[ORC] Add std::tuple support to SimplePackedSerialization.
[llvm-project.git] / llvm / lib / Target / ARM / ARMISelDAGToDAG.cpp
blob372f79660d03ed5a253a8c5b23676bd28fbbe51c
1 //===-- ARMISelDAGToDAG.cpp - A dag to dag inst selector for ARM ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines an instruction selector for the ARM target.
11 //===----------------------------------------------------------------------===//
13 #include "ARM.h"
14 #include "ARMBaseInstrInfo.h"
15 #include "ARMTargetMachine.h"
16 #include "MCTargetDesc/ARMAddressingModes.h"
17 #include "Utils/ARMBaseInfo.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/StringSwitch.h"
20 #include "llvm/CodeGen/MachineFrameInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/CodeGen/TargetLowering.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/IntrinsicsARM.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Target/TargetOptions.h"
39 using namespace llvm;
41 #define DEBUG_TYPE "arm-isel"
43 static cl::opt<bool>
44 DisableShifterOp("disable-shifter-op", cl::Hidden,
45 cl::desc("Disable isel of shifter-op"),
46 cl::init(false));
48 //===--------------------------------------------------------------------===//
49 /// ARMDAGToDAGISel - ARM specific code to select ARM machine
50 /// instructions for SelectionDAG operations.
51 ///
52 namespace {
54 class ARMDAGToDAGISel : public SelectionDAGISel {
55 /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
56 /// make the right decision when generating code for different targets.
57 const ARMSubtarget *Subtarget;
59 public:
60 explicit ARMDAGToDAGISel(ARMBaseTargetMachine &tm, CodeGenOpt::Level OptLevel)
61 : SelectionDAGISel(tm, OptLevel) {}
63 bool runOnMachineFunction(MachineFunction &MF) override {
64 // Reset the subtarget each time through.
65 Subtarget = &MF.getSubtarget<ARMSubtarget>();
66 SelectionDAGISel::runOnMachineFunction(MF);
67 return true;
70 StringRef getPassName() const override { return "ARM Instruction Selection"; }
72 void PreprocessISelDAG() override;
74 /// getI32Imm - Return a target constant of type i32 with the specified
75 /// value.
76 inline SDValue getI32Imm(unsigned Imm, const SDLoc &dl) {
77 return CurDAG->getTargetConstant(Imm, dl, MVT::i32);
80 void Select(SDNode *N) override;
82 /// Return true as some complex patterns, like those that call
83 /// canExtractShiftFromMul can modify the DAG inplace.
84 bool ComplexPatternFuncMutatesDAG() const override { return true; }
86 bool hasNoVMLxHazardUse(SDNode *N) const;
87 bool isShifterOpProfitable(const SDValue &Shift,
88 ARM_AM::ShiftOpc ShOpcVal, unsigned ShAmt);
89 bool SelectRegShifterOperand(SDValue N, SDValue &A,
90 SDValue &B, SDValue &C,
91 bool CheckProfitability = true);
92 bool SelectImmShifterOperand(SDValue N, SDValue &A,
93 SDValue &B, bool CheckProfitability = true);
94 bool SelectShiftRegShifterOperand(SDValue N, SDValue &A, SDValue &B,
95 SDValue &C) {
96 // Don't apply the profitability check
97 return SelectRegShifterOperand(N, A, B, C, false);
99 bool SelectShiftImmShifterOperand(SDValue N, SDValue &A, SDValue &B) {
100 // Don't apply the profitability check
101 return SelectImmShifterOperand(N, A, B, false);
103 bool SelectShiftImmShifterOperandOneUse(SDValue N, SDValue &A, SDValue &B) {
104 if (!N.hasOneUse())
105 return false;
106 return SelectImmShifterOperand(N, A, B, false);
109 bool SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out);
111 bool SelectAddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
112 bool SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset, SDValue &Opc);
114 bool SelectCMOVPred(SDValue N, SDValue &Pred, SDValue &Reg) {
115 const ConstantSDNode *CN = cast<ConstantSDNode>(N);
116 Pred = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(N), MVT::i32);
117 Reg = CurDAG->getRegister(ARM::CPSR, MVT::i32);
118 return true;
121 bool SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
122 SDValue &Offset, SDValue &Opc);
123 bool SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
124 SDValue &Offset, SDValue &Opc);
125 bool SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
126 SDValue &Offset, SDValue &Opc);
127 bool SelectAddrOffsetNone(SDValue N, SDValue &Base);
128 bool SelectAddrMode3(SDValue N, SDValue &Base,
129 SDValue &Offset, SDValue &Opc);
130 bool SelectAddrMode3Offset(SDNode *Op, SDValue N,
131 SDValue &Offset, SDValue &Opc);
132 bool IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset, bool FP16);
133 bool SelectAddrMode5(SDValue N, SDValue &Base, SDValue &Offset);
134 bool SelectAddrMode5FP16(SDValue N, SDValue &Base, SDValue &Offset);
135 bool SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,SDValue &Align);
136 bool SelectAddrMode6Offset(SDNode *Op, SDValue N, SDValue &Offset);
138 bool SelectAddrModePC(SDValue N, SDValue &Offset, SDValue &Label);
140 // Thumb Addressing Modes:
141 bool SelectThumbAddrModeRR(SDValue N, SDValue &Base, SDValue &Offset);
142 bool SelectThumbAddrModeRRSext(SDValue N, SDValue &Base, SDValue &Offset);
143 bool SelectThumbAddrModeImm5S(SDValue N, unsigned Scale, SDValue &Base,
144 SDValue &OffImm);
145 bool SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
146 SDValue &OffImm);
147 bool SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
148 SDValue &OffImm);
149 bool SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
150 SDValue &OffImm);
151 bool SelectThumbAddrModeSP(SDValue N, SDValue &Base, SDValue &OffImm);
152 template <unsigned Shift>
153 bool SelectTAddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
155 // Thumb 2 Addressing Modes:
156 bool SelectT2AddrModeImm12(SDValue N, SDValue &Base, SDValue &OffImm);
157 template <unsigned Shift>
158 bool SelectT2AddrModeImm8(SDValue N, SDValue &Base, SDValue &OffImm);
159 bool SelectT2AddrModeImm8(SDValue N, SDValue &Base,
160 SDValue &OffImm);
161 bool SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
162 SDValue &OffImm);
163 template <unsigned Shift>
164 bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm);
165 bool SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N, SDValue &OffImm,
166 unsigned Shift);
167 template <unsigned Shift>
168 bool SelectT2AddrModeImm7(SDValue N, SDValue &Base, SDValue &OffImm);
169 bool SelectT2AddrModeSoReg(SDValue N, SDValue &Base,
170 SDValue &OffReg, SDValue &ShImm);
171 bool SelectT2AddrModeExclusive(SDValue N, SDValue &Base, SDValue &OffImm);
173 template<int Min, int Max>
174 bool SelectImmediateInRange(SDValue N, SDValue &OffImm);
176 inline bool is_so_imm(unsigned Imm) const {
177 return ARM_AM::getSOImmVal(Imm) != -1;
180 inline bool is_so_imm_not(unsigned Imm) const {
181 return ARM_AM::getSOImmVal(~Imm) != -1;
184 inline bool is_t2_so_imm(unsigned Imm) const {
185 return ARM_AM::getT2SOImmVal(Imm) != -1;
188 inline bool is_t2_so_imm_not(unsigned Imm) const {
189 return ARM_AM::getT2SOImmVal(~Imm) != -1;
192 // Include the pieces autogenerated from the target description.
193 #include "ARMGenDAGISel.inc"
195 private:
196 void transferMemOperands(SDNode *Src, SDNode *Dst);
198 /// Indexed (pre/post inc/dec) load matching code for ARM.
199 bool tryARMIndexedLoad(SDNode *N);
200 bool tryT1IndexedLoad(SDNode *N);
201 bool tryT2IndexedLoad(SDNode *N);
202 bool tryMVEIndexedLoad(SDNode *N);
203 bool tryFMULFixed(SDNode *N, SDLoc dl);
204 bool tryFP_TO_INT(SDNode *N, SDLoc dl);
205 bool transformFixedFloatingPointConversion(SDNode *N, SDNode *FMul,
206 bool IsUnsigned,
207 bool FixedToFloat);
209 /// SelectVLD - Select NEON load intrinsics. NumVecs should be
210 /// 1, 2, 3 or 4. The opcode arrays specify the instructions used for
211 /// loads of D registers and even subregs and odd subregs of Q registers.
212 /// For NumVecs <= 2, QOpcodes1 is not used.
213 void SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
214 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
215 const uint16_t *QOpcodes1);
217 /// SelectVST - Select NEON store intrinsics. NumVecs should
218 /// be 1, 2, 3 or 4. The opcode arrays specify the instructions used for
219 /// stores of D registers and even subregs and odd subregs of Q registers.
220 /// For NumVecs <= 2, QOpcodes1 is not used.
221 void SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
222 const uint16_t *DOpcodes, const uint16_t *QOpcodes0,
223 const uint16_t *QOpcodes1);
225 /// SelectVLDSTLane - Select NEON load/store lane intrinsics. NumVecs should
226 /// be 2, 3 or 4. The opcode arrays specify the instructions used for
227 /// load/store of D registers and Q registers.
228 void SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
229 unsigned NumVecs, const uint16_t *DOpcodes,
230 const uint16_t *QOpcodes);
232 /// Helper functions for setting up clusters of MVE predication operands.
233 template <typename SDValueVector>
234 void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
235 SDValue PredicateMask);
236 template <typename SDValueVector>
237 void AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
238 SDValue PredicateMask, SDValue Inactive);
240 template <typename SDValueVector>
241 void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc);
242 template <typename SDValueVector>
243 void AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc, EVT InactiveTy);
245 /// SelectMVE_WB - Select MVE writeback load/store intrinsics.
246 void SelectMVE_WB(SDNode *N, const uint16_t *Opcodes, bool Predicated);
248 /// SelectMVE_LongShift - Select MVE 64-bit scalar shift intrinsics.
249 void SelectMVE_LongShift(SDNode *N, uint16_t Opcode, bool Immediate,
250 bool HasSaturationOperand);
252 /// SelectMVE_VADCSBC - Select MVE vector add/sub-with-carry intrinsics.
253 void SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
254 uint16_t OpcodeWithNoCarry, bool Add, bool Predicated);
256 /// SelectMVE_VSHLC - Select MVE intrinsics for a shift that carries between
257 /// vector lanes.
258 void SelectMVE_VSHLC(SDNode *N, bool Predicated);
260 /// Select long MVE vector reductions with two vector operands
261 /// Stride is the number of vector element widths the instruction can operate
262 /// on:
263 /// 2 for long non-rounding variants, vml{a,s}ldav[a][x]: [i16, i32]
264 /// 1 for long rounding variants: vrml{a,s}ldavh[a][x]: [i32]
265 /// Stride is used when addressing the OpcodesS array which contains multiple
266 /// opcodes for each element width.
267 /// TySize is the index into the list of element types listed above
268 void SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
269 const uint16_t *OpcodesS, const uint16_t *OpcodesU,
270 size_t Stride, size_t TySize);
272 /// Select a 64-bit MVE vector reduction with two vector operands
273 /// arm_mve_vmlldava_[predicated]
274 void SelectMVE_VMLLDAV(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
275 const uint16_t *OpcodesU);
276 /// Select a 72-bit MVE vector rounding reduction with two vector operands
277 /// int_arm_mve_vrmlldavha[_predicated]
278 void SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated, const uint16_t *OpcodesS,
279 const uint16_t *OpcodesU);
281 /// SelectMVE_VLD - Select MVE interleaving load intrinsics. NumVecs
282 /// should be 2 or 4. The opcode array specifies the instructions
283 /// used for 8, 16 and 32-bit lane sizes respectively, and each
284 /// pointer points to a set of NumVecs sub-opcodes used for the
285 /// different stages (e.g. VLD20 versus VLD21) of each load family.
286 void SelectMVE_VLD(SDNode *N, unsigned NumVecs,
287 const uint16_t *const *Opcodes, bool HasWriteback);
289 /// SelectMVE_VxDUP - Select MVE incrementing-dup instructions. Opcodes is an
290 /// array of 3 elements for the 8, 16 and 32-bit lane sizes.
291 void SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
292 bool Wrapping, bool Predicated);
294 /// Select SelectCDE_CXxD - Select CDE dual-GPR instruction (one of CX1D,
295 /// CX1DA, CX2D, CX2DA, CX3, CX3DA).
296 /// \arg \c NumExtraOps number of extra operands besides the coprocossor,
297 /// the accumulator and the immediate operand, i.e. 0
298 /// for CX1*, 1 for CX2*, 2 for CX3*
299 /// \arg \c HasAccum whether the instruction has an accumulator operand
300 void SelectCDE_CXxD(SDNode *N, uint16_t Opcode, size_t NumExtraOps,
301 bool HasAccum);
303 /// SelectVLDDup - Select NEON load-duplicate intrinsics. NumVecs
304 /// should be 1, 2, 3 or 4. The opcode array specifies the instructions used
305 /// for loading D registers.
306 void SelectVLDDup(SDNode *N, bool IsIntrinsic, bool isUpdating,
307 unsigned NumVecs, const uint16_t *DOpcodes,
308 const uint16_t *QOpcodes0 = nullptr,
309 const uint16_t *QOpcodes1 = nullptr);
311 /// Try to select SBFX/UBFX instructions for ARM.
312 bool tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned);
314 bool tryInsertVectorElt(SDNode *N);
316 // Select special operations if node forms integer ABS pattern
317 bool tryABSOp(SDNode *N);
319 bool tryReadRegister(SDNode *N);
320 bool tryWriteRegister(SDNode *N);
322 bool tryInlineAsm(SDNode *N);
324 void SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI);
326 void SelectCMP_SWAP(SDNode *N);
328 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
329 /// inline asm expressions.
330 bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
331 std::vector<SDValue> &OutOps) override;
333 // Form pairs of consecutive R, S, D, or Q registers.
334 SDNode *createGPRPairNode(EVT VT, SDValue V0, SDValue V1);
335 SDNode *createSRegPairNode(EVT VT, SDValue V0, SDValue V1);
336 SDNode *createDRegPairNode(EVT VT, SDValue V0, SDValue V1);
337 SDNode *createQRegPairNode(EVT VT, SDValue V0, SDValue V1);
339 // Form sequences of 4 consecutive S, D, or Q registers.
340 SDNode *createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
341 SDNode *createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
342 SDNode *createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1, SDValue V2, SDValue V3);
344 // Get the alignment operand for a NEON VLD or VST instruction.
345 SDValue GetVLDSTAlign(SDValue Align, const SDLoc &dl, unsigned NumVecs,
346 bool is64BitVector);
348 /// Checks if N is a multiplication by a constant where we can extract out a
349 /// power of two from the constant so that it can be used in a shift, but only
350 /// if it simplifies the materialization of the constant. Returns true if it
351 /// is, and assigns to PowerOfTwo the power of two that should be extracted
352 /// out and to NewMulConst the new constant to be multiplied by.
353 bool canExtractShiftFromMul(const SDValue &N, unsigned MaxShift,
354 unsigned &PowerOfTwo, SDValue &NewMulConst) const;
356 /// Replace N with M in CurDAG, in a way that also ensures that M gets
357 /// selected when N would have been selected.
358 void replaceDAGValue(const SDValue &N, SDValue M);
362 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
363 /// operand. If so Imm will receive the 32-bit value.
364 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
365 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
366 Imm = cast<ConstantSDNode>(N)->getZExtValue();
367 return true;
369 return false;
372 // isInt32Immediate - This method tests to see if a constant operand.
373 // If so Imm will receive the 32 bit value.
374 static bool isInt32Immediate(SDValue N, unsigned &Imm) {
375 return isInt32Immediate(N.getNode(), Imm);
378 // isOpcWithIntImmediate - This method tests to see if the node is a specific
379 // opcode and that it has a immediate integer right operand.
380 // If so Imm will receive the 32 bit value.
381 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
382 return N->getOpcode() == Opc &&
383 isInt32Immediate(N->getOperand(1).getNode(), Imm);
386 /// Check whether a particular node is a constant value representable as
387 /// (N * Scale) where (N in [\p RangeMin, \p RangeMax).
389 /// \param ScaledConstant [out] - On success, the pre-scaled constant value.
390 static bool isScaledConstantInRange(SDValue Node, int Scale,
391 int RangeMin, int RangeMax,
392 int &ScaledConstant) {
393 assert(Scale > 0 && "Invalid scale!");
395 // Check that this is a constant.
396 const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Node);
397 if (!C)
398 return false;
400 ScaledConstant = (int) C->getZExtValue();
401 if ((ScaledConstant % Scale) != 0)
402 return false;
404 ScaledConstant /= Scale;
405 return ScaledConstant >= RangeMin && ScaledConstant < RangeMax;
408 void ARMDAGToDAGISel::PreprocessISelDAG() {
409 if (!Subtarget->hasV6T2Ops())
410 return;
412 bool isThumb2 = Subtarget->isThumb();
413 for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(),
414 E = CurDAG->allnodes_end(); I != E; ) {
415 SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues.
417 if (N->getOpcode() != ISD::ADD)
418 continue;
420 // Look for (add X1, (and (srl X2, c1), c2)) where c2 is constant with
421 // leading zeros, followed by consecutive set bits, followed by 1 or 2
422 // trailing zeros, e.g. 1020.
423 // Transform the expression to
424 // (add X1, (shl (and (srl X2, c1), (c2>>tz)), tz)) where tz is the number
425 // of trailing zeros of c2. The left shift would be folded as an shifter
426 // operand of 'add' and the 'and' and 'srl' would become a bits extraction
427 // node (UBFX).
429 SDValue N0 = N->getOperand(0);
430 SDValue N1 = N->getOperand(1);
431 unsigned And_imm = 0;
432 if (!isOpcWithIntImmediate(N1.getNode(), ISD::AND, And_imm)) {
433 if (isOpcWithIntImmediate(N0.getNode(), ISD::AND, And_imm))
434 std::swap(N0, N1);
436 if (!And_imm)
437 continue;
439 // Check if the AND mask is an immediate of the form: 000.....1111111100
440 unsigned TZ = countTrailingZeros(And_imm);
441 if (TZ != 1 && TZ != 2)
442 // Be conservative here. Shifter operands aren't always free. e.g. On
443 // Swift, left shifter operand of 1 / 2 for free but others are not.
444 // e.g.
445 // ubfx r3, r1, #16, #8
446 // ldr.w r3, [r0, r3, lsl #2]
447 // vs.
448 // mov.w r9, #1020
449 // and.w r2, r9, r1, lsr #14
450 // ldr r2, [r0, r2]
451 continue;
452 And_imm >>= TZ;
453 if (And_imm & (And_imm + 1))
454 continue;
456 // Look for (and (srl X, c1), c2).
457 SDValue Srl = N1.getOperand(0);
458 unsigned Srl_imm = 0;
459 if (!isOpcWithIntImmediate(Srl.getNode(), ISD::SRL, Srl_imm) ||
460 (Srl_imm <= 2))
461 continue;
463 // Make sure first operand is not a shifter operand which would prevent
464 // folding of the left shift.
465 SDValue CPTmp0;
466 SDValue CPTmp1;
467 SDValue CPTmp2;
468 if (isThumb2) {
469 if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1))
470 continue;
471 } else {
472 if (SelectImmShifterOperand(N0, CPTmp0, CPTmp1) ||
473 SelectRegShifterOperand(N0, CPTmp0, CPTmp1, CPTmp2))
474 continue;
477 // Now make the transformation.
478 Srl = CurDAG->getNode(ISD::SRL, SDLoc(Srl), MVT::i32,
479 Srl.getOperand(0),
480 CurDAG->getConstant(Srl_imm + TZ, SDLoc(Srl),
481 MVT::i32));
482 N1 = CurDAG->getNode(ISD::AND, SDLoc(N1), MVT::i32,
483 Srl,
484 CurDAG->getConstant(And_imm, SDLoc(Srl), MVT::i32));
485 N1 = CurDAG->getNode(ISD::SHL, SDLoc(N1), MVT::i32,
486 N1, CurDAG->getConstant(TZ, SDLoc(Srl), MVT::i32));
487 CurDAG->UpdateNodeOperands(N, N0, N1);
491 /// hasNoVMLxHazardUse - Return true if it's desirable to select a FP MLA / MLS
492 /// node. VFP / NEON fp VMLA / VMLS instructions have special RAW hazards (at
493 /// least on current ARM implementations) which should be avoidded.
494 bool ARMDAGToDAGISel::hasNoVMLxHazardUse(SDNode *N) const {
495 if (OptLevel == CodeGenOpt::None)
496 return true;
498 if (!Subtarget->hasVMLxHazards())
499 return true;
501 if (!N->hasOneUse())
502 return false;
504 SDNode *Use = *N->use_begin();
505 if (Use->getOpcode() == ISD::CopyToReg)
506 return true;
507 if (Use->isMachineOpcode()) {
508 const ARMBaseInstrInfo *TII = static_cast<const ARMBaseInstrInfo *>(
509 CurDAG->getSubtarget().getInstrInfo());
511 const MCInstrDesc &MCID = TII->get(Use->getMachineOpcode());
512 if (MCID.mayStore())
513 return true;
514 unsigned Opcode = MCID.getOpcode();
515 if (Opcode == ARM::VMOVRS || Opcode == ARM::VMOVRRD)
516 return true;
517 // vmlx feeding into another vmlx. We actually want to unfold
518 // the use later in the MLxExpansion pass. e.g.
519 // vmla
520 // vmla (stall 8 cycles)
522 // vmul (5 cycles)
523 // vadd (5 cycles)
524 // vmla
525 // This adds up to about 18 - 19 cycles.
527 // vmla
528 // vmul (stall 4 cycles)
529 // vadd adds up to about 14 cycles.
530 return TII->isFpMLxInstruction(Opcode);
533 return false;
536 bool ARMDAGToDAGISel::isShifterOpProfitable(const SDValue &Shift,
537 ARM_AM::ShiftOpc ShOpcVal,
538 unsigned ShAmt) {
539 if (!Subtarget->isLikeA9() && !Subtarget->isSwift())
540 return true;
541 if (Shift.hasOneUse())
542 return true;
543 // R << 2 is free.
544 return ShOpcVal == ARM_AM::lsl &&
545 (ShAmt == 2 || (Subtarget->isSwift() && ShAmt == 1));
548 bool ARMDAGToDAGISel::canExtractShiftFromMul(const SDValue &N,
549 unsigned MaxShift,
550 unsigned &PowerOfTwo,
551 SDValue &NewMulConst) const {
552 assert(N.getOpcode() == ISD::MUL);
553 assert(MaxShift > 0);
555 // If the multiply is used in more than one place then changing the constant
556 // will make other uses incorrect, so don't.
557 if (!N.hasOneUse()) return false;
558 // Check if the multiply is by a constant
559 ConstantSDNode *MulConst = dyn_cast<ConstantSDNode>(N.getOperand(1));
560 if (!MulConst) return false;
561 // If the constant is used in more than one place then modifying it will mean
562 // we need to materialize two constants instead of one, which is a bad idea.
563 if (!MulConst->hasOneUse()) return false;
564 unsigned MulConstVal = MulConst->getZExtValue();
565 if (MulConstVal == 0) return false;
567 // Find the largest power of 2 that MulConstVal is a multiple of
568 PowerOfTwo = MaxShift;
569 while ((MulConstVal % (1 << PowerOfTwo)) != 0) {
570 --PowerOfTwo;
571 if (PowerOfTwo == 0) return false;
574 // Only optimise if the new cost is better
575 unsigned NewMulConstVal = MulConstVal / (1 << PowerOfTwo);
576 NewMulConst = CurDAG->getConstant(NewMulConstVal, SDLoc(N), MVT::i32);
577 unsigned OldCost = ConstantMaterializationCost(MulConstVal, Subtarget);
578 unsigned NewCost = ConstantMaterializationCost(NewMulConstVal, Subtarget);
579 return NewCost < OldCost;
582 void ARMDAGToDAGISel::replaceDAGValue(const SDValue &N, SDValue M) {
583 CurDAG->RepositionNode(N.getNode()->getIterator(), M.getNode());
584 ReplaceUses(N, M);
587 bool ARMDAGToDAGISel::SelectImmShifterOperand(SDValue N,
588 SDValue &BaseReg,
589 SDValue &Opc,
590 bool CheckProfitability) {
591 if (DisableShifterOp)
592 return false;
594 // If N is a multiply-by-constant and it's profitable to extract a shift and
595 // use it in a shifted operand do so.
596 if (N.getOpcode() == ISD::MUL) {
597 unsigned PowerOfTwo = 0;
598 SDValue NewMulConst;
599 if (canExtractShiftFromMul(N, 31, PowerOfTwo, NewMulConst)) {
600 HandleSDNode Handle(N);
601 SDLoc Loc(N);
602 replaceDAGValue(N.getOperand(1), NewMulConst);
603 BaseReg = Handle.getValue();
604 Opc = CurDAG->getTargetConstant(
605 ARM_AM::getSORegOpc(ARM_AM::lsl, PowerOfTwo), Loc, MVT::i32);
606 return true;
610 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
612 // Don't match base register only case. That is matched to a separate
613 // lower complexity pattern with explicit register operand.
614 if (ShOpcVal == ARM_AM::no_shift) return false;
616 BaseReg = N.getOperand(0);
617 unsigned ShImmVal = 0;
618 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
619 if (!RHS) return false;
620 ShImmVal = RHS->getZExtValue() & 31;
621 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
622 SDLoc(N), MVT::i32);
623 return true;
626 bool ARMDAGToDAGISel::SelectRegShifterOperand(SDValue N,
627 SDValue &BaseReg,
628 SDValue &ShReg,
629 SDValue &Opc,
630 bool CheckProfitability) {
631 if (DisableShifterOp)
632 return false;
634 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
636 // Don't match base register only case. That is matched to a separate
637 // lower complexity pattern with explicit register operand.
638 if (ShOpcVal == ARM_AM::no_shift) return false;
640 BaseReg = N.getOperand(0);
641 unsigned ShImmVal = 0;
642 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
643 if (RHS) return false;
645 ShReg = N.getOperand(1);
646 if (CheckProfitability && !isShifterOpProfitable(N, ShOpcVal, ShImmVal))
647 return false;
648 Opc = CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, ShImmVal),
649 SDLoc(N), MVT::i32);
650 return true;
653 // Determine whether an ISD::OR's operands are suitable to turn the operation
654 // into an addition, which often has more compact encodings.
655 bool ARMDAGToDAGISel::SelectAddLikeOr(SDNode *Parent, SDValue N, SDValue &Out) {
656 assert(Parent->getOpcode() == ISD::OR && "unexpected parent");
657 Out = N;
658 return CurDAG->haveNoCommonBitsSet(N, Parent->getOperand(1));
662 bool ARMDAGToDAGISel::SelectAddrModeImm12(SDValue N,
663 SDValue &Base,
664 SDValue &OffImm) {
665 // Match simple R + imm12 operands.
667 // Base only.
668 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
669 !CurDAG->isBaseWithConstantOffset(N)) {
670 if (N.getOpcode() == ISD::FrameIndex) {
671 // Match frame index.
672 int FI = cast<FrameIndexSDNode>(N)->getIndex();
673 Base = CurDAG->getTargetFrameIndex(
674 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
675 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
676 return true;
679 if (N.getOpcode() == ARMISD::Wrapper &&
680 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
681 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
682 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
683 Base = N.getOperand(0);
684 } else
685 Base = N;
686 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
687 return true;
690 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
691 int RHSC = (int)RHS->getSExtValue();
692 if (N.getOpcode() == ISD::SUB)
693 RHSC = -RHSC;
695 if (RHSC > -0x1000 && RHSC < 0x1000) { // 12 bits
696 Base = N.getOperand(0);
697 if (Base.getOpcode() == ISD::FrameIndex) {
698 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
699 Base = CurDAG->getTargetFrameIndex(
700 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
702 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
703 return true;
707 // Base only.
708 Base = N;
709 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
710 return true;
715 bool ARMDAGToDAGISel::SelectLdStSOReg(SDValue N, SDValue &Base, SDValue &Offset,
716 SDValue &Opc) {
717 if (N.getOpcode() == ISD::MUL &&
718 ((!Subtarget->isLikeA9() && !Subtarget->isSwift()) || N.hasOneUse())) {
719 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
720 // X * [3,5,9] -> X + X * [2,4,8] etc.
721 int RHSC = (int)RHS->getZExtValue();
722 if (RHSC & 1) {
723 RHSC = RHSC & ~1;
724 ARM_AM::AddrOpc AddSub = ARM_AM::add;
725 if (RHSC < 0) {
726 AddSub = ARM_AM::sub;
727 RHSC = - RHSC;
729 if (isPowerOf2_32(RHSC)) {
730 unsigned ShAmt = Log2_32(RHSC);
731 Base = Offset = N.getOperand(0);
732 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt,
733 ARM_AM::lsl),
734 SDLoc(N), MVT::i32);
735 return true;
741 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
742 // ISD::OR that is equivalent to an ISD::ADD.
743 !CurDAG->isBaseWithConstantOffset(N))
744 return false;
746 // Leave simple R +/- imm12 operands for LDRi12
747 if (N.getOpcode() == ISD::ADD || N.getOpcode() == ISD::OR) {
748 int RHSC;
749 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
750 -0x1000+1, 0x1000, RHSC)) // 12 bits.
751 return false;
754 // Otherwise this is R +/- [possibly shifted] R.
755 ARM_AM::AddrOpc AddSub = N.getOpcode() == ISD::SUB ? ARM_AM::sub:ARM_AM::add;
756 ARM_AM::ShiftOpc ShOpcVal =
757 ARM_AM::getShiftOpcForNode(N.getOperand(1).getOpcode());
758 unsigned ShAmt = 0;
760 Base = N.getOperand(0);
761 Offset = N.getOperand(1);
763 if (ShOpcVal != ARM_AM::no_shift) {
764 // Check to see if the RHS of the shift is a constant, if not, we can't fold
765 // it.
766 if (ConstantSDNode *Sh =
767 dyn_cast<ConstantSDNode>(N.getOperand(1).getOperand(1))) {
768 ShAmt = Sh->getZExtValue();
769 if (isShifterOpProfitable(Offset, ShOpcVal, ShAmt))
770 Offset = N.getOperand(1).getOperand(0);
771 else {
772 ShAmt = 0;
773 ShOpcVal = ARM_AM::no_shift;
775 } else {
776 ShOpcVal = ARM_AM::no_shift;
780 // Try matching (R shl C) + (R).
781 if (N.getOpcode() != ISD::SUB && ShOpcVal == ARM_AM::no_shift &&
782 !(Subtarget->isLikeA9() || Subtarget->isSwift() ||
783 N.getOperand(0).hasOneUse())) {
784 ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOperand(0).getOpcode());
785 if (ShOpcVal != ARM_AM::no_shift) {
786 // Check to see if the RHS of the shift is a constant, if not, we can't
787 // fold it.
788 if (ConstantSDNode *Sh =
789 dyn_cast<ConstantSDNode>(N.getOperand(0).getOperand(1))) {
790 ShAmt = Sh->getZExtValue();
791 if (isShifterOpProfitable(N.getOperand(0), ShOpcVal, ShAmt)) {
792 Offset = N.getOperand(0).getOperand(0);
793 Base = N.getOperand(1);
794 } else {
795 ShAmt = 0;
796 ShOpcVal = ARM_AM::no_shift;
798 } else {
799 ShOpcVal = ARM_AM::no_shift;
804 // If Offset is a multiply-by-constant and it's profitable to extract a shift
805 // and use it in a shifted operand do so.
