if (Thumb) {
2751 BuildMI(AllocMBB, DL, TII.get(ARM::tPOP))
2752 .add(predOps(ARMCC::AL))
2753 .addReg(ScratchReg0)
2754 .addReg(ScratchReg1);
2755 } else {
2756 BuildMI(AllocMBB, DL, TII.get(ARM::LDMIA_UPD))
2757 .addReg(ARM::SP, RegState::Define)
2758 .addReg(ARM::SP)
2759 .add(predOps(ARMCC::AL))
2760 .addReg(ScratchReg0)
2761 .addReg(ScratchReg1);
2764 // Update the CFA offset now that we've popped
2765 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2766 BuildMI(AllocMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2767 .addCFIIndex(CFIIndex);
2769 // Return from this function.
2770 BuildMI(AllocMBB, DL, TII.get(ST->getReturnOpcode())).add(predOps(ARMCC::AL));
2772 // Restore SR0 and SR1 in case of __morestack() was not called.
2773 // pop {SR0, SR1}
2774 if (Thumb) {
2775 BuildMI(PostStackMBB, DL, TII.get(ARM::tPOP))
2776 .add(predOps(ARMCC::AL))
2777 .addReg(ScratchReg0)
2778 .addReg(ScratchReg1);
2779 } else {
2780 BuildMI(PostStackMBB, DL, TII.get(ARM::LDMIA_UPD))
2781 .addReg(ARM::SP, RegState::Define)
2782 .addReg(ARM::SP)
2783 .add(predOps(ARMCC::AL))
2784 .addReg(ScratchReg0)
2785 .addReg(ScratchReg1);
2788 // Update the CFA offset now that we've popped
2789 CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfaOffset(nullptr, 0));
2790 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2791 .addCFIIndex(CFIIndex);
2793 // Tell debuggers that r4 and r5 are now the same as they were in the
2794 // previous function, that they're the "Same Value".
2795 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2796 nullptr, MRI->getDwarfRegNum(ScratchReg0, true)));
2797 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2798 .addCFIIndex(CFIIndex);
2799 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(
2800 nullptr, MRI->getDwarfRegNum(ScratchReg1, true)));
2801 BuildMI(PostStackMBB, DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
2802 .addCFIIndex(CFIIndex);
2804 // Organizing MBB lists
2805 PostStackMBB->addSuccessor(&PrologueMBB);
2807 AllocMBB->addSuccessor(PostStackMBB);
2809 GetMBB->addSuccessor(PostStackMBB);
2810 GetMBB->addSuccessor(AllocMBB);
2812 McrMBB->addSuccessor(GetMBB);
2814 PrevStackMBB->addSuccessor(McrMBB);
2816 #ifdef EXPENSIVE_CHECKS
2817 MF.verify();
2818 #endif