806 if (Offset.getOpcode() == ISD::MUL && N.hasOneUse()) {
807 unsigned PowerOfTwo = 0;
808 SDValue NewMulConst;
809 if (canExtractShiftFromMul(Offset, 31, PowerOfTwo, NewMulConst)) {
810 HandleSDNode Handle(Offset);
811 replaceDAGValue(Offset.getOperand(1), NewMulConst);
812 Offset = Handle.getValue();
813 ShAmt = PowerOfTwo;
814 ShOpcVal = ARM_AM::lsl;
818 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
819 SDLoc(N), MVT::i32);
820 return true;
823 bool ARMDAGToDAGISel::SelectAddrMode2OffsetReg(SDNode *Op, SDValue N,
824 SDValue &Offset, SDValue &Opc) {
825 unsigned Opcode = Op->getOpcode();
826 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
827 ? cast<LoadSDNode>(Op)->getAddressingMode()
828 : cast<StoreSDNode>(Op)->getAddressingMode();
829 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
830 ? ARM_AM::add : ARM_AM::sub;
831 int Val;
832 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val))
833 return false;
835 Offset = N;
836 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(N.getOpcode());
837 unsigned ShAmt = 0;
838 if (ShOpcVal != ARM_AM::no_shift) {
839 // Check to see if the RHS of the shift is a constant, if not, we can't fold
840 // it.
841 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
842 ShAmt = Sh->getZExtValue();
843 if (isShifterOpProfitable(N, ShOpcVal, ShAmt))
844 Offset = N.getOperand(0);
845 else {
846 ShAmt = 0;
847 ShOpcVal = ARM_AM::no_shift;
849 } else {
850 ShOpcVal = ARM_AM::no_shift;
854 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, ShAmt, ShOpcVal),
855 SDLoc(N), MVT::i32);
856 return true;
859 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImmPre(SDNode *Op, SDValue N,
860 SDValue &Offset, SDValue &Opc) {
861 unsigned Opcode = Op->getOpcode();
862 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
863 ? cast<LoadSDNode>(Op)->getAddressingMode()
864 : cast<StoreSDNode>(Op)->getAddressingMode();
865 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
866 ? ARM_AM::add : ARM_AM::sub;
867 int Val;
868 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
869 if (AddSub == ARM_AM::sub) Val *= -1;
870 Offset = CurDAG->getRegister(0, MVT::i32);
871 Opc = CurDAG->getTargetConstant(Val, SDLoc(Op), MVT::i32);
872 return true;
875 return false;
879 bool ARMDAGToDAGISel::SelectAddrMode2OffsetImm(SDNode *Op, SDValue N,
880 SDValue &Offset, SDValue &Opc) {
881 unsigned Opcode = Op->getOpcode();
882 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
883 ? cast<LoadSDNode>(Op)->getAddressingMode()
884 : cast<StoreSDNode>(Op)->getAddressingMode();
885 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
886 ? ARM_AM::add : ARM_AM::sub;
887 int Val;
888 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x1000, Val)) { // 12 bits.
889 Offset = CurDAG->getRegister(0, MVT::i32);
890 Opc = CurDAG->getTargetConstant(ARM_AM::getAM2Opc(AddSub, Val,
891 ARM_AM::no_shift),
892 SDLoc(Op), MVT::i32);
893 return true;
896 return false;
899 bool ARMDAGToDAGISel::SelectAddrOffsetNone(SDValue N, SDValue &Base) {
900 Base = N;
901 return true;
904 bool ARMDAGToDAGISel::SelectAddrMode3(SDValue N,
905 SDValue &Base, SDValue &Offset,
906 SDValue &Opc) {
907 if (N.getOpcode() == ISD::SUB) {
908 // X - C is canonicalize to X + -C, no need to handle it here.
909 Base = N.getOperand(0);
910 Offset = N.getOperand(1);
911 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::sub, 0), SDLoc(N),
912 MVT::i32);
913 return true;
916 if (!CurDAG->isBaseWithConstantOffset(N)) {
917 Base = N;
918 if (N.getOpcode() == ISD::FrameIndex) {
919 int FI = cast<FrameIndexSDNode>(N)->getIndex();
920 Base = CurDAG->getTargetFrameIndex(
921 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
923 Offset = CurDAG->getRegister(0, MVT::i32);
924 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
925 MVT::i32);
926 return true;
929 // If the RHS is +/- imm8, fold into addr mode.
930 int RHSC;
931 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/1,
932 -256 + 1, 256, RHSC)) { // 8 bits.
933 Base = N.getOperand(0);
934 if (Base.getOpcode() == ISD::FrameIndex) {
935 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
936 Base = CurDAG->getTargetFrameIndex(
937 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
939 Offset = CurDAG->getRegister(0, MVT::i32);
941 ARM_AM::AddrOpc AddSub = ARM_AM::add;
942 if (RHSC < 0) {
943 AddSub = ARM_AM::sub;
944 RHSC = -RHSC;
946 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, RHSC), SDLoc(N),
947 MVT::i32);
948 return true;
951 Base = N.getOperand(0);
952 Offset = N.getOperand(1);
953 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(ARM_AM::add, 0), SDLoc(N),
954 MVT::i32);
955 return true;
958 bool ARMDAGToDAGISel::SelectAddrMode3Offset(SDNode *Op, SDValue N,
959 SDValue &Offset, SDValue &Opc) {
960 unsigned Opcode = Op->getOpcode();
961 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
962 ? cast<LoadSDNode>(Op)->getAddressingMode()
963 : cast<StoreSDNode>(Op)->getAddressingMode();
964 ARM_AM::AddrOpc AddSub = (AM == ISD::PRE_INC || AM == ISD::POST_INC)
965 ? ARM_AM::add : ARM_AM::sub;
966 int Val;
967 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 256, Val)) { // 12 bits.
968 Offset = CurDAG->getRegister(0, MVT::i32);
969 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, Val), SDLoc(Op),
970 MVT::i32);
971 return true;
974 Offset = N;
975 Opc = CurDAG->getTargetConstant(ARM_AM::getAM3Opc(AddSub, 0), SDLoc(Op),
976 MVT::i32);
977 return true;
980 bool ARMDAGToDAGISel::IsAddressingMode5(SDValue N, SDValue &Base, SDValue &Offset,
981 bool FP16) {
982 if (!CurDAG->isBaseWithConstantOffset(N)) {
983 Base = N;
984 if (N.getOpcode() == ISD::FrameIndex) {
985 int FI = cast<FrameIndexSDNode>(N)->getIndex();
986 Base = CurDAG->getTargetFrameIndex(
987 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
988 } else if (N.getOpcode() == ARMISD::Wrapper &&
989 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
990 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
991 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
992 Base = N.getOperand(0);
994 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
995 SDLoc(N), MVT::i32);
996 return true;
999 // If the RHS is +/- imm8, fold into addr mode.
1000 int RHSC;
1001 const int Scale = FP16 ? 2 : 4;
1003 if (isScaledConstantInRange(N.getOperand(1), Scale, -255, 256, RHSC)) {
1004 Base = N.getOperand(0);
1005 if (Base.getOpcode() == ISD::FrameIndex) {
1006 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1007 Base = CurDAG->getTargetFrameIndex(
1008 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1011 ARM_AM::AddrOpc AddSub = ARM_AM::add;
1012 if (RHSC < 0) {
1013 AddSub = ARM_AM::sub;
1014 RHSC = -RHSC;
1017 if (FP16)
1018 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(AddSub, RHSC),
1019 SDLoc(N), MVT::i32);
1020 else
1021 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(AddSub, RHSC),
1022 SDLoc(N), MVT::i32);
1024 return true;
1027 Base = N;
1029 if (FP16)
1030 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5FP16Opc(ARM_AM::add, 0),
1031 SDLoc(N), MVT::i32);
1032 else
1033 Offset = CurDAG->getTargetConstant(ARM_AM::getAM5Opc(ARM_AM::add, 0),
1034 SDLoc(N), MVT::i32);
1036 return true;
1039 bool ARMDAGToDAGISel::SelectAddrMode5(SDValue N,
1040 SDValue &Base, SDValue &Offset) {
1041 return IsAddressingMode5(N, Base, Offset, /*FP16=*/ false);
1044 bool ARMDAGToDAGISel::SelectAddrMode5FP16(SDValue N,
1045 SDValue &Base, SDValue &Offset) {
1046 return IsAddressingMode5(N, Base, Offset, /*FP16=*/ true);
1049 bool ARMDAGToDAGISel::SelectAddrMode6(SDNode *Parent, SDValue N, SDValue &Addr,
1050 SDValue &Align) {
1051 Addr = N;
1053 unsigned Alignment = 0;
1055 MemSDNode *MemN = cast<MemSDNode>(Parent);
1057 if (isa<LSBaseSDNode>(MemN) ||
1058 ((MemN->getOpcode() == ARMISD::VST1_UPD ||
1059 MemN->getOpcode() == ARMISD::VLD1_UPD) &&
1060 MemN->getConstantOperandVal(MemN->getNumOperands() - 1) == 1)) {
1061 // This case occurs only for VLD1-lane/dup and VST1-lane instructions.
1062 // The maximum alignment is equal to the memory size being referenced.
1063 unsigned MMOAlign = MemN->getAlignment();
1064 unsigned MemSize = MemN->getMemoryVT().getSizeInBits() / 8;
1065 if (MMOAlign >= MemSize && MemSize > 1)
1066 Alignment = MemSize;
1067 } else {
1068 // All other uses of addrmode6 are for intrinsics. For now just record
1069 // the raw alignment value; it will be refined later based on the legal
1070 // alignment operands for the intrinsic.
1071 Alignment = MemN->getAlignment();
1074 Align = CurDAG->getTargetConstant(Alignment, SDLoc(N), MVT::i32);
1075 return true;
1078 bool ARMDAGToDAGISel::SelectAddrMode6Offset(SDNode *Op, SDValue N,
1079 SDValue &Offset) {
1080 LSBaseSDNode *LdSt = cast<LSBaseSDNode>(Op);
1081 ISD::MemIndexedMode AM = LdSt->getAddressingMode();
1082 if (AM != ISD::POST_INC)
1083 return false;
1084 Offset = N;
1085 if (ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N)) {
1086 if (NC->getZExtValue() * 8 == LdSt->getMemoryVT().getSizeInBits())
1087 Offset = CurDAG->getRegister(0, MVT::i32);
1089 return true;
1092 bool ARMDAGToDAGISel::SelectAddrModePC(SDValue N,
1093 SDValue &Offset, SDValue &Label) {
1094 if (N.getOpcode() == ARMISD::PIC_ADD && N.hasOneUse()) {
1095 Offset = N.getOperand(0);
1096 SDValue N1 = N.getOperand(1);
1097 Label = CurDAG->getTargetConstant(cast<ConstantSDNode>(N1)->getZExtValue(),
1098 SDLoc(N), MVT::i32);
1099 return true;
1102 return false;
1106 //===----------------------------------------------------------------------===//
1107 // Thumb Addressing Modes
1108 //===----------------------------------------------------------------------===//
1110 static bool shouldUseZeroOffsetLdSt(SDValue N) {
1111 // Negative numbers are difficult to materialise in thumb1. If we are
1112 // selecting the add of a negative, instead try to select ri with a zero
1113 // offset, so create the add node directly which will become a sub.
1114 if (N.getOpcode() != ISD::ADD)
1115 return false;
1117 // Look for an imm which is not legal for ld/st, but is legal for sub.
1118 if (auto C = dyn_cast<ConstantSDNode>(N.getOperand(1)))
1119 return C->getSExtValue() < 0 && C->getSExtValue() >= -255;
1121 return false;
1124 bool ARMDAGToDAGISel::SelectThumbAddrModeRRSext(SDValue N, SDValue &Base,
1125 SDValue &Offset) {
1126 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N)) {
1127 ConstantSDNode *NC = dyn_cast<ConstantSDNode>(N);
1128 if (!NC || !NC->isNullValue())
1129 return false;
1131 Base = Offset = N;
1132 return true;
1135 Base = N.getOperand(0);
1136 Offset = N.getOperand(1);
1137 return true;
1140 bool ARMDAGToDAGISel::SelectThumbAddrModeRR(SDValue N, SDValue &Base,
1141 SDValue &Offset) {
1142 if (shouldUseZeroOffsetLdSt(N))
1143 return false; // Select ri instead
1144 return SelectThumbAddrModeRRSext(N, Base, Offset);
1147 bool
1148 ARMDAGToDAGISel::SelectThumbAddrModeImm5S(SDValue N, unsigned Scale,
1149 SDValue &Base, SDValue &OffImm) {
1150 if (shouldUseZeroOffsetLdSt(N)) {
1151 Base = N;
1152 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1153 return true;
1156 if (!CurDAG->isBaseWithConstantOffset(N)) {
1157 if (N.getOpcode() == ISD::ADD) {
1158 return false; // We want to select register offset instead
1159 } else if (N.getOpcode() == ARMISD::Wrapper &&
1160 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1161 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1162 N.getOperand(0).getOpcode() != ISD::TargetConstantPool &&
1163 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1164 Base = N.getOperand(0);
1165 } else {
1166 Base = N;
1169 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1170 return true;
1173 // If the RHS is + imm5 * scale, fold into addr mode.
1174 int RHSC;
1175 if (isScaledConstantInRange(N.getOperand(1), Scale, 0, 32, RHSC)) {
1176 Base = N.getOperand(0);
1177 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1178 return true;
1181 // Offset is too large, so use register offset instead.
1182 return false;
1185 bool
1186 ARMDAGToDAGISel::SelectThumbAddrModeImm5S4(SDValue N, SDValue &Base,
1187 SDValue &OffImm) {
1188 return SelectThumbAddrModeImm5S(N, 4, Base, OffImm);
1191 bool
1192 ARMDAGToDAGISel::SelectThumbAddrModeImm5S2(SDValue N, SDValue &Base,
1193 SDValue &OffImm) {
1194 return SelectThumbAddrModeImm5S(N, 2, Base, OffImm);
1197 bool
1198 ARMDAGToDAGISel::SelectThumbAddrModeImm5S1(SDValue N, SDValue &Base,
1199 SDValue &OffImm) {
1200 return SelectThumbAddrModeImm5S(N, 1, Base, OffImm);
1203 bool ARMDAGToDAGISel::SelectThumbAddrModeSP(SDValue N,
1204 SDValue &Base, SDValue &OffImm) {
1205 if (N.getOpcode() == ISD::FrameIndex) {
1206 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1207 // Only multiples of 4 are allowed for the offset, so the frame object
1208 // alignment must be at least 4.
1209 MachineFrameInfo &MFI = MF->getFrameInfo();
1210 if (MFI.getObjectAlign(FI) < Align(4))
1211 MFI.setObjectAlignment(FI, Align(4));
1212 Base = CurDAG->getTargetFrameIndex(
1213 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1214 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1215 return true;
1218 if (!CurDAG->isBaseWithConstantOffset(N))
1219 return false;
1221 if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
1222 // If the RHS is + imm8 * scale, fold into addr mode.
1223 int RHSC;
1224 if (isScaledConstantInRange(N.getOperand(1), /*Scale=*/4, 0, 256, RHSC)) {
1225 Base = N.getOperand(0);
1226 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1227 // Make sure the offset is inside the object, or we might fail to
1228 // allocate an emergency spill slot. (An out-of-range access is UB, but
1229 // it could show up anyway.)
1230 MachineFrameInfo &MFI = MF->getFrameInfo();
1231 if (RHSC * 4 < MFI.getObjectSize(FI)) {
1232 // For LHS+RHS to result in an offset that's a multiple of 4 the object
1233 // indexed by the LHS must be 4-byte aligned.
1234 if (!MFI.isFixedObjectIndex(FI) && MFI.getObjectAlign(FI) < Align(4))
1235 MFI.setObjectAlignment(FI, Align(4));
1236 if (MFI.getObjectAlign(FI) >= Align(4)) {
1237 Base = CurDAG->getTargetFrameIndex(
1238 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1239 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1240 return true;
1246 return false;
1249 template <unsigned Shift>
1250 bool ARMDAGToDAGISel::SelectTAddrModeImm7(SDValue N, SDValue &Base,
1251 SDValue &OffImm) {
1252 if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1253 int RHSC;
1254 if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
1255 RHSC)) {
1256 Base = N.getOperand(0);
1257 if (N.getOpcode() == ISD::SUB)
1258 RHSC = -RHSC;
1259 OffImm =
1260 CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1261 return true;
1265 // Base only.
1266 Base = N;
1267 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1268 return true;
1272 //===----------------------------------------------------------------------===//
1273 // Thumb 2 Addressing Modes
1274 //===----------------------------------------------------------------------===//
1277 bool ARMDAGToDAGISel::SelectT2AddrModeImm12(SDValue N,
1278 SDValue &Base, SDValue &OffImm) {
1279 // Match simple R + imm12 operands.
1281 // Base only.
1282 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1283 !CurDAG->isBaseWithConstantOffset(N)) {
1284 if (N.getOpcode() == ISD::FrameIndex) {
1285 // Match frame index.
1286 int FI = cast<FrameIndexSDNode>(N)->getIndex();
1287 Base = CurDAG->getTargetFrameIndex(
1288 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1289 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1290 return true;
1293 if (N.getOpcode() == ARMISD::Wrapper &&
1294 N.getOperand(0).getOpcode() != ISD::TargetGlobalAddress &&
1295 N.getOperand(0).getOpcode() != ISD::TargetExternalSymbol &&
1296 N.getOperand(0).getOpcode() != ISD::TargetGlobalTLSAddress) {
1297 Base = N.getOperand(0);
1298 if (Base.getOpcode() == ISD::TargetConstantPool)
1299 return false; // We want to select t2LDRpci instead.
1300 } else
1301 Base = N;
1302 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1303 return true;
1306 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1307 if (SelectT2AddrModeImm8(N, Base, OffImm))
1308 // Let t2LDRi8 handle (R - imm8).
1309 return false;
1311 int RHSC = (int)RHS->getZExtValue();
1312 if (N.getOpcode() == ISD::SUB)
1313 RHSC = -RHSC;
1315 if (RHSC >= 0 && RHSC < 0x1000) { // 12 bits (unsigned)
1316 Base = N.getOperand(0);
1317 if (Base.getOpcode() == ISD::FrameIndex) {
1318 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1319 Base = CurDAG->getTargetFrameIndex(
1320 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1322 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1323 return true;
1327 // Base only.
1328 Base = N;
1329 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1330 return true;
1333 template <unsigned Shift>
1334 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N, SDValue &Base,
1335 SDValue &OffImm) {
1336 if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1337 int RHSC;
1338 if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -255, 256, RHSC)) {
1339 Base = N.getOperand(0);
1340 if (Base.getOpcode() == ISD::FrameIndex) {
1341 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1342 Base = CurDAG->getTargetFrameIndex(
1343 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1346 if (N.getOpcode() == ISD::SUB)
1347 RHSC = -RHSC;
1348 OffImm =
1349 CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1350 return true;
1354 // Base only.
1355 Base = N;
1356 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1357 return true;
1360 bool ARMDAGToDAGISel::SelectT2AddrModeImm8(SDValue N,
1361 SDValue &Base, SDValue &OffImm) {
1362 // Match simple R - imm8 operands.
1363 if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
1364 !CurDAG->isBaseWithConstantOffset(N))
1365 return false;
1367 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1368 int RHSC = (int)RHS->getSExtValue();
1369 if (N.getOpcode() == ISD::SUB)
1370 RHSC = -RHSC;
1372 if ((RHSC >= -255) && (RHSC < 0)) { // 8 bits (always negative)
1373 Base = N.getOperand(0);
1374 if (Base.getOpcode() == ISD::FrameIndex) {
1375 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1376 Base = CurDAG->getTargetFrameIndex(
1377 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1379 OffImm = CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32);
1380 return true;
1384 return false;
1387 bool ARMDAGToDAGISel::SelectT2AddrModeImm8Offset(SDNode *Op, SDValue N,
1388 SDValue &OffImm){
1389 unsigned Opcode = Op->getOpcode();
1390 ISD::MemIndexedMode AM = (Opcode == ISD::LOAD)
1391 ? cast<LoadSDNode>(Op)->getAddressingMode()
1392 : cast<StoreSDNode>(Op)->getAddressingMode();
1393 int RHSC;
1394 if (isScaledConstantInRange(N, /*Scale=*/1, 0, 0x100, RHSC)) { // 8 bits.
1395 OffImm = ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1396 ? CurDAG->getTargetConstant(RHSC, SDLoc(N), MVT::i32)
1397 : CurDAG->getTargetConstant(-RHSC, SDLoc(N), MVT::i32);
1398 return true;
1401 return false;
1404 template <unsigned Shift>
1405 bool ARMDAGToDAGISel::SelectT2AddrModeImm7(SDValue N, SDValue &Base,
1406 SDValue &OffImm) {
1407 if (N.getOpcode() == ISD::SUB || CurDAG->isBaseWithConstantOffset(N)) {
1408 int RHSC;
1409 if (isScaledConstantInRange(N.getOperand(1), 1 << Shift, -0x7f, 0x80,
1410 RHSC)) {
1411 Base = N.getOperand(0);
1412 if (Base.getOpcode() == ISD::FrameIndex) {
1413 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1414 Base = CurDAG->getTargetFrameIndex(
1415 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1418 if (N.getOpcode() == ISD::SUB)
1419 RHSC = -RHSC;
1420 OffImm =
1421 CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32);
1422 return true;
1426 // Base only.
1427 Base = N;
1428 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1429 return true;
1432 template <unsigned Shift>
1433 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1434 SDValue &OffImm) {
1435 return SelectT2AddrModeImm7Offset(Op, N, OffImm, Shift);
1438 bool ARMDAGToDAGISel::SelectT2AddrModeImm7Offset(SDNode *Op, SDValue N,
1439 SDValue &OffImm,
1440 unsigned Shift) {
1441 unsigned Opcode = Op->getOpcode();
1442 ISD::MemIndexedMode AM;
1443 switch (Opcode) {
1444 case ISD::LOAD:
1445 AM = cast<LoadSDNode>(Op)->getAddressingMode();
1446 break;
1447 case ISD::STORE:
1448 AM = cast<StoreSDNode>(Op)->getAddressingMode();
1449 break;
1450 case ISD::MLOAD:
1451 AM = cast<MaskedLoadSDNode>(Op)->getAddressingMode();
1452 break;
1453 case ISD::MSTORE:
1454 AM = cast<MaskedStoreSDNode>(Op)->getAddressingMode();
1455 break;
1456 default:
1457 llvm_unreachable("Unexpected Opcode for Imm7Offset");
1460 int RHSC;
1461 // 7 bit constant, shifted by Shift.
1462 if (isScaledConstantInRange(N, 1 << Shift, 0, 0x80, RHSC)) {
1463 OffImm =
1464 ((AM == ISD::PRE_INC) || (AM == ISD::POST_INC))
1465 ? CurDAG->getTargetConstant(RHSC * (1 << Shift), SDLoc(N), MVT::i32)
1466 : CurDAG->getTargetConstant(-RHSC * (1 << Shift), SDLoc(N),
1467 MVT::i32);
1468 return true;
1470 return false;
1473 template <int Min, int Max>
1474 bool ARMDAGToDAGISel::SelectImmediateInRange(SDValue N, SDValue &OffImm) {
1475 int Val;
1476 if (isScaledConstantInRange(N, 1, Min, Max, Val)) {
1477 OffImm = CurDAG->getTargetConstant(Val, SDLoc(N), MVT::i32);
1478 return true;
1480 return false;
1483 bool ARMDAGToDAGISel::SelectT2AddrModeSoReg(SDValue N,
1484 SDValue &Base,
1485 SDValue &OffReg, SDValue &ShImm) {
1486 // (R - imm8) should be handled by t2LDRi8. The rest are handled by t2LDRi12.
1487 if (N.getOpcode() != ISD::ADD && !CurDAG->isBaseWithConstantOffset(N))
1488 return false;
1490 // Leave (R + imm12) for t2LDRi12, (R - imm8) for t2LDRi8.
1491 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
1492 int RHSC = (int)RHS->getZExtValue();
1493 if (RHSC >= 0 && RHSC < 0x1000) // 12 bits (unsigned)
1494 return false;
1495 else if (RHSC < 0 && RHSC >= -255) // 8 bits
1496 return false;
1499 // Look for (R + R) or (R + (R << [1,2,3])).
1500 unsigned ShAmt = 0;
1501 Base = N.getOperand(0);
1502 OffReg = N.getOperand(1);
1504 // Swap if it is ((R << c) + R).
1505 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(OffReg.getOpcode());
1506 if (ShOpcVal != ARM_AM::lsl) {
1507 ShOpcVal = ARM_AM::getShiftOpcForNode(Base.getOpcode());
1508 if (ShOpcVal == ARM_AM::lsl)
1509 std::swap(Base, OffReg);
1512 if (ShOpcVal == ARM_AM::lsl) {
1513 // Check to see if the RHS of the shift is a constant, if not, we can't fold
1514 // it.
1515 if (ConstantSDNode *Sh = dyn_cast<ConstantSDNode>(OffReg.getOperand(1))) {
1516 ShAmt = Sh->getZExtValue();
1517 if (ShAmt < 4 && isShifterOpProfitable(OffReg, ShOpcVal, ShAmt))
1518 OffReg = OffReg.getOperand(0);
1519 else {
1520 ShAmt = 0;
1525 // If OffReg is a multiply-by-constant and it's profitable to extract a shift
1526 // and use it in a shifted operand do so.
1527 if (OffReg.getOpcode() == ISD::MUL && N.hasOneUse()) {
1528 unsigned PowerOfTwo = 0;
1529 SDValue NewMulConst;
1530 if (canExtractShiftFromMul(OffReg, 3, PowerOfTwo, NewMulConst)) {
1531 HandleSDNode Handle(OffReg);
1532 replaceDAGValue(OffReg.getOperand(1), NewMulConst);
1533 OffReg = Handle.getValue();
1534 ShAmt = PowerOfTwo;
1538 ShImm = CurDAG->getTargetConstant(ShAmt, SDLoc(N), MVT::i32);
1540 return true;
1543 bool ARMDAGToDAGISel::SelectT2AddrModeExclusive(SDValue N, SDValue &Base,
1544 SDValue &OffImm) {
1545 // This *must* succeed since it's used for the irreplaceable ldrex and strex
1546 // instructions.
1547 Base = N;
1548 OffImm = CurDAG->getTargetConstant(0, SDLoc(N), MVT::i32);
1550 if (N.getOpcode() != ISD::ADD || !CurDAG->isBaseWithConstantOffset(N))
1551 return true;
1553 ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1));
1554 if (!RHS)
1555 return true;
1557 uint32_t RHSC = (int)RHS->getZExtValue();
1558 if (RHSC > 1020 || RHSC % 4 != 0)
1559 return true;
1561 Base = N.getOperand(0);
1562 if (Base.getOpcode() == ISD::FrameIndex) {
1563 int FI = cast<FrameIndexSDNode>(Base)->getIndex();
1564 Base = CurDAG->getTargetFrameIndex(
1565 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
1568 OffImm = CurDAG->getTargetConstant(RHSC/4, SDLoc(N), MVT::i32);
1569 return true;
1572 //===--------------------------------------------------------------------===//
1574 /// getAL - Returns a ARMCC::AL immediate node.
1575 static inline SDValue getAL(SelectionDAG *CurDAG, const SDLoc &dl) {
1576 return CurDAG->getTargetConstant((uint64_t)ARMCC::AL, dl, MVT::i32);
1579 void ARMDAGToDAGISel::transferMemOperands(SDNode *N, SDNode *Result) {
1580 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
1581 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Result), {MemOp});
1584 bool ARMDAGToDAGISel::tryARMIndexedLoad(SDNode *N) {
1585 LoadSDNode *LD = cast<LoadSDNode>(N);
1586 ISD::MemIndexedMode AM = LD->getAddressingMode();
1587 if (AM == ISD::UNINDEXED)
1588 return false;
1590 EVT LoadedVT = LD->getMemoryVT();
1591 SDValue Offset, AMOpc;
1592 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1593 unsigned Opcode = 0;
1594 bool Match = false;
1595 if (LoadedVT == MVT::i32 && isPre &&
1596 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1597 Opcode = ARM::LDR_PRE_IMM;
1598 Match = true;
1599 } else if (LoadedVT == MVT::i32 && !isPre &&
1600 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1601 Opcode = ARM::LDR_POST_IMM;
1602 Match = true;
1603 } else if (LoadedVT == MVT::i32 &&
1604 SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1605 Opcode = isPre ? ARM::LDR_PRE_REG : ARM::LDR_POST_REG;
1606 Match = true;
1608 } else if (LoadedVT == MVT::i16 &&
1609 SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1610 Match = true;
1611 Opcode = (LD->getExtensionType() == ISD::SEXTLOAD)
1612 ? (isPre ? ARM::LDRSH_PRE : ARM::LDRSH_POST)
1613 : (isPre ? ARM::LDRH_PRE : ARM::LDRH_POST);
1614 } else if (LoadedVT == MVT::i8 || LoadedVT == MVT::i1) {
1615 if (LD->getExtensionType() == ISD::SEXTLOAD) {
1616 if (SelectAddrMode3Offset(N, LD->getOffset(), Offset, AMOpc)) {
1617 Match = true;
1618 Opcode = isPre ? ARM::LDRSB_PRE : ARM::LDRSB_POST;
1620 } else {
1621 if (isPre &&
1622 SelectAddrMode2OffsetImmPre(N, LD->getOffset(), Offset, AMOpc)) {
1623 Match = true;
1624 Opcode = ARM::LDRB_PRE_IMM;
1625 } else if (!isPre &&
1626 SelectAddrMode2OffsetImm(N, LD->getOffset(), Offset, AMOpc)) {
1627 Match = true;
1628 Opcode = ARM::LDRB_POST_IMM;
1629 } else if (SelectAddrMode2OffsetReg(N, LD->getOffset(), Offset, AMOpc)) {
1630 Match = true;
1631 Opcode = isPre ? ARM::LDRB_PRE_REG : ARM::LDRB_POST_REG;
1636 if (Match) {
1637 if (Opcode == ARM::LDR_PRE_IMM || Opcode == ARM::LDRB_PRE_IMM) {
1638 SDValue Chain = LD->getChain();
1639 SDValue Base = LD->getBasePtr();
1640 SDValue Ops[]= { Base, AMOpc, getAL(CurDAG, SDLoc(N)),
1641 CurDAG->getRegister(0, MVT::i32), Chain };
1642 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1643 MVT::Other, Ops);
1644 transferMemOperands(N, New);
1645 ReplaceNode(N, New);
1646 return true;
1647 } else {
1648 SDValue Chain = LD->getChain();
1649 SDValue Base = LD->getBasePtr();
1650 SDValue Ops[]= { Base, Offset, AMOpc, getAL(CurDAG, SDLoc(N)),
1651 CurDAG->getRegister(0, MVT::i32), Chain };
1652 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1653 MVT::Other, Ops);
1654 transferMemOperands(N, New);
1655 ReplaceNode(N, New);
1656 return true;
1660 return false;
1663 bool ARMDAGToDAGISel::tryT1IndexedLoad(SDNode *N) {
1664 LoadSDNode *LD = cast<LoadSDNode>(N);
1665 EVT LoadedVT = LD->getMemoryVT();
1666 ISD::MemIndexedMode AM = LD->getAddressingMode();
1667 if (AM != ISD::POST_INC || LD->getExtensionType() != ISD::NON_EXTLOAD ||
1668 LoadedVT.getSimpleVT().SimpleTy != MVT::i32)
1669 return false;
1671 auto *COffs = dyn_cast<ConstantSDNode>(LD->getOffset());
1672 if (!COffs || COffs->getZExtValue() != 4)
1673 return false;
1675 // A T1 post-indexed load is just a single register LDM: LDM r0!, {r1}.
1676 // The encoding of LDM is not how the rest of ISel expects a post-inc load to
1677 // look however, so we use a pseudo here and switch it for a tLDMIA_UPD after
1678 // ISel.
1679 SDValue Chain = LD->getChain();
1680 SDValue Base = LD->getBasePtr();
1681 SDValue Ops[]= { Base, getAL(CurDAG, SDLoc(N)),
1682 CurDAG->getRegister(0, MVT::i32), Chain };
1683 SDNode *New = CurDAG->getMachineNode(ARM::tLDR_postidx, SDLoc(N), MVT::i32,
1684 MVT::i32, MVT::Other, Ops);
1685 transferMemOperands(N, New);
1686 ReplaceNode(N, New);
1687 return true;
1690 bool ARMDAGToDAGISel::tryT2IndexedLoad(SDNode *N) {
1691 LoadSDNode *LD = cast<LoadSDNode>(N);
1692 ISD::MemIndexedMode AM = LD->getAddressingMode();
1693 if (AM == ISD::UNINDEXED)
1694 return false;
1696 EVT LoadedVT = LD->getMemoryVT();
1697 bool isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1698 SDValue Offset;
1699 bool isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1700 unsigned Opcode = 0;
1701 bool Match = false;
1702 if (SelectT2AddrModeImm8Offset(N, LD->getOffset(), Offset)) {
1703 switch (LoadedVT.getSimpleVT().SimpleTy) {
1704 case MVT::i32:
1705 Opcode = isPre ? ARM::t2LDR_PRE : ARM::t2LDR_POST;
1706 break;
1707 case MVT::i16:
1708 if (isSExtLd)
1709 Opcode = isPre ? ARM::t2LDRSH_PRE : ARM::t2LDRSH_POST;
1710 else
1711 Opcode = isPre ? ARM::t2LDRH_PRE : ARM::t2LDRH_POST;
1712 break;
1713 case MVT::i8:
1714 case MVT::i1:
1715 if (isSExtLd)
1716 Opcode = isPre ? ARM::t2LDRSB_PRE : ARM::t2LDRSB_POST;
1717 else
1718 Opcode = isPre ? ARM::t2LDRB_PRE : ARM::t2LDRB_POST;
1719 break;
1720 default:
1721 return false;
1723 Match = true;
1726 if (Match) {
1727 SDValue Chain = LD->getChain();
1728 SDValue Base = LD->getBasePtr();
1729 SDValue Ops[]= { Base, Offset, getAL(CurDAG, SDLoc(N)),
1730 CurDAG->getRegister(0, MVT::i32), Chain };
1731 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32, MVT::i32,
1732 MVT::Other, Ops);
1733 transferMemOperands(N, New);
1734 ReplaceNode(N, New);
1735 return true;
1738 return false;
1741 bool ARMDAGToDAGISel::tryMVEIndexedLoad(SDNode *N) {
1742 EVT LoadedVT;
1743 unsigned Opcode = 0;
1744 bool isSExtLd, isPre;
1745 Align Alignment;
1746 ARMVCC::VPTCodes Pred;
1747 SDValue PredReg;
1748 SDValue Chain, Base, Offset;
1750 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1751 ISD::MemIndexedMode AM = LD->getAddressingMode();
1752 if (AM == ISD::UNINDEXED)
1753 return false;
1754 LoadedVT = LD->getMemoryVT();
1755 if (!LoadedVT.isVector())
1756 return false;
1758 Chain = LD->getChain();
1759 Base = LD->getBasePtr();
1760 Offset = LD->getOffset();
1761 Alignment = LD->getAlign();
1762 isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1763 isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1764 Pred = ARMVCC::None;
1765 PredReg = CurDAG->getRegister(0, MVT::i32);
1766 } else if (MaskedLoadSDNode *LD = dyn_cast<MaskedLoadSDNode>(N)) {
1767 ISD::MemIndexedMode AM = LD->getAddressingMode();
1768 if (AM == ISD::UNINDEXED)
1769 return false;
1770 LoadedVT = LD->getMemoryVT();
1771 if (!LoadedVT.isVector())
1772 return false;
1774 Chain = LD->getChain();
1775 Base = LD->getBasePtr();
1776 Offset = LD->getOffset();
1777 Alignment = LD->getAlign();
1778 isSExtLd = LD->getExtensionType() == ISD::SEXTLOAD;
1779 isPre = (AM == ISD::PRE_INC) || (AM == ISD::PRE_DEC);
1780 Pred = ARMVCC::Then;
1781 PredReg = LD->getMask();
1782 } else
1783 llvm_unreachable("Expected a Load or a Masked Load!");
1785 // We allow LE non-masked loads to change the type (for example use a vldrb.8
1786 // as opposed to a vldrw.32). This can allow extra addressing modes or
1787 // alignments for what is otherwise an equivalent instruction.
1788 bool CanChangeType = Subtarget->isLittle() && !isa<MaskedLoadSDNode>(N);
1790 SDValue NewOffset;
1791 if (Alignment >= Align(2) && LoadedVT == MVT::v4i16 &&
1792 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1)) {
1793 if (isSExtLd)
1794 Opcode = isPre ? ARM::MVE_VLDRHS32_pre : ARM::MVE_VLDRHS32_post;
1795 else
1796 Opcode = isPre ? ARM::MVE_VLDRHU32_pre : ARM::MVE_VLDRHU32_post;
1797 } else if (LoadedVT == MVT::v8i8 &&
1798 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
1799 if (isSExtLd)
1800 Opcode = isPre ? ARM::MVE_VLDRBS16_pre : ARM::MVE_VLDRBS16_post;
1801 else
1802 Opcode = isPre ? ARM::MVE_VLDRBU16_pre : ARM::MVE_VLDRBU16_post;
1803 } else if (LoadedVT == MVT::v4i8 &&
1804 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0)) {
1805 if (isSExtLd)
1806 Opcode = isPre ? ARM::MVE_VLDRBS32_pre : ARM::MVE_VLDRBS32_post;
1807 else
1808 Opcode = isPre ? ARM::MVE_VLDRBU32_pre : ARM::MVE_VLDRBU32_post;
1809 } else if (Alignment >= Align(4) &&
1810 (CanChangeType || LoadedVT == MVT::v4i32 ||
1811 LoadedVT == MVT::v4f32) &&
1812 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 2))
1813 Opcode = isPre ? ARM::MVE_VLDRWU32_pre : ARM::MVE_VLDRWU32_post;
1814 else if (Alignment >= Align(2) &&
1815 (CanChangeType || LoadedVT == MVT::v8i16 ||
1816 LoadedVT == MVT::v8f16) &&
1817 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 1))
1818 Opcode = isPre ? ARM::MVE_VLDRHU16_pre : ARM::MVE_VLDRHU16_post;
1819 else if ((CanChangeType || LoadedVT == MVT::v16i8) &&
1820 SelectT2AddrModeImm7Offset(N, Offset, NewOffset, 0))
1821 Opcode = isPre ? ARM::MVE_VLDRBU8_pre : ARM::MVE_VLDRBU8_post;
1822 else
1823 return false;
1825 SDValue Ops[] = {Base, NewOffset,
1826 CurDAG->getTargetConstant(Pred, SDLoc(N), MVT::i32), PredReg,
1827 Chain};
1828 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), MVT::i32,
1829 N->getValueType(0), MVT::Other, Ops);
1830 transferMemOperands(N, New);
1831 ReplaceUses(SDValue(N, 0), SDValue(New, 1));
1832 ReplaceUses(SDValue(N, 1), SDValue(New, 0));
1833 ReplaceUses(SDValue(N, 2), SDValue(New, 2));
1834 CurDAG->RemoveDeadNode(N);
1835 return true;
1838 /// Form a GPRPair pseudo register from a pair of GPR regs.
1839 SDNode *ARMDAGToDAGISel::createGPRPairNode(EVT VT, SDValue V0, SDValue V1) {
1840 SDLoc dl(V0.getNode());
1841 SDValue RegClass =
1842 CurDAG->getTargetConstant(ARM::GPRPairRegClassID, dl, MVT::i32);
1843 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
1844 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
1845 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1846 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1849 /// Form a D register from a pair of S registers.
1850 SDNode *ARMDAGToDAGISel::createSRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1851 SDLoc dl(V0.getNode());
1852 SDValue RegClass =
1853 CurDAG->getTargetConstant(ARM::DPR_VFP2RegClassID, dl, MVT::i32);
1854 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1855 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1856 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1857 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1860 /// Form a quad register from a pair of D registers.
1861 SDNode *ARMDAGToDAGISel::createDRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1862 SDLoc dl(V0.getNode());
1863 SDValue RegClass = CurDAG->getTargetConstant(ARM::QPRRegClassID, dl,
1864 MVT::i32);
1865 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1866 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1867 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1868 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1871 /// Form 4 consecutive D registers from a pair of Q registers.
1872 SDNode *ARMDAGToDAGISel::createQRegPairNode(EVT VT, SDValue V0, SDValue V1) {
1873 SDLoc dl(V0.getNode());
1874 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1875 MVT::i32);
1876 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1877 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1878 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1 };
1879 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1882 /// Form 4 consecutive S registers.
1883 SDNode *ARMDAGToDAGISel::createQuadSRegsNode(EVT VT, SDValue V0, SDValue V1,
1884 SDValue V2, SDValue V3) {
1885 SDLoc dl(V0.getNode());
1886 SDValue RegClass =
1887 CurDAG->getTargetConstant(ARM::QPR_VFP2RegClassID, dl, MVT::i32);
1888 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::ssub_0, dl, MVT::i32);
1889 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::ssub_1, dl, MVT::i32);
1890 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::ssub_2, dl, MVT::i32);
1891 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::ssub_3, dl, MVT::i32);
1892 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1893 V2, SubReg2, V3, SubReg3 };
1894 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1897 /// Form 4 consecutive D registers.
1898 SDNode *ARMDAGToDAGISel::createQuadDRegsNode(EVT VT, SDValue V0, SDValue V1,
1899 SDValue V2, SDValue V3) {
1900 SDLoc dl(V0.getNode());
1901 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQPRRegClassID, dl,
1902 MVT::i32);
1903 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::dsub_0, dl, MVT::i32);
1904 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::dsub_1, dl, MVT::i32);
1905 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::dsub_2, dl, MVT::i32);
1906 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::dsub_3, dl, MVT::i32);
1907 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1908 V2, SubReg2, V3, SubReg3 };
1909 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1912 /// Form 4 consecutive Q registers.
1913 SDNode *ARMDAGToDAGISel::createQuadQRegsNode(EVT VT, SDValue V0, SDValue V1,
1914 SDValue V2, SDValue V3) {
1915 SDLoc dl(V0.getNode());
1916 SDValue RegClass = CurDAG->getTargetConstant(ARM::QQQQPRRegClassID, dl,
1917 MVT::i32);
1918 SDValue SubReg0 = CurDAG->getTargetConstant(ARM::qsub_0, dl, MVT::i32);
1919 SDValue SubReg1 = CurDAG->getTargetConstant(ARM::qsub_1, dl, MVT::i32);
1920 SDValue SubReg2 = CurDAG->getTargetConstant(ARM::qsub_2, dl, MVT::i32);
1921 SDValue SubReg3 = CurDAG->getTargetConstant(ARM::qsub_3, dl, MVT::i32);
1922 const SDValue Ops[] = { RegClass, V0, SubReg0, V1, SubReg1,
1923 V2, SubReg2, V3, SubReg3 };
1924 return CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, VT, Ops);
1927 /// GetVLDSTAlign - Get the alignment (in bytes) for the alignment operand
1928 /// of a NEON VLD or VST instruction. The supported values depend on the
1929 /// number of registers being loaded.
1930 SDValue ARMDAGToDAGISel::GetVLDSTAlign(SDValue Align, const SDLoc &dl,
1931 unsigned NumVecs, bool is64BitVector) {
1932 unsigned NumRegs = NumVecs;
1933 if (!is64BitVector && NumVecs < 3)
1934 NumRegs *= 2;
1936 unsigned Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
1937 if (Alignment >= 32 && NumRegs == 4)
1938 Alignment = 32;
1939 else if (Alignment >= 16 && (NumRegs == 2 || NumRegs == 4))
1940 Alignment = 16;
1941 else if (Alignment >= 8)
1942 Alignment = 8;
1943 else
1944 Alignment = 0;
1946 return CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
1949 static bool isVLDfixed(unsigned Opc)
1951 switch (Opc) {
1952 default: return false;
1953 case ARM::VLD1d8wb_fixed : return true;
1954 case ARM::VLD1d16wb_fixed : return true;
1955 case ARM::VLD1d64Qwb_fixed : return true;
1956 case ARM::VLD1d32wb_fixed : return true;
1957 case ARM::VLD1d64wb_fixed : return true;
1958 case ARM::VLD1d8TPseudoWB_fixed : return true;
1959 case ARM::VLD1d16TPseudoWB_fixed : return true;
1960 case ARM::VLD1d32TPseudoWB_fixed : return true;
1961 case ARM::VLD1d64TPseudoWB_fixed : return true;
1962 case ARM::VLD1d8QPseudoWB_fixed : return true;
1963 case ARM::VLD1d16QPseudoWB_fixed : return true;
1964 case ARM::VLD1d32QPseudoWB_fixed : return true;
1965 case ARM::VLD1d64QPseudoWB_fixed : return true;
1966 case ARM::VLD1q8wb_fixed : return true;
1967 case ARM::VLD1q16wb_fixed : return true;
1968 case ARM::VLD1q32wb_fixed : return true;
1969 case ARM::VLD1q64wb_fixed : return true;
1970 case ARM::VLD1DUPd8wb_fixed : return true;
1971 case ARM::VLD1DUPd16wb_fixed : return true;
1972 case ARM::VLD1DUPd32wb_fixed : return true;
1973 case ARM::VLD1DUPq8wb_fixed : return true;
1974 case ARM::VLD1DUPq16wb_fixed : return true;
1975 case ARM::VLD1DUPq32wb_fixed : return true;
1976 case ARM::VLD2d8wb_fixed : return true;
1977 case ARM::VLD2d16wb_fixed : return true;
1978 case ARM::VLD2d32wb_fixed : return true;
1979 case ARM::VLD2q8PseudoWB_fixed : return true;
1980 case ARM::VLD2q16PseudoWB_fixed : return true;
1981 case ARM::VLD2q32PseudoWB_fixed : return true;
1982 case ARM::VLD2DUPd8wb_fixed : return true;
1983 case ARM::VLD2DUPd16wb_fixed : return true;
1984 case ARM::VLD2DUPd32wb_fixed : return true;
1985 case ARM::VLD2DUPq8OddPseudoWB_fixed: return true;
1986 case ARM::VLD2DUPq16OddPseudoWB_fixed: return true;
1987 case ARM::VLD2DUPq32OddPseudoWB_fixed: return true;
1991 static bool isVSTfixed(unsigned Opc)
1993 switch (Opc) {
1994 default: return false;
1995 case ARM::VST1d8wb_fixed : return true;
1996 case ARM::VST1d16wb_fixed : return true;
1997 case ARM::VST1d32wb_fixed : return true;
1998 case ARM::VST1d64wb_fixed : return true;
1999 case ARM::VST1q8wb_fixed : return true;
2000 case ARM::VST1q16wb_fixed : return true;
2001 case ARM::VST1q32wb_fixed : return true;
2002 case ARM::VST1q64wb_fixed : return true;
2003 case ARM::VST1d8TPseudoWB_fixed : return true;
2004 case ARM::VST1d16TPseudoWB_fixed : return true;
2005 case ARM::VST1d32TPseudoWB_fixed : return true;
2006 case ARM::VST1d64TPseudoWB_fixed : return true;
2007 case ARM::VST1d8QPseudoWB_fixed : return true;
2008 case ARM::VST1d16QPseudoWB_fixed : return true;
2009 case ARM::VST1d32QPseudoWB_fixed : return true;
2010 case ARM::VST1d64QPseudoWB_fixed : return true;
2011 case ARM::VST2d8wb_fixed : return true;
2012 case ARM::VST2d16wb_fixed : return true;
2013 case ARM::VST2d32wb_fixed : return true;
2014 case ARM::VST2q8PseudoWB_fixed : return true;
2015 case ARM::VST2q16PseudoWB_fixed : return true;
2016 case ARM::VST2q32PseudoWB_fixed : return true;
2020 // Get the register stride update opcode of a VLD/VST instruction that
2021 // is otherwise equivalent to the given fixed stride updating instruction.
2022 static unsigned getVLDSTRegisterUpdateOpcode(unsigned Opc) {
2023 assert((isVLDfixed(Opc) || isVSTfixed(Opc))
2024 && "Incorrect fixed stride updating instruction.");
2025 switch (Opc) {
2026 default: break;
2027 case ARM::VLD1d8wb_fixed: return ARM::VLD1d8wb_register;
2028 case ARM::VLD1d16wb_fixed: return ARM::VLD1d16wb_register;
2029 case ARM::VLD1d32wb_fixed: return ARM::VLD1d32wb_register;
2030 case ARM::VLD1d64wb_fixed: return ARM::VLD1d64wb_register;
2031 case ARM::VLD1q8wb_fixed: return ARM::VLD1q8wb_register;
2032 case ARM::VLD1q16wb_fixed: return ARM::VLD1q16wb_register;
2033 case ARM::VLD1q32wb_fixed: return ARM::VLD1q32wb_register;
2034 case ARM::VLD1q64wb_fixed: return ARM::VLD1q64wb_register;
2035 case ARM::VLD1d64Twb_fixed: return ARM::VLD1d64Twb_register;
2036 case ARM::VLD1d64Qwb_fixed: return ARM::VLD1d64Qwb_register;
2037 case ARM::VLD1d8TPseudoWB_fixed: return ARM::VLD1d8TPseudoWB_register;
2038 case ARM::VLD1d16TPseudoWB_fixed: return ARM::VLD1d16TPseudoWB_register;
2039 case ARM::VLD1d32TPseudoWB_fixed: return ARM::VLD1d32TPseudoWB_register;
2040 case ARM::VLD1d64TPseudoWB_fixed: return ARM::VLD1d64TPseudoWB_register;
2041 case ARM::VLD1d8QPseudoWB_fixed: return ARM::VLD1d8QPseudoWB_register;
2042 case ARM::VLD1d16QPseudoWB_fixed: return ARM::VLD1d16QPseudoWB_register;
2043 case ARM::VLD1d32QPseudoWB_fixed: return ARM::VLD1d32QPseudoWB_register;
2044 case ARM::VLD1d64QPseudoWB_fixed: return ARM::VLD1d64QPseudoWB_register;
2045 case ARM::VLD1DUPd8wb_fixed : return ARM::VLD1DUPd8wb_register;
2046 case ARM::VLD1DUPd16wb_fixed : return ARM::VLD1DUPd16wb_register;
2047 case ARM::VLD1DUPd32wb_fixed : return ARM::VLD1DUPd32wb_register;
2048 case ARM::VLD1DUPq8wb_fixed : return ARM::VLD1DUPq8wb_register;
2049 case ARM::VLD1DUPq16wb_fixed : return ARM::VLD1DUPq16wb_register;
2050 case ARM::VLD1DUPq32wb_fixed : return ARM::VLD1DUPq32wb_register;
2051 case ARM::VLD2DUPq8OddPseudoWB_fixed: return ARM::VLD2DUPq8OddPseudoWB_register;
2052 case ARM::VLD2DUPq16OddPseudoWB_fixed: return ARM::VLD2DUPq16OddPseudoWB_register;
2053 case ARM::VLD2DUPq32OddPseudoWB_fixed: return ARM::VLD2DUPq32OddPseudoWB_register;
2055 case ARM::VST1d8wb_fixed: return ARM::VST1d8wb_register;
2056 case ARM::VST1d16wb_fixed: return ARM::VST1d16wb_register;
2057 case ARM::VST1d32wb_fixed: return ARM::VST1d32wb_register;
2058 case ARM::VST1d64wb_fixed: return ARM::VST1d64wb_register;
2059 case ARM::VST1q8wb_fixed: return ARM::VST1q8wb_register;
2060 case ARM::VST1q16wb_fixed: return ARM::VST1q16wb_register;
2061 case ARM::VST1q32wb_fixed: return ARM::VST1q32wb_register;
2062 case ARM::VST1q64wb_fixed: return ARM::VST1q64wb_register;
2063 case ARM::VST1d8TPseudoWB_fixed: return ARM::VST1d8TPseudoWB_register;
2064 case ARM::VST1d16TPseudoWB_fixed: return ARM::VST1d16TPseudoWB_register;
2065 case ARM::VST1d32TPseudoWB_fixed: return ARM::VST1d32TPseudoWB_register;
2066 case ARM::VST1d64TPseudoWB_fixed: return ARM::VST1d64TPseudoWB_register;
2067 case ARM::VST1d8QPseudoWB_fixed: return ARM::VST1d8QPseudoWB_register;
2068 case ARM::VST1d16QPseudoWB_fixed: return ARM::VST1d16QPseudoWB_register;
2069 case ARM::VST1d32QPseudoWB_fixed: return ARM::VST1d32QPseudoWB_register;
2070 case ARM::VST1d64QPseudoWB_fixed: return ARM::VST1d64QPseudoWB_register;
2072 case ARM::VLD2d8wb_fixed: return ARM::VLD2d8wb_register;
2073 case ARM::VLD2d16wb_fixed: return ARM::VLD2d16wb_register;
2074 case ARM::VLD2d32wb_fixed: return ARM::VLD2d32wb_register;
2075 case ARM::VLD2q8PseudoWB_fixed: return ARM::VLD2q8PseudoWB_register;
2076 case ARM::VLD2q16PseudoWB_fixed: return ARM::VLD2q16PseudoWB_register;
2077 case ARM::VLD2q32PseudoWB_fixed: return ARM::VLD2q32PseudoWB_register;
2079 case ARM::VST2d8wb_fixed: return ARM::VST2d8wb_register;
2080 case ARM::VST2d16wb_fixed: return ARM::VST2d16wb_register;
2081 case ARM::VST2d32wb_fixed: return ARM::VST2d32wb_register;
2082 case ARM::VST2q8PseudoWB_fixed: return ARM::VST2q8PseudoWB_register;
2083 case ARM::VST2q16PseudoWB_fixed: return ARM::VST2q16PseudoWB_register;
2084 case ARM::VST2q32PseudoWB_fixed: return ARM::VST2q32PseudoWB_register;
2086 case ARM::VLD2DUPd8wb_fixed: return ARM::VLD2DUPd8wb_register;
2087 case ARM::VLD2DUPd16wb_fixed: return ARM::VLD2DUPd16wb_register;
2088 case ARM::VLD2DUPd32wb_fixed: return ARM::VLD2DUPd32wb_register;
2090 return Opc; // If not one we handle, return it unchanged.
2093 /// Returns true if the given increment is a Constant known to be equal to the
2094 /// access size performed by a NEON load/store. This means the "[rN]!" form can
2095 /// be used.
2096 static bool isPerfectIncrement(SDValue Inc, EVT VecTy, unsigned NumVecs) {
2097 auto C = dyn_cast<ConstantSDNode>(Inc);
2098 return C && C->getZExtValue() == VecTy.getSizeInBits() / 8 * NumVecs;
2101 void ARMDAGToDAGISel::SelectVLD(SDNode *N, bool isUpdating, unsigned NumVecs,
2102 const uint16_t *DOpcodes,
2103 const uint16_t *QOpcodes0,
2104 const uint16_t *QOpcodes1) {
2105 assert(Subtarget->hasNEON());
2106 assert(NumVecs >= 1 && NumVecs <= 4 && "VLD NumVecs out-of-range");
2107 SDLoc dl(N);
2109 SDValue MemAddr, Align;
2110 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
2111 // nodes are not intrinsics.
2112 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2113 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2114 return;
2116 SDValue Chain = N->getOperand(0);
2117 EVT VT = N->getValueType(0);
2118 bool is64BitVector = VT.is64BitVector();
2119 Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
2121 unsigned OpcodeIndex;
2122 switch (VT.getSimpleVT().SimpleTy) {
2123 default: llvm_unreachable("unhandled vld type");
2124 // Double-register operations:
2125 case MVT::v8i8: OpcodeIndex = 0; break;
2126 case MVT::v4f16:
2127 case MVT::v4bf16:
2128 case MVT::v4i16: OpcodeIndex = 1; break;
2129 case MVT::v2f32:
2130 case MVT::v2i32: OpcodeIndex = 2; break;
2131 case MVT::v1i64: OpcodeIndex = 3; break;
2132 // Quad-register operations:
2133 case MVT::v16i8: OpcodeIndex = 0; break;
2134 case MVT::v8f16:
2135 case MVT::v8bf16:
2136 case MVT::v8i16: OpcodeIndex = 1; break;
2137 case MVT::v4f32:
2138 case MVT::v4i32: OpcodeIndex = 2; break;
2139 case MVT::v2f64:
2140 case MVT::v2i64: OpcodeIndex = 3; break;
2143 EVT ResTy;
2144 if (NumVecs == 1)
2145 ResTy = VT;
2146 else {
2147 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2148 if (!is64BitVector)
2149 ResTyElts *= 2;
2150 ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
2152 std::vector<EVT> ResTys;
2153 ResTys.push_back(ResTy);
2154 if (isUpdating)
2155 ResTys.push_back(MVT::i32);
2156 ResTys.push_back(MVT::Other);
2158 SDValue Pred = getAL(CurDAG, dl);
2159 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2160 SDNode *VLd;
2161 SmallVector<SDValue, 7> Ops;
2163 // Double registers and VLD1/VLD2 quad registers are directly supported.
2164 if (is64BitVector || NumVecs <= 2) {
2165 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2166 QOpcodes0[OpcodeIndex]);
2167 Ops.push_back(MemAddr);
2168 Ops.push_back(Align);
2169 if (isUpdating) {
2170 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2171 bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
2172 if (!IsImmUpdate) {
2173 // We use a VLD1 for v1i64 even if the pseudo says vld2/3/4, so
2174 // check for the opcode rather than the number of vector elements.
2175 if (isVLDfixed(Opc))
2176 Opc = getVLDSTRegisterUpdateOpcode(Opc);
2177 Ops.push_back(Inc);
2178 // VLD1/VLD2 fixed increment does not need Reg0 so only include it in
2179 // the operands if not such an opcode.
2180 } else if (!isVLDfixed(Opc))
2181 Ops.push_back(Reg0);
2183 Ops.push_back(Pred);
2184 Ops.push_back(Reg0);
2185 Ops.push_back(Chain);
2186 VLd = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2188 } else {
2189 // Otherwise, quad registers are loaded with two separate instructions,
2190 // where one loads the even registers and the other loads the odd registers.
2191 EVT AddrTy = MemAddr.getValueType();
2193 // Load the even subregs. This is always an updating load, so that it
2194 // provides the address to the second load for the odd subregs.
2195 SDValue ImplDef =
2196 SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
2197 const SDValue OpsA[] = { MemAddr, Align, Reg0, ImplDef, Pred, Reg0, Chain };
2198 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2199 ResTy, AddrTy, MVT::Other, OpsA);
2200 Chain = SDValue(VLdA, 2);
2202 // Load the odd subregs.
2203 Ops.push_back(SDValue(VLdA, 1));
2204 Ops.push_back(Align);
2205 if (isUpdating) {
2206 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2207 assert(isa<ConstantSDNode>(Inc.getNode()) &&
2208 "only constant post-increment update allowed for VLD3/4");
2209 (void)Inc;
2210 Ops.push_back(Reg0);
2212 Ops.push_back(SDValue(VLdA, 0));
2213 Ops.push_back(Pred);
2214 Ops.push_back(Reg0);
2215 Ops.push_back(Chain);
2216 VLd = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys, Ops);
2219 // Transfer memoperands.
2220 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2221 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLd), {MemOp});
2223 if (NumVecs == 1) {
2224 ReplaceNode(N, VLd);
2225 return;
2228 // Extract out the subregisters.
2229 SDValue SuperReg = SDValue(VLd, 0);
2230 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2231 ARM::qsub_3 == ARM::qsub_0 + 3,
2232 "Unexpected subreg numbering");
2233 unsigned Sub0 = (is64BitVector ? ARM::dsub_0 : ARM::qsub_0);
2234 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2235 ReplaceUses(SDValue(N, Vec),
2236 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2237 ReplaceUses(SDValue(N, NumVecs), SDValue(VLd, 1));
2238 if (isUpdating)
2239 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLd, 2));
2240 CurDAG->RemoveDeadNode(N);
2243 void ARMDAGToDAGISel::SelectVST(SDNode *N, bool isUpdating, unsigned NumVecs,
2244 const uint16_t *DOpcodes,
2245 const uint16_t *QOpcodes0,
2246 const uint16_t *QOpcodes1) {
2247 assert(Subtarget->hasNEON());
2248 assert(NumVecs >= 1 && NumVecs <= 4 && "VST NumVecs out-of-range");
2249 SDLoc dl(N);
2251 SDValue MemAddr, Align;
2252 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
2253 // nodes are not intrinsics.
2254 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2255 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2256 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2257 return;
2259 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2261 SDValue Chain = N->getOperand(0);
2262 EVT VT = N->getOperand(Vec0Idx).getValueType();
2263 bool is64BitVector = VT.is64BitVector();
2264 Align = GetVLDSTAlign(Align, dl, NumVecs, is64BitVector);
2266 unsigned OpcodeIndex;
2267 switch (VT.getSimpleVT().SimpleTy) {
2268 default: llvm_unreachable("unhandled vst type");
2269 // Double-register operations:
2270 case MVT::v8i8: OpcodeIndex = 0; break;
2271 case MVT::v4f16:
2272 case MVT::v4bf16:
2273 case MVT::v4i16: OpcodeIndex = 1; break;
2274 case MVT::v2f32:
2275 case MVT::v2i32: OpcodeIndex = 2; break;
2276 case MVT::v1i64: OpcodeIndex = 3; break;
2277 // Quad-register operations:
2278 case MVT::v16i8: OpcodeIndex = 0; break;
2279 case MVT::v8f16:
2280 case MVT::v8bf16:
2281 case MVT::v8i16: OpcodeIndex = 1; break;
2282 case MVT::v4f32:
2283 case MVT::v4i32: OpcodeIndex = 2; break;
2284 case MVT::v2f64:
2285 case MVT::v2i64: OpcodeIndex = 3; break;
2288 std::vector<EVT> ResTys;
2289 if (isUpdating)
2290 ResTys.push_back(MVT::i32);
2291 ResTys.push_back(MVT::Other);
2293 SDValue Pred = getAL(CurDAG, dl);
2294 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2295 SmallVector<SDValue, 7> Ops;
2297 // Double registers and VST1/VST2 quad registers are directly supported.
2298 if (is64BitVector || NumVecs <= 2) {
2299 SDValue SrcReg;
2300 if (NumVecs == 1) {
2301 SrcReg = N->getOperand(Vec0Idx);
2302 } else if (is64BitVector) {
2303 // Form a REG_SEQUENCE to force register allocation.
2304 SDValue V0 = N->getOperand(Vec0Idx + 0);
2305 SDValue V1 = N->getOperand(Vec0Idx + 1);
2306 if (NumVecs == 2)
2307 SrcReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2308 else {
2309 SDValue V2 = N->getOperand(Vec0Idx + 2);
2310 // If it's a vst3, form a quad D-register and leave the last part as
2311 // an undef.
2312 SDValue V3 = (NumVecs == 3)
2313 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF,dl,VT), 0)
2314 : N->getOperand(Vec0Idx + 3);
2315 SrcReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2317 } else {
2318 // Form a QQ register.
2319 SDValue Q0 = N->getOperand(Vec0Idx);
2320 SDValue Q1 = N->getOperand(Vec0Idx + 1);
2321 SrcReg = SDValue(createQRegPairNode(MVT::v4i64, Q0, Q1), 0);
2324 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2325 QOpcodes0[OpcodeIndex]);
2326 Ops.push_back(MemAddr);
2327 Ops.push_back(Align);
2328 if (isUpdating) {
2329 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2330 bool IsImmUpdate = isPerfectIncrement(Inc, VT, NumVecs);
2331 if (!IsImmUpdate) {
2332 // We use a VST1 for v1i64 even if the pseudo says VST2/3/4, so
2333 // check for the opcode rather than the number of vector elements.
2334 if (isVSTfixed(Opc))
2335 Opc = getVLDSTRegisterUpdateOpcode(Opc);
2336 Ops.push_back(Inc);
2338 // VST1/VST2 fixed increment does not need Reg0 so only include it in
2339 // the operands if not such an opcode.
2340 else if (!isVSTfixed(Opc))
2341 Ops.push_back(Reg0);
2343 Ops.push_back(SrcReg);
2344 Ops.push_back(Pred);
2345 Ops.push_back(Reg0);
2346 Ops.push_back(Chain);
2347 SDNode *VSt = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2349 // Transfer memoperands.
2350 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VSt), {MemOp});
2352 ReplaceNode(N, VSt);
2353 return;
2356 // Otherwise, quad registers are stored with two separate instructions,
2357 // where one stores the even registers and the other stores the odd registers.
2359 // Form the QQQQ REG_SEQUENCE.
2360 SDValue V0 = N->getOperand(Vec0Idx + 0);
2361 SDValue V1 = N->getOperand(Vec0Idx + 1);
2362 SDValue V2 = N->getOperand(Vec0Idx + 2);
2363 SDValue V3 = (NumVecs == 3)
2364 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2365 : N->getOperand(Vec0Idx + 3);
2366 SDValue RegSeq = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2368 // Store the even D registers. This is always an updating store, so that it
2369 // provides the address to the second store for the odd subregs.
2370 const SDValue OpsA[] = { MemAddr, Align, Reg0, RegSeq, Pred, Reg0, Chain };
2371 SDNode *VStA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl,
2372 MemAddr.getValueType(),
2373 MVT::Other, OpsA);
2374 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStA), {MemOp});
2375 Chain = SDValue(VStA, 1);
2377 // Store the odd D registers.
2378 Ops.push_back(SDValue(VStA, 0));
2379 Ops.push_back(Align);
2380 if (isUpdating) {
2381 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2382 assert(isa<ConstantSDNode>(Inc.getNode()) &&
2383 "only constant post-increment update allowed for VST3/4");
2384 (void)Inc;
2385 Ops.push_back(Reg0);
2387 Ops.push_back(RegSeq);
2388 Ops.push_back(Pred);
2389 Ops.push_back(Reg0);
2390 Ops.push_back(Chain);
2391 SDNode *VStB = CurDAG->getMachineNode(QOpcodes1[OpcodeIndex], dl, ResTys,
2392 Ops);
2393 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VStB), {MemOp});
2394 ReplaceNode(N, VStB);
2397 void ARMDAGToDAGISel::SelectVLDSTLane(SDNode *N, bool IsLoad, bool isUpdating,
2398 unsigned NumVecs,
2399 const uint16_t *DOpcodes,
2400 const uint16_t *QOpcodes) {
2401 assert(Subtarget->hasNEON());
2402 assert(NumVecs >=2 && NumVecs <= 4 && "VLDSTLane NumVecs out-of-range");
2403 SDLoc dl(N);
2405 SDValue MemAddr, Align;
2406 bool IsIntrinsic = !isUpdating; // By coincidence, all supported updating
2407 // nodes are not intrinsics.
2408 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2409 unsigned Vec0Idx = 3; // AddrOpIdx + (isUpdating ? 2 : 1)
2410 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2411 return;
2413 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
2415 SDValue Chain = N->getOperand(0);
2416 unsigned Lane =
2417 cast<ConstantSDNode>(N->getOperand(Vec0Idx + NumVecs))->getZExtValue();
2418 EVT VT = N->getOperand(Vec0Idx).getValueType();
2419 bool is64BitVector = VT.is64BitVector();
2421 unsigned Alignment = 0;
2422 if (NumVecs != 3) {
2423 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2424 unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2425 if (Alignment > NumBytes)
2426 Alignment = NumBytes;
2427 if (Alignment < 8 && Alignment < NumBytes)
2428 Alignment = 0;
2429 // Alignment must be a power of two; make sure of that.
2430 Alignment = (Alignment & -Alignment);
2431 if (Alignment == 1)
2432 Alignment = 0;
2434 Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2436 unsigned OpcodeIndex;
2437 switch (VT.getSimpleVT().SimpleTy) {
2438 default: llvm_unreachable("unhandled vld/vst lane type");
2439 // Double-register operations:
2440 case MVT::v8i8: OpcodeIndex = 0; break;
2441 case MVT::v4f16:
2442 case MVT::v4bf16:
2443 case MVT::v4i16: OpcodeIndex = 1; break;
2444 case MVT::v2f32:
2445 case MVT::v2i32: OpcodeIndex = 2; break;
2446 // Quad-register operations:
2447 case MVT::v8f16:
2448 case MVT::v8bf16:
2449 case MVT::v8i16: OpcodeIndex = 0; break;
2450 case MVT::v4f32:
2451 case MVT::v4i32: OpcodeIndex = 1; break;
2454 std::vector<EVT> ResTys;
2455 if (IsLoad) {
2456 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2457 if (!is64BitVector)
2458 ResTyElts *= 2;
2459 ResTys.push_back(EVT::getVectorVT(*CurDAG->getContext(),
2460 MVT::i64, ResTyElts));
2462 if (isUpdating)
2463 ResTys.push_back(MVT::i32);
2464 ResTys.push_back(MVT::Other);
2466 SDValue Pred = getAL(CurDAG, dl);
2467 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
2469 SmallVector<SDValue, 8> Ops;
2470 Ops.push_back(MemAddr);
2471 Ops.push_back(Align);
2472 if (isUpdating) {
2473 SDValue Inc = N->getOperand(AddrOpIdx + 1);
2474 bool IsImmUpdate =
2475 isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
2476 Ops.push_back(IsImmUpdate ? Reg0 : Inc);
2479 SDValue SuperReg;
2480 SDValue V0 = N->getOperand(Vec0Idx + 0);
2481 SDValue V1 = N->getOperand(Vec0Idx + 1);
2482 if (NumVecs == 2) {
2483 if (is64BitVector)
2484 SuperReg = SDValue(createDRegPairNode(MVT::v2i64, V0, V1), 0);
2485 else
2486 SuperReg = SDValue(createQRegPairNode(MVT::v4i64, V0, V1), 0);
2487 } else {
2488 SDValue V2 = N->getOperand(Vec0Idx + 2);
2489 SDValue V3 = (NumVecs == 3)
2490 ? SDValue(CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, VT), 0)
2491 : N->getOperand(Vec0Idx + 3);
2492 if (is64BitVector)
2493 SuperReg = SDValue(createQuadDRegsNode(MVT::v4i64, V0, V1, V2, V3), 0);
2494 else
2495 SuperReg = SDValue(createQuadQRegsNode(MVT::v8i64, V0, V1, V2, V3), 0);
2497 Ops.push_back(SuperReg);
2498 Ops.push_back(getI32Imm(Lane, dl));
2499 Ops.push_back(Pred);
2500 Ops.push_back(Reg0);
2501 Ops.push_back(Chain);
2503 unsigned Opc = (is64BitVector ? DOpcodes[OpcodeIndex] :
2504 QOpcodes[OpcodeIndex]);
2505 SDNode *VLdLn = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
2506 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdLn), {MemOp});
2507 if (!IsLoad) {
2508 ReplaceNode(N, VLdLn);
2509 return;
2512 // Extract the subregisters.
2513 SuperReg = SDValue(VLdLn, 0);
2514 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7 &&
2515 ARM::qsub_3 == ARM::qsub_0 + 3,
2516 "Unexpected subreg numbering");
2517 unsigned Sub0 = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
2518 for (unsigned Vec = 0; Vec < NumVecs; ++Vec)
2519 ReplaceUses(SDValue(N, Vec),
2520 CurDAG->getTargetExtractSubreg(Sub0 + Vec, dl, VT, SuperReg));
2521 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdLn, 1));
2522 if (isUpdating)
2523 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdLn, 2));
2524 CurDAG->RemoveDeadNode(N);
2527 template <typename SDValueVector>
2528 void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2529 SDValue PredicateMask) {
2530 Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
2531 Ops.push_back(PredicateMask);
2534 template <typename SDValueVector>
2535 void ARMDAGToDAGISel::AddMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2536 SDValue PredicateMask,
2537 SDValue Inactive) {
2538 Ops.push_back(CurDAG->getTargetConstant(ARMVCC::Then, Loc, MVT::i32));
2539 Ops.push_back(PredicateMask);
2540 Ops.push_back(Inactive);
2543 template <typename SDValueVector>
2544 void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc) {
2545 Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
2546 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2549 template <typename SDValueVector>
2550 void ARMDAGToDAGISel::AddEmptyMVEPredicateToOps(SDValueVector &Ops, SDLoc Loc,
2551 EVT InactiveTy) {
2552 Ops.push_back(CurDAG->getTargetConstant(ARMVCC::None, Loc, MVT::i32));
2553 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2554 Ops.push_back(SDValue(
2555 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, InactiveTy), 0));
2558 void ARMDAGToDAGISel::SelectMVE_WB(SDNode *N, const uint16_t *Opcodes,
2559 bool Predicated) {
2560 SDLoc Loc(N);
2561 SmallVector<SDValue, 8> Ops;
2563 uint16_t Opcode;
2564 switch (N->getValueType(1).getVectorElementType().getSizeInBits()) {
2565 case 32:
2566 Opcode = Opcodes[0];
2567 break;
2568 case 64:
2569 Opcode = Opcodes[1];
2570 break;
2571 default:
2572 llvm_unreachable("bad vector element size in SelectMVE_WB");
2575 Ops.push_back(N->getOperand(2)); // vector of base addresses
2577 int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2578 Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate offset
2580 if (Predicated)
2581 AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
2582 else
2583 AddEmptyMVEPredicateToOps(Ops, Loc);
2585 Ops.push_back(N->getOperand(0)); // chain
2587 SmallVector<EVT, 8> VTs;
2588 VTs.push_back(N->getValueType(1));
2589 VTs.push_back(N->getValueType(0));
2590 VTs.push_back(N->getValueType(2));
2592 SDNode *New = CurDAG->getMachineNode(Opcode, SDLoc(N), VTs, Ops);
2593 ReplaceUses(SDValue(N, 0), SDValue(New, 1));
2594 ReplaceUses(SDValue(N, 1), SDValue(New, 0));
2595 ReplaceUses(SDValue(N, 2), SDValue(New, 2));
2596 transferMemOperands(N, New);
2597 CurDAG->RemoveDeadNode(N);
2600 void ARMDAGToDAGISel::SelectMVE_LongShift(SDNode *N, uint16_t Opcode,
2601 bool Immediate,
2602 bool HasSaturationOperand) {
2603 SDLoc Loc(N);
2604 SmallVector<SDValue, 8> Ops;
2606 // Two 32-bit halves of the value to be shifted
2607 Ops.push_back(N->getOperand(1));
2608 Ops.push_back(N->getOperand(2));
2610 // The shift count
2611 if (Immediate) {
2612 int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2613 Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
2614 } else {
2615 Ops.push_back(N->getOperand(3));
2618 // The immediate saturation operand, if any
2619 if (HasSaturationOperand) {
2620 int32_t SatOp = cast<ConstantSDNode>(N->getOperand(4))->getZExtValue();
2621 int SatBit = (SatOp == 64 ? 0 : 1);
2622 Ops.push_back(getI32Imm(SatBit, Loc));
2625 // MVE scalar shifts are IT-predicable, so include the standard
2626 // predicate arguments.
2627 Ops.push_back(getAL(CurDAG, Loc));
2628 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
2630 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
2633 void ARMDAGToDAGISel::SelectMVE_VADCSBC(SDNode *N, uint16_t OpcodeWithCarry,
2634 uint16_t OpcodeWithNoCarry,
2635 bool Add, bool Predicated) {
2636 SDLoc Loc(N);
2637 SmallVector<SDValue, 8> Ops;
2638 uint16_t Opcode;
2640 unsigned FirstInputOp = Predicated ? 2 : 1;
2642 // Two input vectors and the input carry flag
2643 Ops.push_back(N->getOperand(FirstInputOp));
2644 Ops.push_back(N->getOperand(FirstInputOp + 1));
2645 SDValue CarryIn = N->getOperand(FirstInputOp + 2);
2646 ConstantSDNode *CarryInConstant = dyn_cast<ConstantSDNode>(CarryIn);
2647 uint32_t CarryMask = 1 << 29;
2648 uint32_t CarryExpected = Add ? 0 : CarryMask;
2649 if (CarryInConstant &&
2650 (CarryInConstant->getZExtValue() & CarryMask) == CarryExpected) {
2651 Opcode = OpcodeWithNoCarry;
2652 } else {
2653 Ops.push_back(CarryIn);
2654 Opcode = OpcodeWithCarry;
2657 if (Predicated)
2658 AddMVEPredicateToOps(Ops, Loc,
2659 N->getOperand(FirstInputOp + 3), // predicate
2660 N->getOperand(FirstInputOp - 1)); // inactive
2661 else
2662 AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
2664 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
2667 void ARMDAGToDAGISel::SelectMVE_VSHLC(SDNode *N, bool Predicated) {
2668 SDLoc Loc(N);
2669 SmallVector<SDValue, 8> Ops;
2671 // One vector input, followed by a 32-bit word of bits to shift in
2672 // and then an immediate shift count
2673 Ops.push_back(N->getOperand(1));
2674 Ops.push_back(N->getOperand(2));
2675 int32_t ImmValue = cast<ConstantSDNode>(N->getOperand(3))->getZExtValue();
2676 Ops.push_back(getI32Imm(ImmValue, Loc)); // immediate shift count
2678 if (Predicated)
2679 AddMVEPredicateToOps(Ops, Loc, N->getOperand(4));
2680 else
2681 AddEmptyMVEPredicateToOps(Ops, Loc);
2683 CurDAG->SelectNodeTo(N, ARM::MVE_VSHLC, N->getVTList(), makeArrayRef(Ops));
2686 static bool SDValueToConstBool(SDValue SDVal) {
2687 assert(isa<ConstantSDNode>(SDVal) && "expected a compile-time constant");
2688 ConstantSDNode *SDValConstant = dyn_cast<ConstantSDNode>(SDVal);
2689 uint64_t Value = SDValConstant->getZExtValue();
2690 assert((Value == 0 || Value == 1) && "expected value 0 or 1");
2691 return Value;
2694 void ARMDAGToDAGISel::SelectBaseMVE_VMLLDAV(SDNode *N, bool Predicated,
2695 const uint16_t *OpcodesS,
2696 const uint16_t *OpcodesU,
2697 size_t Stride, size_t TySize) {
2698 assert(TySize < Stride && "Invalid TySize");
2699 bool IsUnsigned = SDValueToConstBool(N->getOperand(1));
2700 bool IsSub = SDValueToConstBool(N->getOperand(2));
2701 bool IsExchange = SDValueToConstBool(N->getOperand(3));
2702 if (IsUnsigned) {
2703 assert(!IsSub &&
2704 "Unsigned versions of vmlsldav[a]/vrmlsldavh[a] do not exist");
2705 assert(!IsExchange &&
2706 "Unsigned versions of vmlaldav[a]x/vrmlaldavh[a]x do not exist");
2709 auto OpIsZero = [N](size_t OpNo) {
2710 if (ConstantSDNode *OpConst = dyn_cast<ConstantSDNode>(N->getOperand(OpNo)))
2711 if (OpConst->getZExtValue() == 0)
2712 return true;
2713 return false;
2716 // If the input accumulator value is not zero, select an instruction with
2717 // accumulator, otherwise select an instruction without accumulator
2718 bool IsAccum = !(OpIsZero(4) && OpIsZero(5));
2720 const uint16_t *Opcodes = IsUnsigned ? OpcodesU : OpcodesS;
2721 if (IsSub)
2722 Opcodes += 4 * Stride;
2723 if (IsExchange)
2724 Opcodes += 2 * Stride;
2725 if (IsAccum)
2726 Opcodes += Stride;
2727 uint16_t Opcode = Opcodes[TySize];
2729 SDLoc Loc(N);
2730 SmallVector<SDValue, 8> Ops;
2731 // Push the accumulator operands, if they are used
2732 if (IsAccum) {
2733 Ops.push_back(N->getOperand(4));
2734 Ops.push_back(N->getOperand(5));
2736 // Push the two vector operands
2737 Ops.push_back(N->getOperand(6));
2738 Ops.push_back(N->getOperand(7));
2740 if (Predicated)
2741 AddMVEPredicateToOps(Ops, Loc, N->getOperand(8));
2742 else
2743 AddEmptyMVEPredicateToOps(Ops, Loc);
2745 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
2748 void ARMDAGToDAGISel::SelectMVE_VMLLDAV(SDNode *N, bool Predicated,
2749 const uint16_t *OpcodesS,
2750 const uint16_t *OpcodesU) {
2751 EVT VecTy = N->getOperand(6).getValueType();
2752 size_t SizeIndex;
2753 switch (VecTy.getVectorElementType().getSizeInBits()) {
2754 case 16:
2755 SizeIndex = 0;
2756 break;
2757 case 32:
2758 SizeIndex = 1;
2759 break;
2760 default:
2761 llvm_unreachable("bad vector element size");
2764 SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 2, SizeIndex);
2767 void ARMDAGToDAGISel::SelectMVE_VRMLLDAVH(SDNode *N, bool Predicated,
2768 const uint16_t *OpcodesS,
2769 const uint16_t *OpcodesU) {
2770 assert(
2771 N->getOperand(6).getValueType().getVectorElementType().getSizeInBits() ==
2772 32 &&
2773 "bad vector element size");
2774 SelectBaseMVE_VMLLDAV(N, Predicated, OpcodesS, OpcodesU, 1, 0);
2777 void ARMDAGToDAGISel::SelectMVE_VLD(SDNode *N, unsigned NumVecs,
2778 const uint16_t *const *Opcodes,
2779 bool HasWriteback) {
2780 EVT VT = N->getValueType(0);
2781 SDLoc Loc(N);
2783 const uint16_t *OurOpcodes;
2784 switch (VT.getVectorElementType().getSizeInBits()) {
2785 case 8:
2786 OurOpcodes = Opcodes[0];
2787 break;
2788 case 16:
2789 OurOpcodes = Opcodes[1];
2790 break;
2791 case 32:
2792 OurOpcodes = Opcodes[2];
2793 break;
2794 default:
2795 llvm_unreachable("bad vector element size in SelectMVE_VLD");
2798 EVT DataTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, NumVecs * 2);
2799 SmallVector<EVT, 4> ResultTys = {DataTy, MVT::Other};
2800 unsigned PtrOperand = HasWriteback ? 1 : 2;
2802 auto Data = SDValue(
2803 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, Loc, DataTy), 0);
2804 SDValue Chain = N->getOperand(0);
2805 // Add a MVE_VLDn instruction for each Vec, except the last
2806 for (unsigned Stage = 0; Stage < NumVecs - 1; ++Stage) {
2807 SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
2808 auto LoadInst =
2809 CurDAG->getMachineNode(OurOpcodes[Stage], Loc, ResultTys, Ops);
2810 Data = SDValue(LoadInst, 0);
2811 Chain = SDValue(LoadInst, 1);
2812 transferMemOperands(N, LoadInst);
2814 // The last may need a writeback on it
2815 if (HasWriteback)
2816 ResultTys = {DataTy, MVT::i32, MVT::Other};
2817 SDValue Ops[] = {Data, N->getOperand(PtrOperand), Chain};
2818 auto LoadInst =
2819 CurDAG->getMachineNode(OurOpcodes[NumVecs - 1], Loc, ResultTys, Ops);
2820 transferMemOperands(N, LoadInst);
2822 unsigned i;
2823 for (i = 0; i < NumVecs; i++)
2824 ReplaceUses(SDValue(N, i),
2825 CurDAG->getTargetExtractSubreg(ARM::qsub_0 + i, Loc, VT,
2826 SDValue(LoadInst, 0)));
2827 if (HasWriteback)
2828 ReplaceUses(SDValue(N, i++), SDValue(LoadInst, 1));
2829 ReplaceUses(SDValue(N, i), SDValue(LoadInst, HasWriteback ? 2 : 1));
2830 CurDAG->RemoveDeadNode(N);
2833 void ARMDAGToDAGISel::SelectMVE_VxDUP(SDNode *N, const uint16_t *Opcodes,
2834 bool Wrapping, bool Predicated) {
2835 EVT VT = N->getValueType(0);
2836 SDLoc Loc(N);
2838 uint16_t Opcode;
2839 switch (VT.getScalarSizeInBits()) {
2840 case 8:
2841 Opcode = Opcodes[0];
2842 break;
2843 case 16:
2844 Opcode = Opcodes[1];
2845 break;
2846 case 32:
2847 Opcode = Opcodes[2];
2848 break;
2849 default:
2850 llvm_unreachable("bad vector element size in SelectMVE_VxDUP");
2853 SmallVector<SDValue, 8> Ops;
2854 unsigned OpIdx = 1;
2856 SDValue Inactive;
2857 if (Predicated)
2858 Inactive = N->getOperand(OpIdx++);
2860 Ops.push_back(N->getOperand(OpIdx++)); // base
2861 if (Wrapping)
2862 Ops.push_back(N->getOperand(OpIdx++)); // limit
2864 SDValue ImmOp = N->getOperand(OpIdx++); // step
2865 int ImmValue = cast<ConstantSDNode>(ImmOp)->getZExtValue();
2866 Ops.push_back(getI32Imm(ImmValue, Loc));
2868 if (Predicated)
2869 AddMVEPredicateToOps(Ops, Loc, N->getOperand(OpIdx), Inactive);
2870 else
2871 AddEmptyMVEPredicateToOps(Ops, Loc, N->getValueType(0));
2873 CurDAG->SelectNodeTo(N, Opcode, N->getVTList(), makeArrayRef(Ops));
2876 void ARMDAGToDAGISel::SelectCDE_CXxD(SDNode *N, uint16_t Opcode,
2877 size_t NumExtraOps, bool HasAccum) {
2878 bool IsBigEndian = CurDAG->getDataLayout().isBigEndian();
2879 SDLoc Loc(N);
2880 SmallVector<SDValue, 8> Ops;
2882 unsigned OpIdx = 1;
2884 // Convert and append the immediate operand designating the coprocessor.
2885 SDValue ImmCorpoc = N->getOperand(OpIdx++);
2886 uint32_t ImmCoprocVal = cast<ConstantSDNode>(ImmCorpoc)->getZExtValue();
2887 Ops.push_back(getI32Imm(ImmCoprocVal, Loc));
2889 // For accumulating variants copy the low and high order parts of the
2890 // accumulator into a register pair and add it to the operand vector.
2891 if (HasAccum) {
2892 SDValue AccLo = N->getOperand(OpIdx++);
2893 SDValue AccHi = N->getOperand(OpIdx++);
2894 if (IsBigEndian)
2895 std::swap(AccLo, AccHi);
2896 Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, AccLo, AccHi), 0));
2899 // Copy extra operands as-is.
2900 for (size_t I = 0; I < NumExtraOps; I++)
2901 Ops.push_back(N->getOperand(OpIdx++));
2903 // Convert and append the immediate operand
2904 SDValue Imm = N->getOperand(OpIdx);
2905 uint32_t ImmVal = cast<ConstantSDNode>(Imm)->getZExtValue();
2906 Ops.push_back(getI32Imm(ImmVal, Loc));
2908 // Accumulating variants are IT-predicable, add predicate operands.
2909 if (HasAccum) {
2910 SDValue Pred = getAL(CurDAG, Loc);
2911 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
2912 Ops.push_back(Pred);
2913 Ops.push_back(PredReg);
2916 // Create the CDE intruction
2917 SDNode *InstrNode = CurDAG->getMachineNode(Opcode, Loc, MVT::Untyped, Ops);
2918 SDValue ResultPair = SDValue(InstrNode, 0);
2920 // The original intrinsic had two outputs, and the output of the dual-register
2921 // CDE instruction is a register pair. We need to extract the two subregisters
2922 // and replace all uses of the original outputs with the extracted
2923 // subregisters.
2924 uint16_t SubRegs[2] = {ARM::gsub_0, ARM::gsub_1};
2925 if (IsBigEndian)
2926 std::swap(SubRegs[0], SubRegs[1]);
2928 for (size_t ResIdx = 0; ResIdx < 2; ResIdx++) {
2929 if (SDValue(N, ResIdx).use_empty())
2930 continue;
2931 SDValue SubReg = CurDAG->getTargetExtractSubreg(SubRegs[ResIdx], Loc,
2932 MVT::i32, ResultPair);
2933 ReplaceUses(SDValue(N, ResIdx), SubReg);
2936 CurDAG->RemoveDeadNode(N);
2939 void ARMDAGToDAGISel::SelectVLDDup(SDNode *N, bool IsIntrinsic,
2940 bool isUpdating, unsigned NumVecs,
2941 const uint16_t *DOpcodes,
2942 const uint16_t *QOpcodes0,
2943 const uint16_t *QOpcodes1) {
2944 assert(Subtarget->hasNEON());
2945 assert(NumVecs >= 1 && NumVecs <= 4 && "VLDDup NumVecs out-of-range");
2946 SDLoc dl(N);
2948 SDValue MemAddr, Align;
2949 unsigned AddrOpIdx = IsIntrinsic ? 2 : 1;
2950 if (!SelectAddrMode6(N, N->getOperand(AddrOpIdx), MemAddr, Align))
2951 return;
2953 SDValue Chain = N->getOperand(0);
2954 EVT VT = N->getValueType(0);
2955 bool is64BitVector = VT.is64BitVector();
2957 unsigned Alignment = 0;
2958 if (NumVecs != 3) {
2959 Alignment = cast<ConstantSDNode>(Align)->getZExtValue();
2960 unsigned NumBytes = NumVecs * VT.getScalarSizeInBits() / 8;
2961 if (Alignment > NumBytes)
2962 Alignment = NumBytes;
2963 if (Alignment < 8 && Alignment < NumBytes)
2964 Alignment = 0;
2965 // Alignment must be a power of two; make sure of that.
2966 Alignment = (Alignment & -Alignment);
2967 if (Alignment == 1)
2968 Alignment = 0;
2970 Align = CurDAG->getTargetConstant(Alignment, dl, MVT::i32);
2972 unsigned OpcodeIndex;
2973 switch (VT.getSimpleVT().SimpleTy) {
2974 default: llvm_unreachable("unhandled vld-dup type");
2975 case MVT::v8i8:
2976 case MVT::v16i8: OpcodeIndex = 0; break;
2977 case MVT::v4i16:
2978 case MVT::v8i16:
2979 case MVT::v4f16:
2980 case MVT::v8f16:
2981 case MVT::v4bf16:
2982 case MVT::v8bf16:
2983 OpcodeIndex = 1; break;
2984 case MVT::v2f32:
2985 case MVT::v2i32:
2986 case MVT::v4f32:
2987 case MVT::v4i32: OpcodeIndex = 2; break;
2988 case MVT::v1f64:
2989 case MVT::v1i64: OpcodeIndex = 3; break;
2992 unsigned ResTyElts = (NumVecs == 3) ? 4 : NumVecs;
2993 if (!is64BitVector)
2994 ResTyElts *= 2;
2995 EVT ResTy = EVT::getVectorVT(*CurDAG->getContext(), MVT::i64, ResTyElts);
2997 std::vector<EVT> ResTys;
2998 ResTys.push_back(ResTy);
2999 if (isUpdating)
3000 ResTys.push_back(MVT::i32);
3001 ResTys.push_back(MVT::Other);
3003 SDValue Pred = getAL(CurDAG, dl);
3004 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3006 SmallVector<SDValue, 6> Ops;
3007 Ops.push_back(MemAddr);
3008 Ops.push_back(Align);
3009 unsigned Opc = is64BitVector ? DOpcodes[OpcodeIndex]
3010 : (NumVecs == 1) ? QOpcodes0[OpcodeIndex]
3011 : QOpcodes1[OpcodeIndex];
3012 if (isUpdating) {
3013 SDValue Inc = N->getOperand(2);
3014 bool IsImmUpdate =
3015 isPerfectIncrement(Inc, VT.getVectorElementType(), NumVecs);
3016 if (IsImmUpdate) {
3017 if (!isVLDfixed(Opc))
3018 Ops.push_back(Reg0);
3019 } else {
3020 if (isVLDfixed(Opc))
3021 Opc = getVLDSTRegisterUpdateOpcode(Opc);
3022 Ops.push_back(Inc);
3025 if (is64BitVector || NumVecs == 1) {
3026 // Double registers and VLD1 quad registers are directly supported.
3027 } else if (NumVecs == 2) {
3028 const SDValue OpsA[] = {MemAddr, Align, Pred, Reg0, Chain};
3029 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
3030 MVT::Other, OpsA);
3031 Chain = SDValue(VLdA, 1);
3032 } else {
3033 SDValue ImplDef = SDValue(
3034 CurDAG->getMachineNode(TargetOpcode::IMPLICIT_DEF, dl, ResTy), 0);
3035 const SDValue OpsA[] = {MemAddr, Align, ImplDef, Pred, Reg0, Chain};
3036 SDNode *VLdA = CurDAG->getMachineNode(QOpcodes0[OpcodeIndex], dl, ResTy,
3037 MVT::Other, OpsA);
3038 Ops.push_back(SDValue(VLdA, 0));
3039 Chain = SDValue(VLdA, 1);
3042 Ops.push_back(Pred);
3043 Ops.push_back(Reg0);
3044 Ops.push_back(Chain);
3046 SDNode *VLdDup = CurDAG->getMachineNode(Opc, dl, ResTys, Ops);
3048 // Transfer memoperands.
3049 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
3050 CurDAG->setNodeMemRefs(cast<MachineSDNode>(VLdDup), {MemOp});
3052 // Extract the subregisters.
3053 if (NumVecs == 1) {
3054 ReplaceUses(SDValue(N, 0), SDValue(VLdDup, 0));
3055 } else {
3056 SDValue SuperReg = SDValue(VLdDup, 0);
3057 static_assert(ARM::dsub_7 == ARM::dsub_0 + 7, "Unexpected subreg numbering");
3058 unsigned SubIdx = is64BitVector ? ARM::dsub_0 : ARM::qsub_0;
3059 for (unsigned Vec = 0; Vec != NumVecs; ++Vec) {
3060 ReplaceUses(SDValue(N, Vec),
3061 CurDAG->getTargetExtractSubreg(SubIdx+Vec, dl, VT, SuperReg));
3064 ReplaceUses(SDValue(N, NumVecs), SDValue(VLdDup, 1));
3065 if (isUpdating)
3066 ReplaceUses(SDValue(N, NumVecs + 1), SDValue(VLdDup, 2));
3067 CurDAG->RemoveDeadNode(N);
3070 bool ARMDAGToDAGISel::tryInsertVectorElt(SDNode *N) {
3071 if (!Subtarget->hasMVEIntegerOps())
3072 return false;
3074 SDLoc dl(N);
3076 // We are trying to use VMOV/VMOVX/VINS to more efficiently lower insert and
3077 // extracts of v8f16 and v8i16 vectors. Check that we have two adjacent
3078 // inserts of the correct type:
3079 SDValue Ins1 = SDValue(N, 0);
3080 SDValue Ins2 = N->getOperand(0);
3081 EVT VT = Ins1.getValueType();
3082 if (Ins2.getOpcode() != ISD::INSERT_VECTOR_ELT || !Ins2.hasOneUse() ||
3083 !isa<ConstantSDNode>(Ins1.getOperand(2)) ||
3084 !isa<ConstantSDNode>(Ins2.getOperand(2)) ||
3085 (VT != MVT::v8f16 && VT != MVT::v8i16) || (Ins2.getValueType() != VT))
3086 return false;
3088 unsigned Lane1 = Ins1.getConstantOperandVal(2);
3089 unsigned Lane2 = Ins2.getConstantOperandVal(2);
3090 if (Lane2 % 2 != 0 || Lane1 != Lane2 + 1)
3091 return false;
3093 // If the inserted values will be able to use T/B already, leave it to the
3094 // existing tablegen patterns. For example VCVTT/VCVTB.
3095 SDValue Val1 = Ins1.getOperand(1);
3096 SDValue Val2 = Ins2.getOperand(1);
3097 if (Val1.getOpcode() == ISD::FP_ROUND || Val2.getOpcode() == ISD::FP_ROUND)
3098 return false;
3100 // Check if the inserted values are both extracts.
3101 if ((Val1.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
3102 Val1.getOpcode() == ARMISD::VGETLANEu) &&
3103 (Val2.getOpcode() == ISD::EXTRACT_VECTOR_ELT ||
3104 Val2.getOpcode() == ARMISD::VGETLANEu) &&
3105 isa<ConstantSDNode>(Val1.getOperand(1)) &&
3106 isa<ConstantSDNode>(Val2.getOperand(1)) &&
3107 (Val1.getOperand(0).getValueType() == MVT::v8f16 ||
3108 Val1.getOperand(0).getValueType() == MVT::v8i16) &&
3109 (Val2.getOperand(0).getValueType() == MVT::v8f16 ||
3110 Val2.getOperand(0).getValueType() == MVT::v8i16)) {
3111 unsigned ExtractLane1 = Val1.getConstantOperandVal(1);
3112 unsigned ExtractLane2 = Val2.getConstantOperandVal(1);
3114 // If the two extracted lanes are from the same place and adjacent, this
3115 // simplifies into a f32 lane move.
3116 if (Val1.getOperand(0) == Val2.getOperand(0) && ExtractLane2 % 2 == 0 &&
3117 ExtractLane1 == ExtractLane2 + 1) {
3118 SDValue NewExt = CurDAG->getTargetExtractSubreg(
3119 ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val1.getOperand(0));
3120 SDValue NewIns = CurDAG->getTargetInsertSubreg(
3121 ARM::ssub_0 + Lane2 / 2, dl, VT, Ins2.getOperand(0),
3122 NewExt);
3123 ReplaceUses(Ins1, NewIns);
3124 return true;
3127 // Else v8i16 pattern of an extract and an insert, with a optional vmovx for
3128 // extracting odd lanes.
3129 if (VT == MVT::v8i16) {
3130 SDValue Inp1 = CurDAG->getTargetExtractSubreg(
3131 ARM::ssub_0 + ExtractLane1 / 2, dl, MVT::f32, Val1.getOperand(0));
3132 SDValue Inp2 = CurDAG->getTargetExtractSubreg(
3133 ARM::ssub_0 + ExtractLane2 / 2, dl, MVT::f32, Val2.getOperand(0));
3134 if (ExtractLane1 % 2 != 0)
3135 Inp1 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp1), 0);
3136 if (ExtractLane2 % 2 != 0)
3137 Inp2 = SDValue(CurDAG->getMachineNode(ARM::VMOVH, dl, MVT::f32, Inp2), 0);
3138 SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Inp2, Inp1);
3139 SDValue NewIns =
3140 CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
3141 Ins2.getOperand(0), SDValue(VINS, 0));
3142 ReplaceUses(Ins1, NewIns);
3143 return true;
3147 // The inserted values are not extracted - if they are f16 then insert them
3148 // directly using a VINS.
3149 if (VT == MVT::v8f16) {
3150 SDNode *VINS = CurDAG->getMachineNode(ARM::VINSH, dl, MVT::f32, Val2, Val1);
3151 SDValue NewIns =
3152 CurDAG->getTargetInsertSubreg(ARM::ssub_0 + Lane2 / 2, dl, MVT::v4f32,
3153 Ins2.getOperand(0), SDValue(VINS, 0));
3154 ReplaceUses(Ins1, NewIns);
3155 return true;
3158 return false;
3161 bool ARMDAGToDAGISel::transformFixedFloatingPointConversion(SDNode *N,
3162 SDNode *FMul,
3163 bool IsUnsigned,
3164 bool FixedToFloat) {
3165 auto Type = N->getValueType(0);
3166 unsigned ScalarBits = Type.getScalarSizeInBits();
3167 if (ScalarBits > 32)
3168 return false;
3170 SDNodeFlags FMulFlags = FMul->getFlags();
3171 // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
3172 // allowed in 16 bit unsigned floats
3173 if (ScalarBits == 16 && !FMulFlags.hasNoInfs() && IsUnsigned)
3174 return false;
3176 SDValue ImmNode = FMul->getOperand(1);
3177 SDValue VecVal = FMul->getOperand(0);
3178 if (VecVal->getOpcode() == ISD::UINT_TO_FP ||
3179 VecVal->getOpcode() == ISD::SINT_TO_FP)
3180 VecVal = VecVal->getOperand(0);
3182 if (VecVal.getValueType().getScalarSizeInBits() != ScalarBits)
3183 return false;
3185 if (ImmNode.getOpcode() == ISD::BITCAST) {
3186 if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
3187 return false;
3188 ImmNode = ImmNode.getOperand(0);
3191 if (ImmNode.getValueType().getScalarSizeInBits() != ScalarBits)
3192 return false;
3194 APFloat ImmAPF(0.0f);
3195 switch (ImmNode.getOpcode()) {
3196 case ARMISD::VMOVIMM:
3197 case ARMISD::VDUP: {
3198 if (!isa<ConstantSDNode>(ImmNode.getOperand(0)))
3199 return false;
3200 unsigned Imm = ImmNode.getConstantOperandVal(0);
3201 if (ImmNode.getOpcode() == ARMISD::VMOVIMM)
3202 Imm = ARM_AM::decodeVMOVModImm(Imm, ScalarBits);
3203 ImmAPF =
3204 APFloat(ScalarBits == 32 ? APFloat::IEEEsingle() : APFloat::IEEEhalf(),
3205 APInt(ScalarBits, Imm));
3206 break;
3208 case ARMISD::VMOVFPIMM: {
3209 ImmAPF = APFloat(ARM_AM::getFPImmFloat(ImmNode.getConstantOperandVal(0)));
3210 break;
3212 default:
3213 return false;
3216 // Where n is the number of fractional bits, multiplying by 2^n will convert
3217 // from float to fixed and multiplying by 2^-n will convert from fixed to
3218 // float. Taking log2 of the factor (after taking the inverse in the case of
3219 // float to fixed) will give n.
3220 APFloat ToConvert = ImmAPF;
3221 if (FixedToFloat) {
3222 if (!ImmAPF.getExactInverse(&ToConvert))
3223 return false;
3225 APSInt Converted(64, 0);
3226 bool IsExact;
3227 ToConvert.convertToInteger(Converted, llvm::RoundingMode::NearestTiesToEven,
3228 &IsExact);
3229 if (!IsExact || !Converted.isPowerOf2())
3230 return false;
3232 unsigned FracBits = Converted.logBase2();
3233 if (FracBits > ScalarBits)
3234 return false;
3236 SmallVector<SDValue, 3> Ops{
3237 VecVal, CurDAG->getConstant(FracBits, SDLoc(N), MVT::i32)};
3238 AddEmptyMVEPredicateToOps(Ops, SDLoc(N), Type);
3240 unsigned int Opcode;
3241 switch (ScalarBits) {
3242 case 16:
3243 if (FixedToFloat)
3244 Opcode = IsUnsigned ? ARM::MVE_VCVTf16u16_fix : ARM::MVE_VCVTf16s16_fix;
3245 else
3246 Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
3247 break;
3248 case 32:
3249 if (FixedToFloat)
3250 Opcode = IsUnsigned ? ARM::MVE_VCVTf32u32_fix : ARM::MVE_VCVTf32s32_fix;
3251 else
3252 Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
3253 break;
3254 default:
3255 llvm_unreachable("unexpected number of scalar bits");
3256 break;
3259 ReplaceNode(N, CurDAG->getMachineNode(Opcode, SDLoc(N), Type, Ops));
3260 return true;
3263 bool ARMDAGToDAGISel::tryFP_TO_INT(SDNode *N, SDLoc dl) {
3264 // Transform a floating-point to fixed-point conversion to a VCVT
3265 if (!Subtarget->hasMVEFloatOps())
3266 return false;
3267 EVT Type = N->getValueType(0);
3268 if (!Type.isVector())
3269 return false;
3270 unsigned int ScalarBits = Type.getScalarSizeInBits();
3272 bool IsUnsigned = N->getOpcode() == ISD::FP_TO_UINT;
3273 SDNode *Node = N->getOperand(0).getNode();
3275 // floating-point to fixed-point with one fractional bit gets turned into an
3276 // FP_TO_[U|S]INT(FADD (x, x)) rather than an FP_TO_[U|S]INT(FMUL (x, y))
3277 if (Node->getOpcode() == ISD::FADD) {
3278 if (Node->getOperand(0) != Node->getOperand(1))
3279 return false;
3280 SDNodeFlags Flags = Node->getFlags();
3281 // The fixed-point vcvt and vcvt+vmul are not always equivalent if inf is
3282 // allowed in 16 bit unsigned floats
3283 if (ScalarBits == 16 && !Flags.hasNoInfs() && IsUnsigned)
3284 return false;
3286 unsigned Opcode;
3287 switch (ScalarBits) {
3288 case 16:
3289 Opcode = IsUnsigned ? ARM::MVE_VCVTu16f16_fix : ARM::MVE_VCVTs16f16_fix;
3290 break;
3291 case 32:
3292 Opcode = IsUnsigned ? ARM::MVE_VCVTu32f32_fix : ARM::MVE_VCVTs32f32_fix;
3293 break;
3295 SmallVector<SDValue, 3> Ops{Node->getOperand(0),
3296 CurDAG->getConstant(1, dl, MVT::i32)};
3297 AddEmptyMVEPredicateToOps(Ops, dl, Type);
3299 ReplaceNode(N, CurDAG->getMachineNode(Opcode, dl, Type, Ops));
3300 return true;
3303 if (Node->getOpcode() != ISD::FMUL)
3304 return false;
3306 return transformFixedFloatingPointConversion(N, Node, IsUnsigned, false);
3309 bool ARMDAGToDAGISel::tryFMULFixed(SDNode *N, SDLoc dl) {
3310 // Transform a fixed-point to floating-point conversion to a VCVT
3311 if (!Subtarget->hasMVEFloatOps())
3312 return false;
3313 auto Type = N->getValueType(0);
3314 if (!Type.isVector())
3315 return false;
3317 auto LHS = N->getOperand(0);
3318 if (LHS.getOpcode() != ISD::SINT_TO_FP && LHS.getOpcode() != ISD::UINT_TO_FP)
3319 return false;
3321 return transformFixedFloatingPointConversion(
3322 N, N, LHS.getOpcode() == ISD::UINT_TO_FP, true);
3325 bool ARMDAGToDAGISel::tryV6T2BitfieldExtractOp(SDNode *N, bool isSigned) {
3326 if (!Subtarget->hasV6T2Ops())
3327 return false;
3329 unsigned Opc = isSigned
3330 ? (Subtarget->isThumb() ? ARM::t2SBFX : ARM::SBFX)
3331 : (Subtarget->isThumb() ? ARM::t2UBFX : ARM::UBFX);
3332 SDLoc dl(N);
3334 // For unsigned extracts, check for a shift right and mask
3335 unsigned And_imm = 0;
3336 if (N->getOpcode() == ISD::AND) {
3337 if (isOpcWithIntImmediate(N, ISD::AND, And_imm)) {
3339 // The immediate is a mask of the low bits iff imm & (imm+1) == 0
3340 if (And_imm & (And_imm + 1))
3341 return false;
3343 unsigned Srl_imm = 0;
3344 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL,
3345 Srl_imm)) {
3346 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3348 // Mask off the unnecessary bits of the AND immediate; normally
3349 // DAGCombine will do this, but that might not happen if
3350 // targetShrinkDemandedConstant chooses a different immediate.
3351 And_imm &= -1U >> Srl_imm;
3353 // Note: The width operand is encoded as width-1.
3354 unsigned Width = countTrailingOnes(And_imm) - 1;
3355 unsigned LSB = Srl_imm;
3357 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3359 if ((LSB + Width + 1) == N->getValueType(0).getSizeInBits()) {
3360 // It's cheaper to use a right shift to extract the top bits.
3361 if (Subtarget->isThumb()) {
3362 Opc = isSigned ? ARM::t2ASRri : ARM::t2LSRri;
3363 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3364 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3365 getAL(CurDAG, dl), Reg0, Reg0 };
3366 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3367 return true;
3370 // ARM models shift instructions as MOVsi with shifter operand.
3371 ARM_AM::ShiftOpc ShOpcVal = ARM_AM::getShiftOpcForNode(ISD::SRL);
3372 SDValue ShOpc =
3373 CurDAG->getTargetConstant(ARM_AM::getSORegOpc(ShOpcVal, LSB), dl,
3374 MVT::i32);
3375 SDValue Ops[] = { N->getOperand(0).getOperand(0), ShOpc,
3376 getAL(CurDAG, dl), Reg0, Reg0 };
3377 CurDAG->SelectNodeTo(N, ARM::MOVsi, MVT::i32, Ops);
3378 return true;
3381 assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3382 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3383 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3384 CurDAG->getTargetConstant(Width, dl, MVT::i32),
3385 getAL(CurDAG, dl), Reg0 };
3386 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3387 return true;
3390 return false;
3393 // Otherwise, we're looking for a shift of a shift
3394 unsigned Shl_imm = 0;
3395 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SHL, Shl_imm)) {
3396 assert(Shl_imm > 0 && Shl_imm < 32 && "bad amount in shift node!");
3397 unsigned Srl_imm = 0;
3398 if (isInt32Immediate(N->getOperand(1), Srl_imm)) {
3399 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3400 // Note: The width operand is encoded as width-1.
3401 unsigned Width = 32 - Srl_imm - 1;
3402 int LSB = Srl_imm - Shl_imm;
3403 if (LSB < 0)
3404 return false;
3405 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3406 assert(LSB + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3407 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3408 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3409 CurDAG->getTargetConstant(Width, dl, MVT::i32),
3410 getAL(CurDAG, dl), Reg0 };
3411 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3412 return true;
3416 // Or we are looking for a shift of an and, with a mask operand
3417 if (isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::AND, And_imm) &&
3418 isShiftedMask_32(And_imm)) {
3419 unsigned Srl_imm = 0;
3420 unsigned LSB = countTrailingZeros(And_imm);
3421 // Shift must be the same as the ands lsb
3422 if (isInt32Immediate(N->getOperand(1), Srl_imm) && Srl_imm == LSB) {
3423 assert(Srl_imm > 0 && Srl_imm < 32 && "bad amount in shift node!");
3424 unsigned MSB = 31 - countLeadingZeros(And_imm);
3425 // Note: The width operand is encoded as width-1.
3426 unsigned Width = MSB - LSB;
3427 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3428 assert(Srl_imm + Width + 1 <= 32 && "Shouldn't create an invalid ubfx");
3429 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3430 CurDAG->getTargetConstant(Srl_imm, dl, MVT::i32),
3431 CurDAG->getTargetConstant(Width, dl, MVT::i32),
3432 getAL(CurDAG, dl), Reg0 };
3433 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3434 return true;
3438 if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) {
3439 unsigned Width = cast<VTSDNode>(N->getOperand(1))->getVT().getSizeInBits();
3440 unsigned LSB = 0;
3441 if (!isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRL, LSB) &&
3442 !isOpcWithIntImmediate(N->getOperand(0).getNode(), ISD::SRA, LSB))
3443 return false;
3445 if (LSB + Width > 32)
3446 return false;
3448 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3449 assert(LSB + Width <= 32 && "Shouldn't create an invalid ubfx");
3450 SDValue Ops[] = { N->getOperand(0).getOperand(0),
3451 CurDAG->getTargetConstant(LSB, dl, MVT::i32),
3452 CurDAG->getTargetConstant(Width - 1, dl, MVT::i32),
3453 getAL(CurDAG, dl), Reg0 };
3454 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3455 return true;
3458 return false;
3461 /// Target-specific DAG combining for ISD::XOR.
3462 /// Target-independent combining lowers SELECT_CC nodes of the form
3463 /// select_cc setg[ge] X, 0, X, -X
3464 /// select_cc setgt X, -1, X, -X
3465 /// select_cc setl[te] X, 0, -X, X
3466 /// select_cc setlt X, 1, -X, X
3467 /// which represent Integer ABS into:
3468 /// Y = sra (X, size(X)-1); xor (add (X, Y), Y)
3469 /// ARM instruction selection detects the latter and matches it to
3470 /// ARM::ABS or ARM::t2ABS machine node.
3471 bool ARMDAGToDAGISel::tryABSOp(SDNode *N){
3472 SDValue XORSrc0 = N->getOperand(0);
3473 SDValue XORSrc1 = N->getOperand(1);
3474 EVT VT = N->getValueType(0);
3476 if (Subtarget->isThumb1Only())
3477 return false;
3479 if (XORSrc0.getOpcode() != ISD::ADD || XORSrc1.getOpcode() != ISD::SRA)
3480 return false;
3482 SDValue ADDSrc0 = XORSrc0.getOperand(0);
3483 SDValue ADDSrc1 = XORSrc0.getOperand(1);
3484 SDValue SRASrc0 = XORSrc1.getOperand(0);
3485 SDValue SRASrc1 = XORSrc1.getOperand(1);
3486 ConstantSDNode *SRAConstant = dyn_cast<ConstantSDNode>(SRASrc1);
3487 EVT XType = SRASrc0.getValueType();
3488 unsigned Size = XType.getSizeInBits() - 1;
3490 if (ADDSrc1 == XORSrc1 && ADDSrc0 == SRASrc0 &&
3491 XType.isInteger() && SRAConstant != nullptr &&
3492 Size == SRAConstant->getZExtValue()) {
3493 unsigned Opcode = Subtarget->isThumb2() ? ARM::t2ABS : ARM::ABS;
3494 CurDAG->SelectNodeTo(N, Opcode, VT, ADDSrc0);
3495 return true;
3498 return false;
3501 /// We've got special pseudo-instructions for these
3502 void ARMDAGToDAGISel::SelectCMP_SWAP(SDNode *N) {
3503 unsigned Opcode;
3504 EVT MemTy = cast<MemSDNode>(N)->getMemoryVT();
3505 if (MemTy == MVT::i8)
3506 Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_8 : ARM::CMP_SWAP_8;
3507 else if (MemTy == MVT::i16)
3508 Opcode = Subtarget->isThumb() ? ARM::tCMP_SWAP_16 : ARM::CMP_SWAP_16;
3509 else if (MemTy == MVT::i32)
3510 Opcode = ARM::CMP_SWAP_32;
3511 else
3512 llvm_unreachable("Unknown AtomicCmpSwap type");
3514 SDValue Ops[] = {N->getOperand(1), N->getOperand(2), N->getOperand(3),
3515 N->getOperand(0)};
3516 SDNode *CmpSwap = CurDAG->getMachineNode(
3517 Opcode, SDLoc(N),
3518 CurDAG->getVTList(MVT::i32, MVT::i32, MVT::Other), Ops);
3520 MachineMemOperand *MemOp = cast<MemSDNode>(N)->getMemOperand();
3521 CurDAG->setNodeMemRefs(cast<MachineSDNode>(CmpSwap), {MemOp});
3523 ReplaceUses(SDValue(N, 0), SDValue(CmpSwap, 0));
3524 ReplaceUses(SDValue(N, 1), SDValue(CmpSwap, 2));
3525 CurDAG->RemoveDeadNode(N);
3528 static Optional<std::pair<unsigned, unsigned>>
3529 getContiguousRangeOfSetBits(const APInt &A) {
3530 unsigned FirstOne = A.getBitWidth() - A.countLeadingZeros() - 1;
3531 unsigned LastOne = A.countTrailingZeros();
3532 if (A.countPopulation() != (FirstOne - LastOne + 1))
3533 return Optional<std::pair<unsigned,unsigned>>();
3534 return std::make_pair(FirstOne, LastOne);
3537 void ARMDAGToDAGISel::SelectCMPZ(SDNode *N, bool &SwitchEQNEToPLMI) {
3538 assert(N->getOpcode() == ARMISD::CMPZ);
3539 SwitchEQNEToPLMI = false;
3541 if (!Subtarget->isThumb())
3542 // FIXME: Work out whether it is profitable to do this in A32 mode - LSL and
3543 // LSR don't exist as standalone instructions - they need the barrel shifter.
3544 return;
3546 // select (cmpz (and X, C), #0) -> (LSLS X) or (LSRS X) or (LSRS (LSLS X))
3547 SDValue And = N->getOperand(0);
3548 if (!And->hasOneUse())
3549 return;
3551 SDValue Zero = N->getOperand(1);
3552 if (!isa<ConstantSDNode>(Zero) || !cast<ConstantSDNode>(Zero)->isNullValue() ||
3553 And->getOpcode() != ISD::AND)
3554 return;
3555 SDValue X = And.getOperand(0);
3556 auto C = dyn_cast<ConstantSDNode>(And.getOperand(1));
3558 if (!C)
3559 return;
3560 auto Range = getContiguousRangeOfSetBits(C->getAPIntValue());
3561 if (!Range)
3562 return;
3564 // There are several ways to lower this:
3565 SDNode *NewN;
3566 SDLoc dl(N);
3568 auto EmitShift = [&](unsigned Opc, SDValue Src, unsigned Imm) -> SDNode* {
3569 if (Subtarget->isThumb2()) {
3570 Opc = (Opc == ARM::tLSLri) ? ARM::t2LSLri : ARM::t2LSRri;
3571 SDValue Ops[] = { Src, CurDAG->getTargetConstant(Imm, dl, MVT::i32),
3572 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
3573 CurDAG->getRegister(0, MVT::i32) };
3574 return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
3575 } else {
3576 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), Src,
3577 CurDAG->getTargetConstant(Imm, dl, MVT::i32),
3578 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
3579 return CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
3583 if (Range->second == 0) {
3584 // 1. Mask includes the LSB -> Simply shift the top N bits off
3585 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3586 ReplaceNode(And.getNode(), NewN);
3587 } else if (Range->first == 31) {
3588 // 2. Mask includes the MSB -> Simply shift the bottom N bits off
3589 NewN = EmitShift(ARM::tLSRri, X, Range->second);
3590 ReplaceNode(And.getNode(), NewN);
3591 } else if (Range->first == Range->second) {
3592 // 3. Only one bit is set. We can shift this into the sign bit and use a
3593 // PL/MI comparison.
3594 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3595 ReplaceNode(And.getNode(), NewN);
3597 SwitchEQNEToPLMI = true;
3598 } else if (!Subtarget->hasV6T2Ops()) {
3599 // 4. Do a double shift to clear bottom and top bits, but only in
3600 // thumb-1 mode as in thumb-2 we can use UBFX.
3601 NewN = EmitShift(ARM::tLSLri, X, 31 - Range->first);
3602 NewN = EmitShift(ARM::tLSRri, SDValue(NewN, 0),
3603 Range->second + (31 - Range->first));
3604 ReplaceNode(And.getNode(), NewN);
3609 void ARMDAGToDAGISel::Select(SDNode *N) {
3610 SDLoc dl(N);
3612 if (N->isMachineOpcode()) {
3613 N->setNodeId(-1);
3614 return; // Already selected.
3617 switch (N->getOpcode()) {
3618 default: break;
3619 case ISD::STORE: {
3620 // For Thumb1, match an sp-relative store in C++. This is a little
3621 // unfortunate, but I don't think I can make the chain check work
3622 // otherwise. (The chain of the store has to be the same as the chain
3623 // of the CopyFromReg, or else we can't replace the CopyFromReg with
3624 // a direct reference to "SP".)
3626 // This is only necessary on Thumb1 because Thumb1 sp-relative stores use
3627 // a different addressing mode from other four-byte stores.
3629 // This pattern usually comes up with call arguments.
3630 StoreSDNode *ST = cast<StoreSDNode>(N);
3631 SDValue Ptr = ST->getBasePtr();
3632 if (Subtarget->isThumb1Only() && ST->isUnindexed()) {
3633 int RHSC = 0;
3634 if (Ptr.getOpcode() == ISD::ADD &&
3635 isScaledConstantInRange(Ptr.getOperand(1), /*Scale=*/4, 0, 256, RHSC))
3636 Ptr = Ptr.getOperand(0);
3638 if (Ptr.getOpcode() == ISD::CopyFromReg &&
3639 cast<RegisterSDNode>(Ptr.getOperand(1))->getReg() == ARM::SP &&
3640 Ptr.getOperand(0) == ST->getChain()) {
3641 SDValue Ops[] = {ST->getValue(),
3642 CurDAG->getRegister(ARM::SP, MVT::i32),
3643 CurDAG->getTargetConstant(RHSC, dl, MVT::i32),
3644 getAL(CurDAG, dl),
3645 CurDAG->getRegister(0, MVT::i32),
3646 ST->getChain()};
3647 MachineSDNode *ResNode =
3648 CurDAG->getMachineNode(ARM::tSTRspi, dl, MVT::Other, Ops);
3649 MachineMemOperand *MemOp = ST->getMemOperand();
3650 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
3651 ReplaceNode(N, ResNode);
3652 return;
3655 break;
3657 case ISD::WRITE_REGISTER:
3658 if (tryWriteRegister(N))
3659 return;
3660 break;
3661 case ISD::READ_REGISTER:
3662 if (tryReadRegister(N))
3663 return;
3664 break;
3665 case ISD::INLINEASM:
3666 case ISD::INLINEASM_BR:
3667 if (tryInlineAsm(N))
3668 return;
3669 break;
3670 case ISD::XOR:
3671 // Select special operations if XOR node forms integer ABS pattern
3672 if (tryABSOp(N))
3673 return;
3674 // Other cases are autogenerated.
3675 break;
3676 case ISD::Constant: {
3677 unsigned Val = cast<ConstantSDNode>(N)->getZExtValue();
3678 // If we can't materialize the constant we need to use a literal pool
3679 if (ConstantMaterializationCost(Val, Subtarget) > 2) {
3680 SDValue CPIdx = CurDAG->getTargetConstantPool(
3681 ConstantInt::get(Type::getInt32Ty(*CurDAG->getContext()), Val),
3682 TLI->getPointerTy(CurDAG->getDataLayout()));
3684 SDNode *ResNode;
3685 if (Subtarget->isThumb()) {
3686 SDValue Ops[] = {
3687 CPIdx,
3688 getAL(CurDAG, dl),
3689 CurDAG->getRegister(0, MVT::i32),
3690 CurDAG->getEntryNode()
3692 ResNode = CurDAG->getMachineNode(ARM::tLDRpci, dl, MVT::i32, MVT::Other,
3693 Ops);
3694 } else {
3695 SDValue Ops[] = {
3696 CPIdx,
3697 CurDAG->getTargetConstant(0, dl, MVT::i32),
3698 getAL(CurDAG, dl),
3699 CurDAG->getRegister(0, MVT::i32),
3700 CurDAG->getEntryNode()
3702 ResNode = CurDAG->getMachineNode(ARM::LDRcp, dl, MVT::i32, MVT::Other,
3703 Ops);
3705 // Annotate the Node with memory operand information so that MachineInstr
3706 // queries work properly. This e.g. gives the register allocation the
3707 // required information for rematerialization.
3708 MachineFunction& MF = CurDAG->getMachineFunction();
3709 MachineMemOperand *MemOp =
3710 MF.getMachineMemOperand(MachinePointerInfo::getConstantPool(MF),
3711 MachineMemOperand::MOLoad, 4, Align(4));
3713 CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {MemOp});
3715 ReplaceNode(N, ResNode);
3716 return;
3719 // Other cases are autogenerated.
3720 break;
3722 case ISD::FrameIndex: {
3723 // Selects to ADDri FI, 0 which in turn will become ADDri SP, imm.
3724 int FI = cast<FrameIndexSDNode>(N)->getIndex();
3725 SDValue TFI = CurDAG->getTargetFrameIndex(
3726 FI, TLI->getPointerTy(CurDAG->getDataLayout()));
3727 if (Subtarget->isThumb1Only()) {
3728 // Set the alignment of the frame object to 4, to avoid having to generate
3729 // more than one ADD
3730 MachineFrameInfo &MFI = MF->getFrameInfo();
3731 if (MFI.getObjectAlign(FI) < Align(4))
3732 MFI.setObjectAlignment(FI, Align(4));
3733 CurDAG->SelectNodeTo(N, ARM::tADDframe, MVT::i32, TFI,
3734 CurDAG->getTargetConstant(0, dl, MVT::i32));
3735 return;
3736 } else {
3737 unsigned Opc = ((Subtarget->isThumb() && Subtarget->hasThumb2()) ?
3738 ARM::t2ADDri : ARM::ADDri);
3739 SDValue Ops[] = { TFI, CurDAG->getTargetConstant(0, dl, MVT::i32),
3740 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
3741 CurDAG->getRegister(0, MVT::i32) };
3742 CurDAG->SelectNodeTo(N, Opc, MVT::i32, Ops);
3743 return;
3746 case ISD::INSERT_VECTOR_ELT: {
3747 if (tryInsertVectorElt(N))
3748 return;
3749 break;
3751 case ISD::SRL:
3752 if (tryV6T2BitfieldExtractOp(N, false))
3753 return;
3754 break;
3755 case ISD::SIGN_EXTEND_INREG:
3756 case ISD::SRA:
3757 if (tryV6T2BitfieldExtractOp(N, true))
3758 return;
3759 break;
3760 case ISD::FP_TO_UINT:
3761 case ISD::FP_TO_SINT:
3762 if (tryFP_TO_INT(N, dl))
3763 return;
3764 break;
3765 case ISD::FMUL:
3766 if (tryFMULFixed(N, dl))
3767 return;
3768 break;
3769 case ISD::MUL:
3770 if (Subtarget->isThumb1Only())
3771 break;
3772 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1))) {
3773 unsigned RHSV = C->getZExtValue();
3774 if (!RHSV) break;
3775 if (isPowerOf2_32(RHSV-1)) { // 2^n+1?
3776 unsigned ShImm = Log2_32(RHSV-1);
3777 if (ShImm >= 32)
3778 break;
3779 SDValue V = N->getOperand(0);
3780 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
3781 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
3782 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3783 if (Subtarget->isThumb()) {
3784 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
3785 CurDAG->SelectNodeTo(N, ARM::t2ADDrs, MVT::i32, Ops);
3786 return;
3787 } else {
3788 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
3789 Reg0 };
3790 CurDAG->SelectNodeTo(N, ARM::ADDrsi, MVT::i32, Ops);
3791 return;
3794 if (isPowerOf2_32(RHSV+1)) { // 2^n-1?
3795 unsigned ShImm = Log2_32(RHSV+1);
3796 if (ShImm >= 32)
3797 break;
3798 SDValue V = N->getOperand(0);
3799 ShImm = ARM_AM::getSORegOpc(ARM_AM::lsl, ShImm);
3800 SDValue ShImmOp = CurDAG->getTargetConstant(ShImm, dl, MVT::i32);
3801 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
3802 if (Subtarget->isThumb()) {
3803 SDValue Ops[] = { V, V, ShImmOp, getAL(CurDAG, dl), Reg0, Reg0 };
3804 CurDAG->SelectNodeTo(N, ARM::t2RSBrs, MVT::i32, Ops);
3805 return;
3806 } else {
3807 SDValue Ops[] = { V, V, Reg0, ShImmOp, getAL(CurDAG, dl), Reg0,
3808 Reg0 };
3809 CurDAG->SelectNodeTo(N, ARM::RSBrsi, MVT::i32, Ops);
3810 return;
3814 break;
3815 case ISD::AND: {
3816 // Check for unsigned bitfield extract
3817 if (tryV6T2BitfieldExtractOp(N, false))
3818 return;
3820 // If an immediate is used in an AND node, it is possible that the immediate
3821 // can be more optimally materialized when negated. If this is the case we
3822 // can negate the immediate and use a BIC instead.
3823 auto *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1));
3824 if (N1C && N1C->hasOneUse() && Subtarget->isThumb()) {
3825 uint32_t Imm = (uint32_t) N1C->getZExtValue();
3827 // In Thumb2 mode, an AND can take a 12-bit immediate. If this
3828 // immediate can be negated and fit in the immediate operand of
3829 // a t2BIC, don't do any manual transform here as this can be
3830 // handled by the generic ISel machinery.
3831 bool PreferImmediateEncoding =
3832 Subtarget->hasThumb2() && (is_t2_so_imm(Imm) || is_t2_so_imm_not(Imm));
3833 if (!PreferImmediateEncoding &&
3834 ConstantMaterializationCost(Imm, Subtarget) >
3835 ConstantMaterializationCost(~Imm, Subtarget)) {
3836 // The current immediate costs more to materialize than a negated
3837 // immediate, so negate the immediate and use a BIC.
3838 SDValue NewImm =
3839 CurDAG->getConstant(~N1C->getZExtValue(), dl, MVT::i32);
3840 // If the new constant didn't exist before, reposition it in the topological
3841 // ordering so it is just before N. Otherwise, don't touch its location.
3842 if (NewImm->getNodeId() == -1)
3843 CurDAG->RepositionNode(N->getIterator(), NewImm.getNode());
3845 if (!Subtarget->hasThumb2()) {
3846 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32),
3847 N->getOperand(0), NewImm, getAL(CurDAG, dl),
3848 CurDAG->getRegister(0, MVT::i32)};
3849 ReplaceNode(N, CurDAG->getMachineNode(ARM::tBIC, dl, MVT::i32, Ops));
3850 return;
3851 } else {
3852 SDValue Ops[] = {N->getOperand(0), NewImm, getAL(CurDAG, dl),
3853 CurDAG->getRegister(0, MVT::i32),
3854 CurDAG->getRegister(0, MVT::i32)};
3855 ReplaceNode(N,
3856 CurDAG->getMachineNode(ARM::t2BICrr, dl, MVT::i32, Ops));
3857 return;
3862 // (and (or x, c2), c1) and top 16-bits of c1 and c2 match, lower 16-bits
3863 // of c1 are 0xffff, and lower 16-bit of c2 are 0. That is, the top 16-bits
3864 // are entirely contributed by c2 and lower 16-bits are entirely contributed
3865 // by x. That's equal to (or (and x, 0xffff), (and c1, 0xffff0000)).
3866 // Select it to: "movt x, ((c1 & 0xffff) >> 16)
3867 EVT VT = N->getValueType(0);
3868 if (VT != MVT::i32)
3869 break;
3870 unsigned Opc = (Subtarget->isThumb() && Subtarget->hasThumb2())
3871 ? ARM::t2MOVTi16
3872 : (Subtarget->hasV6T2Ops() ? ARM::MOVTi16 : 0);
3873 if (!Opc)
3874 break;
3875 SDValue N0 = N->getOperand(0), N1 = N->getOperand(1);
3876 N1C = dyn_cast<ConstantSDNode>(N1);
3877 if (!N1C)
3878 break;
3879 if (N0.getOpcode() == ISD::OR && N0.getNode()->hasOneUse()) {
3880 SDValue N2 = N0.getOperand(1);
3881 ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2);
3882 if (!N2C)
3883 break;
3884 unsigned N1CVal = N1C->getZExtValue();
3885 unsigned N2CVal = N2C->getZExtValue();
3886 if ((N1CVal & 0xffff0000U) == (N2CVal & 0xffff0000U) &&
3887 (N1CVal & 0xffffU) == 0xffffU &&
3888 (N2CVal & 0xffffU) == 0x0U) {
3889 SDValue Imm16 = CurDAG->getTargetConstant((N2CVal & 0xFFFF0000U) >> 16,
3890 dl, MVT::i32);
3891 SDValue Ops[] = { N0.getOperand(0), Imm16,
3892 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32) };
3893 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, Ops));
3894 return;
3898 break;
3900 case ARMISD::UMAAL: {
3901 unsigned Opc = Subtarget->isThumb() ? ARM::t2UMAAL : ARM::UMAAL;
3902 SDValue Ops[] = { N->getOperand(0), N->getOperand(1),
3903 N->getOperand(2), N->getOperand(3),
3904 getAL(CurDAG, dl),
3905 CurDAG->getRegister(0, MVT::i32) };
3906 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, MVT::i32, Ops));
3907 return;
3909 case ARMISD::UMLAL:{
3910 if (Subtarget->isThumb()) {
3911 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3912 N->getOperand(3), getAL(CurDAG, dl),
3913 CurDAG->getRegister(0, MVT::i32)};
3914 ReplaceNode(
3915 N, CurDAG->getMachineNode(ARM::t2UMLAL, dl, MVT::i32, MVT::i32, Ops));
3916 return;
3917 }else{
3918 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3919 N->getOperand(3), getAL(CurDAG, dl),
3920 CurDAG->getRegister(0, MVT::i32),
3921 CurDAG->getRegister(0, MVT::i32) };
3922 ReplaceNode(N, CurDAG->getMachineNode(
3923 Subtarget->hasV6Ops() ? ARM::UMLAL : ARM::UMLALv5, dl,
3924 MVT::i32, MVT::i32, Ops));
3925 return;
3928 case ARMISD::SMLAL:{
3929 if (Subtarget->isThumb()) {
3930 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3931 N->getOperand(3), getAL(CurDAG, dl),
3932 CurDAG->getRegister(0, MVT::i32)};
3933 ReplaceNode(
3934 N, CurDAG->getMachineNode(ARM::t2SMLAL, dl, MVT::i32, MVT::i32, Ops));
3935 return;
3936 }else{
3937 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), N->getOperand(2),
3938 N->getOperand(3), getAL(CurDAG, dl),
3939 CurDAG->getRegister(0, MVT::i32),
3940 CurDAG->getRegister(0, MVT::i32) };
3941 ReplaceNode(N, CurDAG->getMachineNode(
3942 Subtarget->hasV6Ops() ? ARM::SMLAL : ARM::SMLALv5, dl,
3943 MVT::i32, MVT::i32, Ops));
3944 return;
3947 case ARMISD::SUBE: {
3948 if (!Subtarget->hasV6Ops() || !Subtarget->hasDSP())
3949 break;
3950 // Look for a pattern to match SMMLS
3951 // (sube a, (smul_loHi a, b), (subc 0, (smul_LOhi(a, b))))
3952 if (N->getOperand(1).getOpcode() != ISD::SMUL_LOHI ||
3953 N->getOperand(2).getOpcode() != ARMISD::SUBC ||
3954 !SDValue(N, 1).use_empty())
3955 break;
3957 if (Subtarget->isThumb())
3958 assert(Subtarget->hasThumb2() &&
3959 "This pattern should not be generated for Thumb");
3961 SDValue SmulLoHi = N->getOperand(1);
3962 SDValue Subc = N->getOperand(2);
3963 auto *Zero = dyn_cast<ConstantSDNode>(Subc.getOperand(0));
3965 if (!Zero || Zero->getZExtValue() != 0 ||
3966 Subc.getOperand(1) != SmulLoHi.getValue(0) ||
3967 N->getOperand(1) != SmulLoHi.getValue(1) ||
3968 N->getOperand(2) != Subc.getValue(1))
3969 break;
3971 unsigned Opc = Subtarget->isThumb2() ? ARM::t2SMMLS : ARM::SMMLS;
3972 SDValue Ops[] = { SmulLoHi.getOperand(0), SmulLoHi.getOperand(1),
3973 N->getOperand(0), getAL(CurDAG, dl),
3974 CurDAG->getRegister(0, MVT::i32) };
3975 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops));
3976 return;
3978 case ISD::LOAD: {
3979 if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
3980 return;
3981 if (Subtarget->isThumb() && Subtarget->hasThumb2()) {
3982 if (tryT2IndexedLoad(N))
3983 return;
3984 } else if (Subtarget->isThumb()) {
3985 if (tryT1IndexedLoad(N))
3986 return;
3987 } else if (tryARMIndexedLoad(N))
3988 return;
3989 // Other cases are autogenerated.
3990 break;
3992 case ISD::MLOAD:
3993 if (Subtarget->hasMVEIntegerOps() && tryMVEIndexedLoad(N))
3994 return;
3995 // Other cases are autogenerated.
3996 break;
3997 case ARMISD::WLSSETUP: {
3998 SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopSetup, dl, MVT::i32,
3999 N->getOperand(0));
4000 ReplaceUses(N, New);
4001 CurDAG->RemoveDeadNode(N);
4002 return;
4004 case ARMISD::WLS: {
4005 SDNode *New = CurDAG->getMachineNode(ARM::t2WhileLoopStart, dl, MVT::Other,
4006 N->getOperand(1), N->getOperand(2),
4007 N->getOperand(0));
4008 ReplaceUses(N, New);
4009 CurDAG->RemoveDeadNode(N);
4010 return;
4012 case ARMISD::LE: {
4013 SDValue Ops[] = { N->getOperand(1),
4014 N->getOperand(2),
4015 N->getOperand(0) };
4016 unsigned Opc = ARM::t2LoopEnd;
4017 SDNode *New = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops);
4018 ReplaceUses(N, New);
4019 CurDAG->RemoveDeadNode(N);
4020 return;
4022 case ARMISD::LDRD: {
4023 if (Subtarget->isThumb2())
4024 break; // TableGen handles isel in this case.
4025 SDValue Base, RegOffset, ImmOffset;
4026 const SDValue &Chain = N->getOperand(0);
4027 const SDValue &Addr = N->getOperand(1);
4028 SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
4029 if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
4030 // The register-offset variant of LDRD mandates that the register
4031 // allocated to RegOffset is not reused in any of the remaining operands.
4032 // This restriction is currently not enforced. Therefore emitting this
4033 // variant is explicitly avoided.
4034 Base = Addr;
4035 RegOffset = CurDAG->getRegister(0, MVT::i32);
4037 SDValue Ops[] = {Base, RegOffset, ImmOffset, Chain};
4038 SDNode *New = CurDAG->getMachineNode(ARM::LOADDUAL, dl,
4039 {MVT::Untyped, MVT::Other}, Ops);
4040 SDValue Lo = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
4041 SDValue(New, 0));
4042 SDValue Hi = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
4043 SDValue(New, 0));
4044 transferMemOperands(N, New);
4045 ReplaceUses(SDValue(N, 0), Lo);
4046 ReplaceUses(SDValue(N, 1), Hi);
4047 ReplaceUses(SDValue(N, 2), SDValue(New, 1));
4048 CurDAG->RemoveDeadNode(N);
4049 return;
4051 case ARMISD::STRD: {
4052 if (Subtarget->isThumb2())
4053 break; // TableGen handles isel in this case.
4054 SDValue Base, RegOffset, ImmOffset;
4055 const SDValue &Chain = N->getOperand(0);
4056 const SDValue &Addr = N->getOperand(3);
4057 SelectAddrMode3(Addr, Base, RegOffset, ImmOffset);
4058 if (RegOffset != CurDAG->getRegister(0, MVT::i32)) {
4059 // The register-offset variant of STRD mandates that the register
4060 // allocated to RegOffset is not reused in any of the remaining operands.
4061 // This restriction is currently not enforced. Therefore emitting this
4062 // variant is explicitly avoided.
4063 Base = Addr;
4064 RegOffset = CurDAG->getRegister(0, MVT::i32);
4066 SDNode *RegPair =
4067 createGPRPairNode(MVT::Untyped, N->getOperand(1), N->getOperand(2));
4068 SDValue Ops[] = {SDValue(RegPair, 0), Base, RegOffset, ImmOffset, Chain};
4069 SDNode *New = CurDAG->getMachineNode(ARM::STOREDUAL, dl, MVT::Other, Ops);
4070 transferMemOperands(N, New);
4071 ReplaceUses(SDValue(N, 0), SDValue(New, 0));
4072 CurDAG->RemoveDeadNode(N);
4073 return;
4075 case ARMISD::LOOP_DEC: {
4076 SDValue Ops[] = { N->getOperand(1),
4077 N->getOperand(2),
4078 N->getOperand(0) };
4079 SDNode *Dec =
4080 CurDAG->getMachineNode(ARM::t2LoopDec, dl,
4081 CurDAG->getVTList(MVT::i32, MVT::Other), Ops);
4082 ReplaceUses(N, Dec);
4083 CurDAG->RemoveDeadNode(N);
4084 return;
4086 case ARMISD::BRCOND: {
4087 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4088 // Emits: (Bcc:void (bb:Other):$dst, (imm:i32):$cc)
4089 // Pattern complexity = 6 cost = 1 size = 0
4091 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4092 // Emits: (tBcc:void (bb:Other):$dst, (imm:i32):$cc)
4093 // Pattern complexity = 6 cost = 1 size = 0
4095 // Pattern: (ARMbrcond:void (bb:Other):$dst, (imm:i32):$cc)
4096 // Emits: (t2Bcc:void (bb:Other):$dst, (imm:i32):$cc)
4097 // Pattern complexity = 6 cost = 1 size = 0
4099 unsigned Opc = Subtarget->isThumb() ?
4100 ((Subtarget->hasThumb2()) ? ARM::t2Bcc : ARM::tBcc) : ARM::Bcc;
4101 SDValue Chain = N->getOperand(0);
4102 SDValue N1 = N->getOperand(1);
4103 SDValue N2 = N->getOperand(2);
4104 SDValue N3 = N->getOperand(3);
4105 SDValue InFlag = N->getOperand(4);
4106 assert(N1.getOpcode() == ISD::BasicBlock);
4107 assert(N2.getOpcode() == ISD::Constant);
4108 assert(N3.getOpcode() == ISD::Register);
4110 unsigned CC = (unsigned) cast<ConstantSDNode>(N2)->getZExtValue();
4112 if (InFlag.getOpcode() == ARMISD::CMPZ) {
4113 if (InFlag.getOperand(0).getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4114 SDValue Int = InFlag.getOperand(0);
4115 uint64_t ID = cast<ConstantSDNode>(Int->getOperand(1))->getZExtValue();
4117 // Handle low-overhead loops.
4118 if (ID == Intrinsic::loop_decrement_reg) {
4119 SDValue Elements = Int.getOperand(2);
4120 SDValue Size = CurDAG->getTargetConstant(
4121 cast<ConstantSDNode>(Int.getOperand(3))->getZExtValue(), dl,
4122 MVT::i32);
4124 SDValue Args[] = { Elements, Size, Int.getOperand(0) };
4125 SDNode *LoopDec =
4126 CurDAG->getMachineNode(ARM::t2LoopDec, dl,
4127 CurDAG->getVTList(MVT::i32, MVT::Other),
4128 Args);
4129 ReplaceUses(Int.getNode(), LoopDec);
4131 SDValue EndArgs[] = { SDValue(LoopDec, 0), N1, Chain };
4132 SDNode *LoopEnd =
4133 CurDAG->getMachineNode(ARM::t2LoopEnd, dl, MVT::Other, EndArgs);
4135 ReplaceUses(N, LoopEnd);
4136 CurDAG->RemoveDeadNode(N);
4137 CurDAG->RemoveDeadNode(InFlag.getNode());
4138 CurDAG->RemoveDeadNode(Int.getNode());
4139 return;
4143 bool SwitchEQNEToPLMI;
4144 SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
4145 InFlag = N->getOperand(4);
4147 if (SwitchEQNEToPLMI) {
4148 switch ((ARMCC::CondCodes)CC) {
4149 default: llvm_unreachable("CMPZ must be either NE or EQ!");
4150 case ARMCC::NE:
4151 CC = (unsigned)ARMCC::MI;
4152 break;
4153 case ARMCC::EQ:
4154 CC = (unsigned)ARMCC::PL;
4155 break;
4160 SDValue Tmp2 = CurDAG->getTargetConstant(CC, dl, MVT::i32);
4161 SDValue Ops[] = { N1, Tmp2, N3, Chain, InFlag };
4162 SDNode *ResNode = CurDAG->getMachineNode(Opc, dl, MVT::Other,
4163 MVT::Glue, Ops);
4164 Chain = SDValue(ResNode, 0);
4165 if (N->getNumValues() == 2) {
4166 InFlag = SDValue(ResNode, 1);
4167 ReplaceUses(SDValue(N, 1), InFlag);
4169 ReplaceUses(SDValue(N, 0),
4170 SDValue(Chain.getNode(), Chain.getResNo()));
4171 CurDAG->RemoveDeadNode(N);
4172 return;
4175 case ARMISD::CMPZ: {
4176 // select (CMPZ X, #-C) -> (CMPZ (ADDS X, #C), #0)
4177 // This allows us to avoid materializing the expensive negative constant.
4178 // The CMPZ #0 is useless and will be peepholed away but we need to keep it
4179 // for its glue output.
4180 SDValue X = N->getOperand(0);
4181 auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1).getNode());
4182 if (C && C->getSExtValue() < 0 && Subtarget->isThumb()) {
4183 int64_t Addend = -C->getSExtValue();
4185 SDNode *Add = nullptr;
4186 // ADDS can be better than CMN if the immediate fits in a
4187 // 16-bit ADDS, which means either [0,256) for tADDi8 or [0,8) for tADDi3.
4188 // Outside that range we can just use a CMN which is 32-bit but has a
4189 // 12-bit immediate range.
4190 if (Addend < 1<<8) {
4191 if (Subtarget->isThumb2()) {
4192 SDValue Ops[] = { X, CurDAG->getTargetConstant(Addend, dl, MVT::i32),
4193 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32),
4194 CurDAG->getRegister(0, MVT::i32) };
4195 Add = CurDAG->getMachineNode(ARM::t2ADDri, dl, MVT::i32, Ops);
4196 } else {
4197 unsigned Opc = (Addend < 1<<3) ? ARM::tADDi3 : ARM::tADDi8;
4198 SDValue Ops[] = {CurDAG->getRegister(ARM::CPSR, MVT::i32), X,
4199 CurDAG->getTargetConstant(Addend, dl, MVT::i32),
4200 getAL(CurDAG, dl), CurDAG->getRegister(0, MVT::i32)};
4201 Add = CurDAG->getMachineNode(Opc, dl, MVT::i32, Ops);
4204 if (Add) {
4205 SDValue Ops2[] = {SDValue(Add, 0), CurDAG->getConstant(0, dl, MVT::i32)};
4206 CurDAG->MorphNodeTo(N, ARMISD::CMPZ, CurDAG->getVTList(MVT::Glue), Ops2);
4209 // Other cases are autogenerated.
4210 break;
4213 case ARMISD::CMOV: {
4214 SDValue InFlag = N->getOperand(4);
4216 if (InFlag.getOpcode() == ARMISD::CMPZ) {
4217 bool SwitchEQNEToPLMI;
4218 SelectCMPZ(InFlag.getNode(), SwitchEQNEToPLMI);
4220 if (SwitchEQNEToPLMI) {
4221 SDValue ARMcc = N->getOperand(2);
4222 ARMCC::CondCodes CC =
4223 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
4225 switch (CC) {
4226 default: llvm_unreachable("CMPZ must be either NE or EQ!");
4227 case ARMCC::NE:
4228 CC = ARMCC::MI;
4229 break;
4230 case ARMCC::EQ:
4231 CC = ARMCC::PL;
4232 break;
4234 SDValue NewARMcc = CurDAG->getConstant((unsigned)CC, dl, MVT::i32);
4235 SDValue Ops[] = {N->getOperand(0), N->getOperand(1), NewARMcc,
4236 N->getOperand(3), N->getOperand(4)};
4237 CurDAG->MorphNodeTo(N, ARMISD::CMOV, N->getVTList(), Ops);
4241 // Other cases are autogenerated.
4242 break;
4245 case ARMISD::VZIP: {
4246 unsigned Opc = 0;
4247 EVT VT = N->getValueType(0);
4248 switch (VT.getSimpleVT().SimpleTy) {
4249 default: return;
4250 case MVT::v8i8: Opc = ARM::VZIPd8; break;
4251 case MVT::v4f16:
4252 case MVT::v4i16: Opc = ARM::VZIPd16; break;
4253 case MVT::v2f32:
4254 // vzip.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
4255 case MVT::v2i32: Opc = ARM::VTRNd32; break;
4256 case MVT::v16i8: Opc = ARM::VZIPq8; break;
4257 case MVT::v8f16:
4258 case MVT::v8i16: Opc = ARM::VZIPq16; break;
4259 case MVT::v4f32:
4260 case MVT::v4i32: Opc = ARM::VZIPq32; break;
4262 SDValue Pred = getAL(CurDAG, dl);
4263 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4264 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
4265 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4266 return;
4268 case ARMISD::VUZP: {
4269 unsigned Opc = 0;
4270 EVT VT = N->getValueType(0);
4271 switch (VT.getSimpleVT().SimpleTy) {
4272 default: return;
4273 case MVT::v8i8: Opc = ARM::VUZPd8; break;
4274 case MVT::v4f16:
4275 case MVT::v4i16: Opc = ARM::VUZPd16; break;
4276 case MVT::v2f32:
4277 // vuzp.32 Dd, Dm is a pseudo-instruction expanded to vtrn.32 Dd, Dm.
4278 case MVT::v2i32: Opc = ARM::VTRNd32; break;
4279 case MVT::v16i8: Opc = ARM::VUZPq8; break;
4280 case MVT::v8f16:
4281 case MVT::v8i16: Opc = ARM::VUZPq16; break;
4282 case MVT::v4f32:
4283 case MVT::v4i32: Opc = ARM::VUZPq32; break;
4285 SDValue Pred = getAL(CurDAG, dl);
4286 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4287 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
4288 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4289 return;
4291 case ARMISD::VTRN: {
4292 unsigned Opc = 0;
4293 EVT VT = N->getValueType(0);
4294 switch (VT.getSimpleVT().SimpleTy) {
4295 default: return;
4296 case MVT::v8i8: Opc = ARM::VTRNd8; break;
4297 case MVT::v4f16:
4298 case MVT::v4i16: Opc = ARM::VTRNd16; break;
4299 case MVT::v2f32:
4300 case MVT::v2i32: Opc = ARM::VTRNd32; break;
4301 case MVT::v16i8: Opc = ARM::VTRNq8; break;
4302 case MVT::v8f16:
4303 case MVT::v8i16: Opc = ARM::VTRNq16; break;
4304 case MVT::v4f32:
4305 case MVT::v4i32: Opc = ARM::VTRNq32; break;
4307 SDValue Pred = getAL(CurDAG, dl);
4308 SDValue PredReg = CurDAG->getRegister(0, MVT::i32);
4309 SDValue Ops[] = { N->getOperand(0), N->getOperand(1), Pred, PredReg };
4310 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, VT, VT, Ops));
4311 return;
4313 case ARMISD::BUILD_VECTOR: {
4314 EVT VecVT = N->getValueType(0);
4315 EVT EltVT = VecVT.getVectorElementType();
4316 unsigned NumElts = VecVT.getVectorNumElements();
4317 if (EltVT == MVT::f64) {
4318 assert(NumElts == 2 && "unexpected type for BUILD_VECTOR");
4319 ReplaceNode(
4320 N, createDRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
4321 return;
4323 assert(EltVT == MVT::f32 && "unexpected type for BUILD_VECTOR");
4324 if (NumElts == 2) {
4325 ReplaceNode(
4326 N, createSRegPairNode(VecVT, N->getOperand(0), N->getOperand(1)));
4327 return;
4329 assert(NumElts == 4 && "unexpected type for BUILD_VECTOR");
4330 ReplaceNode(N,
4331 createQuadSRegsNode(VecVT, N->getOperand(0), N->getOperand(1),
4332 N->getOperand(2), N->getOperand(3)));
4333 return;
4336 case ARMISD::VLD1DUP: {
4337 static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8, ARM::VLD1DUPd16,
4338 ARM::VLD1DUPd32 };
4339 static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8, ARM::VLD1DUPq16,
4340 ARM::VLD1DUPq32 };
4341 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 1, DOpcodes, QOpcodes);
4342 return;
4345 case ARMISD::VLD2DUP: {
4346 static const uint16_t Opcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
4347 ARM::VLD2DUPd32 };
4348 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 2, Opcodes);
4349 return;
4352 case ARMISD::VLD3DUP: {
4353 static const uint16_t Opcodes[] = { ARM::VLD3DUPd8Pseudo,
4354 ARM::VLD3DUPd16Pseudo,
4355 ARM::VLD3DUPd32Pseudo };
4356 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 3, Opcodes);
4357 return;
4360 case ARMISD::VLD4DUP: {
4361 static const uint16_t Opcodes[] = { ARM::VLD4DUPd8Pseudo,
4362 ARM::VLD4DUPd16Pseudo,
4363 ARM::VLD4DUPd32Pseudo };
4364 SelectVLDDup(N, /* IsIntrinsic= */ false, false, 4, Opcodes);
4365 return;
4368 case ARMISD::VLD1DUP_UPD: {
4369 static const uint16_t DOpcodes[] = { ARM::VLD1DUPd8wb_fixed,
4370 ARM::VLD1DUPd16wb_fixed,
4371 ARM::VLD1DUPd32wb_fixed };
4372 static const uint16_t QOpcodes[] = { ARM::VLD1DUPq8wb_fixed,
4373 ARM::VLD1DUPq16wb_fixed,
4374 ARM::VLD1DUPq32wb_fixed };
4375 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 1, DOpcodes, QOpcodes);
4376 return;
4379 case ARMISD::VLD2DUP_UPD: {
4380 static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8wb_fixed,
4381 ARM::VLD2DUPd16wb_fixed,
4382 ARM::VLD2DUPd32wb_fixed,
4383 ARM::VLD1q64wb_fixed };
4384 static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
4385 ARM::VLD2DUPq16EvenPseudo,
4386 ARM::VLD2DUPq32EvenPseudo };
4387 static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudoWB_fixed,
4388 ARM::VLD2DUPq16OddPseudoWB_fixed,
4389 ARM::VLD2DUPq32OddPseudoWB_fixed };
4390 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 2, DOpcodes, QOpcodes0, QOpcodes1);
4391 return;
4394 case ARMISD::VLD3DUP_UPD: {
4395 static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo_UPD,
4396 ARM::VLD3DUPd16Pseudo_UPD,
4397 ARM::VLD3DUPd32Pseudo_UPD,
4398 ARM::VLD1d64TPseudoWB_fixed };
4399 static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
4400 ARM::VLD3DUPq16EvenPseudo,
4401 ARM::VLD3DUPq32EvenPseudo };
4402 static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo_UPD,
4403 ARM::VLD3DUPq16OddPseudo_UPD,
4404 ARM::VLD3DUPq32OddPseudo_UPD };
4405 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4406 return;
4409 case ARMISD::VLD4DUP_UPD: {
4410 static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo_UPD,
4411 ARM::VLD4DUPd16Pseudo_UPD,
4412 ARM::VLD4DUPd32Pseudo_UPD,
4413 ARM::VLD1d64QPseudoWB_fixed };
4414 static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
4415 ARM::VLD4DUPq16EvenPseudo,
4416 ARM::VLD4DUPq32EvenPseudo };
4417 static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo_UPD,
4418 ARM::VLD4DUPq16OddPseudo_UPD,
4419 ARM::VLD4DUPq32OddPseudo_UPD };
4420 SelectVLDDup(N, /* IsIntrinsic= */ false, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4421 return;
4424 case ARMISD::VLD1_UPD: {
4425 static const uint16_t DOpcodes[] = { ARM::VLD1d8wb_fixed,
4426 ARM::VLD1d16wb_fixed,
4427 ARM::VLD1d32wb_fixed,
4428 ARM::VLD1d64wb_fixed };
4429 static const uint16_t QOpcodes[] = { ARM::VLD1q8wb_fixed,
4430 ARM::VLD1q16wb_fixed,
4431 ARM::VLD1q32wb_fixed,
4432 ARM::VLD1q64wb_fixed };
4433 SelectVLD(N, true, 1, DOpcodes, QOpcodes, nullptr);
4434 return;
4437 case ARMISD::VLD2_UPD: {
4438 if (Subtarget->hasNEON()) {
4439 static const uint16_t DOpcodes[] = {
4440 ARM::VLD2d8wb_fixed, ARM::VLD2d16wb_fixed, ARM::VLD2d32wb_fixed,
4441 ARM::VLD1q64wb_fixed};
4442 static const uint16_t QOpcodes[] = {ARM::VLD2q8PseudoWB_fixed,
4443 ARM::VLD2q16PseudoWB_fixed,
4444 ARM::VLD2q32PseudoWB_fixed};
4445 SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
4446 } else {
4447 static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8,
4448 ARM::MVE_VLD21_8_wb};
4449 static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
4450 ARM::MVE_VLD21_16_wb};
4451 static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
4452 ARM::MVE_VLD21_32_wb};
4453 static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
4454 SelectMVE_VLD(N, 2, Opcodes, true);
4456 return;
4459 case ARMISD::VLD3_UPD: {
4460 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo_UPD,
4461 ARM::VLD3d16Pseudo_UPD,
4462 ARM::VLD3d32Pseudo_UPD,
4463 ARM::VLD1d64TPseudoWB_fixed};
4464 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
4465 ARM::VLD3q16Pseudo_UPD,
4466 ARM::VLD3q32Pseudo_UPD };
4467 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo_UPD,
4468 ARM::VLD3q16oddPseudo_UPD,
4469 ARM::VLD3q32oddPseudo_UPD };
4470 SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4471 return;
4474 case ARMISD::VLD4_UPD: {
4475 if (Subtarget->hasNEON()) {
4476 static const uint16_t DOpcodes[] = {
4477 ARM::VLD4d8Pseudo_UPD, ARM::VLD4d16Pseudo_UPD, ARM::VLD4d32Pseudo_UPD,
4478 ARM::VLD1d64QPseudoWB_fixed};
4479 static const uint16_t QOpcodes0[] = {ARM::VLD4q8Pseudo_UPD,
4480 ARM::VLD4q16Pseudo_UPD,
4481 ARM::VLD4q32Pseudo_UPD};
4482 static const uint16_t QOpcodes1[] = {ARM::VLD4q8oddPseudo_UPD,
4483 ARM::VLD4q16oddPseudo_UPD,
4484 ARM::VLD4q32oddPseudo_UPD};
4485 SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4486 } else {
4487 static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
4488 ARM::MVE_VLD42_8,
4489 ARM::MVE_VLD43_8_wb};
4490 static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
4491 ARM::MVE_VLD42_16,
4492 ARM::MVE_VLD43_16_wb};
4493 static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
4494 ARM::MVE_VLD42_32,
4495 ARM::MVE_VLD43_32_wb};
4496 static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
4497 SelectMVE_VLD(N, 4, Opcodes, true);
4499 return;
4502 case ARMISD::VLD1x2_UPD: {
4503 if (Subtarget->hasNEON()) {
4504 static const uint16_t DOpcodes[] = {
4505 ARM::VLD1q8wb_fixed, ARM::VLD1q16wb_fixed, ARM::VLD1q32wb_fixed,
4506 ARM::VLD1q64wb_fixed};
4507 static const uint16_t QOpcodes[] = {
4508 ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
4509 ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
4510 SelectVLD(N, true, 2, DOpcodes, QOpcodes, nullptr);
4511 return;
4513 break;
4516 case ARMISD::VLD1x3_UPD: {
4517 if (Subtarget->hasNEON()) {
4518 static const uint16_t DOpcodes[] = {
4519 ARM::VLD1d8TPseudoWB_fixed, ARM::VLD1d16TPseudoWB_fixed,
4520 ARM::VLD1d32TPseudoWB_fixed, ARM::VLD1d64TPseudoWB_fixed};
4521 static const uint16_t QOpcodes0[] = {
4522 ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1q16LowTPseudo_UPD,
4523 ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1q64LowTPseudo_UPD};
4524 static const uint16_t QOpcodes1[] = {
4525 ARM::VLD1q8HighTPseudo_UPD, ARM::VLD1q16HighTPseudo_UPD,
4526 ARM::VLD1q32HighTPseudo_UPD, ARM::VLD1q64HighTPseudo_UPD};
4527 SelectVLD(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4528 return;
4530 break;
4533 case ARMISD::VLD1x4_UPD: {
4534 if (Subtarget->hasNEON()) {
4535 static const uint16_t DOpcodes[] = {
4536 ARM::VLD1d8QPseudoWB_fixed, ARM::VLD1d16QPseudoWB_fixed,
4537 ARM::VLD1d32QPseudoWB_fixed, ARM::VLD1d64QPseudoWB_fixed};
4538 static const uint16_t QOpcodes0[] = {
4539 ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1q16LowQPseudo_UPD,
4540 ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1q64LowQPseudo_UPD};
4541 static const uint16_t QOpcodes1[] = {
4542 ARM::VLD1q8HighQPseudo_UPD, ARM::VLD1q16HighQPseudo_UPD,
4543 ARM::VLD1q32HighQPseudo_UPD, ARM::VLD1q64HighQPseudo_UPD};
4544 SelectVLD(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4545 return;
4547 break;
4550 case ARMISD::VLD2LN_UPD: {
4551 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo_UPD,
4552 ARM::VLD2LNd16Pseudo_UPD,
4553 ARM::VLD2LNd32Pseudo_UPD };
4554 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo_UPD,
4555 ARM::VLD2LNq32Pseudo_UPD };
4556 SelectVLDSTLane(N, true, true, 2, DOpcodes, QOpcodes);
4557 return;
4560 case ARMISD::VLD3LN_UPD: {
4561 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo_UPD,
4562 ARM::VLD3LNd16Pseudo_UPD,
4563 ARM::VLD3LNd32Pseudo_UPD };
4564 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo_UPD,
4565 ARM::VLD3LNq32Pseudo_UPD };
4566 SelectVLDSTLane(N, true, true, 3, DOpcodes, QOpcodes);
4567 return;
4570 case ARMISD::VLD4LN_UPD: {
4571 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo_UPD,
4572 ARM::VLD4LNd16Pseudo_UPD,
4573 ARM::VLD4LNd32Pseudo_UPD };
4574 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo_UPD,
4575 ARM::VLD4LNq32Pseudo_UPD };
4576 SelectVLDSTLane(N, true, true, 4, DOpcodes, QOpcodes);
4577 return;
4580 case ARMISD::VST1_UPD: {
4581 static const uint16_t DOpcodes[] = { ARM::VST1d8wb_fixed,
4582 ARM::VST1d16wb_fixed,
4583 ARM::VST1d32wb_fixed,
4584 ARM::VST1d64wb_fixed };
4585 static const uint16_t QOpcodes[] = { ARM::VST1q8wb_fixed,
4586 ARM::VST1q16wb_fixed,
4587 ARM::VST1q32wb_fixed,
4588 ARM::VST1q64wb_fixed };
4589 SelectVST(N, true, 1, DOpcodes, QOpcodes, nullptr);
4590 return;
4593 case ARMISD::VST2_UPD: {
4594 if (Subtarget->hasNEON()) {
4595 static const uint16_t DOpcodes[] = {
4596 ARM::VST2d8wb_fixed, ARM::VST2d16wb_fixed, ARM::VST2d32wb_fixed,
4597 ARM::VST1q64wb_fixed};
4598 static const uint16_t QOpcodes[] = {ARM::VST2q8PseudoWB_fixed,
4599 ARM::VST2q16PseudoWB_fixed,
4600 ARM::VST2q32PseudoWB_fixed};
4601 SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
4602 return;
4604 break;
4607 case ARMISD::VST3_UPD: {
4608 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo_UPD,
4609 ARM::VST3d16Pseudo_UPD,
4610 ARM::VST3d32Pseudo_UPD,
4611 ARM::VST1d64TPseudoWB_fixed};
4612 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
4613 ARM::VST3q16Pseudo_UPD,
4614 ARM::VST3q32Pseudo_UPD };
4615 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo_UPD,
4616 ARM::VST3q16oddPseudo_UPD,
4617 ARM::VST3q32oddPseudo_UPD };
4618 SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4619 return;
4622 case ARMISD::VST4_UPD: {
4623 if (Subtarget->hasNEON()) {
4624 static const uint16_t DOpcodes[] = {
4625 ARM::VST4d8Pseudo_UPD, ARM::VST4d16Pseudo_UPD, ARM::VST4d32Pseudo_UPD,
4626 ARM::VST1d64QPseudoWB_fixed};
4627 static const uint16_t QOpcodes0[] = {ARM::VST4q8Pseudo_UPD,
4628 ARM::VST4q16Pseudo_UPD,
4629 ARM::VST4q32Pseudo_UPD};
4630 static const uint16_t QOpcodes1[] = {ARM::VST4q8oddPseudo_UPD,
4631 ARM::VST4q16oddPseudo_UPD,
4632 ARM::VST4q32oddPseudo_UPD};
4633 SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4634 return;
4636 break;
4639 case ARMISD::VST1x2_UPD: {
4640 if (Subtarget->hasNEON()) {
4641 static const uint16_t DOpcodes[] = { ARM::VST1q8wb_fixed,
4642 ARM::VST1q16wb_fixed,
4643 ARM::VST1q32wb_fixed,
4644 ARM::VST1q64wb_fixed};
4645 static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
4646 ARM::VST1d16QPseudoWB_fixed,
4647 ARM::VST1d32QPseudoWB_fixed,
4648 ARM::VST1d64QPseudoWB_fixed };
4649 SelectVST(N, true, 2, DOpcodes, QOpcodes, nullptr);
4650 return;
4652 break;
4655 case ARMISD::VST1x3_UPD: {
4656 if (Subtarget->hasNEON()) {
4657 static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudoWB_fixed,
4658 ARM::VST1d16TPseudoWB_fixed,
4659 ARM::VST1d32TPseudoWB_fixed,
4660 ARM::VST1d64TPseudoWB_fixed };
4661 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
4662 ARM::VST1q16LowTPseudo_UPD,
4663 ARM::VST1q32LowTPseudo_UPD,
4664 ARM::VST1q64LowTPseudo_UPD };
4665 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo_UPD,
4666 ARM::VST1q16HighTPseudo_UPD,
4667 ARM::VST1q32HighTPseudo_UPD,
4668 ARM::VST1q64HighTPseudo_UPD };
4669 SelectVST(N, true, 3, DOpcodes, QOpcodes0, QOpcodes1);
4670 return;
4672 break;
4675 case ARMISD::VST1x4_UPD: {
4676 if (Subtarget->hasNEON()) {
4677 static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudoWB_fixed,
4678 ARM::VST1d16QPseudoWB_fixed,
4679 ARM::VST1d32QPseudoWB_fixed,
4680 ARM::VST1d64QPseudoWB_fixed };
4681 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
4682 ARM::VST1q16LowQPseudo_UPD,
4683 ARM::VST1q32LowQPseudo_UPD,
4684 ARM::VST1q64LowQPseudo_UPD };
4685 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo_UPD,
4686 ARM::VST1q16HighQPseudo_UPD,
4687 ARM::VST1q32HighQPseudo_UPD,
4688 ARM::VST1q64HighQPseudo_UPD };
4689 SelectVST(N, true, 4, DOpcodes, QOpcodes0, QOpcodes1);
4690 return;
4692 break;
4694 case ARMISD::VST2LN_UPD: {
4695 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo_UPD,
4696 ARM::VST2LNd16Pseudo_UPD,
4697 ARM::VST2LNd32Pseudo_UPD };
4698 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo_UPD,
4699 ARM::VST2LNq32Pseudo_UPD };
4700 SelectVLDSTLane(N, false, true, 2, DOpcodes, QOpcodes);
4701 return;
4704 case ARMISD::VST3LN_UPD: {
4705 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo_UPD,
4706 ARM::VST3LNd16Pseudo_UPD,
4707 ARM::VST3LNd32Pseudo_UPD };
4708 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo_UPD,
4709 ARM::VST3LNq32Pseudo_UPD };
4710 SelectVLDSTLane(N, false, true, 3, DOpcodes, QOpcodes);
4711 return;
4714 case ARMISD::VST4LN_UPD: {
4715 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo_UPD,
4716 ARM::VST4LNd16Pseudo_UPD,
4717 ARM::VST4LNd32Pseudo_UPD };
4718 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo_UPD,
4719 ARM::VST4LNq32Pseudo_UPD };
4720 SelectVLDSTLane(N, false, true, 4, DOpcodes, QOpcodes);
4721 return;
4724 case ISD::INTRINSIC_VOID:
4725 case ISD::INTRINSIC_W_CHAIN: {
4726 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
4727 switch (IntNo) {
4728 default:
4729 break;
4731 case Intrinsic::arm_mrrc:
4732 case Intrinsic::arm_mrrc2: {
4733 SDLoc dl(N);
4734 SDValue Chain = N->getOperand(0);
4735 unsigned Opc;
4737 if (Subtarget->isThumb())
4738 Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::t2MRRC : ARM::t2MRRC2);
4739 else
4740 Opc = (IntNo == Intrinsic::arm_mrrc ? ARM::MRRC : ARM::MRRC2);
4742 SmallVector<SDValue, 5> Ops;
4743 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(), dl)); /* coproc */
4744 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(3))->getZExtValue(), dl)); /* opc */
4745 Ops.push_back(getI32Imm(cast<ConstantSDNode>(N->getOperand(4))->getZExtValue(), dl)); /* CRm */
4747 // The mrrc2 instruction in ARM doesn't allow predicates, the top 4 bits of the encoded
4748 // instruction will always be '1111' but it is possible in assembly language to specify
4749 // AL as a predicate to mrrc2 but it doesn't make any difference to the encoded instruction.
4750 if (Opc != ARM::MRRC2) {
4751 Ops.push_back(getAL(CurDAG, dl));
4752 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4755 Ops.push_back(Chain);
4757 // Writes to two registers.
4758 const EVT RetType[] = {MVT::i32, MVT::i32, MVT::Other};
4760 ReplaceNode(N, CurDAG->getMachineNode(Opc, dl, RetType, Ops));
4761 return;
4763 case Intrinsic::arm_ldaexd:
4764 case Intrinsic::arm_ldrexd: {
4765 SDLoc dl(N);
4766 SDValue Chain = N->getOperand(0);
4767 SDValue MemAddr = N->getOperand(2);
4768 bool isThumb = Subtarget->isThumb() && Subtarget->hasV8MBaselineOps();
4770 bool IsAcquire = IntNo == Intrinsic::arm_ldaexd;
4771 unsigned NewOpc = isThumb ? (IsAcquire ? ARM::t2LDAEXD : ARM::t2LDREXD)
4772 : (IsAcquire ? ARM::LDAEXD : ARM::LDREXD);
4774 // arm_ldrexd returns a i64 value in {i32, i32}
4775 std::vector<EVT> ResTys;
4776 if (isThumb) {
4777 ResTys.push_back(MVT::i32);
4778 ResTys.push_back(MVT::i32);
4779 } else
4780 ResTys.push_back(MVT::Untyped);
4781 ResTys.push_back(MVT::Other);
4783 // Place arguments in the right order.
4784 SDValue Ops[] = {MemAddr, getAL(CurDAG, dl),
4785 CurDAG->getRegister(0, MVT::i32), Chain};
4786 SDNode *Ld = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
4787 // Transfer memoperands.
4788 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
4789 CurDAG->setNodeMemRefs(cast<MachineSDNode>(Ld), {MemOp});
4791 // Remap uses.
4792 SDValue OutChain = isThumb ? SDValue(Ld, 2) : SDValue(Ld, 1);
4793 if (!SDValue(N, 0).use_empty()) {
4794 SDValue Result;
4795 if (isThumb)
4796 Result = SDValue(Ld, 0);
4797 else {
4798 SDValue SubRegIdx =
4799 CurDAG->getTargetConstant(ARM::gsub_0, dl, MVT::i32);
4800 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
4801 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
4802 Result = SDValue(ResNode,0);
4804 ReplaceUses(SDValue(N, 0), Result);
4806 if (!SDValue(N, 1).use_empty()) {
4807 SDValue Result;
4808 if (isThumb)
4809 Result = SDValue(Ld, 1);
4810 else {
4811 SDValue SubRegIdx =
4812 CurDAG->getTargetConstant(ARM::gsub_1, dl, MVT::i32);
4813 SDNode *ResNode = CurDAG->getMachineNode(TargetOpcode::EXTRACT_SUBREG,
4814 dl, MVT::i32, SDValue(Ld, 0), SubRegIdx);
4815 Result = SDValue(ResNode,0);
4817 ReplaceUses(SDValue(N, 1), Result);
4819 ReplaceUses(SDValue(N, 2), OutChain);
4820 CurDAG->RemoveDeadNode(N);
4821 return;
4823 case Intrinsic::arm_stlexd:
4824 case Intrinsic::arm_strexd: {
4825 SDLoc dl(N);
4826 SDValue Chain = N->getOperand(0);
4827 SDValue Val0 = N->getOperand(2);
4828 SDValue Val1 = N->getOperand(3);
4829 SDValue MemAddr = N->getOperand(4);
4831 // Store exclusive double return a i32 value which is the return status
4832 // of the issued store.
4833 const EVT ResTys[] = {MVT::i32, MVT::Other};
4835 bool isThumb = Subtarget->isThumb() && Subtarget->hasThumb2();
4836 // Place arguments in the right order.
4837 SmallVector<SDValue, 7> Ops;
4838 if (isThumb) {
4839 Ops.push_back(Val0);
4840 Ops.push_back(Val1);
4841 } else
4842 // arm_strexd uses GPRPair.
4843 Ops.push_back(SDValue(createGPRPairNode(MVT::Untyped, Val0, Val1), 0));
4844 Ops.push_back(MemAddr);
4845 Ops.push_back(getAL(CurDAG, dl));
4846 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
4847 Ops.push_back(Chain);
4849 bool IsRelease = IntNo == Intrinsic::arm_stlexd;
4850 unsigned NewOpc = isThumb ? (IsRelease ? ARM::t2STLEXD : ARM::t2STREXD)
4851 : (IsRelease ? ARM::STLEXD : ARM::STREXD);
4853 SDNode *St = CurDAG->getMachineNode(NewOpc, dl, ResTys, Ops);
4854 // Transfer memoperands.
4855 MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(N)->getMemOperand();
4856 CurDAG->setNodeMemRefs(cast<MachineSDNode>(St), {MemOp});
4858 ReplaceNode(N, St);
4859 return;
4862 case Intrinsic::arm_neon_vld1: {
4863 static const uint16_t DOpcodes[] = { ARM::VLD1d8, ARM::VLD1d16,
4864 ARM::VLD1d32, ARM::VLD1d64 };
4865 static const uint16_t QOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
4866 ARM::VLD1q32, ARM::VLD1q64};
4867 SelectVLD(N, false, 1, DOpcodes, QOpcodes, nullptr);
4868 return;
4871 case Intrinsic::arm_neon_vld1x2: {
4872 static const uint16_t DOpcodes[] = { ARM::VLD1q8, ARM::VLD1q16,
4873 ARM::VLD1q32, ARM::VLD1q64 };
4874 static const uint16_t QOpcodes[] = { ARM::VLD1d8QPseudo,
4875 ARM::VLD1d16QPseudo,
4876 ARM::VLD1d32QPseudo,
4877 ARM::VLD1d64QPseudo };
4878 SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
4879 return;
4882 case Intrinsic::arm_neon_vld1x3: {
4883 static const uint16_t DOpcodes[] = { ARM::VLD1d8TPseudo,
4884 ARM::VLD1d16TPseudo,
4885 ARM::VLD1d32TPseudo,
4886 ARM::VLD1d64TPseudo };
4887 static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowTPseudo_UPD,
4888 ARM::VLD1q16LowTPseudo_UPD,
4889 ARM::VLD1q32LowTPseudo_UPD,
4890 ARM::VLD1q64LowTPseudo_UPD };
4891 static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighTPseudo,
4892 ARM::VLD1q16HighTPseudo,
4893 ARM::VLD1q32HighTPseudo,
4894 ARM::VLD1q64HighTPseudo };
4895 SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
4896 return;
4899 case Intrinsic::arm_neon_vld1x4: {
4900 static const uint16_t DOpcodes[] = { ARM::VLD1d8QPseudo,
4901 ARM::VLD1d16QPseudo,
4902 ARM::VLD1d32QPseudo,
4903 ARM::VLD1d64QPseudo };
4904 static const uint16_t QOpcodes0[] = { ARM::VLD1q8LowQPseudo_UPD,
4905 ARM::VLD1q16LowQPseudo_UPD,
4906 ARM::VLD1q32LowQPseudo_UPD,
4907 ARM::VLD1q64LowQPseudo_UPD };
4908 static const uint16_t QOpcodes1[] = { ARM::VLD1q8HighQPseudo,
4909 ARM::VLD1q16HighQPseudo,
4910 ARM::VLD1q32HighQPseudo,
4911 ARM::VLD1q64HighQPseudo };
4912 SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
4913 return;
4916 case Intrinsic::arm_neon_vld2: {
4917 static const uint16_t DOpcodes[] = { ARM::VLD2d8, ARM::VLD2d16,
4918 ARM::VLD2d32, ARM::VLD1q64 };
4919 static const uint16_t QOpcodes[] = { ARM::VLD2q8Pseudo, ARM::VLD2q16Pseudo,
4920 ARM::VLD2q32Pseudo };
4921 SelectVLD(N, false, 2, DOpcodes, QOpcodes, nullptr);
4922 return;
4925 case Intrinsic::arm_neon_vld3: {
4926 static const uint16_t DOpcodes[] = { ARM::VLD3d8Pseudo,
4927 ARM::VLD3d16Pseudo,
4928 ARM::VLD3d32Pseudo,
4929 ARM::VLD1d64TPseudo };
4930 static const uint16_t QOpcodes0[] = { ARM::VLD3q8Pseudo_UPD,
4931 ARM::VLD3q16Pseudo_UPD,
4932 ARM::VLD3q32Pseudo_UPD };
4933 static const uint16_t QOpcodes1[] = { ARM::VLD3q8oddPseudo,
4934 ARM::VLD3q16oddPseudo,
4935 ARM::VLD3q32oddPseudo };
4936 SelectVLD(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
4937 return;
4940 case Intrinsic::arm_neon_vld4: {
4941 static const uint16_t DOpcodes[] = { ARM::VLD4d8Pseudo,
4942 ARM::VLD4d16Pseudo,
4943 ARM::VLD4d32Pseudo,
4944 ARM::VLD1d64QPseudo };
4945 static const uint16_t QOpcodes0[] = { ARM::VLD4q8Pseudo_UPD,
4946 ARM::VLD4q16Pseudo_UPD,
4947 ARM::VLD4q32Pseudo_UPD };
4948 static const uint16_t QOpcodes1[] = { ARM::VLD4q8oddPseudo,
4949 ARM::VLD4q16oddPseudo,
4950 ARM::VLD4q32oddPseudo };
4951 SelectVLD(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
4952 return;
4955 case Intrinsic::arm_neon_vld2dup: {
4956 static const uint16_t DOpcodes[] = { ARM::VLD2DUPd8, ARM::VLD2DUPd16,
4957 ARM::VLD2DUPd32, ARM::VLD1q64 };
4958 static const uint16_t QOpcodes0[] = { ARM::VLD2DUPq8EvenPseudo,
4959 ARM::VLD2DUPq16EvenPseudo,
4960 ARM::VLD2DUPq32EvenPseudo };
4961 static const uint16_t QOpcodes1[] = { ARM::VLD2DUPq8OddPseudo,
4962 ARM::VLD2DUPq16OddPseudo,
4963 ARM::VLD2DUPq32OddPseudo };
4964 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 2,
4965 DOpcodes, QOpcodes0, QOpcodes1);
4966 return;
4969 case Intrinsic::arm_neon_vld3dup: {
4970 static const uint16_t DOpcodes[] = { ARM::VLD3DUPd8Pseudo,
4971 ARM::VLD3DUPd16Pseudo,
4972 ARM::VLD3DUPd32Pseudo,
4973 ARM::VLD1d64TPseudo };
4974 static const uint16_t QOpcodes0[] = { ARM::VLD3DUPq8EvenPseudo,
4975 ARM::VLD3DUPq16EvenPseudo,
4976 ARM::VLD3DUPq32EvenPseudo };
4977 static const uint16_t QOpcodes1[] = { ARM::VLD3DUPq8OddPseudo,
4978 ARM::VLD3DUPq16OddPseudo,
4979 ARM::VLD3DUPq32OddPseudo };
4980 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 3,
4981 DOpcodes, QOpcodes0, QOpcodes1);
4982 return;
4985 case Intrinsic::arm_neon_vld4dup: {
4986 static const uint16_t DOpcodes[] = { ARM::VLD4DUPd8Pseudo,
4987 ARM::VLD4DUPd16Pseudo,
4988 ARM::VLD4DUPd32Pseudo,
4989 ARM::VLD1d64QPseudo };
4990 static const uint16_t QOpcodes0[] = { ARM::VLD4DUPq8EvenPseudo,
4991 ARM::VLD4DUPq16EvenPseudo,
4992 ARM::VLD4DUPq32EvenPseudo };
4993 static const uint16_t QOpcodes1[] = { ARM::VLD4DUPq8OddPseudo,
4994 ARM::VLD4DUPq16OddPseudo,
4995 ARM::VLD4DUPq32OddPseudo };
4996 SelectVLDDup(N, /* IsIntrinsic= */ true, false, 4,
4997 DOpcodes, QOpcodes0, QOpcodes1);
4998 return;
5001 case Intrinsic::arm_neon_vld2lane: {
5002 static const uint16_t DOpcodes[] = { ARM::VLD2LNd8Pseudo,
5003 ARM::VLD2LNd16Pseudo,
5004 ARM::VLD2LNd32Pseudo };
5005 static const uint16_t QOpcodes[] = { ARM::VLD2LNq16Pseudo,
5006 ARM::VLD2LNq32Pseudo };
5007 SelectVLDSTLane(N, true, false, 2, DOpcodes, QOpcodes);
5008 return;
5011 case Intrinsic::arm_neon_vld3lane: {
5012 static const uint16_t DOpcodes[] = { ARM::VLD3LNd8Pseudo,
5013 ARM::VLD3LNd16Pseudo,
5014 ARM::VLD3LNd32Pseudo };
5015 static const uint16_t QOpcodes[] = { ARM::VLD3LNq16Pseudo,
5016 ARM::VLD3LNq32Pseudo };
5017 SelectVLDSTLane(N, true, false, 3, DOpcodes, QOpcodes);
5018 return;
5021 case Intrinsic::arm_neon_vld4lane: {
5022 static const uint16_t DOpcodes[] = { ARM::VLD4LNd8Pseudo,
5023 ARM::VLD4LNd16Pseudo,
5024 ARM::VLD4LNd32Pseudo };
5025 static const uint16_t QOpcodes[] = { ARM::VLD4LNq16Pseudo,
5026 ARM::VLD4LNq32Pseudo };
5027 SelectVLDSTLane(N, true, false, 4, DOpcodes, QOpcodes);
5028 return;
5031 case Intrinsic::arm_neon_vst1: {
5032 static const uint16_t DOpcodes[] = { ARM::VST1d8, ARM::VST1d16,
5033 ARM::VST1d32, ARM::VST1d64 };
5034 static const uint16_t QOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
5035 ARM::VST1q32, ARM::VST1q64 };
5036 SelectVST(N, false, 1, DOpcodes, QOpcodes, nullptr);
5037 return;
5040 case Intrinsic::arm_neon_vst1x2: {
5041 static const uint16_t DOpcodes[] = { ARM::VST1q8, ARM::VST1q16,
5042 ARM::VST1q32, ARM::VST1q64 };
5043 static const uint16_t QOpcodes[] = { ARM::VST1d8QPseudo,
5044 ARM::VST1d16QPseudo,
5045 ARM::VST1d32QPseudo,
5046 ARM::VST1d64QPseudo };
5047 SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
5048 return;
5051 case Intrinsic::arm_neon_vst1x3: {
5052 static const uint16_t DOpcodes[] = { ARM::VST1d8TPseudo,
5053 ARM::VST1d16TPseudo,
5054 ARM::VST1d32TPseudo,
5055 ARM::VST1d64TPseudo };
5056 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowTPseudo_UPD,
5057 ARM::VST1q16LowTPseudo_UPD,
5058 ARM::VST1q32LowTPseudo_UPD,
5059 ARM::VST1q64LowTPseudo_UPD };
5060 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighTPseudo,
5061 ARM::VST1q16HighTPseudo,
5062 ARM::VST1q32HighTPseudo,
5063 ARM::VST1q64HighTPseudo };
5064 SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
5065 return;
5068 case Intrinsic::arm_neon_vst1x4: {
5069 static const uint16_t DOpcodes[] = { ARM::VST1d8QPseudo,
5070 ARM::VST1d16QPseudo,
5071 ARM::VST1d32QPseudo,
5072 ARM::VST1d64QPseudo };
5073 static const uint16_t QOpcodes0[] = { ARM::VST1q8LowQPseudo_UPD,
5074 ARM::VST1q16LowQPseudo_UPD,
5075 ARM::VST1q32LowQPseudo_UPD,
5076 ARM::VST1q64LowQPseudo_UPD };
5077 static const uint16_t QOpcodes1[] = { ARM::VST1q8HighQPseudo,
5078 ARM::VST1q16HighQPseudo,
5079 ARM::VST1q32HighQPseudo,
5080 ARM::VST1q64HighQPseudo };
5081 SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
5082 return;
5085 case Intrinsic::arm_neon_vst2: {
5086 static const uint16_t DOpcodes[] = { ARM::VST2d8, ARM::VST2d16,
5087 ARM::VST2d32, ARM::VST1q64 };
5088 static const uint16_t QOpcodes[] = { ARM::VST2q8Pseudo, ARM::VST2q16Pseudo,
5089 ARM::VST2q32Pseudo };
5090 SelectVST(N, false, 2, DOpcodes, QOpcodes, nullptr);
5091 return;
5094 case Intrinsic::arm_neon_vst3: {
5095 static const uint16_t DOpcodes[] = { ARM::VST3d8Pseudo,
5096 ARM::VST3d16Pseudo,
5097 ARM::VST3d32Pseudo,
5098 ARM::VST1d64TPseudo };
5099 static const uint16_t QOpcodes0[] = { ARM::VST3q8Pseudo_UPD,
5100 ARM::VST3q16Pseudo_UPD,
5101 ARM::VST3q32Pseudo_UPD };
5102 static const uint16_t QOpcodes1[] = { ARM::VST3q8oddPseudo,
5103 ARM::VST3q16oddPseudo,
5104 ARM::VST3q32oddPseudo };
5105 SelectVST(N, false, 3, DOpcodes, QOpcodes0, QOpcodes1);
5106 return;
5109 case Intrinsic::arm_neon_vst4: {
5110 static const uint16_t DOpcodes[] = { ARM::VST4d8Pseudo,
5111 ARM::VST4d16Pseudo,
5112 ARM::VST4d32Pseudo,
5113 ARM::VST1d64QPseudo };
5114 static const uint16_t QOpcodes0[] = { ARM::VST4q8Pseudo_UPD,
5115 ARM::VST4q16Pseudo_UPD,
5116 ARM::VST4q32Pseudo_UPD };
5117 static const uint16_t QOpcodes1[] = { ARM::VST4q8oddPseudo,
5118 ARM::VST4q16oddPseudo,
5119 ARM::VST4q32oddPseudo };
5120 SelectVST(N, false, 4, DOpcodes, QOpcodes0, QOpcodes1);
5121 return;
5124 case Intrinsic::arm_neon_vst2lane: {
5125 static const uint16_t DOpcodes[] = { ARM::VST2LNd8Pseudo,
5126 ARM::VST2LNd16Pseudo,
5127 ARM::VST2LNd32Pseudo };
5128 static const uint16_t QOpcodes[] = { ARM::VST2LNq16Pseudo,
5129 ARM::VST2LNq32Pseudo };
5130 SelectVLDSTLane(N, false, false, 2, DOpcodes, QOpcodes);
5131 return;
5134 case Intrinsic::arm_neon_vst3lane: {
5135 static const uint16_t DOpcodes[] = { ARM::VST3LNd8Pseudo,
5136 ARM::VST3LNd16Pseudo,
5137 ARM::VST3LNd32Pseudo };
5138 static const uint16_t QOpcodes[] = { ARM::VST3LNq16Pseudo,
5139 ARM::VST3LNq32Pseudo };
5140 SelectVLDSTLane(N, false, false, 3, DOpcodes, QOpcodes);
5141 return;
5144 case Intrinsic::arm_neon_vst4lane: {
5145 static const uint16_t DOpcodes[] = { ARM::VST4LNd8Pseudo,
5146 ARM::VST4LNd16Pseudo,
5147 ARM::VST4LNd32Pseudo };
5148 static const uint16_t QOpcodes[] = { ARM::VST4LNq16Pseudo,
5149 ARM::VST4LNq32Pseudo };
5150 SelectVLDSTLane(N, false, false, 4, DOpcodes, QOpcodes);
5151 return;
5154 case Intrinsic::arm_mve_vldr_gather_base_wb:
5155 case Intrinsic::arm_mve_vldr_gather_base_wb_predicated: {
5156 static const uint16_t Opcodes[] = {ARM::MVE_VLDRWU32_qi_pre,
5157 ARM::MVE_VLDRDU64_qi_pre};
5158 SelectMVE_WB(N, Opcodes,
5159 IntNo == Intrinsic::arm_mve_vldr_gather_base_wb_predicated);
5160 return;
5163 case Intrinsic::arm_mve_vld2q: {
5164 static const uint16_t Opcodes8[] = {ARM::MVE_VLD20_8, ARM::MVE_VLD21_8};
5165 static const uint16_t Opcodes16[] = {ARM::MVE_VLD20_16,
5166 ARM::MVE_VLD21_16};
5167 static const uint16_t Opcodes32[] = {ARM::MVE_VLD20_32,
5168 ARM::MVE_VLD21_32};
5169 static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
5170 SelectMVE_VLD(N, 2, Opcodes, false);
5171 return;
5174 case Intrinsic::arm_mve_vld4q: {
5175 static const uint16_t Opcodes8[] = {ARM::MVE_VLD40_8, ARM::MVE_VLD41_8,
5176 ARM::MVE_VLD42_8, ARM::MVE_VLD43_8};
5177 static const uint16_t Opcodes16[] = {ARM::MVE_VLD40_16, ARM::MVE_VLD41_16,
5178 ARM::MVE_VLD42_16,
5179 ARM::MVE_VLD43_16};
5180 static const uint16_t Opcodes32[] = {ARM::MVE_VLD40_32, ARM::MVE_VLD41_32,
5181 ARM::MVE_VLD42_32,
5182 ARM::MVE_VLD43_32};
5183 static const uint16_t *const Opcodes[] = {Opcodes8, Opcodes16, Opcodes32};
5184 SelectMVE_VLD(N, 4, Opcodes, false);
5185 return;
5188 break;
5191 case ISD::INTRINSIC_WO_CHAIN: {
5192 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
5193 switch (IntNo) {
5194 default:
5195 break;
5197 // Scalar f32 -> bf16
5198 case Intrinsic::arm_neon_vcvtbfp2bf: {
5199 SDLoc dl(N);
5200 const SDValue &Src = N->getOperand(1);
5201 llvm::EVT DestTy = N->getValueType(0);
5202 SDValue Pred = getAL(CurDAG, dl);
5203 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
5204 SDValue Ops[] = { Src, Src, Pred, Reg0 };
5205 CurDAG->SelectNodeTo(N, ARM::BF16_VCVTB, DestTy, Ops);
5206 return;
5209 // Vector v4f32 -> v4bf16
5210 case Intrinsic::arm_neon_vcvtfp2bf: {
5211 SDLoc dl(N);
5212 const SDValue &Src = N->getOperand(1);
5213 SDValue Pred = getAL(CurDAG, dl);
5214 SDValue Reg0 = CurDAG->getRegister(0, MVT::i32);
5215 SDValue Ops[] = { Src, Pred, Reg0 };
5216 CurDAG->SelectNodeTo(N, ARM::BF16_VCVT, MVT::v4bf16, Ops);
5217 return;
5220 case Intrinsic::arm_mve_urshrl:
5221 SelectMVE_LongShift(N, ARM::MVE_URSHRL, true, false);
5222 return;
5223 case Intrinsic::arm_mve_uqshll:
5224 SelectMVE_LongShift(N, ARM::MVE_UQSHLL, true, false);
5225 return;
5226 case Intrinsic::arm_mve_srshrl:
5227 SelectMVE_LongShift(N, ARM::MVE_SRSHRL, true, false);
5228 return;
5229 case Intrinsic::arm_mve_sqshll:
5230 SelectMVE_LongShift(N, ARM::MVE_SQSHLL, true, false);
5231 return;
5232 case Intrinsic::arm_mve_uqrshll:
5233 SelectMVE_LongShift(N, ARM::MVE_UQRSHLL, false, true);
5234 return;
5235 case Intrinsic::arm_mve_sqrshrl:
5236 SelectMVE_LongShift(N, ARM::MVE_SQRSHRL, false, true);
5237 return;
5239 case Intrinsic::arm_mve_vadc:
5240 case Intrinsic::arm_mve_vadc_predicated:
5241 SelectMVE_VADCSBC(N, ARM::MVE_VADC, ARM::MVE_VADCI, true,
5242 IntNo == Intrinsic::arm_mve_vadc_predicated);
5243 return;
5244 case Intrinsic::arm_mve_vsbc:
5245 case Intrinsic::arm_mve_vsbc_predicated:
5246 SelectMVE_VADCSBC(N, ARM::MVE_VSBC, ARM::MVE_VSBCI, true,
5247 IntNo == Intrinsic::arm_mve_vsbc_predicated);
5248 return;
5249 case Intrinsic::arm_mve_vshlc:
5250 case Intrinsic::arm_mve_vshlc_predicated:
5251 SelectMVE_VSHLC(N, IntNo == Intrinsic::arm_mve_vshlc_predicated);
5252 return;
5254 case Intrinsic::arm_mve_vmlldava:
5255 case Intrinsic::arm_mve_vmlldava_predicated: {
5256 static const uint16_t OpcodesU[] = {
5257 ARM::MVE_VMLALDAVu16, ARM::MVE_VMLALDAVu32,
5258 ARM::MVE_VMLALDAVau16, ARM::MVE_VMLALDAVau32,
5260 static const uint16_t OpcodesS[] = {
5261 ARM::MVE_VMLALDAVs16, ARM::MVE_VMLALDAVs32,
5262 ARM::MVE_VMLALDAVas16, ARM::MVE_VMLALDAVas32,
5263 ARM::MVE_VMLALDAVxs16, ARM::MVE_VMLALDAVxs32,
5264 ARM::MVE_VMLALDAVaxs16, ARM::MVE_VMLALDAVaxs32,
5265 ARM::MVE_VMLSLDAVs16, ARM::MVE_VMLSLDAVs32,
5266 ARM::MVE_VMLSLDAVas16, ARM::MVE_VMLSLDAVas32,
5267 ARM::MVE_VMLSLDAVxs16, ARM::MVE_VMLSLDAVxs32,
5268 ARM::MVE_VMLSLDAVaxs16, ARM::MVE_VMLSLDAVaxs32,
5270 SelectMVE_VMLLDAV(N, IntNo == Intrinsic::arm_mve_vmlldava_predicated,
5271 OpcodesS, OpcodesU);
5272 return;
5275 case Intrinsic::arm_mve_vrmlldavha:
5276 case Intrinsic::arm_mve_vrmlldavha_predicated: {
5277 static const uint16_t OpcodesU[] = {
5278 ARM::MVE_VRMLALDAVHu32, ARM::MVE_VRMLALDAVHau32,
5280 static const uint16_t OpcodesS[] = {
5281 ARM::MVE_VRMLALDAVHs32, ARM::MVE_VRMLALDAVHas32,
5282 ARM::MVE_VRMLALDAVHxs32, ARM::MVE_VRMLALDAVHaxs32,
5283 ARM::MVE_VRMLSLDAVHs32, ARM::MVE_VRMLSLDAVHas32,
5284 ARM::MVE_VRMLSLDAVHxs32, ARM::MVE_VRMLSLDAVHaxs32,
5286 SelectMVE_VRMLLDAVH(N, IntNo == Intrinsic::arm_mve_vrmlldavha_predicated,
5287 OpcodesS, OpcodesU);
5288 return;
5291 case Intrinsic::arm_mve_vidup:
5292 case Intrinsic::arm_mve_vidup_predicated: {
5293 static const uint16_t Opcodes[] = {
5294 ARM::MVE_VIDUPu8, ARM::MVE_VIDUPu16, ARM::MVE_VIDUPu32,
5296 SelectMVE_VxDUP(N, Opcodes, false,
5297 IntNo == Intrinsic::arm_mve_vidup_predicated);
5298 return;
5301 case Intrinsic::arm_mve_vddup:
5302 case Intrinsic::arm_mve_vddup_predicated: {
5303 static const uint16_t Opcodes[] = {
5304 ARM::MVE_VDDUPu8, ARM::MVE_VDDUPu16, ARM::MVE_VDDUPu32,
5306 SelectMVE_VxDUP(N, Opcodes, false,
5307 IntNo == Intrinsic::arm_mve_vddup_predicated);
5308 return;
5311 case Intrinsic::arm_mve_viwdup:
5312 case Intrinsic::arm_mve_viwdup_predicated: {
5313 static const uint16_t Opcodes[] = {
5314 ARM::MVE_VIWDUPu8, ARM::MVE_VIWDUPu16, ARM::MVE_VIWDUPu32,
5316 SelectMVE_VxDUP(N, Opcodes, true,
5317 IntNo == Intrinsic::arm_mve_viwdup_predicated);
5318 return;
5321 case Intrinsic::arm_mve_vdwdup:
5322 case Intrinsic::arm_mve_vdwdup_predicated: {
5323 static const uint16_t Opcodes[] = {
5324 ARM::MVE_VDWDUPu8, ARM::MVE_VDWDUPu16, ARM::MVE_VDWDUPu32,
5326 SelectMVE_VxDUP(N, Opcodes, true,
5327 IntNo == Intrinsic::arm_mve_vdwdup_predicated);
5328 return;
5331 case Intrinsic::arm_cde_cx1d:
5332 case Intrinsic::arm_cde_cx1da:
5333 case Intrinsic::arm_cde_cx2d:
5334 case Intrinsic::arm_cde_cx2da:
5335 case Intrinsic::arm_cde_cx3d:
5336 case Intrinsic::arm_cde_cx3da: {
5337 bool HasAccum = IntNo == Intrinsic::arm_cde_cx1da ||
5338 IntNo == Intrinsic::arm_cde_cx2da ||
5339 IntNo == Intrinsic::arm_cde_cx3da;
5340 size_t NumExtraOps;
5341 uint16_t Opcode;
5342 switch (IntNo) {
5343 case Intrinsic::arm_cde_cx1d:
5344 case Intrinsic::arm_cde_cx1da:
5345 NumExtraOps = 0;
5346 Opcode = HasAccum ? ARM::CDE_CX1DA : ARM::CDE_CX1D;
5347 break;
5348 case Intrinsic::arm_cde_cx2d:
5349 case Intrinsic::arm_cde_cx2da:
5350 NumExtraOps = 1;
5351 Opcode = HasAccum ? ARM::CDE_CX2DA : ARM::CDE_CX2D;
5352 break;
5353 case Intrinsic::arm_cde_cx3d:
5354 case Intrinsic::arm_cde_cx3da:
5355 NumExtraOps = 2;
5356 Opcode = HasAccum ? ARM::CDE_CX3DA : ARM::CDE_CX3D;
5357 break;
5358 default:
5359 llvm_unreachable("Unexpected opcode");
5361 SelectCDE_CXxD(N, Opcode, NumExtraOps, HasAccum);
5362 return;
5365 break;
5368 case ISD::ATOMIC_CMP_SWAP:
5369 SelectCMP_SWAP(N);
5370 return;
5373 SelectCode(N);
5376 // Inspect a register string of the form
5377 // cp<coprocessor>:<opc1>:c<CRn>:c<CRm>:<opc2> (32bit) or
5378 // cp<coprocessor>:<opc1>:c<CRm> (64bit) inspect the fields of the string
5379 // and obtain the integer operands from them, adding these operands to the
5380 // provided vector.
5381 static void getIntOperandsFromRegisterString(StringRef RegString,
5382 SelectionDAG *CurDAG,
5383 const SDLoc &DL,
5384 std::vector<SDValue> &Ops) {
5385 SmallVector<StringRef, 5> Fields;
5386 RegString.split(Fields, ':');
5388 if (Fields.size() > 1) {
5389 bool AllIntFields = true;
5391 for (StringRef Field : Fields) {
5392 // Need to trim out leading 'cp' characters and get the integer field.
5393 unsigned IntField;
5394 AllIntFields &= !Field.trim("CPcp").getAsInteger(10, IntField);
5395 Ops.push_back(CurDAG->getTargetConstant(IntField, DL, MVT::i32));
5398 assert(AllIntFields &&
5399 "Unexpected non-integer value in special register string.");
5400 (void)AllIntFields;
5404 // Maps a Banked Register string to its mask value. The mask value returned is
5405 // for use in the MRSbanked / MSRbanked instruction nodes as the Banked Register
5406 // mask operand, which expresses which register is to be used, e.g. r8, and in
5407 // which mode it is to be used, e.g. usr. Returns -1 to signify that the string
5408 // was invalid.
5409 static inline int getBankedRegisterMask(StringRef RegString) {
5410 auto TheReg = ARMBankedReg::lookupBankedRegByName(RegString.lower());
5411 if (!TheReg)
5412 return -1;
5413 return TheReg->Encoding;
5416 // The flags here are common to those allowed for apsr in the A class cores and
5417 // those allowed for the special registers in the M class cores. Returns a
5418 // value representing which flags were present, -1 if invalid.
5419 static inline int getMClassFlagsMask(StringRef Flags) {
5420 return StringSwitch<int>(Flags)
5421 .Case("", 0x2) // no flags means nzcvq for psr registers, and 0x2 is
5422 // correct when flags are not permitted
5423 .Case("g", 0x1)
5424 .Case("nzcvq", 0x2)
5425 .Case("nzcvqg", 0x3)
5426 .Default(-1);
5429 // Maps MClass special registers string to its value for use in the
5430 // t2MRS_M/t2MSR_M instruction nodes as the SYSm value operand.
5431 // Returns -1 to signify that the string was invalid.
5432 static int getMClassRegisterMask(StringRef Reg, const ARMSubtarget *Subtarget) {
5433 auto TheReg = ARMSysReg::lookupMClassSysRegByName(Reg);
5434 const FeatureBitset &FeatureBits = Subtarget->getFeatureBits();
5435 if (!TheReg || !TheReg->hasRequiredFeatures(FeatureBits))
5436 return -1;
5437 return (int)(TheReg->Encoding & 0xFFF); // SYSm value
5440 static int getARClassRegisterMask(StringRef Reg, StringRef Flags) {
5441 // The mask operand contains the special register (R Bit) in bit 4, whether
5442 // the register is spsr (R bit is 1) or one of cpsr/apsr (R bit is 0), and
5443 // bits 3-0 contains the fields to be accessed in the special register, set by
5444 // the flags provided with the register.
5445 int Mask = 0;
5446 if (Reg == "apsr") {
5447 // The flags permitted for apsr are the same flags that are allowed in
5448 // M class registers. We get the flag value and then shift the flags into
5449 // the correct place to combine with the mask.
5450 Mask = getMClassFlagsMask(Flags);
5451 if (Mask == -1)
5452 return -1;
5453 return Mask << 2;
5456 if (Reg != "cpsr" && Reg != "spsr") {
5457 return -1;
5460 // This is the same as if the flags were "fc"
5461 if (Flags.empty() || Flags == "all")
5462 return Mask | 0x9;
5464 // Inspect the supplied flags string and set the bits in the mask for
5465 // the relevant and valid flags allowed for cpsr and spsr.
5466 for (char Flag : Flags) {
5467 int FlagVal;
5468 switch (Flag) {
5469 case 'c':
5470 FlagVal = 0x1;
5471 break;
5472 case 'x':
5473 FlagVal = 0x2;
5474 break;
5475 case 's':
5476 FlagVal = 0x4;
5477 break;
5478 case 'f':
5479 FlagVal = 0x8;
5480 break;
5481 default:
5482 FlagVal = 0;
5485 // This avoids allowing strings where the same flag bit appears twice.
5486 if (!FlagVal || (Mask & FlagVal))
5487 return -1;
5488 Mask |= FlagVal;
5491 // If the register is spsr then we need to set the R bit.
5492 if (Reg == "spsr")
5493 Mask |= 0x10;
5495 return Mask;
5498 // Lower the read_register intrinsic to ARM specific DAG nodes
5499 // using the supplied metadata string to select the instruction node to use
5500 // and the registers/masks to construct as operands for the node.
5501 bool ARMDAGToDAGISel::tryReadRegister(SDNode *N){
5502 const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
5503 const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
5504 bool IsThumb2 = Subtarget->isThumb2();
5505 SDLoc DL(N);
5507 std::vector<SDValue> Ops;
5508 getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
5510 if (!Ops.empty()) {
5511 // If the special register string was constructed of fields (as defined
5512 // in the ACLE) then need to lower to MRC node (32 bit) or
5513 // MRRC node(64 bit), we can make the distinction based on the number of
5514 // operands we have.
5515 unsigned Opcode;
5516 SmallVector<EVT, 3> ResTypes;
5517 if (Ops.size() == 5){
5518 Opcode = IsThumb2 ? ARM::t2MRC : ARM::MRC;
5519 ResTypes.append({ MVT::i32, MVT::Other });
5520 } else {
5521 assert(Ops.size() == 3 &&
5522 "Invalid number of fields in special register string.");
5523 Opcode = IsThumb2 ? ARM::t2MRRC : ARM::MRRC;
5524 ResTypes.append({ MVT::i32, MVT::i32, MVT::Other });
5527 Ops.push_back(getAL(CurDAG, DL));
5528 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
5529 Ops.push_back(N->getOperand(0));
5530 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, ResTypes, Ops));
5531 return true;
5534 std::string SpecialReg = RegString->getString().lower();
5536 int BankedReg = getBankedRegisterMask(SpecialReg);
5537 if (BankedReg != -1) {
5538 Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32),
5539 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5540 N->getOperand(0) };
5541 ReplaceNode(
5542 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSbanked : ARM::MRSbanked,
5543 DL, MVT::i32, MVT::Other, Ops));
5544 return true;
5547 // The VFP registers are read by creating SelectionDAG nodes with opcodes
5548 // corresponding to the register that is being read from. So we switch on the
5549 // string to find which opcode we need to use.
5550 unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
5551 .Case("fpscr", ARM::VMRS)
5552 .Case("fpexc", ARM::VMRS_FPEXC)
5553 .Case("fpsid", ARM::VMRS_FPSID)
5554 .Case("mvfr0", ARM::VMRS_MVFR0)
5555 .Case("mvfr1", ARM::VMRS_MVFR1)
5556 .Case("mvfr2", ARM::VMRS_MVFR2)
5557 .Case("fpinst", ARM::VMRS_FPINST)
5558 .Case("fpinst2", ARM::VMRS_FPINST2)
5559 .Default(0);
5561 // If an opcode was found then we can lower the read to a VFP instruction.
5562 if (Opcode) {
5563 if (!Subtarget->hasVFP2Base())
5564 return false;
5565 if (Opcode == ARM::VMRS_MVFR2 && !Subtarget->hasFPARMv8Base())
5566 return false;
5568 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5569 N->getOperand(0) };
5570 ReplaceNode(N,
5571 CurDAG->getMachineNode(Opcode, DL, MVT::i32, MVT::Other, Ops));
5572 return true;
5575 // If the target is M Class then need to validate that the register string
5576 // is an acceptable value, so check that a mask can be constructed from the
5577 // string.
5578 if (Subtarget->isMClass()) {
5579 int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
5580 if (SYSmValue == -1)
5581 return false;
5583 SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
5584 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5585 N->getOperand(0) };
5586 ReplaceNode(
5587 N, CurDAG->getMachineNode(ARM::t2MRS_M, DL, MVT::i32, MVT::Other, Ops));
5588 return true;
5591 // Here we know the target is not M Class so we need to check if it is one
5592 // of the remaining possible values which are apsr, cpsr or spsr.
5593 if (SpecialReg == "apsr" || SpecialReg == "cpsr") {
5594 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5595 N->getOperand(0) };
5596 ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRS_AR : ARM::MRS,
5597 DL, MVT::i32, MVT::Other, Ops));
5598 return true;
5601 if (SpecialReg == "spsr") {
5602 Ops = { getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5603 N->getOperand(0) };
5604 ReplaceNode(
5605 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MRSsys_AR : ARM::MRSsys, DL,
5606 MVT::i32, MVT::Other, Ops));
5607 return true;
5610 return false;
5613 // Lower the write_register intrinsic to ARM specific DAG nodes
5614 // using the supplied metadata string to select the instruction node to use
5615 // and the registers/masks to use in the nodes
5616 bool ARMDAGToDAGISel::tryWriteRegister(SDNode *N){
5617 const auto *MD = cast<MDNodeSDNode>(N->getOperand(1));
5618 const auto *RegString = cast<MDString>(MD->getMD()->getOperand(0));
5619 bool IsThumb2 = Subtarget->isThumb2();
5620 SDLoc DL(N);
5622 std::vector<SDValue> Ops;
5623 getIntOperandsFromRegisterString(RegString->getString(), CurDAG, DL, Ops);
5625 if (!Ops.empty()) {
5626 // If the special register string was constructed of fields (as defined
5627 // in the ACLE) then need to lower to MCR node (32 bit) or
5628 // MCRR node(64 bit), we can make the distinction based on the number of
5629 // operands we have.
5630 unsigned Opcode;
5631 if (Ops.size() == 5) {
5632 Opcode = IsThumb2 ? ARM::t2MCR : ARM::MCR;
5633 Ops.insert(Ops.begin()+2, N->getOperand(2));
5634 } else {
5635 assert(Ops.size() == 3 &&
5636 "Invalid number of fields in special register string.");
5637 Opcode = IsThumb2 ? ARM::t2MCRR : ARM::MCRR;
5638 SDValue WriteValue[] = { N->getOperand(2), N->getOperand(3) };
5639 Ops.insert(Ops.begin()+2, WriteValue, WriteValue+2);
5642 Ops.push_back(getAL(CurDAG, DL));
5643 Ops.push_back(CurDAG->getRegister(0, MVT::i32));
5644 Ops.push_back(N->getOperand(0));
5646 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
5647 return true;
5650 std::string SpecialReg = RegString->getString().lower();
5651 int BankedReg = getBankedRegisterMask(SpecialReg);
5652 if (BankedReg != -1) {
5653 Ops = { CurDAG->getTargetConstant(BankedReg, DL, MVT::i32), N->getOperand(2),
5654 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5655 N->getOperand(0) };
5656 ReplaceNode(
5657 N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSRbanked : ARM::MSRbanked,
5658 DL, MVT::Other, Ops));
5659 return true;
5662 // The VFP registers are written to by creating SelectionDAG nodes with
5663 // opcodes corresponding to the register that is being written. So we switch
5664 // on the string to find which opcode we need to use.
5665 unsigned Opcode = StringSwitch<unsigned>(SpecialReg)
5666 .Case("fpscr", ARM::VMSR)
5667 .Case("fpexc", ARM::VMSR_FPEXC)
5668 .Case("fpsid", ARM::VMSR_FPSID)
5669 .Case("fpinst", ARM::VMSR_FPINST)
5670 .Case("fpinst2", ARM::VMSR_FPINST2)
5671 .Default(0);
5673 if (Opcode) {
5674 if (!Subtarget->hasVFP2Base())
5675 return false;
5676 Ops = { N->getOperand(2), getAL(CurDAG, DL),
5677 CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
5678 ReplaceNode(N, CurDAG->getMachineNode(Opcode, DL, MVT::Other, Ops));
5679 return true;
5682 std::pair<StringRef, StringRef> Fields;
5683 Fields = StringRef(SpecialReg).rsplit('_');
5684 std::string Reg = Fields.first.str();
5685 StringRef Flags = Fields.second;
5687 // If the target was M Class then need to validate the special register value
5688 // and retrieve the mask for use in the instruction node.
5689 if (Subtarget->isMClass()) {
5690 int SYSmValue = getMClassRegisterMask(SpecialReg, Subtarget);
5691 if (SYSmValue == -1)
5692 return false;
5694 SDValue Ops[] = { CurDAG->getTargetConstant(SYSmValue, DL, MVT::i32),
5695 N->getOperand(2), getAL(CurDAG, DL),
5696 CurDAG->getRegister(0, MVT::i32), N->getOperand(0) };
5697 ReplaceNode(N, CurDAG->getMachineNode(ARM::t2MSR_M, DL, MVT::Other, Ops));
5698 return true;
5701 // We then check to see if a valid mask can be constructed for one of the
5702 // register string values permitted for the A and R class cores. These values
5703 // are apsr, spsr and cpsr; these are also valid on older cores.
5704 int Mask = getARClassRegisterMask(Reg, Flags);
5705 if (Mask != -1) {
5706 Ops = { CurDAG->getTargetConstant(Mask, DL, MVT::i32), N->getOperand(2),
5707 getAL(CurDAG, DL), CurDAG->getRegister(0, MVT::i32),
5708 N->getOperand(0) };
5709 ReplaceNode(N, CurDAG->getMachineNode(IsThumb2 ? ARM::t2MSR_AR : ARM::MSR,
5710 DL, MVT::Other, Ops));
5711 return true;
5714 return false;
5717 bool ARMDAGToDAGISel::tryInlineAsm(SDNode *N){
5718 std::vector<SDValue> AsmNodeOperands;
5719 unsigned Flag, Kind;
5720 bool Changed = false;
5721 unsigned NumOps = N->getNumOperands();
5723 // Normally, i64 data is bounded to two arbitrary GRPs for "%r" constraint.
5724 // However, some instrstions (e.g. ldrexd/strexd in ARM mode) require
5725 // (even/even+1) GPRs and use %n and %Hn to refer to the individual regs
5726 // respectively. Since there is no constraint to explicitly specify a
5727 // reg pair, we use GPRPair reg class for "%r" for 64-bit data. For Thumb,
5728 // the 64-bit data may be referred by H, Q, R modifiers, so we still pack
5729 // them into a GPRPair.
5731 SDLoc dl(N);
5732 SDValue Glue = N->getGluedNode() ? N->getOperand(NumOps-1)
5733 : SDValue(nullptr,0);
5735 SmallVector<bool, 8> OpChanged;
5736 // Glue node will be appended late.
5737 for(unsigned i = 0, e = N->getGluedNode() ? NumOps - 1 : NumOps; i < e; ++i) {
5738 SDValue op = N->getOperand(i);
5739 AsmNodeOperands.push_back(op);
5741 if (i < InlineAsm::Op_FirstOperand)
5742 continue;
5744 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(i))) {
5745 Flag = C->getZExtValue();
5746 Kind = InlineAsm::getKind(Flag);
5748 else
5749 continue;
5751 // Immediate operands to inline asm in the SelectionDAG are modeled with
5752 // two operands. The first is a constant of value InlineAsm::Kind_Imm, and
5753 // the second is a constant with the value of the immediate. If we get here
5754 // and we have a Kind_Imm, skip the next operand, and continue.
5755 if (Kind == InlineAsm::Kind_Imm) {
5756 SDValue op = N->getOperand(++i);
5757 AsmNodeOperands.push_back(op);
5758 continue;
5761 unsigned NumRegs = InlineAsm::getNumOperandRegisters(Flag);
5762 if (NumRegs)
5763 OpChanged.push_back(false);
5765 unsigned DefIdx = 0;
5766 bool IsTiedToChangedOp = false;
5767 // If it's a use that is tied with a previous def, it has no
5768 // reg class constraint.
5769 if (Changed && InlineAsm::isUseOperandTiedToDef(Flag, DefIdx))
5770 IsTiedToChangedOp = OpChanged[DefIdx];
5772 // Memory operands to inline asm in the SelectionDAG are modeled with two
5773 // operands: a constant of value InlineAsm::Kind_Mem followed by the input
5774 // operand. If we get here and we have a Kind_Mem, skip the next operand (so
5775 // it doesn't get misinterpreted), and continue. We do this here because
5776 // it's important to update the OpChanged array correctly before moving on.
5777 if (Kind == InlineAsm::Kind_Mem) {
5778 SDValue op = N->getOperand(++i);
5779 AsmNodeOperands.push_back(op);
5780 continue;
5783 if (Kind != InlineAsm::Kind_RegUse && Kind != InlineAsm::Kind_RegDef
5784 && Kind != InlineAsm::Kind_RegDefEarlyClobber)
5785 continue;
5787 unsigned RC;
5788 bool HasRC = InlineAsm::hasRegClassConstraint(Flag, RC);
5789 if ((!IsTiedToChangedOp && (!HasRC || RC != ARM::GPRRegClassID))
5790 || NumRegs != 2)
5791 continue;
5793 assert((i+2 < NumOps) && "Invalid number of operands in inline asm");
5794 SDValue V0 = N->getOperand(i+1);
5795 SDValue V1 = N->getOperand(i+2);
5796 unsigned Reg0 = cast<RegisterSDNode>(V0)->getReg();
5797 unsigned Reg1 = cast<RegisterSDNode>(V1)->getReg();
5798 SDValue PairedReg;
5799 MachineRegisterInfo &MRI = MF->getRegInfo();
5801 if (Kind == InlineAsm::Kind_RegDef ||
5802 Kind == InlineAsm::Kind_RegDefEarlyClobber) {
5803 // Replace the two GPRs with 1 GPRPair and copy values from GPRPair to
5804 // the original GPRs.
5806 Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5807 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
5808 SDValue Chain = SDValue(N,0);
5810 SDNode *GU = N->getGluedUser();
5811 SDValue RegCopy = CurDAG->getCopyFromReg(Chain, dl, GPVR, MVT::Untyped,
5812 Chain.getValue(1));
5814 // Extract values from a GPRPair reg and copy to the original GPR reg.
5815 SDValue Sub0 = CurDAG->getTargetExtractSubreg(ARM::gsub_0, dl, MVT::i32,
5816 RegCopy);
5817 SDValue Sub1 = CurDAG->getTargetExtractSubreg(ARM::gsub_1, dl, MVT::i32,
5818 RegCopy);
5819 SDValue T0 = CurDAG->getCopyToReg(Sub0, dl, Reg0, Sub0,
5820 RegCopy.getValue(1));
5821 SDValue T1 = CurDAG->getCopyToReg(Sub1, dl, Reg1, Sub1, T0.getValue(1));
5823 // Update the original glue user.
5824 std::vector<SDValue> Ops(GU->op_begin(), GU->op_end()-1);
5825 Ops.push_back(T1.getValue(1));
5826 CurDAG->UpdateNodeOperands(GU, Ops);
5828 else {
5829 // For Kind == InlineAsm::Kind_RegUse, we first copy two GPRs into a
5830 // GPRPair and then pass the GPRPair to the inline asm.
5831 SDValue Chain = AsmNodeOperands[InlineAsm::Op_InputChain];
5833 // As REG_SEQ doesn't take RegisterSDNode, we copy them first.
5834 SDValue T0 = CurDAG->getCopyFromReg(Chain, dl, Reg0, MVT::i32,
5835 Chain.getValue(1));
5836 SDValue T1 = CurDAG->getCopyFromReg(Chain, dl, Reg1, MVT::i32,
5837 T0.getValue(1));
5838 SDValue Pair = SDValue(createGPRPairNode(MVT::Untyped, T0, T1), 0);
5840 // Copy REG_SEQ into a GPRPair-typed VR and replace the original two
5841 // i32 VRs of inline asm with it.
5842 Register GPVR = MRI.createVirtualRegister(&ARM::GPRPairRegClass);
5843 PairedReg = CurDAG->getRegister(GPVR, MVT::Untyped);
5844 Chain = CurDAG->getCopyToReg(T1, dl, GPVR, Pair, T1.getValue(1));
5846 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
5847 Glue = Chain.getValue(1);
5850 Changed = true;
5852 if(PairedReg.getNode()) {
5853 OpChanged[OpChanged.size() -1 ] = true;
5854 Flag = InlineAsm::getFlagWord(Kind, 1 /* RegNum*/);
5855 if (IsTiedToChangedOp)
5856 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, DefIdx);
5857 else
5858 Flag = InlineAsm::getFlagWordForRegClass(Flag, ARM::GPRPairRegClassID);
5859 // Replace the current flag.
5860 AsmNodeOperands[AsmNodeOperands.size() -1] = CurDAG->getTargetConstant(
5861 Flag, dl, MVT::i32);
5862 // Add the new register node and skip the original two GPRs.
5863 AsmNodeOperands.push_back(PairedReg);
5864 // Skip the next two GPRs.
5865 i += 2;
5869 if (Glue.getNode())
5870 AsmNodeOperands.push_back(Glue);
5871 if (!Changed)
5872 return false;
5874 SDValue New = CurDAG->getNode(N->getOpcode(), SDLoc(N),
5875 CurDAG->getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
5876 New->setNodeId(-1);
5877 ReplaceNode(N, New.getNode());
5878 return true;
5882 bool ARMDAGToDAGISel::
5883 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
5884 std::vector<SDValue> &OutOps) {
5885 switch(ConstraintID) {
5886 default:
5887 llvm_unreachable("Unexpected asm memory constraint");
5888 case InlineAsm::Constraint_m:
5889 case InlineAsm::Constraint_o:
5890 case InlineAsm::Constraint_Q:
5891 case InlineAsm::Constraint_Um:
5892 case InlineAsm::Constraint_Un:
5893 case InlineAsm::Constraint_Uq:
5894 case InlineAsm::Constraint_Us:
5895 case InlineAsm::Constraint_Ut:
5896 case InlineAsm::Constraint_Uv:
5897 case InlineAsm::Constraint_Uy:
5898 // Require the address to be in a register. That is safe for all ARM
5899 // variants and it is hard to do anything much smarter without knowing
5900 // how the operand is used.
5901 OutOps.push_back(Op);
5902 return false;
5904 return true;
5907 /// createARMISelDag - This pass converts a legalized DAG into a
5908 /// ARM-specific DAG, ready for instruction scheduling.
5910 FunctionPass *llvm::createARMISelDag(ARMBaseTargetMachine &TM,
5911 CodeGenOpt::Level OptLevel) {
5912 return new ARMDAGToDAGISel(TM, OptLevel);